








transmission efficiencies of influenza viruses at different temper-
atures and relative humidities8. Conversely, other studies sug-
gest that high humidity may increase the stability of rhinovirus
and adenovirus, favoring transmission9. Most of the data re-
lated to climate factors and transmission dynamics of respiratory
viruses has been generated from basic science research, ecologi-
cal studies, and passive disease surveillance (e.g. viral specimens
obtained for clinical practice).

The Community-Acquired Pneumonia Organization (CAPO) co-
hort study is a multicenter, international study of adult hospi-
talized patients with lower respiratory tract infections (LRTIs),
which began in 2001. The database for the CAPO study con-
tains information on over 15,000 patients with CAP from over
40 countries. As part of this ancillary study, consecutive hospi-
talized patients with LRTIs from all nine adult acute care hospi-
tals in Louisville, KY during three consecutive influenza seasons
were enrolled. Each of these patients underwent active surveil-
lance for 12 respiratory viruses upon admission. Combining this
dataset with data from the National Weather Service allowed us
the unique opportunity to evaluate the role of climate factors at
the patient level using active respiratory virus surveillance.

The objective of this study was to evaluate the impact of outdoor
temperature, relative humidity, and absolute humidity on the in-
cidence of hospitalizations for lower respiratory tract infections
due to influenza, rhinovirus, and RSV.

2 Methods

2.1 Study Design

This was a secondary analysis of the CAPO database. As men-
tioned previously, this ancillary study of CAPO was a 3-year,
prospective study, enrolling consecutive adult hospitalized pa-
tients with lower respiratory tract infections (LRTIs) due to in-
fluenza during three consecutive influenza seasons. Consecu-
tive adult hospitalized patients with a diagnosis of LRTI were
evaluated prospectively from 4 adult hospitals in Louisville, Ken-
tucky during the influenza season 2010/2011, from 8 hospitals
during the 2011/2012 season, and in all 9 adult care hospitals
in Louisville, Kentucky, during the influenza season 2012/2013.
After informed consent was obtained, a nasopharyngeal swab
was obtained from each patient for respiratory virus detection.
The normal climate of Louisville is classified as a warm, humid,
and temperate, with average temperatures during the influenza
season of approximately 30◦F, and average precipitation of 3-4
inches per month during the same season.

2.2 Inclusion Criteria

Consecutive adult patients with the diagnosis of a lower respira-
tory tract infection were approached by a study coordinator for
inclusion in the study. Upon signing of the consent form, the pa-
tient was enrolled and prospectively followed. Over 95% of the
residents of Louisville, KY sought care in these nine hospitals un-
der study during the third year of the study (Kentucky Hospital
Association, unpublished data), therefore only patients from the
third year (2012/2013 influenza season) were included in the

present analysis.

2.3 Exclusion Criteria

Patients with more than one respiratory virus identified from the
nasopharyngeal swab were excluded from the analysis.

2.4 Human Subjects Protection

Institutional Review Board approval was obtained at all partici-
pating CAPO institutions prior to data collection.

2.5 Study Definitions

Lower respiratory tract infection (LRTI) was defined as a one sign
of acute infection (e.g. subjective/objective fever and/or chills)
and 2 new respiratory symptoms (e.g. cough, shortness of breath,
change ins sputum production).

LRTI was further stratified as community-acquired pneumonia
(CAP), acute exacerbation of chronic obstructive pulmonary dis-
ease (AE-COPD), or acute bronchitis (AB).

Community-Acquired Pneumonia (CAP) was defined as the pres-
ence of a new pulmonary infiltrate on chest radiograph at the
time of hospitalization that was associated with at least one of
the following three criteria:

1. New or increased cough

2. An abnormal temperature (< 35.6◦C or > 37◦C)

3. Leukocytosis, leukopenia, or left shift

Acute Exacerbation of Chronic Obstructive Pulmonary Disease
(AE-COPD) was defined as the lack of pulmonary infiltrate
on chest radiograph at the time of hospitalization that was
associated with at least one of the above three criteria PLUS a
history of COPD.

Acute Bronchitis (AB) was defined as the lack of pulmonary infil-
trate on chest radiograph at the time of hospitalization that was
associated with at least one of the above three criteria, without a
history of COPD.

Influenza LRTI was defined if the patient had a Luminex xTAG res-
piratory viral panel positive for any influenza virus via nasopha-
ryngeal swab.

Respiratory syncytial virus LRTI was defined if the patient had a
Luminex xTAG respiratory viral panel positive for any respiratory
syncytial virus via nasopharyngeal swab.

Rhinovirus LRTI was defined if the patient had a Luminex xTAG
respiratory viral panel positive for rhinovirus via nasopharyngeal
swab.

Date of Acquisition of LRTI: To calculate the incidence of each
virus by week, the following formula was used: ([date of admis-
sion to the hospital] − ([number of days with respiratory symp-
toms prior to hospitalization] +1)). This formula allowed us to
approximate the date of acquisition of the etiology of LRTI.
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Table 1 Baseline Patient Characteristics and Climate Data Of Those With And Without Influenza Lower Respiratory Tract Infections

Variable Influenza No Influenza P-Value
n=135 n=332

Age, Median (IQR) 64 (19.5) 63 (20.2) 0.254
Male Gender, n (%) 79 (59) 186 (56) 0.680
COPD, n (%) 66 (49) 194 (58) 0.065
Diabetes, n (%) 48 (36) 123 (37) 0.832
Obese (BMI ≥30kg/m2), n (%) 53 (39) 149 (45) 0.259
Risk Factors for Healthcare-Associated Pneumonia (HCAP), n (%) 38 (28) 126 (38) 0.054
Congestive Heart Failure, n (%) 27 (20) 102 (31) 0.022
Liver Disease, n (%) 6 (4) 21 (6) 0.517
Cancer, n (%) 16 (12) 29 (9) 0.303
Renal Disease, n (%) 25 (19) 64 (19) 0.897
Days with Respiratory Symptoms Prior to Hospitalization, Median (IQR) 3 (4) 4 (5) 0.209
Average Absolute Humidity the Day Before Symptom Onset, Median (IQR) 4.1 (1.6) 4.3 (1.8) 0.010
Average Relative Humidity the Day Before Symptom Onset, Median (IQR) 70.9 (9.1) 70.9 (9.2) 0.367
Average Temperature the Day Before Symptom Onset, Median (IQR) 3.3 (4.5) 3.8 (3.8) 0.003

Table 2 Baseline Patient Characteristics and Climate Data Of Those With And Without Rhinovirus Lower Respiratory Tract Infections

Variable Rhinovirus No Rhinovirus P-Value
n=41 n=426

Age, Median (IQR) 64 (22) 63 (20.8) 0.822
Male Gender, n (%) 25 (61) 240 (56) 0.623
COPD, n (%) 23 (56) 237 (56) 1.000
Diabetes, n (%) 11 (27) 160 (38) 0.234
Obese (BMI ≥30kg/m2), n (%) 16 (39) 186 (44) 0.622
Risk Factors for Healthcare-Associated Pneumonia (HCAP), n (%) 11 (27) 153 (36) 0.305
Congestive Heart Failure, n (%) 7 (17) 122 (29) 0.143
Liver Disease, n (%) 3 (7) 24 (6) 0.722
Cancer, n (%) 8 (20) 37 (9) 0.045
Renal Disease, n (%) 6 (15) 83 (19) 0.537
Days with Respiratory Symptoms Prior to Hospitalization, Median (IQR) 4 (5) 4 (5) 0.784
Average Absolute Humidity the Day Before Symptom Onset, Median (IQR) 4.3 (1.4) 4.3 (1.8) 0.680
Average Relative Humidity the Day Before Symptom Onset, Median (IQR) 69 (9.1) 70.9 (9.3) 0.970
Average Temperature the Day Before Symptom Onset, Median (IQR) 3.8 (3.8) 3.8 (4.2) 0.612

2.6 Study Variables
Predictor Variable - The primary predictor variables for the
present study were as follows: 1) average absolute humidity per
week, 2) minimum absolute humidity per week, 3) maximum ab-
solute humidity per week, 4) average relative humidity per week,
5) minimum relative humidity per week, 6) maximum relative
humidity per week, 7) average temperature (degrees Celsius) per
week, 8) minimum temperature (degrees Celsius) per week, and
9) maximum temperature (degrees Celsius) per week. Data were
gathered from the national weather service, and the absolute hu-
midity in grams/meters3 was calculated with the following for-
mula (T=temperature in degrees Celsius, rh= percent relative
humidity):

(6.112× e(17.67xT )/(T+243.5)×2.1674× rh)\ (273.15+T )

Each of these variables was assigned to a particular patient based
on the formula described above for the date of acquisition of LRTI.

Confounding Variables - We evaluated the following potentially
confounding variables: age, gender, obesity, risk factors for HCAP,
the number of days with respiratory symptoms prior to hospital-
ization, as well as a history of: COPD, liver disease, renal disease,
diabetes, congestive heart failure, and cancer.

Quality Control/Data Management Plan - Trained study coordina-
tors or research associates collected data both from patient inter-
views/questionnaires, and from medical records. All data were
collected on a paper case report form and were subsequently
entered into an online case report form. The online system in-
cluded validators to limit data entry error. Once the case was

entered, trained study coordinators and research associates ex-
amined each case for abnormal data. Any queries were sent back
to the coordinator collecting data for remedy. Once all queries
were answered, the data were corrected and finally entered into
the online database.

2.7 Statistical Analysis

Categorical variables were expressed as frequencies and percent-
ages and were compared between those with and without in-
fluenza, with and without rhinovirus, and with and without RSV
using Chi-squared or Fisher’s exact tests. Continuous variables
were expressed as medians and interquartile ranges or means and
standard deviations and were compared between groups using
the Mann-Whitney U test or the student’s t-test. P-values ≤0.05
were considered statistically significant in all analyses unless oth-
erwise specified.

Poisson regression models with robust error variance were used to
model the incidence of hospitalization with a LRTI due to either:
1) influenza, 2) rhinovirus, and 3) respiratory syncytial virus (A
and/or B), separately10. For each of those three outcomes, nine
separate models were run, using each of the nine predictor vari-
ables listed in the Study Variables section. All models were ad-
justed for the confounding variables described previously.

P-values of ≤0.05 were considered statistically significant, and R
v3.0 was used for all analyses.
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Table 3 Baseline Patient Characteristics and Climate Data Of Those With And Without Respiratory Syncytial Virus Lower Respiratory Tract Infections

Respiratory No Respiratory
Variable Syncytial Virus Syncytial Virus P-Value

n=27 n=440
Age, Median (IQR) 60 (17) 63 (21) 0.824
Male Gender, n (%) 19 (70) 246 (56) 0.164
COPD, n (%) 16 (59) 244 (55) 0.842
Diabetes, n (%) 9 (33) 162 (37) 0.838
Obese (BMI≥30kg/m2), n (%) 14 (52) 188 (43) 0.425
Risk Factors for Healthcare-Associated Pneumonia (HCAP), n (%) 9 (33) 155 (35) 1.000
Congestive Heart Failure, n (%) 13 (48) 116 (26) 0.024
Liver Disease, n (%) 1 (4) 26 (6) 1.000
Cancer, n (%) 0 (0) 45 (10) 0.095
Renal Disease, n (%) 6 (22) 83 (19) 0.619
Days with Respiratory Symptoms Prior to Hospitalization, Median (IQR) 4 (2.5) 4 (5) 0.379
Average Absolute Humidity the Day Before Symptom Onset, Median (IQR) 4.1 (1.9) 4.3 (1.8) 0.824
Average Relative Humidity the Day Before Symptom Onset, Median (IQR) 70.9 (14.2) 70.9 (9.3) 0.686
Average Temperature the Day Before Symptom Onset, Median (IQR) 3.3 (3.4) 3.8 (3.8) 0.307
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Fig. 1 Adjusted impact of climate factors on hospitalizations due to influenza virus lower respiratory tract infections (Avg = average; Min = minimum;
Max = maximum; AH = absolute humidity; RH = relative humidity; Temp = temperature in degrees Celsius)

3 Results
A total of 467 hospitalized patients with LRTI were included in
the study, 293 with CAP, 126 with AECOPD, and 48 with AB. A to-
tal of 135 (29%) patients had influenza, 41 (9%) had rhinovirus,
and 27 (6%) had RSV (20 RSV A, 7 RSV B). Baseline patient char-
acteristics and baseline climate data on the day before symptom
onset of hospitalized patients with and without LRTIs due to in-
fluenza, rhinovirus, and RSV can be found in Tables 1, 2, and 3,
respectively.

During the three seasons, the average weekly absolute humidity
was 4.7 grams/m3 (min=2.3 grams/m3; max=9.2 grams/m3),
the average weekly relative humidity was 71.1% (min=42.3%;
max=85.7%), and the average weekly temperature was 4.3◦C
(min=-2.3◦C ; max=12.7◦C).

The adjusted impact of each of the nine climate factors for in-
fluenza infection, rhinovirus infection, and RSV infection can be
seen in Figures 1, 2, and 3, respectively. The average, minimum,
and maximum absolute humidity and temperature variables were

associated with hospitalization due to influenza LRTI, while the
relative humidity variables were not. Correlations between each
of the nine climate factors and the weekly influenza incidence
rates are depicted in Figure 4. None of the nine predictor vari-
ables were associated with hospitalization due to rhinovirus or
RSV.

4 Discussion
This study suggests that absolute humidity and temperature on
the day before symptom onset are associated with hospitaliza-
tions due to influenza LRTIs, but not with LRTIs due to rhinovirus
or respiratory syncytial virus during the influenza season. Fur-
thermore, the relative humidity on the day before symptom onset
was not associated with hospitalizations due to any of the eti-
ologies evaluated. Although temperature was associated with in-
fluenza LRTIs, the protective effects were small compared to those
related to relative humidity.

The relationships between climate factors and respiratory virus
infection incidence are documented in the literature but most
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Fig. 2 Adjusted impact of climate factors on hospitalizations due to rhinovirus lower respiratory tract infections (Avg = average; Min = minimum; Max =
maximum; AH = absolute humidity; RH = relative humidity; Temp = temperature in degrees Celsius)

published studies are somewhat limited in their methods and
scope5,11–43. For example, there are no true incidence studies
evaluating this correlation enrolling all hospitalized patients with
lower respiratory tract infections in a defined population during
a defined time period in the literature. Available clinical data do
suggest that influenza virus infections are related to absolute hu-
midity29, relative humidity44, and temperature45. Interestingly,
contact transmission of the influenza virus, but not aerosol trans-
mission, may be facilitated in times of high temperature46 and
in the presence of high humidity Rhinovirus has been shown to
survive more readily in aerosols as well as on surfaces in the pres-
ence of high relative humidity9,47. Since droplet and contact are
known modes of transmission of this organism, it has been sug-
gested that high humidity may prevent the virus from desiccating
thereby prolonging survival on environmental surfaces and sub-
sequently facilitating transmission.6. Increases in the incidence
of RSV infections have been correlated with both low and high
relative humidity levels48,49. However, rainfall has been associ-
ated with RSV incidence in multiple studies, both negatively and
positively7,50–54.

Various theories behind the association between climate fac-
tors and the incidence of respiratory viruses have been pro-
posed. Most of the theories have focused on the low tempera-
ture/humidity correlations with influenza virus8,42. Both inter-
host factors such as viral stability changes, respiratory droplet
size, and airflow, as well as host factors such as respiratory secre-
tion production and composition, viral clearance, seasonal nutri-
tion changes, ultraviolet light, and socio-behavioral changes (e.g.
close indoor contact) have been described as potential mecha-
nisms8,55. Our results suggest that host factors, including socio-
behavioral factors may not be primary drivers of respiratory vi-
ral epidemics during winter seasons. The climate certainly influ-
ences droplet size, host and socio-behavioral factors, but if those

factors were related to respiratory viral transmission, similar pat-
terns of association between climate factors and different viruses
should be seen. Since only the influenza virus was associated
with climate factors, our data suggest that absolute humidity and
temperature may affect influenza virus stability, pathogenesis or
virulence.

This study has a number of limitations. First, we did not account
for indoor climate, which may be different than outdoor climate
and could modify viral survival and transmission during the win-
ter months. Second, although we made an attempt to define the
date of infection with each virus, it is possible that we have not ac-
curately defined this date, leading to misclassification of climate
factors to each patient. Third, we had a relatively small sam-
ple size, which makes it difficult to make accurate assessments.
Since we enrolled patients only during the influenza season, it is
possible that we missed a number of cases of viral lower respira-
tory tract infections. For example, RSV and rhinovirus may have
been circulating at different times of the year leading to biased
estimates during the winter season. It is also possible that some
patients were misclassified as not having an LRTI due to one of
these viruses due to the diagnostic technique used. It is possi-
ble that patients arriving to the hospital may already have reduce
their respiratory virus to an undetectable level, resulting in mis-
classification. Finally, since this study was ecological in nature, it
is not possible to confirm that each patient was truly exposed to a
particular temperature or humidity level, particularly indoor tem-
perature and humidity values, where an individual may spend the
majority of their day. Another limitation of this study is the fact
that there are no accepted gold standard definitions of any of the
LRTIs we evaluated. Because of this, we may have misclassified
patients based on various definitions. Due to the relatively small
sample size, we were not able to evaluate differences among the
three influenza seasons. This could possibly induce bias in the re-
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Fig. 3 Adjusted impact of climate factors on hospitalizations due to respiratory syncytial virus lower respiratory tract infections (Avg = average; Min =
minimum; Max = maximum; AH = absolute humidity; RH = relative humidity; Temp = temperature in degrees Celsius)

sults. We were also not able to evaluate the role of asthma and/or
use of inhaled corticosteroids in COPD patients. This may bias the
results due to residual confounding.

The major strength of this study is that it is a population-based
incidence study of nearly all residents of Louisville, Kentucky re-
quiring hospitalization for a LRTI using active respiratory virus
surveillance. Most prior studies largely relied on a patient sam-
ple or passive surveillance and attempted to correlate population
based climate data with the patient sample. Since we were able to
enroll nearly all hospitalized patients with lower respiratory tract
infections in Louisville, we are able to reduce the bias inherent in
some other studies.

Future studies may consider the both the role of the outdoor and
indoor climate on the incidence of respiratory virus infections.
The indoor climate, humidity in particular, has been suggested
as an important factor in respiratory virus transmission56. Com-
bining the indoor and outdoor temperature may facilitate the de-
velopment of more robust predictive models for respiratory virus
infections. Furthermore, results of these studies may lead to the
development of climate modification interventions to limit viral
transmission. Finally, there is a need to further elucidate the
mechanisms behind the correlation between low absolute humid-
ity and the pathogenesis and/or virulence of the influenza virus
but not other respiratory viruses.

In conclusion, this study adds to the body of evidence that the
outdoor climate factors, particularly absolute humidity, are asso-
ciated with influenza incidence. However, we were not able to
demonstrate any impact of climate on the incidence of rhinovirus
or respiratory syncytial virus. Understanding factors contributing
to the transmission of respiratory viruses may assist in the predic-
tion of future outbreaks and facilitate the development of novel
interventions for preventing respiratory viral transmission.
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