Role of ribosomal biogenesis in axonal morphogenesis.

Nicholas McChesney Lynch

University of Louisville
Role of Ribosomal Biogenesis in Axonal Morphogenesis

By

Nicholas McChesney Lynch

Submitted in partial fulfillment of the requirements for Graduation summa cum laude

University of Louisville

March 30, 2015
Role of ribosomal biogenesis in axonal morphogenesis

Nicholas Lynch

University of Louisville

Thesis Advisor: Dr. Michal Hetman

Keywords: nucleolus, neurites, ribosomal proteins, axons, RPS6, TIF-IA, shRNA, B23/NPM1

ABSTRACT

Elongating axons require a host of macromolecules for outgrowth. The importance of lipid, protein, and general RNA synthesis for initial axonal growth has been previously investigated, but the role of rRNA synthesis and ribosome production in axonal morphogenesis remains unclear. Therefore, rat hippocampal neurons were cultured and transfected with shRNA against either TIF-IA (the activator of RNA polymerase I) or RPS6 (a small ribosomal subunit component) to determine the effects of impaired de novo ribosome synthesis on axonal development during the first three days after plating. Our data show that shRPS6 weakly inhibited total axon length, but not longest axon path or number of axonal branches; shTIF-IA showed no significant inhibitory effect in all three parameters. Thus, these results indicate that the pre-existing ribosome supply was at least temporarily sufficient for growth during this initial phase of axonal development.

BACKGROUND

Known as the cellular “ribosome factory”, the nucleolus is the dynamic sub-nuclear structure in all eukaryotic cells. The nucleolus is composed of RNA and proteins grouped around specific chromosomal regions called nucleolar organizing regions (NORs), which are comprised of numerous tandem repeats of the ribosomal DNA (rDNA) coding for ribosomal RNA (rRNA) [1]. Primarily involved in ribosomal biogenesis, the nucleolus directs the synthesis and processing of rRNAs before assembling them together with ribosomal proteins (RPs) imported from the cytoplasm to create the large 60S and small 40S ribosomal subunits found in eukaryotic ribosomes [2]. Following production in the nucleolus and maturation in the nucleus, the large 60S and small 40S ribosomal subunits are transported out of the nucleus and into the cytoplasm, where they then combine with processed mRNA transcripts. Specifically, the 40S subunit first binds with translation initiation factors and an mRNA transcript, which then facilitates the binding of the 60S subunit [3]. This constitutes the formation of a fully functional ribosome, which is the cellular translation machinery that is responsible for catalyzing protein synthesis [4]. Given the multitude of proteins required for normal cell function and survival, the role of ribosomes as the cellular translation machinery makes them indispensable for cellular growth. As such, the critically important roles that the nucleolus plays in ribosomal biogenesis can have a drastic impact on the capacity of the cell to grow [2]. Additionally, the nucleolus has been attributed many roles in the maintenance of cellular homeostasis and its dysfunction has been linked to various pathologies [5]. While in eukaryotes RNA polymerase (pol) II is responsible for the transcription of genes encoding proteins, RNA pol I is responsible for the transcription of rRNA-encoding genes in the nucleolus [6, 37]; therefore, RNA pol I transcriptional activity
serves as an important regulator of ribosomal biogenesis and thus enables protein synthesis and cellular growth [7]. Activity of RNA pol I, in turn, is closely regulated by multiple biochemical pathways to adjust ribosomal biogenesis according to cellular demands [7]. Generally speaking, conditions that are detrimental to cell growth (such as lack of growth factors or inhibition of protein synthesis) result in a down-regulation of RNA pol I [30]. Conversely, RNA pol I is up-regulated to increase rRNA synthesis by the presence of neurotrophic factors, mitogenic signals, and favorable environmental conditions. Specifically, as one of its final targets, the extracellular signal-related kinase (ERK) pathway phosphorylates transcription initiation factor 1A (TIF-IA), which promotes the association of RNA pol I with rDNA gene promoters in rRNA synthesis [31]. In sum, RNA pol I tightly links cellular growth to changes in environmental conditions by determining the level of ribosome production [30–32].

Given its role in the regulation of RNA pol I activity, TIF-IA was selected as a target for shRNA-mediated inhibition in this experiment. More than two decades ago, TIF-IA was found to control the growth-dependent regulation of rRNA synthesis in mice by responding to extracellular signals [38]. More broadly, it was found that TIF-IA is the mammalian functional homolog of the yeast factor Rrn3p, both of which “activate” RNA pol I, making it competent for transcription initiation [39, 40]. Specifically, this activation is achieved by direct association of TIF-IA with RNA pol I to form a transcriptionally active holoenzyme that is able to bind to the rDNA promoter and initiate transcription in the presence of auxiliary cofactors, including the selectivity factor SL-1 (also called TIF-IB) and upstream binding factor (UBF) [38]. Different signaling pathways are believed to be responsible for the ability of TIF-IA to respond to extracellular signals and regulate cell growth and proliferation, especially via ERK- and mTOR (mammalian target of rapamycin)-mediated modulation of the phosphorylation state of TIF-IA [31, 32]. Further regulation includes the action of the Akt pathway, which stabilizes TIF-IA, triggers its nucleolar translocation, and augments its interaction with RNA pol I [41]. Also, in connection with TIF-IA, this project takes advantage of the nucleolar phosphoprotein B23 (also known as numatin, nucleophosmin, and NPM1) [18]. Given its localization in the nucleolus and its association with pre-ribosomal particles, B23 is an established nucleolar marker [18, 24]. As such, B23 dispersion serves as an indicator of nucleolar disruption and, thus, successful shTIF-IA inhibition of RNA pol I activity. In sum, as the primary regulator of RNA pol I-driven rDNA transcription, TIF-IA activity is of obvious importance for ribosomal biogenesis.

Despite shared transcriptional and translational processes underlying general cellular growth, different cell types demonstrate different patterns of development based on their specifically determined functions. Neurons are post-mitotic cells that no longer divide but continue to grow. Specifically, this growth consists of the development and elongation of neurites, including axons and dendrites. This neurite development – specifically with hippocampal neuron cultures – has been thoroughly studied in vitro, elucidating a process that can be broken down into five characteristic stages: within hours of adhering to the substrate, Stage 1 cells develop many small, motile, peripheral extensions known as lamellipodia; during Stage 2 the lamellipodia extend and become minor processes after about one day in vitro (DIV 1); within DIV 1-2, Stage 3 sees the particularly pronounced outgrowth of a single minor process, which forms a single major process. This major process continues its rapid growth, becoming a clearly identifiable axon between DIV 3-7. Significant dendritic outgrowth begins during Stage 4 around DIV 4, but the dendrites remain morphologically and biochemically distinct from the singular axon. [23]
However, such extensive morphological development of neurons involves a marked increase in cell volume and surface area. These increases necessarily require various macromolecules to support membranous and cytoskeletal expansions. An important study by Jareb and Banker demonstrated how axonal growth is differentially affected by inhibition of the supply of these macromolecules in rat hippocampal neurons at 18 hours after plating: disruption of the supply of Golgi-derived vesicles by treatment with brefeldin A inhibited axonal growth within one hour, showing the importance of lipid membrane components; cycloheximide (CHX)-mediated disruption of protein synthesis also significantly inhibited axonal growth, but only after six hours; and actinomycin D, a general RNA synthesis inhibitor, also inhibited axonal growth after nine hours [42] (Figure 1). The selected timeframe of about 18-30 hours after plating roughly corresponds to the aforementioned Stage 3 (DIV 1-2) in which robust axon growth begins [23]. Therefore, the supply of lipids, RNA, and proteins to the developing axon appear to be crucial for growth during this early phase of elongation. Of particular interest for this work is the necessity of protein synthesis for axonal growth, given that ribosomal biogenesis ultimately serves to produce ribosomes capable of fulfilling the cell’s translational needs.

Figure 1: Axonal Growth Requirements (DIV 1-2)

- **Cycloheximide**
- **Brefeldin A**
- **Actinomycin D**

Protein synthesis → *Lipid membrane component transport* → *General RNA transcription* → *Increased axonal growth*

Given the importance of protein synthesis for axonal development, proper regulation becomes crucial. The protein kinase mTOR has been identified as a key regulator of cellular growth via its regulation of protein synthesis and the translation machinery [29]. In particular, PI3K (phosphatidylinositol 3-kinase)/mTOR signaling regulates TIF-IA activity [7,32]. In addition to affecting numerous other downstream targets, the role of mTOR in recruitment of ribosomes to mRNA has been linked to its phosphorylation of RPS6, a functional component of ribosomes [12]. The aforementioned interlacing signaling pathways provide for careful control of protein synthesis. Nevertheless, the location of this protein synthesis within the neuron has been debated for decades. While dendrites have long been known to contain ribosomes and undergo local protein synthesis, the same was not thought to occur in axons [28]. In fact, ribosomes were thought to be excluded from axons; it was believed that axoplasmic proteins were actually produced in the cell body and slowly transported to their particular destination(s) in the axon [33, and references contained therein]. However, a recently growing body of evidence has indicated that axons also possess ribosomes and rely on local protein synthesis for growth and directional responses [34 and references contained therein]. Indeed, studies have shown that ribosomes exist within periaxoplasmic ribosomal plaques (PARPs) distributed across the length of the axon, and that myosin and kinesin motor proteins play a role in this ribosomal trafficking and distribution [43]. Local protein synthesis in axons is thought to be necessary for expedient control of the...
As integral components of functioning ribosomes, ribosomal proteins are important for protein synthesis and, thus, cellular growth. For this experiment, RPS6 was selected as the ribosomal target for shRNA knockdown to determine the effect that this would have on axonal growth. RPS6 was discovered in 1974 in connection with liver regeneration [10]. RPS6 is a ribosomal protein consisting of 249 amino acids, including five known phosphorylation sites – which are evolutionarily conserved in metazoans – at clustered residues in the C-terminal region of the protein: Ser235, Ser236, Ser240, Ser244, and Ser247 [11]. Since its discovery, RPS6 has been one of the most extensively researched ribosomal proteins, largely due to the fact that it was the first ribosomal protein to be known for its capacity for inducible phosphorylation [12]. In terms of its canonical role as a ribosomal protein, RPS6 is a component of the small 40S subunit of eukaryotic ribosomes; it is located at the interface of the 40S subunit with the 60S subunit, where it interacts with initiation factors, mRNA, and tRNA [13]. As such, it appears that RPS6 functions in mRNA binding, and so phosphorylation of RPS6 may help to regulate translation [12]. With respect to phosphorylation, RPS6 is included within the category of S6 kinase (S6K) substrates [12]. As such, it was previously suggested that RPS6 phosphorylation may regulate initiation of translation and inclusion of ribosomes in polysomes; however, experiments with...
RPS6P\rightarrow knock-in mice liver cells (with phosphorylation prevented at all aforementioned serine residues) have shown the same proportion of ribosome recruitment into polysomes as in the liver cells of wild-type mice. Indeed, in comparison with the wild-type mice, protein synthesis levels in the knock-in mice were actually higher, suggesting that RPS6 phosphorylation down-regulates protein synthesis in at least liver cells [12]. Evidence shows that RPS6 phosphorylation plays other key roles, such as regulating translation of 5’ terminal oligopyrimidine (TOP) mRNA tracts. Additionally, elevated RPS6 levels were discovered in primary diffuse large B-cell non-Hodgkin lymphoma samples with excessive cellular proliferation, whereas genetic treatment with shRPS6 led to a reduction in cell proliferation [14]. Given the potential novel roles that RPS6 may play, further investigation is needed to discern the mechanism by which RPS6 expression may regulate axon growth.

RESEARCH PROBLEM

Currently unpublished data from Dr. Hetman’s lab has shown that shRNA-mediated knockdown of TIF-IA and various ribosomal proteins (RPL4, RPS14, and RPS6) significantly reduced dendritic growth [Slomnicki et al. In preparation]. While working in Dr. Hetman’s lab during the previous academic year, we sought to continue this line of research and investigate whether a similar effect is observed in growth of axon. Because axons are a uniquely neuronal appendage, the effects that such disruptive knockdowns have on axons are of particular importance: the unique ability of axons to successfully elongate to great lengths underlies the structure and connectivity of a healthy nervous system. Therefore, this project seeks to investigate the importance of ribosomal biogenesis and nucleolar activity for axon development. In order to do this, ribosomal biogenesis was partially inhibited via shRNA knockdown of RPS6, and nucleolar function was disrupted by strong inhibition of RNA pol I activity via shTIF-IA knockdown.

EXPERIMENTAL PROCEDURES

Materials: The following antibodies and reagents were obtained from commercial sources: reagents include BDNF (Alomone, Haifa, Israel) and Lipofectamine 2000 (Invitrogen, Carlsbad, CA); primary antibodies included rabbit anti-GFP (MBL; 1/1000) and mouse anti-B23/NPM1 (Sigma; 1/750); and secondary antibodies included Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen, 1/300) and Alexa Fluor 555 goat anti-mouse IgG (Invitrogen, 1/300).

Plasmid Preparation: Back transformation allowed for the extraction of the desired pSUPER plasmid vector (OligoEngine) from *Escherichia coli* bacteria: the cells were subjected to a membrane dissolving chemical and centrifuged, and the resulting supernatant containing the less dense plasmid DNA was collected. A plasmid mini-preparation kit (Qiagen) was then used to chromatographically isolate the DNA, utilizing various buffers to remove contaminants such as RNA, nucleases, and carbohydrates. Following workup, plasmid DNA sample purity was determined using a NanoDrop spectrophotometer.

Neuron Culture & Transfection: Hippocampal neurons were isolated from newborn Sprague-Dawley rats (Harlan) at postnatal day zero (P0), as described previously [15]. Briefly, hippocampi were dissected and digested using papain, followed by a trypsin inhibitor; the hippocampi were then triturated in Basal Medium Eagle (BME) supplemented with 10% heat-inactivated bovine calf serum (HyClone). Finally, the hippocampal neurons were plated at a
density of 0.2×10^6 per well in a 24-well plate in Neurobasal medium containing 2% B27 nutrition supplement (Invitrogen), 1 mM L-glutamine, 100 units/mL penicillin, and 0.1 mg/mL streptomycin. Cells were plated onto poly-D-lysine- and laminin-coated 12 mm diameter plastic coverslips that were produced in the lab from the electron microscopy-grade mylar masks (Electron Microscopy Sciences). Half of the media was changed every other day. At one day in vitro (DIV 1) neurons were transiently cotransfected with expression plasmids for GFP (0.1 µg of plasmid DNA/2 × 10^5 neurons) as a transfection marker, and either control Renilla luciferase shRNA (shLuc), shTIF-IA, or shRPS6 (0.4 µg of plasmid DNA/2 × 10^5 neurons), using Lipofectamine 2000 according to standard manufacturer protocol. On DIV 2 the cells were also treated with either human recombinant BDNF (20 ng/mL) dissolved in the vehicle solution of 0.1% BSA/PBA, or the vehicle alone, for a further 24 hours, followed by fixing cells with 4%-formaldehyde solution after immunostaining on DIV 3-4.

Immunostaining: All cultured neurons were stained after 10-minute fixation in 4% PFA with 4% sucrose, followed by washing with PBS. GFP staining was performed using primary rabbit anti-GFP antibody (1/1000), followed by secondary Alexa Fluor 488 goat anti-rabbit IgG (1/300). B23 staining was performed using primary mouse anti-B23/NPM1 antibody (1/750), followed by secondary Alexa Fluor 555 goat anti-mouse IgG (1/300). In all cases, standard staining protocols were followed. Following immunostaining, cells were counterstained with 2.5 µg/mL of the DNA dye Hoechst 33258 in order to visualize nuclear morphology. After washing in PBS, coverslips were mounted on coverslips in glycerol gelatin (Sigma) containing p-phenyldiamine glycerol.

shRNA Construct Generation & Validation: Two different shRPS6 constructs (designated as “shRPS6.1” and “shRPS6.2”) and three different shTIF-IA constructs (used together, designated as “shTIF-IA”) had been previously generated by analyzing each mRNA sequence using shRNA design software (Ambion.com) and off-target prediction software (sonnhammer.sbc.su.se) as previously described. As previously described, oligonucleotides were designed (S6#1: 5’-gatccccgagtagtggcctgctttttttta3’; S6#2: 5’-gatccccgagtagtggcctgctttttttta3’; TIF-IA#1: 5’-gatccccgagtagtggcttggagagatctcacaagtctaatcttggaaaa-3’; TIF-IA#2: 5’-gatccccgagtagtggcttggagagatctcacaagtctaatcttggaaaa-3’; TIF-IA#3: 5’-gatccccgagtagtggcttggagagatctcacaagtctaatcttggaaaa-3’ together with their complementary counterparts, annealed and sub-cloned into a pSUPER vector digested with BglIII and HindIII [26; Slomnicki et al. In preparation]. Within the shRPS6 experiment, the first two groups consisted of the separated S6#1 (shRPS6.1) and S6#2 (shRPS6.2) sequences, respectively. In order to control for potential off-target effects, the third shRPS6 experimental group consisted of both shRPS6 constructs (S6#1 and S6#2) mixed together in halved, proportionate amounts (0.2 µg of plasmid DNA/2 × 10^5 neurons of both constructs together). The control group was transfected with shLuc, which targets the Renilla luciferase mRNA sequence (5’-caagggaaagcacagaaa-3’) [26]. Validation of constructs and confirmation of successful RPS6 and TIF-IA knockdown was previously demonstrated [26; Slomnicki et al. In preparation].

Image Acquisition & Morphometric Analysis: Fluorescence microscopy (Zeiss Observer.Z1 inverted microscope) was used to obtain images from stained and fixed slides. Unfragmented neurons were visualized with GFP immunostaining under a 10x objective lens. AxioVision software was used to obtain black-and-white TIFF image files. Morphometric analysis of TIFF
images was carried out using the program Neuron Studio to trace axon paths. Tracing files generated by Neuron Studio were then analyzed in the MATLAB program (MathWorks) using custom scripts that calculated the following key axonal parameters: total axon length, longest axon path, and number of branches.

Quantification of shTIF-IA Inhibition: Nucleolar dispersion was assessed in shTIF-IA-transfected neurons by assessing B23 immunostaining: control shLuc cells and cells with unsuccessful shTIF-IA transfection presented with dense, red, brightly stained B23-positive foci indicative of intact nucleoli; cells with successful shTIF-IA transfection lacked these dense B23-positive foci and instead presented a more diffuse signal, indicating nucleolar dispersion. Cells not indicating this nucleolar dispersion were not considered for imaging, tracing, or statistical analysis.

Statistical Analysis: Statistical analysis of the data involved using a two-way analysis of variance (ANOVA) in conjunction with post hoc Fisher least significant difference tests.

EXPERIMENTAL GROUPS

<table>
<thead>
<tr>
<th>shRPS6 Experiments</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group - shLuc</td>
<td>Experimental Group #1 - shRPS6.1</td>
<td>Experimental Group #2 - shRPS6.2</td>
<td>Experimental Group #3 - shRPS6.1 & shRPS6.2</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Vehicle</td>
<td>Vehicle</td>
<td>Vehicle</td>
</tr>
<tr>
<td>Vehicle + BDNF</td>
<td>Vehicle + BDNF</td>
<td>Vehicle + BDNF</td>
<td>Vehicle + BDNF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>shTIF-IA Experiments</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group - shLuc</td>
<td>Experimental Group - shTIF-IA</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Vehicle + BDNF</td>
<td>Vehicle + BDNF</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

First, we set out to determine the effects of transient shRNA knockdown of RPS6 on axon morphology in rat hippocampal neuron cultures. Cultures of transiently transfected and immunostained hippocampal neurons were fixed on slides, after which microscopic images were taken using a GFP filter. Slides were coded to avoid experimenter bias, and axons were consistently identified based on characteristic appearance and length. Following morphometric analysis with NeuronStudio and MATLAB software, we primarily focused on three axonal parameters: total length, longest path, and number of branches.

For all control and experimental groups involving shRPS6, each group’s data represents the mean ± S.E.M. for a total of at least 39 randomly selected neurons from two independent experiments. Under baseline shLuc control conditions, axons demonstrated the following level of growth and complexity: total axon length of 809 ± 45 μm, longest axon path of 442 ± 17 μm, and 6.78 ± 0.67 axonal branches (all data presented as means ± S.E.M.) [Figures 3–5]. Upon BDNF stimulation, the shLuc controls did not experience any significant neurotrophic boost of axon length.
development compared to the baseline vehicle treatment: total axon length of 820 ±40 µm, longest axon path of 473 ±20 µm, and 6.93 ±0.65 axonal branches (compared to baseline, all three parameters not significant (NS), p > 0.05) [Figures 3-5].

Of the three parameters, shRNA treatment only yielded statistically significant differences in total axon length. Total length was reduced (albeit not drastically) in all shRPS6 experimental groups except for the mixed construct group that was exposed to BDNF. Compared to the shLuc control baseline, decreases were seen with mixed shRPS6 constructs (809 ±45 vs. 587 ±25 µm, p < 0.001), shRPS6.1 (809 ±45 vs. 712 ±34 µm, p < 0.05), and shRPS6.2 (809 ±45 vs. 680 ±33 µm, p < 0.01); compared to the shLuc control with BDNF treatment, decreases were only seen with shRPS6.1 (820 ±40 vs. 667 ±26 µm, p < 0.01) and shRPS6.2 (820 ±40 vs. 699 ±30 µm, p < 0.05), but not with mixed shRPS6 constructs (820 ±40 vs. 773 ±33 µm, NS) [Figure 3]. The results for longest path and number of branches did not indicate a consistent, significant effect on axonal growth. Compared to the shLuc control baseline, the longest axon path was decreased by mixed shRPS6 (442 ±17 vs. 370 ±15 µm, p < 0.01), but was unaffected by shRPS6.1 (442 ±17 vs. 445 ±20 µm, NS) and shRPS6.2 (442 ±17 vs. 401 ±17 µm, NS); compared the shLuc control with BDNF, longest axon path saw no effect with mixed shRPS6 (473 ±21 vs. 460 ±15 µm, NS), a decrease with shRPS6.1 (473 ±21 vs. 416 ±15 µm, p < 0.05), and no effect with shRPS6.2 (473 ±21 vs. 443 ±18 µm, NS) [Figure 4]. Compared to the shLuc control baseline, there was no effect on number of axonal branches with mixed shRPS6 (6.78 ±0.67 vs. 5.28 ±0.46, NS), shRPS6.1 (6.78 ±0.67 vs. 7.30 ±0.84, NS), or shRPS6.2

Figure 2: Per the characteristic stages of neurite outgrowth for hippocampal neuron cultures, axons grow much more quickly than dendrites; therefore, by DIV 3-4, their length generally makes axons easy to distinguish from the shorter dendrites [23]. Thus, axons were identifiably distinct due their relatively sizable lengths (as compared to smaller dendrites, which remained clustered closely around the cell body).
(6.78 ±0.67 vs. 5.48 ±0.51, NS); compared to the shLuc control with BDNF, no effect was seen for mixed shRPS6 (6.93 ±0.65 vs. 6.00 ±0.55, NS) or shRPS6.1 (6.93 ±0.65 vs. 6.13 ±0.57, NS), but there was a decrease with shRPS6.2 (6.93 ±0.65 vs. 5.08 ±0.58, p < 0.05) [Figure 5].

Figure 3: Decrease in total axon length after transient transfection at DIV 1 with all shRPS6 constructs, but most consistently for the separated constructs. Compared to shLuc controls, this decrease was observed with and without BDNF treatment for all experimental groups except mixed shRPS6 constructs (where length decreased significantly only in the absence of BDNF). Data are means, with error bars indicating S.E.M. *, p < 0.05; **, p < 0.01; ***, p < 0.001; NS (not significant), p > 0.05.

Figure 4: No consistent, significant decrease of longest axon path was observed after transient transfection with all shRPS6 constructs, with the exception of the baseline mixed shRPS6 and the BDNF-treated shRPS6.1. Overall, there is no consistent pattern of decrease. Data are means, with error bars indicating S.E.M. *, p < 0.05; **, p < 0.01; NS, p > 0.05.
Also, data from axonal experiments with shTIF-IA were examined by selecting specifically for cells that demonstrated complete dispersion of the immuno-stained nucleolar marker B23, which normally remains bound to nucleolar rRNA [18, 24]. By selecting for cells lacking distinct B23-immunostained nuclei, we were able to ascertain exactly which cells had indeed experienced shTIF-IA-mediated inhibition of pol I (and thus inhibition of de novo ribosome synthesis) [Figure 6]. For all shLuc control groups in the shTIF-IA experiment, the data represents the mean ± S.E.M. for a total of at least 39 randomly selected neurons from two independent experiments. For all shTIF-IA experimental groups, the data represents the mean ± S.E.M. for a total of at least 19 randomly selected neurons (among those that demonstrated B23 dispersion) from two independent experiments.

Figure 5: No consistent, significant decrease of number of axonal branches was observed after transient transfection with all shRPS6 constructs, with the exception of the BDNF-treated shRPS6.2. Overall, there is no consistent pattern of decrease. Data are means, with error bars indicating S.E.M. *, p < 0.05; NS, p > 0.05.

Figure 6: Immunostaining with fluorescence microscopy allowed for selection of only those neurons that demonstrated dispersion of the nucleolar phosphoprotein marker B23 and, thus, successful transfection by shTIF-IA. In shLuc control cells, B23 staining resulted in small, dense, bright red granules (nucleoli) within a larger, less dense, dull red region (nucleus). In shTIF-IA cells, B23 staining resulted in the absence of any of the smaller, dense, bright red granules, thereby indicating nucleolar dispersion.
Under baseline shLuc control conditions, axons demonstrated the following level of growth and complexity: total axon length of 558 ±28 µm, longest axon path of 382 ±13 µm, and 4.18 ±0.45 axonal branches. Once again, BDNF treatment of shLuc controls failed to stimulate increased growth compared to the baseline treatment: total axon length of 617 ±32 µm, longest axon path of 408 ±25 µm, and 5.03 ±0.70 axonal branches (compared to baseline, all three parameters NS, p > 0.05). Within baseline and BDNF treatment groups for each parameter, shTIF-IA did not result in a statistically significant decrease for any parameters, with the only exception being a decrease in branch ratio under BDNF treatment. Compared to the baseline shLuc control, shTIF-IA treatment produced no change in total axon length under baseline conditions (558 ±28 vs. 589 ±29 µm, NS) or BDNF treatment (617 ±32 vs. 512 ±33 µm, NS) [Figure 7]; similarly, longest axon path saw no change under baseline conditions (382 ±13 vs. 341 ±16 µm, NS) or BDNF treatment (408 ±25 vs. 334 ±19 µm, NS) [Figure 8]; and the number of axonal branches saw no change under baseline conditions (4.18 ±0.45 vs. 5.39 ±0.67 µm, NS) but decreased under BDNF treatment (5.03 ±0.70 vs. 3.53 ±0.48 µm, p < 0.05) [Figure 9].

All in all, these data indicate that shRPS6 did result in some significant decreases across all parameters of axon growth, though overall the effects were relatively small and somewhat inconsistent. The shTIF-IA produced essentially no significant decrease of axon growth, with the only exception being the decrease in number of axonal branches under BDNF treatment. Therefore, ribosomal biogenesis does not appear to be of major importance for axon growth at least during early phases of this process.

![Figure 7](image1.png)

Figure 7: No significant decrease in total axon length after transient transfection with shTIF-IA observed between either baseline groups or BDNF-treated groups. Data are means, with error bars indicating S.E.M. NS, p > 0.05.

![Figure 8](image2.png)

Figure 8: No significant decrease in longest axon path after transient transfection with shTIF-IA observed between either baseline groups or BDNF-treated groups. Data are means, with error bars indicating S.E.M. NS, p > 0.05.
DISCUSSION

Initially, our hypothesis held that shRNA-mediated knockdown of TIF-IA and RPS6 would result in a decrease in axonal growth due to direct inhibitory effects on RNA pol I activity and ribosomal biogenesis. Ultimately, however, our data indicate that this hypothesis was incorrect. Despite antagonizing TIF-IA and RPS6 – both of which play important roles in ribosome production – it appears that pre-existing ribosomes are sufficient for initial axonal elongation [Figure 10].

However, the duration of this pre-existing ribosome supply would presumably be temporally limited by the 6-day half-life of cytoplasmic ribosomes in the rat brain [9]. Thus, given more time, ribosomal biogenesis inhibition would be expected to affect translation and axonal growth. Aside from the hypothetical aspect regarding pre-existing ribosome supply, this schematic also assumes the implicit necessity of protein synthesis for axonal growth during this stage; this assumption is supported, however, by previously mentioned research showing that CHX-mediated disruption of protein synthesis did indeed inhibit axonal growth during DIV 1-2 [42].

To be sure, shRNA knockdown of RPS6 did have a consistent, slight inhibitory effect on total axonal length (but not on axon path or number of axonal branches) during the initiation phase of
axonal development. Yet, while the decreases in total axon length for the shRPS6 constructs were statistically significant, the effect was relatively small and not entirely consistent. These results were corroborated by our experiments with shTIF-IA when B23 dispersion was taken into consideration to assure shTIF-IA transfection and inhibition of rRNA transcription: the data did not show a consistent, significant decrease in any of the three morphogenetic parameters. Taken together, these complementary findings indicate that ribosome biogenesis and RNA pol I activity are not important for axonal growth during the initiation phase of axonal development. When interpreting these results, the slight inhibitory effect of shRPS6 could be attributed to the role of RPS6 in ribosomal biogenesis, but could also potentially indicate that RPS6 has a non-canonical role other than being a structural and functional ribosome component. Once again, future experiments would be necessary to obtain more evidence. The relatively modest magnitude of the observed inhibitory effects, however, call into question the utility and effectiveness of further experiments, such as with phosphomutants to block RPS6 phosphorylation.

Interestingly, there is no significant difference in the results for axon morphological parameters between the baseline vehicle groups and the BDNF treatment groups. Despite the fact that the vehicle treatment ideally represents baseline growth while BDNF treatment represents neurotrophically-enhanced growth, it appears that BDNF is not significantly increasing axon elongation during this stage. Given that the cells were fixed by DIV 3-4, this lack of BDNF stimulation can likely be explained by the considerably robust level of axon growth around DIV 2 [23]; treatment with BDNF does little to increase this already robust, early growth.

Future research would include an investigation of the importance of ribosomal biogenesis and pol I activity during later phases of axonal development. Presumably, both prolonged depletion of ribosomes and nucleolar disruption would result in a more extreme deficit during later phases. As such, it is probable that inhibition of ribosomal biogenesis (via ribosomal protein knockdown) and inhibition of pol I activity (via TIF-IA knockdown) during later phases would result in even more pronounced inhibition of axonal growth. Conducting experiments of this nature, however, is difficult. Such experiments would require waiting until at least DIV 6-9, at which point the axons grow to unwieldy lengths and present problems for tracing and morphometric analysis.

Within a broader context, this line of research aims to elucidate the role of ribosomal biogenesis in healthy nervous system development at the cellular level. A relatively neglected field of study has been the intrinsic mechanisms underlying neuronal development, with much emphasis being placed instead on stimulated or altered growth and pathological growth problems. As such, this research on rRNA and ribosomal production complements prior research on the importance of biosynthesis of other macromolecules for normal neuron development during this initial growth phase, including the processes of protein synthesis, lipid synthesis, and general transcription. Additionally, it explores how dysfunctional ribosomal biogenesis or irregular neurite morphogenesis may contribute to the pathogenesis of nervous system disorders. Generally, it is expected that a lack of mature, functional ribosomes – which are responsible for protein translation and, in turn, cell growth – would be lethal during embryonic development. However, a recently investigated class of rare, genetic diseases of ribosome function and biogenesis – referred to as “ribosomopathies” – has shown this expectation is not always true [19, 20]. Among the causes for these ribosomopathies is a deficiency of ribosomal proteins: Diamond-Blackfan
anemia is caused by congenital mutations in the genes for RPS19 and other ribosomal proteins, and 5q syndrome is brought on in part by a haploinsufficiency of RPS14 [20]. As a more neurologically relevant example, one study has provided evidence that links a decline in protein synthesis both to a decline in ribosome precursors and to high levels of oxidative damage to ribosomal-associated RNA in the brains of patients with Alzheimer’s disease [21]. In addition, mutations in the gene for RPL10 have been identified as the potential causal agents of the cognitive malfunction seen in various cases of autism [22]. Finally, another recent study has identified RPS15 as a mediator of the LRRK2-induced neurodegeneration seen in Parkinson’s disease [25]. As the involvement of dysfunctional ribosomal biogenesis and neurite morphogenesis in various diseases becomes increasingly apparent, our knowledge of these cellular processes will continue to grow in importance.

In conclusion, neither shRPS6 nor shTIF-IA knockdown produced a consistent, meaningful inhibitory effect on axon growth. It can be argued that the lack of a large inhibitory effect following shRPS6 treatment is attributable to the fact that such shRNA knockdown is only able to bring about an incomplete knockdown of RPS6, which is merely a single ribosomal component. Consequently, the shTIF-IA experiment becomes increasingly important because it avoids this issue: selecting for cells that only demonstrated complete B23 dispersion allowed for the incorporation of only those cells whose nucleoli had been disrupted. Because nucleoli are essentially brought into existence by their very “act of building a ribosome” [27], this lack of visible nucleoli indicates that the entire process of ribosomal biogenesis has been disrupted. Therefore, combining the results from these two experiments provides convincing evidence that nucleolar RNA pol I activity (and the nucleolus-based process of ribosomal biogenesis) are of minor importance to axon growth during this early phase of development. As an explanation for this ability of axons to continue growing in the face of such inhibition, it is important to consider the fact that shTIF-IA was shown to not disrupt translation specifically during the timeframe of DIV 1-3 in which these experiments were conducted; previous experiments in which both dendrite growth and translational capacity were diminished by shTIF-IA were conducted later during DIV 6-9 [Slomnicki and Hetman, unpublished observations]. With this consideration in mind, it appears that the various effects of ribosomal biogenesis inhibition on neurites can be explained by differential modulation of protein synthesis, which appears to be essential for axon growth [42]. Furthermore, considering the 6-day half-life of cytoplasmic ribosomes in the rat brain and the robustness of cellular growth in this early stage [9, 23], the cell is able to maintain protein synthesis and axon development despite experimental disruption of de novo ribosomal biogenesis.

REFERENCES

