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ABSTRACT

FUNCTIONAL EQUATIONS WITH INVOLUTION RELATED TO
SINE AND COSINE FUNCTIONS

Allison Perkins

June 26, 2014

Let G be an abelian group, C be the field of complex numbers, α ∈ G

be any fixed, nonzero element and σ : G → G be an involution. In Chapter

2, we determine the general solution f, g : G → C of the functional equation

f(x+ σy + α) + g(x+ y + α) = 2f(x)f(y) for all x, y ∈ G.

Let G be an arbitrary group, z0 be any fixed, nonzero element in the center

Z(G) of the group G, and σ : G → G be an involution. The main goals of Chap-

ter 3 are to study the functional equations f(xσyz0) − f(xyz0) = 2f(x)f(y) and

f(xσyz0) + f(xyz0) = 2f(x)f(y) for all x, y ∈ G and some fixed element z0 in the

center Z(G) of the group G.

In Chapter 4, we consider some properties of the general solution to f(xy)f(xσy) =

f(x)2 − f(y)2. We also find the solution to this equation when G is a 2-divisible,

perfect group. We end the chapter by discussing the periodicity of the solutions to

both the sine functional equation and the sine inequality.
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CHAPTER 1

PRELIMINARIES AND DEFINITIONS

1.1 Introduction

The cosine function satisfies the following well-known identity

cos(x− y) + cos(x+ y) = 2 cos(x) cos(y)

for all x, y ∈ R. If we define f(x) = cos(x), then we have the functional equation

f(x− y) + f(x+ y) = 2f(x)f(y) (1.1)

for all x, y ∈ R (the set of real numbers). The functional equation (1.1) is known

as the d’Alembert functional equation as d’Alembert himself studied it in 1769 (see

[7]). The research continued into the next two centuries as Poisson investigated the

equation in 1804 (see [19]) and Picard worked with it in the 1920s (see [17] and [18]).

The importance of (1.1) is seen in determining the sum of two vectors in Euclidean

and non-Euclidean geometries. The continuous solutions of the d’Alembert equation

were determined by Cauchy in 1821 (see [2]). Furthermore, in [10] Kannappan

gave the general solutions of (1.1) on arbitrary groups assuming that the unknown

function f is an abelian function.

In 1910, Van Vleck [25] (see also [26] and [21]) studied the following equation

with restricted argument α and proved the following result: The continuous function

f : R→ R satisfies the functional equation

f(x− y + α)− f(x+ y + α) = 2f(x)f(y) (1.2)
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for all x, y ∈ R and fixed nonzero α ∈ R if and only if f is given by either f ≡ 0 or

f(x) = cos
( π

2α
(x− α)

)
, for all x ∈ R. (1.3)

Notice that a nonzero continuous function satisfying (1.2) also satisfies f(2α) = 0

and is periodic with period 4α. Using these properties, (1.3) can be written as

f(x) = (−1)n sin

(
(2n+ 1)πx

2α

)
for x ∈ R and n ∈ Z (the set of integers). Therefore, functional equation (1.2)

characterizes the sine function.

In [9], Kannappan considered the functional equation

f(x− y + α) + f(x+ y + α) = 2f(x)f(y) (1.4)

which is similar to (1.2) and proved the following result: The general solution

f : R→ C (the set of complex numbers) of functional equation (1.4) is either f ≡ 0

or f(x) = g(x−α), where g is an arbitrary solution of the cosine functional equation

g(x+y)+g(x−y) = 2g(x)g(y) for all x, y ∈ R with period 2α. The only continuous

real-valued solutions of (1.4) (see [12], Corollary 3.14a, p. 118) are f ≡ 0, f ≡ 1,

f(x) = cos
(
4nπx
α

)
, f(x) = cos

(
2(2n+1)πx

α

)
and f(x) = − cos

(
(2n+1)πx

α

)
.

In [20], Sahoo studied the following generalization

f(x− y + α) + g(x+ y + α) = 2f(x)f(y) for all x, y ∈ G (1.5)

of the functional equations (1.2) and (1.4). He determined the general solutions of

this equation on an abelian group G and raised the following problem: Given an

involution σ : G→ G, find all functions f, g : G→ C satisfying

f(x+ σy + α) + g(x+ y + α) = 2f(x)f(y) (1.6)

for all x, y ∈ G. The goal of Chapter 2 is to provide an answer to the above question

posed in [20] by determining the general solutions f, g : G → C of functional

2



equation (1.6) for all x, y ∈ G. The functional equation (1.2) is a special case of the

functional equation (1.6) where g = −f and G = R with σ(x) = −x. If G = R and

g = f with σ(x) = −x, then the functional equation (1.6) reduces to the functional

equation (1.4) studied by Kannappan in [9]. Hence the solution of (1.2) and (1.4)

can be obtained from our results in Chapter 2.

Other similar functional equations solved in literature are

f(x+ y + α) f(x− y + α) = f(x)2 − f(y)2 (1.7)

and

f(x+ y + α) f(x− y + α) = f(x)2 + f(y)2 − 1, (1.8)

for all x, y ∈ R. The functional equation (1.7) was considered by Kannappan in [11]

(see also [12]) while (1.8) was considered by Etigson in [8]. The functional equations

(1.2), (1.4), (1.5), (1.6), (1.7) and (1.8) are examples of functional equations with

restricted arguments where at least one of the variables is restricted to a certain

discrete subset of the domain of the other variable(s). In particular, the subset may

consist of a single element.

In Chapter 3, we determine the general solutions of Van Vleck’s equation

with involution f(xσyz0) − f(xyz0) = 2f(x)f(y) and Kannappan’s equation with

involution f(xσyz0)+f(xyz0) = 2f(x)f(y) for all x and y in some arbitrary group G

and some fixed element z0 in the center Z(G) of G. All results obtained in Chapter

3 have been accepted as a paper [16] for publication in the journal Aequationes

Mathematicae.

The sine functional equation is motivated by the following well-known trigono-

metric identity

sin(x+ y) sin(x− y) = sin2(x)− sin2(y)

for all x, y ∈ R. By defining f(x) = sin(x), one obtains the functional equation

f(x+ y) f(x− y) = f(x)2 − f(y)2 (1.9)

3



for all x, y ∈ R. The functional equation (1.9) is known as the sine functional

equation and on arbitrary groups takes the form

f(xy) f(xy−1) = f(x)2 − f(y)2. (1.10)

In 1920, Wilson [27] (see also [1]) found the following result: If f : C → G

satisfies (1.10) where G is a 2-divisible abelian group and C is the field of complex

numbers, then f is given by

f(x) =
ψ(x)− ψ(x−1)

2α
or f(x) = φ(x),

where ψ : G → C∗ is a multiplicative homomorphism, φ : G → C is an additive

homomorphism and α is an arbitrary nonzero element of C.

Wilson’s result holds true if C is replaced by a quadratically closed field K of

characteristic different from two (see [1]). Kannappan [9] found the general solution

f : G→ C of (1.10) when G is a cyclic group. Only a few results are known for the

sine functional equation on arbitrary groups. Corovei [5] proved the following: Let

G be a group whose elements are of odd order, K be a field of characteristic different

from 2 and f : G→ K be a nonzero solution of the sine functional equation (1.10).

Then f has the form

f(x) =
ψ(x)− ψ(x−1)

2α
or f(x) = φ(x),

where ψ : G → K∗ is a multiplicative homomorphism, φ : G → K is an additive

homomorphism and α is an arbitrary nonzero element of K.

The following result of Corovei [6] generalized the theorem of Aczél and

Dhombres [1]. Let K be a quadratically closed field with char K 6= 2 and G be

a 2-divisible group. The function f : G → K satisfies the sine functional equation

(1.10) if and only if

f(x) =
ψ(x)− ψ(x−1)

2α
or f(x) = φ(x),

4



where ψ : G → K∗ is a multiplicative homomorphism, φ : G → K is an additive

homomorphism and α is an arbitrary nonzero element of K.

Stetkaer (see [24]) proved that if G is a group such that G and its commutator

subgroup [G,G] are generated by squares, then the function f : G → C satisfying

(1.10) takes one of the following forms:

f(x) = c(χ(x)− χ̌(x))

where χ is a character on G and c is a nonzero complex constant, or f : G→ (C,+)

is an additive function.

In Chapter 4, we examine the sine functional equation with involution

f(xy)f(xσy) = f(x)2 − f(y)2. (1.11)

We present some properties for any function f satisfying (1.11) and show that the

only solution of (1.11) on perfect groups is trivial. We also discuss the periodicity

of the solution of the sine functional equation.

1.2 Notation and Terminology

If G is an arbitrary group, the group operation will be denoted by · and

we write x · y simply as xy. For an arbitrary group G, e will denote neutral (or

identity) element of G. The center of a group G is the set of elements c ∈ G that

commute with every other element in G; i.e. c is in the center of G if and only

if xc = cx for all x ∈ G. This set will be denoted by Z(G). A group G is said

to be 2-divisible if for every g ∈ G there exists an h ∈ G such that h2 = g. Let

Z0(G) = {e}, Z1(G) = Z(G) and Zi+1 be a subgroup of G containing Zi(G) such

that Zi+1(G)/Zi(G) = Z
(
G/Zi(G)

)
. A group G is called nilpotent if Zc(G) = G

for some c ∈ Z. The nilpotent groups are groups that are almost abelian. For a

group G, the commutator subgroup, denoted [G,G], is the subgroup generated by

5



ghg−1h−1 for all g, h ∈ G. It is well known that [G,G] is a normal subgroup of G.

Futhermore, a group is said to be perfect if G = [G,G]. An example of a perfect

group is the alternating group, An, for n ≥ 5.

Let (G, ·) and (H, ?) be arbitrary groups throughout, unless otherwise stated.

A function f : G → H is said to be a homomorphism if f(x · y) = f(x) ? f(y) for

all x, y ∈ G. The set of all homomorphisms from G into H will be denoted by

Hom(G,H). In the case where H is an abelian group, the group operation will be

denoted by addition. When the group H is abelian, the homomorphism f will be

called an additive homomorphism. If H is an arbitrary group with multiplication

as the binary operation, then the homomorphism f will be called a multiplicative

homomorphism. A function f : G → H is said to be an anti-homomorphism if

f(x · y) = f(y) ? f(x) for all x, y ∈ G. A mapping σ : G → G is said to be an

involution if it is an anti-homomorphism and satisfies σ(σ(x)) = x for all x ∈ G.

For convenience we denote σ(x) as simply σx. Furthermore, a subgroup H of a

group G is called σ-involutive if σ(H) ⊂ H.

A function f : G → H is said to be an abelian function if and only if

f(xyz) = f(xzy) for all x, y, z ∈ G [24]. LetGL(n,R) be the set of all n×n invertible

matrices with real entries. Let f : GL(n,R) → R be defined by f(A) = det(A).

Then f is an abelian function. However, f(A) = trace(A) is not an abelian function.

A function f : G → H is said to be central if and only if f(xy) = f(yx) for all

x, y ∈ G. The function f : GL(n,R)→ R defined by f(A) = trace(A) is an example

of a central function. Note that every abelian function is central but the converse

is not true. A function f : G→ C is said to be σ-odd with respect to an involution

σ : G→ G if and only if f(σx) = −f(x) for all x ∈ G. If f is a σ-odd function, then

f(e) = 0. Similarly, f : G → C is said to be σ-even with respect to an involution

σ : G→ G if and only if f(σx) = f(x) for all x ∈ G. A function f on an arbitrary

group G is periodic with period α 6= e if f(xα) = f(x) for all x ∈ G.

6



Let K be a field. A field K is said to be quadratically closed if every element of

the field has a square root in K. The additive group of K will be denoted by K, while

the multiplicative group will be denoted by K?. Hence if K is a field, Hom(G,K) will

denote the group of homomorphisms from the group G to the additive group of the

field K, while Hom(G,K?) will denote the group of homomorphisms from the group

G to the multiplicative group of the field K. An element f ∈ Hom(G,C?) is called

a (group) character. Thus a character is a nonzero multiplicative homomorphism

from group G into the multiplicative group of nonzero complex numbers. If χ is a

group character of G, then by χ̌(x) we denote χ(x−1). It is easy to see that χ̌ is

also a character of G.

A Lie group is a set G with two structures: G is a group and G is a (smooth,

real) manifold. These structures agree in the following sense: multiplication and

inversion are smooth maps. The circles and spheres are examples of smooth mani-

folds. Lie groups were studied by the Norwegian mathematician Sophus Lie at the

end of the 19th century. The orthogonal n× n matrices

O(n,R) = {Φ ∈ Rn×n |ΦTΦ = I}

form a Lie group. This group has two components distinguished by the determinant

det Φ = ±1 and the component of the identity is denoted by

SO(n,R) = {Φ ∈ O(n,R) | det Φ = 1}.

The group SO(n,R), called the special orthogonal group, is compact and connected.

SL(n,C), SL(n,R) and SO(n,R) are other examples of perfect groups. It is well

known that every compact connected Lie group is 2-divisible. Hence SO(n,R) is an

example of 2-divisible perfect group. However the group SL(n,R) is not 2-divisible

but it is generated by its squares.

7



CHAPTER 2

GENERALIZED VAN VLECK’S EQUATION ON ABELIAN
GROUPS

2.1 Introduction

The main goal of this chapter is to find the general solutions f, g : G → C

of the generalized Van Vleck’s functional equation with involution, namely

f(x+ σy + α) + g(x+ y + α) = 2f(x)f(y) (2.1)

for all x, y ∈ G, where G is an abelian group, α is a fixed nonzero element in G and

σ : G→ G is a homomorphism satisfying σ(σx) = x for all x ∈ G.

In order to find the solutions of the above functional equation we also study

Van Vleck’s equation with involution, that is

`(x+ y + 2α) + `(x+ σy + 2α) = 2`(x)`(y)

for all x, y ∈ G.

Note that the generalized Van Vleck’s functional equation (2.1) contains

Van Vleck’s functional equation (1.2) and Kannappan’s functional equation (1.4)

as special cases.

2.2 Some Preliminary Results

It is easy to see that if φ is a zero function and ψ is an arbitrary function,

8



then they are the solutions of the functional equation

φ(x+ y) + φ(x+ σy) = 2φ(x)ψ(y) (2.2)

for all x, y ∈ G. The following result from [3] gives the solution of (2.2) when φ is

not identically zero.

LEMMA 2.1. Let φ, ψ : G→ C satisfy the functional equation (2.2) for all x, y ∈ G

where σ : G→ G is an involution. Then there exists a multiplicative homomorphism

h : G→ C? such that

ψ(x) =
h(x) + h(σx)

2

for all x ∈ G. If h 6= h ◦ σ, then φ has the form

φ(x) = a h(x) + b h(σx)

for all x ∈ G and for some a, b ∈ C. If h = h ◦ σ, then φ has the form

φ(x) = h(x) [A(x− σx) + γ],

where A : G→ C is an additive homomorphism and γ ∈ C.

The following lemma generalizes the result of Kannappan in [9] and will be

used to prove our main result.

LEMMA 2.2. Let ` : G→ C satisfy the functional equation

`(x+ y + 2α) + `(x+ σy + 2α) = 2`(x)`(y), (2.3)

where α ∈ C? is fixed and σ : G→ G is an involution. Then ` is of the form `(x) = 0

`(x) = 1
2
h(2α)

[
h(x) + h(σx)

]
,

(2.4)

where h : G→ C? is a multiplicative homomorphism satisfying h(2α) = h(2σα).

9



Proof. Clearly, `(x) ≡ 0 is a solution. We assume from here that ` is not trivial.

By interchanging x with y in (2.3) we get

`(x+ y + 2α) + `(y + σx+ 2α) = 2`(x)`(y). (2.5)

Comparing the last equation (2.5) to our original equation (2.3) we see that

`(x+ σy + 2α) = `(y + σx+ 2α). (2.6)

Substituting y = 0 in (2.6) gives us

`(x+ 2α) = `(σx+ 2α) (2.7)

for all x ∈ G. If we let x = 0 in (2.3) we have

`(y + 2α) + `(σy + 2α) = 2`(0)`(y). (2.8)

Further, if we use (2.7) in (2.8), we have

`(y + 2α) = `(0)`(y) (2.9)

for all y ∈ G. Now, let y = −2α in (2.9) to yield

`(0) [`(−2α)− 1] = 0.

Hence, we have two cases, either `(0) = 0 or `(−2α) = 1.

CASE 1: Suppose that `(0) = 0. By substituting y = 0 in (2.3) we see that

`(x+ 2α) = 0

for all x ∈ G. So, by replacing x by x − 2α in the previous equation, we conclude

that `(x) = 0 for all x ∈ G. Thus, this case leads us to the trivial solution.

CASE 2: Let `(−2α) = 1. Substitution of y = −2α in (2.3) yields

`(x+ 2α− 2σα) = `(x) (2.10)

10



for all x ∈ G. Now, if we let x = x− 2α in (2.10) then we have

`(x− 2σα) = `(x− 2α) (2.11)

for all x ∈ G. Also, by letting x = x+ 2α in (2.10) we have

`(x+ 4α− 2σα) = `(x+ 2α) (2.12)

for all x ∈ G. Next, we substitute x = x+ 2α and y = y− 2σα in (2.3) and rewrite

the resulting equation using (2.11) and (2.12) to obtain

`(x+ y + 2α) + `(x+ σy + 2α) = 2`(x+ 2α) `(y − 2α).

Define φ(x) = `(x+2α) and ψ(x) = `(x−2α). Then the previous equation becomes

φ(x+ y) + φ(x+ σy) = 2φ(x)ψ(y)

for all x, y ∈ G. Using Lemma 2.1, we obtain

φ(x) =


h(x) [A(x− σx) + γ] if h = h ◦ σ,

a h(x) + b h(σx) if h 6= h ◦ σ
(2.13)

and

ψ(x) =
h(x) + h(σx)

2
(2.14)

for all x ∈ G. Here h : G→ C? is a multiplicative homomorphism, A : G→ C is an

additive homomorphism, and γ, a, b ∈ C are constants. By the definitions of ψ(x)

and φ(x) we have

ψ(x) = `(x− 2α) = `(x− 2α− 2α + 2α) = `(x− 4α + 2α) = φ(x− 4α).

Hence,

ψ(x) = φ(x− 4α). (2.15)

CASE 1: Suppose h = h ◦ σ, then from (2.13) and (2.14) with (2.15), we obtain

h(x) + h(σx)

2
= h(x− 4α) [A(x− 4α− σx+ 4σα) + γ]

11



which in turn implies

h(x)
[
h(α)−4

[
A(x− σx)− 4A(α− σα) + γ

]
− 1
]

= 0

If h(x) = 0, then we have a trivial solution `(x) = 0 for all x ∈ G. If h(x) is not

identically zero, then we have

h(α)4 = A(x− σx)− 4A(α− σα) + γ (2.16)

for all x ∈ G. Replacing x by x+ y in (2.16) and using the fact that A : G→ C is

an additive homomorphism, we obtain

h(α)4 = A(x− σx) + A(y − σy)− 4A(α− σα) + γ (2.17)

for all x, y ∈ G. Comparing (2.16) with (2.17), we have

0 = A(y − σy)

for all y ∈ G and (2.16) becomes

γ = h(α)4.

Thus, the solution of the functional equation (2.3) for the case when h = h ◦ σ is φ(x) = h(x)h(α)4

ψ(x) = h(x)
(2.18)

for some multiplicative homomorphism h : G→ C?.

CASE 2: Suppose that h 6= h ◦ σ. Then from (2.13) and (2.14) with (2.15), we

obtain

h(x) + h(σx) = 2 a h(x)h(α)−4 + 2 b h(σx)h(σα)−4

which in turn simplifies to

(
2ah(α)−4 − 1

)
h(x) +

(
2bh(σα)−4 − 1

)
h(σx) = 0. (2.19)
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for all x ∈ G. Next we determine the coefficients of h(x) and h(σx) in the last

equation. Letting x = 0 in (2.19) and using the fact that h(0) = 1, we obtain

(
2ah(α)−4 − 1

)
+
(
2bh(σα)−4 − 1

)
= 0. (2.20)

Using (2.20) in (2.19), we see that a = h(α)4

2
and b = h(σα)4

2
. So the solution of the

functional equation (2.3) when h 6= h ◦ σ is
φ(x) = 1

2
[h(x)h(α)4 + h(σx)h(σα)4]

ψ(x) =
h(x) + h(σx)

2
,

(2.21)

where h : G → C? is a multiplicative homomorphism. Notice that when h = h ◦ σ

then (2.21) is the same solution as (2.18). Hence, (2.21) is the only solution.

Using (2.21) and the definition of φ(x) we have the form of `(x) as

`(x) = φ(x− 2α) =
1

2
[h(x)h(α)2 + h(σx)h(σα)2]

for all x ∈ G. Using this form of `(x) in the functional equation (2.3) we see that

`(x) is a solution if h(2α) = h(2σα). Hence we have the asserted solution (2.4).

Since there are no cases left, the proof of the lemma is now complete.

2.3 Solution of Generalized Van Vleck’s Equation

In this section we find the solution of the generalized Van Vleck equation

through variable manipulation. Setting one of our variables to 0 easily reduces our

equation from two functions to one. By interchanging our variables, substituting

new variables and comparing the resulting equations we are able to discover proper-

ties held by our solutions f and g. We use these properties and variable substitution

to find relationships between certain function values. This helps to reduce our final

solution. Knowing facts (σ-oddness, periodicity, etc.) about f and g we are able to
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reduce our unknown equation down to an equation that has previously been solved

(such as the equations in Lemmas 2.1 and 2.2). We can then work backwards to

find the solutions of f and g for the generalized Van Vleck equation.

THEOREM 2.1. Let G be an abelian group, α ∈ G be a fixed element and σ : G→ G

be an involution. Suppose the functions f, g : G→ C satisfy the functional equation

f(x+ σy + α) + g(x+ y + α) = 2f(x)f(y)

for all x, y ∈ G. Then there exist multiplicative homomorphisms h1, h2 : G → C?

such that the solutions f and g are given by

f(x) = γ, g(x) = γ (2γ − 1) (2.22)

f(x) = −h1(α)

2

[
h1(x)− h1(σx)

]
, g(x) = −f(x), (2.23)

f(x) =


f(0)h2(x) if h2 = h2 ◦ σ

1
2

[
h2(x)h2(σα) + h2(σx)h2(α)

]
, if h2 6= h2 ◦ σ

g(x) =


f(0)

[
2f(0)h2(α)−1 − 1

]
h2(x) if h2 = h2 ◦ σ

1
2

[
a
b
h2(x)h2(σα) + b

a
h2(σx)h2(α)

]
, if h2 6= h2 ◦ σ,

(2.24)

where h1(α) = −h1(σα), and γ, a, b ∈ C are arbitrary constants satisfying a+ b = 1

together with a h2(α) = b h2(σα) = 2abf(0).

Moreover, if f(0) = 0 and σα = −α, then f and g are periodic functions of

period 4α.

Proof. First, suppose f(x) = γ for all x ∈ G. Then (2.1) becomes

γ + g(x+ y + α) = 2γ2.

This implies that

g(x+ y + α) = γ(2γ − 1)
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and by letting y = −α we have g(x) = γ(2γ − 1) for all x ∈ G. This is (2.22).

From now on, we assume that f is nonconstant. Let y = 0 in (2.1), then we

have

f(x+ α) + g(x+ α) = 2f(x)f(0).

This implies

g(x) = 2f(x− α)f(0)− f(x) (2.25)

for all x ∈ G. Using (2.25) in (2.1), we see that

f(x+ σy + α)− f(x+ y + α) = 2f(x)f(y)− 2f(0)f(x+ y) (2.26)

for all x, y ∈ G.

CASE 1: Suppose f(0) = 0. Then (2.25) becomes

g(x) = −f(x) (2.27)

and (2.26) becomes

f(x+ σy + α)− f(x+ y + α) = 2f(x)f(y) (2.28)

for all x, y ∈ G. Interchanging y with σy in (2.28), we obtain

f(x+ y + α)− f(x+ σy + α) = 2f(x)f(σy) (2.29)

for all x, y ∈ G. Adding (2.28) and (2.29) yields

f(x)[f(y) + f(σy)] = 0

for all x, y ∈ G. Since f is nonconstant this means

f(σy) = −f(y) for all y ∈ G. (2.30)

Hence, f is a σ-odd function. By interchanging x with y in (2.28) we see that

f(y + σx+ α)− f(y + x+ α) = 2f(y)f(x) (2.31)
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for all x, y ∈ G. Comparing (2.28) and (2.31) shows

f(x+ σy + α) = f(y + σx+ α). (2.32)

Using (2.30) with (2.32) we see that

f(x+ σy + α) = f(y + σx+ α) = f(σ(σy + x+ σα)) = −f(x+ σy + σα).

and by letting y = 0 in the above equation we have

f(x+ α) = −f(x+ σα) (2.33)

for all x, y ∈ G.

SUBCASE 1.1: Suppose σα 6= −α. Then replace x by x + α and y by y + α in

(2.28) to obtain

f(x+ σy + σα + 2α)− f(x+ y + 3α) = 2f(x+ α)f(y + α)

for all x, y ∈ G. With the help of (2.33) the previous equation becomes

−f(x+ σy + 3α)− f(x+ y + 3α) = 2f(x+ α)f(y + α)

for all x, y ∈ G. Define `(x) = −f(x+ α) then, from the above equation, we have

`(x+ σy + 2α) + `(x+ y + 2α) = 2 `(x) `(y)

and we can determine the solutions using Lemma 2.2. If ` = 0, then f = 0 and

since f is nonconstant this case does not mature. If

`(x) =
1

2
h1(α)2

[
h1(x) + h1(σx)

]
,

then, since h1(α)2 = h1(σα)2 by Lemma 2.2,

`(x) =
1

2

[
h1(x)h1(α)2 + h1(σx)h1(σα)2

]
,
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where h1 : G→ C?. Therefore

f(x) = −`(x− α) = −1

2

[
h1(x)h1(α) + h1(σx)h1(σα)

]
(2.34)

and by (2.27)

g(x) = −f(x) =
1

2

[
h1(x)h1(α) + h1(σx)h1(σα)

]
.

From the form of f in (2.34), we obtain

f(σx) = −1

2
[h1(σx)h1(α) + h1(x)h1(σα)] (2.35)

for all x ∈ G. Using (2.34), (2.35) and the fact that f is σ-odd, we have

[
h1(α) + h1(σα)

][
h1(x) + h1(σx)

]
= 0

so either h1(α) + h1(σα) = 0 or h1(x) + h1(σx) = 0. If h1(x) + h1(σx) = 0, then it

is true for all x, and in particular it is true that h1(α) +h1(σα) = 0. Hence, in both

cases, h1(α) + h1(σα) = 0. This means that h1(α) = −h1(σα) and our solution for

f becomes

f(x) = −1

2
h1(α)

[
h1(x)− h1(σx)

]
. (2.36)

Now, g becomes

g(x) =
1

2
h1(α)

[
h1(x)− h1(σx)

]
. (2.37)

Next, we will verify that the forms of f and g given in (2.36) and (2.37), respectively,

are solutions of (2.1). Since

f(x+ σy + α) + g(x+ y + α)

= −h1(α)

2
[h1(x)h1(σy)h1(α)− h1(σx)h1(y)h1(σα)]

+
h1(α)

2
[h1(x)h1(y)h1(α)− h1(σx)h1(σy)h1(σα)]
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= −h1(α)

2
[h1(x)h1(σy)h1(α) + h1(σx)h1(y)h1(α)]

+
h1(α)

2
[h1(x)h1(y)h1(α) + h1(σx)h1(σy)h1(α)]

=
h1(α)2

2
[h1(x)h1(y)− h1(σx)h1(y)− h1(x)h1(σy) + h1(σx)h1(σy)]

=
h1(α)2

2
[h1(x)− h1(σx)][h1(y)− h1(σy)]

and

2f(x)f(y) =
h1(α)2

2
[h1(x)− h1(σx)][h1(y)− h1(σy)]

therefore f in (2.36) and g in (2.37) are the solutions of (2.1) given in (2.23).

SUBCASE 1.2: We now suppose that σα = −α. Hence (2.33) becomes

f(x+ α) = −f(x− α) (2.38)

The substitution of x+ α for x in (2.38) yields

f(x+ 2α) = −f(x) (2.39)

and the same substitution in (2.39) leaves us

f(x+ 3α) = −f(x+ α). (2.40)

Using (2.38) in (2.40), and replacing x by x + α in the resulting expression, we

obtain

f(x+ 4α) = f(x) (2.41)

for all x ∈ G. Substituting (2.41) in (2.27) gives us

g(x) = −f(x) = −f(x+ 4α) = g(x+ 4α)

for all x ∈ G. Thus, like g(x) and f(x) are both periodic with period 4α. Next, we

replace x by x+ α and y by y + α in (2.28) we have

f(x+ σy + 2α + σα)− f(x+ y + 3α) = 2f(x+ α)f(y + α). (2.42)
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Since σα = −α, the previous equation (2.42) becomes

f(x+ σy + α)− f(x+ y + 3α) = 2f(x+ α)f(y + α).

Using (2.40) with the above we have

f(x+ σy + α) + f(x+ y + α) = 2f(x+ α)f(y + α). (2.43)

Define ` : G→ C by

`(x) = f(x+ α). (2.44)

Using this new function definition from (2.44), the equation (2.43) becomes

`(x+ y) + `(x+ σy) = 2 `(x) `(y) (2.45)

for all x, y ∈ G. The solution of (2.45) can be obtained either from Lemma 2.1 or

from [23] as

`(x) =
1

2

[
h1(x) + h1(σx)

]
, (2.46)

where h1 : G → C? is a multiplicative homomorphism. The definition (2.44) and

the solution (2.46) imply

f(x) =
1

2
[h1(x− α) + h1(σx− σα)] =

1

2

[
h1(x)h1(α)−1 + h1(σx)h1(α)

]
, (2.47)

and by (2.27)

g(x) = −f(x) = −1

2

[
h1(x)h1(α)−1 + h1(σx)h1(α)

]
. (2.48)

From the form of f in (2.47), we obtain

f(σx) =
1

2

[
h1(σx)h1(α)−1 + h1(x)h1(α)

]
(2.49)

for all x ∈ G. Using (2.47), (2.49) and the fact that f is σ-odd we have

[
h1(x) + h1(σx)

][
h1(α) + h1(α)−1

]
= 0.
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If h1(x) + h1(σx) = 0 for all x, then it is true that h1(α) + h1(σα) = 0. Hence, we

have h1(α) = −h1(α)−1 which yields

h1(α)2 = −1. (2.50)

Using (2.50) in (2.47), we obtain

f(x) =
1

2h1(α)

[
h1(x)− h1(σx)

]
. (2.51)

Similarly, using (2.50) in (2.48) shows

g(x) = − 1

2h1(α)

[
h1(x)− h1(σx)

]
. (2.52)

We now verify that (2.51) and (2.52) are solutions of (2.1). Since h1(α)2 = −1, we

have

f(x+ σy + α) + g(x+ y + α)− 2f(x)f(y)

=
1

2h1(α)
[h1(x)h1(σy)h1(α)− h1(σx)h1(y)h1(α)−1]

− 1

2h1(α)
[h1(x)h1(y)h1(α)− h1(σx)h1(σy)h1(α)−1]

− 2

(
1

2h1(α)

)(
1

2h1(α)

)
[h1(x)− h1(σx)][h1(y)− h1(σy)]

=
1

2

[
h1(x)h1(σy)− h1(σx)h1(y)

h1(α)2

]
− 1

2

[
h1(x)h1(y)− h1(σx)h1(σy)

h1(α)2

]
− 1

2h1(α)2
[h1(x)− h1(σx)][h1(y)− h1(σy)]

=
1

2
[h1(x)h1(σy) + h1(σx)h1(y)]− 1

2
[h1(x)h1(y) + h1(σx)h1(σy)]

+
1

2
[h1(x)− h1(σx)][h1(y)− h1(σy)]

= −1

2
[h1(x)− h1(σx)][h1(y)− h1(σy)] +

1

2
[h1(x)− h1(σx)][h1(y)− h1(σy)]

= 0.

Thus our solution set for (2.1) when f(0) = 0 and σα = −α is
f(x) = 1

2h1(α)
[h1(x)− h1(σx)],

g(x) = − 1
2h1(α)

[h1(x)− h1(σx)],
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where h1 : G → C∗ is a multiplicative homomorphism with h1(α) = −h1(α)−1.

Notice that since h(α)2 = −1 this is the same solution we found in Subcase 1.1.

Hence our only solution for the case when f(0) = 0 is the one asserted in (2.23).

CASE 2: Next, suppose f(0) 6= 0. Replace y with σy in (2.26) to obtain

f(x+ y + α)− f(x+ σy + α) = 2f(x)f(σy)− 2f(0)f(x+ σy) (2.53)

for all x, y ∈ G. By adding (2.53) to (2.26) we see that

f(0)[f(x+ y) + f(x+ σy)] = f(x)[f(y) + f(σy)] (2.54)

Let φ(x) = f(x)
f(0)

, then (2.54) can be rewritten as

φ(x+ y) + φ(x+ σy) = φ(x)
[
φ(y) + φ(σy)

]
which becomes

φ(x+ y) + φ(x+ σy) = 2φ(x)H(y), (2.55)

where

H(y) =
φ(y) + φ(σy)

2
. (2.56)

From Lemma 2.1, the solution of (2.55) is given by

φ(x) =


h2(x) [A(x− σx) + γ] if h2 = h2 ◦ σ

a h2(x) + b h2(σx) if h2 6= h2 ◦ σ
(2.57)

and

H(x) =
h2(x) + h2(σx)

2
(2.58)

where h2 : G → C∗ is a multiplicative homomorphism, A : G → C is an additive

homomorphism and a, b ∈ C are arbitrary constants. Hence,

f(x) =


f(0)h2(x)

[
A(x− σx) + γ

]
if h2 = h2 ◦ σ

f(0)
[
a h2(x) + b h2(σx)

]
if h2 6= h2 ◦ σ.

(2.59)
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Interchanging x and y in (2.26) we have

f(y + σx+ α)− f(x+ y + α) = 2f(x)f(y)− 2f(0)f(x+ y). (2.60)

By comparing (2.26) and (2.60) we see

f(y + σx+ α) = f(x+ σy + α).

The substitution of y = 0 in the previous equation yields

f(x+ α) = f(σx+ α) (2.61)

for all x ∈ G.

SUBCASE 2.1: Suppose h2 = h2 ◦ σ. Using (2.56) and (2.58) we see that

h2(x) + h2(σx) = φ(x) + φ(σx)

Since h2 = h2 ◦ σ, the use of (2.57) in the last equation yields

2h2(x) = h2(x)[A(x− σx) + γ − A(x− σx) + γ]

which simplifies to

2h2(x)
(
1− γ

)
= 0.

Hence γ = 1. This means our solution for f is of the form

f(x) = f(0)h2(x)
[
A(x− σx) + 1

]
, (2.62)

where h : G→ C∗ is a multiplicative homomorphism and A : G→ C is an additive

homomorphism. Using (2.62) we obtain

f(x+ α) = f(0)h2(x)h2(α)[A(x+ α− σx− σα) + 1] (2.63)

and

f(σx+ α) = f(0)h2(x)h2(α)[A(σx+ α− x− σα) + 1]. (2.64)

22



Thus, (2.61), (2.63) and (2.64) yield

A(x− σx) = 0 forall x ∈ G

and (2.62) reduces to

f(x) = f(0)h2(x) (2.65)

when h2 = h2 ◦ σ. Using (2.65) in (2.25) we see

g(x) = 2f(0)f(x− α)− f(x) = f(0)h2(x)
[
2f(0)h2(α)−1 − 1

]
. (2.66)

Now we show that f in (2.65) and g in (2.66) are solutions of (2.1) for this subcase.

Consider

f(x+ σy + α) + g(x+ y + α)− 2f(x)f(y)

= f(0)h2(x)h2(σy)h2(α) + f(0)h2(x)h2(y)h2(α)[2f(0)h2(α)−1 − 1]

− 2f(0)2h2(x)h2(y)

= f(0)h2(x)h2(y)h2(α) + 2f(0)2h2(x)h2(y)− f(0)h2(x)h2(y)h2(α)

− 2f(0)2h2(x)h2(y)

= 0.

Hence, f(x + σy + α) + g(x + y + α) = 2f(x)f(y) for all x, y ∈ G. Thus for the

subcase when h2 = h2 ◦ σ
f(x) = f(0)h2(x),

g(x) = f(0)
[
2 f(0)h2(α)−1 − 1

]
h2(x)

is the solution of (2.1), where h2 : G→ C? is a multiplicative homomorphism. This

solution is included in the asserted solution (2.24).

SUBCASE 2.2: Suppose h2 6= h2 ◦ σ. Using (2.56) and (2.58), we get

h2(x) + h2(σx) = φ(x) + φ(σx). (2.67)
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The use of (2.57) in (2.67) yields

h2(x) + h2(σx) = (a+ b)h2(x) + (a+ b)h2(σx).

Hence, we have a+ b = 1. From (2.59)

f(x) = f(0)
[
a h2(x) + b h2(σx)

]
, (2.68)

where a, b ∈ C are arbitrary constants with a + b = 1. This f is the form of the

solution when h2 6= h2 ◦ σ. Using (2.68) in (2.61), we obtain[
a h2(α)− b h2(σα)

][
h2(x)− h2(σx)

]
= 0.

Since h2 6= h2 ◦ σ, this means that

ah2(α) = bh2(σα). (2.69)

Use of (2.68) and (2.69) on the left side of equation (2.26) yields

f(x+ σy + α)− f(x+ y + α)

= f(0)[ah2(x)h2(σy)h2(α) + bh2(σx)h2(y)h2(σα)]

− f(0)[ah2(x)h2(y)h2(α) + bh2(σx)h2(σy)h2(σα)]

= −f(0)[h2(x)− h2(σx)][ah2(y)h2(α)− ah2(σy)h2(α)]

= −f(0) a h2(α)
[
h2(x)− h2(σx)

][
h2(y)− h2(σy)

]
.

Similarly, using (2.68) and (2.69) on the right side of the equation (2.26), and then

simplifying we obtain

2f(x)f(y)− 2f(0)f(x+ y)

= 2f(0)2[ah2(x) + bh2(σx)][ah2(y) + bh2(σy)]

− 2f(0)2[ah2(x)h2(y) + bh2(σx)h2(σy)]

= 2f(0)2[a2h2(x)h2(y) + abh2(x)h2(σy) + abh2(σx)h2(y) + b2h2(σx)h2(σy)

− ah2(x)h2(y)− bh2(σx)h2(σy)]

24



= 2f(0)2[(a2 − a)h2(x)h2(y) + (b2 − b)h2(σx)h2(σy)

+ abh2(x)h2(σy) + abh2(σx)h2(y)]

= −2f(0)2[abh2(x)h2(y) + abh2(σx)h2(σy)− abh2(x)h2(σy)− abh2(σx)h2(y)]

= −2 a b f(0)2
[
h2(x)− h2(σx)

][
h2(y)− h2(σy)

]
.

From the last equalities we see that

h2(α) = 2 b f(0), (2.70)

and from (2.69),

h2(σα) = 2 a f(0). (2.71)

Using (2.70) and (2.71) we obtain

f(0)2 =
h2(α)h2(σα)

4 a b
. (2.72)

We use (2.68), (2.70), (2.71) and (2.72) in (2.25) to obtain

g(x) (2.73)

= 2f(0)f(x− α)− f(x)

= 2f(0)2[ah2(x)h2(α)−1 + bh2(σx)h2(σα)−1]− f(0)[ah2(x) + bh2(σx)]

=
1

2ab
h2(α)h2(σα)[ah2(x)h2(α)−1 + bh2(σx)h2(σα)−1]− f(0)[ah2(x) + bh2(σx)]

=
1

2ab
[ah2(x)h2(σα) + bh2(σx)h2(α)]− ah2(α)

2ab
[ah2(x) + bh2(σx)]

=
1

2ab
[ah2(x)h2(σα) + bh2(σx)h2(α)− a2h2(x)h2(α)− abh2(σx)h2(α)]

=
1

2ab
[a2h2(x)h2(σα) + b2h2(σx)h2(α)]

=
1

2

[
a

b
h2(x)h2(σα) +

b

a
h2(σx)h2(α)

]
.

Now, using (2.69) and (2.70), we rewrite (2.68) as

f(x) =
h2(α)

2b
[ah2(x) + bh2(σx)] =

1

2
[h2(x)h2(σα) + h2(σx)h2(α)]. (2.74)
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We now check that f(x) in (2.74) and g(x) in (2.73) satisfy equation (2.1). The left

side of the equation (2.1) yields

f(x+ σy + α) + g(x+ y + α)

=
1

2
[h2(x)h2(σy)h2(α)h2(σα) + h2(σx)h2(y)h2(σα)h2(α)]

+
1

2

[
a

b
h2(x)h2(y)h2(α)h2(σα) +

b

a
h2(σx)h2(σy)h2(σα)h2(α)

]
=
h2(α)h2(σα)

2

[
h2(x)h2(σy) + h2(σx)h2(y) +

a

b
h2(x)h2(y) +

b

a
h2(σx)h2(σy)

]
=
h2(α)h2(σα)

2ab
[ah2(x) + bh2(σx)][ah2(y) + bh2(σy)].

Similarly, the right side of the equation (2.1) yields

2f(x)f(y) =
1

2
[h2(x)h2(σα) + h2(σx)h2(α)][h2(y)h2(σα) + h2(σy)h2(α)]

=
1

2

[a
b
h2(x)h2(y)h2(σα)h2(α) + h2(x)h2(σy)h2(α)h2(σα)

+ h2(σx)h2(y)h2(α)h2(σα) +
b

a
h2(σx)h2(σy)h2(α)h2(σα)

]
=
h2(α)h2(σα)

2
[ah2(x) + bh2(σx)]

[
1

b
h2(y) +

1

a
h2(σy)

]
=
h2(α)h2(σα)

2ab
[ah2(x) + bh2(σx)][ah2(y) + bh2(σy)].

Hence, for this subcase, (2.74) and (2.73) are solutions of the functional equation

(2.1) for some multiplicative homomorphism h2 : G→ C? satisfying h2 6= h2 ◦σ and

some constants a, b ∈ C satisfying ah2(α) = bh2(σα) = 2abf(0). This completes

Case 2. Since there are no cases left, the proof of the theorem is now complete.

As a consequence of Theorem 2.1 one can obtain the following corollaries.

COROLLARY 2.1. The continuous solutions f : R→ R of (1.2) is given by either

f ≡ 0 or f(x) = (−1)n sin

(
(2n+ 1)πx

2α

)
for all x ∈ R and n ∈ Z.

Proof. Follows from Theorem 2.1 and [12], pages 170-171.
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COROLLARY 2.2. The continuous solutions f : R → R of Kannappan’s equation

(1.4) is given by either f ≡ 0, f ≡ 1, f(x) = cos

(
4nπx

α

)
, f(x) = cos

(
2(2n+ 1)πx

α

)
or f(x) = − cos

(
(2n+ 1)πx

α

)
for all x ∈ R and n ∈ Z.

Proof. Follows from Theorem 2.1 and Corollary 3.14a in [12].

The material presented in this chapter is taken from the author’s paper [15].
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CHAPTER 3

VAN VLECK’S AND KANNAPPAN’S EQUATIONS ON GROUPS

3.1 Introduction

This chapter is devoted to the study of Van Vleck’s functional equation with

involution as well as Kannappan’s functional equation with involution on groups

(not necessarily abelian).

In this chapter, G will always denote an arbitrary group unless otherwise

stated. Similarly, z0 will be a fixed element in the center Z(G) of the group G, and

σ : G→ G is an involution.

3.2 Solution of Van Vleck’s Equation

In this section, we determine the solutions to Van Vleck’s equation with

involution on arbitrary groups. Once again, we manipulate the variables to find

properties of our solution f . Using these properties we can reduce our unknown

equation so that our solution f is in terms of a solution to a known equation.

THEOREM 3.1. Let G be a group, C be the field of complex numbers and σ : G→ G

be an involution. If f : G→ C satisfies the functional equation

f(xσyz0)− f(xyz0) = 2f(x)f(y) (3.1)

for all x,y ∈ G and fixed z0 ∈ Z(G), then either f ≡ 0 or f is given by

f(x) = g(xz−1
0 )f(z0), (3.2)

28



where g : G → C is a nonzero solution of the cosine functional equation with

involution

g(xσy) + g(xy) = 2g(x)g(y) for all x, y ∈ G. (3.3)

Proof. Interchanging y with σy in (3.1), we obtain

f(xyz0)− f(xσyz0) = 2f(x)f(σy)

for all x, y ∈ G. By adding (3.1) with the above equation we see that

2f(x)
[
f(y) + f(σy)

]
= 0 for all x, y ∈ G.

Hence, either f ≡ 0 or f(y) = −f(σy) for y ∈ G. Assume from now that f is not

identically zero, so f is σ-odd and thus f(e) = 0. Letting x = σz0 in (3.1), we see

that

f(σz0σyz0)− f(σz0yz0) = 2f(σz0)f(y)

for all y ∈ G. From the last equation and the fact that f is σ-odd, we obtain

f(σz0yz0) = f(z0)f(y) for all y ∈ G. (3.4)

Setting y = z0 in (3.1) gives us

f(xσz0z0)− f(xz20) = 2f(x)f(z0).

Now, we apply (3.4) to the above equation to obtain

f(z0)f(x)− f(xz20) = 2f(x)f(z0)

which implies

−f(xz20) = f(x)f(z0) (3.5)

for all x ∈ G. Notice from above that if f(z0) = 0 then replacing x by xz−2
0 in (3.5)

yields f ≡ 0. Since f is not identically zero, this means that f(z0) 6= 0. Now, let

x = e in (3.1) and we have

f(σyz0) = f(yz0) (3.6)
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for all y ∈ G. The substitution of x = xz0 and y = yz0 in (3.1) yields

f(xσz0σyz
2
0)− f(xyz30) = 2f(xz0)f(yz0)

for all x, y ∈ G. By (3.5) the above equation becomes

−f(xσz0σy)f(z0) + f(xyz0)f(z0) = 2f(xz0)f(yz0)

which, by using the fact that f is σ-odd, can be rewritten as

f(yσxz0)f(z0) + f(xyz0)f(z0) = 2f(xz0)f(yz0).

Finally, using (3.6) we have

f(z0)
[
f(xσyz0) + f(xyz0)

]
= 2f(xz0)f(yz0) (3.7)

for all x, y ∈ G. Define a function g : G→ C by

g(x) =
f(xz0)

f(z0)
(3.8)

for all x ∈ G. Then (3.7) reduces to

g(xσy) + g(xy) = 2g(x)g(y)

for all x, y ∈ G. Thus from (3.8) we get the asserted solution (3.2).

We collect the following facts from the above theorem for later use.

REMARK 3.1. If f is a nonzero solution of the functional equation (3.1), then (i)

f(e) = 0, (ii) f(z0) 6= 0, and (iii) f(xz20) = −f(z0)f(x) for all x ∈ G.

The following result can be found in [24] (see Lemma 9.2, p. 137).

PROPOSITION 3.1. Let g : G → C be an abelian function. Then the nonzero

solution of

g(xy) + g(xσy) = 2g(x)g(y)
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is given by

g(x) =
1

2

[
χ(x) + χ(σx)

]
where χ is a character of G.

It is clear that f ≡ 0 is a solution to (3.1) so in the following corollaries we

are only concerned with the nonzero solutions. Using the above result we have the

following corollary.

COROLLARY 3.1. Let f : G → C be an abelian function. Then the nonzero

solution of (3.1) is given by

f(x) = −χ(z0)

[
χ(x)− χ(σx)

]
2

where χ is a character of G.

Proof. From item (ii) of Remark 3.1 we see that f(z0) 6= 0. From Theorem 3.1, the

nonzero solution of (3.1) is f(x) = g(xz−1
0 )f(z0), where g is a nonzero solution of

(3.3). Since f is abelian, g given by g(x) = f(xz0)
f(z0)

is also abelian which follows from

g(xyz) =
f(xyzz0)

f(z0)
=
f(z0xyz)

f(z0)
=
f(z0xzy)

f(z0)
=
f(xzyz0)

f(z0)
= g(xzy)

for all x, y, z ∈ G. From Proposition 3.1 we have the solution for g(x) which gives

us f(x) as

f(x) =
f(z0)

2

[
χ(x)

χ(z0)
+
χ(σx)

χ(σz0)

]
. (3.9)

From item (i) of Remark 3.1, we have f(e) = 0. Using this with (3.9) we see that

f(e) =
f(z0)

2

[
1

χ(z0)
+

1

χ(σz0)

]
= 0

and since f(z0) 6= 0 we conclude that

χ(z0) = −χ(σz0). (3.10)

31



From item (iii) of Remark 3.1 we also have f(xz20) = −f(z0)f(x). Using (3.9) with

this remark we have

f(z0)

2

[
χ(x)χ(z0) + χ(σx)χ(σz0)

]
= −f(z0)

2

2

[
χ(x)

χ(z0)
+
χ(σx)

χ(σz0)

]
.

Hence by using (3.10) and simplifying the resulting equation, we get

[
χ(z0)

2 + f(z0)
][
χ(x)− χ(σx)

]
= 0 (3.11)

for all x ∈ G. Substituting x = z0 in (3.11) and using (3.10), we conclude that[
χ(z0)

2 + f(z0)
]
2χ(z0) = 0. Since χ(z0) 6= 0, we must have f(z0) = −χ(z0)

2. Using

this with (3.9) and (3.10) we obtain

f(x) = −χ(z0)

2

[
χ(x)− χ(σx)

]
(3.12)

for all x ∈ G. Now we verify that f(x) given by (3.12) is the solution of (3.1). Since

f(xσyz0)− f(xyz0)

=
χ(z0)

2

2
[−χ(x)χ(σy)− χ(σx)χ(y) + χ(x)χ(y) + χ(σx)χ(σy)]

=
χ(z0)

2

2

[
χ(x)− χ(σx)

][
χ(y)− χ(σy)

]
= 2f(x)f(y),

f(x) given by (3.12) is indeed the solution of (3.1). This completes the proof of the

corollary.

The following proposition was proved in [24] (see Proposition 9.23, p. 150).

PROPOSITION 3.2. Let g : G→ C be a nonzero solution of

g(xy) + g(xy−1) = 2g(x)g(y)

for all x, y ∈ G. If g(z0)
2 6= 1 for some z0 ∈ Z(G), then there exists a character

χ : G→ C∗ with χ(x) 6= χ̌(x), such that g(x) =
χ(x) + χ̌(x)

2
.
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The following corollary can be found in [24] as an exercise (see Exercise 9.18,

p. 156) with ample hints. Here we present its proof for the sake of completeness.

COROLLARY 3.2. Let σ : G → G be an involution with σx = x−1 for all x ∈ G.

Then the nonzero solution f : G→ C for (3.1) is

f(x) =
χ(x)− χ̌(x)

2i
,

where χ is a character of G and i is the imaginary unit.

Proof. From (3.8), we obtain

g(z0) =
f(z20)

f(z0)
.

Substituting y = e in (3.5) we see that

f(z20) = −f(e)f(z0) = 0.

Hence g(z0)
2 = 0 and, by Proposition 3.2, we have g(x) =

χ(x) + χ̌(x)

2
. Using these

two facts together yields the following:

g(z0) =
χ(z0) + χ(z−1

0 )

2
= 0

which is

χ(z0)
2 + 1 = 0.

Thus,

χ(z0) = i or χ(z0) = −i. (3.13)

Since σx = x−1 for all x ∈ G and z0 ∈ Z(G), (3.4) reduces to f(y) = f(y)f(z0).

We are only considering nonzero solutions, so f(z0) = 1. Now using (3.13) and the

definition of g(x) in (3.8) we have

f(x) = g(xz−1
0 )f(z0) = g(xz−1

0 ) =
χ(xz−1

0 ) + χ(z0x
−1)

2
=
χ(x)− χ(x−1)

2χ(z0)
.
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Now we assume that χ(z0) = i. Notice this means χ̌(zo) = χ(z−1
0 ) = −i. Thus, we

have

f(x) =
χ(x)− χ̌(x)

2i
. (3.14)

Now we verify that (3.14) is the solution of (3.1) when σx = x−1. Since

f(xy−1z0)− f(xyz0) =
χ(xy−1z0)− χ(z−1

0 yx−1)

2i
− χ(xyz0)− χ(z−1

0 y−1x−1)

2i

=
iχ(x)χ(y−1) + iχ(y)χ(x−1)

2i
− iχ(x)χ(y) + iχ(x−1)χ(y−1)

2i

=
1

2
[χ(y−1)− χ(y)][χ(x)− χ(x−1)]

= 2
[χ(x)− χ(x−1)]

2i

[χ(y)− χ(y−1)]

2i

= 2f(x)f(y),

f(x) given by (3.14) is indeed the solution for the case when χ(z0) = i.

In the case, χ(z0) = −i, then

f(x) =
χ̌(x)− χ(x)

2i
(3.15)

and replacing the character χ̌ by χ in (3.15), we have the asserted solution. Our

proof is now complete.

3.3 Solution of Kannappan’s Equation

In this section, we find the solutions to Kannappan’s equation with involution

on arbitrary groups. As one might imagine, the proofs in this section are almost

identical to those in the previous section. Since the equations differ by a sign, most

of our properties will as well. For example, we found before that our solution was

σ-odd and now we will see that f is σ-even. Despite the sign differences, we can

still reduce our unknown equation to the same solved equation.
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THEOREM 3.2. Let G be an arbitrary group, C be the field of complex numbers

and σ : G→ G be an involution. If f : G→ C satisfies the functional equation

f(xσyz0) + f(xyz0) = 2f(x)f(y) (3.16)

for all x,y ∈ G and fixed z0 ∈ Z(G), then either f ≡ 0 or f(x) = g(xz−1
0 )f(z0) where

g : G→ C is a nonzero solution of the cosine functional equation with involution

g(xσy) + g(xy) = 2g(x)g(y) for all x, y ∈ G.

Proof. It is easy to check that f ≡ 0 is a solution of (3.16). Hence from now we

assume that f is not identically zero. Interchanging y with σy in (3.16), we have

f(xyz0) + f(xσyz0) = 2f(x)f(σy).

Subtraction of the last equation from (3.16) yields

2f(x)[f(y)− f(σy)] = 0

for all x, y ∈ G. Since f is not identically zero, we must have f is σ-even. Letting

x = σz0 in (3.16), we obtain

f(σz0σyz0) + f(σz0yz0) = 2f(σz0)f(y)

for all x, y ∈ G. Since f is σ-even, the previous equation yields

f(σz0yz0) = f(z0)f(y) (3.17)

for all y ∈ G. Letting y = z0 in (3.16) yields

f(xσz0z0) + f(xz20) = 2f(x)f(z0).

Applying (3.17) to the previous equation we have

f(x)f(z0) + f(xz20) = 2f(x)f(z0)
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and this implies

f(xz20) = f(x)f(z0) (3.18)

for all x ∈ G. Now, let y = e in (3.16) and we see that

f(xz0) = f(x)f(e) (3.19)

for all x ∈ G. By substituting x = xz0 and y = yz0 in (3.16) we obtain

f(xσz0σyz
2
0) + f(xyz30) = 2f(xz0)f(yz0)

which, by (3.18), becomes

f(xσz0σy)f(z0) + f(xyz0)f(z0) = 2f(xz0)f(yz0).

And since f is σ-even this becomes

f(yσxz0)f(z0) + f(xyz0)f(z0) = 2f(xz0)f(yz0).

Then by using (3.19) we see that this is

f(yσx)f(e)f(z0) + f(xyz0)f(z0) = 2f(xz0)f(yz0).

Once again σ-evenness yields

f(xσy)f(e)f(z0) + f(xyz0)f(z0) = 2f(xz0)f(yz0)

which, by applying (3.19) once more, becomes

f(xσyz0)f(z0) + f(xyz0)f(z0) = 2f(xz0)f(yz0).

Define g : G→ C by

g(x) =
f(xz0)

f(z0)
(3.20)

then the above gives us

g(xσy) + g(xy) = 2g(x)g(y)

for all x, y ∈ G. This completes the proof.
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REMARK 3.2. If f is a nonzero solution of (3.16), then (i) f is a σ-even function,

and (ii) f(z20) = f(e)f(z0).

REMARK 3.3. In the case when f is not identically zero, it is easy to see from

(3.18) and (3.19) that f(e) 6= 0 and f(z0) 6= 0. From (3.19) we get f(z20) =

f(z0)f(e) and by the definition of g given in the proof of Theorem 3.2, we have

g(z0) =
f(z20)

f(z0)
= f(e) 6= 0.

It is obvious that f ≡ 0 is a solution to equation (3.16), so we will only

consider the nonzero solutions in the following corollaries. From Proposition 3.1 we

can derive our next corollary.

COROLLARY 3.3. Let f : G → C be an abelian function. Then the nonzero

solution of (3.16) is given by

f(x) = χ(z0)
χ(x) + χ(σx)

2
,

where χ is a character of G.

Proof. We know from (3.20) of Theorem 3.2 that

g(x) =
f(xz0)

f(z0)
. (3.21)

Since f is abelian,

g(xyz) =
f(xyzz0)

f(z0)
=
f(z0xyz)

f(z0)
=
f(z0xzy)

f(z0)
=
f(xzyz0)

f(z0)
= g(xzy)

and g is also an abelian function. The nonzero solution g(x) of the functional

equation g(xy) + g(xσy) = 2g(x)g(y) can be obtained from Proposition 3.1. From

(3.21) we have f(x) = f(z0)g(xz−1
0 ), and hence

f(x) =
f(z0)

2
[χ(x)χ(z0)

−1 + χ(σx)χ(σz0)
−1]. (3.22)

From (3.22) we obtain the following:

f(z20) =
f(z0)

2
[χ(z0) + χ(σz0)] (3.23)
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and

f(e) =
f(z0)

2
[χ(z0)

−1 + χ(σz0)
−1]. (3.24)

From (3.19) of Theorem 3.2 (or item (ii) of Remark 3.2) we have f(z20) = f(e)f(z0).

Using (3.23) and (3.24) we see that

f(z0)

2

[
χ(z0) + χ(σz0)

]
=
f(z0)

2

2

[
χ(z0)

−1 + χ(σz0)
−1

]
.

Simplifying the last equality, we obtain

f(z0)
[
χ(z0) + χ(σz0)

] [ f(z0)

χ(z0)χ(σz0)
− 1

]
= 0.

From Remark 3.3 we know f(z0) 6= 0 and χ(x) + χ(σx) = 0 leads to f(e) = 0

which is impossible since (3.19) yields f(e)2 = f(z0) 6= 0. Hence, we must have

f(z0) = χ(z0)χ(σz0). Using this in (3.22) yields

f(x) =
1

2
[χ(x)χ(σz0) + χ(σx)χ(z0)] (3.25)

and from the above we also have

f(σx) =
1

2
[χ(σx)χ(σz0) + χ(x)χ(z0)]. (3.26)

From item (i) of Remark 3.2 we know that f is σ-even. Thus, by (3.25) and (3.26),

we have

1

2

[
χ(σx)χ(σz0) + χ(x)χ(z0)

]
=

1

2

[
χ(x)χ(σz0) + χ(σx)χ(z0)

]
which simplifies to

[
χ(x)− χ(σx)

][
χ(z0)− χ(σz0)

]
= 0.

Notice that if χ(x) = χ(σx) for all x in G, then it is true that χ(z0) = χ(σz0) so we

may assume that only the latter is true. Now (3.25) becomes

f(x) =
χ(z0)

2

[
χ(x) + χ(σx)

]
. (3.27)
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We now verify that f given by (3.27) is the solution of (3.16). Since

f(xσyz0) + f(xyz0)

=
χ(z0)

2

[
χ(x)χ(σy)χ(z0) + χ(σx)χ(y)χ(σz0)

+ χ(x)χ(y)χ(z0) + χ(σx)χ(σy)χ(σz0)

]
=
χ(z0)

2

2

[
χ(x) + χ(σx)

][
χ(y) + χ(σy)

]
= 2f(x)f(y)

f given by (3.27) is the solution. This completes the proof of this corollary.

REMARK 3.4. When σx = x−1 for all x ∈ G then (3.17) reduces to f(y) =

f(z0)f(y). Hence, for nonzero f , we have f(z0) = 1. Also, from (3.19) we obtain

f(z0) = f(e)2 = 1.

When σx = x−1 for all x ∈ G, from Remarks 3.3 and 3.4 we see that

g(z0)
2 = 1. Thus one can not use Proposition 3.2. Hence we use the following

result due to Corovei (see Theorem 2 in [4]).

PROPOSITION 3.3. Let G be a nilpotent group whose elements are of odd order

and C be the field of complex numbers. If g : G→ C is a nonzero solution of

g(xy) + g(xy−1) = 2g(x)g(y) for all x, y ∈ G

then g has the form

g(x) =
χ(x) + χ̌(x)

2
for all x ∈ G,

where χ is a character of G.

COROLLARY 3.4. Let G be a nilpotent group whose elements are of odd order and

C be the field of complex numbers, and let σ : G→ G be defined such that σx = x−1

for all x. If f : G→ C is a nonzero solution of (3.16) then f has the form

f(x) =
χ(x) + χ̌(x)

2
(3.28)
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where χ a character of G.

Proof. From Remark 3.4 we know f(z0) = 1. Using this fact, (3.21) and Proposition

3.3 we see

f(x) =
1

2
[χ(x)χ(z−1

0 ) + χ(z0)χ(x−1)]. (3.29)

Using f(z0) = 1 in (3.18) we obtain f(xz20) = f(x). Applying this to the form of f

in (3.29) and simplifying resulting expression, we have

χ(x)χ(z0) + χ(x−1)χ(z−1
0 ) = χ(x)χ(z−1

0 ) + χ(z0)χ(x−1)

The equality further simplifies to[
χ(x)2 − 1

][
χ(z0)

2 − 1
]

= 0.

Notice that if χ(x)2 = 1 for all x then it is true that χ(z0)
2 = 1 so we can assume

just the latter. This means χ(z0) = 1 or χ(z0) = −1. Suppose χ(z0) = −1. Since

z0 ∈ G, there exists a k ∈ N such that z2k+1
0 = e. This implies

χ(z2k+1
0 ) = χ(e) = 1.

However,

χ(z2k+1
0 ) = χ(z0)

2k+1 = (−1)2k+1 = −1.

Therefore we have a contradiction and χ(z0) 6= −1 so we must have χ(z0) = 1.

Thus, f(x) becomes

f(x) =
1

2
[χ(x) + χ(x−1)].

Since

f(xy−1z0) + f(xyz0)

=
1

2
[χ(x)χ(y−1) + χ(x−1)χ(y) + χ(x)χ(y) + χ(x−1)χ(y−1)]

=
1

2
[χ(x) + χ(x−1)][χ(y) + χ(y−1)]

= 2f(x)f(y),

f(x) given by (3.28) is the solution and the proof of the corollary is complete.
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CHAPTER 4

SINE FUNCTIONAL EQUATION AND PERIODICITY ON GROUPS

4.1 Introduction

In this chapter, we consider the sine functional equation with involution,

namely

f(xy) f(xσy) = f(x)2 − f(y)2 (4.1)

for all x, y ∈ G. Notice that f(x) ≡ 0 is a trivial solution of (4.1). We will assume

from now that all solutions of (4.1) are nonzero. We will discuss some properties of

any solution f , solve this equation on perfect groups and discuss the periodicity of

the solutions.

4.2 Some Properties of the Solution of Sine Equation

LEMMA 4.1. Let G be a group and C be the field of complex numbers. Let σ : G→

G be an involution. If f : G→ C is a nonzero solution of (4.1), then the following

hold:

f(e) = 0, (4.2)

f(σx) = − f(x), (4.3)

f(x)2 = f(x−1)2, (4.4)

f(xσx) = 0, (4.5)

f(xyσy)2 = f(x)2 (4.6)
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for all x, y ∈ G.

Proof. Letting x = y = e in (4.1) it is easy to see that f(e) = 0. Next, letting x = e

in (4.1) and using (4.2), we have

f(y)
[
f(σy) + f(y)

]
= 0

for all y ∈ G. Since f 6≡ 0 we have f(σy) = −f(y) hence, (4.3) is proven.

In order to establish (4.4), let y = x−1 in (4.1). By using (4.2), we obtain

f(x)2 = f(x−1)2.

To prove (4.5), let x = e in (4.1) to see

f(y) f(σy) = −f(y)2.

Replacing y by yσy in the last equality, we have

f(yσy) f(yσy) = −f(yσy)2.

Hence 2f(yσy)2 = 0 and (4.5) follows.

Next, replacing y by yσy in (4.1), we get

f(xyσy) f(xyσy) = f(x)2 − f(yσy)2 (4.7)

for all x, y ∈ G. Using (4.5) in (4.7), we have the relation (4.6) and now the proof

of the lemma is complete.

4.3 Solution of Sine Equation on Perfect Groups

Let

Af (G) =
{
u ∈ G | f(u) = 0

}
be the set of zeros of the solution f of the sine functional equation with involution

(4.1). The importance of this set is already observed in Paranami and Vasudev [14]
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and Corovei [6]. From Lemma 4.1 we have f(σx) = −f(x) so it is easy to see that

if f(x) = 0, then f(σx) = 0 as well. Hence, Af (G) is a σ-involutive subgroup of G.

LEMMA 4.2. Let G be a group and C be the field of complex numbers. Let σ : G→

G be an involution. If f : G→ C is a nonzero solution of (4.1), then

(i) Af (G) is a subgroup of G;

(ii) If xy ∈ Af (G), then yx ∈ Af (G);

(iii) Af (G) is a normal subgroup of G.

Proof. First we show that Af (G) is a subgroup of G. Af (g) is nonempty since

f(e) = 0. Suppose x ∈ Af (G). Then f(x) = 0 and from (4.1) we see that

f(xy)f(xσy) = −f(y)2.

Letting y = x−1 in the above equation yields

f(e)f(xσx−1) = −f(x−1)2.

Hence by (4.2), we have f(x−1) = 0 which implies x−1 ∈ Af (G) and Af (G) is closed

under inverses.

Suppose x, y ∈ Af (G). Replacing x by xy and y by y−1 in (4.1) and using

closure under inverses, we obtain

f(x)f(xyσy−1) = f(xy)2

for x, y ∈ G. But x ∈ Af (G), so we have

f(xy)2 = 0

and hence f(xy) = 0. Thus xy ∈ Af (G) when x, y ∈ Af (G) and Af (G) is closed

under multiplication. Therefore Af (G) is a subgroup of G.

To prove (ii), suppose xy ∈ Af (G). Then from (4.1), we have

f(x)2 = f(y)2. (4.8)
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Replacing x by σx and y by σy in (4.1), we obtain

f(σxσy) f(σxy) = f(σx)2 − f(σy)2

which by (4.3) reduces to

f(σxσy) f(σxy) = f(x)2 − f(y)2.

Using (4.8) with the last equality yields

f(σxσy) f(σxy) = 0 (4.9)

for all x, y ∈ G. Using properties of σ, (4.9) reduces to

f(σ(yx)) f(σxy) = 0

which by (4.3) yields

f(yx) f(σxy) = 0

for all x, y ∈ G. Notice by interchanging x with y in (4.1) and using (4.8), we also

have

f(yx) f(yσx) = f(y)2 − f(x)2 = 0.

Hence, either f(yx) = 0 or f(σxy) = f(yσx) = 0. Now we consider two cases.

CASE 1: Suppose f(yx) = 0. Then yx ∈ Af (G). Therefore (ii) holds.

CASE 2: Suppose f(σxy) = f(yσx) = 0. Then σxy, yσx ∈ Af (G). Since Af (G)

is a subgroup of G, we also have

y−1σx−1, σx−1y−1 ∈ Af (G).

Recall that xy ∈ Af (G), and since Af is σ-involutive subgroup we also have σ(xy) ∈

Af (G) and hence

σy σx ∈ Af (G).
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Using the subgroup properties of Af (G) we have

σyσxσx−1y−1 = σyy−1 ∈ Af (G).

Since Af (G) is a σ-involutive subgroup and σxy ∈ Af (G), we see

σ(σxy) = σyx ∈ Af (G).

Af (G) is closed under inverses hence x−1σy−1 ∈ Af (G). Using closure under mul-

tiplication, we see that

x−1σy−1σyy−1 = x−1y−1 ∈ Af (G).

And since Af (G) is closed under inverses, we have

yx ∈ Af (G).

This completes the proof of item (ii).

The proof of (iii) follows from (ii). To this see, let u be any arbitrary element

of the subgroup Af (G). Using (ii) with any g ∈ G we have

u = ug−1g = gug−1 ∈ Af (G).

Hence Af (G) is a normal subgroup of G. The proof of the lemma is now complete.

THEOREM 4.1. Let G be a 2-divisible group. If f : G → C is a solution of (4.1)

then f(u) = 0, for all u ∈ [G,G].

Proof. Interchanging x and y in (4.1) yields

f(yx)f(yσx) = f(y)2 − f(x)2

which by (4.3) is

f(yx)f(xσy) = f(x)2 − f(y)2.
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If we subtract the above equation from (4.1) we obtain

[f(xy)− f(yx)]f(xσy) = 0 for all x, y ∈ G.

Hence, either f(xy) = f(yx) or f(xσy) = 0 for all x, y ∈ G.

CASE 1: If f(xy) = f(yx) then by letting x = xy and y = yx in (4.1) we

have

f(xy2x)f(xyσ(yx)) = f(xy)2 − f(yx)2 = 0.

Now we have two subcases:

SUBCASE 1.1: Let xyσ(yx) = xyσxσy ∈ Af for all x, y ∈ G. By letting y = e

in our assumption we see that xσx ∈ Af and similarly, when x = e, yσy ∈ Af .

Therefore, σy−1y−1 ∈ Af and σx−1x−1 ∈ Af since Af is a subgroup. Hence,

(xyσxσy)(σy−1y−1) = xyσxy−1 ∈ Af

And since Af is a normal subgroup this means that y−1xyσx ∈ Af . Also, we have

(y−1xyσx)(σx−1x−1) = y−1xyx−1 ∈ Af .

Again, since Af is a normal subgroup this means xyx−1y−1 ∈ Af for all x, y ∈ G.

SUBCASE 1.2: Let xy2x ∈ Af for all x, y ∈ G. Since G is 2-divisible there exist

u, v ∈ G such that u2 = x and v2 = y. And since xy2x ∈ Af holds for all elements

in G we have

uv2u ∈ Af =⇒ u2v2 ∈ Af =⇒ xy ∈ Af .

This implies that both yx ∈ Af and x−1y−1 ∈ Af . Hence, xyx−1y−1 ∈ Af

CASE 2: If xσy ∈ Af then by letting x = xyx−1 and y = σy−1 in our as-

sumption we see that xyx−1y−1 ∈ Af .

Therefore, we have [G,G] ⊂ Af when G is 2-divisible.
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Notice that the previous lemma gives us that on a 2-divisible perfect group

G, that is when G = [G,G], the only solution to (4.1) is f ≡ 0.

EXAMPLE 4.1. The special orthogonal group of n × n matrices SO(n,R) is an

example of a 2-divisible perfect group. Hence the sine functional equation with

involution has only the trivial solution on SO(n,R).

4.4 Periodicity of the Solution of Sine Equation

Since we were unable to determine the general solution of the sine functional

equation with involution on arbitrary groups, it seems appropriate to study the

periodicity of the solution of the sine functional equation.

The following lemma is from Kulosman in [13].

LEMMA 4.3. Let K be a field and σ : G → G be an involution. Let f : G → K

satisfy (4.1). Let H be a subgroup of G defined by H = {ασα−1|α ∈ Af (G)}. Then

f(xh) = f(x)

for all x ∈ G and h ∈ H. Hence, f is h-periodic.

Proof. Let α ∈ Af (G). In (4.1) let x = xα and y = σx−1. Then we have

f(xασx−1)f(xαx−1) = f(xα)2 − f(σx−1)2.

Recall from property (iii) of Lemma 4.2 that Af (G) is a normal subgroup. Hence,

xαx−1 ∈ Af (G) and the previous equation becomes f(xα)2 − f(σx−1)2 = 0. Now,

f(x−1) = f(x)2 for every x ∈ G follows from Lemma 4.1. Using this property as

well as the fact that f is σ-odd we obtain

[f(xα) + f(x)][f(xα)− f(x)] = 0 (4.10)

for all x ∈ G and α ∈ Af (G).
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Now let y = α in (4.1) to see

f(xα)f(xσα) = f(x)2 (4.11)

for all x ∈ G and α ∈ Af (G). Comparing (4.10) and (4.11) we see there are two

cases. For all x ∈ Gr Af (G) and α ∈ Af (G), we have either

f(xα) = −f(x) = f(xσα)

or

f(xα) = f(x) = f(xσα).

Hence, in both cases we have

f(xασα−1) = f(x)

for all x ∈ GrAf (G) and α ∈ Af (G). And clearly this also holds when x ∈ Af (G)

thus, the lemma is proven.

EXAMPLE 4.2. The function f : R→ R, f(x) = sin x, is a solution of the equation

f(x+ y)f(x− y) = f(x)2 − f(y)2.

Here σx = −x. We have Af (R) = {kπ | k ∈ Z} and

H = {α− σα |α ∈ Af (R)} = {2α |α ∈ Af (R)} = {2kπ | k ∈ Z}.

By Lemma 4.3 we have

sin(x+ 2kπ) = sin x

for all x ∈ R, k ∈ Z. This is precisely the periodicity of the function f(x) = sin x.

THEOREM 4.2. Let K be a field. Let f, g : G→ K be functions satisfying

g(xyz0)g(xσyz0) = f(x)2 − f(y)2 (4.12)

where z0 ∈ G is a nonzero constant. Then g(x) = φ(xz−1
0 ) where φ satisfies (4.1).

Furthermore, g is periodic with period z−1
0 hz0 and f 2 is periodic with period

h, where h ∈ H = {ασα−1|α ∈ Aφ(G)} is a period of φ.
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Proof. Letting y = e in (4.12) yields

g(xz0)
2 = f(x)2 − f(e)2. (4.13)

We can use (4.13) to rewrite (4.12) as

g(xyz0)g(xσyz0) = g(xz0)
2 − g(yz0)

2.

If we define φ(x) = g(xz0) then the above equation becomes

φ(xy)φ(xσy) = φ(x)2 − φ(y)2

and from Lemma 4.3 we have φ(xh) = φ(x) for h ∈ H = {ασα−1|α ∈ Aφ(G)}.

Using the definition of φ we see

φ(xh) = φ(x) =⇒ g(xhz0) = g(xz0) =⇒ g(xz−1
0 hz0) = g(x).

Thus, g has period z−1
0 hz0, where h is a period of (4.1).

Replacing x by xz−1
0 h in (4.13) we have

f(xz−1
0 h)2 = g(xz−1

0 hz0)
2 + f(e)2.

Because of the periodicity of g the previous equation is equal to

f(xz−1
0 h)2 = g(x)2 + f(e)2.

And finally, replacement of x by xz0 shows

f(xh)2 = g(xz0)
2 + f(e)2 = f(x)2.

Hence, the period of f 2 is the same as that of the sine functional equation with

involution.

EXAMPLE 4.3. The function φ : R → R, φ(x) = sin(x) is a solution of the

equation

φ(x+ y)φ(x− y) = φ(x)2 − φ(y)2
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and φ has period 2kπ where k ∈ Z. Here σx = −x.

Theorem 4.2 tells us that for

g(x+ y + z0)g(x− y + z0) = f(x)2 − f(y)2

a solution is g : R → R and g(x) = φ(x − z0) = sin(x − z0) for some constant

z0. And the period of g is z0 + 2kπ − z0 = 2kπ. Which is precisely the period of

sin(x− z0).

We also know that f(x)2 = g(x + z0)
2 + f(e)2 = sin(x)2 + f(e)2. Using this

we have

f(x+ 2kπ)2 = sin(x+ 2kπ)2 + f(e)2 = sin(x)2 + f(e)2 = f(x)2

and 2kπ is a period of f 2.

4.5 Periodicity of the Solution of Sine Inequality

A function f : G → R is central if f(xy) = f(yx) for all x, y ∈ G. In the

following theorem, we generalize a result of S. L. Segal [22]. The essential idea in

method of proof is due to Segal [22].

THEOREM 4.3. Let G be a group, σ : G→ G be an involution and f : G→ R be

a central function satisfying the functional inequality

f(xy) f(xσy) ≤ f(x)2 − f(y)2 (4.14)

for all x, y ∈ G. Then f satisfies the sine functional equation with involution (4.1).

Proof. Letting x = e = y in (4.14), we obtain f(e)2 ≤ 0 and hence we have

f(e) = 0. (4.15)

Letting y = x−1 in (4.14) we have

f(e) f(xσx−1) ≤ f(x)2 − f(x−1)2
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which, by (4.15), implies

f(x−1)2 ≤ f(x)2 (4.16)

for all x ∈ G. Replacing x by x−1 in (4.16), we obtain

f(x)2 ≤ f(x−1)2 (4.17)

for all x ∈ G. From (4.16) and (4.17) we have

f(x−1)2 ≤ f(x)2 ≤ f(x−1)2.

Hence

f(x)2 = f(x−1)2 (4.18)

for all x ∈ G.

Next, letting σy−1 in place of x in (4.14), we obtain

f(σy−1)f(e) ≤ f(σy−1)2 − f(y)2.

From (4.15), we have

f(y)2 ≤ f(σy−1)2.

Hence

f(y−1)2 ≤ f(σy)2 (4.19)

for all y ∈ G. Replacing y by σ(y), we have

f(σy−1)2 ≤ f(y)2

for all y ∈ G and therefore

f(σy)2 ≤ f(y−1)2 (4.20)

for all y ∈ G. From (4.19) and (4.20) we get

f(y−1)2 ≤ f(σy)2 ≤ f(y−1)2
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and therefore

f(σy)2 = f(y−1)2 (4.21)

for all y ∈ G. Using (4.18) in (4.21), we obtain

f(σy)2 = f(y)2 (4.22)

for all y ∈ G. The relation (4.22) implies that either

f(σy) = −f(y)

or

f(σy) = f(y)

for all y ∈ G. Suppose for a particular y0 ∈ G

f(σy0) = f(y0). (4.23)

Letting x = e and y = y0 in (4.14), we get

f(y0)f(σy0) ≤ −f(y0)
2. (4.24)

Using (4.23) in (4.24), we obtain

f(y0)
2 ≤ −f(y0)

2.

Hence 2f(y0)
2 ≤ 0. Therefore

f(y0) = 0

and by (4.23)

f(σy0) = 0.

Thus

f(σy) = −f(y) (4.25)
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for all y ∈ G. Using (4.14), (4.25) and the fact that f is central, we get

f(y)2 ≤ f(x)2 − f(xy)f(xσy)

= f(x)2 + f(xy)f(σ(xσy))

= f(x)2 + f(yx)f(yσx)

≤ f(x)2 + f(y)2 − f(x)2

= f(y)2

for all x, y ∈ G. Hence

f(y)2 ≤ f(x)2 − f(xy)f(xσ(y)) ≤ f(y)2

for all x, y ∈ G. Therefore

f(xy)f(xσy) = f(x)2 − f(y)2

for all x, y ∈ G and the proof of the theorem is now complete.

The following theorem follows from the above theorem and Lemma 4.3.

THEOREM 4.4. Let R be a field of real numbers. Let σ : G→ G be an involution.

Let the central function f : G → R satisfy (4.14) for all x, y ∈ G. Let H be a

subgroup of G defined by H = {ασα−1|α ∈ Af (G)}. Then

f(xh) = f(x)

for all x ∈ G and h ∈ H.

Proof. From Theorem 4.3 we know that f satisfies (4.1). Lemma 4.3 tells us that

f(xh) = f(x) for all x ∈ G and h ∈ H = {ασα−1|α ∈ Af (G)}.
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CHAPTER 5

SUMMARY AND FUTURE PLAN

5.1 Summary

In each chapter we have studied functional equations with involutions. Recall

that for a group G, an involution σ : G→ G is a function such that σ(xy) = σyσx

and σ(σx) = x for every x ∈ G. Notice that σx = x−1 is an example of an involution.

By replacing all x−1, or in abelian groups, −x, with σx we have generalized equations

studied in each chapter in a new way.

On the set of real numbers, the generalized Van Vleck’s equation has the

form

f(x− y + α) + g(x+ y + α) = 2f(x)f(y)

where f, g : R → R and α ∈ R is a constant. In Chapter 2 we generalize this

equation by examining it with an involution σ namely,

f(x+ σy + α) + g(x+ y + α) = 2f(x)f(y)

for f, g : G → C. So we have expanded from the real line to an abelian group G.

Our theorem results in four different solution sets for f and g and the solutions

of equation (1.2) found by Van Vleck, the solutions of equation (1.4) found by

Kannappan, and the solutions of equation (1.5) found by Sahoo can all be obtained

from Theorem 2.1.

In Chapter 3 we find the solutions f : G→ C to Van Vleck’s equation with
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involution

f(xσyz0)− f(xyz0) = 2f(x)f(y) (5.1)

on an arbitrary group G. This expands on the work from Chapter 2 a bit by no

longer requiring G to be abelian. However, we do put the restriction that the

constant z0 be in the center Z(G) of G. Using our results from Theorem 3.1 we are

able to prove a couple corollaries. Corollary 3.1 gives us the solution of (5.1) when

f is an abelian function. And Corollary 3.2 shows us the solution of (5.1) when

σx = x−1 for all x ∈ G.

We also consider Kannappan’s equation with involution

f(xσyz0) + f(xyz0) = 2f(x)f(y) (5.2)

for f : G → C. Kannappan previously found the solutions when G is the additive

group of reals and z0 is a fixed constant in G. We have moved to an arbitrary group

G, but again we have the restriction that z0 ∈ Z(G). Theorem 3.2 leads to two

corollaries. Corollary 3.3 gives the solutions of (5.2) when f is an abelian function.

And Corollary 3.4 finds the solutions to (5.2) when G is a nilpotent group with

elements of odd order. In this case, σx = x−1 for all x ∈ G.

We move from functional equations related to the cosine function to func-

tional equations related to the sine function for our work in Chapter 4. Specifically,

we study the sine functional equation with involution

f(xy)f(xσy) = f(x)2 − f(y)2 (5.3)

for f : G → C and all x, y ∈ G. Again, we are generalizing previous results by

replacing y−1 with an arbitrary involution σ. We are working towards solving this

equation on an arbitrary group G.

For now, we have proved in Lemma 4.1 a few properties of any solution to

(5.3). From the work of Paranami and Vasudev [14] and Corovei [6] we know the
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importance of the set

Af (G) =
{
u ∈ G | f(u) = 0

}
.

We are able to show that Af (G) is a normal subgroup of G in Lemma 4.2 and further

that [G,G] ⊂ Af (G) in Theorem 4.1. At this juncture, due to time constraint we are

unable to determine the solutions of (5.3) on arbitrary groups so we began looking

into the periodicity of such solutions. For Theorem 4.2 we consider a generalized

form of (5.3)

g(xyz0)g(xσyz0) = f(x)2 − f(y)2

for f, g : G → K, where K is a field and z0 ∈ G is a nonzero constant. We found

that the period of g is z−1
0 hz0 and the period of f 2 is h, where h is a period of the

solution of (5.3). Finally, we examine the sine inequality

f(xy)f(xσy) ≤ f(x)2 − f(x)2,

where f : G → R. We determine that any central function f , that is if f(xy) =

f(yx) for all x, y ∈ G, that satisfies the above sine inequality has the same period

as the solution of the sine functional equation with involution (5.3).

5.2 Future Plan

Ideally, we would like to solve the sine functional equation with involution

f(xy)f(xσy) = f(x)2 − f(y)2

on arbitrary groups. We have been working on this for a while but without any

success. So far our experience tells us that this is a very difficult problem to solve

on arbitrary groups. Thus we would like to determine the general solutions of

sine functional equation with involution on “near-abelian” groups such as nilpotent

groups, p-groups or any other nonabelian group with a large center.
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Another goal is to study the generalized Van Vleck’s equation with involution

f(xσyα) + g(xσyα) = 2f(x)f(y),

on arbitrary groups, where α ∈ G is a fixed element instead of an element of the

center Z(G). There are also a couple of new, but related, equations that we would

like to study. The first equation has been studied by Kannappan in [11]

f(x+ y + α)f(x− y + α) = f(x)2 − f(y)2, for all x, y ∈ R

and similarly,

f(x+ y + α)f(x− y + α) = f(x)2 + f(y)2 − 1, for all x, y ∈ R

which was studied by Etigson in [8]. These two equations can be generalized by

introducing an involution σ and also by finding the solutions on an arbitrary group.
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