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ABSTRACT 

An Investigation of Sliced Inverse Regression with Censored Data 

Daniel Riggs 

August,62010 

The complexity of high-dimensional data creates a number of concerns when 

trying to analyze it. This data often consists of a response or survival time and 

potentially thousands of predictors. These predictors can be highly correlated, and the 

sample size is often very small and right censored. Sliced inverse regression(SIR) is a 

method of reducing the dimension of the data, while preserving all the regression 

information. Sliced inverse regression with regularizations was developed to work when 

the number of predictors exceeds the sample size, and to deal with highly correlated 

predictors as well. 

In this study we investigated the performance of Sliced inverse regression with 

regularizations using three different approaches for handling right censored data. The 

methods of reweighting, mean imputation, and multiple imputation were analyzed. Based 

on the simulation scenarios, the mean imputation method performs the best in regards to 

fitting the data as well as prediction. The method of reweighting appears inadequate 

when combined with SIR. 
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A. Censored Survival Data 

CHAPTER 1 

INTRODUCTION 

The need to analyze survival data arises in a number of fields, such as biology, 

medicine, and epidemiology. This type of analysis is focused on data that are generated 

from the time to a specific event. It is frequently used in cancer studies to measure the 

time to recurrence or death. Survival data often contains censored observations which 

occur when the time to an event is only known to have happened during a certain period 

of time. Data can be censored through various schemes, such as left, interval, and right 

censoring. Left censoring involves a survival time only known to have occurred before a 

specific time point. For example, there is a specific level of sensitivity for air pollution 

monitoring sites. If the level of air pollution falls below this threshold, then the actual 

value is known only to be less than the sensitivity level. Interval censoring is associated 

with a survival time occurring at a point between two known time periods. If, for 

example, you want to analyze the number of days until the recurrence of cancer in a 

subject that only has monthly checkups, then you may only determine the recurrence as 

occurring somewhere between the last two monthly checkups. Right censoring occurs 

when an event is only known to have happened after a certain time point. In human 

studies, it is common for subjects to drop out for numerous reasons, whether they move 

away from the study, or simply lose interest. These subjects would be considered right 
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censored. Any combination ofthese three censoring schemes can occur in a study. It is 

not uncommon for a study involving left censoring to also contain right censoring. In 

such a case the lifetimes are considered doubly censored. Right censored survival data 

will be the focus of this thesis. 

Right censoring includes a number of subcategories. Type I right censoring 

occurs when an event is observed only if it happens before a pre-specified time point. 

Any individuals that do not have the event observed before this pre-specified time point 

are considered censored. This typically occurs in animal studies or clinical research due 

to time and cost concerns of letting an experiment continue indefinitely until all the 

subjects have failed. In Type II censoring, a study ends when a pre-set number or 

percentage of subjects have failed. Anything that does not fail is considered right 

censored. This design is typically used for testing equipment failure. Finally, random 

censoring, is an example of competing risks censoring. This occurs with an interest in 

the time to a certain event, but some individuals experience a competing event, leading 

them to be dropped from the study. Thus, the event of interest is unobservable, and the 

subject is considered to be random right censored. As with the more general categories 

of censoring, it is common for a study to contain more than one type of right censoring. 

In a Type I study design patients could also leave the study, causing both Type I and 

random censoring (1). 

The time to an event of interest is typically assumed to be independent of the 

censoring time. A right-censoring mechanism is independent if the failure rates of an 

individual at time t is the same as it would have been without censoring (2). When this 
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independence assumption fails, the basic methods of survival analysis are inapplicable 

and special techniques must therefore be used (2). 

The intent of survival analysis is to make valid inferences on survival times. 

While right censored data complicates this goal, several methods have been developed to 

modify this problem. The focus of this thesis will be on the methods proposed by Datta, 

et al. (3) ofreweighting, mean imputation and multiple imputation, all of which keep the 

mean response the same. These were developed, in part, because most methods for linear 

regression require a full data model. Simply deleting censored data could lead to a loss 

of power because of the reduced sample size and could also introduce bias if the 

remaining sample is not representative of the entire population. Imputation methods 

impute an actual time into the censored time, while reweighting changes the unobserved 

times to zero and reweighs the actual times. Once done, normal linear regression 

methods can be performed on the modified data set. 

B. Right Censored Data in Microarray 

There is an increasing demand for methods of analyzing high-dimensional data. 

This is especially true in the fields of biomedical and genomic research. With DNA 

micro array becoming increasingly popular, sophisticated statistical methods are needed to 

analyze the data yielded from this technology. DNA Microarray consists of an arrayed 

series of thousands of DNA oligonucleotides or DNA fragments called features (4). This 

is a short section of either a gene or DNA element, which is then used as a probe to 

hybridize DNA or RNA from a sample. The hybridization can be quantified 

fluorescently using fluoro-based samples to determine the relative abundance of nucleic 

acid sequences in the sample (4). Research has shown that gene expression profiles from 
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microarray can be used to predict various clinical phenotypes, such as tumor class, drug 

response and survival time. For example, gene expression profiling could be used to 

identify genes that change expression based on a given treatment. 

Gene expression is a process in which information from a gene is used in the 

synthesis of a functional product, protein or RNA. It is used in all forms of life. Several 

steps of gene expression can be regulated, including the transcription, RNA splicing, 

translation, and post-translational modification of a protein. The regulation of gene 

expression refers to the amount of functional product in a gene. It also pertains to the 

appearance of this functional product. Control of this expression allows a cell to produce 

the gene products it needs, which in tum allows the cell to adapt to different situations 

such as environment, external signals and cell death. Gene regulation is also the basis for 

both cellular differentiation and morphogenesis, and enables the cell to control its 

structure and function. Gene expression is the most fundamental level at which a 

genotype gives rise to a phenotype. Thus, it is both natural and beneficial to use gene 

expression as a predictor for survival. 

In this thesis, survival time will be considered as the response variable. In one 

study, Van De Vijver, et al. found gene expression data to be a more powerful predictor 

of breast cancer survival than existing clinical methods (5). Shedden, et al. used gene 

expression to predict survival in patients with lung adenocarcinoma (6). Most recently, 

Steidl, et al. found that an increased number of tumor-associated macrophages was 

strongly associated with a shortened survival in patients with classic Hodgkin's 

lymphoma (7). There are many benefits of predicting survival time based on gene 

expression data. With a better indication of predicted survival, these findings can lead to 
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better care and treatment of patients. This also results in a better understanding of a 

specific disease and how it causes death, thus providing ideas for future research and 

understanding, as well as life saving cures. 

However, the complexity of this data creates a number of concerns when trying to 

model it. Typically, the data consists of a response (survival time) and potentially 

thousands of predictors (genes). Often these genes can be highly correlated, and the 

typical sample size can be very small compared to the number of predictors. Further, 

when using microarray to predict survival time, it is possible that much of the data will 

be right censored. It is not uncommon for Type I censoring to occur, meaning there is a 

preset follow-up time in which an individual's lifetimes may be unknown. 

There are several methods in survival analysis that can manage this type of 

censoring, such as the accelerated failure time model and the Cox proportional hazard 

model. However, to use these methods, some kind of functional form must be specified, 

which can be increasingly complicated as the number of predictors increases. Standard 

linear regression requires the sample size to be larger than the number of predictors and is 

thus inapplicable in this situation. It is often beneficial to do some exploratory data 

analysis before any modeling is done. Therefore, one can consider dimension reduction 

prior to model building. Sufficient dimension reduction, developed by Cook, is a way of 

reducing the predictor dimension while still preserving all regression information ofthe 

data set without specifying a parametric model. Sliced inverse regression (8) is one of 

the most commonly used methods in this area; however, SIR cannot work when the 

number of predictors is greater than the sample size. And, when a high collinearity 

among predictors is present, which is often the case in genomic data, SIR also suffers. 
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To combat this, sliced inverse regression with regularizations was developed (9). Ridge 

regression with the L2 regularization was introduced to allow SIR to work with highly 

correlated data, as well as sample sizes less than the number of predictors. Using the 

least absolute shrinkage and selection operator (Lasso) idea, the LJ regularization was 

further introduced to achieve predictor selection. 

C. Purpose of Study 

The most common method of handling missing data is complete case analysis, in 

which all subjects with missing data are removed from the analysis. Almost all Sufficient 

Dimension Reduction methods, including normal SIR, employ this method when there is 

missingness or censoring to the data. While few methods have been developed that apply 

to right censored survival data, Li, et. al. used a modified version of SIR to deal with 

censoring (10). More recently Wen and Cook developed model-free dimension reduction 

for bivariate regression that can be applied to censored data (11). An alternative to these 

bivariate dimension reduction methods is the use of imputation or reweighting methods to 

handle the censoring. Li and Lu found that reweighting using sliced inverse regression 

gave better results than complete case analysis (12). Yet, it is currently unclear how 

reweighting and imputation methods perform with SIR with regularizations for right 

censored data. The main focus of this study is to compare three different proposals for 

managing right censored survival data, when used with sliced inverse regression with 

regularizations. The three methods, reweighting, mean imputation and multiple 

imputation, will be compared to bivariate SIR method for handling censored data as well 

as uncensored data to test their effectiveness. Using the accelerated failure time model, 

the overall fit of the data, as well as the accuracy of prediction, will be examined. 
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Simulation studies will be performed using a randomly-generated training data set to 

measure the overall fit of the model. Finally, a new testing data set will be generated to 

measure the prediction accuracy of each method. 

7 



CHAPTER II 

METHODS FOR RIGHT CENSORED DATA 

A. Background 

For right censored survival data, let Ti = observed failure time and Ci = fixed right 

censored time. Then, Xi = min(Ti , Ci), where i= 1 ,2, ... ,N is the sample size. Thus, the 

time, Xi = Ti if the failure is observed, and Xi = Cj if it is censored. Let ~h = 1 if Xi 

corresponds to a failure and Oi = 0 if Xi is censored. For the purpose of this study, Ti and 

Ci are independent. Thus, the likelihood function can be constructed as follows: 

L = IT P[Xi, Oi] = IT [f(xi)]/ii [S(Xi)]J-/ii , 

where f(xi) = P(T=xi), and S(Xi) = P(X>Xi). 

To estimate Sex) the Kaplan-Meier or Product-Limit estimator is used. Let 

XJ<X2< ... <Xn be distinct ordered failure times. The Kaplan-Meier Survival estimate is 

defined as follows: 

S(Xi)= IT [1 - (d/Yi)] for ilxi<x, 

where di= number of failures at time Xi, and Yi= number at risk at time Xi. 

The variance is estimated by Greenwood's formula: 

V[S(x)]= S(x)2Ld/(Yi(Yi-di)). 

The mean time to event, which will be needed for the imputation methods, is estimated 

by 11= f1n Sex) dx. 
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However, this estimate is only appropriate when the largest observation corresponds to a 

failure as the Survival estimate is not defined beyond the largest failure. For the 

imputation methods, if the largest time is censored it is changed to a failure time. 

B. Accelerated Failure-Time Model 

Parametric models can provide more accurate estimates and prediction than their 

semi-parametric counterparts because they rely on fewer parameters. However, if the 

model is not chosen correctly it can lead to consistently wrong predictions. The 

accelerated failure-time model is a fully parametric linear model representation of the 

logarithm ofthe true survival time. It is a useful alternative to the more commonly used 

semi-parametric Cox proportional hazard model. The Cox model assumes a 

multiplicative effect on the hazard function, while the AFT model assumes a 

multiplicative effect on survival times. 

The survival time for the ith individual is 

Y i = In(Xi) = ~ + ptzj + crWi for i=l, ... ,n. 

Where Xi is the survival time, Zj is the covariate vector corresponding to the ith 

individual, p is a vector of regression coefficients, ~ is the intercept, cr is a scale 

parameter, and Wi is the error distribution. In terms of the survival function this equation 

can be written as 

S(xIZj)= So[exp(9tZDx] for all x 

where 9= -po 

The likelihood function for the AFT model for right censored data is 

L = IT [(lIcr)fo(Yi - ~ - ptzj)/ cr )]Si [So(Yi _ ~ _ ptzD/ cr )] l-Si 
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The estimates for Jl, p and cr are found by maximizing the likelihood function of the AFT 

model (13). A number of distributions are commonly used for W in the AFT model, the 

most notable being the Weibull, log logistic, exponential, and log normal distributions. 

In this study, the focus will be on the Weibull and the log normal distributions. 

The survival function for the Weibull distribution is given by 

Sx(x) = exp( _AXU) 

where a>O is a shape parameter, and "->0 is a scale parameter. 

Incorporating covariates, the hazard rate for the Wei bull is: 

h(xIZ) = (AaxU-')exp(ptZ) . 

Letting Y=lnX, the survival function for the log transform is: 

Sy(y)=exp(-Aexp(ay)) exp(ptZ). 

By letting A= exp(-Jl/cr) and cr = lIa, then Y has the log linear model form of 

Yj = In(Xj) = Jl + ptZi + crWj for i=1, ... ,n 

where W is the extreme value distribution. 

The survival function for the log normal distribution is given by 

S(x)= 1- <D{[log(x)- (Jl+ ptZ)]/cr}, 

where <D{} is the cumulative distribution function of the standard normal distribution. 

All of these parametric methods can be implemented in R software using the survreg 

function from the survival package. 

C. Reweighting 

Reweighting, more commonly known as "inverse probability of censoring 

weighted" estimation (14), is a commonly used method for handling right censored data 

in the accelerated failure-time models, as well as the Cox proportional hazards model. 
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This scheme replaces the censored observations with 0, then reweighs the observed Yj by 

the reciprocal of the probability that it is an actual failure time. Thus, we want to replace 

the observed Yi, by Yj , where 

Yj = ojh(Tj )/S(Tj-) 

and h is the log transform in the AFT model, 8 is the censoring indicator, S(Tj) is the 

Kaplan-Meier estimate of the survival times, and - denotes a left limit. It has been shown 

that the mean response of Yj is approximately equal to that of Yj (15). Thus, the new 

response, Yj, is used in the AFT model. 

D. Mean Imputation 

Under mean imputation the observed Yj are kept the same but the censored times 

are replaced by Y*, their expected value given that the failure time Tj is larger than the 

censored time Cj. The survival can be estimated using the Kaplan-Meier curve as: 

Yj* = {S(Cj)} -IL log(tj)~S(tj) for j=1, ... ,n 

where ~S(tj) is the change in S at time tj and Yj= log(tj). To use this scheme, Efron's tail 

correction is used, which simply modifies the largest event time to a true failure time. 

Thus at time tn, 8n= 1. Therefore under this scheme, Yj= Yj if 8= 1, and Yj= Yj* if 8=0. 

Then the accelerated failure time model can be fit with the new response variables. 

E. Mulitple Imputation 

Multiple imputation is a technique in which the censored observations are 

replaced by B different simulated versions from the conditional distribution ofT, given 

that T>C. The mass points are estimated by 

~S(tj) / S(Cj), where tj>Cj. 

Let k=1, ... ,B, then the AFT model fit based on the kth set of imputed values is given by 
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Yk=Xf3k. 

The final answers are given by 

Y=B-1I Yk and 

~=B-1I~k. 

These averages approximate the conditional expectation given the observed data (3). 

Often times B is taken to be between 3 and 10. Ideally B should be taken as large as 

possible. In these simulations B =50. 
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CHAPTER III 

SIR MODELS 

A. Sufficient Dimension Reduction 

When the number of predictors, p, is large statistical modeling often suffers from 

the curse of dimensionality. It is often beneficial to consider dimension reduction prior to 

model building. The overall goal of regression analysis is to understand how the 

conditional distribution of Y given X depends on the values assumed by X. Graphical 

displays of the data are often a good exploratory tool for the relationship between the 

response and predictors in regression studies. When the dimension d= 1, a simple scatter 

plot of Y versus X provides information about the relationship of the data. When d=2 a 

rotating three-dimensional plot can provide information. Useful plots of three predictors 

can be created by replacing Y with a discrete Y, constructed by partitioning the range, 

then assigning predictors to the axis of a three-dimensional plot and marking the points 

that correspond to the values ofY (16). However, when the dimension d>3, it is 

generally not possible to construct a comprehensive display of the data. Thus, in practice 

it is useful to reduce the dimensions to d=l, 2, or 3. Sufficient dimension reduction (17) 

has been developed to reduce the predictor dimension without loss of information on the 

response Y, given the predictors X with X E Iffi.p. The ultimate goal is to find the smallest 

number oflinear combinations of X, ~lTX, ... ,~/X, such that 
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where JL indicates statistical independence and d :s p. This implies that a p-dimensional 

predictor can be replaced by ad-dimensional pTX because given pTX, X contains no 

additional information ofY. These linear combinations (P1TX, ... ,p/X) are called 

sufficient predictors. The minimum number d of sufficient predictors is called the 

structural dimension of the regression. If regression has a structural dimension of d=O 

then Y is independent of X. If d= 1, then all the information of Y given X can be 

contained in a single linear combination, PIT X. The sufficient predictors are not unique, 

because we can mUltiply p by a nonzero constant and still have independence with Y. 

Thus, a linear subspace Span(p) is needed which is spanned by the columns of p. This 

span is called the dimension reduction subspace (17). It has been shown that the 

intersection of all the dimension reductions subspaces is itself a dimension reduction 

subspace under minor conditions (18). This intersection is a unique and parsimonious 

population parameter, which captures all regression of Y given X. It is called the central 

subspace, denoted by SYIX, and is the main object of interest in dimension reduction. 

There are several methods designed to estimate sufficient predictors, the most 

notable being sliced inverse regression (SIR), sliced average variance estimation (SA VE) 

(19) and principal Hessian directions (PHD) (20). A modification of SIR will be the 

basis for this study. 

B. Sliced Inverse Regression 

The idea behind Sliced inverse regression is to replace the response Y with a 

discrete version Y, constructed by partitioning the range of Y into h slices, where h is a 

tuning parameter chosen to be h>d. SIR can find, at most, h-l sufficient predictors. Thus 
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h is generally chosen to be somewhat larger than d+ 1. Then regression is based on 

Y given X. Thus if B T X is a sufficient predictor of Y given X, then it is also a sufficient 

predictor for the regression of Y on X. Sliced inverse regression operates in the 

following way for data Vi, Xi, where i = 1, ... ,n: 

1. Standardize X to get x =!-1I2(Xi_X), where ~ is the sample covariance and x is the 

sample mean of x. 

2. Divide the range ofy into H slices, Ir, ... ,Ih. Let Ph = (l/n)Lt::l Oh(Yi), the proportion of 

the Yi that falls into slice h, where Dh(Yi) = 1 if Yi falls into the hth slice Ih and Dh(Yi)=O if it 

does not. 

3. Within each slice the sample mean of the Xi'S is computed, denoted by mh, where h= 

1, ... ,H, so that mh =(l/nph)LYEIXi. 

4. Perform a weighted principal component analysis for the data mh (h= 1 , ... ,H) in the 

following way: Form the weighted covariance matrix V = L~=l Ph mh mh' , then find the 

eigenvalues and the eigenvectors for V. 

5. Let the K largest eigenvectors be ilk where k= 1, ... ,K. Then, fJk= il~~;/2 for 

k=I, ... ,K. 

C. SIR for survival data 

The theory behind SIR does not require that Y be univariate, it holds equally for 

multivariate responses. One useful application for a bivariate response is in the area of 

survival analysis with censored data. Let T denote the survival time and C denote the 

censoring time, and let D =0,1 be a binary indicator variable for the event C>T. Then, 

Yi=Ti Di + Ci(l-Di), i =1, ... ,n. Finally, let X be a p x 1 vector of predictors. Ideally we 

would like to estimate the central subspace ofT given X, but T is not fully observable. 
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Thus we estimate the central subspace of the observable (Y,O) on X. This is useful 

because of the condition: 

This condition requires the sufficient predictors B T X, for the regression of T on X also be 

sufficient predictors for the bivariate regression of (T,C) on X. This implies that 

censoring can depend on X but only by the sufficient predictors for the regression of T on 

X. The previous condition is equivalent to the pair of conditions 

The second condition states that C must be independent of X, given the sufficient 

predictors and the true survival time. From these conditions if follows that 

because (Y,O) is a function of (T,C). This implies that 

S(Y,o)IX ~ STIX 

This result demonstrates that the sufficient predictors for the observable regression 

(Y,o)IX are also sufficient predictors for the regression TIX. The usual independence 

condition is 

TJiqX. If this condition is not met, then more information about the censoring 

mechanism is needed for further analysis. 

Bivariate SIR requires slicing on (Y,O). This is done by partioning Y into 110 

slices for the subsample when 0=0. Y must then be partitioned into hi slices for the 
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subsample when 8=1, for a total ofH = ho+hJ slices (16). Then the nonnal SIR algorithm 

proceeds as described previously. 

D. SIR with regularizations 

Nonnal SIR estimation requires the inversion ofthe predictor covariance matrix 

~x. In applications such as micro array studies, the number of predictors often exceeds the 

sample size. In these cases, the estimate of ~x is singular and noninvertible and thus 

nonnal SIR does not apply. In addition, the predictors may be highly correlated. This 

collinearity can produce a highly variable sample estimate when using SIR. Methods 

such as partial inverse regression (21) have been developed to address these problems; 

however, these methods do not focus on individual predictor selection. Sliced inverse 

regression with regularizations was developed for simultaneous dimension reduction 

when n<p as well as predictor selection. Using the least squares fonnulation of SIR, this 

regularized SIR method combines both LJ and L2 regularizations. The L2 regularization 

enables SIR to work with n<p as well as highly correlated predictors. The LJ 

regularization achieves reduction estimation as well as predictor selection. Too construct 

the least squares fonnulation of SIR suppose there are n independent and identically 

distributed realizations (X,Y). The sample version ofZ is Z= fx-1/2(X_X), where X is the 

grand average of X, and fx is the sample covariance matrix. Suppose the range of the 

response Y is partitioned into h nonoverlapping slices, with ny observations in the yth 

slice, y=l, ... ,h. Let Zy denote the average of Z in the yth slice and!y = nyln. It has been 

shown that the nonnal SIR estimate can be obtained by minimizing 

over B E IR{pxd and C= (C], ... ,Ch) E IR{dxh (22). 
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Then, the solution B forms an estimation of the basis of SYlx. SIR does not 

impose any model assumption on the conditional distribution of YIX, but instead requires 

a condition on the marginal distribution of X. This condition is called the linearity 

constants CO, ... ,Cd, where Tj=(TjI, ... ,Tjd) forms a basis of SYIX (9). When X is elliptically 

symmetrically distributed, the linearity condition holds (23). Predictor transformation is 

commonly performed if the condition is not met (18). 

The standardized predictor Z involves the inverse of ~x , and thus is not applicable 

when the sample covariance matrix 1:x is singular. Hence, ridge regression with L2 

regularization is used to address this issue through the ordinary least squares setup. First, 

the least squares formulation is derived in the original X scale. Thus G(B,C) becomes 

where Xy denotes the average of X in the yth slice, and A = 1:x-1/2 B . 

Then A is the value that minimizes G(A,C), and Span(A) estimates the central subspace 

SYIX, An equivalent form of G(A,C), which drops the 1:x-1 term is 

The equivalence requires the existence of 1:x-l ; however, by dropping the term it can be 

easily extended to incorporate the regularization parameter. Based on this, we get the 

following ridge SIR estimator: 

_h A - - ~ 2 T 
G.(A,C) - LY=lfy II(Xy - X) - LxACy II + 't vec(A) vec(A) 

where 't is a nonnegative constant, and vecO is a matrix operator that stacks all columns 

of the matrix into a single vector (9). Let (A, C)= argminA,cG,(A,C). Then Span(A) is 

called the ridge SIR estimator of the central subspace SYlx, When 1:x-1 exists and 't =0, 
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then GrCA,C) reduces to the usual SIR estimator. When fx is not invertible, then a 

positive 't is incorporated to address the issue of singularity. 

An alternating least squares algorithm as proposed by Li, is used to minimize 

G,(A,C) for a fixed 'to For a given A, C is obtained by h usual least squares: 

for y = 1, ... ,h. 

Rewriting G,(A,C) in the least-squares regression form, 

. - - - - - -112 112 where ® IS the Kronecker product, Y = vec(XI - X, ... ,Xh - X), W = Df ®Ip, and Df 

= diag(!I, ... ,fh). Then given C, the solution of A is found by 

A T ~ 2 _I ~ -
vec(A) = (CDf C ® Lx + 't Ipd) (CDf ® Lx)Y. 

The solution to GrCA,C) is found by cycling between minimizing A and C until 

convergence. 

The ridge parameter 't, for GrCA,C) is selected by minimizing a generalized 

crossvalidation criterion (GCV) which follows Golub's method (24). 

assumed to be known. 

The ridge SIR estimates are linear combinations of all of the predictors. To 

achieve variable selection, the LI regularization is introduced from the least absolute 

shrinkage and selection operator idea (25). Let (A, C) = argminA,c GrCA,C) denote the 
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ridge SIR estimator. The sparse ridge SIR estimator of the central subspace SYIX is then 

defined as Span(diag(a)A), where the shrinkage vector a= (ai, ... , ap)T E IRP is obtained 

by minimizing 

over u, subject to Lj=llajl ~ A for ~ 0 (9). Optimization of G).{u) is done using the 

standard lasso algorithm. Noting that diag(u)ACy = diag(ACy)u, 

Then write: 

- _ - - - - ph 
Y -vec(X I - X, ... , Xh - X)E IR , 

where the shrinkage vector u is the Lasso estimator for the regression of YIX with ph 

observations. As the Lasso parameter A decreases, some coefficients Uj are shrunk to 

zero, indicating that the corresponding predictors are not needed given the other 

predictors (9). When ~ p, then aj = 1, for j=l, ... ,p and G).{u) is equal to the ridge SIR 

estimator. 

The family of information criteria is used for the selection of A, including Akaike 

information criterion (AIC) (26), Bayesian information criterion (BIC) (27) and residual 

information criterion (RIC) (28): 

AIC = ph log(G,,(a)/ph) + 2p", 

BIC = ph log(G,,(a)/ph) + log(Ph)p", 

RIC = (ph - pIc) log {G,,(a)/(ph - PIc)} + p,,(log(ph) - 1) + 4/(Ph - PIc - 2) , 

where PIc denotes the number of parameters in the Lasso estimator, which is approximated 

by the number on nonzero components in the estimated a (29). 
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In the estimation procedure of the regularized SIR, d=dim(SYIX) is assumed to be 

known. In practice, d needs to be estimated from the real data. A criterion proposed by 

Zhu, et al. will be used which estimates d by the number of nonzero eigenvalues of the 

matrix Cov(E(XIY)), which is equivalent to the number of eigenvalues of the matrix n = 

Cov(E(XIY)) + Ip that are greater than one (30). The suggested estimator of dis 

for mE{O,I, ... , p-l}, 

where 6), ... , 6p denotes the eigenvalues of the sample estimate fl ofO, K denotes the 

number of 6j's greater than one, and Cn denotes a penalty constant. For the current 

simulations, a penalty constant of Cn = log(n)h!n was used. 
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CHAPTER IV 

SIMULATION STUDIES 

A. Simulation Scenarios 

A variety of settings were used to test the performance of the competing proposals 

for dealing with right censored data in the SIR with regularizations model. In all cases 

the accelerated failure time model was used, with the transformation function h as the 

natural logarithm. In all cases N=50 simulations were averaged for the final results. The 

various design parameters used are as follows: 

(i) Covariate dimension: The covariate dimension p was taken to be 100. 

(ii) Sample sizes:n=25 and 50 were considered as sample sizes. 

(iii)Parameter values: Three different choices for the ~ coefficients were considered in 

order to cover a range of situations. The first case, ~j= 1, corresponds to the situation in 

which all covariates have equal contribution to the regression function. The second case, 

~j= lIj, for l:Sj :S p, corresponds to covariates that are decaying, and only a portion of 

these covariates contribute to the regression function. In the last case, ~j = I(~j) for l:Sj :S 

p/2, and ~j= 0 for p/2 :S j :S p, the first half of the covariates have an equal contribution to 

the regression, while the last half have zero contribution. 
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(iv) Design matrix: The rows X were generated from a multivariate normal distribution 

with mean zero and variance of one. 

(v) Errors: Two types of error distributions were considered in the accelerated failure 

time model. The first choice the normal distribution, implies log-normally distributed 

failure times. Second we took the errors to be logarithms of the Wei bull distribution, 

which leads to Wei bull distributed failure times. 

(vi) Censoring: The averaging censoring rates Co were chosen to be 0% for no censoring, 

25% for low censoring and 50% for medium censoring. 

B. Measures of Error 

Measures of fit: The following measure of fit was computed to measure the fit in 

the training sample: 

This measure compares the fitted values with the true values corresponding to the 

uncensored units. For each design this measure was averaged over 50 independently 

generated training data sets. 

Measures of prediction: For each training data set, a test data set Ynew = logTnew 

of the same size and design parameters was generated. The SIR with regularizations 

model was fitted using the training data set. The fitted model was used with the X-matrix 

of the test data to get predicted values Y new. The following measure was computed to 

determine the accuracy of prediction: 

_ 2 ,\,n ~ 2 
MSEp - l/(nR<» L.oi=l ( Y new,i - Y new,i) . 
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For each design this measure was averaged over 50 independent replications of the entire 

process (3). 

C. Simulation Results and Discussion 

1. Tables (1-6) 

To perform the simulations, a ridge parameter, 't, and a lasso parameter, A, must 

be found to optimize the SIR models. As described previously a generalized 

crossvalidation criterion (GCV) is minimized to find the optimal ridge parameter. To 

select this parameter, the family of information criterion, AIC, BIC, and RIC are 

minimized. From Table 1, it is shown that the 25% censoring rate has smaller GCV 

values than 50% censoring rate in the corresponding methods. An increase in the sample 

size from 25 to 50 also shows a decrease in the GCV values. On average, the 

reweighting method had the smallest GCV, followed by the censored bivariate method. 

The following tables contain the minimized values used to select the ridge parameters. 
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TABLE I 

Criterion used to select ridge and lasso parameters (Pj= I, error = lognormal) 

Model Method GCV AIC BIC RIC 
Censoring=O% Univariate 0.01901959 -1590.081 -1499.075 -1406.585 

n=25 
Bivariate 0.010592 -1834.45 -1702.58 -1546.85 

Reweighting 0.005649 -1848.03 -1775.85 -1591.87 
Censoring=25% Mean 0.013783 -1297.09 -1266.53 -1231.63 

n=25 Imputation 
Multiple 0.010606 -1199.22 -1167.83 -1129.1 

Imputation 

Bivariate 0.010629 -1833.34 -1701.42 -1545.87 
Reweighting 0.007992 -1681.3 -1607.14 -1449.14 

Censoring=50% Mean 0.01498 -1320.42 -1289.55 -1255.32 
n=25 Imputation 

Multiple 0.012068 -1238.76 -1208.56 -1172.26 
Imputation 

Censoring=O% Univariate 0.01169017 -1801.58 -1639.606 -1450.699 
n=50 

Bivariate 0.007291 -2040.41 -1842.44 -1580.31 
Reweightin~ 0.003409 -1511.56 -1404.13 -1190.66 

Censoring=25% Mean 0.010142 -1603.39 -1552.36 -1490.41 
n=50 Imputation 

Multiple 0.00731 -1391.41 -1341.23 -1272.88 
Imputation 
Bivariate 0.007319 -2038.19 -1840.2 -1578.34 

Reweighting 0.006366 -1498.92 -1387.17 -1203.88 
Censoring=50% Mean 0.010692 -1650.86 -1599.85 -1539.38 

n=50 Imputation 
Multiple 0.008971 -1483.31 -1433.23 -1369.45 

Imputation 
GCV: Generalized Crossvalidation Criterion; AIC:Akaike Information Criterion; BIC:Bayesian 

Information Criterion; RIC: Residual Information Criterion 
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TABLE 2 

Criterion used to select ridge and lasso parameters (~j=lIj, error = lognormal) 

Model Method GCV AIC BIC RIC 
Censoring=O% Univariate 0.019742 -1577.98 -1493.36 -1408.06 

n=25 
Bivariate 0.00940306 -1867.81 -1735.566 -1570.176 

Reweighting 0.001905 -1795.47 -1724.42 -1539.6 
Censoring=25% Mean 0.01407 -1300.51 -1268.48 -1232.25 

n=25 Imputation 
Multiple 0.006865 -1133.88 -1104.1 -1064.26 

Imputation 

Bivariate 0.01035 -1843.25 -1710.14 -1552.13 
Reweighting 0.011353 -1475.89 -1399.06 -1278.8 

Censoring=50% Mean 0.019598 -1491.03 -1459.5 -1428.35 
n=25 Imputation 

Multiple 0.015416 -1330.01 -1298.61 -1264.61 
Imputation 

Censoring=O% Univariate 0.011451 -1811.28 -1651.86 -1465.06 
n=50 

Bivariate 0.007113 -2050.45 -1845.17 -1571.76 
Reweighting 0.002432 -1573.15 -1459.1 -1215.72 

Censoring=25% Mean 0.010566 -1682.65 -1627.66 -1562.16 
n=50 Imputation 

Multiple 0.005085 -1303.83 -1250.7 -1172.39 
Imputation 

Bivariate 0.007207 -2045.58 -1839.97 -1566.7 
Reweighting 0.008765 -1512.99 -1390.69 -1222.55 

Censoring=50% Mean 0.011722 -1787.59 -1733.4 -1671.91 
n=50 Imputation 

Multiple 0.011659 -1792.48 -1738.6 -1677.34 
Imputation 

GCV: Generalized CrossvalidatlOn Cntenon; AIC:Akalke InformatlOn Cntenon; BIC:Bayeslan 
Information Criterion; RIC: Residual Information Criterion 
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TABLE 3 

Criterion used to select ridge and lasso parameters (~j = E(~j) for l:Sj :s p/2, and ~j= 0 for p/2 :Sj :s p, 

error = lognormal) 

Model Method GCV AIC BIC RIC 
Censoring=O% Univariate 0.019991 -1566.52 -1470.23 -1373.57 

n=25 
Bivariate 0.007913 -1915.261 -1785.024 -1606.631 

Reweighting 0.001798 -1798.55 -1727.45 -1537.03 
Censoring=25% Mean 0.012317 -1255.28 -1223.98 -1187.54 

n=25 Imputation 

Multiple 0.0132 -1279.3 -1247.75 -1210.99 
Imputation 
Bivariate 0.010253 -1845.79 -1711.51 -1552.02 

Reweighting 0.010998 -1457.47 -1379.38 -1257.4 
Censoring=50% Mean 0.019775 -1507.62 -1475.87 -1444.69 

n=25 Imputation 
Multiple 0.017103 -1407.81 -1375.66 -1341.86 

Imputation 
Censoring=O% Univariate 0.011434 -1810.34 -1649.01 -1460.01 

n=50 
Bivariate 0.006864 -2060.12 -1856.55 -1584.26 

Reweighting 0.003319 -1544.67 -1427.66 -1186.14 
Censoring=25% Mean 0.000854 -1522.66 -1468.83 -1399.42 

n=50 Imputation 
Multiple 0.006383 -1359.13 -1306.19 -1230.31 

Imputation 
Bivariate 0.006936 -2059.26 -1854.81 -1581.36 

Reweighting 0.008566 -1510.25 -1386.81 -1218.99 
Censoring=50% Mean 0.011182 -1807.23 -1752.47 -1689.74 

n=50 Imputation 
Multiple 0.011068 -1733.86 -1680.24 -1618.04 

Imputation 
GCV: Generahzed CrossvahdatlOn CrIterIon; AIC:AkaIke InformatIOn CrIterIon; BIC:Bayeslan 
Information Criterion; RIC: Residual Information Criterion 
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TABLE 4 

Criterion used to select ridge and lasso parameters (Pj=l, error = Weibull) 

Model Method GCV AIC BIC RIC 
Censoring=O% Univariate 0.020705 -1557.79 -1475.56 -1393.72 

n=25 
Bivariate 0.010466 -1838.51 -1707.37 -1552.33 

Reweighting 0.007282 -1530.633 -1458.763 -1318.266 
Censoring=25% Mean 0.013266 -1260.92 -1230.37 -1194.9 

n=25 Imputation 
Multiple 0.005213 -1115.07 -1083.09 -1037.55 

Imputation 

Bivariate 0.010452 -1838.19 -1706.79 -1551.44 
Reweighting 0.00955341 -1454.442 -1379.755 -1254.412 

Censoring=50% Mean 0.014694 -1302.48 -1272.18 -1238.22 
n=25 Imputation 

Multiple 0.012445 -1255.16 -1225.61 -1191.55 
Imputation 

Censoring=O% Univariate 0.011893 -1806.274 -1676.552 -1526.02 
n=50 

Bivariate 0.007322 -2039.26 -1840.01 -1576.29 
Reweighting 0.002869 -1520.408 -1413.192 -1191.202 

Censoring=25% Mean 0.010196 -1578.09 -1527.07 -1464.85 
n=50 Imputation 

Multiple 0.008487 -1408.83 -1357.32 -1290.7 
Imputation 

Bivariate 0.007218 -2043.93 -1845.54 -1582.54 
Reweighting 0.006627 -1507.849 -1395.255 -1213.223 

Censoring=50% Mean 0.011069 -1673.38 -1623.07 -1564.18 
n=50 Imputation 

Multiple 0.008308 -1470.75 -1420.75 -1355.38 
Imputation 

GCV: Generalized Crossvalidation Criterion; AIC:Akalke InformatIOn Critenon; BIC:BayesJan 
Information Criterion; RIC: Residual Information Criterion 
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TABLE 5 

Criterion used to select ridge and lasso parameters (~j=lIj, error = Weibull) 

Model Method GCV AIC BIC RIC 
Censoring=O% Univariate 0.019329 -1587.94 -1509.71 -1430.45 

n=25 
Bivariate 0.00957 -1863.414 -1730.258 -1566.594 

Reweighting lo14E-06 -1804.04 -1736.43 -1548.35 
Censoring=25% Mean 0.014681 -1334.49 -1303 -1267.73 

n=25 Imputation 
Multiple 0.00711 -1120.67 -1090.6 -1050.6 

Imputation 

Bivariate 0.010316 -1844.39 -1711.15 -1553.06 
Reweighting 0.01069076 -1663.065 -1586.759 -1441.508 

Censoring=50% Mean 0.019422 -1490.01 -1458.3 -1426.96 
n=25 Imputation 

Multiple 0.017196 -1391.168 -1359.558 -1326.133 
Imputation 

Censoring=O% Univariate 0.01149 -1807.8 -1645.19 -1454.92 
n=50 

Bivariate 0.007117 -2048.63 -1843.27 -1569.35 
Reweighting lo13E-05 -1606.724 -1500.518 -1233.792 

Censoring=25% Mean 0.010764 -1685.98 -1632.72 -1569.73 
n=50 Imputation 

Multiple 0.006494 -1370.56 -1321.05 -1251.1 
Imputation 
Bivariate 0.007203 -2046.61 -1843.64 -1573.88 

Reweighting 0.008881 -1533.77 -1412.02 -1245.42 
Censoring=50% Mean 0.011708 -1785.93 -1733.3 -1673.63 

n=50 Imputation 
Multiple 0.010503 -1684.5 -1629.19 -1563.45 

Imputation 
GCV: GeneralIzed CrossvalIdatlOn CrIterIon; AIC:Akalke InformatIOn CrIterIon; BIC:BayesJan 
Information Criterion; RIC: Residual Information Criterion 
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TABLE 6 

Criterion used to select ridge and lasso parameters (f3j = E(~j) for l:::;j :::; p/2, and f3j= 0 for p/2 :::;j :::; p, 

error = Weibull) 

Model Method GCV AIC BIC RIC 
Censoring=O% Univariate 0.019991 -1566.52 -1470.23 -1373.57 

n=25 
Bivariate 0.007876 -1922.6 -1791.57 -1610.48 

Reweighting 0.003473 -1757.02 -1683.15 -1498.45 
Censoring=25% Mean 0.01308 -1292.42 -1262.84 -1227.88 

n=25 Imputation 

Multiple 0.015691 -1323.6 -1291.29 -1255.38 
Imputation 

Bivariate 0.010231 -1846.46 -1712.01 -1552.25 
Reweighting 0.01145 -1417.68 -1340.63 -1228.26 

Censoring=50% Mean 0.019351 -1509.66 -1477.64 -1446.07 
n=25 Imputation 

Multiple 0.017943 -1435.41 -1404.35 -1372.59 
Imputation 

Censoring=O% Univariate 0.011434 -1810.34 -1649.01 -1460.01 
n=50 

Bivariate 0.006689 -2061.01 -1854.65 -1574.61 
Reweighting 0.003486 -1509.63 -1389.33 -1151.54 

Censoring=25% Mean 0.009867 -1600.5 -1547.1 -1481.52 
n=50 Imputation 

Multiple 0.006952 -1452.08 -1397.01 -1320.77 
Imputation 
Bivariate 0.006951 -2055.41 -1849.09 -1573.56 

Reweighting 0.008192 -1501.53 -1378.27 -1208.84 
Censoring=50% Mean 0.011559 -1794.14 -1739.56 -1677.46 

n=50 Imputation 
Multiple 0.011298 -1771.02 -1716.04 -1652.96 

Imputation 
GCV: Generalized Crossvalidation Criterion; AIC: Akaike Information Criterion; BIC: Bayesian 
Information Criterion; RIC: Residual Information Criterion 
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2. Table 7 

A variety of Ridge parameters were tried, ranging from 't = .001, ... ,10, to 

minimize the GCV values provided in Tables 1-6. Once the ridge parameter was 

selected, the lasso parameter was varied using A = 10, ... ,50 to minimize the family of 

information criterion used. Table 7 shows the final parameters used for the various 

methods. The # predictors column represents the average number of effective predictors 

used in finding the central subspace. The larger values for the Lasso parameter 

correspond to a greater number of predictors used. The average residual sum of squares 

(RSS) for the various methods is also provided, indicating the discrepancy between the 

data and the fit of the regularized SIR. Reweighting has the smallest RSS value which 

would indicate the best fit, while the mean imputation method has the highest RSS value. 

The univariate method, which is used on the uncensored data, has the second highest RSS 

at 4.569871, which should theoretically be the best fit of the data. 

TABLE 7 

A verage values for regularized SIR for various methods 

Method Ridge Lasso # predictors RSS 
j>arameter parameter 

Univariate .001 40 35.764 4.569871 
Bivariate .001 40 42.052 2.701443 

Reweighting .05 30 26.821 1.563724 
Mean Imputation 1 10 10.881 4.967454 

Multiple 1 10 11.230 3.886914 
Imputation 

RSS: Residual Sum of Squares 
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3. Tables (8-11) 

Once the estimate of the central subspace is found, that estimate, B T Z, is used as 

the new variable to fit the accelerated failure time model. Tables 8-13 provide 

coefficients and intercepts for the different model scenarios, along with the corresponding 

p-value from the Wald test. The method labeled univariate corresponds to the 

uncensored data. In Table 8, with n=25 and error =lognormal, the mean imputation 

method in most cases has significant values for both the intercept and B T Z, with p-values 

< .05. The reweighting values are mostly non-significant with the exception of the Bj=lIj 

parameter values. With the smaller sample size ofn=25, the majority ofBTZ parameters 

are insignificant. However, as the sample size increases to n=50, all ofthe parameters 

become significant. Decreasing the censoring rate from 50% to 25% also contributes to 

more significant values as expected. There does not appear to be much of a difference 

between the lognormal errors, as compared to the Weibull distributed error terms. The 

uncensored univariate method would be expected to produce the smallest p-values, 

although this is not the case. In summary, the mean imputation method produces the 

most significant central subspace when fit in the accelerated failure time model. A 

sample size of n=25 appears to be too small to produce any significant models when 

parameters ofBj=1 are used. The reweighting method appears to be the least effective at 

generating a significant central subspace. 
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TABLE 8 

Coefficients and Wald test for accelerated failure time model(n=25, error = lognormal) 

Censoring Bj = 1 Bj = l/j Bj = 1,0 
rate 

Method Intercept BiZ Intercept BiZ Intercept BiZ 
Univariate -1.89 7.24 -.584 -.271 -.313 -.191 

C=O% SE .860 .702 .334 .246 .184 .130 
P-value .0282 5.74E-25 .0806 .271 .0893 .141 

Bivariate -2.94 0.558 -0.702 0.69 -.373 .433 
SE 1.512 1.303 0.315 0.135 .555 .198 

P-value .0518 .668 .026 2.94E-07 .502 .0283 
Reweighting -3.09 -0.86 -1.18 1.335 

SE 2.632 1.883 0.143 0.111 
P-value .241 .648 1.94E-

16 2.47E-33 
C=25% Mean -6.84 2.64 

Imputation -2.098 0.126 -1.558 0.108 
SE .601 .508 0.0489 0.0378 0.0699 0.0552 

P-value 5.1IE-30 2.02E-07 4.95E-
0.00 8.32E-04 110 .0501 

Multiple -7.274 0.418 
Imputation -2.421 0.377 -1.5161 0.0348 

SE 1.092 0.83 0.0773 0.0589 0.119 0.0946 
P-value 2.71E-ll .614 2.24E-

215 1.49E-I0 3.42E-37 .713 
Bivariate -3.92 2.75 0.0913 1.1179 -0.1679 0.1285 

SE .991 .786 0.347 0.409 0.289 0.225 
P-value 7.48E-05 4.68E-04 0.79259 0.00628 .562 .567 

Reweighting -3.1562 -0.0264 -0.7074 0.8276 -0.1802 0.2334 
SE 2.542 1.846 0.213 0.149 0.225 0.183 

P-value .214 .989 8.94E-
04 2.82E-08 .424 .202 

C=50% Mean -5.83 2.27 
Imputation -1.142 0.138 -0.96 0.055 

SE 0.865 0.612 0.0792 0.0589 0.0962 0.0771 
P-value 1.61E-Il 2. 16E-04 3.90E-

47 .0191 1.96E-23 .476 
Multiple -5.238 0.624 

Im~utation -1.098 -0.254 -0.863 0.125 
SE 1.259 0.939 0.0748 0.0645 0.1301 0.0886 

P-value 3.19E-05 .506 8.95E-
49 8.30E-05 3.29E-1l .160 

SE: Standard error 
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TABLE 9 

Coefficients and Wald test for accelerated failure time model (n=50, error = lognormal) 

Censoring Bi = 1 Bi = IIj Bi = 1,0 
rate 

Method Intercept BZ Intercept BZ Intercept BZ 
Univariate -4.16 7.66 -.413 .0266 -.439 .780 

C=O% SE .863 .826 .213 .204 .0768 .0754 
P-value 1.08E- 4.47E-

1.42E-06 1.76E-20 .0522 .896 08 25 
Bivariate -0.708 4.498 -0.32241 1.33532 -0.15 -0.38 

SE 1.583 1.521 0.39 0.329 0.424 0.234 
P-value .655 3.IIE-03 .408 4.86E-05 .724 .105 

Reweighting -2.66 6.45 -0.485 1.4 1.76 -1.76 
SE 2.71 2.05 0.276 0.267 .841 1.02 

P-value .326 1.67E-03 .0793 1.56E-07 .0361 .0850 
C=25% Mean -5.51 

Imputation 1.90 -1.729 0.23 -1.6495 0.0332 
SE .621 .436 0.0693 0.0598 0.0496 0.0384 

P-value 6.77E-19 2.14E- 2.4IE-
1.32E-05 137 1.20E-04 242 .387 

Multiple -
Imputation -5.8 -1.98 -1.782 -0.171 -1.6789 0.0198 

SE 0.72 0.587 0.11 0.104 0.0877 0.0733 
P-value 8.13E-16 7.38E-04 4.45E-59 .100 1.17E-81 .787 

Bivariate -1.08 4.85 0.5486 1.6144 -0.2529 0.0166 
SE 1.038 .896 0.301 0.334 0.187 0.17 

P-value .298 6.13E-08 .0688 1.3IE-06 .177 .922 
Reweighting -3.21 5.75 -0.505 0.427 -0.15 0.187 

SE 2.62 1.9 0.321 0.269 0.388 0.386 
P-value .221 2.53E-03 .115 .112 .698 .628 

C=50% Mean -4.42 -2.14 
Imputation -0.595 0.196 -0.533 0.065 

SE 0.656 0.544 0.132 0.109 0.104 0.104 
P-value 1.69E-Il 8.25E-05 6.23E-06 .0715 2.87E-07 .531 

Multiple -4.7 -2.29 
Imputation -0.7842 0.1694 -0.578 -0.549 

SE 0.672 0.565 0.146 0.118 0.0959 0.0873 
P-value 2.72E-12 5.08E-05 3.22E-

8.63E-08 .153 1. 72E-09 10 
SE: Standard Error 
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TABLE 10 

Coefficients and Wa1d test for accelerated failure time model (n=25, error = weibull) 

Censoring Bi = 1 Bi = lIj Bi = 1,0 
rate 

Method Intercept BTZ Intercept BIZ Intercept BIZ 

Univariate .374 7.52 .155 -.629 .165 -.316 
C=O% SE .965 .616 .265 .173 .187 .101 

P-value 2.63E- 2.83E- l.72E-
.698 34 .558 04 .377 03 

Bivariate -1.34 1.44E-03 -.693 .643 -.303 .394 
SE l.l8 1.01 .258 .108 .458 .136 

P-value 7.31E- 3.68E-
.257 .999 03 2.64E-09 .508 03 

Reweighting 4.93 -3.76 -.850 l.l7 
SE 4.43 3.15 .115 .0904 

P-value 1.29E-
.266 .234 13 1.78E-38 

C=25% Mean 
Im~utation -5.39 2.17 -1.98 .183 -1.41 .151 

SE .527 .402 .0576 .0368 .059 .041 
P-value 8.07E- 4.99E- 2.32E-

1.53E-24 7.32E-08 259 6.76E-07 126 04 
Multiple 

Im~utation -4.63 -.107 -2.23 .38 -1.22 -.0174 
SE .891 .493 .0978 .0635 .113 .126 

P-value 2.04E- 2.73E-
2.05E-07 .829 115 2.03E-09 27 .891 

Bivariate -2.448 1.84 .624 1.39 .191 .203 
SE .616 .473 .448 .525 .304 .231 

P-value 7.02E-05 9.64E-05 .164 8. 12E-03 .529 .380 
Reweighting 4.19 3.16 -.127 .898 .242 -.402 

SE 4.22 3.22 .287 .185 .308 .304 
P-value .320 .327 .658 1.24E-06 .431 .185 

C=50% Mean 
Im~utation -3.73 1.78 -.909 .199 -.753 -.132 

SE .798 .579 .109 .106 .101 .0842 
P-value 5.57E- 1.07E-

3.01E-06 2.14E-03 17 .0605 13 .116 
Multiple 

Imputation -2.709 -.504 -.891 -.254 -.505 -.0459 
SE .951 .842 .107 .121 .125 .0853 

P-value 7.70E- 5.47E-
4.37E-03 .550 17 .0363 05 .591 

SE: Standard Error 
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TABLE 11 

Coefficients and Wald test for accelerated failure time model (n=50, error = weibuII) 

Censoring Bj = 1 Bj = l/j Bj = 1,0 
rate 

Method Intercept BIZ Intercept BiZ Intercept BIZ 

Univariate -1.35 .735 .312 .228 -.167 .840 
C=O% SE .736 .595 .213 .215 .0865 .0729 

P-value 4.65E- 9.39E-
.0664 35 .143 .291 .0532 31 

Bivariate 1.90E-03 2040 .220 1.32 .334 -.548 
SE 1.09 .845 0404 .315 .384 .201 

P-value 4A5E- 2.58E- 6.34E-
.999 03 .587 05 .384 03 

Reweighting 10.5 17.2 .993 2043 
SE 5.86E-

5.63 3.98 01 0482 
P-value IA6E- 4.78E-

.0615 05 .0899 07 
C=25% Mean 

Imputation -3.85 .527 -1.52 .208 -1047 .115 
SE .348 .313 .0536 .0416 .0465 .0254 

P-value 3041 E- 5.98E- 5.64E- 6.23E-
1.89E-28 .0929 177 07 219 06 

Multiple 
Imputation -3.67 -0413 -1042 -.146 -1.36 .0528 

SE .379 .345 .0938 .0802 .0891 .0536 
P-value 1.30E- 1.31E-

3.53E-22 .232 51 .0682 52 .325 
Bivariate -0.24 3.16 1.11 1.76 .224 .278 

SE .698 .569 .297 .319 .184 .165 
P-value 2.95E- 1.86E- 3.16E-

.731 08 04 08 .223 .0913 
Reweighting 8.78 15.0 1.03 .123 1.76 -1.76 

SE 5.53 3.95 .676 .706 .841 1.02 
P-value 1.51 E-

.112 04 .129 .862 .0361 .085 
C=50% Mean 

Imputation -2.812 -.649 -.130 .0233 -.181 .149 
SE .403 .372 .131 .117 .0912 .0927 

P-value 3.03E-12 .081 .322 .841 .0477 .107 
Multiple 

Imputation -2.90 -.698 -.275 .200 -.229 -.536 
SE .425 .387 .146 .129 .101 .105 

P-value 3.67E-
8.65E-12 .0711 .0586 .120 .0237 07 

SE: Standard Error 
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4. Tables 12-13 

Tables 12 and 13 contain the scale value and the p-value for the likelihood 

ratio test comparing the accelerated failure time model with the intercept only, to the 

model including BTZ. Again in most cases the mean imputation has the smallest p-value, 

indicating the best fit for the model. With the exception ofBj= I/j, the univariate 

uncensored case also produces a highly significant p-values. The multiple imputation 

method most commonly has the highest p-value. The mean imputation also has the 

lowest scale(standard deviation) value in most cases along with the univariate method. 

The reweighting method tends to have the highest scale value, indicating a greater degree 

of variation in the central subspace estimate. 
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TABLE 12 

Scale and Log-Likelihood test for accelerated failure time model(error = lognormal) 

n=25 n=50 
Censoring Parameter Method Scale P-value Scale P-value 

rate values 
Bj=lIj 1.67 .280 1.49 .900 

0% Bj=l Univariate 4.29 1.20E-10 5.89 1.50E-12 
Bj=I,O 0.91 .150 0.536 3.90E-14 

Bivariate .263 1.20E-09 1 9.20E-I0 
Reweighting .715 4.50E-12 1.94 2.80E-06 

Bj=lIj Mean .241 .0024 .488 3.20E-04 
imQutation 
Multiple .34 8.30E-07 .777 .100 

imputation 
Bivariate 5.98 .68 7.7 .00076 

Reweighting 13.2 .65 19.1 .0027 
25% Bj=l Mean 3.01 1.90E-05 4.39 6.00E-05 

imQutation 
Multiple 5.44 .62 5.04 .0014 

imputation 
Bivariate 1.06 6.00E-03 1.48 .088 

Reweighting 
Bj=l,O Mean .349 .059 .345 .39 

imputation 
Multiple .594 .71 .62 .79 

imputation 
Bivariate .699 .0058 .967 1.20E-07 

Reweighting 1.06 7.40E-06 2.26 .12 
Bj=lIj Mean .385 .026 .928 .076 

imputation 
Multiple .367 .00052 1.03 .16 

imputation 
Bivariate 4.4 .003 5.67 2.00E-07 

Reweighting 12.7 .99 18.4 .0038 
50% Bj=l Mean 4.33 .00095 4.62 .00024 

imputation 
Multiple 6.13 .51 4.75 .00016 
im~utation 
Bivariate .97 .54 1.08 .92 

Reweightil!£ 1.08 .21 2.74 .63 
Bj=I,O Mean .473 .48 .72 .53 

imputation 
Multiple .648 .17 .676 6.80E-08 

imputation 
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TABLE 13 

Scale and Log-Likelihood test for accelerated failure time model (error = weibuIl) 

n=25 n=50 
Model Parameter Method Scale P-value Scale P-value 

values 

Bj=lIj 1.26 4.60E-03 1.41 .310 
0% Bj=l Univariate 4.53 3.80E-1O 4.83 7.00E-15 

Bj=I,O 0.87 8.00E-03 0.572 7.60E-14 
Bivariate .178 1.30E-1O .852 1.60E-1O 

Reweighting .544 1.50E-I0 3.8 7.60E-05 
Bj=lIj Mean .271 2.00E-04 .36 1.70E-05 

imputation 
Multiple .419 3.80E-06 .629 .078 

imputation 
Bivariate 3.5 I 4.23 8.80E-04 

Reweighting 20.7 .27 37.2 2.50E-04 
25% Bj=1 Mean 2.5 4.60E-05 2.38 .084 

imputation 
MUltiple 4.22 .83 2.55 .22 

imputation 
Bivariate .537 5.60E-04 1.03 .0089 

Reweighting 
Bj=I,O Mean .279 2.90E-03 .305 2.90E-04 

imputation 
Multiple .533 .89 .594 .32 

imputation 
Bivariate .667 8.IOE-03 .81 8.80E-09 

Reweighting 1.33 3.20E-04 4.41 .86 
Bj=lIj Mean .473 .066 .87 .84 

imputation 
Multiple .482 .037 .971 .13 

imputation 
Bivariate 2.45 .0024 3.32 6.IOE-07 

Reweighting 19.7 .36 36.7 9.70E-04 
50% Bj=1 Mean 3.78 .0047 2.74 .075 

imputation 
Multiple 4.43 .56 2.89 .065 

imputation 
Bivariate .698 .32 .927 .093 

Reweighting 1.42 .21 5.56 .089 
Bj=I,O Mean .476 .13 .596 .12 

imputation 
Multiple .585 .60 .669 5.30E-06 

imputation 
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5. Tables 14-17 

Tables 14-17 show the mean squared error for the fitted values (msef) as well as 

the predicted values(msep). As can be seen from the tables, the mean imputation method 

consistently has the best fit among the various methods. The multiple imputation and 

bivariate methods were very similar in there fits. The reweighting method appears to be 

inadequate in fitting the data, having extremely high mse values. There is a small 

improvement in fit for the various methods when decreasing the censoring from 50% to 

25%. It is unclear why the full data set (uncensored) has higher msef values than the 

mean imputation method. Theoretically it should have the lowest values. Increasing the 

sample size from 25 to 50 had minimal effect on the fit. The different choices for Bj 

coefficients appear to be the most important determinant of fit. 

The accuracy of prediction is an important aspect of performance which is 

reflected by the mean squared error of prediction. The mean imputation and multiple 

imputation method appear to be the most accurate at prediction, having the lowest msep 

values. The reweighting approach is clearly the worst at prediction. Overall, none of the 

methods are very precise in predicting the survival times. 
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TABLE 14 

Mean squared error for fit and prediction of different methods (N=50, n=25, error = lognormal). 

Censoring Parameter Method MSEr MSEp 

rate values 
Bj=l/j 3.616304 62.30974 

0% Bj=1 Univariate 2425293784 3.27E+16 
Bj=I,O 0.93109 8.313126 

Bivariate 1.205127 2614730763 
Reweighting 1.56E+12 24332.26 

Bj=l/j Mean imputation 0.093836 112.2441 
Multiple 4.240646 11.93516 

imputation 
Bivariate 1.93E+15 1.52E+56 

Reweighting 5.41E+17 4.60E+33 
25% Bj=1 Mean imputation 1.119058 l.l6E+26 

Multiple 111.4531 126.1125 
im~utation 

Bivariate 2.68E+15 1.08E+129 
Reweighting 17.15487 5.320607 

Bj=I,O Mean imputation 0.09626 9.566693 
Multiple 1.983821 59.66738 

imputation 
Bivariate 0.922607 10359.14 

Reweighting 998563.9 1554.474 
Bj=1/j Mean imputation 0.743674 189.5635 

Multiple 3.873195 20.36823 
imputation 
Bivariate 94227.67 3.09E+49 

Reweighting 3.04E+39 2.74E+38 
50% Bj=1 Mean imputation 13.76206 1.10E+29 

Multiple 2513.54 59903.26 
im~utation 

Bivariate 0.560521 2189.774 
Reweighting 1456.561 8.476804 

Bj=I,O Mean imputation 0.636887 6.023066 
Multiple 2.156252 54.31242 

im~utation 
~ ~ 
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TABLE 15 

Means squared error for fit and prediction of different methods (N=50, n=50, error = lognormal). 

Censoring Parameter Method MSEr MSEp 

rate values 
B=Vi 4.482463 123.1845 

0% Bj =1 Univariate 6.87343E+11 1.50E+29 

Brl,O 0.902584 7.858615 
Bivariate 1.023037 5075.941 

Reweighting 50895.03 154.9116 
Bj=l/j Mean imputation 0.110841 84.85015 

Multiple 5.044459 16.69947 
imputation 
Bivariate 3344.053 1.38E+25 

Reweighting 5.07E+22 5.60E+33 
25% Bj=1 Mean imputation 183.9164 4.63E+30 

Multiple 117.4351 22537.52 
imputation 
Bivariate 1.489582 15.22566 

Reweighting 2717858 808.3046 
Bj=I,O Mean imputation 0.328347 6.564865 

Multiple 2.235019 6.393538 
imputation 
Bivariate 0.86449 660.3088 

Reweighting 4.03E+13 44747216 
Bj=l/j Mean imputation 0.69669 153.7396 

Multiple 3.691885 20.87405 
imputation 
Bivariate 7495.397 6.l4E+31 

Reweighting 1.61E+94 1.23E+66 
50% Bj=1 Mean imputation 9903.056 4.23E+33 

MUltiple 133861.4 14295875 
imputation 
Bivariate 0.526039 16.93448 

Reweighting 4329281 18.15942 
Bj=I,O Mean imputation 0.562776 5.170296 

Multiple 2.145936 68.1274 
imputation 
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TABLE 16 

Means squared error for fit and prediction of different methods (N=50, n=25, error=weibull). 

Censoring Parameter Method MSEf MSEp 

rate values 
Bj=l/j 13.11628 36.25056 

0% Bj=1 Univariate 5.95E+15 4.41E+15 
Bj=I,O 2.67601 8.606185 

Bivariate 3.32E+20 6.47E+212 
Reweighting 2.04E+05 1.31E+08 

Bj=l/j Mean imputation 0.130834 194.4398 
Multiple 4.396683 11.75878 

imputation 
Bivariate 4.15E+13 2.07E+30 

25% Rewei&hting 1.94E+99 6.34E+143 
Bj=1 Mean imputation .401 1. 72E+25 

Multiple 200 4.83E+03 
imputation 
Bivariate 539.9086 3.55E+36 

Reweighting 2.502239 16.62973 
Bj=I,O Mean imputation 0.288499 8.160324 

Multiple 2.054805 4.320406 
imputation 
Bivariate 1.825946 352.9547 

Rewei&hting 4.63E+14 28264791746 
Bj=l/j Mean imputation 0.989726 112.1048 

Multiple 1.31E+297 2.89E+299 
imputation 
Bivariate 511699.7 1.04E+26 

50% Reweighting 4.96E+81 7.50E+123 
Bj=1 Mean imputation 1937.766 2.04E+26 

Multiple 27535118 5.21E+14 
imputation 
Bivariate 1.259783 15822.79 

Reweighting 6943643 1002579 
Bj=I,O Mean imputation 0.661466 5.769323 

Multiple 2.724909 114.5771 
imputation 
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TABLE 17 

Means squared error for fit and prediction of different methods (N=50, n=50, error = weibull). 

Censoring Parameter Method MSEr MSEp 

rate values 
Bj=1/j 19.25244 244.4261 

0% Bj=1 Univariate 1.29E+16 6.12E+18 
Bj=I,O 2.356578 9.324723 

Bivariate 1.635221 280041.7 
Reweighting 6.02528E+11 1.66E+23 

Bj=1/j Mean imputation 0.133127 342.1746 
Multiple 5.191936 20.37365 

imputation 
25% Bivariate 619.9674 9.57E+24 

Reweighting 3.69E+86 5.31E+l32 
Bj=1 Mean imputation 2.848023 4.50E+27 

MUltiple 137 240 
imputation 
Bivariate 3.084173 7299432 

Reweighting 4.36E+13 68278966 
Bj=I,O Mean imputation 0.200152 6.857888 

Multiple 2.977191 11.87037 
imputation 
Bivariate 1.826705 178.8969 

Reweighting 1. 76E+60 1.37E+43 
Bj=1/j Mean imputation 0.90592 143.9906 

Multiple 5.279777 105.136 
imputation 
Bivariate 600.1246 9.25E+27 

Reweighting 2.82E+266 1.92E+192 
50% Bj=1 Mean imputation 421561.3 2.37E+31 

Multiple 7.50E+21 1.42E+23 
imputation 
Bivariate 1.257951 68.85456 

Reweighting 8.12E+18 1.27E+15 
Bj=I,O Mean imputation 0.583706 5.5258 

Multiple 2.685952 73.69357 
imputation 

~ ~ 
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6. Figures 1-5 

Figures 1-5 illustrate the actual survival times plotted against the predicted times 

using the various methods. In each case the line y = x is also plotted indicating the 

theoretical value which would minimize the msep• In all the plots the data was simulated 

using the model coefficient Bj=l/j for l:Sj :Sp, censoring rate =25%, sample size= 25, 

and lognormally distributed errors. As seen in the plots, the accuracy of prediction is 

not very encouraging for the various methods. The uncensored data set, and the 

reweighting method appear the least precise in there prediction accuracy. More work 

needs to be done to improve the prediction accuracy. 
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Figure 1. Predicted vs. Actual time points for Bj= 1 /j, censoring rate=25%, n= 25 
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Figure 2. Predicted vs. Actual time points for Bj= 1/j , censoring rate=25%, n= 25 
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Predicted vs. Actual (Multiple Imp.) 
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Figure 5. Predicted vs. Actual time points for Bj = l/j , censoring rate=25%, n= 25 
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CHAPTER V 

FUTURE WORK 

Mean imputation appears to be an efficient method for fitting right censored data 

when used with SIR with regularizations. However, more simulations need to be done to 

test this. A larger amount of predictors, such as p=10,OOO, needs to be tested to simulate 

real life micro array data. We also need to examine the performance of the sparse ridge 

estimator with correlated predictors using the various methods for handling right 

censored data. There are various censoring schemes that need to be studied as well. 

Finally, a real life data set needs to be examined. 

More work needs to be done on the SIR with regularizations model to improve the 

prediction accuracy. It appears from the simulations that mean imputation method 

provided better results than that of the uncensored data. The tests for measures of fit and 

prediction between uncensored data and censored data may also deserve further attention 

to clear this up. 

The multiple imputation method could also be improved. The current method 

keeps the mean function Y using the marginal distribution. Better results may be 

achieved by using the conditional distribution instead. This could possibly be achieved 

by imputing the residual instead of actual values. 
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