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ABSTRACT 

WITHAFERIN A SYNERGISTICALLY ENHANCES THE EFFECT OF 
PACLITAXEL AGAINST LUNG CANCER 

Al Hassan Kyakulaga 

February 09, 2017 

                      Lung cancer is the leading cause of cancer-related deaths among 

both men and women in the U.S and worldwide. Today, paclitaxel (PAC) or taxol 

alongside platinum-based drugs is the most widely used agent as first-line regimen 

for advanced NSCLC. However, due to toxicity, drug resistance, solubility and 

efficacy issues, efficacy has plateaued. In the present study, the potential of a 

novel plant-derived steroidal-lactone, withaferin A (WFA), for clinical use alongside 

PAC to improve efficacy against NSCLC was explored. The anticancer effects of 

PAC and WFA alone, and in combination against the in vitro cell proliferation, cell 

adhesion, migration and invasion of two human NSCLC cell lines, H1299 and A549 

were determined. Our data shows that PAC and WFA, combined at 1:25 and 1:50 

ratios, respectively, synergistically inhibited the proliferation of H1299 and A549 

cells. Furthermore, the combination also significantly inhibited the TGFβ1-induced 

EMT, cell adhesion, migration, and invasion (p<0.05) indicating a potential anti-

metastatic activity. Together, if these findings can be replicated in appropriate 

animal models, they highlight the potential clinical efficacy of WFA alongside PAC 

that can be exploited to improve clinical outcomes of NSCLC treatment. 
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INTRODUCTION 

   Lung cancer has an extremely low survival rate and is currently the leading 

cause of cancer-related deaths worldwide and in the US [1-3]. It is estimated that 

(see Figure 1) over 1.8 million new cases and 1.6 million deaths occur worldwide 

annually [2] of which an estimated 221,200 cases and 158,040 deaths occur in the 

U.S [3, 4]. Despite the recent advances in imaging and molecular diagnostic 

techniques, targeted therapies and immune checkpoint inhibitors, the overall 5-

year survival rate for lung cancer has remained less than 17%. Overall more 

people die from lung cancer than from breast, prostate, pancreatic and colon 

cancers combined [3]. 

   This extremely poor prognosis of lung cancer is explained in part because, 

in the early stages, lung cancer is not associated with any major clinical symptoms 

[5]. Consequently, the majority (60-70%) of patients are diagnosed when the 

disease is in its late stages [2] and is associated with regional and/or distant 

metastases for which surgery and radiation are almost impossible [6]. Even among 

patients with sufficiently localized tumors, more than half of them have additional 

cardiac or pulmonary diseases that complicate the therapeutic options. 

Furthermore, it is widely reported that 50-60% of patients who undergo initial 

successful surgical resection of primary tumors relapse within 6-12 months [7].
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Together, the advanced stage of lung cancer among most patients, high relapse 

rates, tumor cell heterogeneity, biological aggressiveness and intrinsic resistance 

to chemotherapy make lung cancer very challenging to treat. 

  Clinically, lung cancer is not a single disease but refers to a heterogeneous 

group of tumors that originate from the lung tissue [5]. These tumors almost 

exclusively (>99%) develop from epithelial cells lining the airways, and as such are 

also called lung carcinomas [5, 8]. Their carcinogenesis is complex, but multiple 

lines of evidence suggest that normal airway epithelial cells are transformed into 

lung carcinomas via a multistep carcinogenic process involving the interaction of 

genetic, environmental and lifestyle factors [3, 9, 10]. It is hypothesized that 

exposure to carcinogens causes specific genetic and/or epigenetic alterations that 

confer a proliferative advantage to a small number of cells. Later, these cells get 

progressively transformed into biologically aggressive and highly malignant tumors 

that are associated with extremely poor prognosis and high mortality rates [5].  

   Based on cellular morphology, lung cancer is classified as either small-cell 

lung cancer (SCLC) or non-small-cell lung cancer (NSCLC) [11]. Current statistics 

indicate that only 10-13% of the cases are SCLC while the majority (80-85%) are 

NSCLC [5, 12]. SCLC tumors (Figure 2F) are reported to primarily occur among 

heavy smokers, and they are histologically identified as small round-shaped cells, 

with visible mitotic patterns, granular nuclear chromatin and absent nucleoli [10]. 

On the other hand, NSCLC tumors are more prevalent among non-smokers and 

are further sub-divided into three major subtypes: adenocarcinoma, squamous cell 

carcinoma and large cell lung cancer [5, 13, 14]. The adenocarcinomas are 
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currently the most prevalent subtype of NSCLC especially among non-smokers 

and women [2, 10]. Histologically, adenocarcinomas (Figure 2A-C) are the NSCLC 

tumor cells that appear microscopically as either glandular or mucin-producing cell, 

and are usually arranged as acinar, papillary, bronchoalveolar, solid or a mixture 

of these growth patterns. In contrast, squamous cell carcinomas which are the 

second most prevalent subtype of NSCLC tumors are identified as NSCLC tumor 

cells that display intercellular bridges and keratin (Figure 2D). The large-cell 

carcinomas (Figure 2E) present as large NSCLC tumor cells that contain vesicular 

nuclei and prominent nucleoli. Worldwide, these traditional classifications have 

been widely utilized in decision making for treatment strategies for lung cancer. 

   Unfortunately, in the current era of precision and personalized medicine 

[14], the histologic classifications of NSCLC are somewhat insufficient and may 

not reflect the underlying driver mutations. Therefore, today NSCLC tumors are 

also subtyped using immunohistochemical and molecular techniques to reflect the 

genetic mutations that drive and maintain tumorigenesis [15]. Many clinical reports 

indicate that adenocarcinomas are usually associated with mutations in the EGFR, 

KRAS, and ALK genes [2, 10, 16]. On the other hand, squamous-cell carcinomas 

have mutations in SOX2, FGFR1, TP53 and DDR2 genes while small-cell lung 

cancers display RB1, TP53 mutations [16]. These molecular classifications allow 

for effective and tailored treatments for specific subsets of patients [14, 17].  

   The causes of lung cancer remain elusive but several risk factors have been 

identified in epidemiological studies. To date, cigarette smoking remains the major 

cause of lung cancer and the global patterns of lung cancer incidence closely 
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reflect the consumption rates of tobacco products in many countries [5]. In the U.S, 

more than half of the newly diagnosed lung cancer cases are directly attributable 

to smoking and it is estimated that over 90 million people are at risk of smoking-

related lung cancer [1]. Data from several epidemiological studies indicate that the 

risk of lung cancer increases with both quantity and duration of smoking, and is 

highest among those who smoke and never quit [3, 5, 10, 15]. Furthermore, 

evidence has also increased indicating that side-stream cigarette smoke exposure 

or the so-called “passive smoking” also increases the risk of lung cancer and 

accounts for a large fraction of lung cancer among non-smokers [2]. Interestingly, 

despite the widespread anti-smoking campaigns and the observed declines in 

smoking rates in developed countries, the incidence and mortality rates of lung 

cancer have only moderately decreased. The American Cancer Society (ACS) has 

estimated that the incidence of lung cancer decreased by only 2% among men and 

1% among women per year between 2004 and 2013 [3].  
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Figure 1. The worldwide estimated global number of new cases and deaths with proportions by 

major world regions for lung cancer. (Source: Stewart B.W. and Wild P.S: World Cancer Report, 

2014).   
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Figure 2. Histologic classifications of lung cancer: (A) acinar adenocarcinoma, (B) papillary 
adenocarcinoma (C) invasive mucinous adenocarcinoma (D) squamous-cell carcinoma (E) large-
cell carcinoma and (F) small-cell carcinoma (Source: Stewart B.W. and Wild P.S (2014). World 
Cancer Report, 2014).   

 

 

	  

D E F 

A B C 



	 	

7 
	

           Today, the therapeutic options and clinical outcomes of lung cancer 

treatment are highly dependent on the stage of the disease at the time of diagnosis 

[6, 13, 18]. Initially, a proper and accurate diagnosis is done to consider the size 

and location of the primary tumor, as well as the presence of regional and/or distant 

metastases. Later, the data obtained from the initial screening is used to stage the 

lung cancer and to select the suitable therapeutic options for each patient [2]. The 

World Health Organization (WHO) utilizes and recommends the Tumor-Node-

Metastasis (TNM) staging system of lung cancer based on the size of the primary 

tumor(T), regional lymph nodes (N), and (M) distant metastases [19, 20]. Using 

this system, a combination of TNM descriptors is used to group lung tumors into 

seven stages that reflect expected survival outcomes [11].  

           The seven clinical stages of lung cancer used the world over are; IA, IB, IIA, 

IIB, IIIA, IIIB and V. Here, the best therapeutic outcomes expected from stage I 

and the worst outcome from stage V [19]. Many clinical reports indicate that the 

stages IA, IB, IIA, IIB are considered early stage lung cancer [20, 21] where the 

primary tumors are sufficiently localized and therefore are considered curable. 

However, patients with stages III-V are considered to have advanced lung cancer 

and thus have the worst clinical outcome [20]. The dismal survival for patients with 

advanced lung cancer is mainly because of the regional and distant metastases. 

           Following lung cancer staging, the therapeutic strategies for NSCLC may 

include surgery, chemotherapy, and radiation either alone or in combination [6, 

13]. The ultimate choice of any one of these treatment options is based on whether 

the clinical goal is cure or palliation. For patients with early stage NSCLC (stage I-
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II), surgical removal of tumors is the treatment of choice, for which cure is 

attainable in up to 80% and 50% for stage I and stage II cases, respectively [13]. 

However, even with improved diagnostic techniques, only 25% of lung cancer 

patients are diagnosed with stage I and stage II of the disease [2]. Moreover, a 

majority (50-60%) of the patients that present with early-stage lung cancer also 

have impaired pulmonary and cardiac functions which make them ineligible for 

surgery because of possible postoperative complications [6]. 

         In contrast, about 35% and 40% of lung cancer patients are diagnosed with 

stage III and stage IV lung cancer, respectively [2]. Among these patients, the 

primary tumor is already spread beyond the lung tissue into lymph nodes (stage 

III) and sometimes with distant metastases (stage IV). Very frequently, advanced 

lung cancer patients also have undetected systemic micrometastases that can 

result in tumor relapse [13, 18, 22]. Therefore, the main clinical goal of treatment 

in advanced lung cancer is palliation of symptoms and to prolong the life of 

patients. Because surgery is virtually impractical, either chemotherapy or targeted 

therapy, alone or in combination are the viable options [18, 23]. 

          Currently, the platinum-based chemotherapies consisting of either cisplatin 

or carboplatin are the first-line drugs for the treatment of advanced NSCLC [6]. 

Usually, these platinum drugs are administered in combination with a third-

generation chemotherapeutic drug like paclitaxel, docetaxel, or vinorelbine [18, 

23]. Several published studies and clinical reports indicate that the various drug 

combinations of platinum drugs and other chemotherapeutics show similar clinical 

efficacy but distinct toxicities [6, 24]. However, a two-drug combination of 
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carboplatin and paclitaxel is the most widely used standard chemotherapeutic 

regimen for stage IIIB-IV lung cancer with 1-year survival rate exceeding 40% [4, 

24]. Unfortunately, the survival efficacy of the platinum-paclitaxel combination 

seems to have reached a survival plateau of about 10 to 11 months and thus a 

three-drug combination is now recommended [24]. More recently, because of the 

lower toxicity profile of gemcitabine, a three-drug combination consisting of 

carboplatin, paclitaxel, and gemcitabine was introduced with promising but minimal 

results [24]. In other clinical reports, pemetrexed, a more specific cytotoxic agent 

is recommended as the third drug to the cisplatin-paclitaxel combination with 

survival rates between 13-14 months [6]. 

            In the past decade or so, there has been considerable progress in 

understanding the biology of lung and other cancers [17]. This led to the discovery 

of molecular mutations that drive the progression of cancers and subsequently the 

introduction of targeted therapies into clinical practice [14, 25]. These targeted 

therapies interact with specific molecular drivers involved in carcinogenesis, cell 

proliferation, apoptosis, and metastasis of cancer cells. Several reports indicate 

that the most promising agents for lung cancer are those agents targeting receptor 

tyrosine kinases (RTKs), mitogen-activated protein kinases (MAPKs) and Janus 

kinase (JNK) pathways [4, 14, 17]. Indeed, agents targeting EGFR mutations 

(erlotinib and gefitinib), ALK gene rearrangements (crizotinib and ceritinib), HER2 

mutations (trastuzumab) and angiogenesis (bevacizumab) are currently approved 

as targeted therapies for NSCLC [17, 25, 26].	Furthermore, the anti-EGFR agent 

erlotinib is also approved by FDA as second-line agents for relapsed lung cancer.	
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Unfortunately, many patients who undergo targeted therapy eventually develop 

resistance with continued drug administration and relapse within 4-6 months [17]. 

Initially, patients show a favorable response to the targeted therapies but it has 

been found out that the prolonged administration results into secondary mutations 

that cause decreased binding affinity of the drugs to targets. Therefore, even with 

targeted therapies, only modest (14-17 months) improvement in overall survival 

has been observed and drug resistance is becoming a major problem [6].	

   The other landmark in NSCLC treatment is the manipulation of the immune 

system to enable the body clear tumor cells [27, 28]. This exciting discovery has 

been fueled by the increasing body of knowledge on tumor microenvironment and 

its interplay with the immune system. Today, immunotherapy is also being 

explored as an alternative treatment modality for lung cancer. Unlike 

chemotherapy, immunotherapies indirectly target NSCLC tumor by stimulating the 

individual’s immune system [6]. Currently, two immunotherapeutic approaches are 

utilized, namely, the vaccination and the immune-checkpoint approaches. The 

vaccination approach employs either antigens or cells to stimulate T-cells to 

eliminate tumors while the immune-checkpoint approach uses specific monoclonal 

antibodies to neutralize specific tumor molecular pathways [4, 14]. Vaccines 

against EGF, TGFβ, and PD-1 are at different stages of advanced clinical testing 

with promising findings [4]. However, even with immunotherapies, the overall 5-

year survival from lung cancer has continually stagnated between 15-17% 

worldwide. 
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  Therefore, despite the enormous gains from chemotherapies, targeted, and 

immunotherapies for many cancer types, the overall gain for lung cancer has been 

minimal. To address this therapeutic challenge, there has been a re-awakened 

interest in the search for effective therapies for lung cancer from natural sources 

including medicinal plants, marine organisms, and microorganisms [28]. In this 

quest, medicinal plants have attracted significant attention because of the chemical 

and biological diversity of secondary metabolites represent an inexhaustible 

source of anticancer compounds. So far, more than 3000 plant species have been 

used to treat cancer and many more are under investigation. Generally, these 

plant-derived compounds are cost effective, abundantly available and largely non-

toxic [4]. More importantly, unlike current drugs, recent evidence from preclinical 

and some clinical studies indicates that most plant-derived compounds target 

multiple pathways in the cancer cells [29].  

  Some of the most promising plant-derived compounds include resveratrol, 

epigallocatechin 3 gallate (EGCG), curcumin, apigenin, luteolin, barbamine and 

withaferin A (WFA) [29-31]. The Gupta lab group at the University of Louisville, 

among other projects, is focused on developing WFA into a useful therapeutic 

agent for the management of lung cancer. Building on hypotheses based on 

previous findings in this and other laboratories, WFA has shown excellent efficacy 

and potency against various cancers – lung [32-34], cervical [35], prostate [36], 

breast [37-39], ovarian [40] and pancreatic in vitro and in vivo. In the present study, 

a simple but effective strategy of combining WFA with paclitaxel against the 

proliferation, migration, and invasion of two human NSCLC cells was explored.  
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           WFA is a member of the withanolides, a large group of naturally occurring 

28-carbon-containing compounds [41]. Chemically, these withanolides (Figure 3B) 

are composed of a steroidal framework attached to a lactone ring and as a result, 

are sometimes referred to as ‘steroidal-lactones’ [42]. The steroidal part consists 

of 4-cycloalkane rings, 3-cyclohexane rings, and 1-cyclopentane ring. The second 

part, the lactone ring, is a cyclic ester which is oxidized appropriately to form a 6-

membered ring [41]. This overall chemical structure can be modified either in the 

steroid framework or the side chains yielding a diversity of compounds.   

          To date, more than 300 different naturally occurring withanolides with 

diverse chemical and biological activities have been isolated and characterized 

from the Solanaceae plant species [43]. Of all these, WFA [4β, 27-dihydroxy-1-

oxo-5β, 6β-epoxywitha-2, 24-dienolide], was the first member to be discovered and 

is currently the most extensively studied and characterized [42, 44-46]. Initially, it 

was first isolated from the leaves of Withania somnifera (Figure 3A) in the 1960s, 

and its structure was chemically elucidated shortly thereafter [42, 45, 46]. At that 

time, the basic extraction of WFA from the dried W. somnifera material was 

accomplished using methanol followed by purification with C-18 and Sefadex 

columns [45]. Later, WFA was also extracted from other plants including Withania 

aristata, Dunalia spinose and Vassobia breviflora [43, 46]. Because of the multiple 

reports on the anticancer activity of WFA, significant efforts are now being directed 

towards the chemical synthesis and modification of WFA [47].   
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Figure 3. (A) W. somnifera (B) withanolide structure and (C) withaferin A [48, 49]. 
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          In the WFA chemical structure, the basic steroidal framework is ergostane, 

to which a lactone ring is attached (Figure 3C). As is the case for the structures of 

most withanolides, the lactone in WFA is a cyclic ester composed of 5-carbon 

atoms, which in the case of WFA, the carbon atoms at C-22 and C-26 are oxidized 

to form a 6-membered ring [50]. This arrangement of atoms in WFA results into 

five functional groups including the unsaturated ketone ring, a hydroxyl group at 

C-4, epoxide ring between C-5 and C-6, a hydroxyl group at C-27, a 6-carbon 

lactone ring, and an unsaturated carbonyl group [47, 48]. Together, these chemical 

functional groups account for the diverse biological activities of WFA and each may 

be exploited for chemical modification.  

          Because of its ability to interact with many molecular targets, several 

pharmacological activities of WFA have been identified and reported [44, 51]. 

These biological activities include anti-inflammatory, anticancer, antiangiogenic, 

cardioprotective, immunomodulatory, hepatoprotective, anticonvulsant and 

anabolic effects [43, 51]. However, in the past decade or so, WFA has attracted 

significant attention and testing mainly for its anticancer activity [44]. There is quite 

a plethora of data indicating the anticancer efficacy of WFA from cell culture to 

xenograft and orthotopic tumor models of multiple human cancers [44, 48, 51, 52].  

           In most of the published preclinical studies, it is reported that the observed 

anticancer activities of WFA result from its interaction with specific biochemical and 

molecular targets like enzymes, signaling molecules and other proteins in cancer 

cells [41, 51]. Three positions on the WFA structure have been identified to react 

with sulfhydryl groups of cysteine residues in proteins in cancer cells [47]. These 
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positions include the unsaturated ketone (C-3) in the A-ring, the epoxide group at 

C-5 and the lactone ring [47]. Recent spectral analysis has revealed that C-3 is the 

main target for thiol group binding in the unsaturated A-ring [39]. It is hypothesized 

that the sulfhydryl groups of cysteine residues react with C-3 via Michael-Addition 

alkylation type of reactions forming covalent bonds with proteins [48, 49]. 

Furthermore, the epoxide ring between C-5 and C-6 has been reported as the most 

critical for its anticancer properties of WFA. To support this hypothesis, an in vitro 

study investigating the reaction of WFA and 2-mercaptaethanol, which specifically 

affects the 5b,6b-epoxide structure, have reported a loss of anticancer activity. In 

the same study, incubation of WFA with strong reducing agents like N-acetyl 

cysteine or DTT resulted into loss of the pro-apoptotic activity of WFA [53]. On the 

other hand, loss of unsaturation in the A-ring have been reported to cause loss of 

anti-inflammatory and antiangiogenic effects of WFA [43, 54].  

           The mechanistic data on the anticancer activity of WFA are backed by the 

growing body of evidence demonstrating the preclinical efficacy of WFA against 

various cancer types in vitro and in vivo. Perhaps the most extensively investigated 

type of cancer for which WFA has shown excellent activity is breast cancer. Here, 

multiple lines of evidence from independent studies indicate that WFA induces 

apoptosis in estrogen-sensitive (MCF-7) and estrogen-independent (MDA-MB-

231) breast cancer cells in vitro [55]. In the same study, the in vitro findings were 

corroborated by in vivo studies in which intraperitoneal administration of WFA (4 

mg/kg) in nude mice significantly attenuated the growth of subcutaneous MDA-

MB-231 xenografts. Similarly, in another study using orthotopically implanted 4T 
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mouse mammary tumor cells, it was reported that intraperitoneal administration of 

WFA (0.1, 0.5, 1, 2 and 4 mg/kg body weight) significantly inhibited breast cancer 

progression and metastasis in a dose-dependent manner [39, 56]. Furthermore, a 

study using a clinically-relevant transgenic animal model for breast cancer in 

MMTV-neu mice reported more than 50% inhibition of weight of palpable tumors 

following treatment with 100 µg of WFA (3 times/week) for 28 weeks [37, 56]. 

           In addition to breast cancer, the evidence is available to support the efficacy 

of WFA against prostate, ovarian, and cervical cancers. For example, in a study 

conducted in nude mice, intraperitoneal administration of WFA [4-8 mg/kg/day] for 

24 days resulted in over 70% inhibition of PC3 subcutaneous tumor growth [57]. 

The authors attributed the effects of WFA to inhibition tumor proteasomal activity 

and induction of apoptosis in PC3 cells. Similarly, another independent study in 

WFA [3 or 5 mg/kg] was administered orally to transgenic mice for 39 weeks, there 

was significant inhibition of tumorigenesis and metastasis of prostate 

adenocarcinoma [36]. In cervical cancer, data from in vitro and in vivo experiments 

indicates the inhibition of human papillomavirus oncogenes E6/E7 coupled with 

induction of p53, the tumor suppressor protein [34]. Furthermore, administration of 

WFA alone or in combination with cisplatin to nude mice bearing A2780 human 

ovarian cancer cell xenografts resulted into 70-80% reduction in tumor growth and 

complete inhibition of metastasis [40, 58, 59]. Together, these data demonstrate 

the efficacy of WFA against gynecological cancers and further highlight the 

potential of WFA as a potential chemotherapeutic agent. 
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MATERIALS AND METHODS 

Materials 

          Culture media (1X DMEM and RPMI 1640), 0.25% Trypsin-EDTA, Bolt 

MES-running buffers, antibiotics (100 U/mL penicillin/ 100µg/mL streptomycin), 

and fetal bovine serum (FBS) were purchased from Life Technologies (Grand 

Island, NY). RIPA cell lysis buffer, halt protease/phosphatase inhibitor cocktail, 

BCA protein assay kits, PVDF-transfer membranes, ECL chemiluminescence 

reagents and the 10-well Bolt 4-12% Bis-Tris phosphate gels were purchased from 

ThermoFisher Scientific (Rockford, IL). The tissue culture treated plates (96-well, 

24-well, 12-well, and 6-well) and culture treated dishes (60 mm and 100 mm) were 

purchased from CytoOne (USA Scientific, FL).         

           The 2-well culture inserts and the 8-well glass µ-slides were purchased from 

ibidiÒ cells in focus (Madison, WI). The transwell tissue culture inserts and the 

matrigel base membrane matrix were purchased from Corning (Bedford, MA). 

Recombinant human transforming growth factor (hTGFβ-1), primary antibodies 

(anti-E-Cadherin, anti-Vimentin, anti-Snail, anti-ZEB1, anti-β-Catenin, anti-β-actin, 

anti-slug, anti-Bcl2, anti-Bax, anti-PARP, anti-cyclin E2, anti-cyclin B1 and anti-

STAT3) as well as secondary (anti-mouse IgG and anti-rabbit IgG) antibodies were 

purchased from Cell Signaling Technology, Inc. (Danvers, MA).
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 The FITC-AnnexinV/PI apoptosis assay kits were purchased from Invitrogen 

(Eugene, OR), while the phosphate-buffered-saline (PBS) and MTT reagent [3-(4, 

5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide] were purchased from 

Sigma-Aldrich (St. Louis, MO).  

Cell lines and culture 

          Two human NSCLC cell lines, H1299 (p53-null, EGFR-WT) and A549 (p53-

WT, EGFR-WT), originally purchased from American Type Culture Collection 

(Manasa, VA, USA) and sub-cultured in the laboratory were used. These cells 

were maintained in monolayers at 70-80% confluence in DMEM supplemented 

with 10% heat-inactivated FBS and 1% antibiotics at 37°C in a 5% CO2 humidified 

incubator. Culture media was replaced with fresh media every 2 days and cells 

were passaged at >80 % confluence.  

MTT cell viability assay 

         Cell viability was indirectly measured by MTT assay as described previously 

[60] using the yellow MTT reagent. In this assay, the ability of cells to metabolize 

the yellow tetrazolium MTT reagent to purple intracellular formazan crystals in the 

mitochondria was used as an indirect measure of cell viability. Briefly, H1299 and 

A549 cells (3000 cells/well) in 100µL of DMEM media were seeded in 96-wells 

plates and incubated for 24 hours at 37°C in a 5% CO2 incubator.  The seeding 

culture media was discarded by aspirating into a waste bottle and replaced with 

media containing various concentrations of either paclitaxel or WFA or the 

combination (1:25 and 1:50) and then incubated further for 72 hours. At the end of 

the desired incubation period, culture media was replaced with media containing 
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0.5 mg/mL MTT solution, incubated for an additional 3 hours at 37°C after which 

the media was discarded. To solubilize the formazan crystals, 200 µL of dimethyl 

sulfoxide (DMSO) was added and the absorbance of the resulting solution was 

determined spectrophotometrically at 570 nm.  

Apoptosis analysis by flow cytometry  

Apoptosis induction was analyzed by detecting phosphatidylserine (PS) 

translocation from the inner to the outer leaflet of the plasma membrane [61]. The 

calcium-dependent PS-binding protein, Annexin V (35-36 kDa), was used as a 

probe to determine the percentage of apoptotic cells after incubation with PAC or 

WFA alone and in combination. The FITC-Annexin V/PI cell staining kit (Cat. No. 

V13242, Invitrogen) containing a recombinant Annexin V conjugated to fluorescein 

(FITC), and propidium iodide (PI), a red fluorescent nucleic acid binding dye was 

used. In this assay, apoptotic cells present with PS flipped from the inner to the 

outer membrane and as such are bound by the Annexin V protein. Secondly, PI is 

impermeable to live cells but stains dead cells with red fluorescence by binding 

tightly to nucleic acids.  

          In the present study, H1299 and A549 cells were seeded in 60 mm culture 

plates and cultured to 70% confluence. Prior to incubation with drugs, cells were 

serum-starved for 24 hours then cultured in media containing either WFA (0.5 µM) 

or PAC (10 nM) or the combination at the respective concentrations for 48 hours. 

Following this incubation period, the cells were collected by aspirating the media 

and adding 1 mL of 0.25% trypsin-EDTA to each culture plate to detach the cells. 

The collected cells were washed twice with ice-cold PBS and suspended in 1x 
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Annexin-binding buffer at a cell density of approximately 1 x 106 cells/mL in a total 

volume of 100 µL. To each 100 µL of cell suspension, 5 µL of FITC-Annexin V and 

1 µL of 100 µg/mL PI solution were added and incubated for 15 minutes at room 

temperature in the dark. Each AnnexinV/PI stained cell suspension was then 

diluted with 400 µL of 1x Annexin binding buffer and immediately analyzed for 

fluorescence using a flow cytometer by measuring the fluorescence emission at 

530 nm and >575 nm. Early apoptotic cells showed green fluorescence, dead cells 

had red and green fluorescence while live cells showed little fluorescence. A total 

of 10,000 cells were counted in each cell suspension and the data expressed as 

percentage early and late apoptotic cells. 

Cell adhesion assay 

          The cell adhesion assay was conducted as previously described [62] to 

determine the effects of PAC or WFA alone and in combination with the ability of 

cells to bind extracellular matrix. Briefly, 96-well plates were pre-coated with 40 μL 

of ice-cold 50 μg/mL matrigel solution and stored at 37 °C in a humidified incubator 

until used in the experiment. Also, H1299 and A549 cells were cultured in 100-mm 

culture dishes and allowed to grow up to 70-80% confluence. The cells were then 

serum starved for 24 hours, washed twice with serum-free DMEM media to remove 

dead cells and detached from the plates by adding 1 mL of 0.25% trypsin-EDTA. 

The collected cells were centrifuged at 350 x g for 5 minutes to remove debris and 

counted under the microscope. Cell adhesion assay was conducted by seeding 1 

x 104 cells/well in 100 μL of serum free DMEM media (with or without TGFβ1) into 

the 96-well matrigel pre-coated plates. To determine the effect of PAC and WFA, 
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alone and in combination, at the indicated concentrations on cell adhesion, each 

agent was added to the cell suspension before seeding. Following cell seeding, 

culture plates were incubated at 37°C and 5% CO2 for 2 hours to allow attachment 

of cells to matrigel. Thereafter, non-adherent cells were removed by washing twice 

with PBS, then 100 µL of DMEM (10% FBS) was added to each well and the plates 

were incubated for an additional 8 to allow recovery of cells. The cell viability of 

adherent cells was determined by MTT assay.  

Wound healing assay  

          The effects of PAC and WFA, alone and in combination on motility of H1299 

and A549 cells were determined by wound healing assay. This experiment was 

performed using the 2-well tissue culture inserts (ibidi® cells in focus) following 

manufacturer’s instructions. Briefly, H1299 and A549 cells in DMEM media (10% 

FBS) were cultured to 70-80% confluence in 100-mm culture dishes at 37°C and 

5% CO2. At 80% confluence, cells were serum starved for 24 hours and collected 

by adding 1 mL of 0.25% trypsin-EDTA and centrifuged at 350 x g for 5 minutes to 

remove dead cells and debris. Cells were re-suspended in DMEM media, counted 

under a light microscope and the cell number was adjusted to 3 x 105 cells/mL. 

          To each of the 2-well culture inserts, a total of 70 μL the cell suspension (3 

x 105 cells/mL) was added and incubated at 37°C and 5% CO2 for 24-hours to 

obtain a confluent monolayer of cells in each of the chambers. Thereafter, culture 

inserts were removed to expose the wound area (gap) between the two cell growth 

areas using a pair of forceps. Floating and dead cells were removed by washing 

the cells twice using serum-free DMEM media, then cells cultured in serum-free 
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DMEM media containing PAC or WFA alone or the combination. The gap area was 

monitored by examining the cells under a light microscope immediately (0-hours) 

and after 24 hours post treatment. The percent migration in each microphotograph 

was determined using Wimasis Image Analysis software (WimScratch).  

Transwell cell migration and invasion assay 

          The effects of WFA and PAC, alone and in combination on transwell 

migration and invasion of human NSCLC cells were determined using 8-μm pore 

size transwell culture inserts. Briefly, H1299 or A549 cells (8 x 105 cells/plate) were 

cultured in 100-mm culture plates in DMEM media (10% FBS) to 70-80% 

confluence. Thereafter, cells were serum starved for 24 hours and detached from 

plates using 0.25% trypsin-EDTA, suspended in serum free media and counted. 

          To conduct the transwell migration assay, 2.5 x 104 cells in 200 μL of serum 

free DMEM media (with and without TGFb1 in presence or absence of PAC or 

WFA alone and in combination) were seeded in the upper chamber of the transwell 

insert. A total of 600 μL of DMEM (10% FBS) was added to the bottom chamber 

to act as an attractant to cause cell migration. After 24-hour incubation, the 

migrated cells at the bottom of the insert were washed twice with PBS and fixed 

using 3.7% paraformaldehyde at room temperature for 10 minutes. The fixed cells 

were washed twice using PBS, permeabilized using 100% methanol for 20 minutes 

at room temperature and stained using 0.2% toluidine blue (in 1% sodium borate) 

for 15 minutes. The non-migrated cells remaining in the upper chamber of the 

transwell insert were removed using a cotton swab, and the number of migrated 

cells counted under the microscope. In the matrigel invasion assay, the same 
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procedure was followed except that the upper chamber of each transwell insert 

was pre-coated with 40 μL of 3.0 mg/mL matrigel at 4°C prior to cell culture. The 

number of migrated cells for each experimental unit was compared with the 

number of migrated cells in the control group. 

Western blot analysis 

          Western blotting was performed to compare expression levels of specific 

proteins in H1299 and A549 cells following incubation with either WFA or PAC, 

alone and in combination. In each experiment, cells were cultured up to 70-80% 

confluency and then incubated with either WFA or PAC, alone and in combination 

as indicated. The cells were collected using 0.25% trypsin-EDTA and washed 

twice with PBS at 4°C. Whole-cell protein lysates were prepared by suspending 

collected cell pellets into 50-100 μL of RIPA buffer and incubated for 30 minutes 

on ice. Thereafter, cells were lysed by vortexing the cell suspension for 30 seconds 

and protein lysate collected by centrifugation at 17000 x g for 45 minutes. The 

supernatant for each sample was transferred into labeled pre-chilled 1 mL tubes 

and the total protein concentration for each sample was determined by BCA 

method. For detection of specific proteins, volumes containing 20 μg of protein 

were loaded and separated per molecular weight on sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) using Bolt electrophoretic 

apparatus following manufacturer’s instructions.   

          Pre-stained proteins (10 μL) were loaded alongside the samples and used 

as molecular weight markers on either side of the gel during electrophoresis. The 

separated proteins were transferred from the gels onto PVDF membranes using a 
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Bio-Rad Transblot Cell apparatus at 20mV for 20 minutes. The membranes were 

washed in Tris-buffered-saline containing 0.1% Tween-20 (TBST) buffer for 5 

minutes and blocked with 5% non-fat milk prepared using TBST for 1 hour. After 3 

wash cycles (5 minutes each) in TBST, blots were cut according to protein 

molecular weight and the respective blots were incubated with primary antibodies 

in 10 mL of 5% non-fat dry milk (1:1000) at 4° C overnight. The following day, blots 

were washed 5 times in TBST (10 minutes each) to remove unbound primary 

antibodies and then incubated with respective HRP-conjugated secondary 

antibodies in 5% non-fat dry milk (1:3000) for 1 hour at room temperature. The 

primary and secondary antibody solutions were collected into 15 mL tubes and 

stored at -80°C for use in other experiments. The expression levels of each protein 

were determined by visualizing protein bands on blots using ECL detection 

reagents (Thermo Scientific) and images for each blot were developed. β-actin (for 

total protein) was used as protein loading control in all the experiments. 

Data and statistical analysis 

          In all experiments, vehicle and positive control groups were used to assess 

the validity of experimental conditions. Data were presented as means ± SD of 

technical replicates from at least 3 separate experiments. Normality and 

homogeneity of variances for all data sets were determined before conducting to 

one-way ANOVA. Comparisons of experimental versus vehicle control groups 

were done using the student's t-test and p-values <0.05 were considered 

statistically significant.  
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Calculation of synergism between PAC and WFA 
 
         The synergistic interaction between PAC and WFA was determined using 

the combination index (CI) method developed Chou et al., [63]. In this method, the 

fraction affected (fu) and the fraction unaffected were used to represent the 

percentage of cells killed by drug and the percentage of viable cells, respectively 

at each dose (D). For either PAC or WFA, the relationship between D, fa, fu and Dm 

was expressed in the median-effect equation (1) below; 

 

 

 

where; m is the shape of the dose-effect curve, and Dm is the median inhibitory 

concentration (IC50). Using equation (1), the dose (Dx) of either PAC (i.e. DxPAC) or 

WFA (i.e. DxWFA) alone that caused a specific inhibitory effect x% on the individual 

dose-response curves could be estimated by rearranging Equation (1) as follows; 

 
 

 

Further, the doses of PAC (DPAC) or WFA (DWFA) in the combination contributing to 

the same inhibitory effect (x%) as the individual agents was estimated from the 

combination dose-response curves using Equation (2). Equation (1) was further 

expressed in the logarithmic form as Equation (3) to enable the calculation of either 

Dm or D whenever other values of the equation were known. 
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Synergism at a specific effect levels (e.g. 50%, 75% or 90%) was determined by 

calculating the combination index (CI) using Equation (4), that essentially 

compared the doses; Dx (drug alone) and D (drug in the combination) for both PAC 

and WFA required to produce the same effect.  

 

 

 

where; DPAC and DWFA were the doses of PAC and WFA, respectively in the 

combination while, DxPAC and DxWFA were the doses of PAC and WFA alone, 

respectively at the selected effect level. The CI values; CI<1, C=1 and C>1 

indicated synergism, additive and antagonism, respectively. All these calculations 

were performed using CalcuSyn Version 2.0 software.  
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RESULTS 

Antiproliferative activity of PAC and WFA against H1299 and A549 cells  

          NSCLC cells are reported to be highly proliferative tumor cells that are 

usually resistant to standard chemotherapeutic agents. Therefore, targeting cell 

proliferation is a therapeutically viable strategy for developing clinically effective 

drugs. The objective of the present study was to determine and compare the 

effects of PAC and WFA alone, and in combination on the proliferation of two 

human adenocarcinoma cell lines, H1299 and A549. Cells were incubated with 

PAC or WFA alone and in combination for indicated time points and cell viability 

was determined by MTT assay. The hypothesis was that PAC as the standard-of-

care therapeutic, when used in combination with WFA would result into 

significantly enhanced antiproliferative activity and/or decrease the concentration 

of PAC required to achieve similar or higher anticancer effects. The dose-response 

data was used to calculate the median inhibitory concentrations (IC50) of either 

PAC or WFA alone and in combination.           

Figure 4A depicts the dose-response curves for PAC [0-40 nM] and WFA [0-2000 

nM] alone against the proliferation H1299 and A549 NSCLC cells. It was observed 

that PAC alone had a dose-dependent inhibitory effect on proliferation of both 

H1299 and A549 cells. For the two cell lines, concentrations of PAC alone (less 

than 5 nM) displayed similar antiproliferative activities as indicated by the shape of 
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the dose-response curve. However, at PAC concentrations of 8 nM and greater, 

there was more antiproliferative activity against A549 cells than towards H1299 

cells. The IC50 values of PAC were 8 nM and 25 nM against A549 cells and H1299 

cells, respectively. Despite the remarkable potency of PAC against either cell lines, 

the maximum achievable inhibitory effect (or efficacy) for PAC was less than 80% 

for the doses tested in this experiment.  

           Similarly, WFA also displayed dose-dependent inhibitory antiproliferative 

effects against both H1299 and A549 cells. Based on data from the dose-effect 

plot approximations, at WFA concentrations less than 800 nM, both H1299, and 

A549 cells had similar percent viability. However, as WFA concentrations 

increased to 1000 nM and greater, there was a greater antiproliferative activity of 

WFA towards H1299 cells than A549 cells. The overall IC50 values of WFA were 

831 nM and 683 nM against A549 and H1299 cells, respectively. Unlike PAC, at 

the tested concentrations, the efficacy of WFA was greater than 90% against both 

cell lines. Together, these results indicated that PAC had higher potency but lower 

efficacy than WFA against both cell lines at the tested concentrations.  

         Based on the results of the antiproliferative activity of PAC and WFA alone, 

it was hypothesized that the combination of PAC and WFA would have greater 

antiproliferative effects than each agent alone. Initially, both cell lines were 

incubated either PAC (10 nM) or WFA (0.5 µM) alone and in combination and the 

cell viability was determined at multiple time points. Figure 4B shows the time-

dependent antiproliferative activity of PAC and WFA at multiple time points.   
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Figure 4. Antiproliferative activity of PAC and WFA, alone and in combination against H1299 and 
A549 NSCLC cells in vitro. (A) The dose-response effects of PAC and WFA alone against H1299 
and A549 cells respectively. The cells were cultured in DMEM media in 96-wells culture plates and 
incubated with PAC [0-40 nM] or WFA [0-2000 nM] for 72 hours. The IC50 of PAC were 8.1 and 25 
nM while the IC50 for WFA were 831 and 683 nM against A549 and H1299 cells, respectively. (B) 
The time-dependent antiproliferative activity of PAC [10 nM] or WFA [0.5 μM] alone and in 
combination against A549 and H1299 cells. Both PAC and WFA alone decreased the viability of 
cells especially at 48 and 72 hours (*p<0.05). The combination of PAC and WFA had a greater 
inhibitory effect than either PAC or WFA alone (**p<0.001). Data are mean ± SD values (n=8).  
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WFA synergizes the anticancer effects of PAC against H1299 and A549 cells    

          To investigate whether the antiproliferative activities of the combination of 

PAC and WFA was synergistic, the dose-response data of PAC or WFA alone and 

in combination was subjected to synergism analysis using the method described 

by Chou et al., [63]. Figure 5A shows the dose-response plots of PAC and WFA 

alone and in combination (1:50) against H1299 cells. The results indicate that both 

PAC and WFA alone had dose-dependent inhibitory effects on the proliferation of 

H1299 cells. Interestingly, for concentrations less than 12 nM, PAC alone 

displayed higher inhibitory effects on cell proliferation than WFA. However, the 

overall maximum inhibitory effect on cell proliferation was only about 60-70% for 

PAC while that of WFA was >90% for concentrations equal or greater than 2 µM. 

Together, these results demonstrate that PAC shows higher potency but lower 

efficacy than WFA against the proliferation of H1299 cells.  

          When PAC was combined with WFA, the inhibitory effects on H1299 cell 

proliferation was dramatically increased and there was a change in the shape of 

the dose-response curve. Figure 5B depicts the CI versus fractional effect plot of 

the combination of PAC and WFA at a combinatorial ratio of 1:50, respectively. For 

fractional effects between 0.2 and 1.0, the CI values were all below 1 indicating a 

synergistic interaction between PAC and WFA. Figure 5C shows the summary of 

CI values at IC50, IC75, and IC90 which were 0.8, 0. 8, and 0.8, respectively for the 

combinatorial ratio of 1:50. Similarly, at the combinatorial ratio of 1:25, the CI 

values at IC50, IC75 and IC90 were 0.8, 0.6, and 0.6 respectively. The overall IC50 

values for PAC and WFA combination were 7 and 10 nM at 1:50 and 1:25 ratios.  
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Similarly, against A549 cells, as shown in figure 6A, PAC and WFA alone had 

dose-dependent inhibitory effects on cell proliferation with maximum effects of 70% 

and >80% for PAC and WFA, respectively. The combination of PAC and WFA had 

greater dose-dependent inhibitory effects on cell proliferation than each agent 

used alone. Moreover, greater than 80% of A549 cell proliferation was achieved 

with concentrations of PAC and WFA less than 20 nM and 1 µM, respectively.  

              Figure 6B shows the CI versus fractional effect plot of the combination of 

PAC and WFA at a combinatorial ratio of 1:50. As indicated, there was a dramatic 

decrease in the concentration each agent required to achieve specific inhibitory 

effects against A549 cells. The combination of PAC and WFA had CI values less 

than 1 for fractional effects between 0.2 and 1.0 against both H1299 and A549 

cells. This indicated that the interaction of PAC and WFA was synergistic at 1:50 

combination ratio. In summary, table 1 indicates that for H1299 cells, the 

combination achieved a 3-fold and 4-fold reduction in the IC50 values of PAC when 

it was combined with WFA. Moreover, at higher inhibitory effects (75% and 90%), 

there was an even greater dose reduction for PAC of up to 8-fold and 17-fold, 

respectively. Similarly, in A549 cells, specific inhibitory effects (50%, 75%, and 

90%) were achieved with much lower paclitaxel concentrations (3-fold, 12-fold, and 

46-fold), respectively.  
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Figure 5. The synergistic antiproliferative activity of PAC and WFA against H1299 NSCLC cells. 
(A) The percent inhibition versus concentration of PAC or WFA alone and in combination. There 
were dose-dependent inhibitory effects for both PAC and WFA on cell proliferation. PAC had a 
higher potency than WFA at concentrations lower than 12 nM but the maximum inhibition was 
<60% and about 90% for PAC and WFA, respectively.  The combination of PAC and WFA (1:50) 
had much greater potency and efficacy than either PAC or WFA alone. (B) The CI versus fractional 
effect plot shows that CI < 1 for fractional effects 0.2 to 1.0 indicating synergism of PAC and WFA 
as calculated by CalcuSyn Software (CI<1). (C) The summary of CI values (<1) at IC50, IC75, and 
IC90 indicating synergism between PAC and WFA. 
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Figure 6. The synergistic antiproliferative activity of PAC and WFA against A549 NSCLC cells. (A) 
The percent inhibition versus concentration plot for PAC or WFA alone and in combination. There 
were dose-dependent inhibitory effects for both PAC and WFA on cell proliferation. PAC had a 
higher potency than WFA at concentrations lower than 25 nM and a maximum percent inhibition of 
70% and about 90% for PAC and WFA, respectively. The combination of PAC and WFA (1:50) had 
much greater potency and efficacy than either PAC or WFA alone with maximum percent inhibition 
>95% at <10 nM PAC. (B) The CI versus fractional effect plot indicates CI < 1 for fractional effects 
0.3 to 1.0 indicating synergism of PAC and WFA as calculated by CalcuSyn Software (CI<1). (C) 
Shows the summary of CI values (<1) at IC50, IC75, and IC90 indicating synergism between PAC 
and WFA. 
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Table 1. Dose reduction of PAC in combination with WFA against NSCLC cells 

	

	 	

  Dose of PAC (nM) 

Cell line Effect (%) 
PAC:WFA 

(1:0) 

PAC: WFA 
(1:50) 

PAC:WFA 
(1:25) 

H1299 

25 5 3 4 

50 25 7 10 

75 116 15 19 

90 544 32 42 

A549 

25 0.9 0.9 0.9 

50 8 2 4 

75 74 6 11 

90 669 15 26 
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Effect of PAC and WFA on induction of apoptosis in H1299 and A549 cells 

          Most anticancer agents including PAC halt the progression of cancer cells 

through the induction of apoptosis. To date, several studies have also provided 

evidence to show that WFA can induce apoptosis in various cancer cell types 

including NSCLC. To investigate whether WFA enhanced the antiproliferative 

activity of PAC through increased induction of apoptosis in NSCLC cells, we 

compared the percentage of apoptotic cells between PAC and WFA alone and in 

combination (1:50). Figure 7A and 7B show the Annexin V/PI dead cell assay 

results for cells incubated with either PAC or WFA alone and in combination. PAC 

alone increased the percentage of both H1299 and A549 cells positive for Annexin 

V stain, an indicator of increased apoptosis, with greater efficacy in A549 cells. On 

the other hand, WFA resulted into an increased number of Annexin V positive cells 

in H1299 cells more than in A549 cells. The combination of WFA and PAC resulted 

in a higher percentage of Annexin V positive cells for both H1299 and A549 cells 

than either PAC or WFA alone. The induction of apoptosis was also determined by 

western blot analysis of whole-cell lysates for increased levels of cleavage of 

PARP, a product of active caspases (Figure 7C).  

        In figure 8, western blot analysis revealed that WFA increased the levels of 

the pro-apoptotic protein Bax while decreasing the levels of the anti-apoptotic 

protein Bcl-2.  Similarly, cell cycle regulatory proteins (cyclin E and cyclin B) were 

significantly decreased, indicating possible cell cycle arrest and induction of 

apoptosis. Overall, the combination of PAC and WFA induced apoptosis probably 

through cell cycle arrest by inhibiting the expression.   
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Figure 7. Effect of PAC and WFA on induction of apoptosis in H1299 and A549 NSCLC cells. (A). 
PAC and WFA increased the percentage of AnnexinV positive (apoptotic) cells compared to 
controls in both H1299 and A549 cells. PAC had higher activity against A549 cells while WFA had 
greater activity against H1299 cells. The combination of PAC and WFA had a significantly 
(**p<0.05) induced apoptosis in a higher percentage cells than either PAC or WFA alone (B) 
Western blot analysis of whole cell lysates after incubation with PAC and WFA alone, and in 
combination indicating increased levels of cleaved-PARP. 
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Figure 8. Western blot analysis depicting the effect of PAC and WFA alone and in combination on 

regulators of apoptosis and cell cycle. PAC alone had minimal inhibitory effects on the expression 

of the mitochondrial anti-apoptotic protein Bcl-2, but WFA had a dose-dependent inhibition of Bcl-

2 expression. The combination of PAC and WFA significantly decreased the levels of Bcl-2 than 

either PAC or WFA alone, indicating greater pro-apoptotic potential. Furthermore, the levels of the 

pro-apoptotic protein Bax were minimally affected by PAC alone but increased in response to WFA 

alone or in combination with PAC. The cell cycle regulatory proteins Cyclin E2, Cyclin B1 and STAT3 

were also minimally affected by PAC compared to controls but were decreased when cells were 

incubated with WFA alone and in combination with PAC. β-actin was used as total protein loading 

control.  
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Effect of PAC and WFA on the migration of H1299 and A549 cells.  

           The migratory capacity of NSCLC cells is a key molecular event in the ability 

of primary tumors to establish distant metastases. Therefore, we investigated the 

anti-migratory effects of PAC and WFA alone and in combination against H1299 

and A549 cells. The wound healing assay was performed and used to determine 

the rate of migration or motility of both H1299 or A549 cells over 24 hours in the 

presence of PAC (10 nM) or WFA (0.5 µM) alone and in combination.  

          Figure 9 shows the migration of H1299 cells over a 24-hour experimental in 

cell culture. The results indicate that H1299 cells cultured in DMEM alone (vehicle) 

achieved almost 100% migration into the cell gap at 24 hours. In the presence of 

PAC alone, a minimal effect on H1299 cell migration (>80% migration) compared 

to the migration in control wells was observed. In contrast, in the presence of WFA, 

there was a statistically significant (*p<0.05) inhibitory effect on cell migration 

(<70% migration). Furthermore, when cells were incubated with the combination 

of PAC and WFA, the anti-migratory effects were dramatically enhanced and even 

greater inhibition (#p<0.05 versus WFA alone) of H1299 cell migration (<50% 

migration). Figure 10 shows the wound healing assay for the migration of A549 

cells depicting up to 50% and 60% inhibition of A549 cell migration for PAC and 

WFA, respectively. As was observed for H1299 cells, the combination of PAC and 

WFA had a significantly (#p<0.05 versus WFA) greater inhibitory effects on the 

migratory capacity of both H1299 and A549 NSCLC cells compared to either PAC 

or WFA alone. 
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Figure 9. Wound healing assay depicting migration of H1299 NSCLC cells. The area 
covered with cells is indicated in green and was compared between time 0 and 24 h to 
determine percent migration. The control group of cells, cultured in media alone had 
increased migratory capacity (>99%) within 24 hours. PAC (10 nM) had minimal effect on 
H1299 cell migration (80-90% migration) which was not statistically significant. However, 
incubation of cells with WFA (0.5 µM) alone significantly (*p<0.05) inhibited the cell 
migration compared to control. Further, H1299 cells incubated in media containing a 
combination of PAC and WFA (1:50) significantly inhibited the migration of cells in the gap 
area greater than either PAC or WFA alone (*p<0.05 versus control, and #p<0.05 versus 
either PAC of WFA alone). Data are mean±SD of 3 experiments. 
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Figure 10. Wound healing assay depicting migration of A549 NSCLC cells. The area covered with 
cells is indicated in green and was compared between time 0 and 24 h to determine percent 
migration. The control group of cells, cultured in media alone had increased migratory capacity (80-
95%) within 24 hours. A549 cells incubated with PAC (10 nM) alone had decreased percent 
migration (<60%) which were statistically significant (*p<0.05) compared to control group of cells. 
Further, WFA (0.5 µM) alone significantly (*p<0.05 versus control, #p<0.05 versus PAC alone) 
inhibited A549 cell migration. The combination of PAC and WFA (1:50) resulted into much lower 
percent migration (<40%) that was statistically significant compared to either PAC or WFA alone 
(##p<0.05 versus either PAC of WFA alone). Data are mean±SD of 3 experiments.  
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Effect of PAC and WFA on TGFβ1-induced EMT in H1299 and A549 cells 

          Epithelial-to-mesenchymal transition (EMT) is set of complex cellular events 

which cancer cells undergo to transition from an epithelial to a mesenchymal 

phenotype. This process enhances the migratory capacity of cells and increases 

the chance of metastasis. To investigate whether WFA alone or in combination 

with PAC inhibited TGFβ1-induced EMT in H1299 and A549 cells, we compared 

the cellular morphology and the expression levels of known molecular markers of 

mesenchyme phenotype between cells cultured with PAC and WFA, alone and the 

combination. 

          Figure 11 shows that A549 cells cultured in serum-free media had visible 

cell-cell contact, and a rounded cell shape typical for that cell line. However, the 

incubation of these cells with 5 ng/mL TGFb1 in serum-free media, cells caused 

significant changes in cell morphology characteristic of the transition from an 

epithelial to mesenchymal phenotype. To corroborate these findings, western blot 

analysis (Figure 12) of whole-cell lysates of A549 and H1299 cells following 

incubation with 5 ng/mL of TGFb1 with or without PAC or WFA alone and in 

combination was performed. The results indicate that TGFβ1 induced the 

expression of EMT markers, vimentin, β-catenin, Snail, and ZEB while decreasing 

the levels of the epithelial marker E-cadherin in either A549 or H1299 cells. 

Together, the morphology changes and EMT protein expression was considered 

a positive change of the cells from an epithelial to mesenchymal phenotype. For 

both cell lines, PAC had minimal effects on the TGFβ-induced EMT markers within 

the experimental period of 24 hours. In contrast, in the presence of WFA alone, 
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there was significant inhibition of the expression of EMT markers in both cell lines. 

There was a dose-dependent inhibition of vimentin, β-catenin, Snail, and ZEB 

expression when cells were incubated with WFA alongside TGFb1. Furthermore, 

for both NSCLC cell lines, the observed TGFβ1-induced downregulation of E-

cadherin was also inhibited when cells were incubated in the presence of WFA. 

The combination of PAC and WFA had an even greater inhibitory effect on TGFβ-

1 induced EMT in A549 and H1299 cells. Based on these findings, we explored 

the ability of PAC and WFA to inhibit adhesion and migration induced by TGFβ1. 
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Figure 11. Immunofluorescence staining depicting the effect of PAC and WFA on TGFβ1-induced 
morphological changes in A549 cells. Cells were cultured in 8-well µ-slides, serum starved for 24 
prior to the treatment and incubated with 5 ng/mL TGFβ1 in serum-free media for an additional 24 
hours. WFA alone, and in combination with PAC inhibited the morphological changes induced by 
TGFβ1.  
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Figure 12. Western-blot analysis depicting the effect of PAC and WFA on TGFβ1-induced EMT in 
A549 cells cultured for 24 hours. Cells cultured in serum-free media alone had minimal expression 
of EMT markers. However, A549 and H1299 cells cultured in serum-free media containing TGFβ1 
(5 ng/mL) had an increased expression of EMT protein markers, vimentin, and β-catenin as well as 
transcription factors ZEB and Snail but decreased levels of the protein E-Cadherin. WFA, alone 
and in combination with PAC, inhibited the TGFβ1-induced EMT in both cell types. β-actin was 
used as an internal loading control. 
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Effect of PAC and WFA on TGFβ1-induced adhesion of H1299 and A549 cells 

           Cell adhesion refers to the ability of cells to bind to an extracellular matrix 

or other cells. This process involves complex biochemical changes in the cells that 

result in the expression of specific molecules on the surface of the cell and it is 

important for cell-cell communication, growth, and survival of cells. Through cell 

adhesion, circulating tumor cells can establish distant metastases by attaching to 

distant tissues. Therefore, we investigated whether WFA and PAC alone and in 

combination could inhibit TGFβ1-induced adhesion of H1299 and A549 cells.  

           Figures 13 and 14 show the findings from the cell adhesion assay for A549 

and H1299 cells, respectively. In each case, the OD values from cells cultured in 

serum-free media were presented as 100% cell viability and used as a reference 

to calculate the fold change in adhesion when cells were cultured in serum-free 

media containing TGFb1.  In figure 12, A549 cells cultured in serum free media 

containing 5 ng/mL of TGFβ1 had significantly (*p < 0.05) higher (4-fold) percent 

adhesion to matrigel compared to A549 cells cultured in serum-free media alone 

(control). However, when A549 cells were incubated with TGFb1 in the presence 

of PAC [12-100 nM] alone, there was a dose-dependent decrease in percent cell 

adhesion compared to cells that were cultured with TGFb1 alone (**p<0.05 for 

PAC+TGFb1 versus TGFb1). Similarly, A549 cells seeded in media containing 

TGFb1 and WFA [0.6-5.0 nM] alone had a statistically significant (**p<0.05 for 

WFA+TGFb1 versus TGFb1) dose-dependent reduction in percent cell adhesion 

compared to cells cultured in the presence of TGFb1 alone.  However, when PAC 

and WFA were combined (at 1:50 ratio, respectively), the dose-dependent 
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decrease in percent A549 cell adhesion was significantly enhanced than when 

either PAC or WFA when used alone.   

          Figure 14 shows the results of the cell adhesion assay depicting the 

inhibitory effects of PAC or WFA alone and in combination against TGFb1-induced 

H1299 cell adhesion. As was the case for A549 cells in figure 13, the viability of 

H1299 cells cultured in serum-free media was considered as 100% adhesion. 

When H1299 cells were incubated in serum-free media containing 5 ng/mL of 

TGFb, there was a 2-fold increase in H1299 cell adhesion compared to H1299 

cells that were incubated in serum free media without TGFb1. Further, both PAC 

and WFA alone had statistically significant (**p<0.05) dose-dependent inhibitory 

effects on H1299 cell adhesion induced by TGFb1. Interestingly, at the indicated 

concentrations, WFA alone had a greater inhibitory effect on cell adhesion than 

PAC alone but the combination of the two had greater inhibitory effects on cell 

adhesion than the individual agents alone. Together, these data suggest that 

combination of PAC and WFA can significantly inhibit adhesion of NSCLC cells to 

matrigel in vitro which suggests the ability to inhibit metastasis in vivo. 
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Figure 13. Effect of PAC and WFA, alone and in combination, on TGFβ1-induced adhesion of A549 
NSCLC cells to matrigel. The figure shows that TGFβ1 (5 ng/mL) significantly (*p<0.05) increased 
the adhesion of A549 (4-fold) compared to cells cultured in serum-free media alone (control). 
However, either PAC or WFA alone had a statistically significant dose-dependent inhibitory effect 
(WFA>PAC) on TGFβ1-induced adhesion of A549 cells to matrigel (**p<0.05 compared to TGFb1 
alone). The combination of PAC and WFA had an even greater inhibitory effect on TGFβ1-induced 
adhesion of cells than either PAC or WFA alone. Data are percent (Mean ± SD) of controls. 
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Figure 14. Effect of PAC and WFA, alone and in combination, on TGFβ1-induced adhesion of 
H1299 NSCLC cells to matrigel. The figure shows that TGFβ1 (5 ng/mL) significantly (*p<0.05) 
increased the adhesion of H1299 cells (2-fold) compared to cells cultured in serum-free media 
alone (control). In contrast, either PAC or WFA alone had a statistically significant dose-dependent 
inhibitory effect (WFA>PAC) on TGFβ1-induced adhesion of H1299 cells to matrigel (**p<0.05 
compared to TGFb1 alone). The combination of PAC and WFA had an even greater inhibitory effect 
on TGFβ1-induced adhesion of cells than either PAC or WFA alone. Data are percent (Mean ± SD) 
of controls. 
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Effect of PAC and WFA on TGFβ1-induced migration of H1299 and A549 cells 

          The objective of this study was to determine whether WFA or PAC alone or 

in combination could inhibit TGFβ1-induced migration of A549 and H1299 NSCLC 

cells. The wound healing assay was performed to mimic the in vitro migration of 

H1299 and A549 cells using cell culture inserts in serum-free media. Cell motility 

was monitored using a microscope at 0 hours and at 24 hours to determine the 

extent of cell migration in serum free media containing 5 ng/mL of TGFb1 in the 

presence of either PAC or WFA alone and in combination.  

         Figure 15 shows that H1299 cells cultured in serum-free media without 

TGFb1 (control) had minimal migration (<5%) between 0 and 24 hours. However, 

in the presence of 5 ng/mL of TGFβ1, H1299 cells had significantly (*p<0.05) 

increased migratory capacity (>80%) compared to the controls within 24 hours. 

However, as was observed for the cell adhesion assay, PAC alone (20 nM) had a 

statistically significant (#p<0.05) inhibitory effect on TGFb1-induced migration of 

H1299 cells compared to H1299 cells cultured with TGFβ1 alone. Thus, there was 

only 50% migration into the cell gap when H1299 cells were incubated with PAC 

alongside TGFb1 in serum-free media. Similarly, in the presence of WFA (1 µM) 

alone, there was less than 20% migration of H1299 cells into the cell gap which 

was statistically significantly (#p<0.05) lower than H1299 cells cultured with TGFb1 

alone. When H1299 cells were cultured in media containing TGFb1 in the presence 

of both PAC and WFA, the percent migration was less than 10% and statistically 

different from either PAC or WFA alone (##p<0.0.001).  
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       Figure 16 depicts the effect of PAC or WFA alone and in combination on the 

migration of A549 cells induced by TGFb1 in serum-free media. The figure shows 

that A549 cells cultured in serum-free media had minimal migration (10-20%) 

between 0 and 24 hours. As was observed with H1299 cells in figure 14, by co-

treatment, PAC alone significantly inhibited the TGFb1-induced migration of A549 

cells. Furthermore, WFA alone also inhibited TGFβ1-induced cell migration of 

A549 but with greater efficacy than PAC. However, the combination of PAC and 

WFA had significantly lower percent (<5%) migration of A549 cells than either PAC 

or WFA alone, indicating much greater inhibition of cell motility. Together, these 

findings indicated that both PAC and WFA alone had inhibitory effects on H1299 

and A549 migration induced by TGFb1 in serum-free media and that the inhibitory 

effects were enhanced when PAC was used together with WFA. 
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Figure 15. Inhibition of TGF-β1-induced migration in H1299 cells. The figure depicts minimal 
migration of H1299 cells cultured in serum-free media. However, TGF-β1 (5 ng/mL) in serum-free 
media increased the migration of H1299 cells into the scratch area within 24-hours (**p<0.05). Also, 
PAC (10 nM) and WFA (0.5 μM) significantly inhibited (WFA>PAC) the TGF-β1-induced migration 
of H1299 cells (## p<0.05 vs TGFβ1). The PAC and WFA had a greater inhibitory effect induced 
migration of A549 cells in vitro than each agent alone (### p<0.001 vs. PAC and WFA alone).  
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Figure 16. Inhibition of TGF-β1-induced migration in A549 cells. The figure depicts minimal 
migration of A549 cells cultured in serum-free media. Incubation of cells with TGF-β1 (5 ng/mL) in 
serum-free media increased the migratory capacity into the scratch area within 24-hours (**p<0.05). 
PAC (10 nM) and WFA (0.5 μM) significantly inhibited (WFA>PAC) the TGF-β1 induced migration 
(## p<0.05 vs. TGFβ1). The c of PAC and WFA had a greater inhibitory effect on TGF-β1-induced 
migration of A549 cells in vitro than each agent alone (### p<0.001 vs. PAC and WFA alone). 
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Effect of PAC and WFA on TGFβ1-induced transwell migration and invasion 

of H1299 and A549 cells 

           The objective of this study was to determine whether PAC or WFA alone 

and in combination inhibited the migration of H1299 or A549 cells from the upper 

to bottom chamber in a transwell plate. Cells were cultured in serum-free media in 

the upper chamber and media containing serum was placed at the bottom as a 

chemoattractant. The results are presented as microphotographs of migrated cells 

at the bottom of the transwell plate stained with toluidine blue dye after 24 hours. 

           Figure 17 shows the results of the transwell migration assay while figure 18 

shows findings from the matrigel invasion assay. Here, the migration assay 

indicated that both A549 and H1299 cells, when cultured in serum-free media, had 

minimal migration to bottom chamber of the transwell plates. However, in the 

presence of TGFβ1, there was a remarkable and statistically significant increase 

in the number of cells that migrated. When cells were co-cultured with TGFb1 and 

PAC alone, there was a decrease in the number of migrated cells when compared 

to TGFb1 alone. The effect of PAC alone on TGFb1-induced migration was greater 

for A549 cells than was observed in H1299 cells. Similarly, when H1299 or A549 

cells were cultured with TGFb1 and WFA alone, there was a significant decrease 

in the number of cells that migrated to the bottom of the transwell plate. 

Interestingly, unlike what was observed with PAC, the effect of WFA was more 

pronounced against H1299 than A549 cells. As was observed with other assays, 

the combination of WFA and PAC had much greater inhibition of TGFb1-induced 

migration of either H1299 or A549 cells compared with each agent alone. 
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           Figure 18 shows the findings from the in vitro invasion of matrigel assay, a 

widely-used method to determine the anti-invasive activity of anticancer agents. 

Here, it was clear that serum-starved H1299 or A549 NSCLC cells cultured in 

serum-free media had minimal invasion as indicated by the lower number of 

stained cells at the bottom of the transwell chamber. However, the invasion of both 

cell lines was greatly increased in the presence of 5 ng/mL of TGFβ1 in serum-

free media. As was observed with the transwell migration assay, similar effects of 

PAC and WFA alone, when co-cultures alongside TGFβ1 significantly decreased 

the invasiveness of cells. Further, that the combination of PAC and WFA had a 

significantly higher inhibitory effect on cell invasion than when both agents were 

used alone. Together, the findings presented from these two assays provided 

credence to our hypothesis that PAC and WFA, when used in combination would 

produce significantly greater inhibition of migration and invasion of NSCLC cells. 
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Figure 17. Inhibitory effects of PAC and WFA, alone and in combination, on TGF-β1-induced trans-
well migration of A549 and H1299 cells. In control wells, cells grown in serum-free media had 
minimal migratory. However, TGFβ1 (5 ng/mL) significantly (*p<0.05) increased the migration of 
both A549 and H1299 cells. Further, PAC (20 nM) alone had a statistically significant inhibitory 
effect on TGFβ1-induced migration (#p<0.05 vs TGFβ1), but still greater than vehicle (*p<0.05 vs 
vehicle). However, WFA (1 μM) alone and in combination with PAC (20 nM) significantly decreased 
the number of migratory cells for both A549 and H1299 cell lines compared to TGFβ1 (#p<0.05) 
and the vehicle control. Data are means ±SD for each group from 3 independent experiments.  
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Figure 18. The inhibitory effects of PAC and WFA, alone and in combination, on TGF-β1-induced 
Matrigel base membrane invasion of A549 and H1299 cells. Either A549 or H1299 cells grown in 
serum-free media (vehicle) had a minimal number of invasive cells. Incubation of cells with TGFβ1 
(5 ng/mL) significantly (*p<0.05) increased the invasion of both A549 and H1299 cells. PAC (20 
nM) alone had a inhibited the invasion of cells in response to TGFβ1 (#p<0.05 vs TGFβ1. Similarly, 
WFA (1 μM) alone inhibited (much greater than PAC) the invasive capacity of either A549 or H1299 
cells induced by TGFβ1. The combination of WFA and PAC also significantly decreased the 
number of migratory cells but not much greater than WFA alone. Data are means ±SD for each 
group from 3 independent experiments.  
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DISCUSSION 

        Lung cancer remains the leading cause of cancer-related deaths among both 

men and women in the U.S and worldwide [1, 2, 7]. Currently, the overall 5-year 

survival rate for all stages hovers around 17% while it is only 4% for those who are 

diagnosed with advanced disease [1, 3]. Despite improvements in imaging and 

diagnostic techniques as well as recent advances in chemotherapy, the prognosis 

of lung cancer has remained extremely poor. To date, 60- 70% of lung cancer 

patients are diagnosed when the tumors are at advanced stages [2]. For such 

patients, the tumors are not amenable to curative surgery due to metastasis, and 

the therapeutic objective is not to cure but to manage symptoms and prolong the 

lives of patients [13, 18, 23]. Therefore, chemotherapy, targeted or immunotherapy 

alone or in combination are the cornerstone of lung cancer treatment [12, 23].  

         Currently, several drugs are approved for the treatment of advanced NSCLC 

but the platinum drugs (either carboplatin or cisplatin) in combination with PAC are 

the most widely used as first-line regimens [6]. PAC or taxol, a member of the 

taxanes was first approved by FDA for the treatment of NSCLC in 1999 [64]. 

Mechanistically, PAC acts by binding to β-tubulin and stabilizing microtubules 

during cell division causing mitotic arrest [64]. Whether cells undergo apoptosis or 

not following mitotic arrest by PAC is dependent on efficient mitotic checkpoint 

mechanisms which are often dysregulated in NSCLC cells. Consequently, the 
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the response rate of NSCLC to the platinum drugs-PAC regimen is only up to 25% 

and clinical efficacy has plateaued at about 10-14 months [6, 18]. Further, the 

clinical efficacy of PAC is limited by its poor solubility, drug resistance and dose-

limiting life-threatening toxicity [13]. To overcome the challenges with cytotoxic 

compounds like PAC, targeted therapies and immune checkpoint inhibitors have 

been developed and approved for NSCLC treatment. However, even with these 

drugs, it is widely reported that only 60% of NSCLC tumors show targetable 

mutations and only 25% of patients benefit from immunotherapy [25]. Therefore, 

there is an unmet need to develop safe and efficacious drugs for the treatment of 

advanced lung cancer.    

           In the present study, a novel strategy aimed at improving the clinical 

efficacy, delay drug resistance and decrease the toxicity of PAC against NSCLC 

was explored. This strategy has been explored elsewhere [28] and the effects of 

combining standard chemotherapeutic agents with novel non-toxic plant-derived 

anticancer compounds against various cancer types are being investigated. 

Presently, we focused on WFA because it is one of the most promising plant-

derived lead anticancer compounds with the potential to become a clinically useful 

drug. Over the past decade or so, preclinical data has accumulated indicating the 

potency and efficacy of WFA against various cancer cell types. A review of the 

literature shows that several studies have been published demonstrating the in 

vitro and in vivo efficacy of WFA against the proliferation of various cancer cell 

types [37, 39, 65-67]. More importantly, the evidence is now accumulating 

indicating the potential of WFA to synergize the anticancer activity of standard 
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chemotherapeutic drugs like cisplatin and carboplatin against ovarian and breast 

cancers [40].  

           Building on the hypotheses from previous studies, the present study was 

designed to determine the effect of PAC and WFA, alone and in combination, on 

the proliferation, migration, and invasion of lung cancer cells. Here we 

demonstrated that by combining PAC and WFA, we could effectively target the 

proliferation of NSCLC cells and enhance the anticancer activity of PAC. The 

strategy of targeting cell proliferation has been reported to be a viable option for 

inhibiting NSCLC tumor progression and that it can provide valuable insights into 

the clinical efficacy of drug candidates [10]. Like the present study, several other 

published studies have also demonstrated the antiproliferative effects of WFA [37, 

65, 68] against multiple cancer cell types. The MTT assay was used as an indirect 

measure of cell proliferation to demonstrate that WFA significantly enhanced the 

antiproliferative activity of PAC against both H1299 and A549 NSCLC cells. 

Comparatively, higher (>90% inhibition) antiproliferative activities of PAC were 

achievable by co-treatment with WFA.  

          From the present data, it was evident that both PAC and WFA displayed 

time and concentration dependent inhibition of NSCLC cell proliferation. In support 

of Weaver et al., [64], the median inhibitory concentrations of PAC were between 

8-25 nM, concentrations which were previously reported to be clinically relevant. 

Furthermore, the potency of PAC was greater against A549 cells (3-fold lower IC50) 

than was observed in H1299 cells. On the other hand, the IC50 values for WFA 

against both A549 and H1299 were in the sub-micro molar range indicating the 
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greater potency of PAC than WFA. Unfortunately, despite the high potency 

displayed by PAC compared to WFA, the overall efficacy of PAC against both cell 

lines was less than that for WFA. Therefore, the rationale was to combine the 

higher potency PAC and high efficacy WFA to achieve greater activity in the 

combination.  

          The combination strategy of PAC and WFA is justified because more than 

one cytotoxic drug combinations are the norm of cancer chemotherapy. However, 

determining synergism in a clinical scenario is not practical because it is rare to 

study dose-response relationships in patients. Therefore, the current in vitro cell 

culture studies provides a useful starting point for investigating the utility of this 

drug combination clinically. Using the CI and fractional-effect method developed 

by Chou et al., [63] we demonstrated synergism between PAC and WFA against 

NSCLC cells. By calculating the CI values at various effect levels, the combination 

of PAC and WFA at constant ratios of 1:50 and 1:25 ratios displayed a synergistic 

(CI<1) antiproliferative activity against H1299 and A549 cells.  

          Like the present findings, a synergistic effect of the combination of WFA and 

cisplatin against ovarian cancer have been demonstrated previously [40]. In the 

present study, for both H1299 and A549 NSCLC cell lines, synergism (C<1) of the 

PAC and WFA was observed at effect levels between 25-90%. It was possible to 

significantly decrease the amount of either PAC or WFA required to achieve similar 

or higher antiproliferative activity. For example, the combination of PAC and WFA 

resulted in a 4-fold and a 2-fold decrease in the IC50 values of PAC at 1:50 and 

1:25 combinatorial ratios, respectively than PAC alone. Further, it appears that the 
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dose reduction was dependent on the effect level and as indicated, there was 

greater dose reduction for PAC at 75% and 90% inhibitory effects, respectively. 

This dose reduction if can be validated using in vivo models can be exploited 

clinically to address the dose-limiting toxicity problems of PAC.  

          The synergistic effects discussed thus far were based on cell viability 

findings from MTT studies. Unfortunately, it is widely reported that MTT assay has 

major drawbacks including changes in cellular metabolic and energy processes, 

enzyme activity, and uptake of the MTT reagent into cells which could significantly 

affect the rate of metabolism of the MTT reagent. We recognized that these factors 

could lead to an over/underestimation of cell viability as reported by Wang et al., 

[69]. Therefore, to validate the MTT findings, the ability of PAC and WFA to induce 

apoptosis was also assessed. Mechanistically, the induction of apoptosis in cancer 

cells is the major mode of action for several cytotoxic anticancer agents [6, 16]. 

PAC is a potent inducer of apoptosis in many normal and cancer cell types, but, 

as noted earlier, the induction of apoptosis by PAC is both time and concentration 

dependent [64]. This is because sufficient time is required to allow effective 

concentrations of PAC to build up in cancer cells. Unfortunately, NSCLC cells are 

reported to have alternative survival pathways that enable progression of the cell 

cycle with poorly separated chromosomes. For this and other reasons, cytotoxic 

agents like PAC rarely achieve high efficacy levels at tolerable doses [6].  

           In the present study, PAC-induced apoptosis with greater potency in A549 

cells than H1299 cells. On the other hand, WFA significantly induced apoptosis 

with greater potency against H1299 than A549 cells. As was observed with MTT 
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assay, the combination of PAC and WFA had a greater pro-apoptotic effect than 

either PAC or WFA alone. Interestingly, it appears that PAC and WFA induce 

apoptosis via distinct anticancer mechanisms making their combination viable and 

attractive [44]. There are two main apoptosis pathways-the extrinsic (via cell death 

receptors) or intrinsic (mitochondrial) pathways. Our data suggests that PAC, 

unlike WFA, had minimal effects on mitochondrial apoptosis regulators Bax and 

Bcl-2. For both compounds, there was an inhibitory effect on cell cycle regulatory 

proteins. Overall, these findings obtained from the apoptosis assay support the 

synergistic interaction of PAC and WFA and suggest that the increased 

antiproliferative activity of the combination was dependent on increased induction 

of apoptosis in both cell lines. 

          Metastasis remains the primary cause of death in lung cancer patients yet 

there are no approved drugs that specifically target this process [12]. Several 

published studies have indicated that mesenchymal characteristics enhance the 

migratory and invasive capacities of NSCLC cells during metastatic [70]. Further, 

that the tumor microenvironment consists of several cell types including immune 

cells, fibroblasts, and vascular cells which produce several factors including 

transforming growth factor (TGFβ1). In response to TGFb1, NSCLC cells undergo 

complex biochemical changes that enable the transition of the cells from an 

epithelial to mesenchymal phenotype [71]. Through, EMT, cells lose cell to cell 

contacts, epithelial markers like E-Cadherin, and acquire mesenchymal markers 

like vimentin [70].  
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            Normally, EMT is a beneficial cellular event in various physiological 

processes such as wound healing and embryogenesis [70], but in cancer cells, 

EMT is associated with cancer metastasis and resistance to chemotherapeutic 

agents like PAC [72]. At the molecular level, EMT is activated by signaling 

pathways that activate transcriptional factors like Snail, ZEB1, ZO-1, Smad2/3 and 

Twist [73]. Multiple lines of evidence now suggest that although TGFβ1 inhibits 

tumors in the early stages of carcinogenesis, it is also the most common inducer 

of EMT in NSCLC cells [73]. The overall result is that the EMT process increases 

metastatic potential of tumor cells. Therefore, we investigated whether PAC and 

WFA alone and in combination could inhibit the TGFb1-induced EMT, migration, 

invasion and adhesion of H1299 and A549 cells. 

         In agreement with previous studies [62, 74], we successfully used 5 ng/mL 

TGFβ1 in serum-free media to induce EMT in H1299 and A549 NSCLC cells. Our 

findings indicate the TGFβ1 decreased the expression of E-cadherin in both A549 

and H1299 cells. Also, the cells incubated with TGFβ1 alone had increased levels 

of vimentin, β-catenin, Snail and ZEB1. Together, the increased expression of EMT 

proteins coupled with repression E-cadherin was used as an indicator of a 

transition from an epithelial to a mesenchymal phenotype. However, in the 

presence of WFA alone or in combination with PAC, the expression EMT markers 

was inhibited. Interestingly, the inhibitory effects of WFA on TGFb1-induced EMT 

were observed at sub-cytotoxic concentrations for the incubation period of 24 

hours. Based on the present findings, it was not determined whether the inhibitory 

effects of WFA were related to decreased synthesis or increased degradation of 
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these specific proteins. But as per findings from previous studies conducted with 

breast cancer cells [39], it was hypothesized that the observed low expression 

levels of vimentin could be related to direct binding of WFA to vimentin and causing 

its degradation. Nevertheless, the mechanisms of action of WFA related to its 

inhibition of the expression of EMT proteins remain to be determined. 

          To mimic metastasis in vitro, the cell adhesion assay, migration and invasion 

assays were also performed. Cell adhesion is defined as the binding of cells to an 

extracellular matrix or other cells and is important for the cell to cell communication 

and growth. Increased cell adhesion of NSCLC can be an indicator of enhanced 

the ability of cells to establish distant metastases. In agreement with the findings 

of Wang et al., [62], TGFβ1 increased cell adhesion, motility, migration, and 

invasion of both A549 and H1299 cells. The increased adhesion of H1299 and 

A549 cells to matrigel in response to TGFb1 were inhibited by either PAC or WFA 

alone and the combination had a much greater inhibitory effect. Similarly, the 

migratory and invasive capacities of H1299 and A549 cells were increased by 

TGFβ1. Together, the findings from these assays demonstrate the potential of 

WFA alone and in combination with PAC as an anti-metastatic regimen for NSCLC. 

          Therefore, the presented data indicates that PAC and WFA not only inhibited 

NSCLC cell proliferation but also inhibited their migration, invasion and cell 

adhesion. Moreover, the inhibitory effects of the two agents in combination were 

found to be synergistic.  As preliminary findings, the current results highlight the 

potential of the PAC-WFA combination against NSCLC in humans. However, there 

is need to replicate the experiments in appropriate animals models.
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SUMMARY AND CONCLUSIONS 

          PAC alongside platinum-based drugs is the mainstay for advanced NSCLC 

because these tumors are not amenable to curative surgery due to metastasis. 

However, this treatment regimen has reached the plateau of clinical efficacy due 

to organ toxicity, drug resistance, efficacy and solubility problems. In the present 

study, we explored a simple but effective strategy of combining WFA, a novel plant-

derived anticancer with PAC to increase efficacy and decrease toxicity. The results 

presented here demonstrate that WFA synergistically interacted with PAC to inhibit 

the proliferation, cell adhesion, migration and invasion of H1299 and A549 NSCLC 

cells. Although PAC displayed higher potency than WFA, the overall efficacy was 

lower than that of WFA against either H1299 or A549 cells. However, when PAC 

and WFA were combined, the potency and efficacy of the combination were 

enhanced and significant dose reductions for PAC and WFA were achieved. The 

observed synergistic antiproliferative effects of PAC and WFA were attributed to 

increased induction of apoptosis in both H1299 and A549 cells. Furthermore, the 

synergism displayed here by the combination of PAC and WFA may be explained 

in part, because the two agents are known to act via distinct mechanisms. In 

conclusion, present data demonstrates the potential of WFA alone and in 

combination with PAC against NSCLC. Therefore, there is great promise of clinical 

efficacy that can be explored for advanced metastatic NSCLC.  
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