






tality in hospitalized patients with CAP5–7. While traditional ap-
proaches in statistical modeling/learning such as logistic regres-
sion are widely used, novel machine learning approaches such
as random forests, recursive partitioning, and other decision tree
analyses provide a more robust approach to patient-level predic-
tive modeling. Moreover, these methods can be combined in mul-
tiple ways, allowing for powerful computation and accurate pre-
diction that is only relatively recently possible on personal com-
puters.

The objective of this study was to assess several statistical and ma-
chine learning models for their ability to predict 30-day mortality
in hospitalized patients with CAP.

2 Methods

This was a secondary analysis of the University of Louisville
(UofL) Pneumonia Study database. The UofL Pneumonia Study
was a prospective, population-based cohort study of all hospi-
talized adults with CAP who were residents of Louisville, Ken-
tucky. Although this was a two-year study, only patients enrolled
in study year 1 were included in the current study. These pa-
tients were enrolled from June 1, 2014 to May 31, 2015. All
hospitalized adult patients in Louisville underwent screening for
participation in the study.

2.1 Inclusion Criteria

A patient was defined as having CAP when the following three
criteria were met: 1) presence of a new pulmonary infiltrate
on chest radiograph and/or chest computed tomography scan at
the time of hospitalization, defined by a board-certified radiol-
ogist’s reading; 2) at least one of the following a) new cough
or increased cough or sputum production, b) fever >37.8°C
(100.0°F) or hypothermia <35.6°C (96.0°F), c) changes in leuko-
cyte count (leukocytosis: >11,000 cells/mm3; left shift: > 10%
band forms/mL; or leukopenia: <4,000 cells/mm3); and 3) no
alternative diagnosis at the time of hospital discharge that justi-
fied the presence of criteria 1 and 2.

2.2 Exclusion Criteria

With the intent to enroll only hospitalized patients with CAP who
lived in Louisville, Kentucky and who were counted in the 2010
U.S. Census, patients were excluded from analysis if they: 1) did
not have a permanent or valid Louisville address based on U.S.
Census Bureau data, 2) did not have a valid Social Security Num-
ber (SSN), or 3) were in the correctional system.

2.3 Unique Patients Hospitalized with CAP

A unique patient hospitalized with CAP was counted as the first
hospitalization during each study year. A re-hospitalization due
to a new episode of CAP was identified by a repeat of the same
SSN in the same study year. Only unique patients were included
in the current study to limit bias in the study outcome.

2.4 Study Definitions

Predictor Variables: The following variables were included as
candidate variables in our models: age, sex, body mass index
(kg/m2), nursing home residence, smoking status, active can-
cer, history of congestive heart failure, renal disease, liver dis-
ease, chronic renal failure, diabetes, cirrhosis, chronic obstruc-
tive pulmonary disease, HIV infection, asplenia, coronary artery
disease, atrial fibrillation, prior myocardial infarction, hyperlipi-
demia, arterial hypertension, need for home wound care, need
for chronic dialysis, home infusion therapy, intravenous drug use,
pleural effusion on chest radiograph or computed tomography
scan, suspicion of aspiration, need for intensive care on admis-
sion, altered mental status, need for invasive mechanical ventila-
tion on admission, need for blood pressure support on admission,
hospitalization in the prior 90 days, use of intravenous antibi-
otics in the prior 90 days, heart rate respiratory rate, systolic and
diastolic blood pressure, oxygen saturation, FiO2, hematocrit,
hemoglobin, white blood cell count, platelets, serum sodium,
serum potassium, blood urea nitrogen, creatinine, serum bicar-
bonate, serum glucose, albumin, alanine aminotransferase, as-
partate aminotransferase, and bilirubin.

Outcome Variable: The outcome variable in this study was all-
cause mortality up to 30 days after hospitalization. Mortality was
obtained through medical record abstraction and using data from
the Kentucky Department for Public Health Office of Vital Statis-
tics.

2.5 Quality Control/Data Management Plan

The UofL Pneumonia Study Coordinating Center provided re-
search support for the University of Louisville Pneumonia Study.
Trained study coordinators and/or research associates collected
clinical data from the patient’s medical record onto a paper case
report form. A separate research associate entered these data into
a secure, web-based electronic data capture system called RED-
Cap. The data dictionary for the project was designed by clinical
and analysis experts in the center to ensure an appropriate map-
ping from the case report form to the electronic database. The
Center’s REDCap instance is hosted at the enterprise security dat-
acenter at the University of Louisville, with security procedures
and protocols for HIPAA compliant database operation. REDCap
supports user access controls, audit trails of all accessed data, and
timed automatic logouts to prevent accidental exposure of pa-
tient data. Each of these features were actively used throughout
the study. Data quality rules based on good clinical practice and
standard of care were used to limit out-of-range errors and inap-
propriate data types. After any data quality issues were resolved
using REDCap’s query resolution workflow, cases were locked in
REDCap for analysis.

Statistical Analysis: For each analysis, the dataset was split into
a training and a testing set. A random sample of eighty percent
of the subjects were included in the training set, while the resid-
ual twenty percent were included in a testing dataset. Several
statistical and machine learning models were used in the current
study. Since many of the models used are considered to function
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poorly in the presence of an unbalanced outcome (e.g. mortality
was not 50%), we conducted several of the analyses in the full
training dataset, as well as various sampling schemes in order
to provide the models with an equal balance of survivors (here,
known as the majority class since there are more cases of sur-
vivors in our dataset) and non-survivors (here, known as the mi-
nority class since there are fewer cases of non-survivors in our
dataset). First, we chose a random down-sampled selection of
the cases who survived, next, we chose a random up-sampling of
cases who did not survive, and finally an alternative up-sampling
scheme termed "Synthetic Minority Over-Sampling Technique" or
SMOTE. The down-sampling scheme selected a random sample
of those who survived to match the number of individuals who
did not survive. The up-sampling scheme repeated individuals
who did not survive randomly into the dataset until the frequency
of survivors and non-survivors was the same. The SMOTE sam-
pling approach up-sampled those who died, but using synthetic
cases based on data in the dataset. For a more-in depth overview
of the SMOTE sampling process, see Chawla et. al.8. Each of
these datasets provided an equal proportion of survivors and non-
survivors for analysis. The caret package in R was used for up and
down sampling of cases, while the package DMwR was used for
SMOTE sampling. The testing dataset was not up or down sam-
pled as it allowed us to evaluate each model in the context of
what would occur in clinical practice (e.g. 30-day mortality being
relatively rare). Each model and the datasets used for analysis
are described below.

1. Logistic Regression: The first model used for analysis was
a traditional logistic regression model. Logistic regression
functions well in the context of an unbalanced outcome
therefore only the full training dataset was used to develop
the model. The R function glm with a binomial family was
used for logistic regression analysis.

2. Least Absolute Shrinkage and Selection Operator (LASSO)
Regression with Two-Way Interaction Genetic Learning Vari-
able Selection and Logistic Regression. Each of these func-
tions well in the context of an unbalanced outcome therefore
only the full training dataset was used to develop the model.
The R packages lars and glmulti were used for LASSO regres-
sion and genetic learning, respectively, while the function
glm with a binomial family was used for logistic regression
analysis. LASSO regression was used to identify a subset of
variables that best predict mortality for use in the genetic
learning model. The genetic algorithm creates many candi-
date logistic regression models, using subsets of all variables
as well as all possible 2-way interactions between the vari-
ables. Using model selection criteria (specifically, the Akaike
Information Criterion), after several hundred "generations"
of the model building, the best-fit model is identified. This
approach allows for identification of a model with interac-
tions between variables that would not necessarily be iden-
tified through traditional means, leading to a model that is
more robust. Since the genetic algorithm has a limit on the
number of variables one can utilize to check for all possi-
ble interactions, the LASSO approach allowed us to identify

the best subset. Once the final model was identified, tra-
ditional logistic regression was used to estimate mortality
predictions.

3. Random Forest: The Random Forest algorithm is an ensem-
ble learning algorithm, which takes random samples of both
cases (with replacement) as well as variables from the list
of candidate variables (listed previously) and creates many
decision trees from them. Each tree makes a prediction as
to if the patient would be a survivor or non-survivor and the
results of all samples and all trees are aggregated together
to make the final prediction. For each model 500 trees were
created, while a sample of seven variables were selected for
each tree and 63.2% of the cases are used (with replace-
ment) for each tree. Random Forest analysis was used in the
full training set, as well as in the down sampled, up sampled,
and SMOTE sampled sets. The R package randomForest was
used for random forest analysis.

4. Recursive Partitioning Tree: Recursive partitioning trees are
decision algorithms that provide a tree-like decision rule to
classify patients into the outcome. Splits are made on vari-
ables as necessary in order to arrive at the best classifica-
tion with the least error and ends when the sample size at
a split is small or until no improvement in error is made. In
our implementation, the splits are based on an information
criterion known as the Gini Index. Recursive partitioning
analysis was used in the full training set, as well as in the
down sampled, up sampled, and SMOTE sampled sets. The
R package rpart was used for recursive partitioning analysis.

5. Conditional Inference Tree: Conditional inference trees are
similar to the recursive partitioning trees described above
with the exception that the binary splits between the inde-
pendent variables are chosen based on splits being statisti-
cally significant (based on Bonferonni-corrected P-values),
as opposed to maximization of the information criterion se-
lected (e.g. Gini Index). Conditional inference tree analysis
was used in the full training set, as well as in the down sam-
pled, up sampled, and SMOTE sampled sets. The R package
party was used for conditional inference tree analysis.

6. Naïve Bayes: The Naïve Bayes classification algorithm uses
Bayes’ Theorem to compute the conditional probability of
the outcome given the complete set of independent vari-
ables supplied to the model (described previously). Given
the likelihood of the variables occurring with and without
the outcome, as well as the prior probabilities of the out-
come, a prediction can be derived as to if a particular case
would survive or not survive, providing a model for predict-
ing mortality. Naïve Bayes analysis was used in the full train-
ing set, as well as in the down sampled, up sampled, and
SMOTE sampled sets. The R package e1071 was used for
Naïve Bayes analysis.

For each model, several statistics were calculated to provide mea-
sures of the overall performance (e.g. predictive ability) of the
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Table 1 Performance measures of each model in the testing dataset.

Model

Percent
Correct

Prediction
Alive

Percent
Correct

Prediction
Dead

Accuracy Balanced
Accuracy Sensitivity Specificity PPV NPV AUC

Logistic Regression 11.7% 44.4% 13.4% 40.9% 2.7% 79.1% 44.4% 11.7% 83.2%
LASSO/Genetic Regression 59.5% 12.3% 14.9% 43.9% 3.7% 84.2% 59.4% 12.3% 81.3%

Random Forest

Actual Sample 12.6% 15.4% 12.7% 44.4% 0.0% 88.5% 15.4% 12.6% 85.3%
Up-sampled minority class 11.7% 13.7% 11.7% 40.4% 0.1% 80.2% 13.6% 11.6% 85.0%

Down-sampled minority class 4.4% 69.8% 28.8% 25.0% 30.2% 19.8% 69.8% 4.4% 83.8%
SMOTE-sampled 4.7% 66.4% 24.5% 23.9% 24.8% 22.9% 66.4% 4.7% 83.2%

Recursive Partitioning Tree

Actual Sample 52.8% 88.1% 86.3% 58.5% 97.1% 19.8% 88.1% 52.8% 66.7%
Up-sampled minority class 26.7% 94.0% 67.9% 70.4% 66.9% 74.0% 94.0% 26.7% 75.2%

Down-sampled minority class 29.4% 92.8% 73.3% 69.6% 74.7% 64.5% 92.8% 29.4% 70.2%
SMOTE-sampled 28.2% 94.8% 69.3% 72.6% 68.1% 77.1% 94.8% 28.2% 74.3%

Conditional Inference Tree

Actual Sample 56.5% 87.5% 86.4% 55.9% 98.3% 13.5% 87.5% 56.5% 80.5%
Up-sampled minority class 29.1% 91.7% 74.5% 67.3% 77.7% 57.3% 91.7% 29.1% 70.3%

Down-sampled minority class 28.5% 93.9% 70.8% 71.3% 70.6% 71.9% 93.9% 28.5% 77.3%
SMOTE-sampled 24.4% 92.3% 66.7% 66.3% 66.9% 65.6% 92.3% 24.4% 73.8%

Naïve Bayes Classification

Actual Sample 40.9% 94.4% 81.6% 76.6% 83.5% 69.8% 94.4% 40.9% 79.9%
Up-sampled minority class 32.8% 95.8% 74.2% 76.7% 73.2% 80.2% 95.8% 32.8% 80.0%

Down-sampled minority class 39.5% 94.2% 80.9% 75.8% 82.9% 68.8% 94.2% 39.5% 83.1%
SMOTE-sampled 36.2% 94.4% 78.4% 75.2% 79.6% 70.8% 94.4% 36.2% 81.7%

model in the testing dataset (e.g. clinical practice). The follow-
ing statistics were calculated: 1) Percent of survivors correctly
predicted as survivors, 2) Percent of non-survivors correctly pre-
dicted as non-survivors, 3) Accuracy, 4) Balanced Accuracy, 5)
Sensitivity, 6) Specificity, 7) Positive Predictive Value, 8) Negative
Predictive Value, 9) Area Under the Receiver Operating Charac-
teristic Curve (AUC).

3 Results

A total of 3249 unique hospitalized patients with CAP were en-
rolled in the study, 2743 were included in the model building
(training) dataset, while the remaining 686 were included in the
testing dataset for which performance metrics are reported. From
the full population, death at 30-days post discharge was docu-
mented in 458 (13.4%) patients. This proportion remained con-
sistent in the training and testing datasets (13.3% and 13.8%,
respectively).

Performance metrics for each of the models’ performance on the
testing dataset can be found in Table 1. A visual representation
of the performance statistics can be found in Figure 1. Each
model and each sample resulted in different performance with
respect to predicting 30-day mortality. Overall, LASSO Regres-
sion Genetic Learning Variable Selection and Logistic Regression
performed the best in predicting survivors, but was also the worst
at predicting non-survivors. Naïve Bayes Classification in an up-
sampled dataset had the best prediction of non-survivors, but only
predicted one third of survivors correctly. When evaluating sen-
sitivity and specificity together, Naïve Bayes classification algo-
rithms had the best predictive power overall, and appeared the
most powerful prediction algorithm across the majority of statis-
tical metrics calculated in the actual sample as well as in each of
the up/down and SMOTE sampled sets.

4 Discussion

This study suggests that some machine learning algorithms per-
form better than traditional statistical modeling approaches when
predicting 30-day mortality in hospitalized patients with CAP.
However, none of the models or samples assessed offered overall
accurate predictions of patient-level mortality and each exhibited
a wide variation in performance based on the measure utilized.

The majority of studies evaluating prediction of mortality in hos-
pitalized patients with CAP use the AUC as the sole measure of
the performance or accuracy of the model or score. The AUC
is a measure of the area under a curve defined by the continu-
ous sensitivity versus false-positive rate of a variable. Although
this statistic is widely reported, it can be misinterpreted in sev-
eral contexts. Since the AUC is only evaluating one overall as-
pect of model accuracy (Sensitivity vs False Positive Rate), it can
be misleading particularly in the context of an unbalanced out-
come. When the outcome is relatively rare or unbalanced as was
mortality in our dataset, predicting that a particular patient will
survive will more often prove to be correct just by chance since
there were far more survivors than non-survivors. In this context,
the AUC may be high even though the model cannot predict the
non-survivor class accurately. Furthermore, since the AUC is not
penalized by the number of predictor variables, it will be biased
toward models with more variables, regardless of how well those
models actually predict the outcome and how well those models
actually fit the data. These scenarios make it difficult to properly
evaluate a predictive model without several measures of accuracy.
Therefore, an important implication of our findings is that over-
reliance on the AUC may lead to faulty predictive models. It may
be better to evaluate modeling strategies across a wide array of
performance statistics.
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Fig. 1 Model performance for predicting 30-day mortality in hospitalized patients with community-acquired pneumonia.
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One potential reason explaining the lack of overall accurate pre-
dictions in any of the models is that we may have reached the
maximum predictive power of demographic, medical/social and
basic laboratory variables. Using recent standard of care labo-
ratory values and biomarkers such as brain nateuretic peptide
(BNP), C-reactive protein, and procalcitonin, or novel "research
only" laboratory values such as cytokines may enhance the accu-
racy for predicting mortality in hospitalized patients with CAP.
Recently, investigators have begun to evaluate biomarkers as po-
tential predictors of various outcomes in these patients with some
success9–13.

Our study reports similar AUC values for predicting mortality in
hospitalized patients with CAP compared to the original publica-
tion of the Pneumonia Severity Index across almost all models
evaluated3. However, other investigators have reported lower
AUCs which are in agreement with the lower performing models
in our study14. As previously discussed, reliance on the AUC for
model performance, particular in the context of an unbalanced
outcome, can lead to substantial error in prediction of patients
who do not survive.

Our study has several limitations. First, since there is no gold
standard definition of CAP, it is possible our sample has misclas-
sified patients. Second, there are many statistical and machine
learning models as well as many other methods for balancing the
outcomes of datasets for machine learning models. It is possi-
ble that some combination of models and/or samples we did not
assess provide accurate predictions of 30-day mortality.

The primary goal of future research in the field of predicting out-
comes in hospitalized patients with CAP should be to create mod-
els that can predict the clinical outcome at an individual patient
level. Machine learning models may provide enhanced ability to
do this, particularly in light of using a large number of novel vari-
ables such as biomarkers and cytokines.

In conclusion, this study suggests that accurate patient-level pre-
diction of 30-day mortality in hospitalized patients with CAP is
difficult with statistical and machine learning approaches. It will
be important to evaluate novel variables and other modeling ap-
proaches to better predict poor clinical outcomes in these patients
to ensure early and appropriate interventions are instituted.
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