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ABSTRACT

THREE-DIMENSIONAL MODELING OF THE HUMAN JAW/TEETH USING

OPTICS AND STATISTICS

Aly Saber Abdelrahim

April 16, 2014

Object modeling is a fundamental problem in engineering, involving talents from computer-

aided design, computational geometry, computer vision andadvanced manufacturing. The

process of object modeling takes three stages: sensing, representation, and analysis. Var-

ious sensors may be used to capture information about objects; optical cameras and laser

scanners are common with rigid objects, while X-ray, CT and MRI are common with bio-

logical organs. These sensors may provide a direct or an indirect inference about the object,

requiring a geometric representation in the computer that is suitable for subsequent usage.

Geometric representations that are compact,i.e., capture the main features of the objects

with a minimal number of data points or vertices, fall into the domain of computational

geometry. Once a compact object representation is in the computer, various analysis steps

can be conducted, including recognition, coding, transmission,etc.

The subject matter of this dissertation is object reconstruction from a sequence of

optical images using shape from shading (SFS) and SFS with shape priors. The application

domain is dentistry. Most of the SFS approaches focus on the computational part of the SFS

problem, i.e. the numerical solution. As a result, the imaging model in most conventional

SFS algorithms has been simplified under three simple, but restrictive assumptions: (1) the
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camera performs an orthographic projection of the scene, (2) the surface has a Lambertian

reflectance and (3) the light source is a single point source at infinity. Unfortunately, such

assumptions are no longer held in the case of reconstructionof real objects as intra-oral

imaging environment for human teeth. In this work, we introduce a more realistic formula-

tion of the SFS problem by considering the image formation components: the camera, the

light source, and the surface reflectance.

This dissertation proposes a non-Lambertian SFS algorithmunder perspective pro-

jection which benefits from camera calibration parameters.The attenuation of illumination

is taken account due to near-field imaging. The surface reflectance is modeled using the

Oren-Nayar-Wolff model which accounts for the retro-reflection case. In this context, a

new variational formulation is proposed that relates an evolving surface model with im-

age information, taking into consideration that the image is taken by a perspective camera

with known parameters. A new energy functional is formulated to incorporate brightness,

smoothness and integrability constraints. In addition, tofurther improve the accuracy and

practicality of the results, 3D shape priors are incorporated in the proposed SFS formula-

tion. This strategy is motivated by the fact that humans relyon strong prior information

about the 3D world around us in order to perceive 3D shape information. Such information

is statistically extracted from training 3D models of the human teeth.

The proposed SFS algorithms have been used in two different frameworks in this

dissertation: a) holistic, which stitches a sequence of images in order to cover the entire jaw,

and then apply the SFS, and b) piece-wise, which focuses on a specific tooth or a segment

of the human jaw, and applies SFS using physical teeth illumination characteristics. To

augment the visible portion, and in order to have the entire jaw reconstructed without the

use of CT or MRI or even X-rays, prior information were added which gathered from a

database of human jaws. This database has been constructed from an adult population with

variations in teeth size, degradation and alignments. The database contains both shape and

albedo information for the population. Using this database, a novel statistical shape from
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shading (SSFS) approach has been created.

Extending the work on human teeth analysis, Finite Element Analysis (FEA) is

adapted for analyzing and calculating stresses and strainsof dental structures. Previous

Finite Element (FE) studies used approximate 2D models. In this dissertation, an accurate

three-dimensional CAD model is proposed. 3D stress and displacements of different teeth

type are successfully carried out. A newly developed open-source finite element solver,

Finite Elements for Biomechanics (FEBio), has been used. The limitations of the experi-

mental and analytical approaches used for stress and displacement analysis are overcome

by using FEA tool benefits such as dealing with complex geometry and complex loading

conditions.
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CHAPTER I

INTRODUCTION

Shape from shading (SFS) is a problem that has been studied for about four decades

in the vision literature. Stated succinctly, the problem isto recover surface orientation

from local variations in measured brightness. There is strong psychophysical evidence

for its role in surface perception and recognition. Since the problem is an ill-posed one, a

number of additional, simplifying model assumptions have been imposed in order to render

it tractable.

The investigation of the SFS problem was pioneered by Horn [7]. He formulated

the problem by a nonlinear first order partial differential equation (PDE) called the image

irradiance equation. This equation models the relationship between the shape of an object

and its image brightness under known illumination conditions. His orthographic camera

model, distant single point light source, and his Lambertian surface assumption became

characteristic for numerous early SFS algorithms; see e.g.[8] for a survey.

Unfortunately, those assumptions are not always valid in reality. As such, the re-

construction results of these classical SFS approaches lack accuracy. That is why there

have been more recent methods trying to relax some of these assumptions. For example,

Prados et al. [9], Tankus et al. [10], and Yuen et al. [11] replaced the orthographic camera

model by a pinhole camera model performing a perspective projection (see Figure 2), and

assumed that the light source is located at the optical centre. Moreover, a light attenuation

term is considered in [9]. These ideas have been further extended by Ahmedet al. [12] and

by Vogelet al. [13, 14]. In these works, the Lambertian reflectance model isreplaced by
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the more realistic model of Oren and Nayar [15], which is particularly useful for skin sur-

faces. The Wolff reflectance model was also investigated [16]. On the other hand, various

optimization techniques have been employed to solve the SFSproblem, seee.g.[17] for a

recent survey.

The observation underpinning this dissertation is that although considerable effort

has gone into the development of improved SFS methods, thereare two areas which leave

scope for further development. The first of these the incorporation of the camera calibration

in the more realistic reflectance model. The second is that incorporation of 3D shape priors

in the recovery of the unknown surface. This is quite useful specially when the target

application deals with a particular category of object surfaces.

To further motivate the contribution of this work, a dental application is considered:

3D jaw/teeth reconstruction from intra-oral images. Dentistry usually requires accurate

3D representation of the teeth and jaw for diagnostic and treatment purposes. Toward this

end, photogrammetry seems to offer a more convenient, cost-effective technique compared

to traditional techniques while avoiding the need for castings. Computer Vision and Im-

age Processing laboratory (CVIP lab.) research group have been interested in this SFS

paradigm for jaw/teeth reconstruction from an intraoral image for several years (see for

example [6, 18–21]) due to the significant shading cue in an image of a tooth. In addition,

other 3D reconstruction methods, such as Shape from Stereo,will have little success when

applied on the textureless tooth surfaces [19].

In this dissertation, a novel strategies to improve the surface recovery results of

SFS have been approved. 3D shape priors in the SFS formulation are incorporated. Since

the target application is the human teeth reconstruction from intra-oral images, such infor-

mation is statistically extracted from training 3D tooth models. This can serve in several

aspects,e.g., to improve reconstruction accuracy, solve problems caused by occlusion (e.g.,

because of the tongue), specularity and albedo changes, and/or make up for the lack of

sufficient, detailed view of a tooth.
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FIGURE 1: Illustration of the data acquisition setup [5].

Furthermore, we introduce a morerealistic formulation of SFS that better considers

all the components of the problem under concern, namely: thecamera, the light source, and

the surface reflectance. Since image acquisition setup consists of a small wireless intraoral

camera with a built-in bright light source, the camera is modelled by perspective projection,

which is more practical than the common SFS assumption of orthographic projection as the

teeth are typically close to the camera (see Figure 1). The light source is assumed to be

located at the optical center of the camera. Under this near-illumination imaging, we take

into account the attenuation of illumination due to the distance between the light source

and the surface, which helps to deal with the concave/convex ambiguity in SFS [9, 22].

A. Reconstruction from Sequence of Images
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FIGURE 2: Basic image formation in perspective cameras (pinhole camera).

Optical Imaging: An optical image nowadays is formed by high-speed CCD sen-

sors capable of capturing light reflections from an object athigh spatial resolutions. Yet, at

the basic level, an image may be represented as a collection of reflected light rays from an

object culminated by a lens Figure 2. A pinhole camera forms inverted images of an object

by rays entering a pinhole; lens at the aperture focuses the light reflected from an object

such that a ray will pass unabated through the lens center, and if parallel to the lens optical

axis will be deflected through the focal point. The intersection of the two rays forms an

image at the image plane. Figure 3 illustrates the geometricmodel. The equations of the

camera calibration parameters shown in Figure 4.

1. 3D from Images

An image tells a lot about the observed scene, however there is not enough infor-

mation to reconstruct the whole 3D scene; this is due to the nature of the image formation
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FIGURE 3: Geometric model of a pinhole camera.

process which consists of a projection from a three dimensional scene onto a two dimen-

sional image, during this process the depth information is lost; i.e. the distance between

the 3D object and the capturing (imaging) device. However, the three-dimensional point

P(X,Y,Z) corresponding to a specific image pointp(u, v) is constraint to be on the associ-

ated line of sightL, as shown in Figure 5.

Therefore, the two-dimensional pointp might correspond to any three-dimensional

point P on the line of sightL. Hence from a single image it is not possible to determine

which point on this line corresponds to the image point. Therefore, if two or more images

(views) are available for the same 3D scene (whether they aretaken by different cameras

or one non-stationary camera), then the 3D point can be obtained as the intersection of two

(or more) line of sights, as illustrated in Figure 6. This process is called triangulation.

A number of things needed to accomplish such task;i.e. three-dimensional infor-
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FIGURE 4: Camera model equations (Extrinsic\Intrinsic parameters).

FIGURE 5: The three-dimensional point corresponding to a specific image point is con-

straint to be on the associated line of sight.
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FIGURE 6: 3D point can be obtained as the intersection of two (or more) line of sights.

This process is called triangulation.

mation reconstruction:

• A list of corresponding image points between different views,i.e. pi in view V1

corresponds top j in view V2.

• Relative pose of the camera for the different views;i.e. the relationship between

viewing cameras with respect to each other.

• The relation between the image points and the correspondingline of sights.

The relation between an image point and its line of sight is given by the so-called cam-

era model, which answers the question of how a three-dimensional point, measured with

respect to the 3D world coordinates, be projected on a 2D image plane and ends up as a

7



pixel in a specific row and column, hence what is the relationship between the row/column

number and the 3D point coordinates?

It is important here to note that using different views is not the only approach to

recover or reconstruct the scene 3D information, shading, texture and focus cues can also

be used to extract 3D information from images.

2. Camera Field of View

The input to the camera is a collection of 3D points which lie in the field of view of

the camera. The field of view of the camera is ideally a cone, defined by its angle £ and its

near and far plane, where the 3D points which lie between the near and far planes are the

only points that can be seen by the camera. This idea was inspired by the field of view of

the human eye.

Using a cone-like field of view for the camera will impose computational overhead,

hence it can be approximated as a trapezoid or a cuboid (box) shape. The shape to be used

depends on the type of projection considered for camera modeling. When a trapezoid is

used to approximate the field of view of the camera this is called, perspective projection.

While a cuboid for approximation is known as orthogonal projection.

a. Orthogonal Projection: Consider the case when using a box to approximate

the camera field of view. Any 3D point that lies in the box (fieldof view) will be projected

on the near plane (to form the 2D image) in a direction parallel to the edges of the field

of view, see Figure 7 for illustration. Since the edges of thebox are parallel to each other,

same-size near and far object will be projected on the near and far plane having the same

size. Hence methods which use orthogonal projection are only valid in a limited domain

where the distance and position effects can be ignored,i.e. the objects are distant from the

camera.
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FIGURE 7: Two identical objects in different positions give the same image under orthog-

onal projection: objectO2 is much further away from the camera, than objectO1.

b. Perspective Projection:On the other hand, consider the case when using a

trapezoid to approximate the field of view. Using a trapezoidal field of view will enable us

to feel the distance effect, where far objects project smaller than near objects, keeping in

mind that projection always occurs parallel to the edges of the field of view, see Figure 8

for illustration. The idea of approximating the field of viewas a trapezoid is inspired by

the pinhole camera model, discussed latter, which simulates the human eye.

3. Camera-Externally and Internally

The camera can be characterized (to the external/surrounding world) by its position,

known as the optical center, its viewing direction, known asits optical axis (z-axis), its up

direction (y-axis) and its right direction (x-axis). The whole idea of the camera model is

inspired by the human visual system. A human being has two eyes, each characterized by

there position in his/her face,i.e. the optical center, the viewing direction is defined by

where the human eye is looking at, the up-direction can be viewed as the orientation of

the human head with respect to the viewing direction, while the right direction maps to the

humans right-hand when expanded perpendicular to the humanbody.
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FIGURE 8: The distance effect can be felt when using perspective projection: objectO2 is

much further away from the camera than objectO1, and its projection is smaller than that

of O1.

The camera can be internally characterized by its field of view, the type of projection

used (i.e. the approximation of the cone-shape field of view), and the process of digitizing

what is projected on the near plane to be converted to a digital image. The camera field of

view is defined by the near and far plane, where the distance between the optical center and

the near plane is commonly denoted as focal length.

B. The General Form of Perspective Projection Matrix

The camera can be considered as a system that depends on its parameters, which

are categorized into two classes, extrinsic and intrinsic parameters.
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1. Extrinsic Parameters

They are the parameters related to the transformation of theworld coordinate system

to coincide on the camera coordinate system. There are six extrinsic parameters, the Euler

angles;yawα, pitchβ , andtilt γ for rotation, the three components of the translation vector

t = (tx, ty, tz).

The extrinsic parameters matrix,D, can be expressed in terms oft andR as:

D =



R3×3 t

0T
3 1


(1)

whereD is 4× 4 matrix and 03 = [ 0 0 0 ]T .

2. Intrinsic Parameters

Those parameters are related to converting the 3D point coordinate measured in

camera coordinate system to the computer image coordinate.There are five intrinsic pa-

rameters:

• The focal lengthαx in x direction and focal lengthαy in y direction.

• The coordinatesuo, vo of the principle point in the image plane.

• The skewing factors.

K =



αx s xo 0

0 αy yo 0

0 0 1 0



(2)
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The Overall Projection Matrix (P) :

P = KR[I3| − C̃] (3)

whereP is 3× 4 matrix and it has 11 degree of freedom (5 fromK, 3 fromR and 3

from C̃).

C. Camera Calibration

Camera calibration is the process of determining the internal camera geometric and

optical characteristics (intrinsic parameters) and/or the 3D position and orientation of the

camera frame relative to a certain world coordinate system (extrinsic parameters).

1. Why is camera calibration necessary?

Camera calibration provides a way of inferring 3D information from computer im-

age coordinates as well as inferring 2D computer image coordinate from 3D information.

3D information from computer image coordinates involves the location of the object (tar-

get) and the position and orientation of a moving camera

2. Calibration Schema

The key idea behind camera calibration is to write the projection equations linking

the known coordinates of a set of 3D world points and their projections (image pixels

coordinates) and solve for the camera parameters.

In order to get to know the coordinates of some 3D points, camera calibration meth-

ods rely on one or more images of a calibration pattern, that is a 3D object of known ge-
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FIGURE 9: Typical calibration pattern consists of two orthogonal planes of black and white

grid, to facilitate feature points extraction. The world coordinate system is attached to the

calibration pattern to facilitate the measurement of 3D points.

ometry, possibly located in a known position in space and generating image features which

can be located accurately. Usually a typical calibration pattern consists of two planar grids

of black squares on a white background. The world coordinatesystem is usually attached

to the calibration pattern, this will facilitate the measurement of the 3D world points, while

the corresponding image points can be located using corner detection techniques,i.e. inter-

section of image lines, thanks to the high contrast and simple geometry of the calibration

pattern, see Figure 9.

3. Linear Approach to Camera Calibration

The calibration process can be decomposed into two stages; first the computation of

the perspective projection matrix,M, associated with the camera in this coordinate system,
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then the estimation of the intrinsic and extrinsic parameters of the camera from this matrix.

a. Projection Matrix Estimation: Assume that the projection matrixM, defined

up to an arbitrary scale factor, is:

M =



m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34



(4)

and givenN 3D points and their corresponding 2D points. Since the relation be-

tween a 3D point and its corresponding 2D point is:



u

v

1



=



m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34





x

y

z

1



(5)

Equation 5 indicates:

ui =
m11xi +m12yi +m13zi +m14

m31xi +m32yi +m33zi +m34

vi =
m21xi +m22yi +m23zi +m24

m31xi +m32yi +m33zi +m34

which can be arranged in 2N linear equations inm′s in the form:

Pm= 0; (6)

where,
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P =



x1 y1 z1 1 0 0 0 0 −u1x1 −u1y1 −u1z1 −u1

0 0 0 0 x1 y1 z1 1 −v1x1 −v1y1 −v1z1 −v1

x2 y2 z2 1 0 0 0 0 −u2x2 −u2y2 −u2z2 −u2

0 0 0 0 x2 y2 z2 1 −v2x2 −v2y2 −v2z2 −v2

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

xN yN zN 1 0 0 0 0 −uNxN −uNyN −uNzN −uN

0 0 0 0 xN yN zN 1 −vNxN −vNyN −vNzN −vN



And

m= [m11,m12,m13, · · · ·m33,m34]T .

then the unknownmscan be recovered by the decomposition ofP using singular

value decomposition as:

The solution is the eignvectorV corresponds to the smallest singular value (related

to the smallest eignvalue) in the main diagonal ofD.

P = UDVT (7)

D. Teeth Anatomy

Humans have two types of teeth in their lifetime. The first type of teeth that appears

in the mouth are the primary or deciduous dentition, which begin to form prenatally at

about 14 weeks in utero and are completed postnatally at the age of 3. When there are no

signs of congenital disorders, dental disease, or trauma, the first teeth begin to appear in the
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oral cavity at the age of 6, and the last emerge at the age of 28± 4 months. This deciduous

dentition remains intact until the child is about 6 years of age. At about that time the first

succedaneous (permanent) teeth begin to emerge into the mouth. The emergence of these

teeth marks the beginning of the mixed dentition period in which a mixture of deciduous

and succedaneous teeth is present. This transition period lasts from about 6 to 12 years

of age and ends when all the deciduous teeth have been shed. Atthat time the permanent

dentition period begins. Thus, the transition from the primary dentition to the permanent

dentition begins with the emergence of the rst permanent molars, shedding of the deciduous

incisors, and emergence of the permanent incisors.

The mixed dentition period is often a difficult time for the young child due to many

reasons including habits, missing teeth, teeth of dierent colors and hues, crowding of the

teeth, and malposed teeth. After the shedding of the deciduous canines and molars, emer-

gence of the permanent canines and premolars, and emergenceof the second permanent

molars, the permanent dentition is completed (including the roots) at about 14 to 15 years

of age, except for the third molars, which are completed at 18to 25 years of age. In effect,

the duration of the permanent dentition period is 12+ years.

The completed permanent dentition consists of 32 teeth if none are congenitally

missing, which may be the case (see Figure 10). Teeth of humans are small, hard, calcied

and whitish structures found in the mouth. The visible part of these teeth is called the

crown, while the invisible part, which is embedded in the jawbone is referred to as the

tooth root. The molars, and the premolars of the upper jaw, usually have two, three or four

dierent roots and are called multi-rooted teeth.
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FIGURE 10: Anatomy of the tooth. (a) intraoral left. (b) intraoral right. (c) occlusal upper: schematic overview of the distribution of the

different teeth in an adult mouth. (d) intraoral center. (e) occlusal lower.
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1. SURFACES AND RIDGES

The crowns of the incisors and canines have four surfaces anda ridge, where as the

crowns of the premolars and molars have ve surfaces. The surfaces are named according to

their anatomical positions and uses (see Figure 10). In the incisors and canines, the surfaces

toward the lips are called labial surfaces; in the premolarsand molars, surfaces facing the

cheek are the buccal surfaces. Both the labial and buccal surfaces together are referred to

as facial surfaces. All surfaces facing toward the tongue are called lingual surfaces. The

surfaces of the premolars and molars that come in contact (occlusion) with those in the

opposite jaw during the act of closure are called occlusal surfaces. These are called incisal

surfaces with respect to incisors and canines.

2. The periodontal ligament

Figure 111 shown the periodontal ligament (PDL) that supporting structure of the

tooth, attaching it to the alveolar bone. The PDL in the humans has an average width

of 0.25mm [23]. The PDL consists of principal fibres stretching acrossthe width of the

ligament, which are embedded as Sharpeys fibres in the bone and the cementum.

E. Reconstruction of the Human Jaw

In 1997, Ahmedet al. [24] introduced the first optical approach to construct the hu-

man jaw from a sequence of images taken by intraoral camera. The SFS solution provides

an estimate of the shape for a certain light direction (perspective projection); this estimate

is non-metric, and real world surfaces (e.g., the human jaw) are not Lambertian. In 1999,

Yamanyet al. [25] introduced a modification to the SFS problem by incorporating sparse

1http://www.highlands.edu/academics/divisions/scipe/biology/faculty/harnden/2122/images/toothanatomy.jpg
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FIGURE 11: Schematic overview of the anatomy of the tooth andits surrounding struc-

ture: the crown is covered with enamel, root, cusp, dentin, gum, cementum, periodontal

ligament, alveolar bone and apex.

3D points, obtained by a touch probe, into the camera calibration model, and used a filter to

reduce the jaw specularity, in order to make the Lambertian assumption adequate. In 2000,

Yamanyet al. [18] introduced the first computer vision system for 3D jaw reconstruction

based on an intraoral camera mounted on a six-segment coordinate measuring unit. Since

then, various modifications to the imaging process and software optimization were carried

out, which enhanced the capabilities of theComputer Vision and Image Processing(CVIP

Lab) Dental Station.

The accuracy obtained by the CVIP Lab Dental Station (as shown in Figure 12)

was in the millimeter range, yet it has the following drawbacks: i) The camera required

a pre-calibration and needed to be hooked to the coordinate measuring arm, in order to

reference the image sequence used in the reconstruction to acommon 3D referencing sys-

tem. ii) The data acquisition was awkward, requiring cooperation of the object during data

gathering which may last up to five minutes. iii) The overall accuracy of the resulting 3D
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model was not suitable for various envisioned dental practices. Two obvious enhancements

were essential to make the Dental Station more practical: Making the dental probe flexible;

and improving the 3D model building algorithm from sequenceof images. Major efforts

have been undertaken to address these two shortcomings. Focused on generalization of the

SFS solution to various object characteristics as stated above [12, 26], and deployed newer

cameras with various light sources and motion sensors. Fromalgorithmic point of view

we introduced a new stitching algorithm [20], which enabledregistration of the image seg-

ments covering the human jaw, then applying SFS vs. applyingSFS on individual segments

and then register the results. Equally significant is that weexamined the roughness of the

jaw material using profiler microscopes available at theUniversity of LouisvilleMEMS

facility, in order to calibrate the albedo parameters in theSFS using realistic measures.

F. Contributions of this Dissertation

This dissertation involves theoretical developments, system design and integration,

as well as practical evaluation by dental professionals. Inthe context of tooth reconstruc-

tion from intraoral images, the SFS technique offers several advantages. It provides more

detailed and accurate representations about the shape of the tooth crowns [18]. It requires

only one camera position within the cramped confines of the mouth. Cost-wise, it is cheaper

because it simply requires a single camera and light source.Summarizing the main contri-

butions of this work:

• A robust data acquisition system has been proposed that acquires calibrated images

for the jaw by anintraoral camera and controlled lighting mechanism.

• This work designed and developed novel algorithms for 3D surface reconstruction

by SFS aspect for human teeth based on a single image. A non-Lambertian SFS

algorithm under perspective projection is proposed, whichbenefits from camera cal-

ibration parameters. Take into account the attenuation of illumination due to near-
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FIGURE 12: Scientific prototype of the dental probe at the CVIP Lab (2000-2004). A

CCD camera attached to a coordinate measuring arm captures the video images used in the

jaw reconstruction.
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field imaging. The surface reflectance is modeled using the Oren-Nayar-Wolffmodel

which accounts for the retro-reflection case.

• A novel method to incorporate the 3D shape priors in SFS formulation was proposed.

This strategy is motivated by the fact that humans rely on strong prior information

about the 3D world around us in order to perceive 3D shape information.

• 2D-PCA is used to build the shape priors instead of the conventional PCA. The 2D-

PCA offers two important advantages: It is easier to evaluate the covariance matrix

accurately since its size is much smaller. In addition, lesstime is required to deter-

mine the corresponding eigenvectors. Second, the modified Oren-Nayar-Wolff re-

flectance model is presumed in place of the Oren-Nayar model,where teeth surface

is rough and wet, giving rise to Fresnel reflection due to different refractive indices

of the saliva and the tooth material.

• The tooth surface roughness is physically measured using anoptical surface profiler

and stylus arm.

• Developing techniques for stitching 3D surface patches reconstructed from different

views of the jaw surface were proposed. Calibration parameters have been com-

puted adaptively while the camera is moving using the sensors to generate calibrated

images and meaningful surfaces. Solving this problem touches on all aspects for

computer vision and image processing.

• A model-based SFS approach is proposed which allows for the construction of plau-

sible human jaw models in vivo, without ionizing radiation,using fewer sample

points in order to reduce the cost and intrusiveness of acquiring models of patients

teeth/jaws over time.

• Establish a dental database and a procedure to augment it by researchers in the US

and worldwide, for enhancing dental research and practice on the human teeth/jaw.
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• The possibility of calculating the initial stresses and strains in the PDL is calaculated

analytically and using FEA.

G. Organization of the Dissertation

The dissertation is given in nine chapters. A summary of eachone is presented

which includes the problem, contribution, and experimental results.

1. Chapter I

This chapter includes the definition of SFS, 3D reconstruction from sequence of

images, the basic of the camera calibration, teeth anatomy and the related work of the

reconstruction of the human jaw. Also it has in brief, the contributions to solve the problem.

2. Chapter II

This chapter gives an brief introduction to surface reconstruction by geometric com-

puter vision and image irradiance equations.

3. Chapter III

At the University of Louisville Dental school there exists enormous number of

molds/teeth and patient records. The first steps to arrange these molds/teeth are taken

into subjects categorized with respect to gender, age and ethnicity. This database is very

important in 1) a model-based SFS approach which allows for the construction of plausible

human jaw modelsin vivo, without ionizing radiation, using fewer sample points in order
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to reduce the cost and intrusiveness of acquiring models of patients jaws/teeth over time. 2)

using for FEA. Also, it has an introduction to orthodontic tooth movement using analytical

method.

4. Chapter IV

This chapter describes a new method of 3D surface reconstruction aspect for human

teeth based on a single image, which provides more realisticformulation of the SFS prob-

lem by considering the image formation components: the camera, the light source, and the

surface reflectance. A non-Lambertian SFS algorithm is proposed under perspective pro-

jection which benefits from camera calibration parameters.The attenuation of illumination

due to near-field imaging is taken into account. The surface reflectance is modeled using

the Oren-Nayar-Wolff model which accounts for the retro-reflection case.

5. Chapter V

This chapter proposes a new variational formulation that relates an evolving sur-

face model with image information, taking into consideration that the image is taken by a

perspective camera with known parameters. A new energy functional is formulated to in-

corporate brightness, smoothness, and integrability constraints. Furthermore, an automatic

approach for 3D surface reconstruction of the human jaw using calibrated images with the

help of the ASIFT features matching is presented.

6. Chapter VI

This chapter developers a new approach for realistic 3D reconstruction of the human

teeth using shape from shading with statistical shape priors gathered from an ensemble of
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scanned human teeth, in order to improve the quality of SFS asapplied to jaw surface.

7. Chapter VII

The approached developed in this chapter reconstructs the teeth from single image

shading with 2D-PCA shape priors that have a more sophisticated reflectance model. The

Oren-Nayar-Wolff model was used for modeling the surface reflectance.

8. Chapter VIII

In this chapter, an accurate three-dimensional CAD model isproposed. 3D stress

and displacements of different teeth type are successfully carried out using FEA.

9. Chapter IX

This chapter concludes the dissertation with insights to extensions to be handled

during thesis work.
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CHAPTER II

SURFACE RECONSTRUCTION BY GEOMETRIC COMPUTER VISION

Simply stated, the surface reconstruction problem is the following: given a sequence

of calibrated and referenced 2D images of an object, construct a 3D representation of that

object. If the 2D image sequence covers the entire object (i.e., 360 degrees) then the 3D

reconstruction is expected to be a full 3D surface representation. This problem has been

studied in the past 40 years in what is known in computer vision as the ”shape from X”

problem. Where X represents the various cues employed in going from 2D to 3D, which

includes stereo (e.g. [27–31]), texture (e.g. [32, 33], motion (e.g. [34–37]), and shading

(e.g. [38–46]). Other approaches in geometric computer vision that are more recent are

the voxel-based approaches,e.g.voxel coloring [47], space carving [48], and generalized

voxel coloring [49]. These methods extract the 3D information of an object by removing

(carving) the volume elements (voxels) in the initial 3D volume that are invisible and photo-

inconsistent in all/subset of the sequence of images. A plethora of algorithms exists in the

literature for reconstruction and recognition from sequence of images. Even though the

geometry of the reconstruction has been well-developed through the foundational work of

a number of investigators (e.g., [38], Grimson [50], Faugeras [51], Hartely and Zisserman

[52]), the accuracy of the reconstructions is application oriented and there is no existing

geometric reconstruction mechanism that fits all needs. Considerable work still remains in

order to achieve automatic 3D surface reconstruction from video.

Difficulties in video reconstruction come, in part, from the factthat the assumptions

for typical geometrical reconstruction are hardly valid. For example, assumptions in stereo

(e.g., presence of distinct features of the objects in the right and left images), in SFS (e.g.,
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the Labmertian assumption that considers the surface in thefield of view of the camera to

be mat), in space carving (e.g., the photo consistency) are rarely valid in practice. Other

difficulties result from surfaces that are glossy, transparent,occluding, and mutually illumi-

nating. In addition, errors result from the data acquisition sensors (e.g., camera calibration

errors due to motion, lens distortion,etc.). Despite these problems, video-based technology

is extremely powerful and popular in every facet of life. Thesystem uses this technology

for creating a 3D surface model of the object from sequence ofimages.

A. Shape from Shading (SFS)

Among the tools used in shape extraction from single view is the SFS technique.

SFS has been primarily studied by Horn [38] and it extracts the depth (hidden informa-

tion) from the image formation process that relates source irradiance to image gray level

intensity. There have been various developments in the SFS algorithm (e.g., [53–59]).

The most important information for reconstructing an accurate 3D visible surface, which is

missing in SFS, is the metric measurement. SFS also suffers from the discontinuities due

to highly textured surfaces and different albedo [38]. In [18], they introduced an algorithm

that integrates the dense depth map obtained from SFS with sparse depth measurements

obtained from a coordinate measurement machine (CMM) for the reconstruction of 3D

surfaces. This algorithm provides two advantages: it removes the ambiguity of the 3D

visible surface discontinuities produced by SFS, and it complements for the missing met-

ric information. The integration process includes the following stages. First, calculated

the error difference in the available depth measurements between the two sets of sensory

data. Then, approximated a surface that fits this error difference. Finally, the approximated

surface is used to correct the shape from shading. The reconstruction involved several

sequential steps: Camera calibration, imaging and landmark/ground truth collection, SFS

extraction, merging with ground truth points using Neural Network(NN), and obtaining the

3D surface. Extensions to the previous algorithm [18] include flexible and more accurate
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image data collection, quantification of motion artifacts,reduction in algorithmic time, and

studying the robustness of the overall procedure to ensure accuracy and repeatability.

Shape-from-Shading is a classic and challenging problem incomputer vision. It

uses the brightness variation in a single image to compute the 3D shape of a surface. The

goal of SFS is to solve the image irradiance equation, which robustly relates the reflectance

map to image intensity. However, the task appears to be nontrivial. Consequently, most

work in this relies on assumptions which simplify the irradiance equation. Of particular

importance is the common assumption that scene points are projected orthographically

during the photographic process.

Many works in the field of SFS have followed the seminal works of Horn [60–62]

who initiated the subject in the 1970s, and assumed orthographic projection. Horn’s book

[63] reviews the early work on SFS (until 1989). Zhang et al. [8] survey and classify

some of the works from the ’1990s and compare the performanceof six of them (namely,

minimization approaches: [64], [65]; propagation approaches: [66]; local approaches:

[67]; linear approaches: [68], [69]). Kimmel and Bruckstein [70] classify image extrema

and two kinds of saddle points and use these topological properties of the surface in a

global SFS algorithm. Zhao and Chellappa [71] use symmetricSFS to develop a face

recognition system which is illumination insensitive. They show that the symmetric SFS

algorithm has a unique solution. Kimmel and Sethian [72] proposed the Fast Marching

method as an optimal algorithm for surface reconstruction.Their reconstructed surface

is a viscosity solution of an Eikonal equation for the vertical light source case. Sethian

[73] provides deep insight into Level Set and Fast Marching methods. Prados et al. [74]

base their approach on the viscosity solution of a Hamilton-Jacobi equation. They extend

existing proofs of existence and uniqueness to the general light source case and prove

the convergence of their numerical scheme. Many more orthographic algorithms were

suggested in the literature, but only a few can be described herein.

SFS algorithms can be categorized into four main groups [69]: minimization ap-
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proaches, propagation approaches, local approaches, and linear approaches. Minimiza-

tion approaches obtain the solution by minimizing an energyfunctional. Propagation

approaches propagate the shape information from a set of surface points (e.g., singular

points) to the whole image. Local approaches extract shape based on the assumption of

surface type. Linear approaches compute the solution basedon the linearization of the

reflectance map. To solve the SFS problem under more comprehensive modeling condi-

tions, we need very powerful mathematical tools. Basically, we can choose between prop-

agation approaches or energy minimization approaches since the applicability of the local

approaches is limited, and the reasonability of the linear approximation of the reflectance

map is questionable [75].

One of the earlier and most important works in the minimization approaches, which

reconstructs the surface gradients, was by Ikeuchi and Horn[76]. Each surface point has

two unknowns for the surface gradient and each pixel in the image provides one intensity

value, which yields to we having an under-determined system. To overcome this, they

introduced two constraints: the brightness constraint andthe smoothness constraint. The

brightness constraint requires that the reconstructed shape produces the same brightness as

the input image at each surface point, while the smoothness constraint ensures a smooth

surface reconstruction. The shape was computed by minimizing an energy function which

consists of the above two constraints. To ensure a correct convergence, the shape at the

occluding boundary was given for the initialization. Sincethe gradient at the occluding

boundary has at least one infinite component, stereographicprojection was used to trans-

form the error function to a different space. Also using these two constraints, Brooks and

Horn [77] minimized the same energy function in terms of the surface normal. Frankot and

Chellappa [78] enforced integrability in Brooks and Horn’salgorithm in order to recover

integrable surfaces. Surface slope estimates from the iterative scheme were expressed in

terms of a linear combination of a finite set of orthogonal Fourier basis functions. The en-

forcement of integrability was done by projecting the nonintegrable surface slope estimates

onto the nearest integrable surface slopes. This projection was fulfilled by finding the clos-
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est set of coefficients which satisfy integrability in the linear combination. Their results

showed improvements in both accuracy and efficiency over Brooks and Horn’s algorithm

[77]. Later, Horn also [38] replaced the smoothness constraint in his approach with an

integrability constraint. The major problem with Horn’s method is its slow convergence.

B. Geometric Stereo

The availability of a sequence of calibrated images enablesthe application of other

reconstruction methods (e.g., stereo and space carving). The stereo approach matches in-

formation present in the left and right images (any two images in the referenced sequence

that share common information about the scene) in order to extract the depth (disparity or

third dimension) from the two images. If the sequence of images cover the entire object,

the pairwise reconstructions can be merged together to forma full 3D model. Pairwise

images from the sequence (obtained by a single camera) that are related may be used as a

“stereo-pair” to extract the depth.

In the general stereo configuration, the image planes are notcoplanar which makes

the correspondence problem more difficult than the simple stereo configuration. If no con-

straints are applied to this configuration, then it is necessary to search for the point xr in the

entire right image to be matched with xl(note: the right and left images may be thought of

just as two related images from the sequence). The search space can be limited to a gen-

eral line in the right image if the epipolar constraint [30] is applied. Furthermore, image

rectification algorithms (e.g., [79]) can be used to parallelize and align the epipolar lines

to the x-axis. This rectification step reduces the problem toa simple stereo configuration

problem.

In general, the stereo approaches operate either by the edge-feature matching or the

area-based matching. Feature-based stereo approaches areuseful because they describe the

important geometry of the object. However, the major problem of most of these approaches
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is the low output density. A dynamic programming [30] approach matches features to get

dense reconstruction, but it can only be applied on a scan line by scan line basis. Boykov,

et al. [80] and Roy and Cox [28] solved the inter-scan line problem using graph cuts. In

contrast to the feature-based stereo, the area-based stereo provides dense reconstructions.

Okutumi and Kanade [29] used a variable size correlation window to generate dense depth

maps. However, area-based usually fails when applied to surfaces of large textureless areas.

Another challenging problem for stereo approaches is the occlusion problem, where scene

elements appear in one image but they are occluded in the other image.

With respect to smooth objects, the major sources of errors are the lack of specific

features on the target when viewed in the front or the back; only the upper views of the

target can provide some feature for matching. In addition, various sources of inaccuracies

in depth measurements may result due to effects of motion, lightning and the occlusion due

to the nature of the object.

C. Space Carving

Space carving [48] attempts to produce the maximal 3D shape that is consistent

with all the images. Space carving starts with an initial volume V that includes the object

to be reconstructed. This 3D space is then discretized into afinite set of voxels v1,v2,

...,vn. The idea is to successively carve (remove) some voxels until the final 3D shape, V*,

agrees with all the input images. Each voxel on the surface ofthe volume,i.e., in Vis(V), is

projected back to the different images using their respective projection matrices. Avoxel

is carved or not is based on color-consistency. The Lambertian model for the surface of

the object is assumed. Under this model, light reflected froma single point on the surface

of the object has the same intensity in all directions. Therefore, for a voxel to belong to

the surface of the object, it must have the same color intensity, within some tolerance to

allow for some light variations and some calibration inaccuracy, for all its projections to
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the different images provided. Voxels that are inconsistent with a single color are viewed

as free space in which different light rays intersect. By removing all color-inconsistent

voxels, we are able to approximate a maximal photo-consistent shape that is defined by all

the input images.

D. Integration of Reconstruction Methods

No single approach in geometric computer vision fits all applications. Integra-

tion/fusion of several approaches has been attempted in order to improve the reconstruction

results. For example, Fua and Leclerc [37] developed an approach for reconstructing both

the shape and reflectance properties of surfaces from multiple images. The method begins

with an initial estimate of surface shape provided, for example, by triangulating the result

of conventional stereo. The surface shape and reflectance properties are then iteratively

adjusted to minimize an objective function that combines information from multiple in-

put images. The objective function is a weighted sum of stereo, shading, and smoothness

components, where the weight varies over the surface. Lange[38] proposed another ap-

proach for integration of SFS and stereo in which he correctsfor error propagation from

stereo vision to SFS, when only the initial and border conditions are used for the coop-

eration, by the introduction of simultaneous constraints from both modules on all image

points. Samaras et. al [39] presented a multiview method forthe computation of object

shape and reflectance characteristics based on the integration of SFS and stereo, for non

constant albedo and non-uniformly Lambertian surfaces. First stereo fitting on the input

stereo pairs or image sequences is performed. Based on the stereo result, the albedo map

can be automatically segmented (which is taken to be piece-wise constant) using a mini-

mum description length (MDL) based metric, to identify areas suitable for SFS (typically

smooth textureless areas) and to derive illumination information. The shape and the illu-

mination parameter estimates are refined using a deformablemodel SFS algorithm, which

iterates between computing shape and illumination parameters. Fassold et. al [40] have
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introduced an algorithmic framework for the refinement of sparse 3D models using shape

from shading. Starting from an initial model obtained by shape from stereo, they use a

global optimization scheme in order to refine the surface. The constraints used are based

on the shading in the image, the initial 3D points obtained bystereo and the smoothness

of the surface. In contrast to other approaches that assume that the photometric proper-

ties of the scene are known they iteratively update the lightsource direction and several

parameters of the reflectance map.

E. Image Formation Model

How pixel brightness in the image is related to the physical world is the answer of

two questions; (1) where some point in 3D will appear in the 2Dimage, and (2) how bright

this image point will be. The former question is related to the camera/viewer properties,

i.e. geometric image formation, while the latter one is governedby the surface physical

and reflectance properties as well as the illumination conditions, i.e. photometric image

formation [81].

Assuming the camera extrinsic parameters are solved forw.r.t. a predetermined

world coordinate frame, consider a viewer/camera-centered coordinate system with the

camera lens located at the originO, i.e. optical center, where the optical axis coincides

with thez-axis. Since the image is formed in the near field, the geometric imaging process

can be modeled by the pinhole (perspective) projection where the image/retinal plane is

located at a distance governed by the camera’s focal lengthf . Let M = (X,Y,Z)T denote a

surface point perceived in the camera frame, whereZ = Z(X,Y) represents the depth value

of the surface pointM whose projection is denoted bym = (x, y)T on the image plane.

F. Image Irradiance
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1. Lambertian Reflection Model

The SFS problem consists of recovering the 3D-shape of a surface through the anal-

ysis of the brightness variation in a single image. In general, the brightness of a surface

patch depends on its orientation relative to both the light source and the viewer. Theimage

irradiance equationmodels this relationship as

E(x) = R(n̂(x)), (8)

whereE(x) is the image irradiance at the pointx andR(.) is the radiance of a surface

patch with unit normal̂n(x).

For simplification purposes, most of the algorithms in SFS literature assumed that

the surface has a Lambertian reflectance [17], i.e., the surface reflects the light equally in

all directions. In this case the reflectance map is the cosineof the angle between the unit

vector ŝ in the light direction and the normal vectorn̂:

E(x) = R= cos∠(ŝ, n̂) = ŝ · n̂, (9)

which leads to the first PDE studied in the SFS literature:

I (x)
√

1+ |∇u(x)|2 + ŝ · (∇u(x),−1) = 0, (10)

whereu(x) is the surface height at pointx = (x, y) above some reference plane. The camera

is assumed here to perform orthographic projection, which is also a simplification of the

real perspective projection done by a camera. Note that the image irradianceE has been

replaced by the measured image gray valueI by assuming a linear relationship between

them and dropping the scaling factor. Under real world circumstances the surface materials

are not Lambertian, and in many cases the camera and the lightare not far away from the

object.
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FIGURE 13: Definitions of reflection parameters and angles.

2. Oren-Nayar Diffuse Reflection Model

The Oren-Nayar diffuse reflection model has been introduced for rough surfaces [15],

which can be seen as a generalization of Lambertian reflectance for rough diffuse surfaces.

The roughness of the surface is specified using a Gaussian distribution for the orientations

of the approximating surface facets. Using the geometry illustrated in Figure 13, given the

radiance of the incoming lightLi , the radiance of the reflected lightLr , the Oren-Nayar

model can be given by:

Lr =
ρ

π
Li cosθi(A+ Bsinα tanβmax[0, cos(φr − φi)]) (11)

whereA = 1− 0.5
σ2

σ2 + 0.33
, B = 0.45

σ2

σ2 + 0.09
.

The parameterσ denotes the standard deviation of the orientations Gaussian distribution,

and it is used as a measure of the surface roughness,α = max{θr , θi}, β = min{θr , θi} andρ

is the diffuse albedo.

Assume the camera is modelled with a perspective projection. According to the
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FIGURE 14: Perspective camera model for SFS.

proposed data acquisition setup, the light source is located at the optical center. Then,θr =

θi = α = β � θ. The surface is represented by [9, 22] (see Figure 14):S = {S(x) / x ∈ Ω},

whereS(x) = f u(x)√
|x|2+ f 2

(x,− f ), with f being the camera’s focal length. The surface normal

at any point is given bŷn(x) =
[
f∇u(x) − f u(x)

|x|2+ f 2 x,∇u(x) · x + f u(x)
|x|2+ f 2 f

]
.

The light source direction equalsŝ = 1√
|x|2+ f 2

(−x, f ). Furthermore, the attenuation

of the illumination is taken into account due to the distancer between the light source and

the surface. This helps resolve the convex/concave ambiguity from which traditional SFS

algorithms suffer when this attenuation phenomenon is ignored [9, 22]. Thisdistance is

given byr = f u(x). As a result, (11) eventually becomes

Lr(θ;σ) = (
ρ

π
Li)

Acos(θ) + Bsin2(θ)
r2

. (12)
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CHAPTER III

DENTAL DATABASE CONSTRUCTION

A. Introduction

Many dental applications such as endodontic procedures, treatment of malocclu-

sion problems and treatment simulations require an accurate 3D representation of the teeth

and the jaw. Using 3D CAD models has great advantages over conventional physical solid

models, as solid models require big physical space for storage, adding financial and logis-

tic burdens which is not the case of CAD models that are storedelectronically [82]. This

chapter proposes to collect resources for the jaw project ina common repository for dis-

semination among researchers elsewhere. At the Universityof Louisville Dental school

there exists enormous number of molds and patient records. The first steps were arraigning

these molds into subjects categorized with respect to gender, age and ethnicity(see Table

1). Using the Conebeam CT scanner, these molds were scanned and the image processing

tools were used to create a mesh per mold as shown in Figure 17 and Figure 18. The data

used to generate the Statistical Shape from Shading (SSFS) results in [83] were obtained

from this data. In this dissertation, the data (images and corresponding 3D mesh from the

molds) were annotated and are available to colleagues elsewhere.

B. Tooth Database Construction

In [84] serves a step towards complimenting a surface model with root information
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obtained from X-rays based on 3D teeth library. Yet the database was limited and valida-

tions were mostly done on manufactured jaws. In this dissertation, further investigate the

fusion process of the whole human jaw to add a close proximityof the root information to

the proposed 3D surface model.

Several real invitro teeth of the same type (maxillary deciduous, maxillary mo-

lars, mandibular molars, and mandibular third molars) fromadult subjects with different

races, gender and ages are fixed over wax. A Cone-beam CT (KODAK 9000 3D Extraoral)

scanner at a resolution of 0.2 mm is then used to scan the wax and teeth. Expectation-

Maximization (EM) algorithm for segmentation is used. Afterwards, the 3D surfaces for

each tooth type are rigidly aligned to remove any variationsin shape due to pose differ-

ences. The first surface of the training set is used as the reference to which the remaining

surfaces are aligned. The alignment is carried out using an iterative closest point (ICP-

based) rigid registration algorithm [85] using the Hausdorff distance between correspond-

ing points. Figure 15 show samples of the acquired CT scans.

Currently, the database having 224 teeth with the followingstatistics: anterior (20),

mandibular 3rd molar (119), maxillary deciduous (27), maxillary Molars (38) and premo-

lars (20). They are automatically preprocessed to generatetriangular meshes, see Figure 15.

C. Iterative Closest Point (ICP)

ICP is an algorithm used to minimize the difference between two clouds of points [86–

88]. ICP is often used to reconstruct 2D or 3D surfaces from different scans, to localize

robots and achieve optimal path planning (especially when wheel odometry is unreliable

due to slippery terrain), to co-register bone models,etc. In the algorithm, one point cloud,

the reference, or target, is kept fixed, while the other one, the source, is transformed to best

match the reference. The algorithm iteratively revises thetransformation (combination of

translation and rotation) needed to minimize the distance from the source to the reference
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FIGURE 15: Sample individual teeth from the proposed 3D teeth library: (first row) max-

illary deciduous teeth. (second row) maxillary molars. (third row) mandibular molars.

(fourth row) mandibular third molars.
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FIGURE 16: Three source models are visualized in red while the corresponding targets are

shown in blue. First column show initial positions. Final registration results are demon-

strated in the second column.

point cloud (see Figure 16).

Algorithm 1 summarizing the steps of ICP approach.

D. Jaw Database Construction

Table 1 shows the database constructed from 52 upper jaw molds belonging to 33

males and 19 females with on average age of 20 years old. Whereas lower jaw models

are constructed from 58 lower jaw molds belonging to 33 malesand 25 females with on
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Algorithm 1 ICP Algorithm
INPUT : reference and source point clouds, initial estimation of the transformation to align

the source to the reference (optional), criteria for stopping the iterations.

OUTPUT: refined transformation

1: repeat

2: For each point in the source point cloud, find the closest point in the reference point

cloud.

3: Estimate the combination of rotation and translation usinga mean squared error cost

function that will best align each source point to its match found in the previous step.

4: Transform the source points using the obtained transformation.

5: until (re-associate the points, and so on).

TABLE 1: Database construction of the human jaw: subjects categorized with respect to

gender, age and ethnicity

average age of 19 years old2.

The triangular meshes of the training ensemble are obtainedfrom a high resolution

computer tomography (CT3) scan of human jaw molds where the Expectation-Maximization

2A key requirement for successful statistical SFS is the availability of a comprehensive database that

describe the teeth/jaw variability per age, gender and ethnic factors. Ongoingefforts aim to undertake such a

task make the database available for researchers worldwide.
3A Cone-beam CT (KODAK 9000 3D Extraoral) scanner is used.
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FIGURE 17: Sample of the human jaw (pre-repair) lower and upper jaws: first column

shows the 2D images, 3D scans using cone beam CT machine showsin the second column.
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FIGURE 18: Sample of the human jaw (post-repair ) lower and upper jaws: first column

shows the 2D images, 3D scans using cone beam CT machine showsin the second column.
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FIGURE 19: Illustration of the jaw anatomical landmarks.

(EM) algorithm is used for segmentation. Dense correspondence between jaw samples is

obtained using the 3D thin-plate spline where the alignmentprocedure is guided by the

sparse set of anatomical jaw landmarks as shown in Figure 19.The 3D thin-plate spline is

used to provide a warping function between image pixels (assumed to be on the xy-plane in

the 3D space) and surface points using image landmarks and surface landmarks as control

points. Orthographic projection is applied to re-represent the triangular meshes in terms

of Monge patches which provides a bijective mapping betweensurface points and image

coordinates.

E. Summary

In this chapter, a system for building a database of real human teeth 3D models is

presented. Teeth are scanned using Cone-beam CT with a resolution of 0.2×0.2×0.2 mm3.
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CHAPTER IV

OCCLUSAL SURFACE RECONSTRUCTION OF HUMAN TEETH FROM A
SINGLE IMAGE

Image formation involves understanding sensor characteristics and object reflectance.

In dentistry, an accurate 3D representation of the human jawmay be used for diagnostic and

treatment purposes. Photogrammetry can offer a flexible, cost effective solution for accu-

rate 3D representation of the human teeth, which can be used for diagnostic and treatment

purposes. Nonetheless there are several challenges, such as the non-friendly image acquisi-

tion environment inside the human mouth and problems with lighting and errors due to the

data acquisition sensors. In this chapter, the focus on the 3D surface reconstruction aspect

for human teeth based on a single image. A more realistic formulation of the SFS prob-

lem is introduced by considering the image formation components: the camera, the light

source, and the surface reflectance. A non-Lambertian SFS algorithm under perspective

projection is proposed which benefits from camera calibration parameters. The attenuation

of illumination due to near-field imaging taken into account. The surface reflectance is

modeled using the Oren-Nayar-Wolff model which accounts for the retro-reflection case.

Experiments provide promising quantitative metric results for the proposed approach.

A. Introduction

Modern dentistry requires the accurate 3D representation of the teeth and jaw for

diagnostic and treatment purposes. For instance, orthodontic treatment involves the appli-

cation, over time, of force systems to teeth for malocclusion correction. Oral and max-
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illofacial radiology can provide the dentist with abundant3D information about the jaw.

Several existing 3D systems for dental applications found in literature rely on obtaining

an intermediate solid model of the jaw (cast or teeth imprints) and then capturing the 3D

information from that model. Due to the lack of surface texture, SFS algorithms have been

used to obtain such 3D tooth reconstructions due to the significant shading cue presented

in a tooth image, e.g. [6, 20].

Photogrammetry seems to offer a flexible, cost effective solution while avoiding

the need for castings. Nonetheless, intra-oral photogrammetric measurement is inherently

difficult due to non-friendly image acquisition environments with lighting problems, spec-

ularity effects due to saliva, inevitable subject motion and errors dueto the data acquisi-

tion sensors [18, 89]. Hence the common assumptions of the image formation process for

typical shape reconstruction algorithms are hardly valid,e.g. Lambertian reflectance and

distant light source.

Starting from the pioneering work of Horn [90], shape recovery from a single im-

age usually involves two steps; deriving an image irradiance equation under a certain set

of assumptions related to the image formation process and designing a numerical scheme

to solve such an equation for the underlying shape. Most of the SFS approaches (e.g.

see [17]), however, focus on the computational part of the SFS problem, i.e. the numerical

solution. As a result, the imaging model in most conventional SFS algorithms has been

simplified under three simple, but restrictive assumptions: (1) the camera performs an or-

thographic projection of the scene, (2) the surface has a Lambertian reflectance and (3) the

light source is a single point source at infinity. Unfortunately, such assumptions are no

longer held in the case of intra-oral imaging environment for human teeth.

This chapter introduces a more realistic formulation of SFSby considering all the

components of the problem, namely: the camera, the light source, and the surface re-

flectance. For the camera and the light source used the same modeling as in [91]. The

camera is modeled by perspective projection (see Figure 20)with the camera parameters
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being known from an off-line calibration process and incorporated in the SFS formulation.

The light source is assumed to be located at the optical center of the camera, i.e. retro-

reflection situation (see Figure 21) where the object is illuminated in the viewing direction.

Under this near-field imaging, the attenuation of illumination due to the distance between

the light source and the surface is taken into account , hencethe method can deal with

concave/convex ambiguity. Accounting for departures from Lambertian reflectance due to

surface roughness, A modified Oren-Nayar-Wolff model is used [92] where surface rough-

ness is physically measured using optical surface profiler (see Figure 22). The Oren-Nayar

model [93] modulates the Lamberts cosine law by a term that depends on the squared sine

of the incidence angle, resulting in apparent brightening at surface patches which move

away from the light source; assumed to be in self shadow. Wolff, on the other hand, has

a physically deeper model for diffuse reflectance from shiny but slightly rough surfaces.

The model uses an angle dependent Fresnel term to account forthe refractive attenuation

of incident light at the surface-air boundary [94]. This Fresnel term modifies the Lamber-

tian cosine model in a multiplicative way. The effect is to depress the surface radiance for

near-normal incidence.
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FIGURE 20: A calibrated wireless intraoral camera equippedby a motion tracker and

Perspective projection camera model.
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FIGURE 21: Local illumination model where object is illuminated in the viewing direction,

i.e. retro-reflection case.
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FIGURE 22: Surface reflectance properties where rough surfaces tend to scatter incident light as compared to smooth surfaces. Microscopic

surface height variations of a posterior occlusal surface is measured by an optical surface profiler.

5
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The numerical solution, classified as Minimization-based [17], is based on the Tay-

lor series expansion of the image irradiance equation followed by the application of the

Jacobi iterative method. On the other hand, the image irradiance equation can be formu-

lated as a partial differential equation (PDE) to solve for surface gradients, where the theory

of viscosity solutions for Hamilton-Jacobi type equationsprovide a good framework of SFS

algorithms [17]. However explicit PDE formulation of the SFS problem imposes regularity

of the image irradiance function which is assumed to be continuous [17]. Nonetheless,

human teeth do not fit such an assumption, due to the geometrical structure of the occlusal

surface in particular, which forms attached and cast shadows in the captured image causing

image discontinuities.

Carter et al. [6] evaluated three SFS models for artificial tooth surface reconstruction

based on the work of Ahmed and Farag [26]. They concluded that, based on the quantitative

error analysis, a perspective camera projection with an Oren-Nayar reflectance model has

been proved to be the most ideal SFS formulation for extracting tooth crown surface from

a single image. Nonetheless, their work did not incorporatethe available camera parame-

ters from their acquisition setup nor the object physical characteristics into the SFS-PDE

formulation. The proposed SFS approach is compared with a non-Lambertian PDE-based

approach [6, 12] via quantitative error metric derived fromgroundtruth teeth surfaces ob-

tained from a CT-scanner. Vis-à-vis dental applications,the results demonstrate a signif-

icant increase in accuracy in favor of the proposed approach. In particular, the proposed

approach is able to recover geometric details of the tooth’socclusal surface as compared to

PDE-based approaches.

B. Image Irradiance Equation

According to the microscopic view of occlusal surface height variations, Figure 22,

tooth surface reflectance can be modeled by micro-facet reflectance models where the
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Oren-Nayar-Wolff model is well-suited for the retro-reflection case [94]. When the ob-

ject is illuminated in the viewing direction, taking into account the illumination attenuation

term (1/r2) as shown in Figure 21, the expression of the image irradiance E using Oren-

Nayar-Wolff model can be simplified to [92]:

E(x) =
A(1− F(θ, η))2 cosθ + Bsin2 θ

r2
;

s.t. A = 1− 0.5
σ2

σ2 + 0.33
, B = 0.45

σ2

σ2 + 0.09
. (13)

wherex = (x, y)T is the 2D point,r is the distance to the light source [92], the

parameterσ denotes the standard deviation of the Gaussian distribution which is used as

a measure of the surface roughness,θ is the inclination angle of the viewer/source andF

refer to the Fresnel reflection function [92] with refractive index ofη.

C. Parametric SFS for Non-Lambertian Surfaces

A surface point in the 3D space can be related to its corresponding position in the

image plane through the camera intrinsic (solved for once) and extrinsic (updated while the

camera is in motion) parameters. The relation between a 3D point X = (X,Y,Z)T and the

corresponding point in the image coordinatesx = (x, y)T is written ass(x)~x = PX+b, where

s is a scalar parameterized by the image pixel coordinates,P is a 3× 3 camera matrix,b is

a 3× 1 translation vector and~x = [xT 1]T is the extended vector defined in homogeneous

coordinates. Therefore the point in 3D coordinates can be written as a function of the

corresponding point in the image plane as,

X = P−1 [
s(x)~x − b

]
= g(s(x)) (14)

Equation (14) represents the line in 3D passing through the optical center and the
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projected pointx in the image plane. Thus solving for the scalars(x) ∀x ∈ D, using the

available shading cues in the image domainD ∈ R2, accounts for defining a unique 3D

pointX on the object’s surface. The inherent relationship betweenthe scale factors(x) and

the surface normal vector~n(x) can be expressed in terms of surface gradients(p(x), q(x)) in

the gradient space [95], wherep(x) = ∂g(s(x))
∂x = p(s) andq(x) = ∂g(s(x))

∂y = q(s)4. The image

irradianceE(.) now becomes a function of the scalars(x) defined in (14). In the sequel, the

proposed variational formulation for the problem is presented in case of near illumination

with Oren-Nayar-Wolff reflectance. A small pattern used in the calibration of the intraoral

camera; the size of the pattern is suitable to size of the tooth.

D. SFS Minimization Functional

The SFS problem can then be formulated as finding the scalarswhich satisfies both

the brightness constraint and the smoothness constraint5. While the former indicates the

total brightness error of the reconstructed image, given the imaging process parameters,

compared to the input imageI , the latter is included to obtain a smooth surface that is free

from discontinuities through penalizing the derivative ofthe surface.

This can be solved using a Taylor’s series expansion of the estimated brightness

E(s) aroundE(sn−1), wheren is the iteration index. This is followed by applying the Jacobi

iterative method. Aftern iterations, for each pointx in the image,sn(x) is given as,

sn(x) = sn−1(x) + λ1
−I (x) + E(sn−1(x))

d
ds(x) E(sn−1(x))

+ λ2∇sn−1(x) (15)

whereλ1 andλ2 are real positive coefficients defining the brightness and smoothness

4For notational simplicitys is used to denotes(x)
5Since we are not solving for surface gradients explicitly, the integrability constraint is not considered in

this work.
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factors respectively. The derivative of the image brightnessw.r.t. scan be written as,

d
ds(x)

E(sn−1(x)) =

1
r2

{[
A

(
1− cos−1(~n(x) · ~l)

)2
(
d~n(x)
ds(x)

· ~l
)

+ 2
(
~n(x) · ~l

)
1+ cos−1(~n(x) · ~l)

d~n(x)
ds(x) · ~l

√
(1− (~n(x) · ~l)2)





− 2B
(
~n(x).~l

) (d~n(x)
ds(x)

· ~l
)}

(16)

where,

d~n(x)
ds(x)

=
d~v(s)
ds(x)

1√
~vT(s)~v(s)

− ~v(s)√
(~vT(s)~v(s))3

(
~vT(s)

d~v(s)
ds(x)

)
(17)

with ~v(s) = p(s) × q(s). Onces(x) is evaluated, the corresponding point location in the 3D

space can be determined using (14). These step are enumerated in Algorithm 2.

E. Experimental Results

1. Testing Images Panel

To evaluate the 3D reconstruction results obtained with theproposed algorithm,

several experiments are done on 250 real human teeth. Premolar models are constructed

from 30 teeth. Mandibular molar models are constructed from30 teeth. Mandibular third

molar models are constructed from 120 teeth. Maxillary molar models are constructed from
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Algorithm 2 Parametric SFS under near imaging conditions

1: Input : (a) 2D Image,I (x), x ∈ R2, whose surface to be reconstructed, (b) the perspec-

tive projection matrixM = [P b].

2: Output : 3D reconstructed surface points,X ∈ R3.

3: Use the wireless probe to obtain the viewer/light direction~l.

4: Initialize s(x) = s0 over the image domain.

5: repeat

6: Computep(s) andq(s).

7: Compute~n(x).

8: Update iteration indexn = n+ 1.

9: Update a new estimate forsn(x) using (15).

10: until ‖sn(x) − sn−1(x)‖L1 ≤ ǫ, whereǫ > 0 or maximum number of iterations

11: Recover the surface 3D points using (14).

40 teeth. Whereas maxillary deciduous are constructed from30 teeth. The wireless setup

camera is used to acquire the images of an ensemble of real human teeth while the camera

is held at a distance close to the crown surface to simulate the near-imaging condition inside

the human mouth. A stylus arm with a touching probe (See Figure 23), with tolerance 0.001

mm, is used to digitize the occlusal surface of this teeth ensemble to provide groundtruth

metric information, even though sparse. Meanwhile CT scanning is performed to provide

denser groundtruth information while maintaining the surface geometric details.

TABLE 2 summarizes the key differences between the proposed minimization-

based solution, terms as Algorithm A, and state-of-art PDE-based approaches, termed as

Algorithms B and C, respectively.

The isosurface of the tooth scan is a metric reference to rigidly align the recon-

structed 3D point from SFS to share the same metric coordinate frame. For alignment, the

first and second moments are normalized [96] without affecting the scale. This initializes

an ICP-based rigid registration algorithm [85]. Point correspondence between CT and the
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FIGURE 23: A stylus arm with a touching probe.

TABLE 2: SFS Algorithm Panel

Algorithm Reflectance Model Camera Parameters Numerical Solution

A-new Oren-Nayar-Wolff fully calibrated Minimization-based

B [6, 26] Oren-Nayar only unit focal length PDE-based

C [12] Oren-Nayar-Wolff only unit focal length PDE-based
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FIGURE 24: The 32 adult human teeth.
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TABLE 3: Overall surface reconstruction accuracy (RMS) in mm

Tooth type Algorithm A Algorithm B Algorithm C

Mandibular 3rd molars 0.47232 1.07022 1.05386

Mandibular Molars 0.63568 1.13321 1.12548

Maxillary Molars 0.58694 0.89672 0.88411

Maxillary deciduous 0.65997 1.11995 1.11456

Premolars 0.45267 0.83282 0.81752

reconstructed surface is obtained based on Hausdorff distance [97]. The SFS algorithms

are compared in accordance with an error estimator based on the root mean square (RMS)

error between the 3D points from the CT scan and the corresponding reconstructed surface

points. It is worth mentioning that throughout the experimentations, Algorithm A con-

verges after 5− 10 iterations while Algorithms B and C converge after 100 iterations on

average. TABLE 3 shows the overall surface reconstruction accuracy of the three algo-

rithms based on the testing images panel.

Figure 25 (fourth and fives rows) shows sample reconstructions of human teeth with

different types using Algorithms B and C, which were not able to recover the geometrical

details of the occlusal surface when compared to the proposed minimization-based algo-

rithm (Figure 25 (third row)). This emphasizes the role of incorporating physical surface

characteristics (surface roughness in the proposed case6) along with sensor parameters in

the process of shape recovery. More results shown in Figure 26 as applied on maxillary

deciduous and premolar teeth.

F. Summary

This chapter focused on the surface reconstruction aspect of human teeth from a

6Throughout the experimentation, the average surface roughness parameter is used that computed from

the surface profiler.
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FIGURE 25: First row: images for three different types of human teeth (mandibular 3rd

molar, mandibular molar and maxillary molar), captured by the intra-oral camera. Second

row: groundtruth occlusal surface generated from CT scanning. Third row: surface recon-

struction based on algorithm A (proposed solution). Fourthrow: surface reconstruction

based on algorithm B. Last row: surface reconstruction based on algorithm C. Notice algo-

rithms B and C (PDE-based) did not capture the geometric details of the occlusal surface

as compared to the minimization-based algorithm A.
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FIGURE 26: First row: images for more two different types of human teeth (maxillary

deciduous and premolar), captured by the intraoral camera.Second row: groundtruth oc-

clusal surface generated from CT scanning. Third row: surface reconstruction based on

algorithm A (proposed solution). Fourth row: surface reconstruction based on algorithm B.

Last row: surface reconstruction based on algorithm C. Notice algorithms B and C (PDE-

based) did not capture the geometric details of the occlusalsurface as compared to the

minimization-based algorithm A.
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single image captured by an intraoral camera under near-field imaging. The work has

addressed several challenges related to the image formation process including near illumi-

nation and perspective projection, while taking into account the deviation from the sim-

plifying Lambertian assumption. Proposed formulation exploits all calibration information

provided by the acquisition system setup. In particular, onaverage, the proposed approach

reduces the error metric by 0.4434mmcompared to un-calibrated PDE-based SFS formu-

lation. While the improvements are fractions of a millimeter, this is considered significant

for dental-related applications such as tooth implants andsurface analysis.

Ongoing efforts are directed towards reconstructing a complete metricmodel for the

human jaw for various dentistry applications where a handy dental probe for data acquisi-

tion can provide ease-of-use for the dentist and is considered comfortable for the patient.

This involves (1) handling inherited specular regions in tooth surface due to saliva and

enamel reflectance and (2) performing surface registrationand mesh zippering under par-

tial overlaps (Chapter V).

61



CHAPTER V

3D RECONSTRUCTION OF THE HUMAN JAW USING VARIATIONAL SFS
AND FEATURE DESCRIPTORS

This chapter proposes a new variational formulation that relates an evolving sur-

face model with image information, taking into consideration that the image is taken by a

perspective camera with known parameters. A new energy functional is formulated to in-

corporate brightness, smoothness, and integrability constraints. All of these terms assume

a hyper surface that evolves in time to meet their criteria. Gradient descent optimization

with Euler-Lagrange is used for optimization. Furthermore, a novel approach is proposed

for 3D surface reconstruction of the human visible whole teeth [20] . Due to the difficul-

ties of setting up a data acquisition system inside the mouth, an intraoral camera is used

to capture a sequence of calibrated images. These images areregistered together to build

a panoramic view of the jaw. A SFS algorithm that benefits fromcamera calibration pa-

rameters is incorporated to build a 3D model from the panoramic image obtained from the

previous stage. The proposed approach results in a 3D surface which has finer details com-

pared with those resulting from other literature techniques. Also, different real and artificial

visible whole teeth surface reconstructions are demonstrated to show the efficiency of the

proposed system.

A. Introduction

Substantial efforts have focused recently on computerized diagnosis in dentistry [98].

Bernardet al. [99] developed an expert system where cephalometric measurements are ac-
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quired manually from the analysis of radiographs and plaster models. Laurendeauet al.

[98] presented a computer-vision technique for the acquisition of jaw data from inexpen-

sive dental wafers. That system was capable of obtaining imprints of the teeth. Usually,

most of the 3D systems for dental applications found in the literature rely on obtaining an

intermediate solid model of the jaw (cast or teeth imprints)and then capturing the 3D in-

formation from that model. User interaction is needed in such systems to determine the 3D

coordinates of fiducial reference points on a dental cast. Other systems that can measure

the 3D coordinates have been developed using either mechanical contact [100] or a travel-

ling light principle [101, 102]. Goshtasbyet al. [103] designed a range scanner based on

white light to reconstruct the cast. The scanner used the subtractive light principle to create

very thin shadow profiles on the cast.

An intraoral camera is used (see Figure 1) to capture a sequence of calibrated im-

ages which is more comfortable to patients. Also it does not require a long time to scan

a jaw. The resulting sequence of images covers the jaw and contains overlapped image

regions. These sequential images are taken in pairs to perform image alignment by esti-

mating projective transformations. This process incorporates points correspondences accu-

rately found by the affine and scale invariant transformation approach (known as ASIFT).

After estimating the projective transformations, the image pairs are used together in order

to build a panoramic image of the whole jaw. The new view is used to build a 3D sur-

face using the SFS algorithm. The used SFS is depending on calibration parameters. A

formulation of the SFS that uses intrinsic and extrinsic camera parameters is used such

that a better surface [18] is obtained. This technique is compared with former approaches

and the difference is significant. Incorporating camera parameters results in surfaces with

fine details that can not be handled by the other methods that involve SFS. Different 3D

reconstruction results of artificial jaws will be demonstrated to show the efficiency of the

proposed technique.
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B. Data Acquisition

The human jaw is not a friendly environment for calibrated video measurements.

There are problems with lighting (effect of saliva, tooth discolorization, gum texture, and

other sources of specularity), motion (even inevitable slight motions of the upper/lower jaw

may lead to errors far beyond the desired tolerance of submillimeters accuracy), and data

acquisition time (it is not comfortable to open the jaw widely for over a minute or two).

There are small cameras available that can provide viewing of the human jaw. The lenses

are usually active and allocated on the dental probe to provide viewing not calibrated image

capturing. Hence, a major problem to overcome would be the design of a small size CCD

camera with passive or active lenses that can be calibrated with respect to a reference frame.

This chapter, an intraoral camera with an attached small light source is used to ac-

quire 2D images of the teeth. Some specifications are given as: LED light source, 1/4”

CCD Sensor; 320, 000 pixels (PAL7), 270, 000 pixels (NTSC8) and resolution 512× 582

(PAL); 512× 942 (NTSC). The objective of this part is to remove global differences be-

tween two given images (source and target). Every two sequential images will be aligned

together. The output of this process is a panoramic image resulting from putting (stitching)

the aligned sequence of images for the whole jaw.

The description of registering two images by mapping pointscorrespondences is

given in this section. A point in the source image is related to its corresponding target

position by a projective transformation [52]. Note that theoverlap between the two images

results from imaging the same object by the camera to a different positions. Given a set of

K homogeneous image point correspondencesCs
o ∈ R3 (in the source image) andCt

o ∈ R3

(in the target) whereo ∈ 1, 2, ...,K: a projective transformationH3×3 is required to get

estimated to map a source image point to its corresponding target image position by the

relation soCt
o = HCs

o whereso is a scaling coefficient for the projective transformation

7Phase Alternating Line.
8National Television System Committee.
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effect. Actually, this equation will lead to two linear equations:h11xs
o+h12ys

o+h13−h31xt
oxs

o−

h32xt
oy

s
i − h33xt

o = 0 andh21xs
o + h22ys

o + h23 − h31yt
oxs

o − h32yt
oy

s
o − h33yt

o = 0 wherex and

y are the coordinates of point. A linear system of equationsΨΘ = 0 can be constructed

whereΘ = [h11h12...h33] is the parameters column of the projective transformationH and

Ψ is the coefficients matrix. The projective transformation parameters are estimated by

solving this linear system through the singular value decomposition approach. If the points

correspondences are accurate, the overall difference between the source and target images

vanishes when they are fused together. The success of this process is highly dependent on

selecting the source and target points correspondences.

C. Affine Scale-Invariant Feature Transform(ASIFT)

TheASIFT[104] is an affine invariant extension ofSIFT. TheASIFTsimulates three

affine parameters, scale and changes of the camera axis orientation longitude angle and the

latitude angle (which is equivalent to tilt) and normalizesthe rest three parameters, rotation

and translation. More specifically, the ASIFT simulates thetwo camera axis parameters,

and then applies SIFT which simulates the scale and normalizes the rotation and the trans-

lation. For two stereo images the ASIFT algorithm can be summarized as follows: Each

image is transformed by simulating all possible linear distortions caused by the change of

orientation of the camera axis. These rotations and tilts are performed for a finite and small

number of latitudes and longitudes. All simulated images are compared by a similarity in-

variant matching algorithm (SIFT) in the following manner: (1) scale-space peak selection,

(2) key-point localization, (3) orientation assignment, (4) key-point descriptor. The scale

spaceL(x, y, σs)can be constructed by the linear convolution of the image I with Gaus-

sian kernelG(x, y, σs). Scale-space extrema detection searches over all scalesσsand image

locations to identify potential interest points which are invariant to scale and orientation;

this can be efficiently implements using Difference-of-GaussiansD(x, y, σs) which takes

the difference between consecutive scales,D(x, y, σs) = L(x, y, σs) − L(x, y, σs−1), where
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a point (x, y) is selected to be a candidate interest point if it is larger or smaller than its

3×3×3 neighborhood system defined on{D(x, y, σs−1),D(x, y, σs),D(x, y, σs+1)}whereσs

is marked to be the scale of the point (x, y). Then removal of points with low contrast and

points that are localized along edges is accomplished.

In order to obtain a point descriptord which is invariant to orientation, a consistent

orientation should be assigned to each detected interest point based on the gradient of its

local image patch. The orientation is selected to be the peakof the weighted orientation

histogram. Then a 16× 16 image window surrounding the interest point (x, y) is divided

into sixteen 4× 4 sub-window, an 8-bin weighted orientation histogram is computed for

each sub-window, hence ending up with 16× 8 = 128 descriptors for each interest point.

Thus each detected interest point can now be defined at location, specific scale, certain

orientationθ and a descriptor vector as{x, y, σ, θ, d}. Interest point matching is performed

to provide correspondences between the given images. Two points are said to be in corre-

spondence if their descriptors match inL2-norm. The overall performance is twice slower

thanSIFT, but it gives more matching rate especially with face images.

The resulting matched points from theASIFT algorithm may include incorrectly

matched points soRANSAC[105] is used to fit a transformation model to those points. A

random sample consists of four points which is the minimal subset of the interest points

sufficient to determine a projective transformation is selected. The transformation is esti-

mated by solving a linear system with the chosen random sample, and then the resulting

transformation is evaluated using all correspondence points available. These points which

deviate from the current transformation model by a specifiedthreshold are considered out-

liers; hence the support of the model will be measured by the ratio of the inlier to the total

number of points. For n point correspondences, this procedure is repeated K-times, where

K ≤ n!
2!(n−2)! then the best fit transformation model is the one with the maximum support,

and the points marked as outliers are excluded from the interest points.
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D. EulerLagrange Equation

The Euler-Lagrange differential equation [106] is the fundamental equation of cal-

culus of variations. Euler’s equation in calculus of variations is a differential equation

whose solutions are the functions for which a given functional is stationary. The EulerLa-

grange equation was developed by Swiss mathematician Leonhard Euler and Italian math-

ematician Joseph-Louis Lagrange in the 1750s.

Due to a differentiable functional is stationary at its local maxima andminima,

the EulerLagrange equation is useful for solving optimization problems in which, given

some functional, one seeks the function minimizing (or maximizing) it. This is analogous

to Fermat’s theorem in calculus, stating that at any point where a differentiable function

attains a local extremum, its derivative is zero.

It states that ifJ is defined by an integral of the form:

J =
∫

f (t, y, ẏ)dt, (18)

where

ẏ ≡ dy
dt ,

thenJ has a stationary value if the Euler-Lagrange differential equation:

∂ f
∂y
− d

dt
(
∂ f
∂ẏ

) = 0 (19)

is satisfied.

If time-derivative notation ˙y is replaced instead by space-derivative notationyx, the

equation becomes
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∂ f
∂y
− d

dt
(
∂ f
∂yx

) = 0. (20)

In many physical problems,fx (the partial derivative off with respect tox) turns out

to be 0, in which case a manipulation of the Euler-Lagrange differential equation reduces

to the greatly simplified and partially integrated form known as the Beltrami identity,

f − yx
∂ f
∂yx
= C. (21)

For three independent variables [107], the equation generalizes to

∂ f
∂u
− ∂
∂x
∂ f
∂ux
− ∂
∂y
∂ f
∂uy
− ∂
∂z
∂ f
∂uz
= 0. (22)

E. Shape from shading using calibrated images

The presented acquisition setup allows the knowledge of camera parameters as such

the proposed SFS formulation takes this into account. A surface point in the 3D space can

be related to its corresponding position in the image plane through the camera parameters.

SFS assumes that the surface orientation at a pointM=[X, Y, Z]T on a surfaceS is deter-

mined by the unit vector perpendicular to the plane tangent to SatM. Assumed that the 3D

world point is projected into the image domain at the 2D homogenous pointm=[x, y, 1]T .

To compute the surface normal, the partial derivatives of the 3D world pointM is computed

with respect to the parametersx andy. The normal to the surface will be the cross product

of the gradient vectors:n = M x ×M y. The partial derivatives are called surface gradients.

Assuming that surface patches are homogeneous and uniformly lit by distant light sources,

the brightness I(x,y) seen at the image plane often depends only on the orientation of the

surface. This dependence on brightness of surface orientation can be represented as a func-
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tion R(x,y) defined on the Gaussian sphere. Thus, the SFS problem is formulated as finding

a solution to the brightness equation:

I (x, y) = R(M x,M y, L ). (23)

whereR is the surface reflectance map andL is the illumination direction unit vector.

A number of algorithms were developed to estimate the illuminant direction (e.g.,

[41]). Some SFS approaches using perspective projection were found in the literature

(e.g.[45, 46, 108]). However, most of these approaches ignore thecamera extrinsic param-

eters, hence they cannot provide metric information about depth. In the proposed approach,

the camera is calibrated and the camera parameters are used in the SFS algorithm to obtain

a metric representation of the surfaces. To calibrate the camera, the relation between the

3D pointM and the corresponding image coordinatesm is written as the camera equation;

sm = BM + b (24)

wheres is a scalar quantity,B andb are the intrinsic and extrinsic camera matrices. These

calibration matrices form a 3× 4 matrix but with 11 degrees of freedom. Five parameters

represent the intrinsic value while the other 6 stand for theextrinsic camera parameters

[57]. The standard method of calibration is to use an object with known size and shape and

extract the reference points from the object image. It can beshown that given N points (at

least 6) in general positions, the camera can be calibrated.

The camera equation represents a line in 3D space corresponding to the visual ray

passing through the optical center and the projected pointm. By finding the scalars, a

unique 3D pointM is defined on the object by the equation:

M = B−1(sm − b) = f (s(x, y)) (25)
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The surface reflectanceR(.) becomes a function of the scalarsdefined as:

R(x, y, s) =
(M x × M y) · L
||(M x × M y)||

(26)

The formulation of the SFS problem becomes finding the scalars that solves the

brightness equation g(x,y,s)= I(x,y) - R(x,y,s)= 0. A new variational formulation for the

problem is shown below.

F. The functional to be minimized

Minimization approaches compute the solution which minimizes an energy func-

tion over the entire image. The function can involve the brightness constraint, and other

constraints, such as the smoothness constraint, the integrability constraint, the gradient con-

straint, and the unit normal constraint. In these subsections, these constraints are briefly

described.

1. The Brightness constraint

This is the most important constraint. The main idea is to solve for surface nor-

mals, such that when you use these normals with the given surface albedo and illumination

direction. It is derived directly from the image irradianceequation. It indicates the total

brightness error of the reconstructed image compared with the input image, and is given

by:

ε1 =

∫

Ω

(I − R)2dΩ (27)

whereΩ ∈ R2 represents the image domain (x, y) andI is the image intensity.
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2. The Smoothness constraint

It is used to obtain a smooth surface that is free from discontinuities, hence the

smoothness constraint can be expressed in terms of the second derivatives of surface nor-

mals to ensure surface smoothness as follows;

ε2 =

∫

Ω

(MT
xxM xx +MT

yyM yy)dΩ (28)

The minimization of the above functional aims to penalize the second order gradi-

ents of the surface and hence guarantees smoothness.

3. The Integrability constraint

It ensures valid surfaces, that is,Mxy =Myx. It can be described by:

ε3 =

∫

Ω

(M xy −M yx)
T(M xy −M yx)dΩ (29)

4. Variational approach

There are other constraints like the unit normal and the intensity gradient con-

straints. The three functionals above are used in the proposed formulation. Now, the total

energy will be:

ε = λ1ε1 + λ2ε2 + λ3ε3. (30)

whereλ1, λ2, and λ3 are real positive coefficients.
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The goal here is to compute s(x,y) that minimize the above energy function. Note

that the above function can be written as a function in terms of the scaling factors and its

derivatives:

ε = ε(s, sx, sy, sxx, syy, sxy, syx) (31)

Gradient descent optimization is used with the Euler-Lagrange for computing the

scalar factor as follows:

∂s
∂t
= −∂ε
∂s

(32)

If the energy function is written as

ε =

∫

Ω

f (s, sx, sy, sxx, syy, sxy, syx)dΩ, (33)

the gradient will be as follows:

∂ε

∂s
=
∂ f
∂s
− ∂
∂x

[
∂ f
∂sx

] − ∂
∂y

[
∂ f
∂sy

] +
∂2

∂x2
[
∂ f
∂sxx

]

+
∂2

∂y2
[
∂ f
∂syy

] +
∂2

∂x∂y
[
∂ f
∂sxy

] +
∂2

∂y∂x
[
∂ f
∂syx

] (34)

Detailed derivations are given in the appendix.

These steps are enumerated in Algorithm 3.

G. Experimental Results and Validation
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Algorithm 3 New variational SFS
1: Input : (a) 2D Image,I (m),m ∈ R2, whose surface to be reconstructed, (c) the per-

spective projection matrixP = [B b].

2: Output : 3D reconstructed surface points,M ∈ R3.

3: Initialize s= s0 over the image domain with any value between 0 and 1.

4: repeat

5: compute∂ε1
∂s , ∂ε2

∂s , and∂ε3
∂s according to Eq.(12,A-24, and A-27) respectively.

6: Estimate the new∂ε
∂s by using Eq.(34).

6: Calculate∂s
∂t according to Eq.(32).

6: Updatesn = sn−1 − δ∂s
∂t , whereδ > 0 is small number.

7: until ‖sn − sn−1‖L1 ≤ ǫ, whereǫ > 0 or maximum number of iterations

8: Recover the surface 3D points using Eq.(25).
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FIGURE 27: Different overlapped sub-images, results of features matchingand a jaw is imaged as 9 overlapped images: (a) A sequence of

overlapped images are illustrated. (b) Point correspondences as a result of theASIFT algorithm. (c) Point correspondences are demonstrated

after removing the outliers matches usingRANSAC. (d) The stitching results (panoramic image) where each sub-image is boxed by a green line

to show the overlap between the views.
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An intraoral camera is used to capture overlapped images of real and artificial jaws.

In this stage, the camera is fixed in a certain position. The jaw is moved while the camera

is fixed to image its different overlapped regions. This guarantees that all the images are

calibrated. Feature points are extracted and matched for each pair of images in sequence

using the ASIFT approach. Figure 27(b) demonstrates the matching process between over-

lapped images. The ASIFT results in a set of point matches which are almost correct except

few outliers. TheRANSACas described above remove the outliers. Figure 27(c) shows the

overlapped images after removing the outliers usingRANSAC. This is very important in

order to obtain successful registration process. The sequence of images is numbered from

according to the order of taking the images. The teeth regions themselves do not have

much texture information to extract features. However the edges and the contrast between

the teeth and the gum plays a great role in this process. Also,for the registration approach

previously described, only four points are required to estimate the transformation. This

makes the resulting points more than enough for the success of registration. Using the

resulting point correspondences, a projective transformation is computed and applied to

the source image to get an image for stitching. Sequential images are registered together

in their order and sequence. They are all put together in a bigger size image to build a

panorama for the scanned jaw. Sequences of images are shown in Figure 27(a) with the

stitching results illustrated in Figure 27(d). After the stitching process, some differences

appear in the panoramic image (see Figure 28).

Some filtering and blending operations are carried out to remove these differences.

This process is completely automatic and does not need any manual interaction. A very

important note to mention here is that: Actually, if such a system is needed in clinic, the

whole patient’s jaw can not be imaged in one shot. The mouth environment and the specifi-

cations of the used intraoral camera allows only to image overlapped parts of the jaw. This

is considered to be a strong motivation for developing the proposed system. The resulting

scenes are used with the SFS technique shown above to reconstruct a 3D surface. The re-

constructed surfaces include teeth details which can not beobtained by applying the SFS
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FIGURE 28: Three different examples to stitch two sub-images together: Point corre-

spondences are demonstrated in (a) using the ASIFT algorithm. Correspondences after

removing the outliers using RANSAC are shown in (b). Registration of the two overlapped

images is depicted in (c).
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approach in [6] (see Figure 30). It is noticed here that the resulting surface using that ap-

proach is over-smoothed and hence upper details of teeth aresmeared. Also, the transitions

between teeth and gum looks unrealistic which emphasize theadvantage of the technique

used in this work. The whole processing time starting from taking images and ending with

surface reconstruction is less than 10 minutes. The 3D surface reconstruction execution

time is less than one minute. This is a big advantage for the proposed system which makes

it practical and suitable for dental clinics. This will not make the patient open his mouth

for a long time to get his/her jaw model.
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FIGURE 29: Two different real jaws sub-images panoramic reconstruction: A sequence of

sub-images is given for each case from 1 to 8 while the resulting panoramic image is given

at the last row.
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FIGURE 30: Two artificial jaws 3D surface reconstructions are demonstrated: the results of using the proposed approach are shown in the

middle and the results of the technique in [6] are given in theright column.
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H. Summary

An automatic approach for 3D surface reconstruction is proposed using calibrated

images with the help of the ASIFT features matching. A calibrated camera is used to cap-

ture a sequence of images for artificial jaws. Images are stitched together by estimating

projective transformations for minimizing the global differences between the scenes. The

registration process requires accurate point correspondences which is computed using the

ASIFT approach. Camera calibration parameters are involved in the formulation of a mod-

ified version of the SFS technique to construct a 3D surface ofthe panoramic jaw image

resulting for the stitching process. The results are preferred to other approaches in the liter-

ature since fine teeth details can be reconstructed and the resulting surface is more realistic.

Also the execution time is reasonable and practical in the sense of applying the proposed

system in clinic.
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CHAPTER VI

REALISTIC 3D RECONSTRUCTION OF THE HUMAN TEETH USING SFS
WITH SHAPE PRIORS

This chapter, an approach is developed for realistic 3D reconstruction of the human

teeth using shape from shading with statistical shape priors. The proposed work has ad-

dressed several challenges including near illumination and camera perspective projection,

while taking into account the deviation from the simplifying Lambertian assumption. The

Oren-Nayar reflectance model for diffuse rough surfaces is used with the roughness param-

eter being physically measured by an optical surface profiler. The proposed formulation

exploits the shape priors as extracted from a set of trainingCT scans of real human teeth.

Experiments provide quantitative metric results for the proposed approach.

A. Introduction

There may therefore be a demand for intraoral measurement that could be fulfilled

by photogrammetry, which has been applied to the measurement of many small objects,

even the measurement of dental replicas (e.g. [109]). Photogrammetry seems to offers a

reduced cost technique while avoiding the need for castings. Nonetheless, intra-oral pho-

togrammetric measurement is inherently difficult for several reasons [18, 89]. On one end,

the human jaw is not a very friendly environment for data acquisition. There are prob-

lems with lighting (effect of saliva, gum, and sources of specularity), inevitablesubject’s

motion, and errors associated with the data acquisition sensors. On the end of image for-

mation, the assumptions for typical shape reconstruction algorithms are hardly valid. For
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example, assumptions in previous works based on stereo (e.g.presence of distinct features

or texture regions on the object in stereo images), SFS [18] (e.g.the Lambertian assumption

which considers the surface in the field of view of the camera to be matte), or in space

carving [19] (e.g.the photo consistency) are rarely valid in practice.

In the context of tooth reconstruction from intra-oral images, the SFS technique of-

fers several advantages. It provides rather more detailed and accurate representation about

the shape of the tooth crowns [18]. It requires only one camera position within the cramped

confines of the mouth. Cost-wise, it is cheaper, because it simply requires a single camera

and light source.

This work, aims to address the aforementioned issues related to the acquisition setup

and the shape reconstruction approach. A flexible and convenient, both to the dentist and

the patient, acquisition setup has been developed that consists of a small wireless intraoral

camera with a built-in bright light source to acquire 2D images of the teeth. The camera

has 1/4 Sony CCD, and an image resolution of 2.0 mega pixels (see Figure 1).

From the point of view of shape reconstruction, A more realistic formulation of

SFS is introduced by considering all the components of the problem, namely: the cam-

era, the light source, and the surface reflectance. The camera is modeled by perspective

projection, which is more practical in this case as the teethare typically close to the cam-

era. The light source is assumed to be located at the optical center of the camera. Under

this near-illumination imaging the attenuation of illumination is taken into account due to

the distance between the light source and the surface, whichhelps to deal with the con-

cave/convex ambiguity in SFS [9, 22]. As the Lambertian reflectance is rather oversimpli-

fied to model the real nature of the human teeth surface, the Oren-Nayar model is used [15]

which carefully accounts for the scattering of light causedby the teeth surface roughness.

In the proposed approach, this surface roughness is even physically measured from real

human teeth using an optical surface profiler.
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In addition, to further improve the accuracy and practicality of results, 3D shape

priors in SFS formulation are incorporated. This strategy is motivated by the fact that

humans rely on strong prior information about the 3D world around us in order to perceive

3D shape information. It thus becomes natural to think of ways to incorporate this kind

of information into the reconstruction process done by computers. Such information is

statistically extracted from training 3D models of the human teeth. This can serve in several

aspects,e.g., to improve reconstruction accuracy, solve problems caused by occlusion (e.g.,

because of the tongue), specularity and albedo changes, and/or make up for the lack of

sufficient, detailed view of the human tooth.

The proposed method of incorporating 3D shape priors in SFS can be linked to the

so-calledstatisticalSFS methods in literature,e.g.[110–112], all of which have been de-

veloped in the context of 3D face reconstruction. In particular, the same idea in [110, 111]

of constructing a 3D prior model based on a low-dimensional parametrization of a train-

ing set is employed. This is achieved by applying principal component analysis (PCA).

In addition to the different application domain (tooth reconstruction in the proposed case),

this work here conveys other different and novel aspects. While those existing SFS meth-

ods [110–112] have assumed Lambertian model and orthographic projection, the more

practical Oren-Nayar model with perspective projection ismoved further ahead. While

some of these methods (e.g., [112]) use harmonic representations of lighting to account for

non-known illumination source, and may require a separate model for the face albedo, the

proposed approach in that regard is simpler by the design of the acquisition setup, where

the light source position is known. Therefore, in summary, the proposed approach utiliz-

ing 3D shape priors as well as the more realistic assumptionsof the Oren-Nayar reflectance

model, perspective projection and near light source with intensity attenuation, to the best of

knowledge, has not been done before in literature. Several successful experimental results

of the proposed approach are reported on real teeth with specularity and other challenging

conditions.
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B. Shape Priors

A shape model is constructed from a training set of 3D model ofthe same human

tooth type. To be able to do this, several real invitro teeth of the same type (maxillary

deciduous, maxillary molars, mandibular molars, and mandibular third molars) from adult

subjects with different races, gender and ages are fixed over wax. A Cone-beam CT(KO-

DAK 9000 3D Extraoral) scanner at a resolution of 0.2 mm is then used to scan the wax

and teeth. At least 30 teeth of each type have been collected.The root part of each tooth is

manually taken out from the CT scan, and the visible 3D tooth surface is segmented out.

Furthermore, the surface roughnessσ is estimated of the tooth surfaces which is

needed for the Oren-Nayar diffuse reflection model. This is done with the help of a 3D

optical surface profiler (NewView 700s from Zygo company), which is based on Scan-

ning White-Light Interferometry technology that offers fast, non-contact, high-accuracy

3D metrology of micro surface features.

Afterwards, the 3D surfaces for each tooth type are rigidly aligned to remove any

variations in shape due to pose differences. The first surface of the training set is used as the

reference to which the remaining surfaces are aligned. The alignment is carried out using

an iterative closest point (ICP-based) rigid registrationalgorithm [85] using the Hausdorff

distance between corresponding points.

However before either case, the input brightness image of a human tooth whose

3D surface to be reconstructed must be aligned first with the constructed shape model.

This is successfully achieved by a rigid 2D image registration between the input image

and a reference image for the constructed shape model using the maximization of mutual

information [113]. Figure 31 shows one sample input image for a tooth, the reference

image for a constructed shape model, and the input image after alignment.

To build the shape model, each 3D tooth surface is converted to a height map, then
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FIGURE 31: Aligning an input image with the reference shape model. (Left) Reference

image corresponding to the constructed shape model. (Middle) Sample input test image for

a tooth. (Right) The test image after being aligned with the reference image.

principal component analysis (PCA) is applied to capture the main variations of the co-

aligned height maps:

u(x) = ū+
k∑

i=1

wiui(x), (35)

where ū is the mean height map (mean tooth shape), see Figure 32,ui(x) is the

i − th orthogonal mode of variation in the shape (also calledeigenteeth), andw = {wi} is

called the vector of eigen coefficients or the shape vector. Only k principal components are

considered in the sum, where k should be chosen large enough to be able to capture the

prominent shape variations present in the human teeth.

Equation (35) is used as explicit representation of teeth shape. Therefore, by varying

w, varyu. Note that the shape variability allowed in this representation is restricted to the

variability given by the eigenteeth.

C. Shape from Shading with Shape Priors
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FIGURE 32: The mean shapes in the constructed database of human teeth of various types:

maxillary deciduous teeth, maxillary molars, mandibular molars and mandibular third mo-

lars, respectively.

Having built the prior shape model, it is ready now to embed itin the SFS framework

to guide the solution. Starting the simple case of Lambertian surface, a distant directional

light source and orthographic projection are used to demonstrate the proposed formulation.

The concern then shifts to the more realistic SFS formulation considering the Oren-Nayar

diffuse reflection model with a near light source and perspectivecamera.

However before either cases, the input brightness image of ahuman tooth whose

3D surface to be reconstructed must be aligned first with the constructed shape model.

This is successfully achieved by a rigid 2D image registration between the input image

and a reference image for the constructed shape model using the maximization of mutual

information [113].

1. Simple Lambertian Case

The simplest imaging model is obtained when the camera performs an orthographic

projection of a surface that has Lambertian reflectance and illuminated by a point light

source located far away from the surface. The idea here is to solve for the height mapu(x)

that minimizes the energy functional:
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εL =

∫

Ω

(I (x) − R(u(x))2dx =
∫

Ω


I (x) − ŝ · (∇u,−1)√

1+ |∇u|2



2

dx, (36)

whereΩ ⊆ R2 represents the image spatial domain, andI is the image intensity.

Solving this last optimization problem is rather difficult and often requires imposing

some regularization (e.g., smoothness of height map) [17].Nevertheless, utilizing the prior

shape model (35) in terms of the weighted sum of eigen vectors, the task is reduced to

searching for the weightswi that minimize the energy function (not functional anymore)

εL =

∫

Ω

I (x) −
ŝ · (∑k

i=1 wi

[
∂ui (x)
∂x

∂ui (x)
∂y

]
,−1)

√
1+

(∑k
i=1 wi

∂ui (x)
∂x

)2
+

(∑k
i=1 wi

∂ui (x)
∂y

)2



2

dx. (37)

One can readily see a quick advantage in the above optimization problem (37),

where the solution search space is shrinked into a finite number (k) of weights. To find this

solution, one can easily use a gradient descent minimization routine, where the weights

{wi , i = 1, · · · , k} are evolved according to

∂wi

∂t
= −η∂εL

∂wi
, (38)

whereη is a positive learning constant. The required partial derivatives of the energy

functionεL with respect to the weights{wi} are readily obtained as

∂εL

∂wi
=

∫

Ω

2

I (x) +
v√

1+ |∇u|2

 ×



(
1+ |∇u|2

) (
−s1

∂ui (x)
∂x − s2

∂ui (x)
∂y

)
− vp

(
1+ |∇u|2

)1.5

 dx, (39)
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where

v =

−s1

k∑

i=1

wi
∂ui(x)
∂x

− s2

k∑

i=1

wi
∂ui(x)
∂x

+ s3



p =


k∑

i=1

wi
∂ui(x)
∂x


∂ui(x)
∂x

+


k∑

i=1

wi
∂ui(x)
∂y


∂ui(x)
∂y
.

In experimentation, the evolution commences from{wi = 0.2, i = 1, · · · , k} at t =

0, and convergence is typically attained within rather few iterations. From the obtained

weights, the height map is recovered via (35) in order to reconstruct the surface of the

tooth.

2. Realistic Oren-Nayar case

In this case the Oren-Nayar model is used for the surface reflectance. The camera

has a perspective projection and the light source is assumedto be located at the optical

center of the camera, with its intensity being attenuated with squared distance.

The energy functional to be minimized in this case is

εON =

∫

Ω

(I (x) − R(u(x))2dx, (40)

where

R(u(x)) =
ρ

π f 2u2(x)
Li

(
A(ŝ · n̂) + B

(
1− (ŝ · n̂)2

))
. (41)

It is a common practice [17] to drop the constants (ρ, Li , f ) in (41), and alternatively

normalize the input intensity imageI . From the definitions of the perspective camera in

Section II.F.2 and Figure 14, one can easily obtain

ŝ · n̂ = f√
x2 + y2 + f 2

u(x). (42)
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The goal here is to find the solution of the optimization problem

ŵi = arg min
wi

εON, i = 1, · · · , k, (43)

which easily solved using a gradient descent minimization routine, where the weights

{wi , i = 1, · · · , k} are evolved analogously to (38). The required partial derivatives of the

energy functionεON with respect to the weights{wi} are readily obtained as

∂εON

∂wi
=

∫

Ω

2 [I (x) − R(u(x))]

(
−∂R(u(x))
∂wi

)
dx (44)

where

∂R(u(x))
∂wi

=
ρLi

π


−A ui(x)

f
√

x2 + y2 + f 2u2(x)
− 2

B ui(x)
f 2u3(x)

 . (45)

It is interesting to note here that the update equation of theweights in this case does

not depend on the the spatial derivatives of the shape eigenvectors (∂ui
∂x , ∂ui

∂y , or∇u). This is

in contrast to the weight update equation for the simpler Lambertian case (see (39)). This

leads to more noise-robust evolution of the weights in the more realistic case and faster

convergence (about only 60 % of the iterations of the simple Lambertian case is typically

needed here in the experiments).

D. Experimental Results

In order to evaluate the performance of the proposed approach, several experiments

are carried out on real human teeth, other than the ones used for constructing the shape

prior model. The accuracy of the tooth reconstruction is assessed by comparing it to the

3D ground-truth surface as obtained from CT scan. For the proposed approach, the simple

Lambertian case (Section VI.C.1) and the more realistic case (Section VI.C.2) are applied

both in order to assess the gain out of the latter formulation.
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TABLE 4: Summary of approaches under experimental comparison.

Camera Light source Reflectance Priors Reference

AA orthographic at infinity Lambertain No [78, 114]

BB perspective at optical center Oren-Nayer No [9, 12]

CC orthographic at infinity Lambertain Yes new

DD perspective at optical center Oren-Nayer Yes new

The proposed algorithm is compared with two SFS algorithms:The first is a stan-

dard SFS algorithm [78, 114] assuming typical assumptions of Lambertian surface, or-

thographic projection and distant directional light source. The other algorithm is a more

recent SFS algorithm [9, 12] based on viscosity solutions for Hamilton-Jacobi type formu-

lation of the image irradiance equation. This algorithm wasoriginally developed in [9]

for the Lambertian case assuming a perspective camera projection and a light source at the

camera optical center. Later [12] it has been extended to theOren-Nayar reflectance model.

It does not use any prior information in its SFS formulation.Table 4 summarizes the key

differences between the proposed approaches (CC and DD) and the others approaches (AA

and BB).

Sample results from the approaches under evaluation are demonstrated in Figure 33.

Figure 33(first row) shows the 2D input images for four different teeth models (maxillary

deciduous, maxillary molar, mandibular molar, and mandibular third molar), while Fig-

ure 33(second row) shows the corresponding ground-truth tooth surface as obtained from

CT scans. The outputs from Algorithm AA, shown in Figure 33(third row), are rather

bumpy with too many peaks as the algorithm fails to handle theinevitable specularity due to

the tooth surface characteristics and the near-illumination setup. Rather better reconstruc-

tions are provided by Algorithm BB, see Figure 33(fourth row). However the algorithm is

not able to recover the geometrical details of the occlusal surface when compared to the

proposed algorithms CC (Figure 33(fifth row)) and DD (Figure33(last row)). The shape

priors have indeed guided the SFS formulation to recover more details of the tooth crowns

90



overcoming the challenges caused by the scattered specularspots throughout the tooth sur-

face. Clearly, the more realistic formulation (algorithm DD) has shown the most success in

that regard. Beneath each reconstruction is the root-mean-square (RMS) error between the

reconstruction and the ground-truth after performing 3D rigid registration. Consistently,

the proposed algorithms (CC and DD) provide smallerRMSerrors, with Algorithm DD

having the lowest error rate (almost as low as one half of those for Algorithms AA and

BB). This emphasizes the role of incorporating prior information in the process of shape

recovery.

To further demonstrate the gain out of the shape priors, another experiment is per-

formed on real human teeth with fillings that cover significant parts of the teeth, see Fig-

ure 34 (first row). Figure 34 (second row) shows the corresponding surface reconstructions

by the proposed approach (Algorithm DD). Note that the teethare successfully and com-

pletely reconstructed, in spite of the tooth filling regionswith different colors and albedo

characteristics in the input images. This notable outcome of the proposed approach be-

comes more evident when compared to the tooth reconstruction by Algorithm BB in Fig-

ure 34 (third row). The filling regions gave rise to significant valleys and grooves in Algo-

rithm BB results.

E. Summary

This chapter, focused on realistic 3D reconstruction of thehuman teeth using shape

from shading with statistical shape priors. The work has addressed several challenges re-

lated to the image formation process including near illumination, perspective projection,

while taking into account the deviation from the simplifying Lambertian assumption. The

Oren-Nayar reflectance model is used for diffuse rough surfaces with roughness param-

eter being physically measured by an optical surface profiler. The proposed formulation

exploits the shape priors as extracted from a set of trainingCT scans of real human teeth.
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FIGURE 33: Tooth reconstruction from four different algorithms. First row: image ac-

quired by the intraoral camera. Second row: ground-truth occlusal surface generated from

a CT scan of the tooth. Third row: reconstruction using Algorithm AA. Fourth row: re-

construction using Algorithm BB. Fifth row: reconstruction using the proposed method

(Algorithm CC). Last row: reconstruction using the proposed method (Algorithm DD).

Beneath each reconstruction is the root-mean-square (RMS) error when compared to the

ground-truth surface from CT.
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FIGURE 34: Experiment on teeth with significant fillings. First row: input test image.

Second row: reconstruction by the proposed algorithm (Algorithm DD). Third row: recon-

struction by Algorithm BB.
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This allows the reconstruction of a tooth with shape variations consistent with the training

model examples. The proposed approach utilizing 3D shape priors as well as those more

realistic assumptions of the Oren-Nayar reflectance model,perspective projection and near

light source with intensity attenuation, to the best of knowledge, has not been done before

in literature.

Experimental results have stressed the importance of invoking the shape priors and

realistic object characteristics into surface reconstruction. The proposed approach has been

able to recover rich geometric details of tooth occlusal surfaces. Furthermore, shape pri-

ors have helped in handling specular regions in tooth surface due to saliva and enamel

reflectance. In particular, on the average, the proposed approach reduces the error metric

by 0.5−0.65mmcompared to well-known existing SFS approaches. It is important to stress

here that in this application domain, fractions of a millimeter improvements are considered

significant for dental-related applications such as tooth implant and surface analysis. The

proposed approach have successfully reconstructed teeth with challenging conditions, such

as scattered specular spots and significant changes in colorand albedo characteristics.
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CHAPTER VII

2D-PRINCIPLE COMPONENTS ANALYSIS SHAPE MODELS

In this chapter, the current algorithms that were presentedin the previous Chapter

(VI) are improved. The approached developed in this chapterreconstructs the teeth from

single image shading with 2D-Principal Components Analysis (PCA) shape priors that

have more sophisticated reflectance model. The Oren-Nayar-Wolff model was used for

modeling the surface reflectance. This formulation uses shape priors as retrieved from a

set of training CT scans of real human teeth. The experimentsshow promising quantitative

results, which builds the infrastructure for having an optical based approach that accounts

for inexpensive and radiationless human tooth reconstruction.

A. Introduction

The two systems that showed most promise in the last few years, the iTero (Cadance)(see

Figure 359) and Lava(see Figure 3610). The Probes in both systems are bulky and requiring

multiple scans to get full coverage of the oral cavity. The Lava system requires the use of

a visible powder to get good registration, and has problems with depth of field. The iTero

has a heavier probe and can only capture one tooth at a time, requiring five views of each

tooth. Blood and saliva causes additional inaccuracies with both systems.

In Chapter VI, a 3D reconstruction of the human teeth is presented using SFS with

shape priors, this work lacking in the following aspects: (1) They assumed Oren-Nayar

9http://www.sheffermanortho.com/news.php.
10http : //www.medgadget.com/2008/07/3m espelava oral scannergetsideabronze.html.
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FIGURE 35: iTero commercial dental scanning system.
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FIGURE 36: Lava commercial dental scanning system.
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model for tooth surface reflectance. Nonetheless, tooth surface is rough and wet. (2) Shape

prior information was constructing using 2D-Principal Component Analysis where PCA is

time consuming to determine the corresponding eigenvectors.

PCA is one of a family of techniques for taking high-dimensional data, and using the

dependencies between the variables to represent it in a moretractable, lower-dimensional

form, without losing too much information. PCA is one of the simplest and most robust

ways of doing such dimensionality reduction. It is also one of the oldest, and has been

rediscovered many times in many elds, so it is also known as the Karhunen-Love transfor-

mation, the Hotelling transformation, the method of empirical orthogonal functions, and

singular value decomposition.

In this chapter, the goal is to achieve further improvement in the accuracy of the

human tooth reconstruction approach in Chapter VI [21]. Thecontribution in this chapter

are two-fold. First, the 2D-PCA is used to build the shape priors instead of the conventional

PCA. The 2D-PCA offers two important advantages [115–117]: It is easier to evaluate

the covariance matrix accurately since its size is much smaller. In addition, less time is

required to determine the corresponding eigenvectors [115–117]. Second, the modified

Oren-Nayar-Wolff reflectance model [92] is presumed in place of the Oren-Nayarmodel

assumed in Chapter VI, where the tooth surface is rough and wet, giving rise to Fresnel

reflection due to different refractive indices of the saliva and the tooth material. The tooth

surface roughness is physically measured using an optical surface profiler(see Figure 22).

The proposed CCD based intraoral camera is a factor of 10 lessexpensive, allowing it to be

affordable for most dental and orthodontist offices. The system is 20 times lighter, which

reduces fatigue of the operator enormously. Another major difference in the proposed

system, the output file of the proposed system will be readilyavailable as an STL file

instead of locked in a proprietary format such as iTero and Lava have done.

B. Image Irradiance Equation
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One good model for tooth surface reflectance is the Oren-Nayar-Wolffmodels which

work well for the retro-reflection case [94]. Figure 22 showsmicroscopic view of the oc-

clusal surface height variations which proves that micro-facet reflectance models are suit-

able for the tooth surface. Assume the camera is modelled with a perspective projection.

According to the presented data acquisition setup as shown in Figure 1, the light source is

located at the optical center. The surface is represented by[9, 22]: S = {S(x) / x ∈ Ω},

whereS(x) = f u(x)√
|x|2+ f 2

(x,− f ), with f is the camera’s focal length.

C. Method

1. Data Preprocessing

The triangular meshes of the training ensemble are obtainedfrom a high resolu-

tion computer tomography scan of human invitro teeth where we use the Expectation-

Maximization (EM) algorithm for segmentation. 3D surfacesfor each tooth type are rigidly

aligned using an ICP-based rigid registration algorithm [85] using the Hausdorff distance

between corresponding points.

2. Shape Model Construction

In this chapter, shape reconstruction, using 2D-PCA, is using the height map11 in

order to extract the most significant information of training images. Unlike the conven-

tional PCA, 2D-PCA as the name implies will have matrix information rather than vector

information which means that there is no need to get image pre-transformed into a vector,

11a height map is a raster image used to store values, such as surface elevation data (The depth in the

proposed case)
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let more coefficients will be needed to represent the image [115–117]. Thisneeds incorpo-

ration of the conventional PCA in a further step to reduce thedimensionality of principle

component matrix of 2D-PCA.

Now, let the training set consist ofM training height maps{U1, . . . ,UM} with size

n ×m. All images are pre-aligned. As in [115–117], the mean of thetraining shapes,U,

is obtained as the average of theseM height maps. To extract the shape variabilities,U

is subtracted from each of the training height maps. The obtained mean-offset functions

(Ûi = Ui − U, i = 1, · · ·,M) can be represented as{Û1, . . . , ÛM}. These new functions are

used to measure the variabilities of the training images.M training teeth (for each type)

images with 100× 100 pixels are used in the experiment. According to [115–117], the M

mean-offset height maps are used to construct the covariance matrixG, as following:

G=
1
M

M∑

i=1

ÛT
i Ûi . (46)

The goal of 2D-PCA is to find the optimalK eigenvectors ofG corresponding to the

largestK eigenvalues. The value ofK helps to capture the necessary shape variation with

minimum information. Experimentally, the minimum suitable value is found to beK = 10

that give enough variations. After choosing the eigenvectors corresponding to the 10 largest

eigenvalues (B = b1, b2, . . . , b10), the principle component matrixY i(m = 100× K = 10)

are obtained for each height map of the training set (i = 1, 2, . . . ,M), whereY i = UiBT . For

more dimensional reduction, the conventional PCA is applied on the principle components

{
⇀

Y1, . . . ,
⇀

YM }. It should be noted that,
⇀

Y is the vector representation ofY. The reconstructed

components (after retransforming to matrix representation) will be:

Ỹ{l,h}=De{l,h} (47)

WhereD is the matrix which containsL eigenvectors corresponding toL largest eigenvalues
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λl, (l = 1, 2, . . . , L), ande{l,h} is the set of model parameters which can be described as:

e{l,h}=h
√
λl (48)

wherel = {1, . . . , L}, h = {−µ, . . . µ, }, andµ is a constant which can be chosen arbitrarily.

The new principle components of training height maps are represented as{Ỹ1,. . . , ỸN}

instead of{Y1, . . . , YM} whereN is a constant which can be chosen arbitrarily.

Given the set{Ỹ1, . . . , ỸN}, the new projected training height maps are obtained as:

Ũn = ỸnBT , n = 1, 2, ......,N. (49)

The shape model is required to capture the variations in the training set. This model

is considered to be a weighted sum of the projected height maps (49) as:

u(x) = Ū +
N∑

n=1

wnŨn, (50)

whereŪ is the mean height map (mean tooth shape),Ũn is thenth orthogonal mode

of variation in the shape (also calledeigenteeth), andw = {wn} is called the vector of eigen

coefficients or the shape vector. OnlyN principal components are considered in the sum,

whereN should be chosen large enough to be able to capture the prominent shape variations

present in the human teeth.

The function given in Equation 50 is used as explicit representation of teeth shape.

Therefore, by varyingw, u(x) is varied.

D. Integration Tooth Shape Priors into SFS-framework

In this phase, the prior shape model is embedded in SFS framework to guide the
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solution. The Oren-Nayar-Wolff diffuse reflection model with a near light source and per-

spective camera is considered.

As explained before in VI.B, alignment is needed before the construction step be-

tween the input brightness image to be reconstructed and theconstructed shape model.

A 2D rigid image registration technique with maximization of mutual information [113] is

conducted to achieve the alignment. The Oren-Nayar-Wolffmodel is applied for reflectance

with a camera that obeys perspective projection and a light source is located at the cameras

optical center. Intensity of the light is attenuated with squared distance. The idea here is to

solve for the height mapu(x) that minimizes the energy functional

ε =

∫

Ω

(I (x) − R(u(x))2dx, (51)

where

R(u(x)) =
A(1− F(θ, ζ)2 cosθ + Bsin2 θ

r2
(52)

From the definitions of the perspective camera, cosθ can be written as:

cosθ =
f√

x2 + y2 + f 2
u(x), (53)

A great advantage of the above optimization problem (51) is that the solution search space

is shrunk into a finite number (N) of weights. The goal here is to find the solution:

ŵn = arg min
wn

ε, n = 1, · · · ,N, (54)

Gradient descent optimization is used for computingwn as follows:

∂wn

∂t
= −η ∂ε

∂wn
, (55)
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whereη is real positive learning constant. The gradient will be as follows:

∂ε

∂wn
=

∫

Ω

2 [I (x) − R(u(x))]

(
−∂R(u(x))
∂wn

)
dx. (56)

E. Experimental Results

1. Reconstruction of the Single Tooth

To evaluate the performance of the proposed 3D reconstruction method, the pro-

posed approach is applied on real human teeth. Premolar model, Mandibular molar, Mandibu-

lar third molar, Maxillary molar, and maxillary deciduous models are constructed from

30, 30, 100, 40, and 30 teeth respectively. The shape priors are trained using out-of-training

samples with instances using the CT-scan of the respective teeth. The accuracy of the tooth

reconstruction is assessed by comparing it to the 3D ground-truth surface as obtained from

CT scan. The proposed algorithm (AAA) is evaluated with two algorithms. The first al-

gorithm (DD) [21] is more recent. It is a SFS algorithm that reconstructs 3D shape of the

human teeth based on the shape priors that are built using conventional PCA. The other

algorithm (B) [6] is a conventional SFS approach based on thework of Ahmed andet al.

in [12].

Table 5 summarizes the key differences between the proposed algorithm (AAA) and

the others algorithms (DD and B).

Figure 38 illustrated samples results from the three approaches under evaluation.

Figure 38(a) demonstrates the 2D input images for different teeth models (e.g.mandibular

molar, mandibular third molar, maxillary molar, and maxillary deciduous). Figure 38(b)

shows the corresponding ground-truth (GT) as obtained fromCT scans. Figure 38(c) shows

the results of the proposed method AAA. Figure 38(d) shows the 3D reconstruction of
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TABLE 5: Summary of approaches under experimental comparison. All algorithm are a

perspective camera projection and the light source at the camera optical center.

Reflectance Priors Reference

AAA-new Oren-Nayar-Wolff 2D-PCA Proposed

DD Oren-Nayar PCA [21]

B Oren-Nayar no [6]

TABLE 6: Average tooth surface reconstruction accuracy (RMS) in mm.

Tooth Type Proposed (AAA) algorithm (DD) [21] SFS (B) [6]

Premolar 0.2872 0.6502 1.3739

Mandibular molar 0.3017 0.6825 1.1098

Mandibular third molar 0.2058 0.5625 1.0702

Maxillary molar 0.3288 0.6646 1.2738

Maxillary deciduous 0.2591 0.5711 1.4317

the human teeth using algorithm (DD) while the 3D reconstruction using the traditional

well-known SFS in Figure 38 (e). Clearly, better construction is provided by the proposed

method. The root-mean-square (RMS) error is measured between the reconstruction surface

and the GT after performing the 3D rigid registration.

The average teeth reconstruction accuracy (RMS) inmmfor algorithms AAA, DD

and B is compared for various tooth types in Table 6. It is clear that the proposed algo-

rithm (AAA) outperforms the other algorithms. It is worth-mentioning that throughout the

experimentations the proposed method is faster than algorithm (DD). The CPU timing is

computed on a PC with Core i7 CPU@ 2.2GHz processor and 4GBRAM. The average time

for the proposed method is 40 seconds. while the other algorithm (DD) is 80 seconds.
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FIGURE 37: Tooth reconstruction from three different algorithms. (a) 2D-image captured

by the intraoral camera.(b) GT occlusal surface generated from a CT scan of the tooth. (c)

3D Reconstruction of the human teeth using the proposed method AAA. (d) Reconstruc-

tion using Algorithm DD. (e) Reconstruction using Algorithm B(well-known SFS method).

Beneath each reconstruction is the root-mean-square (RMS) error.
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2. Reconstruction of the Whole Jaw

The triangular meshes of the training ensemble are obtainedfrom a high reso-

lution computer tomography (CT12) scan of human jaw molds where the Expectation-

Maximization (EM) algorithm for segmentation is used. Dense correspondence between

jaw samples is obtained using the 3D thin-plate spline wherethe alignment procedure is

guided by the sparse set of anatomical jaw landmarks. 3D thin-plate spline is also used to

provide a warping function between image pixels (assumed tobe on the xy-plane in the 3D

space) and surface points using image landmarks and surfacelandmarks as control points.

Orthographic projection is applied to re-represent the triangular meshes in terms of Monge

patches which provides a bijective mapping between surfacepoints and image coordinates.

In order to evaluate the performance of the proposed approach, several experiments

are carried out on real human jaw, other than the ones used forconstructing the shape

prior model. Upper jaw models are constructed from 52 upper jaw molds belonging to 33

males and 19 females with on average age of 20 years old. Whereas lower jaw models are

constructed from 58 lower jaw molds belonging to 33 males and25 females with on average

age of 19 years old. There are two samples per subject, one pre-repair jaw and another

post-repair jaw, referring to the jaw status before and after applying an orthodontic teeth

alignment process, respectively. The shape priors are trained using out-of-training samples

with pre- and post-repair instances using the CT-scan of therespective molds(lower and

upper jaws). The accuracy of the jaw reconstruction is assessed by comparing it to the 3D

ground-truth surface as obtained from CT scan.

The proposed algorithm is compared (Aw) with two algorithms. The first algorithm

(Bw) is Lambertian statistical SFS(SSFS) and recent for tooth reconstruction [118]. The

other algorithm (Cw) [6] is a conventional SFS approach based on the work of Ahmedand

et al. [12]. In [12], their work is based on viscosity solutions for Hamilton-Jacobi type

12A Cone-beam CT (KODAK 9000 3D Extraoral) scanner is used.
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formulation of the image irradiance equation. This algorithm was developed in [9] for the

Lambertian case assuming a perspective camera projection and a light source at the camera

optical center. Later [12] was extended to the Oren-Nayar reflectance model.
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FIGURE 38: Sample reconstruction result of a lower jaw (Post-repair )from three different algorithms. (a) Image acquired by the CCD cam-

era.(b) Ground-truth generated from a CT scan of the jaw. (c)Reconstruction using the proposed AlgorithmAw (with shape priors). (d)

Reconstruction using AlgorithmBw. (e) Reconstruction using method (AlgorithmCw). Beneath each reconstruction is the root-mean-square

(RMS) error when compared to the ground-truth surface from CT.
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TABLE 7: Summary of approaches under experimental comparison.

Reflectance Priors Reference

Aw Oren-Nayar-Wolff 2D-PCA Proposed

Bw Lambertian PCA [118]

Cw Oren-Nayar No [6]

Table 7 summarizes the key differences between the proposed algorithm (Aw) and

the others algorithms (Bw andCw).

The isosurface of the jaw scan is a metric reference to rigidly align the reconstructed 3D

point from SFS to share the same metric coordinate frame. Foralignment, the first and sec-

ond moments are normalized [96] without affecting the scale. This initializes an ICP-based

rigid registration algorithm [85]. Point correspondence between CT and the reconstructed

surface is obtained based on Hausdorff distance [97]. The SFS algorithms are compared in

accordance with an error estimator based on the root mean square (RMS) error between the

3D points from the CT scan and the corresponding reconstructed surface points.

Sample results from the approaches under evaluation are demonstrated in Figure 38.

Figure 38(a) shows the 2D input images for lower jaws, while Figure 38(b) shows the

corresponding ground-truth tooth surface as obtained fromCT scans. The output of the

proposed algorithm (Aw) is shown in Figure 38(c). reconstruction by Algorithms (Bw and

Cw) are shown in Figure 38(d), and Figure 38(e) respectively. Clearly, reconstruction using

the formulations with algorithm (Aw) (Figure 38(c)) have shown the most success in that

regard. Beneath each reconstruction is the root-mean-square (RMS) error between the re-

construction and the ground-truth after performing 3D rigid registration. Consistently, the

proposed algorithm (Aw) provides the smallest RMS errors.

The average jaws reconstruction accuracy (RMS) in mmfor algorithmsAw, Bw and
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TABLE 8: Average whole jaw surface reconstruction accuracy(RMS) in mm.

Jaw Type Proposed (Aw) Lambertian SSFS(Bw) SFS (Cw)

Upper, Pre-repair 0.6805 2.0899 15.2995

Upper, Post-repair 0.6015 2.0233 16.3098

Lower, Pre-repair 0.7281 3.1191 12.1241

Lower, Post-repair 0.7759 2.5711 13.4959

Cw is compared for various jaw types in Table 8. It is clear that the proposed algorithm

(Aw) outperforms the other algorithms.

To further demonstrate the gain out of the shape priors, another experiment is per-

formed on real human jaws with fillings that cover significantparts of the teeth, see Fig-

ure 39(a). Ground-truth generated from a CT scan of the jaw shown in Figure 39(b). Fig-

ure 39(c) shows the corresponding surface reconstructionsby the proposed algorithm (Aw).

Note that the teeth are successfully and completely reconstructed and outperform the work

[6] (see Figure 39(d)), in spite of the tooth filling regions with different colors and albedo

characteristics in the input images. This notable outcome of the proposed approach be-

comes more evident when compared to the tooth reconstruction by AlgorithmCw in Fig-

ure 39(d). The filling regions gave rise to significant valleys and grooves in Algorithm (Cw)

results.
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FIGURE 39: Experiment on teeth with significant fillings. (a)Input test image. (b) Reconstruction by the proposed algorithm (Aw). (c)

Reconstruction by algorithm (Cw)(with no shape priors).

1
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F. Summary

A 3D reconstruction of human tooth models from optical imagery is proposed using

shape from shading with 2D-PCA shape priors. The proposed method improves on the 3D

reconstruction of the human teeth by incorporating more sophisticated reflectance models.

In dental application, improvements are considered significant even if the improvement is

a fraction of millimeter. The Oren-Nayar-Wolff reflectance model is used which is a physi-

cally deep model for diffuse reflectance from shiny but slightly rough surfaces. Results are

preferred to other approaches in the literature since fine tooth details can be reconstructed

and the resulting surface is more realistic. Also the execution time is reasonable and practi-

cal in the sense of applying the proposed system in clinic. Another major difference in the

proposed approach, the output file of the proposed approach,will be readily available as an

STL file instead of locked in a proprietary format such as commercial systems have done.

Moreover, the focus has been on developing and validating a holistic approach for

image-based 3D reconstruction of the human jaw. The accuracy of 3D reconstruction of the

human teeth/jaw is increased using SFS with 2D-PCA shape priors. The proposed approach

has successfully reconstructed teeth with challenging conditions, such as scattered specular

spots and significant changes in color and albedo characteristics.
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CHAPTER VIII

THREE-DIMENSIONAL MODELING AND STRESS ANALYSIS IN DENTAL
BIOMECHANICS USING FINITE ELEMENT ANALYSIS

Finite Element Analysis (FEA) or Finite Element Methods (FEM) is a powerful

analytic technique for calculating stresses and strains ofdental structures. Many Finite El-

ement (FE) studies carried out used approximate 2D models. In this chapter, an accurate

three-dimensional CAD model is proposed. 3D stress and displacements of different teeth

type are successfully carried out. A newly developed open-source finite element solver,

Finite Elements for Biomechanics (FEBio), has been used. The limitations of the experi-

mental and analytical approaches used for stress and displacement analysis are overcome

by using FEA tool benefits such as dealing with complex geometry and complex loading

conditions. The experiments provide qualitative and quantitative metric results for the five

models (Anterior tooth, mandibular third molar, mandibular molar, maxillary third molar

and two touched teeth) under different loading conditions.

A. Introduction

Teeth which are positioned improperly are corrected by orthodontic dentistry. Crooked

teeth and teeth which do not fit together properly affects one’s health since they are harder

to clean and are at continuous risk of early tooth decay and periodontal disease while also

causing headaches as well as shoulder and back pain due to extra stress on the chewing

muscles.

Bone remodeling and orthodontic tooth movement are initiated by the mechanical
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FIGURE 40: Overall approach of the proposed method.

activation of an orthodontic appliance where force systemsare produced to displace teeth

in a predictable as well as controllable manner. Force systems primarily involve moments

and forces where the ratio of moment to force being applied toteeth control the type of

tooth movement. After an immediate application of a force, the tooth moves by an elastic

deformation of its periodontal ligament (PDL) which is a lining around the root of the tooth.

The mechanical stress in the PDL initiates the bone remodeling process which results in

orthodontic tooth movement. Such a process is triggered by changes in the stress/strain

distribution; it involves bone formation in tension regions and bone resorption (breakage) in

stretched regions. In literature, there are several theories that explain the bone remodeling

process [119] such as pressure-tension theory, distortionor bending of the alveolar bone

and alveolar bone apposition.

Several biomechanical models have been proposed in literature. They are mainly

based on the computation of stress and strain distribution in the PDL combined with a
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bone remodeling law [120]. For example, Provatidis [121] and Schepdael [122] proposed

an analytical model to describe the stresses and strains in the periodontal ligament of an

axisymmetric tooth of paraboloid shape during translation. The PDL was assumed to be

linearly elastic and the method was validated using finite element methods. While this

analytical model provides easier and lower-computationalcost compared to classical FE

methods without sacrificing accuracy, this work lacks two main aspects: (1) it did not

address the issue of estimating the geometric parameters ofthe PDL given the 3D root

information and (2) it did not address the effect of applying a force system to the whole jaw

where the movement of one tooth will exert force on neighboring teeth.

There has been an enormous increase in use of FEA tools (e.g.[123–129]) due to

evolution in computational approaches using commercial tools such as Abaqus, ANSYS,

SolidWorks, etc. Most of these studies have been simplified work and used 2D analy-

sis techniques. Unfortunately, such assumptions are no longer held in the actual scenario

present in the dental structure in terms of geometry. Furthermore, these commercial soft-

wares are very expensive because they require licences.

In this chapter, computational models are investigated they can describe tooth move-

ment process in order to be a useful dental tool in clinical practice as well as research. Dif-

ferent theories provide means for the calculation of the stress and strain levels in the PDL.

While in research, this might enable validating a specific remodeling theory; this can also be

used in clinical practice to (1) predict tooth movement given orthodontic appliance (force

system), (2) simulate tooth movement for orthodontics, and(3) analyze the stress/strain

field in the alveolar bone to quantify treatment reaction. Inthis study, an accurate three-

dimensional CAD model is proposed. 3D stress and displacement of five different teeth

using FEA solver are successfully measured. In particular,FEBio [130] is used which is a

newly developed open-source finite element solver. To the best of knowledge this has not

been used before in orthodontic. FEBio has been developed specifically for biomechanical

applications [130]. Nonetheless, the effect of applying a force system to the two teeth is
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addressed where the movement of one tooth will exert force onneighboring teeth.

B. Orthodontic Tooth Movement

Teeth which are positioned improperly are corrected by orthodontic dentistry. Crooked

teeth and teeth which do not fit together properly affects ones health since they are harder to

clean and are at continuous risk of early tooth decay and periodontal disease while causing

headaches shoulder and back pain due to extra stress on the chewing muscles.

Bone remodeling and orthodontic tooth movement are initiated by the mechanical

activation of an orthodontic appliance where force systemsare produced to displace teeth

in a predictable as well as controllable manner. Force systems primarily involves moments

and forces where the ratio of moment to force being applied teeth control the type of tooth

movement. After an immediate application of a force, the tooth moves by an elastic de-

formation of its periodontal ligament (PDL) which is a lining around the root of the tooth.

The mechanical stress in the PDL initiates the bone remodeling process which results in

orthodontic tooth movement. Such process is triggered by changes in the stress/strain dis-

tribution; it involves bone formation in tension regions and bone resorption (breakage) in

stretched regions. In literature, there are several theories explain the bone remodeling pro-

cess [119] such as pressure-tension theory, distortion or bending of the alveolar bone and

alveolar bone apposition.

Although there exist some typical and known orthodontic treatment plans, to-date,

such treatment is primarily dependent on the experience of the orthodontist. Further, the

treatment reaction is different from one patient to another causing lengthening the treatment

time due to plan adjustment while increasing the cost to the patient. Time, cost and patient

inconvenience are the main motivations behind having a simulation tool for orthodontic

tooth movement where the orthodontist can virtually apply different treatment plans and

simulate bone reactions versus time. Such a tool requires: (1) a 3D representation of the
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patients visible jaw, hence our 3D reconstructions come into play, (2) augmenting the visi-

ble jaw with 3D root information and (3) modeling tooth movementw.r.t. different moment

to force ratios,i.e. different movement types (e.g.rotation, translation and tipping).

On the tooth movement side, we are seeking to investigate whether computational

models can describe tooth movement process in order to be a useful dental tool in clini-

cal practice as well as research. Different theories provide means for the calculation of the

stress and strain levels in the PDL. While in research, this might enable validating a specific

remodeling theory, this can also be used in clinical practice to (1) predict tooth movement

given orthodontic appliance (force system), (2) simulate tooth movement for orthodontics,

and (3) analyze the stress/strain field in the alveolar bone to quantify treatment reaction.

Nonetheless, the outcome of these theories is dependent on three main factors: (1) Geome-

try and morphology where tooth and alveolar bone are typically considered as rigid bodies

while differences according to micromorphology have not been yet addressed [119]. (2)

Material properties where PDL is non-linear visco-elasticmaterial while most works con-

sider it homogeneous, linear-elastic and isotropic. (3) Boundary conditions where the type

of tooth movement is controlled by the moment to force ratio.

In literature, different approaches for modeling orthodontic tooth movement involve

designing either a biomechanical or a mechanobiological model. While the former focus

on the mechanics of the process while taking into account that bone and tissues are con-

stantly adapting living tissues. The later models the biological processes involved in bone

formation and resorption including cell and growth factor concentrations [131]. Nonethe-

less, such types of models are more complex and computationally expensive for clinical

use when compared to biomechanical ones due the complex nature of cells and growth

factors [131]. Yet, they are suited as research tools.

Several biomechanical models have been proposed in literature. They are mainly

based on the computation of stress and strain distribution in the PDL combined with a

bone remodeling law [120]. For example, Provatidis [121] proposed an analytical model
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to describe the stresses and strains in the periodontal ligament of an axisymmetric tooth

of paraboloid shape, during translation. The PDL was assumed to be linearly elastic and

the method was validated using finite element (FE) methods. Gei et al. [132] proposed an

interface model of the periodontal ligament. Their key ideawas to model the PDL as a

non-linear interface in a FE model of the root and the alveolar bone. That way, the non-

linearity of the PDL is captured without defining it explicitly as a third material in the FE

calculations. The drawback of this approach is that, although results are obtained for the

stresses and strains inside the alveolar bone, the stressesand strains inside the PDL are not

calculated. Zhurov et al. [133] developed a constitutive model of the PDL, describing it as

a compressible transversely isotropic visco-hyperelastic tissue. They took into account the

fact that the PDL is a composite material, composed of collagen fibers that can only bear

tensile stresses and a viscous matrix component that has resistance to tension and compres-

sion. The advantage of such a model is its completeness, but to obtain accurate results, it is

essential that all the material parameters are identified correctly, which is not yet the case.

Kojima et al. [134–136] assumed that amount of bone remodeling is in proportion to the

mean stress being calculated in the PDL. While they were ableto simulate tooth movement,

the validation of their model in clinical practice is still in question.

Clinical practice would benefit from a low-computational model while being easy-

to-use for orthodontists. Recently, Schepdaelet al. [137] proposed an analytical approach

to design a biomechanical model for tooth movement where they avoided the use of clas-

sical FE methods to decrease computational time and increase user friendliness. Their

approach did not require setting up a complicated 3D model ofthe tooth. Their model in-

volves two main stages: (1) analytical determination of stress patterns in the PDL during or-

thodontic tooth movement and (2) simulating bone remodeling process as a viscous process

where tooth movement of single- and multi-rooted teeth can be predicted. They validated

their model against FE models showing minimal average errorwith lower computational

complexity. While handling multi-rooted teeth, they improved on Provatidis [121] by pre-

dicting all types of tooth movements rather than only root translation and better modeling
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the shape of the root using an elliptic paraboloid.

While this analytical model provides easier and lower-computational cost compared

to classical FE methods without sacrificing accuracy, this work lacks two main aspects: (1)

it did not address the issue of estimating the geometric parameters of the PDL given the

3D root information and (2) it did not address the effect of applying a force system to the

whole jaw where the movement of one tooth will exert force on neighboring teeth.

C. The Finite Element Methods

The FEM were first invented by structural engineers, who based themselves on

accurately physical basis. Later, mathematicians discovered that FEM methods could be

classified as a subset of the Galerkin Methods for the solution of PDEs. By this way the

method gained a mathematical foundation which extended itsuse to many engineering

problems. None the less this difference in the engineering and mathematics points of view

resulted in two different interpretations which also affects the way the method is used in

practice applications.

• Physical Interpretation:

The continous physical model is divided into finite pieces called elements and laws of

nature are applied on the generic element. The results are then assembled to represent

the continuum.

• Mathematical Interpretation:

The differetional equation reppresenting the system is converted into a variational

form and solved by the linear combination of a finite set of trial functions.
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1. FEM Notation

FEM treat the continuous problem domain as a collection of individual finite ele-

ments. The problem parameters are defined on each of the nodesof a typical element. The

key definitions of the FEM notation have been described as thefollows:

• Dimensionality: The elements can be defined depending on theproblem context.

Dimensionality expresses whether the element has 1, 2 or 3 space dimensions.

• Nodal Points: Every element is described by its nodal points. The nodal points are

chosen to be the corners of the element. In the case of non linear geometries nodal

points are defined on the edges.

• Geometry: The geometry is used to describe the domain on which finite element

discretization needs to be applied as shown in Figure 41.

• Nodal Forces: A set of nodal forces.

2. Physical Problems, Mathematical Models and Finite Element Solution

The finite element analysis method is used to solve physical problems in engineer-

ing analysis and design. The flowchart shown in Figure 42 summarizes the process of finite

element analysis. The physical problem involves an structure component to certain loads.

To convert the physical model to the mathematical model requires certain assumptions

that together lead differential equations governing the mathematical model. Thismodel

is solved by using finite element analysis. Since the finite element solution approach is

a numerical procedure, it is indispensable to rate the solution accuracy. If the estimated

accuracy is not met the actual accuracy, the numerical (i.e., finite element) solution has to

be repeated with adjusted the solution parameters (such as finer meshes) until a suitable

accuracy is reached.
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FIGURE 41: Finite element geometries: First row: 1D. Secondrow: 2D. Third row: 2D.

Fourth row: 3D.

D. Equations for Three-Dimensional Solids

1. Stress and Strain

Figure 43 shows a continuous three-dimensional (3D) elastic solid tooth with a

volumeV and a surfaceS. The surface of the solid tooth is divided into two types of

surfaces: 1) a surface on which the external forces are prescribed is denotedSF. 2) a

surface on which the displacements are prescribed is denoted Sd. The solid can also be

loaded by body forcefb and surface forcefs in any distributed fashion in the volume of the

solid [138].

Figure 44 shows at any point in the solid, the components of stress are indicated

on the surface of an ’infinitely’ small cubic volume. On each surface, there will be the

normal stress component, and two components of shearing stress. The first subscript letter
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FIGURE 42: The flowchart of the process of finite element analysis: (a) The physical

problem. (b) Finite element solution of mathematical model. (c) postprocessing step: in-

terpretation the results, design improvements and structural optimization.
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FIGURE 43: Solid tooth subjected to forces applied within the solid (body force) and on

the surface of the solid tooth (surface force).
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represents the surface on which the stress is acting, and thesecond letter represents the

direction of the stress. The directions of the stresses illustrated in the Figure 44 are taken to

be the positive directions. By calculating the moments of the forces about the central axes

of the cube at the state of equilibrium, it is easy to prove that:

σxy = σyx; σxz = σzx; σzy = σyz (57)

Thus, there are six stress components in total at a point in solids. These stresses are

often called a stress tensor. They are often written in a vector form as follows:

σT = { σxx σyy σzz σyz σxz σxy } (58)

At any point in a solid, there are six train components corresponding to the six stress

tensors.The six strain components can also be written in a similar vector form of:

εT = { εxx εyy εzz εyz εxz εxy } (59)

Strain is define as the change of displacement per unit length, and therefore the

components of strain can be obtained from the derivatives ofthe displacements as follows:

εxx =
∂u
∂x

; εyy =
∂υ

∂y
; εzz=

∂w
∂z

;

εxy =
∂u
∂y
+
∂υ

∂x
; εxz =

∂u
∂z
+
∂w
∂x

; εyz =
∂υ

∂z
+
∂w
∂y

(60)

whereu, υ andw are the displacement components in thex, y andz directions, re-

spectively. The six straindisplacement relationships in Equation 60 can be rewritten in the

matrix form as:
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ε = L U (61)

whereU is the displacement vector, and has the form of

U =



u

υ

w



(62)

andL is a matrix of partial differential operators obtained simply by inspection on

Equation 60:

L =



∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂z

0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x

∂/∂y ∂/∂x 0



(63)

2. Constitutive Equation

The relationship between the stress and strain in the material of a solid called con-

stitutive equation. It is often termed Hookes law. The generalised Hookes law for general

anisotropic materials can be given in the matrix form as follow:

σ = cε (64)

125



wherec is a matrix of material constants, which are normally obtained through

experiments. The constitutive equation can be written explicitly as:



σxx

σyy

σzz

σyz

σxz

σxy



=



c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

sym. c55 c56

c66





εxx

εyy

εzz

εyz

εxz

εxy



(65)

Note that, sinceci j = cji , there are altogether 21 independent material constantsci j

, which is the case for a fully anisotropic material. For isotropic materials, however,c can

be reduced to:

c =



c11 c12 c13 0 0 0

c11 c12 0 0 0

c11 0 0 0

(c11 − c12)/2 0 0

sym. (c11 − c12)/2 0

(c11 − c12)/2



(66)

where,

c11 =
E(1−ν)

(1−2ν)(1+ν) ; c12 =
Eν

(1−2ν)(1+ν) ;
c11−c12

2
(67)

in which E, ν andG are Youngs modulus, Poissons ratio, and the shear modulus

of the material, respectively. There are only two independent constants among these three
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FIGURE 44: Six independent stress components at a point in a solid viewed on the surfaces

of an infinitely small cubic block.

constants. The relationship between these three constantsis

G =
E

2(1+ ν)
(68)

That is to say, for any isotropic material, given any two of the three constants, the

other one can be calculated using the above equation.
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FIGURE 45: Stresses on an infinitely small block. Equilibrium equations are derived based

on this state of stresses.
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3. Dynamic Equilibrium Equation

The formulation of the dynamic equilibrium equations depend on assuming an in-

finitely small block of solid (see Figure 45). In equilibriumcase, The forces should be

applied on all directions. Since this is a general, dynamic system, the inertial forces of the

block is considered. The equilibrium of forces in thex direction gives as follows:

(σxx + dσxx)dydz− σxxdydz+ (σyx + dσyx)dxdz− σyxdxdz

+ (σzx+ dσzx)dxdy− σzxdxdy+ fx = ρüdxdydz (69)

where,ρ ü dx dy dzis the inertial force term,fx is the external body force applied

at the centre of the small block anddσxx, dσyx anddσzx defined as follow:

dσxx =
∂σxx
∂x dx, dσyx =

∂σyx

∂y dy, dσzx =
∂σzx

∂z dz (70)

Hence, Equation 69 becomes one of the equilibrium equations, written as:

∂σxx

∂x
+
∂σyx

∂y
+
∂σzx

∂z
+ fx = ρü (71)

Similarly, the equilibrium of forces in they andzdirections results as:

∂σxy

∂x
+
∂σyy

∂y
+
∂σzy

∂z
+ fy = ρϋ (72)

∂σxz

∂x
+
∂σyz

∂y
+
∂σzz

∂z
+ fz = ρẅ (73)
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From Equations 71 to 73, the equilibrium equations can be written in matrix form

as:

LTσ + fb = ρÜ (74)

wherefb is the vector of external body forces in thex, y andz directions:

fb =



fx

fy

fz



(75)

4. Boundary Conditions

There are two types of boundary conditions: 1) displacement(essential). 2) force

(natural) boundary conditions. The displacement boundarycondition can be simply written

as:

u = ū and/or υ = ῡ and/or w = w̄ (76)

on displacement boundaries. For most of the actual simulations, the displacement

is used to describe the support or constraints on the solid models, and hence the prescribed

displacement values are often zero. In such cases, the boundary condition is character-

ize as a homogenous boundary condition. Otherwise, they areinhomogeneous boundary

conditions.

The force boundary condition is written as:
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nσ = t̄ (77)

on force boundaries, wheren is given by

n =



nx 0 0 0 nz ny

0 ny 0 nz 0 nx

0 0 nz ny nx 0



(78)

in whichni(i = x, y, z) are cosines of the outwards normal on the boundary. A force

boundary condition can also be both homogenous and inhomogeneous. If the condition is

homogeneous, it implies that the boundary is a free surface.

E. Materials and Methods

1. Mesh generation(Pre-processing)

To perform FEA of human tooth, PDL, and bone deformation, preprocessing tech-

niques are needed: image segmentation, mesh generation, and measurement of the me-

chanical properties. In this section, each one of these preprocessing techniques performed

in this Chapter is explained in detail.

1) Image Segmentation: The triangular meshes of the training ensemble are ob-

tained from a high resolution computer tomography scan of human invitro teeth. A Cone-

beam CT (KODAK 9000 3D Extraoral) scanner at a resolution of 0.2×0.2×0.2mmis then

used to models, where the Expectation-Maximization (EM) algorithm is used for segmen-

tation [139].
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FIGURE 46: Ensemble of 20 models generated using the proposed method illustrated with

different colors. First row: solid volumes generated from the CTscan of the anterior teeth.

Second row: solid volumes generated from the CT scan of the mandibular third molars.

Third row: solid volumes generated from the CT scan of the mandibular molars. Last row:

solid volumes generated from the CT scan of the maxillary third molars
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2) Mesh Generation: Volumetric mesh generation depends on decomposing the

object volume into a finite union of geometrically simple andbounded elements. In the

context of the medical imaging, some mesh generators were created for image registra-

tion [140, 141]. In this chapter, the interest is generatinghigh quality tetrahedral meshes

that conform to the input surface meshes. To carry out this aim, the images are firstly seg-

mented using EM segmentation algorithm and then convert thesegmented images into a

stereolithographic file(STL) using VTK [142]. Then, the STLs are used to generate 3D

solid meshes of the tooth (see Figure 46), PDL and cortical bone .

2. FEA using FEBio

1) Materials Properties: Equations are developed for each element in the FEM

mesh and assembled together into a set of global equations that model the properties of the

entire system. Table 9 [1–4] summarizes the mechanical properties of the enemal, dentin,

PDL and cortical bone.

2) Loads and Boundary Conditions (LBC’s): In this step, loads and boundary

conditions defined on discreized models of different teeth in PreView13 [130].

3) Processing: In this step, FEA solver FEBio14 [130] is used to calculate dis-

placement and stress due to loading conditions.

The 3D form of Hooke’s law can be written as [143]:

13PreView is a finite element preprocessing software package.Its primary function is to set up the boundary

conditions and material properties for finite element analysis with the software FEBio.
14FEBio is a nonlinear finite element solver that is specifically designed for biomechanical applications.
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

σx

σy

σz

τxy

τyz

τzx



= D



εx

εy

εx

γxy

γyz

γzx



(79)

whereσ andτ are the stress and shear stress respectively andε andγ are the strain

and shear strain respectively.D is called the stress/strain or constitutive matrix and is

defined by:

D =
E

(1+ ν)(1− 2ν)

×



1− ν ν ν 0 0 0

0 1− ν ν 0 0 0

0 0 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2



(80)

whereE is defined as the modulus of elasticity (Young’s modulus) andν is Poisson’s

ratio.
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TABLE 9: Mechanical properties of human teeth (Youngs modulus and poissions ratio of

the tooth) [1–4].

Material property Young’s modulus(GPa) Poisson’s ratio

Enamel 80 0.33

Dentine 18.6 0.31

PDL 0.0689 0.45

Cortical bone 1.37 0.30

3. Visualization

Finally, the output of the FEBio is used as the input to PostView 15 [130] to show

the stress and displacement on the tooth.

Figure 40 summarizes the overall procedure used in the chapter to determine the

stress and displacement in different teeth.

F. Experimental Results and Discussions

In order to evaluate the performance of the proposed approach, several experiments

are carried out on real human teeth, other than the ones used for constructing the 3D models.

1. Horizontal Forces

Differences were determined for the displacement and stress distribution a five mod-

els (Anterior tooth, mandibular third molar, mandibular molar, maxillary third molar and

two touched teeth) under different loading conditions.

15PostView is a finite element (FE) post-processing application that is designed to view FEBio output files.
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In this study, simple horizontal orally directed forces, strengths 0.5N to 3N were

applied on five different models. This force is simple tipping which was appliedon the

tooth crown, perpendicular to its longitudinal axis.

Figure 47 shows the stress and displacement distribution infour different models.

Figure 47(a) illustrates the 3D solid mesh that we get it fromthe STL surface mesh and

loaded with tipping force near the crown. Stress increases from crown to root as shown

in Figure 47(b). Maximum stress is near the root and the maximum value of displacement

near to the crown (see Figure 47(c)).

Figure 48 simulates the invivo force on the human teeth and how the movement of

the tooth effects the neighboring teeth. Figure 48(a) shows the solid mesh for two neigh-

borhood teeth. Figure 48(b) shows the effective stress due to the force (3N) on the left tooth

in the opposite y-direction and the pressure of the right tooth on the left tooth.

2. Vertical Forces

In order to evaluate the performance of the proposed approach, several experiments

are done on 250 real human teeth (40 anterior models, 125 mandibular third molars models,

40 mandibular molars models and 45 maxillary molars models). Differences were deter-

mined for the stress, displacement and pressure distribution between models (mandibular

third molar, mandibular molar and maxillary) under different loading conditions(see Fig-

ure 49 to Figure 53).

In this study, simple vertical orally directed forces, strength overall 200N was di-

vided into three vectors (cusps)in some cases and four vectors on the others. This force

was applied on the tooth crown, perpendicular to its occlusal surface. The 200N load used

in this chapter was selected, as average chewing force, which is supposed to be one third

of the maximum biting force [144]. Under the compressive load, the axial test simulations
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FIGURE 47: (a) Finite element mesh (solid mesh) with the material property and initial

conditions. (b) Effective stress for the tooth due to orthodontic forces were depicted as

concentrated force. (c) The correspondence total displacement for the anterior tooth
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FIGURE 48: The mechanism of transferring the load from one tooth to its neighborhood:

(a) Finite element meshes with the material property and initial conditions. (b) The ef-

fective stress (expressed in MPa) due to the force (3N) on theleft tooth in the opposite

y-direction and the pressure of the right tooth on the left tooth. (c) The correspondence

total displacement.

predicted that tooth fracture might occur between 700N and 800N [144]. In addition, the

boundary conditions of each model simulated the contact with neighbouring teeth. In the

first model (mandibular third molar with three roots), the stress values ranged from 0.408 to

4.08KPa, the displacement values ranged from 0.165×10−8 to 1.65×10−8 and compression

values range from−1.65× 103 to 0.0599× 103 as shown in Figure 49. In the second model

(mandibular molar)(see Figure 50 and Figure 51), the stressvalues ranged from 0.222 to

4.43KPa, the displacement values ranged from 0.102×10−8 to 1.48×10−8 and compression

values range from−11 to 1.35× 103. In the third model (Maxillary third molar with two

roots)(see Figure 52 and Figure 53), the stress values ranged from 0.325 to 3.61KPa, the

displacement values ranged from 0.187×10−8 to 4.45×10−8 and compression values range

from −1.96 to 0.127× 103.

G. Summary
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FIGURE 49: 3D model and stress, displacement and compression distributions in the

mandibular third molar with cusp 4 points loading. (a) Finite element mesh (solid mesh)

with the material property and initial conditions. (b) Effective stress for the tooth due to

orthodontic 200N tensile forces were depicted as four concentrated force in−z-direction

(as a tensile force). (c) The correspondence total displacement. (d) The correspondence

compression.

FIGURE 50: 3D model and stress, displacement and compression distributions in the

mandibular molar (three roots) with cusp 3 points loading. (a) Finite element mesh (solid

mesh) with the material property and initial conditions. (b) Effective stress for the tooth due

to orthodontic 200N tensile forces were depicted as four concentrated force (inz-direction

(as a compression force). (c) The correspondence total displacement. (d) The correspon-

dence compression.
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FIGURE 51: 3D model and stress, displacement and compression distributions in the

mandibular molar (three roots) with cusp 4 points loading. (a) Finite element mesh (solid

mesh) with the material property and initial conditions. (b) Effective stress for the tooth due

to orthodontic 200N tensile forces were depicted as four concentrated force inz-direction

(as a compression force). (c) The correspondence total displacement. (d) The correspon-

dence compression.

FIGURE 52: 3D model and stress, displacement and compression distributions in the max-

illary 3rd molar (two roots) with cusp 3 points loading. (a) Finite element mesh (solid mesh)

with the material property and initial conditions. (b) Effective stress for the tooth due to

orthodontic 200N tensile forces were depicted as four concentrated force in−z-direction

(tensile force). (c) The correspondence total displacement. (d) The correspondence com-

pression.

140



FIGURE 53: 3D model and stress, displacement and compression distributions in the max-

illary 3rd molar (two roots) with cusp 4 points loading. (a) Finite element mesh (solid mesh)

with the material property and initial conditions. (b) Effective stress for the tooth due to

orthodontic 200N tensile forces were depicted as four concentrated force in−z-direction.

(c) The correspondence total displacement. (d) The correspondence compression.

In this chapter, an accurate three-dimensional CAD model isproposed from DI-

COM images and converted to STL. Then the STL file converted tovolume (solid mesh) to

use it further in FEA. 3D stress and displacements of different real teeth type are success-

fully carried out on Anterior tooth, mandibular third molar, mandibular molar and maxillary

third molar models using open-source finite element solver,FEBio. The limitations of the

experimental and analytical approaches used for stress anddisplacement analysis are over-

come by using FEA tool benefits such as dealing with complex geometry and complex

loading conditions. The effect of applying a force system to the two teeth is addressed

where the movement of one tooth will exert force on neighboring teeth. Qualitative and

quantitative analysis based on FEBio’s progressive visualcolor scale, ranging from dark

blue to red are illustrated.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

This dissertation has presented 3D reconstruction using new SFS approaches and

shape modeling with applications to dentistry. Moreover, it studied the orthodontic tooth

movement using analytical and FEA methods.

A. Summary of Contributions

The findings from this dissertation make several contributions to the current litera-

ture which can be summarized as follows:

• Chapter III, a 3D library of teeth/jaw is built and is made it available for other’s

research.

• Chapter IV focused on the 3D surface reconstruction aspect for human teeth based

on a single image. A more realistic formulation of the SFS problem is introduced by

considering the image formation components: the camera, the light source, and the

surface reflectance. We propose a non-Lambertian SFS algorithm under perspective

projection which benefits from camera calibration parameters. The attenuation of

illumination due to near-field imaging is taken into account.

• Chapter V proposed a novel approach for 3D surface reconstruction of the human

jaw [20]. Due to the difficulties of setting up a data acquisition system inside the

mouth, an intraoral camera is used to capture a sequence of calibrated images. These
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images are registered together to build a panoramic view of the jaw.

• Chapter VI, an approach for realistic 3D reconstruction of the human teeth is devel-

oped using shape from shading with statistical shape priors. The work has addressed

several challenges including near illumination and cameraperspective projection,

while taking into account the deviation from the simplifying Lambertian assump-

tion. The Oren-Nayar reflectance model is used for diffuse rough surfaces with the

roughness parameter being physically measured by an optical surface profiler.

• Chapter VII enhanced the current algorithms presented in the previous chapter (VI).

The approach developed in this chapter reconstructs the teeth from single image shad-

ing with 2D-PCA shape priors that have a more sophisticated reflectance model. The

Oren-Nayar-Wolff model was used for modeling the surface reflectance.

• In Chapter VIII, an accurate three-dimensional CAD model isproposed from DI-

COM images and converted to STL. Then the STL file converted tovolume (solid

mesh) to use it further in FEA. 3D stress and displacements ofdifferent real teeth

type are successfully carried out on Anterior tooth, mandibular third molar, mandibu-

lar molar and maxillary third molar models using open-source finite element solver,

FEBio.

B. Limitations and Suggested Future Directions

The analysis also lead to a number of interesting observations, some of which may

be considered as lines of future research.

• The next step is to investigate the fusion of SFS and SSFS where SFS provides the

object-specific constructions while SSFS is perform shape recovery based on partial

information.
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• Designing and developing algorithms to construct a complete 3D model of the human

jaw that includes crows, roots, and gum information by fusing the 3D surface and

teeth databases as well as x-ray images.

• Evaluation/validation of the reconstruction approach with respect to traditional meth-

ods for specific dental practices.
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Appendix A

A. Derivatives of the 3D point vector

From Eq.(25)
M = B−1(sm − b) (A-1)
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whereM x is the first derivative of the 3D pointM with respect tox, andM y is the

first derivative of the 3D pointM with respect toy.
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whereM xy is the first derivative ofM x with respect toy, andM yx is the first deriva-

tive of M y with respect tox.
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M xx = B−1(sxxm + 2sx
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whereM xx is the second derivative of the 3D pointM with respect tox, andM yy is

the second derivative of the 3D pointM with respect toy.

M xxx = B−1(sxxx m + 3sxx



1

0

0



), (A-6)

M yyy = B−1(syyym + 3syy



0

1

0



) (A-7)

whereM xxx is the third derivative of the 3D pointM with respect tox, andM yyy is

the third derivative of the 3D pointM with respect toy.
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whereM xxxx is the fourth derivative of the 3D pointM with respect tox, andM yyyy

is the fourth derivative of the 3D pointM with respect toy.

B. Brightness Constraint Derivatives

From Eq.(55) we assume:

f1 = (I − R)2 (A-10)

and the surface reflectance :

R=
V · L
√

VTV
(A-11)

where V = M x ×M y

∂ε1
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∂ f1
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− ∂
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[
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] − ∂
∂y

[
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] (A-12)

where∂ε1
∂s is the first derivative of∂ε1 with respect tos.

∂ f1
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= −2(I − R)(
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∂s ) − V(VT ∂V
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) · L (A-13)
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Vx = M xx × M y + Mx × M yx (A-21)

Vy = M xy × M y +M x × M yy (A-22)

1. Smoothness Constraint Derivatives

From Eq.(28) set:

f2 = MT
xxM xx +MT

yyM yy (A-23)

Then,
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∂ f2
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∂y

[
∂ f2
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]

+
∂2

∂x2
[
∂ f2
∂sxx

] +
∂2

∂y2
[
∂ f2
∂syy

] (A-24)
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C. Integrability Constraint Derivatives
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From Eq.(29) set:

f3 = (M xy −M yx)
T(M xy −M yx)

= (sxy − syx)2(B−1m)T(B−1m)

(A-26)

Then,

∂ε3

∂s
=
∂2

∂x∂y
[
∂ f3
∂sxy

] +
∂2

∂y∂x
[
∂ f3
∂syx

]

= 2(B−1m)T(B−1m)(sxyyx− syxyx− sxyxy+ syxxy) (A-27)
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