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ABSTRACT

THREE-DIMENSIONAL MODELING OF THE HUMAN JAWTEETH USING
OPTICS AND STATISTICS

Aly Saber Abdelrahim

April 16, 2014

Object modeling is a fundamental problem in engineeringlinng talents from computer-
aided design, computational geometry, computer visionealvdnced manufacturing. The
process of object modeling takes three stages: sensingsesgation, and analysis. Var-
ious sensors may be used to capture information about sbgggtical cameras and laser
scanners are common with rigid objects, while X-ray, CT ariellldre common with bio-
logical organs. These sensors may provide a direct or arectdnference about the object,
requiring a geometric representation in the computer thatiitable for subsequent usage.
Geometric representations that are compiaet, capture the main features of the objects
with a minimal number of data points or vertices, fall int@ thomain of computational
geometry. Once a compact object representation is in th@etam various analysis steps

can be conducted, including recognition, coding, transioigetc

The subject matter of this dissertation is object recorsitva from a sequence of
optical images using shape from shading (SFS) and SFS vatkegbriors. The application
domain is dentistry. Most of the SFS approaches focus oritmpuatational part of the SFS
problem, i.e. the numerical solution. As a result, the imggnhodel in most conventional

SFS algorithms has been simplified under three simple, btricBve assumptions: (1) the



camera performs an orthographic projection of the scen¢hésurface has a Lambertian
reflectance and (3) the light source is a single point souragdiaity. Unfortunately, such
assumptions are no longer held in the case of reconstructiogal objects as intra-oral
imaging environment for human teeth. In this work, we introgla more realistic formula-
tion of the SFS problem by considering the image formatianponents: the camera, the

light source, and the surface reflectance.

This dissertation proposes a non-Lambertian SFS algotitieer perspective pro-
jection which benefits from camera calibration paramefeng. attenuation of illumination
is taken account due to near-field imaging. The surface tefiee is modeled using the
Oren-Nayar-Wdaf model which accounts for the retro-reflection case. In thistext, a
new variational formulation is proposed that relates anvewg surface model with im-
age information, taking into consideration that the imagtaken by a perspective camera
with known parameters. A new energy functional is formudateincorporate brightness,
smoothness and integrability constraints. In additiorfutther improve the accuracy and
practicality of the results, 3D shape priors are incorpetan the proposed SFS formula-
tion. This strategy is motivated by the fact that humans oglystrong prior information
about the 3D world around us in order to perceive 3D shapermdton. Such information

is statistically extracted from training 3D models of thertan teeth.

The proposed SFS algorithms have been used in tiierdnt frameworks in this
dissertation: a) holistic, which stitches a sequence ofjgsan order to cover the entire jaw,
and then apply the SFS, and b) piece-wise, which focuses pedifis tooth or a segment
of the human jaw, and applies SFS using physical teeth ihation characteristics. To
augment the visible portion, and in order to have the endgiwereconstructed without the
use of CT or MRI or even X-rays, prior information were addedick gathered from a
database of human jaws. This database has been constmacteaf adult population with
variations in teeth size, degradation and alignments. B@bdse contains both shape and

albedo information for the population. Using this databaseovel statistical shape from

Vi



shading (SSFS) approach has been created.

Extending the work on human teeth analysis, Finite Elemamdlysis (FEA) is
adapted for analyzing and calculating stresses and stoéidental structures. Previous
Finite Element (FE) studies used approximate 2D modelsigndissertation, an accurate
three-dimensional CAD model is proposed. 3D stress andatisments of dferent teeth
type are successfully carried out. A newly developed omenme® finite element solver,
Finite Elements for Biomechanics (FEBIo), has been usea: lifilitations of the experi-
mental and analytical approaches used for stress and cispént analysis are overcome
by using FEA tool benefits such as dealing with complex gegreetd complex loading

conditions.
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CHAPTER |

INTRODUCTION

Shape from shading (SFS) is a problem that has been studiaddat four decades
in the vision literature. Stated succinctly, the problentagecover surface orientation
from local variations in measured brightness. There isngtnesychophysical evidence
for its role in surface perception and recognition. Sineegloblem is an ill-posed one, a
number of additional, simplifying model assumptions hagerbimposed in order to render

it tractable.

The investigation of the SFS problem was pioneered by HoknHé formulated
the problem by a nonlinear first order partiaftdrential equation (PDE) called the image
irradiance equation. This equation models the relatignbbtween the shape of an object
and its image brightness under known illumination condsioHis orthographic camera
model, distant single point light source, and his Lambersarface assumption became

characteristic for numerous early SFS algorithms; sed&.&pr a survey.

Unfortunately, those assumptions are not always valid afitye As such, the re-
construction results of these classical SFS approachksatawiracy. That is why there
have been more recent methods trying to relax some of thesenasions. For example,
Prados et al. [9], Tankus et al. [10], and Yuen et al. [11]aept the orthographic camera
model by a pinhole camera model performing a perspectiviegtion (see Figure 2), and
assumed that the light source is located at the optical€ehtoreover, a light attenuation
term is considered in [9]. These ideas have been furthendgtbby Ahmectt al.[12] and

by Vogelet al. [13, 14]. In these works, the Lambertian reflectance modedpsaced by



the more realistic model of Oren and Nayar [15], which isipatarly useful for skin sur-
faces. The Wdt reflectance model was also investigated [16]. On the othedl,harious
optimization techniques have been employed to solve theféi8em, see.g.[17] for a

recent survey.

The observation underpinning this dissertation is thdtcaigh considerableffert
has gone into the development of improved SFS methods, #nersvo areas which leave
scope for further development. The first of these the ina@pan of the camera calibration
in the more realistic reflectance model. The second is tleatporation of 3D shape priors
in the recovery of the unknown surface. This is quite usefdcglly when the target

application deals with a particular category of object acek.

To further motivate the contribution of this work, a dentaphcation is considered:
3D jaw/teeth reconstruction from intra-oral images. Dentistryally requires accurate
3D representation of the teeth and jaw for diagnostic aratrivent purposes. Toward this
end, photogrammetry seems tidey a more convenient, cosffective technique compared
to traditional techniques while avoiding the need for caggi Computer Vision and Im-
age Processing laboratory (CVIP lab.) research group haega mterested in this SFS
paradigm for jawteeth reconstruction from an intraoral image for severarydsee for
example [6, 18—-21]) due to the significant shading cue in agmof a tooth. In addition,
other 3D reconstruction methods, such as Shape from Steilébave little success when

applied on the textureless tooth surfaces [19].

In this dissertation, a novel strategies to improve theamerfrecovery results of
SFS have been approved. 3D shape priors in the SFS formukatoincorporated. Since
the target application is the human teeth reconstructiam intra-oral images, such infor-
mation is statistically extracted from training 3D tooth aets. This can serve in several
aspectse.g, to improve reconstruction accuracy, solve problems aabg®cclusion€.g,
because of the tongue), specularity and albedo changegrandke up for the lack of

suficient, detailed view of a tooth.



Y Intra-oral Camera

% ;
v {3/ and Light Source

e

Yw wWorld
Coordinate Frame

Xw

Surface Normalg i

FIGURE 1: lllustration of the data acquisition setup [5].

Furthermore, we introduce a maemslisticformulation of SFS that better considers
all the components of the problem under concern, namelycahera, the light source, and
the surface reflectance. Since image acquisition setupstsid a small wireless intraoral
camera with a built-in bright light source, the camera is gilgdl by perspective projection,
which is more practical than the common SFS assumption bbgraphic projection as the
teeth are typically close to the camera (see Figure 1). T Source is assumed to be
located at the optical center of the camera. Under this tlearination imaging, we take
into account the attenuation of illumination due to the atise between the light source

and the surface, which helps to deal with the conm/ex ambiguity in SFS [9, 22].

A. Reconstruction from Sequence of Images
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FIGURE 2: Basic image formation in perspective camerash@acamera).

Optical Imaging: An optical image nowadays is formed by high-speed CCD sen-
sors capable of capturing light reflections from an objetiigh spatial resolutions. Yet, at
the basic level, an image may be represented as a colledtreflected light rays from an
object culminated by a lens Figure 2. A pinhole camera fomagrted images of an object
by rays entering a pinhole; lens at the aperture focusesgherkflected from an object
such that a ray will pass unabated through the lens centif parallel to the lens optical
axis will be deflected through the focal point. The intergatbf the two rays forms an
image at the image plane. Figure 3 illustrates the geometoidel. The equations of the

camera calibration parameters shown in Figure 4.

1. 3D from Images

An image tells a lot about the observed scene, however tharetienough infor-

mation to reconstruct the whole 3D scene; this is due to the@af the image formation
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FIGURE 3: Geometric model of a pinhole camera.

process which consists of a projection from a three dimemsiscene onto a two dimen-
sional image, during this process the depth informatioss; i.e. the distance between
the 3D object and the capturing (imaging) device. However,three-dimensional point
P(X,Y, Z) corresponding to a specific image pop{t, v) is constraint to be on the associ-

ated line of sight,, as shown in Figure 5.

Therefore, the two-dimensional poiptmight correspond to any three-dimensional
point P on the line of sigh.. Hence from a single image it is not possible to determine
which point on this line corresponds to the image point. €hae, if two or more images
(views) are available for the same 3D scene (whether theta&em by diferent cameras
or one non-stationary camera), then the 3D point can berdadais the intersection of two

(or more) line of sights, as illustrated in Figure 6. Thisqess is called triangulation.

A number of things needed to accomplish such tagk;three-dimensional infor-



World Frame

w g T T Tttt oA m H
P ‘PY (R )P :
—> Camera Frame = Extrinsic
| 1 0 1)1 |
: " 1 N1 P
! > Normalized Retina [‘? Jz Z—[I O][ | } !
' Intrinsic . |
) Hrmsie > Image Plane | p = Kp .
Ll _______________________ :
]' W w
p=—K|[R t]"P=—M"P
ZC c
FIGURE 4: Camera model equations (Extringlictrinsic parameters).
y
P(X,Y.Z) \
|
3D Space
| - /,
Camera Image Plane

FIGURE 5: The three-dimensional point corresponding toeceie image point is con-
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This process is called triangulation.

mation reconstruction:

e A list of corresponding image points betweerifelient views,i.e. p in view V;

corresponds t@; in view V5.

¢ Relative pose of the camera for thefdrent views;i.e. the relationship between

viewing cameras with respect to each other.

e The relation between the image points and the correspotidegf sights.

The relation between an image point and its line of sight vewgiby the so-called cam-
era model, which answers the question of how a three-dimaeakpoint, measured with

respect to the 3D world coordinates, be projected on a 2D énpdane and ends up as a



pixel in a specific row and column, hence what is the relahgmbetween the rofgolumn

number and the 3D point coordinates?

It is important here to note that usingfidirent views is not the only approach to
recover or reconstruct the scene 3D information, shadexgute and focus cues can also

be used to extract 3D information from images.

2. Camera Field of View

The input to the camera is a collection of 3D points whichri¢he field of view of
the camera. The field of view of the camera is ideally a congnele by its angle £ and its
near and far plane, where the 3D points which lie between ¢lae and far planes are the
only points that can be seen by the camera. This idea wageaasipy the field of view of

the human eye.

Using a cone-like field of view for the camera will impose cartgiional overhead,
hence it can be approximated as a trapezoid or a cuboid (bagkes The shape to be used
depends on the type of projection considered for camera lingdéNhen a trapezoid is
used to approximate the field of view of the camera this isedalperspective projection.

While a cuboid for approximation is known as orthogonal ectipn.

a. Orthogonal Projection: Consider the case when using a box to approximate
the camera field of view. Any 3D point that lies in the box (fiefdview) will be projected
on the near plane (to form the 2D image) in a direction pdr&dlehe edges of the field
of view, see Figure 7 for illustration. Since the edges oftibe are parallel to each other,
same-size near and far object will be projected on the nahfarplane having the same
size. Hence methods which use orthogonal projection angvatid in a limited domain
where the distance and positiofiexts can be ignoredg. the objects are distant from the

camera.
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FIGURE 7: Two identical objects in flerent positions give the same image under orthog-

onal projection: objedD, is much further away from the camera, than obfect

b. Perspective Projection:On the other hand, consider the case when using a
trapezoid to approximate the field of view. Using a trapeabiigld of view will enable us
to feel the distancefiect, where far objects project smaller than near objecepikg in
mind that projection always occurs parallel to the edge$effield of view, see Figure 8
for illustration. The idea of approximating the field of viexg a trapezoid is inspired by

the pinhole camera model, discussed latter, which simsitag2human eye.

3. Camera-Externally and Internally

The camera can be characterized (to the extesumabunding world) by its position,
known as the optical center, its viewing direction, knowrta®ptical axis (z-axis), its up
direction (y-axis) and its right direction (x-axis). The olb idea of the camera model is
inspired by the human visual system. A human being has tws, @geh characterized by
there position in higer face,i.e. the optical center, the viewing direction is defined by
where the human eye is looking at, the up-direction can b&edeas the orientation of
the human head with respect to the viewing direction, wiigertght direction maps to the

humans right-hand when expanded perpendicular to the hbown
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FIGURE 8: The distancefiect can be felt when using perspective projection: olkds
much further away from the camera than ob@¢t and its projection is smaller than that

of Oy.

The camera can be internally characterized by its field af\iee type of projection
used {.e. the approximation of the cone-shape field of view), and tloegss of digitizing
what is projected on the near plane to be converted to a thgitage. The camera field of
view is defined by the near and far plane, where the distarteesba the optical center and

the near plane is commonly denoted as focal length.

B. The General Form of Perspective Projection Matrix

The camera can be considered as a system that depends oraitsefers, which

are categorized into two classes, extrinsic and intrinarameters.
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1. Extrinsic Parameters

They are the parameters related to the transformation efoniel coordinate system
to coincide on the camera coordinate system. There are Bir&x parameters, the Euler

anglesyawa, pitchg, andtilt y for rotation, the three components of the translation vecto

t=(tty, ).

The extrinsic parameters matri®, can be expressed in termsta&ndR as:

D = (1)

whereD is 4x 4 matrixand@=[0 0 0]".

2. Intrinsic Parameters

Those parameters are related to converting the 3D pointdowite measured in
camera coordinate system to the computer image coordifi&iere are five intrinsic pa-

rameters:

e The focal lengthy, in x direction and focal length, in y direction.
e The coordinates,, V, of the principle point in the image plane.

e The skewing factos.

ay S % O
K=l 0 & ¥ O (2)
0O 0 1 0
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The Overall Projection Matrix (P) :

P = KR[l3| - C] (3)

whereP is 3 x 4 matrix and it has 11 degree of freedom (5 fr&m3 fromR and 3
from C).

C. Camera Calibration

Camera calibration is the process of determining the ialeramera geometric and
optical characteristics (intrinsic parameters) /andhe 3D position and orientation of the

camera frame relative to a certain world coordinate sysextni(sic parameters).

1. Why is camera calibration necessary?

Camera calibration provides a way of inferring 3D informatfrom computer im-
age coordinates as well as inferring 2D computer image @oatel from 3D information.
3D information from computer image coordinates involves lthcation of the object (tar-

get) and the position and orientation of a moving camera

2. Calibration Schema

The key idea behind camera calibration is to write the pt@ecequations linking
the known coordinates of a set of 3D world points and theijgmtions (image pixels

coordinates) and solve for the camera parameters.

In order to get to know the coordinates of some 3D points, camaibration meth-

ods rely on one or more images of a calibration pattern, hat3D object of known ge-

12



FIGURE 9: Typical calibration pattern consists of two odbaal planes of black and white
grid, to facilitate feature points extraction. The worldbodinate system is attached to the

calibration pattern to facilitate the measurement of 3h{wi

ometry, possibly located in a known position in space anegeing image features which
can be located accurately. Usually a typical calibratiabgpa consists of two planar grids
of black squares on a white background. The world coordisgséem is usually attached
to the calibration pattern, this will facilitate the measment of the 3D world points, while
the corresponding image points can be located using cogtectibn techniquesg. inter-

section of image lines, thanks to the high contrast and sirgpbmetry of the calibration

pattern, see Figure 9.

3. Linear Approach to Camera Calibration

The calibration process can be decomposed into two stagesh® computation of

the perspective projection matrik], associated with the camera in this coordinate system,

13



then the estimation of the intrinsic and extrinsic paramsedéthe camera from this matrix.

a. Projection Matrix Estimation: Assume that the projection mati, defined

up to an arbitrary scale factor, is:

My Mz Mz My

M=] My My Mz My (4)

Mgy Mgz M3 Mgy

and givenN 3D points and their correspondind2points. Since the relation be-

tween a ® point and its correspondind2point is:

u M1 M2 Mz My
y

V|=| My My My Mpy (5)
Z

1 Mg1 Mgz Mgz May

S 11

Equation 5 indicates:

_ My X + Mp2Yi + M3 + Mg
M1 X + M2y + Ma3Z + My

_ M1 X + M2y + Mh3Z + Mp4
M1 X + M2Yi + M3z + My

which can be arranged if\2linear equations imYsin the form:

Pm=0; (6)

where,
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then the unknowmscan be recovered by the decompositiorPofising singular

value decomposition as:

The solution is the eignvect® corresponds to the smallest singular value (related

to the smallest eignvalue) in the main diagonabDof

P=UDV' (7)

D. Teeth Anatomy

Humans have two types of teeth in their lifetime. The firsetgpteeth that appears
in the mouth are the primary or deciduous dentition, whichitbéo form prenatally at
about 14 weeks in utero and are completed postnatally atgghe@@3. When there are no

signs of congenital disorders, dental disease, or trauradirst teeth begin to appear in the

15



oral cavity at the age of 6, and the last emerge at the age e#428onths. This deciduous
dentition remains intact until the child is about 6 years @é.aAt about that time the first
succedaneous (permanent) teeth begin to emerge into thimiche emergence of these
teeth marks the beginning of the mixed dentition period inciwta mixture of deciduous
and succedaneous teeth is present. This transition pexrstsl from about 6 to 12 years
of age and ends when all the deciduous teeth have been shétatAime the permanent
dentition period begins. Thus, the transition from the priyndentition to the permanent
dentition begins with the emergence of the rst permanerarsahedding of the deciduous

incisors, and emergence of the permanent incisors.

The mixed dentition period is often afficult time for the young child due to many
reasons including habits, missing teeth, teeth of dierelrs and hues, crowding of the
teeth, and malposed teeth. After the shedding of the dea&loanines and molars, emer-
gence of the permanent canines and premolars, and emergktiee second permanent
molars, the permanent dentition is completed (includiregrtiots) at about 14 to 15 years
of age, except for the third molars, which are completed dbI¥ years of age. Infiect,

the duration of the permanent dentition period is-}2ars.

The completed permanent dentition consists of 32 teethnkrere congenitally
missing, which may be the case (see Figure 10). Teeth of hsiar@nsmall, hard, calcied
and whitish structures found in the mouth. The visible parthese teeth is called the
crown, while the invisible part, which is embedded in the jagne is referred to as the
tooth root. The molars, and the premolars of the upper jamaliyshave two, three or four

dierent roots and are called multi-rooted teeth.

16
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FIGURE 10: Anatomy of the tooth. (a) intraoral left. (b) iatral right. (c) occlusal upper: schematic overview of treribution of the

different teeth in an adult mouth. (d) intraoral center. (e)wsadllower.



1. SURFACES AND RIDGES

The crowns of the incisors and canines have four surfaces aidde, where as the
crowns of the premolars and molars have ve surfaces. Thacgsrre named according to
their anatomical positions and uses (see Figure 10). Imthigdrs and canines, the surfaces
toward the lips are called labial surfaces; in the premaaid molars, surfaces facing the
cheek are the buccal surfaces. Both the labial and bucdalcgsrtogether are referred to
as facial surfaces. All surfaces facing toward the tongeecalied lingual surfaces. The
surfaces of the premolars and molars that come in contactu&on) with those in the
opposite jaw during the act of closure are called occlusdhsas. These are called incisal

surfaces with respect to incisors and canines.

2. The periodontal ligament

Figure 11! shown the periodontal ligament (PDL) that supporting stmecof the
tooth, attaching it to the alveolar bone. The PDL in the husnlhas an average width
of 0.25mm[23]. The PDL consists of principal fibres stretching acrties width of the

ligament, which are embedded as Sharpeys fibres in the bahth@eementum.

E. Reconstruction of the Human Jaw

In 1997, Ahmeckt al.[24] introduced the first optical approach to construct the h
man jaw from a sequence of images taken by intraoral camé&&SFS solution provides
an estimate of the shape for a certain light direction (peEatye projection); this estimate
is non-metric, and real world surfacesd, the human jaw) are not Lambertian. In 1999,

Yamanyet al. [25] introduced a modification to the SFS problem by incogpiog sparse

thttpy/www.highlands.ediacademigslivisiongscipgbiology/facultyharndey2122imagegtoothanatomy.jpg
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FIGURE 11: Schematic overview of the anatomy of the tooth ismdurrounding struc-
ture: the crown is covered with enamel, root, cusp, dentim,gcementum, periodontal

ligament, alveolar bone and apex.

3D points, obtained by a touch probe, into the camera caidoranodel, and used a filter to
reduce the jaw specularity, in order to make the Lambertaam@mption adequate. In 2000,
Yamanyet al.[18] introduced the first computer vision system for 3D jawamstruction
based on an intraoral camera mounted on a six-segment nategdneasuring unit. Since
then, various modifications to the imaging process and so&wptimization were carried
out, which enhanced the capabilities of tbemputer Vision and Image Processi@VIP

Lab) Dental Station.

The accuracy obtained by the CVIP Lab Dental Station (as showrigure 12)
was in the millimeter range, yet it has the following drawksci) The camera required
a pre-calibration and needed to be hooked to the coordinatsuning arm, in order to
reference the image sequence used in the reconstructiocoimi@on 3D referencing sys-
tem. ii) The data acquisition was awkward, requiring coapien of the object during data

gathering which may last up to five minutes. iii) The overalt@racy of the resulting 3D
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model was not suitable for various envisioned dental prasti Two obvious enhancements
were essential to make the Dental Station more practicakimdethe dental probe flexible;
and improving the 3D model building algorithm from sequentémages. Major forts
have been undertaken to address these two shortcomingssdebon generalization of the
SFS solution to various object characteristics as statededd 2, 26], and deployed newer
cameras with various light sources and motion sensors. Rtgorithmic point of view
we introduced a new stitching algorithm [20], which enabriegistration of the image seg-
ments covering the human jaw, then applying SFS vs. applgon individual segments
and then register the results. Equally significant is thaexamined the roughness of the
jaw material using profiler microscopes available at theversity of LouisvilleMEMS

facility, in order to calibrate the albedo parameters in3R& using realistic measures.

F. Contributions of this Dissertation

This dissertation involves theoretical developmentstesypsdesign and integration,
as well as practical evaluation by dental professionalshéncontext of tooth reconstruc-
tion from intraoral images, the SFS techniquiecs several advantages. It provides more
detailed and accurate representations about the shape wfdath crowns [18]. It requires
only one camera position within the cramped confines of thetmdCost-wise, itis cheaper
because it simply requires a single camera and light so&wemarizing the main contri-

butions of this work:

¢ A robust data acquisition system has been proposed thairesaalibrated images

for the jaw by anntraoral camera and controlled lighting mechanism.

e This work designed and developed novel algorithms for 3@aserreconstruction
by SFS aspect for human teeth based on a single image. A nobdréan SFS
algorithm under perspective projection is proposed, whehefits from camera cal-

ibration parameters. Take into account the attenuatiouwhination due to near-

20



FIGURE 12: Scientific prototype of the dental probe at the E\ab (2000-2004). A
CCD camera attached to a coordinate measuring arm capherggleo images used in the

jaw reconstruction.
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field imaging. The surface reflectance is modeled using tlea-Qlayar-Wolf model

which accounts for the retro-reflection case.

A novel method to incorporate the 3D shape priors in SFS ftatimn was proposed.
This strategy is motivated by the fact that humans rely oongtiprior information

about the 3D world around us in order to perceive 3D shapenrdton.

2D-PCA is used to build the shape priors instead of the cdiomad PCA. The 2D-
PCA dfers two important advantages: It is easier to evaluate thari@mce matrix
accurately since its size is much smaller. In addition, tess is required to deter-
mine the corresponding eigenvectors. Second, the modified-Qayar-Woff re-
flectance model is presumed in place of the Oren-Nayar madhare teeth surface
is rough and wet, giving rise to Fresnel reflection due téedent refractive indices

of the saliva and the tooth material.

The tooth surface roughness is physically measured usiogtcal surface profiler

and stylus arm.

Developing techniques for stitching 3D surface patchesnsitucted from dierent

views of the jaw surface were proposed. Calibration pararadtave been com-
puted adaptively while the camera is moving using the sartsggenerate calibrated
images and meaningful surfaces. Solving this problem tesian all aspects for

computer vision and image processing.

A model-based SFS approach is proposed which allows forahstaiction of plau-
sible human jaw models in vivo, without ionizing radiatiamsing fewer sample
points in order to reduce the cost and intrusiveness of aogunodels of patients

teethjaws over time.

Establish a dental database and a procedure to augmentasbgrchers in the US

and worldwide, for enhancing dental research and practidé®human teetjaw.
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e The possibility of calculating the initial stresses anaists in the PDL is calaculated

analytically and using FEA.

G. Organization of the Dissertation

The dissertation is given in nine chapters. A summary of eawhis presented

which includes the problem, contribution, and experimiengsults.

1. Chapter|

This chapter includes the definition of SFS, 3D reconstomctrom sequence of
images, the basic of the camera calibration, teeth anatordytlze related work of the

reconstruction of the human jaw. Also it has in brief, thetabations to solve the problem.

2. Chapter I

This chapter gives an brief introduction to surface reaoiesion by geometric com-

puter vision and image irradiance equations.

3. Chapter Il

At the University of Louisville Dental school there existsoemous number of
moldgteeth and patient records. The first steps to arrange thekis/teeth are taken
into subjects categorized with respect to gender, age dmmicél. This database is very
importantin 1) a model-based SFS approach which allowsconstruction of plausible

human jaw model# vivo, without ionizing radiation, using fewer sample points nder
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to reduce the cost and intrusiveness of acquiring modelattmts jawgeeth over time. 2)
using for FEA. Also, it has an introduction to orthodontiotio movement using analytical

method.

4. Chapter IV

This chapter describes a new method of 3D surface recotistnaspect for human
teeth based on a single image, which provides more redigsticulation of the SFS prob-
lem by considering the image formation components: the cantige light source, and the
surface reflectance. A non-Lambertian SFS algorithm isgseg under perspective pro-
jection which benefits from camera calibration paramefeng. attenuation of illumination
due to near-field imaging is taken into account. The surfafleatance is modeled using

the Oren-Nayar-Wdl model which accounts for the retro-reflection case.

5. ChapterV

This chapter proposes a new variational formulation thistes an evolving sur-
face model with image information, taking into consideratthat the image is taken by a
perspective camera with known parameters. A new energyitunat is formulated to in-
corporate brightness, smoothness, and integrabilitytcaings. Furthermore, an automatic
approach for 3D surface reconstruction of the human jawgusatibrated images with the

help of the ASIFT features matching is presented.

6. Chapter VI

This chapter developers a new approach for realistic 3Dnstcaction of the human

teeth using shape from shading with statistical shapeggathered from an ensemble of
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scanned human teeth, in order to improve the quality of SEplsed to jaw surface.

7. Chapter VIl

The approached developed in this chapter reconstructediie from single image

shading with 2D-PCA shape priors that have a more sophistiaaflectance model. The

Oren-Nayar-Waf model was used for modeling the surface reflectance.

8. Chapter VI

In this chapter, an accurate three-dimensional CAD modetaposed. 3D stress

and displacements offikerent teeth type are successfully carried out using FEA.

9. Chapter IX

This chapter concludes the dissertation with insights teresions to be handled

during thesis work.
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CHAPTER Il

SURFACE RECONSTRUCTION BY GEOMETRIC COMPUTER VISION

Simply stated, the surface reconstruction problem is theviting: given a sequence
of calibrated and referenced 2D images of an object, cortsirG@D representation of that
object. If the 2D image sequence covers the entire objext @60 degrees) then the 3D
reconstruction is expected to be a full 3D surface reprasent This problem has been
studied in the past 40 years in what is known in computer misi® the "shape from X"
problem. Where X represents the various cues employed mggoom 2D to 3D, which
includes stereog(g. [27-31]), texture €.g. [32, 33], motion €.g. [34—37]), and shading
(e.g. [38-46]). Other approaches in geometric computer visiamn #ne more recent are
the voxel-based approachesy.voxel coloring [47], space carving [48], and generalized
voxel coloring [49]. These methods extract the 3D informatf an object by removing
(carving) the volume elements (voxels) in the initial 3Dwwle that are invisible and photo-
inconsistent in alsubset of the sequence of images. A plethora of algorithims$sar the
literature for reconstruction and recognition from sedqueeaf images. Even though the
geometry of the reconstruction has been well-developexigir the foundational work of
a number of investigatore(g, [38], Grimson [50], Faugeras [51], Hartely and Zisserman
[52]), the accuracy of the reconstructions is applicatioerded and there is no existing
geometric reconstruction mechanism that fits all needssiderable work still remains in

order to achieve automatic 3D surface reconstruction frmao

Difficulties in video reconstruction come, in part, from the thet the assumptions
for typical geometrical reconstruction are hardly validr Example, assumptions in stereo

(e.g, presence of distinct features of the objects in the rigdtleft images), in SFSe(g,
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the Labmertian assumption that considers the surface ifeldeof view of the camera to

be mat), in space carvin@.Qg, the photo consistency) are rarely valid in practice. Other
difficulties result from surfaces that are glossy, transpapentuding, and mutually illumi-
nating. In addition, errors result from the data acquisisensorsd.g, camera calibration
errors due to motion, lens distorticgtc). Despite these problems, video-based technology
is extremely powerful and popular in every facet of life. Tystem uses this technology

for creating a 3D surface model of the object from sequenc@afes.

A. Shape from Shading (SFS)

Among the tools used in shape extraction from single viehés$FS technique.
SFS has been primarily studied by Horn [38] and it extractsdépth (hidden informa-
tion) from the image formation process that relates souregliance to image gray level
intensity. There have been various developments in the &i8itam (e.g, [53-59]).
The most important information for reconstructing an aat&iBD visible surface, which is
missing in SFS, is the metric measurement. SFS alfersurom the discontinuities due
to highly textured surfaces andfdirent albedo [38]. In [18], they introduced an algorithm
that integrates the dense depth map obtained from SFS watisesplepth measurements
obtained from a coordinate measurement machine (CMM) ferrétonstruction of 3D
surfaces. This algorithm provides two advantages: it resadtie ambiguity of the 3D
visible surface discontinuities produced by SFS, and itglements for the missing met-
ric information. The integration process includes thedwihg stages. First, calculated
the error diference in the available depth measurements between thest&/ofssensory
data. Then, approximated a surface that fits this eriféerdince. Finally, the approximated
surface is used to correct the shape from shading. The regotisn involved several
sequential steps: Camera calibration, imaging and larkfgraund truth collection, SFS
extraction, merging with ground truth points using Neuratiork(NN), and obtaining the

3D surface. Extensions to the previous algorithm [18] ideldiexible and more accurate
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image data collection, quantification of motion artifacegjuction in algorithmic time, and

studying the robustness of the overall procedure to ensurgacy and repeatability.

Shape-from-Shading is a classic and challenging probleoomputer vision. It
uses the brightness variation in a single image to compet8fhshape of a surface. The
goal of SFS is to solve the image irradiance equation, wiabhstly relates the reflectance
map to image intensity. However, the task appears to be im@htrConsequently, most
work in this relies on assumptions which simplify the iraate equation. Of particular
importance is the common assumption that scene points ajecped orthographically

during the photographic process.

Many works in the field of SFS have followed the seminal workslorn [60-62]
who initiated the subject in the 1970s, and assumed ortpbgrgrojection. Horn’s book
[63] reviews the early work on SFS (until 1989). Zhang et aB] qurvey and classify
some of the works from the '1990s and compare the performahsi of them (namely,
minimization approaches: [64], [65]; propagation applesc [66]; local approaches:
[67]; linear approaches: [68], [69]). Kimmel and Bruckstdir0] classify image extrema
and two kinds of saddle points and use these topologicaleptieg of the surface in a
global SFS algorithm. Zhao and Chellappa [71] use symm&tHAS to develop a face
recognition system which is illumination insensitive. Yrehow that the symmetric SFS
algorithm has a unique solution. Kimmel and Sethian [72]ppsed the Fast Marching
method as an optimal algorithm for surface reconstructidheir reconstructed surface
is a viscosity solution of an Eikonal equation for the veatitight source case. Sethian
[73] provides deep insight into Level Set and Fast Marchirgghods. Prados et al. [74]
base their approach on the viscosity solution of a Hamiltaoebi equation. They extend
existing proofs of existence and uniqueness to the genigfal $ource case and prove
the convergence of their numerical scheme. Many more oréptgc algorithms were

suggested in the literature, but only a few can be describesir

SFS algorithms can be categorized into four main groups [B8himization ap-
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proaches, propagation approaches, local approachesjrmad &pproaches. Minimiza-
tion approaches obtain the solution by minimizing an endtmgctional. Propagation
approaches propagate the shape information from a set faicsupoints €.g, singular
points) to the whole image. Local approaches extract shapedoon the assumption of
surface type. Linear approaches compute the solution baisele linearization of the
reflectance map. To solve the SFS problem under more commi®kemodeling condi-
tions, we need very powerful mathematical tools. Basically can choose between prop-
agation approaches or energy minimization approaches #ecapplicability of the local
approaches is limited, and the reasonability of the linparaximation of the reflectance

map is questionable [75].

One of the earlier and most important works in the minim@aapproaches, which
reconstructs the surface gradients, was by Ikeuchi and Hio8ih Each surface point has
two unknowns for the surface gradient and each pixel in thegeprovides one intensity
value, which yields to we having an under-determined syst@m overcome this, they
introduced two constraints: the brightness constrainttardsmoothness constraint. The
brightness constraint requires that the reconstructeokespigduces the same brightness as
the input image at each surface point, while the smoothn@sstr@int ensures a smooth
surface reconstruction. The shape was computed by mimigam energy function which
consists of the above two constraints. To ensure a correstecgence, the shape at the
occluding boundary was given for the initialization. Sirtbe gradient at the occluding
boundary has at least one infinite component, stereogrgpbjection was used to trans-
form the error function to a éierent space. Also using these two constraints, Brooks and
Horn [77] minimized the same energy function in terms of tinéace normal. Frankot and
Chellappa [78] enforced integrability in Brooks and Horalgorithm in order to recover
integrable surfaces. Surface slope estimates from thatiterscheme were expressed in
terms of a linear combination of a finite set of orthogonalrenbasis functions. The en-
forcement of integrability was done by projecting the noegnable surface slope estimates

onto the nearest integrable surface slopes. This projewai&s fulfilled by finding the clos-
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est set of coicients which satisfy integrability in the linear combirati Their results
showed improvements in both accuracy afittency over Brooks and Horn’s algorithm
[77]. Later, Horn also [38] replaced the smoothness comsétia his approach with an

integrability constraint. The major problem with Horn’s thed is its slow convergence.

B. Geometric Stereo

The availability of a sequence of calibrated images enghkgapplication of other
reconstruction methods (e.g., stereo and space carvirg) stereo approach matches in-
formation present in the left and right images (any two insagethe referenced sequence
that share common information about the scene) in ordertta@xhe depth (disparity or
third dimension) from the two images. If the sequence of iesagpver the entire object,
the pairwise reconstructions can be merged together to &foll 3D model. Pairwise
images from the sequence (obtained by a single camera)rthatlated may be used as a

“stereo-pair” to extract the depth.

In the general stereo configuration, the image planes areapddnar which makes
the correspondence problem moréidult than the simple stereo configuration. If no con-
straints are applied to this configuration, then it is neagsto search for the point xn the
entire right image to be matched witl(rxote the right and left images may be thought of
just as two related images from the sequence). The searck spa be limited to a gen-
eral line in the right image if the epipolar constraint [38]applied. Furthermore, image
rectification algorithmsd.g, [79]) can be used to parallelize and align the epipolarsline
to the x-axis. This rectification step reduces the problem somple stereo configuration

problem.

In general, the stereo approaches operate either by thefealyee matching or the
area-based matching. Feature-based stereo approachissfidecause they describe the

important geometry of the object. However, the major probté most of these approaches
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is the low output density. A dynamic programming [30] apmioanatches features to get
dense reconstruction, but it can only be applied on a scarblrscan line basis. Boykov,

et al. [80] and Roy and Cox [28] solved the inter-scan line problesimg graph cuts. In

contrast to the feature-based stereo, the area-based ptexedes dense reconstructions.
Okutumi and Kanade [29] used a variable size correlatiomainto generate dense depth
maps. However, area-based usually fails when applied taces of large textureless areas.
Another challenging problem for stereo approaches is tbkision problem, where scene

elements appear in one image but they are occluded in theiothge.

With respect to smooth objects, the major sources of errershe lack of specific
features on the target when viewed in the front or the backy; the upper views of the
target can provide some feature for matching. In additianious sources of inaccuracies
in depth measurements may result dueffects of motion, lightning and the occlusion due

to the nature of the object.

C. Space Carving

Space carving [48] attempts to produce the maximal 3D shagueig consistent
with all the images. Space carving starts with an initiabvmoé V that includes the object
to be reconstructed. This 3D space is then discretized irfioite set of voxels y,v,
....Vh. The idea is to successively carve (remove) some voxelktbatfinal 3D shape, V*,
agrees with all the input images. Each voxel on the surfatieeofolumej.e., in Vis(V), is
projected back to the flerent images using their respective projection matricesoxel
is carved or not is based on color-consistency. The Lanarertiodel for the surface of
the object is assumed. Under this model, light reflected fassmgle point on the surface
of the object has the same intensity in all directions. Tlweeg for a voxel to belong to
the surface of the object, it must have the same color iniensithin some tolerance to

allow for some light variations and some calibration inaecy, for all its projections to
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the diferent images provided. Voxels that are inconsistent witimgles color are viewed
as free space in which félerent light rays intersect. By removing all color-incones
voxels, we are able to approximate a maximal photo-congisteape that is defined by all

the input images.

D. Integration of Reconstruction Methods

No single approach in geometric computer vision fits all aapions. Integra-
tion/fusion of several approaches has been attempted in ordaptove the reconstruction
results. For example, Fua and Leclerc [37] developed aroapfrfor reconstructing both
the shape and reflectance properties of surfaces from feulti@ges. The method begins
with an initial estimate of surface shape provided, for egknby triangulating the result
of conventional stereo. The surface shape and reflectangenies are then iteratively
adjusted to minimize an objective function that combindsrimation from multiple in-
put images. The objective function is a weighted sum of stesbading, and smoothness
components, where the weight varies over the surface. LEB&groposed another ap-
proach for integration of SFS and stereo in which he correetgrror propagation from
stereo vision to SFS, when only the initial and border cood# are used for the coop-
eration, by the introduction of simultaneous constraintsnf both modules on all image
points. Samaras et. al [39] presented a multiview methodh®rcomputation of object
shape and reflectance characteristics based on the inbegodtSFS and stereo, for non
constant albedo and non-uniformly Lambertian surfacesst Btereo fitting on the input
stereo pairs or image sequences is performed. Based oretiee sésult, the albedo map
can be automatically segmented (which is taken to be pigese-@onstant) using a mini-
mum description length (MDL) based metric, to identify arsaitable for SFS (typically
smooth textureless areas) and to derive illumination médron. The shape and the illu-
mination parameter estimates are refined using a deformadidiel SFS algorithm, which

iterates between computing shape and illumination parmsetfassold et. al [40] have
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introduced an algorithmic framework for the refinement adrsp 3D models using shape
from shading. Starting from an initial model obtained by mh&om stereo, they use a
global optimization scheme in order to refine the surfacee ddnstraints used are based
on the shading in the image, the initial 3D points obtainedtgyeo and the smoothness
of the surface. In contrast to other approaches that assuanheéhie photometric proper-

ties of the scene are known they iteratively update the kghirce direction and several

parameters of the reflectance map.

E. Image Formation Model

How pixel brightness in the image is related to the physiaallavis the answer of
two questions; (1) where some point in 3D will appear in thei@Age, and (2) how bright
this image point will be. The former question is related te tameraviewer properties,
i.e. geometric image formation, while the latter one is goverbgdhe surface physical
and reflectance properties as well as the illumination dand, i.e. photometric image

formation [81].

Assuming the camera extrinsic parameters are solvedvidr a predetermined
world coordinate frame, consider a vieymera-centered coordinate system with the
camera lens located at the origl) i.e. optical center, where the optical axis coincides
with the z-axis. Since the image is formed in the near field, the geamietaging process
can be modeled by the pinhole (perspective) projection altlee imaggetinal plane is
located at a distance governed by the camera’s focal leihgtlet M = (X, Y, Z)" denote a
surface point perceived in the camera frame, wizereZ(X, Y) represents the depth value

of the surface poin¥l whose projection is denoted Iny = (x,y)" on the image plane.

F. Image Irradiance
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1. Lambertian Reflection Model

The SFS problem consists of recovering the 3D-shape of acitfirough the anal-
ysis of the brightness variation in a single image. In genéhe brightness of a surface
patch depends on its orientation relative to both the lightse and the viewer. Thmage

irradiance equatiormodels this relationship as

E(x) = R(A(x)), (8)

whereE(x) is the image irradiance at the poxandR(.) is the radiance of a surface

patch with unit normaf(x).

For simplification purposes, most of the algorithms in SE&diture assumed that
the surface has a Lambertian reflectance [17], i.e., thacaineflects the light equally in
all directions. In this case the reflectance map is the casiitiee angle between the unit

vectorsin the light direction and the normal vector

E(X) = R=co(5n) =5§-N, (9)
which leads to the first PDE studied in the SFS literature:

[(X) V1+|VuX)?+5- (Vu(x),-1) =0, (20)

whereu(x) is the surface height at poirt= (X, y) above some reference plane. The camera
is assumed here to perform orthographic projection, whecilso a simplification of the
real perspective projection done by a camera. Note thantlge irradianc& has been
replaced by the measured image gray vdll®y assuming a linear relationship between
them and dropping the scaling factor. Under real world cirstances the surface materials
are not Lambertian, and in many cases the camera and thalfighiot far away from the

object.
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FIGURE 13: Definitions of reflection parameters and angles.

2. Oren-Nayar Ofuse Reflection Model

The Oren-Nayar diuse reflection model has been introduced for rough surfa&gs [
which can be seen as a generalization of Lambertian refleefan rough difuse surfaces.
The roughness of the surface is specified using a Gaussiaibati®n for the orientations
of the approximating surface facets. Using the geometngtithted in Figure 13, given the
radiance of the incoming light;, the radiance of the reflected light, the Oren-Nayar

model can be given by:

L, = gLi coshi(A + Bsina tang max[Q cosg, — ¢;)]) (11)
0.2 0.2
hereA=1-05————,B=045———.
W o2 +0.33 o2+ 0.09

The parametes- denotes the standard deviation of the orientations Gausiséribution,
and it is used as a measure of the surface roughaessnaxé,, 6}, 8 = min{é,, 6;} andp

is the difuse albedo.

Assume the camera is modelled with a perspective projecthstording to the
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FIGURE 14: Perspective camera model for SFS.

proposed data acquisition setup, the light source is ldcatéhe optical center. The@, =

6 = a = B = 6. The surface is represented by [9, 22] (see Figure $4:{S(x) / X € Q},

whereS(x) = M(x,—f), with f being the camera’s focal length. The surface normal

fu(x) fu(x) ]

at any point is given by(x) = [fVu(x) — wE % Vu(x) - X + Pt

The light source direction equads= —~—(-x, f). Furthermore, the attenuation

of the illumination is taken into account due to the distanbetween the light source and

the surface. This helps resolve the corfegexcave ambiguity from which traditional SFS
algorithms stter when this attenuation phenomenon is ignored [9, 22]. dlsgance is

given byr = fu(x). As a result, (11) eventually becomes

Acos@) + Bsirt(6)
r2 '

L(6:0) = CL) (12)
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CHAPTER IlI

DENTAL DATABASE CONSTRUCTION

A. Introduction

Many dental applications such as endodontic procedureatnient of malocclu-
sion problems and treatment simulations require an ac@itrepresentation of the teeth
and the jaw. Using 3D CAD models has great advantages oveenbanal physical solid
models, as solid models require big physical space for g&mdding financial and logis-
tic burdens which is not the case of CAD models that are stelectronically [82]. This
chapter proposes to collect resources for the jaw projeataammon repository for dis-
semination among researchers elsewhere. At the Univaskitpuisville Dental school
there exists enormous number of molds and patient recotdsfifEt steps were arraigning
these molds into subjects categorized with respect to geade and ethnicity(see Table
1). Using the Conebeam CT scanner, these molds were scandéddeasimage processing
tools were used to create a mesh per mold as shown in FigunedlFFigure 18. The data
used to generate the Statistical Shape from Shading (S®E&ljs in [83] were obtained
from this data. In this dissertation, the data (images amaesponding 3D mesh from the

molds) were annotated and are available to colleagues leésew

B. Tooth Database Construction

In [84] serves a step towards complimenting a surface modeInaot information
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obtained from X-rays based on 3D teeth library. Yet the datalwas limited and valida-
tions were mostly done on manufactured jaws. In this diatiert, further investigate the
fusion process of the whole human jaw to add a close proxiafitize root information to

the proposed 3D surface model.

Several real invitro teeth of the same type (maxillary deoigs, maxillary mo-
lars, mandibular molars, and mandibular third molars) frashalt subjects with dierent
races, gender and ages are fixed over wax. A Cone-beam CT (K®DBAO 3D Extraoral)
scanner at a resolution of2mmis then used to scan the wax and teeth. Expectation-
Maximization (EM) algorithm for segmentation is used. Aftards, the 3D surfaces for
each tooth type are rigidly aligned to remove any variationshape due to poseftr-
ences. The first surface of the training set is used as theergfe to which the remaining
surfaces are aligned. The alignment is carried out usingemative closest point (ICP-
based) rigid registration algorithm [85] using the Hausidistance between correspond-

ing points. Figure 15 show samples of the acquired CT scans.

Currently, the database having 224 teeth with the follovetagistics: anterior (20),
mandibular 3rd molar (119), maxillary deciduous (27), lary Molars (38) and premo-

lars (20). They are automatically preprocessed to generatgular meshes, see Figure 15.

C. lterative Closest Point (ICP)

ICP is an algorithm used to minimize theférence between two clouds of points [86—
88]. ICP is often used to reconstruct 2D or 3D surfaces frofiedint scans, to localize
robots and achieve optimal path planning (especially whbeaelodometry is unreliable
due to slippery terrain), to co-register bone modets, In the algorithm, one point cloud,
the reference, or target, is kept fixed, while the other dmesburce, is transformed to best
match the reference. The algorithm iteratively revisestthesformation (combination of

translation and rotation) needed to minimize the distanm® tthe source to the reference
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FIGURE 15: Sample individual teeth from the proposed 3Dhtéibtary: (first row) max-
illary deciduous teeth. (second row) maxillary molars.ir@ttrow) mandibular molars.

(fourth row) mandibular third molars.
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FIGURE 16: Three source models are visualized in red whéectitresponding targets are

shown in blue. First column show initial positions. Finafjistration results are demon-

strated in the second column.

point cloud (see Figure 16).

Algorithm 1 summarizing the steps of ICP approach.

D. Jaw Database Construction

Table 1 shows the database constructed from 52 upper jawsrbeldnging to 33
males and 19 females with on average age of 20 years old. \&héwer jaw models

are constructed from 58 lower jaw molds belonging to 33 matet 25 females with on



Algorithm 1 ICP Algorithm
INPUT : reference and source point clouds, initial estimatiorhefttansformation to align

the source to the reference (optional), criteria for stoghe iterations.
OUTPUT: refined transformation
1: repeat
2. For each point in the source point cloud, find the closesttpoithe reference point
cloud.
3: Estimate the combination of rotation and translation usingean squared error cost
function that will best align each source point to its matminfd in the previous step.
4:  Transform the source points using the obtained transfoomat

5. until (re-associate the points, and so on).

TABLE 1. Database construction of the human jaw: subjecisgmized with respect to

gender, age and ethnicity

Gender Race Total
number of
Age number
teeth Males Females | Blacks Whites of Jaws
T 12 16-46(u=22.406=94) | 10 15 10 15
= 14 15-46(u=1203,0=7.4) | 14 20 6 18
104
T 12 1621 (u=17.2,0=1.6) 15 13 13 15
Final 14 14-46(u = 20.2,6 = 9.4) 15 12 7 20
Lower 12 1119 (u=16.6,0 = 2.1) 19 15 14 20
Initial 14 1546 (L = 23.8,6 = 9.5) 20 10 13 17
126
Lower 12 1419 (u = 16.6,0 = 1.5) 15 12 10 17
Sl 14 1346 (u=19.5,0 = 8.46) | 15 20 10 25

average age of 19 years éld

The triangular meshes of the training ensemble are obtdineda high resolution

computer tomography (CJscan of human jaw molds where the Expectation-Maximiratio

2A key requirement for successful statistical SFS is thelabiity of a comprehensive database that
describe the teeffaw variability per age, gender and ethnic factors. Ongeifgrts aim to undertake such a

task make the database available for researchers worldwide
3A Cone-beam CT (KODAK 9000 3D Extraoral) scanner is used.
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FIGURE 17: Sample of the human jaw (pre-repair) lower andeupaws: first column

shows the 2D images, 3D scans using cone beam CT machine shiesecond column.
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FIGURE 18: Sample of the human jaw (post-repair ) lower angeupaws: first column

shows the 2D images, 3D scans using cone beam CT machine shibvesecond column.
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FIGURE 19: lllustration of the jaw anatomical landmarks.

(EM) algorithm is used for segmentation. Dense correspacelbetween jaw samples is
obtained using the 3D thin-plate spline where the alignnpeatedure is guided by the
sparse set of anatomical jaw landmarks as shown in Figuré®3D thin-plate spline is

used to provide a warping function between image pixelsifass to be on the xy-plane in
the 3D space) and surface points using image landmarks afatslandmarks as control
points. Orthographic projection is applied to re-reprédka triangular meshes in terms
of Monge patches which provides a bijective mapping betwaaface points and image

coordinates.

E. Summary

In this chapter, a system for building a database of real Inu@eth 3D models is

presented. Teeth are scanned using Cone-beam CT with atiesaif 0.2x0.2x0.2 mn?.
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CHAPTER IV

OCCLUSAL SURFACE RECONSTRUCTION OF HUMAN TEETH FROM A
SINGLE IMAGE

Image formation involves understanding sensor charatitesiand object reflectance.
In dentistry, an accurate 3D representation of the humamjawbe used for diagnostic and
treatment purposes. Photogrammetry ciarca flexible, cost #ective solution for accu-
rate 3D representation of the human teeth, which can be vseliagnostic and treatment
purposes. Nonetheless there are several challenges,stiehrson-friendly image acquisi-
tion environment inside the human mouth and problems wgifiting and errors due to the
data acquisition sensors. In this chapter, the focus onEnhsusface reconstruction aspect
for human teeth based on a single image. A more realisticdtation of the SFS prob-
lem is introduced by considering the image formation congodst the camera, the light
source, and the surface reflectance. A non-Lambertian SfeBithim under perspective
projection is proposed which benefits from camera calibrgpiarameters. The attenuation
of illumination due to near-field imaging taken into accounthe surface reflectance is
modeled using the Oren-Nayar-Viiolnodel which accounts for the retro-reflection case.

Experiments provide promising quantitative metric restdtr the proposed approach.

A. Introduction

Modern dentistry requires the accurate 3D representafidinecteeth and jaw for
diagnostic and treatment purposes. For instance, orthisdosatment involves the appli-

cation, over time, of force systems to teeth for malocclugiorrection. Oral and max-
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illofacial radiology can provide the dentist with abund@&ix information about the jaw.
Several existing 3D systems for dental applications foumtitérature rely on obtaining
an intermediate solid model of the jaw (cast or teeth impjiand then capturing the 3D
information from that model. Due to the lack of surface tegf(5FS algorithms have been
used to obtain such 3D tooth reconstructions due to thefgignt shading cue presented

in a tooth image, e.g. [6, 20].

Photogrammetry seems tdter a flexible, cost #ective solution while avoiding
the need for castings. Nonetheless, intra-oral photogrtnermeasurement is inherently
difficult due to non-friendly image acquisition environmentdwighting problems, spec-
ularity effects due to saliva, inevitable subject motion and errorstdube data acquisi-
tion sensors [18, 89]. Hence the common assumptions of thgerformation process for
typical shape reconstruction algorithms are hardly vaid, Lambertian reflectance and

distant light source.

Starting from the pioneering work of Horn [90], shape reegvieom a single im-
age usually involves two steps; deriving an image irrackagguation under a certain set
of assumptions related to the image formation process asigrdag a numerical scheme
to solve such an equation for the underlying shape. Most ®SRS approaches (e.g.
see [17]), however, focus on the computational part of th® @eblem, i.e. the numerical
solution. As a result, the imaging model in most conventi@fS algorithms has been
simplified under three simple, but restrictive assumpti¢th¥the camera performs an or-
thographic projection of the scene, (2) the surface has akaman reflectance and (3) the
light source is a single point source at infinity. Unfortueigt such assumptions are no

longer held in the case of intra-oral imaging environmentiaman teeth.

This chapter introduces a more realistic formulation of ®ly®onsidering all the
components of the problem, namely: the camera, the lightcepwand the surface re-
flectance. For the camera and the light source used the sambelingpas in [91]. The

camera is modeled by perspective projection (see FigurevB)the camera parameters
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being known from an fi-line calibration process and incorporated in the SFS fdatran.
The light source is assumed to be located at the optical cehthe camera, i.e. retro-
reflection situation (see Figure 21) where the object isrlhated in the viewing direction.
Under this near-field imaging, the attenuation of illumioatdue to the distance between
the light source and the surface is taken into account , hreenethod can deal with
concavgconvex ambiguity. Accounting for departures from Lamlzertieflectance due to
surface roughness, A modified Oren-Nayar-fVolodel is used [92] where surface rough-
ness is physically measured using optical surface profies Figure 22). The Oren-Nayar
model [93] modulates the Lamberts cosine law by a term thaedgs on the squared sine
of the incidence angle, resulting in apparent brighteninguaface patches which move
away from the light source; assumed to be in self shadow.fiWw the other hand, has
a physically deeper model forftlise reflectance from shiny but slightly rough surfaces.
The model uses an angle dependent Fresnel term to accouhefogfractive attenuation
of incident light at the surface-air boundary [94]. This$trel term modifies the Lamber-
tian cosine model in a multiplicative way. Théext is to depress the surface radiance for

near-normal incidence.
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Light source at the optical center
(retro-reflection situation)

[Mlumination
Ox attenuation term 1/r

2

The lighting function
as perceived locally
by a surface point

[ e e

FIGURE 21: Local illumination model where object is illunaited in the viewing direction,

i.e. retro-reflection case.
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The numerical solution, classified as Minimization-based,[is based on the Tay-
lor series expansion of the image irradiance equationv@tbby the application of the
Jacobi iterative method. On the other hand, the image arad equation can be formu-
lated as a partial éierential equation (PDE) to solve for surface gradients revttee theory
of viscosity solutions for Hamilton-Jacobi type equatipnasvide a good framework of SFS
algorithms [17]. However explicit PDE formulation of the Sroblem imposes regularity
of the image irradiance function which is assumed to be naotis [17]. Nonetheless,
human teeth do not fit such an assumption, due to the geosalettiacture of the occlusal
surface in particular, which forms attached and cast shadotihe captured image causing

image discontinuities.

Carter et al. [6] evaluated three SFS models for artificiallicurface reconstruction
based on the work of Ahmed and Farag [26]. They concludegdhiaaed on the quantitative
error analysis, a perspective camera projection with am-@Ql@&yar reflectance model has
been proved to be the most ideal SFS formulation for extrgdboth crown surface from
a single image. Nonetheless, their work did not incorpatag¢eavailable camera parame-
ters from their acquisition setup nor the object physicalrahteristics into the SFS-PDE
formulation. The proposed SFS approach is compared witma_ambertian PDE-based
approach [6, 12] via quantitative error metric derived frgroundtruth teeth surfaces ob-
tained from a CT-scanner. Vis-a-vis dental applicatidhs,results demonstrate a signif-
icant increase in accuracy in favor of the proposed approbctiparticular, the proposed
approach is able to recover geometric details of the tooittdusal surface as compared to

PDE-based approaches.

B. Image Irradiance Equation

According to the microscopic view of occlusal surface heigiriations, Figure 22,

tooth surface reflectance can be modeled by micro-facetctaflee models where the
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Oren-Nayar-WdF model is well-suited for the retro-reflection case [94]. WHhbke ob-
jectis illuminated in the viewing direction, taking intocant the illumination attenuation
term (1/r?) as shown in Figure 21, the expression of the image irragi&nasing Oren-

Nayar-Wolt model can be simplified to [92]:

£ Al - F(o, n))Zr’fOSH + Bsinze;

2 2

ag ag

wherex = (x,y)" is the 2D point,r is the distance to the light source [92], the
parameterr denotes the standard deviation of the Gaussian distribbuttach is used as
a measure of the surface roughnesis the inclination angle of the viewsiource and~

refer to the Fresnel reflection function [92] with refraetimdex ofy.

C. Parametric SFS for Non-Lambertian Surfaces

A surface point in the 3D space can be related to its correipgrposition in the
image plane through the camera intrinsic (solved for oned)extrinsic (updated while the
camera is in motion) parameters. The relation between a 3@ o= (X, Y,Z)" and the
corresponding pointin the image coordinates (x,y)" is written ass(x)X = PX +b, where
sis a scalar parameterized by the image pixel coordin&®esa 3x 3 camera matrix is
a 3x 1 translation vector and = [x" 1] is the extended vector defined in homogeneous
coordinates. Therefore the point in 3D coordinates can bgenras a function of the

corresponding point in the image plane as,

X = P [s(x)X - b] = g(s(x)) (14)
Equation (14) represents the line in 3D passing through phieal center and the
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projected poink in the image plane. Thus solving for the scadér) Yx € D, using the
available shading cues in the image dom@ine R?, accounts for defining a unique 3D
point X on the object’s surface. The inherent relationship betvieerscale factos(x) and
the surface normal vecta@i{x) can be expressed in terms of surface gradigu(ts, q(x)) in
the gradient space [95], whepgx) = 69;& = p(s) andq(x) = w = g(s)*. The image
irradianceE(.) now becomes a function of the scatx) defined in (14). In the sequel, the
proposed variational formulation for the problem is preéednn case of near illumination

with Oren-Nayar-WdfF reflectance. A small pattern used in the calibration of theoral

camera,; the size of the pattern is suitable to size of théntoot

D. SFS Minimization Functional

The SFS problem can then be formulated as finding the ssalhich satisfies both
the brightness constraint and the smoothness constraiviile the former indicates the
total brightness error of the reconstructed image, giveniteging process parameters,
compared to the input imadethe latter is included to obtain a smooth surface that & fre

from discontinuities through penalizing the derivativetud surface.

This can be solved using a Taylor’s series expansion of ttima®d brightness
E(s) aroundE(s™?), wheren is the iteration index. This is followed by applying the Jaico

iterative method. Aften iterations, for each pointin the images'(x) is given as,

~1(9) + E(S(¥))
S EE)

Sx) = S7HX) + 4 + L,VSH() (15)

wherel; anda, are real positive cdicients defining the brightness and smoothness

4For notational simplicitysis used to denots(x)
5Since we are not solving for surface gradients explicitig, integrability constraint is not considered in

this work.
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factors respectively. The derivative of the image brighsver.t. scan be written as,

A E(ET(X) =

r12 {[A(l cos *(A(x) - B) (3283 Ij

an)
2(A(x) - | A0 J——= 2
N ((x) )[1+cos (A(x) - 3\/-1 () - 52)]]

_ ZB(ﬁ()D(ZZX; j} (16)

dS()

where,

dix) _ di(9 1
ds(x) ds(x) \NT(s9)W(s)
\7(5) (\7T m)
N CICOANNER e

with V(s) = p(s) x g(s). Onces(x) is evaluated, the corresponding point location in the 3D

space can be determined using (14). These step are enudneralgorithm 2.

E. Experimental Results

1. Testing Images Panel

To evaluate the 3D reconstruction results obtained withpitogposed algorithm,
several experiments are done on 250 real human teeth. Rremotlels are constructed
from 30 teeth. Mandibular molar models are constructed f8@nteeth. Mandibular third

molar models are constructed from 120 teeth. Maxillary mwladels are constructed from
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Algorithm 2 Parametric SFS under near imaging conditions
1: Input: (a) 2D Image] (x), x € R?, whose surface to be reconstructed, (b) the perspec-

tive projection matrixM = [P b).
2: Output: 3D reconstructed surface poink¥ e R®.
3: Use the wireless probe to obtain the viellight directionl.
4: Initialize s(x) = s over the image domain.
5: repeat
6: Computep(s) andq(s).
7. Computen(x).
8: Update iteration inder = n + 1.
9: Update a new estimate faf(x) using (15).
10: until [|S(x) — S™1(X)|lL.1 < €, wheree > 0 or maximum number of iterations

11: Recover the surface 3D points using (14).

40 teeth. Whereas maxillary deciduous are constructed &@neeth. The wireless setup
camera is used to acquire the images of an ensemble of rearie®th while the camera
is held at a distance close to the crown surface to simulateg¢hr-imaging condition inside
the human mouth. A stylus arm with a touching probe (See Eig8y}, with tolerance 0.001
mm is used to digitize the occlusal surface of this teeth efdeno provide groundtruth
metric information, even though sparse. Meanwhile CT sicenis performed to provide

denser groundtruth information while maintaining the acef geometric details.

TABLE 2 summarizes the key fierences between the proposed minimization-
based solution, terms as Algorithm A, and state-of-art Riaked approaches, termed as

Algorithms B and C, respectively.

The isosurface of the tooth scan is a metric reference tdlyigilign the recon-
structed 3D point from SFS to share the same metric cooeliname. For alignment, the
first and second moments are normalized [96] withdigaiing the scale. This initializes

an ICP-based rigid registration algorithm [85]. Point espondence between CT and the
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FIGURE 23: A stylus arm with a touching probe.

TABLE 2: SFS Algorithm Panel

Algorithm | Reflectance Model| Camera Parameters| Numerical Solution
A-new Oren-Nayar-Wat fully calibrated Minimization-based
B [6, 26] Oren-Nayar only unit focal length PDE-based
C[12] Oren-Nayar-Wdat | only unit focal length PDE-based
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FIGURE 24: The 32 adult human teeth.
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TABLE 3: Overall surface reconstruction accuraBM9 in mm

Tooth type Algorithm A Algorithm B Algorithm C
Mandibular 3rd molars 0.47232 1.07022 1.05386
Mandibular Molars 0.63568 113321 1.12548
Maxillary Molars 0.58694 0.89672 0.88411
Maxillary deciduous 0.65997 1.11995 1.11456
Premolars 0.45267 0.83282 0.81752

reconstructed surface is obtained based on Haésdistance [97]. The SFS algorithms
are compared in accordance with an error estimator basdteaiodt mean squar&\
error between the 3D points from the CT scan and the correlpgmneconstructed surface
points. It is worth mentioning that throughout the expemtagions, Algorithm A con-
verges after 5- 10 iterations while Algorithms B and C converge after 100at®ns on
average. TABLE 3 shows the overall surface reconstructamuracy of the three algo-

rithms based on the testing images panel.

Figure 25 (fourth and fives rows) shows sample reconstmstd human teeth with
different types using Algorithms B and C, which were not able tover the geometrical
details of the occlusal surface when compared to the prapwseimization-based algo-
rithm (Figure 25 (third row)). This emphasizes the role afarporating physical surface
characteristics (surface roughness in the proposed)calemg with sensor parameters in
the process of shape recovery. More results shown in Fighii@s2applied on maxillary

deciduous and premolar teeth.

F.  Summary

This chapter focused on the surface reconstruction aspéuiman teeth from a

5Throughout the experimentation, the average surface resghparameter is used that computed from

the surface profiler.
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FIGURE 25: First row: images for threeffirent types of human teeth (mandibul&r 3
molar, mandibular molar and maxillary molar), captured log intra-oral camera. Second
row: groundtruth occlusal surface generated from CT secapnihird row: surface recon-
struction based on algorithm A (proposed solution). Fouoth: surface reconstruction
based on algorithm B. Last row: surface reconstructiondasealgorithm C. Notice algo-
rithms B and C (PDE-based) did not capture the geometridlg@tiathe occlusal surface

as compared to the minimization-based algorithm A.
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FIGURE 26: First row: images for more twoftérent types of human teeth (maxillary
deciduous and premolar), captured by the intraoral cant&aond row: groundtruth oc-
clusal surface generated from CT scanning. Third row: serf@construction based on
algorithm A (proposed solution). Fourth row: surface restaiction based on algorithm B.
Last row: surface reconstruction based on algorithm C.d¢atigorithms B and C (PDE-
based) did not capture the geometric details of the occlusdhce as compared to the

minimization-based algorithm A. 60



single image captured by an intraoral camera under nedrifighging. The work has
addressed several challenges related to the image formatoess including near illumi-
nation and perspective projection, while taking into actdhe deviation from the sim-
plifying Lambertian assumption. Proposed formulationleitp all calibration information
provided by the acquisition system setup. In particulaweerage, the proposed approach
reduces the error metric by434nmcompared to un-calibrated PDE-based SFS formu-
lation. While the improvements are fractions of a millinrethis is considered significant

for dental-related applications such as tooth implantssamthce analysis.

Ongoing dforts are directed towards reconstructing a complete mawitel for the
human jaw for various dentistry applications where a harehytal probe for data acquisi-
tion can provide ease-of-use for the dentist and is consideomfortable for the patient.
This involves (1) handling inherited specular regions iatlosurface due to saliva and
enamel reflectance and (2) performing surface registraimchmesh zippering under par-

tial overlaps (Chapter V).
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CHAPTER V

3D RECONSTRUCTION OF THE HUMAN JAW USING VARIATIONAL SFS
AND FEATURE DESCRIPTORS

This chapter proposes a new variational formulation thistes an evolving sur-
face model with image information, taking into consideratthat the image is taken by a
perspective camera with known parameters. A new energytiumat is formulated to in-
corporate brightness, smoothness, and integrabilitytcaings. All of these terms assume
a hyper surface that evolves in time to meet their criterigadint descent optimization
with Euler-Lagrange is used for optimization. Furtherma@@&ovel approach is proposed
for 3D surface reconstruction of the human visible whole¢ht¢20] . Due to the dficul-
ties of setting up a data acquisition system inside the mauthntraoral camera is used
to capture a sequence of calibrated images. These imagesgistered together to build
a panoramic view of the jaw. A SFS algorithm that benefits fikamera calibration pa-
rameters is incorporated to build a 3D model from the panarameage obtained from the
previous stage. The proposed approach results in a 3D sudaich has finer details com-
pared with those resulting from other literature techngyudso, diterent real and artificial
visible whole teeth surface reconstructions are demadestta show the féciency of the

proposed system.

A. Introduction

Substantial forts have focused recently on computerized diagnosis itisiign98].

Bernardet al.[99] developed an expert system where cephalometric measunts are ac-
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quired manually from the analysis of radiographs and ptastedels. Laurendeaet al.
[98] presented a computer-vision technique for the actioisof jaw data from inexpen-
sive dental wafers. That system was capable of obtainingimspof the teeth. Usually,
most of the 3D systems for dental applications found in ttezdiure rely on obtaining an
intermediate solid model of the jaw (cast or teeth impriais)l then capturing the 3D in-
formation from that model. User interaction is needed irhssystems to determine the 3D
coordinates of fiducial reference points on a dental cagteGtystems that can measure
the 3D coordinates have been developed using either meethaontact [100] or a travel-
ling light principle [101, 102]. Goshtaslst al. [103] designed a range scanner based on
white light to reconstruct the cast. The scanner used thieasitive light principle to create

very thin shadow profiles on the cast.

An intraoral camera is used (see Figure 1) to capture a sequdrcalibrated im-
ages which is more comfortable to patients. Also it does equire a long time to scan
a jaw. The resulting sequence of images covers the jaw aniosroverlapped image
regions. These sequential images are taken in pairs torperfoage alignment by esti-
mating projective transformations. This process incaaf®s points correspondences accu-
rately found by the fiine and scale invariant transformation approach (known d6BS
After estimating the projective transformations, the imagirs are used together in order
to build a panoramic image of the whole jaw. The new view isdusebuild a 3D sur-
face using the SFS algorithm. The used SFS is depending dovatain parameters. A
formulation of the SFS that uses intrinsic and extrinsic earparameters is used such
that a better surface [18] is obtained. This technique ispared with former approaches
and the diference is significant. Incorporating camera parameteuitsaa surfaces with
fine details that can not be handled by the other methodsrialve SFS. Diferent 3D
reconstruction results of artificial jaws will be demonstthto show the féiciency of the

proposed technique.
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B. Data Acquisition

The human jaw is not a friendly environment for calibratedea measurements.
There are problems with lighting ffect of saliva, tooth discolorization, gum texture, and
other sources of specularity), motion (even inevitablgtglmotions of the uppgower jaw
may lead to errors far beyond the desired tolerance of slibmeters accuracy), and data
acquisition time (it is not comfortable to open the jaw widér over a minute or two).
There are small cameras available that can provide viewfitiggohuman jaw. The lenses
are usually active and allocated on the dental probe to geoxiewing not calibrated image
capturing. Hence, a major problem to overcome would be teggdef a small size CCD

camera with passive or active lenses that can be calibratedespect to a reference frame.

This chapter, an intraoral camera with an attached smal §igurce is used to ac-
quire 2D images of the teeth. Some specifications are giveLEB light source, 14”
CCD Sensor; 32M00 pixels (PAL), 270 000 pixels (NTSE) and resolution 51 582
(PAL); 512x 942 (NTSC). The objective of this part is to remove globd@etences be-
tween two given images (source and target). Every two seé@liémages will be aligned
together. The output of this process is a panoramic imagstireg from putting (stitching)

the aligned sequence of images for the whole jaw.

The description of registering two images by mapping poaaisespondences is
given in this section. A point in the source image is relatds corresponding target
position by a projective transformation [52]. Note that tverlap between the two images
results from imaging the same object by the camera tdéfardnt positions. Given a set of
K homogeneous image point corresponder@es R (in the source image) ar@f € R3
(in the target) wher® € 1,2, ...,K: a projective transformatiohls,; is required to get
estimated to map a source image point to its correspondmgttéamage position by the

relation s,Ct, = HCS wheres, is a scaling coféicient for the projective transformation

"Phase Alternating Line.
8National Television System Committee.
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effect. Actually, this equation will lead to two linear equaisdn ;xS + hyyS +hyz—hgy X xS —
haaxCy® — hsaX, = 0 andhyiX§ + hosys + hog — haryixS — hagyhys — hsgyl = 0 wherex and

y are the coordinates of point. A linear system of equatis= 0 can be constructed
where® = [hy1hg,...h33] is the parameters column of the projective transformalioand

¥ is the codficients matrix. The projective transformation parameteesestimated by
solving this linear system through the singular value dgmasition approach. If the points
correspondences are accurate, the overfibrdince between the source and target images
vanishes when they are fused together. The success of ttsgwis highly dependent on

selecting the source and target points correspondences.

C. Affine Scale-Invariant Feature Transform@ASIFT)

TheASIFT[104] is an dfine invariant extension GIFT. TheASIFTsimulates three
affine parameters, scale and changes of the camera axis agembaigitude angle and the
latitude angle (which is equivalent to tilt) and normalitles rest three parameters, rotation
and translation. More specifically, the ASIFT simulatestine camera axis parameters,
and then applies SIFT which simulates the scale and noresatliee rotation and the trans-
lation. For two stereo images the ASIFT algorithm can be sanmed as follows: Each
image is transformed by simulating all possible linearattsbns caused by the change of
orientation of the camera axis. These rotations and tiéparformed for a finite and small
number of latitudes and longitudes. All simulated imagescampared by a similarity in-
variant matching algorithn§IFT) in the following manner: (1) scale-space peak selection,
(2) key-point localization, (3) orientation assignmed, Key-point descriptor. The scale
spaceL(x,y, os)can be constructed by the linear convolution of the imageth Waus-
sian kerngb(x, y, o-s). Scale-space extrema detection searches over all seged image
locations to identify potential interest points which amgariant to scale and orientation;
this can be fficiently implements using Mierence-of-Gaussiari3(x, y, o-s) which takes

the diference between consecutive scal®és, y,os) = L(X,y,0) — L(X,Y,0s.1), Wwhere
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a point ,y) is selected to be a candidate interest point if it is largesroaller than its
3x 3x 3 neighborhood system defined @(x, y, os_1), D(X, Y, 0s), D(X, Y, os:1) }whereo
is marked to be the scale of the poirty). Then removal of points with low contrast and

points that are localized along edges is accomplished.

In order to obtain a point descriptdiwhich is invariant to orientation, a consistent
orientation should be assigned to each detected interastlpased on the gradient of its
local image patch. The orientation is selected to be the péd#ke weighted orientation
histogram. Then a 18 16 image window surrounding the interest poirty) is divided
into sixteen 4x 4 sub-window, an 8-bin weighted orientation histogram isipated for
each sub-window, hence ending up withxd8 = 128 descriptors for each interest point.
Thus each detected interest point can now be defined atdocatpecific scale, certain
orientationd and a descriptor vector &%, v, o, 6, d}. Interest point matching is performed
to provide correspondences between the given images. Tmts@re said to be in corre-
spondence if their descriptors matchLiz-norm The overall performance is twice slower

thanSIFT, but it gives more matching rate especially with face images

The resulting matched points from tR&SIFT algorithm may include incorrectly
matched points SRANSA105] is used to fit a transformation model to those points. A
random sample consists of four points which is the minimalssti of the interest points
suficient to determine a projective transformation is selecligte transformation is esti-
mated by solving a linear system with the chosen random sgrapd then the resulting
transformation is evaluated using all correspondencetpaiailable. These points which
deviate from the current transformation model by a spectfiegshold are considered out-
liers; hence the support of the model will be measured byahe of the inlier to the total
number of points. For n point correspondences, this praeeduepeated K-times, where
K < ﬁ’_z)!then the best fit transformation model is the one with the marn support,

and the points marked as outliers are excluded from theast@oints.
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D. EulerLagrange Equation

The Euler-Lagrange fferential equation [106] is the fundamental equation of cal-
culus of variations. Euler’'s equation in calculus of vadas is a diferential equation
whose solutions are the functions for which a given funcatlaos stationary. The EulerLa-
grange equation was developed by Swiss mathematician bedituler and Italian math-

ematician Joseph-Louis Lagrange in the 1750s.

Due to a diferentiable functional is stationary at its local maxima anitiima,
the EulerLagrange equation is useful for solving optimaaproblems in which, given
some functional, one seeks the function minimizing (or nmazing) it. This is analogous
to Fermat’s theorem in calculus, stating that at any poinéneha diferentiable function

attains a local extremum, its derivative is zero.

It states that if] is defined by an integral of the form:

- [ty (18)
where
y= g
thenJ has a stationary value if the Euler-Lagrang@atential equation:
of d of
)= 1
%~ ailay - (19)
is satisfied.

If time-derivative notatiory is replaced instead by space-derivative notagigthe

equation becomes
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of d of
Y d_t(c’)_yx) =0. (20)

In many physical problemd, (the partial derivative of with respect to) turns out
to be 0, in which case a manipulation of the Euler-Lagrandfemintial equation reduces

to the greatly simplified and partially integrated form kmoas the Beltrami identity,

ot

f_yxa_%( —_

C. (21)

For three independent variables [107], the equation génesao

—_——_——— — —— - —— =0. 22
du o0xdu, dyoduy, 9zou, (22)

E. Shape from shading using calibrated images

The presented acquisition setup allows the knowledge oécaparameters as such
the proposed SFS formulation takes this into account. Aaserpoint in the 3D space can
be related to its corresponding position in the image planaugh the camera parameters.
SFS assumes that the surface orientation at a pitftX, Y, 4T on a surfaceS is deter-
mined by the unit vector perpendicular to the plane tangegtt M. Assumed that the 3D
world point is projected into the image domain at the 2D hoemmyis point=[x, y, 1'.

To compute the surface normal, the partial derivatives@fBih world pointM is computed
with respect to the parametetsindy. The normal to the surface will be the cross product
of the gradient vectorsa = M, x M. The partial derivatives are called surface gradients.
Assuming that surface patches are homogeneous and unjfbirimy distant light sources,
the brightness Ky) seen at the image plane often depends only on the oriemtatithe

surface. This dependence on brightness of surface oli@mtzdn be represented as a func-
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tion R(x,y) defined on the Gaussian sphere. Thus, the SFS problem isltted as finding

a solution to the brightness equation:

(%, y) = RIMx, My, L). (23)

whereRis the surface reflectance map dnig the illumination direction unit vector.

A number of algorithms were developed to estimate the ilhant direction €.g,
[41]). Some SFS approaches using perspective projection foeind in the literature
(e.g.[45, 46, 108]). However, most of these approaches ignoredheera extrinsic param-
eters, hence they cannot provide metric information abepttd In the proposed approach,
the camera is calibrated and the camera parameters arenbed3FS algorithm to obtain
a metric representation of the surfaces. To calibrate theeca, the relation between the

3D pointM and the corresponding image coordinatess written as the camera equation;

sm=BM +b (24)

wheresis a scalar quantityB andb are the intrinsic and extrinsic camera matrices. These
calibration matrices form a 8 4 matrix but with 11 degrees of freedom. Five parameters
represent the intrinsic value while the other 6 stand fordkieinsic camera parameters
[57]. The standard method of calibration is to use an objéttt known size and shape and
extract the reference points from the object image. It cashmsvn that given N points (at

least 6) in general positions, the camera can be calibrated.

The camera equation represents a line in 3D space correggaodhe visual ray
passing through the optical center and the projected poninBy finding the scalas, a

unique 3D pointM is defined on the object by the equation:

M = B(sm - b) = f(s(xy)) (25)
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The surface reflectand®.) becomes a function of the scakdefined as:

(M x M) -L
My x My)l|

R(x.y.s) = (26)

The formulation of the SFS problem becomes finding the scathat solves the
brightness equation gf,s) = I(x,y) - R(X,y,s) = 0. A new variational formulation for the

problem is shown below.

F. The functional to be minimized

Minimization approaches compute the solution which mizesian energy func-
tion over the entire image. The function can involve the lngss constraint, and other
constraints, such as the smoothness constraint, theahiétyr constraint, the gradient con-
straint, and the unit normal constraint. In these subsestithese constraints are briefly

described.

1. The Brightness constraint

This is the most important constraint. The main idea is toesébr surface nor-
mals, such that when you use these normals with the giveacaudlbedo and illumination
direction. It is derived directly from the image irradianeguation. It indicates the total

brightness error of the reconstructed image compared wéhriput image, and is given
by:
€1 = f (1 - R2dQ (27)
Q
whereQ € R? represents the image domaiqy) andl is the image intensity.
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2. The Smoothness constraint
It is used to obtain a smooth surface that is free from disoaities, hence the

smoothness constraint can be expressed in terms of thedsdeadwatives of surface nor-

mals to ensure surface smoothness as follows;

& = f (MM, + MM, )dQ (28)
Q

The minimization of the above functional aims to penalize $econd order gradi-

ents of the surface and hence guarantees smoothness.

3. The Integrability constraint

It ensures valid surfaces, that M,y = M. It can be described by:

&3 = L(M xy — Myx)T(M xy — Ivlyx)d'Q' (29)

4. Variational approach
There are other constraints like the unit normal and thensitg gradient con-

straints. The three functionals above are used in the peapbfasmulation. Now, the total

energy will be:

& = A1&1 + Arer + Azes. (30)

whereAd;, A,, and A3 are real positive cdicients.
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The goal here is to computexgf) that minimize the above energy function. Note
that the above function can be written as a function in terhteescaling factos and its
derivatives:

&€= 8(S> SX’ Sy, SXX’ Syy, Sxy, %/X) (31)

Gradient descent optimization is used with the Euler-Lageafor computing the

scalar factor as follows:

GS_ de

x = 3 2
If the energy function is written as
£= f (S, Sx Sy, Swx Syys Sy Sy)0Q, (33)
Q
the gradient will be as follows:
o _ 0f _ ﬁ[ﬂ] _ ﬁ[ﬂ] + a_z[ﬂ]
s ds  0x 9sc Iy ds,  OXR S«
0% of 0> _ of 9% _of
] [ [——1 (34)

T2 G5,y | Oxdy 05y OyOX' 05,

Detailed derivations are given in the appendix.

These steps are enumerated in Algorithm 3.

G. Experimental Results and Validation
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Algorithm 3 New variational SFS
1: Input: (a) 2D Imagel(m), m € R?, whose surface to be reconstructed, (c) the per-

spective projection matriR = [B b.
2: Output: 3D reconstructed surface poinkg, e R2.
3: Initialize s = ° over the image domain with any value between 0 and 1.
4: repeat
5: compute‘f?is1 , % and"ais3 according to Eq.(12,A-24, and A-27) respectively.
6. Estimate the nevgg by using Eq.(34).
6: CalculateZ according to Eq.(32).
6:  Updates" = s™! — 623, wheres > 0 is small number.

7: until ||s" — s™Y|.1 < €, wheree > 0 or maximum number of iterations

8: Recover the surface 3D points using Eq.(25).

73



172

i

(b) Feature Point Correspondence using ASIFT
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FIGURE 27: Diterent overlapped sub-images, results of features matemda jaw is imaged as 9 overlapped images: (a) A sequence of
overlapped images are illustrated. (b) Point corresporetens a result of th&SIFT algorithm. (c) Point correspondences are demonstrated
after removing the outliers matches usRgNSAC(d) The stitching results (panoramic image) where eackirmalge is boxed by a green line

to show the overlap between the views.



An intraoral camera is used to capture overlapped imagesabaind artificial jaws.
In this stage, the camera is fixed in a certain position. Theiganoved while the camera
is fixed to image its dierent overlapped regions. This guarantees that all theemage
calibrated. Feature points are extracted and matched &br g&ir of images in sequence
using the ASIFT approach. Figure 27(b) demonstrates thelmmaf process between over-
lapped images. The ASIFT results in a set of point matcheshwdnie almost correct except
few outliers. ThHRERANSAGas described above remove the outliers. Figure 27(c) shvs t
overlapped images after removing the outliers usSRRNSAC This is very important in
order to obtain successful registration process. The seguaf images is numbered from
according to the order of taking the images. The teeth regibamselves do not have
much texture information to extract features. However thges and the contrast between
the teeth and the gum plays a great role in this process. fdsthe registration approach
previously described, only four points are required toneate the transformation. This
makes the resulting points more than enough for the sucdaggistration. Using the
resulting point correspondences, a projective transfoamas computed and applied to
the source image to get an image for stitching. Sequentiadj@n are registered together
in their order and sequence. They are all put together in gebigize image to build a
panorama for the scanned jaw. Sequences of images are shdvigure 27(a) with the
stitching results illustrated in Figure 27(d). After thédting process, some fierences

appear in the panoramic image (see Figure 28).

Some filtering and blending operations are carried out tmkenthese dferences.
This process is completely automatic and does not need anyahateraction. A very
important note to mention here is that: Actually, if such ateyn is needed in clinic, the
whole patient’s jaw can not be imaged in one shot. The moutinerment and the specifi-
cations of the used intraoral camera allows only to imagelapped parts of the jaw. This
is considered to be a strong motivation for developing tloppsed system. The resulting
scenes are used with the SFS technique shown above to nemr@ss8D surface. The re-

constructed surfaces include teeth details which can nobkened by applying the SFS
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FIGURE 28: Three dierent examples to stitch two sub-images together: Poime€or
spondences are demonstrated in (a) using the ASIFT alguritGorrespondences after
removing the outliers using RANSAC are shown in (b). Regi#tn of the two overlapped

images is depicted in (c).
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approach in [6] (see Figure 30). It is noticed here that tselteng surface using that ap-
proach is over-smoothed and hence upper details of teetimagared. Also, the transitions
between teeth and gum looks unrealistic which emphasizediiantage of the technique
used in this work. The whole processing time starting frokin@giimages and ending with
surface reconstruction is less than 10 minutes. The 3D craconstruction execution
time is less than one minute. This is a big advantage for tbpgsed system which makes
it practical and suitable for dental clinics. This will notake the patient open his mouth

for along time to get hier jaw model.
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FIGURE 29: Two diferent real jaws sub-images panoramic reconstruction: Aesexg of

sub-images is given for each case from 1 to 8 while the reguftanoramic image is given

at the last row.
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6.

FIGURE 30: Two artificial jaws 3D surface reconstructions demonstrated: the results of using the proposed appra@acthawn in the

middle and the results of the technique in [6] are given irnritet column.



H. Summary

An automatic approach for 3D surface reconstruction is @sed using calibrated
images with the help of the ASIFT features matching. A calied camera is used to cap-
ture a sequence of images for artificial jaws. Images arehstit together by estimating
projective transformations for minimizing the globaffdrences between the scenes. The
registration process requires accurate point correspmedewvhich is computed using the
ASIFT approach. Camera calibration parameters are indatvéhe formulation of a mod-
ified version of the SFS technique to construct a 3D surfadeepanoramic jaw image
resulting for the stitching process. The results are predfeto other approaches in the liter-
ature since fine teeth details can be reconstructed andghking surface is more realistic.
Also the execution time is reasonable and practical in tnsesef applying the proposed

system in clinic.
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CHAPTER VI

REALISTIC 3D RECONSTRUCTION OF THE HUMAN TEETH USING SFS
WITH SHAPE PRIORS

This chapter, an approach is developed for realistic 3Dn&troction of the human
teeth using shape from shading with statistical shape gridbhe proposed work has ad-
dressed several challenges including near illuminati@hGamera perspective projection,
while taking into account the deviation from the simplifgihambertian assumption. The
Oren-Nayar reflectance model fofldise rough surfaces is used with the roughness param-
eter being physically measured by an optical surface profilbe proposed formulation
exploits the shape priors as extracted from a set of trai@ifigcans of real human teeth.

Experiments provide quantitative metric results for thepgmsed approach.

A. Introduction

There may therefore be a demand for intraoral measuremaintalld be fulfilled
by photogrammetry, which has been applied to the measuteshe@nany small objects,
even the measurement of dental replicag.[109]). Photogrammetry seems tffers a
reduced cost technique while avoiding the need for castiNgsmetheless, intra-oral pho-
togrammetric measurement is inherentlffidult for several reasons [18, 89]. On one end,
the human jaw is not a very friendly environment for data aitjan. There are prob-
lems with lighting (éfect of saliva, gum, and sources of specularity), inevitsblgect's
motion, and errors associated with the data acquisitioe@sn On the end of image for-

mation, the assumptions for typical shape reconstructigorithms are hardly valid. For
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example, assumptions in previous works based on stergpresence of distinct features
or texture regions on the object in stereo images), SFS Elgil{e Lambertian assumption
which considers the surface in the field of view of the camerhd matte), or in space

carving [19] €.gthe photo consistency) are rarely valid in practice.

In the context of tooth reconstruction from intra-oral irragthe SFS technique of-
fers several advantages. It provides rather more detailédecurate representation about
the shape of the tooth crowns [18]. It requires only one carpesition within the cramped
confines of the mouth. Cost-wise, it is cheaper, becausmjilgirequires a single camera

and light source.

This work, aims to address the aforementioned issues ddlatbe acquisition setup
and the shape reconstruction approach. A flexible and caewgmoth to the dentist and
the patient, acquisition setup has been developed thaiste$ a small wireless intraoral
camera with a built-in bright light source to acquire 2D iraagf the teeth. The camera

has 74 Sony CCD, and an image resolution o® Znega pixels (see Figure 1).

From the point of view of shape reconstruction, A more réali®ormulation of
SFS is introduced by considering all the components of tiedlpm, namely: the cam-
era, the light source, and the surface reflectance. The eai@nodeled by perspective
projection, which is more practical in this case as the tee¢htypically close to the cam-
era. The light source is assumed to be located at the opgoaticof the camera. Under
this near-illumination imaging the attenuation of illuration is taken into account due to
the distance between the light source and the surface, wiialgs to deal with the con-
cavegconvex ambiguity in SFS [9, 22]. As the Lambertian reflectaiscrather oversimpli-
fied to model the real nature of the human teeth surface, the-8ayar model is used [15]
which carefully accounts for the scattering of light caubgdhe teeth surface roughness.
In the proposed approach, this surface roughness is evesically measured from real

human teeth using an optical surface profiler.
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In addition, to further improve the accuracy and practigabf results, 3D shape
priors in SFS formulation are incorporated. This strategynitivated by the fact that
humans rely on strong prior information about the 3D worlobgd us in order to perceive
3D shape information. It thus becomes natural to think of sMa@yincorporate this kind
of information into the reconstruction process done by cateqs. Such information is
statistically extracted from training 3D models of the humteeth. This can serve in several
aspectse.g, to improve reconstruction accuracy, solve problems aabg®cclusion€.g,
because of the tongue), specularity and albedo changegrandke up for the lack of

suficient, detailed view of the human tooth.

The proposed method of incorporating 3D shape priors in $ifSe linked to the
so-calledstatistical SFS methods in literature,g.[110-112], all of which have been de-
veloped in the context of 3D face reconstruction. In patécuhe same idea in [110, 111]
of constructing a 3D prior model based on a low-dimensioaagmetrization of a train-
ing set is employed. This is achieved by applying principahponent analysis (PCA).
In addition to the diterent application domain (tooth reconstruction in the psmal case),
this work here conveys otherfterent and novel aspects. While those existing SFS meth-
ods [110-112] have assumed Lambertian model and orthograpbjection, the more
practical Oren-Nayar model with perspective projectiomisved further ahead. While
some of these methods.{, [112]) use harmonic representations of lighting to ac¢domn
non-known illumination source, and may require a separatgatfor the face albedo, the
proposed approach in that regard is simpler by the desighechtquisition setup, where
the light source position is known. Therefore, in summarg, proposed approach utiliz-
ing 3D shape priors as well as the more realistic assumpaifihe Oren-Nayar reflectance
model, perspective projection and near light source witnsity attenuation, to the best of
knowledge, has not been done before in literature. Sevecakssful experimental results
of the proposed approach are reported on real teeth withukgyég and other challenging

conditions.
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B. Shape Priors

A shape model is constructed from a training set of 3D modéhefsame human
tooth type. To be able to do this, several real invitro tedtthe same type (maxillary
deciduous, maxillary molars, mandibular molars, and mauldr third molars) from adult
subjects with dterent races, gender and ages are fixed over wax. A Cone-bediRQ:T
DAK 9000 3D Extraoral) scanner at a resolution a? fhmis then used to scan the wax
and teeth. At least 30 teeth of each type have been colleEtedroot part of each tooth is

manually taken out from the CT scan, and the visible 3D tootfase is segmented out.

Furthermore, the surface roughnesss estimated of the tooth surfaces which is
needed for the Oren-Nayarfilise reflection model. This is done with the help of a 3D
optical surface profiler (NewView 700s from Zygo company}ieh is based on Scan-
ning White-Light Interferometry technology thaffers fast, non-contact, high-accuracy

3D metrology of micro surface features.

Afterwards, the 3D surfaces for each tooth type are rigidign@d to remove any
variations in shape due to posdéfdrences. The first surface of the training set is used as the
reference to which the remaining surfaces are aligned. Tigperaent is carried out using
an iterative closest point (ICP-based) rigid registratgorithm [85] using the Hausdbr

distance between corresponding points.

However before either case, the input brightness image afraah tooth whose
3D surface to be reconstructed must be aligned first with trestcucted shape model.
This is successfully achieved by a rigid 2D image registratietween the input image
and a reference image for the constructed shape model Usengaximization of mutual
information [113]. Figure 31 shows one sample input imageaf@ooth, the reference

image for a constructed shape model, and the input imageadiff@ment.

To build the shape model, each 3D tooth surface is convestacheight map, then
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FIGURE 31: Aligning an input image with the reference shapmleh. (Left) Reference
image corresponding to the constructed shape model. (B)i&Himple input testimage for

a tooth. (Right) The test image after being aligned with gference image.

principal component analysis (PCA) is applied to captueertiain variations of the co-

aligned height maps:

k
U(x) = U+ " wii(x), (35)
i=1

whereu is the mean height map (mean tooth shape), see Figure32,is the
i — th orthogonal mode of variation in the shape (also callegbnteeth andw = {w;} is
called the vector of eigen ctiiients or the shape vector. Only k principal components are
considered in the sum, where k should be chosen large enough @ble to capture the

prominent shape variations present in the human teeth.

Equation (35) is used as explicit representation of teedpshTherefore, by varying
w, varyu. Note that the shape variability allowed in this represtoias restricted to the

variability given by the eigenteeth.
C. Shape from Shading with Shape Priors
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FIGURE 32: The mean shapes in the constructed database aiteth of various types:
maxillary deciduous teeth, maxillary molars, mandibulailans and mandibular third mo-

lars, respectively.

Having built the prior shape model, itis ready now to embadtiie SFS framework
to guide the solution. Starting the simple case of Lambediaface, a distant directional
light source and orthographic projection are used to detrateshe proposed formulation.
The concern then shifts to the more realistic SFS formutatmnsidering the Oren-Nayar

diffuse reflection model with a near light source and perspecéueera.

However before either cases, the input brightness imagehoih@n tooth whose
3D surface to be reconstructed must be aligned first with trestcucted shape model.
This is successfully achieved by a rigid 2D image registratietween the input image
and a reference image for the constructed shape model Us@ngdximization of mutual

information [113].

1. Simple Lambertian Case

The simplestimaging model is obtained when the cameramesfan orthographic
projection of a surface that has Lambertian reflectance lundinated by a point light
source located far away from the surface. The idea here @ve for the height map(x)

that minimizes the energy functional:
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2
§-(Vu,-1)
el = | (1(X) = Ru(x))?dx = [I x) - S—] dx, (36)
Ezf f

o J1+|Vup?

whereQ C R? represents the image spatial domain, higithe image intensity.

Solving this last optimization problem is ratheffaiult and often requires imposing
some regularization (e.g., smoothness of height map) N&Jertheless, utilizing the prior
shape model (35) in terms of the weighted sum of eigen vectibestask is reduced to

searching for the weights;, that minimize the energy function (not functional anymore)

EL =

O O 2
f (I(x)— S Eaw (e 50D dx. 37)
Q \/1+ ZI 1 Wi aLj?liX)) (ZI lWldUI(X))

One can readily see a quick advantage in the above optimizatioblem (37),
where the solution search space is shrinked into a finite reuikpof weights. To find this

solution, one can easily use a gradient descent minimizabatine, where the weights

{w;,i =1,---,k} are evolved according to
oW, osL
- gt 38
- Taw (38)

wheren is a positive learning constant. The required partial @rres of the energy

functione, with respect to the weightsv;} are readily obtained as

88|_

\'
oW, sz(l(x)+ \/1+|Vu|2)x

(14 190 (s - _)ﬂd

(1+1vu?)”

(39)
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where

o= [ro w5

i=1 i=1

S au()) ou) | (o (X)) dui(x)
p:(ZWi ax) O0X +(lewi c’)y] ay

i=1 i=

In experimentation, the evolution commences friimn= 0.2,i = 1,--- ,k} att =
0, and convergence is typically attained within rather fesvations. From the obtained
weights, the height map is recovered via (35) in order tomstact the surface of the

tooth.

2. Realistic Oren-Nayar case

In this case the Oren-Nayar model is used for the surfacecteflee. The camera
has a perspective projection and the light source is asstionkd located at the optical

center of the camera, with its intensity being attenuated squared distance.

The energy functional to be minimized in this case is

son = [ (160 - RuGoYex (40)
Q
where
R(U(x)) = #Z(X)Li (A5~ 1) +B(1-(5-0)?)). (41)

Itis a common practice [17] to drop the constaptd (, f) in (41), and alternatively
normalize the input intensity image From the definitions of the perspective camera in

Section Il.F.2 and Figure 14, one can easily obtain

Sz ——uX) (42)



The goal here is to find the solution of the optimization peoibl

W, = argmineon,i =1, , K, (43)
Wi

which easily solved using a gradient descent minimizatorine, where the weights
{w;,i = 1,---,k} are evolved analogously to (38). The required partial dtikes of the

energy functioregy With respect to the weightsv,} are readily obtained as

6801\1 _ aR(U(X))
v f 2 [1(X) — RU(x))] (— . )dx (44)
where
IRU() _ pLi “Au() Bui(X)} 45)
oW, Tl ESRHyEF () PR |

It is interesting to note here that the update equation ofvikights in this case does
not depend on the the spatial derivatives of the shape eageons %‘ ‘Z—L;; orVu). Thisis
in contrast to the weight update equation for the simpler harian case (see (39)). This
leads to more noise-robust evolution of the weights in theemmealistic case and faster
convergence (about only 60 % of the iterations of the simalmhertian case is typically

needed here in the experiments).

D. Experimental Results

In order to evaluate the performance of the proposed appysageral experiments
are carried out on real human teeth, other than the ones osedristructing the shape
prior model. The accuracy of the tooth reconstruction i€sssd by comparing it to the
3D ground-truth surface as obtained from CT scan. For thpqs®d approach, the simple
Lambertian case (Section VI.C.1) and the more realistie ¢8sction VI.C.2) are applied

both in order to assess the gain out of the latter formulation
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TABLE 4: Summary of approaches under experimental comgavis

Camera Light source Reflectance | Priors | Reference
AA | orthographic at infinity Lambertain No [78,114]
BB perspective | at optical center| Oren-Nayer No [9,12]
CC | orthographic at infinity Lambertain Yes new
DD perspective | at optical center| Oren-Nayer Yes new

The proposed algorithm is compared with two SFS algorithiing first is a stan-
dard SFS algorithm [78, 114] assuming typical assumptidrisambertian surface, or-
thographic projection and distant directional light s&@urdhe other algorithm is a more
recent SFS algorithm [9, 12] based on viscosity solutiongffamilton-Jacobi type formu-
lation of the image irradiance equation. This algorithm waginally developed in [9]
for the Lambertian case assuming a perspective camerapooj@and a light source at the
camera optical center. Later [12] it has been extended tOtha-Nayar reflectance model.
It does not use any prior information in its SFS formulatidable 4 summarizes the key
differences between the proposed approaches (CC and DD) artti¢he @approaches (AA
and BB).

Sample results from the approaches under evaluation arerdggtrated in Figure 33.
Figure 33(first row) shows the 2D input images for foutfelient teeth models (maxillary
deciduous, maxillary molar, mandibular molar, and manidibthird molar), while Fig-
ure 33(second row) shows the corresponding ground-traith teurface as obtained from
CT scans. The outputs from Algorithm AA, shown in Figure 88(¢ row), are rather
bumpy with too many peaks as the algorithm fails to handlétiatable specularity due to
the tooth surface characteristics and the near-illunonadetup. Rather better reconstruc-
tions are provided by Algorithm BB, see Figure 33(fourth yowWowever the algorithm is
not able to recover the geometrical details of the occlusdhse when compared to the
proposed algorithms CC (Figure 33(fifth row)) and DD (Fig@B{last row)). The shape

priors have indeed guided the SFS formulation to recoveerdetails of the tooth crowns
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overcoming the challenges caused by the scattered spspol@rthroughout the tooth sur-
face. Clearly, the more realistic formulation (algorithrDhas shown the most success in
that regard. Beneath each reconstruction is the root-ragaare RM§ error between the
reconstruction and the ground-truth after performing 3fddriregistration. Consistently,
the proposed algorithms (CC and DD) provide smaRéiSerrors, with Algorithm DD
having the lowest error rate (almost as low as one half ofetos Algorithms AA and
BB). This emphasizes the role of incorporating prior infatian in the process of shape

recovery.

To further demonstrate the gain out of the shape priors hen@xperiment is per-
formed on real human teeth with fillings that cover significaarts of the teeth, see Fig-
ure 34 (first row). Figure 34 (second row) shows the corredpmsurface reconstructions
by the proposed approach (Algorithm DD). Note that the tee¢ghsuccessfully and com-
pletely reconstructed, in spite of the tooth filling regiamish different colors and albedo
characteristics in the input images. This notable outcofrtbe proposed approach be-
comes more evident when compared to the tooth reconstruisyicdlgorithm BB in Fig-
ure 34 (third row). The filling regions gave rise to significaalleys and grooves in Algo-

rithm BB results.

E. Summary

This chapter, focused on realistic 3D reconstruction ohiln@an teeth using shape
from shading with statistical shape priors. The work haseskked several challenges re-
lated to the image formation process including near illation, perspective projection,
while taking into account the deviation from the simplifgihambertian assumption. The
Oren-Nayar reflectance model is used foftuse rough surfaces with roughness param-
eter being physically measured by an optical surface profilbe proposed formulation

exploits the shape priors as extracted from a set of trai@ifiggcans of real human teeth.
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Maxillary deciduous Maxillary molar Mandibular molar Mandibular 3 molar

RMS5=1.2561 mm RMS=0.8542 mm RMS= 1 5225mm RMS=0 9854 mm

RMS=1.0588mm  ppS=0 8384 mm RMS=1.0206 mm RMS=1.0793 mm

RMS=0.5596mm  RMS=05384 mm

RMS5=0.4600 mm RMSE=0.5078 mm

RMS=0.5021 mm RMS=0.5095mm RMS=0.4500 mm EMS=0 4272 mm

FIGURE 33: Tooth reconstruction from fourftérent algorithms. First row: image ac-

quired by the intraoral camera. Second row: ground-truthusal surface generated from

a CT scan of the tooth. Third row: reconstruction using Aitgpon AA. Fourth row: re-

construction using Algorithm BB. Fifth row: reconstrucatiaising the proposed method

(Algorithm CC). Last row: reconstruction using the propbseethod (Algorithm DD).

Beneath each reconstruction is the root-mean-squrRi&( error when compared to the

ground-truth surface from CT.
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FIGURE 34: Experiment on teeth with significant fillings. stirow: input test image.
Second row: reconstruction by the proposed algorithm (Aligon DD). Third row: recon-

struction by Algorithm BB.
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This allows the reconstruction of a tooth with shape vasiaiconsistent with the training
model examples. The proposed approach utilizing 3D shapespas well as those more
realistic assumptions of the Oren-Nayar reflectance mpéespective projection and near
light source with intensity attenuation, to the best of kiemige, has not been done before

in literature.

Experimental results have stressed the importance of ingdke shape priors and
realistic object characteristics into surface reconsimac The proposed approach has been
able to recover rich geometric details of tooth occlusalegas. Furthermore, shape pri-
ors have helped in handling specular regions in tooth serthe to saliva and enamel
reflectance. In particular, on the average, the proposeagip reduces the error metric
by 0.5—0.65mmcompared to well-known existing SFS approaches. It is ingmbito stress
here that in this application domain, fractions of a milller@amprovements are considered
significant for dental-related applications such as tootplant and surface analysis. The
proposed approach have successfully reconstructed té#thbivallenging conditions, such

as scattered specular spots and significant changes inasalalbedo characteristics.
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CHAPTER VII

2D-PRINCIPLE COMPONENTS ANALYSIS SHAPE MODELS

In this chapter, the current algorithms that were preseintéide previous Chapter
(VI) are improved. The approached developed in this chaptonstructs the teeth from
single image shading with 2D-Principal Components Analy{§iCA) shape priors that
have more sophisticated reflectance model. The Oren-Nafg#t-model was used for
modeling the surface reflectance. This formulation usepesipaiors as retrieved from a
set of training CT scans of real human teeth. The experinsm® promising quantitative
results, which builds the infrastructure for having an cgitbased approach that accounts

for inexpensive and radiationless human tooth reconstruct

A. Introduction

The two systems that showed most promise in the last few yibsarslero (Cadance)(see
Figure 35°) and Lava(see Figure 38). The Probes in both systems are bulky and requiring
multiple scans to get full coverage of the oral cavity. Thed.aystem requires the use of
a visible powder to get good registration, and has probleitisadepth of field. The iTero
has a heavier probe and can only capture one tooth at a tiougrirg five views of each

tooth. Blood and saliva causes additional inaccuracids moth systems.

In Chapter VI, a 3D reconstruction of the human teeth is prieseusing SFS with

shape priors, this work lacking in the following aspects) They assumed Oren-Nayar

Shttpy/www.shefermanortho.corimews.php.
©nttp : //wwwmedgadgetony2008/07/3m.espelava oral_scannergetsidea,ronzehtml.

95



FIGURE 35: iTero commercial dental scanning system.
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FIGURE 36: Lava commercial dental scanning system.
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model for tooth surface reflectance. Nonetheless, toofasirs rough and wet. (2) Shape
prior information was constructing using 2D-Principal Guonent Analysis where PCA is

time consuming to determine the corresponding eigenv&ctor

PCA is one of a family of techniques for taking high-dimemsibdata, and using the
dependencies between the variables to represent it in atnaatable, lower-dimensional
form, without losing too much information. PCA is one of theplest and most robust
ways of doing such dimensionality reduction. It is also of¢he oldest, and has been
rediscovered many times in many elds, so it is also knowna&#rhunen-Love transfor-
mation, the Hotelling transformation, the method of enwairiorthogonal functions, and

singular value decomposition.

In this chapter, the goal is to achieve further improvemarthe accuracy of the
human tooth reconstruction approach in Chapter VI [21]. dbwribution in this chapter
are two-fold. First, the 2D-PCA is used to build the shapergrinstead of the conventional
PCA. The 2D-PCA €ers two important advantages [115-117]: It is easier touatal
the covariance matrix accurately since its size is much Ismaln addition, less time is
required to determine the corresponding eigenvectors{115]. Second, the modified
Oren-Nayar-WdfF reflectance model [92] is presumed in place of the Oren-Nayadel
assumed in Chapter VI, where the tooth surface is rough andgiveng rise to Fresnel
reflection due to dierent refractive indices of the saliva and the tooth mdtefiae tooth
surface roughness is physically measured using an optic@ce profiler(see Figure 22).
The proposed CCD based intraoral camera is a factor of 1@lgensive, allowing it to be
affordable for most dental and orthodontisfices. The system is 20 times lighter, which
reduces fatigue of the operator enormously. Another maifiergnce in the proposed
system, the output file of the proposed system will be reaaltgilable as an STL file

instead of locked in a proprietary format such as iTero andalteave done.

B. Image Irradiance Equation
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One good model for tooth surface reflectance is the Oren-NAkdT models which
work well for the retro-reflection case [94]. Figure 22 shawisroscopic view of the oc-
clusal surface height variations which proves that mieef reflectance models are suit-
able for the tooth surface. Assume the camera is modellddavgerspective projection.
According to the presented data acquisition setup as showigure 1, the light source is

located at the optical center. The surface is representd,B2]: S = {S(x) / x € Q},
f u(x)

whereS(x) = (x,—f), with f is the camera’s focal length.

C. Method

1. Data Preprocessing

The triangular meshes of the training ensemble are obtdimoed a high resolu-
tion computer tomography scan of human invitro teeth wheeeuse the Expectation-
Maximization (EM) algorithm for segmentation. 3D surfat@seach tooth type are rigidly
aligned using an ICP-based rigid registration algorith] [@ing the Hausddi distance

between corresponding points.

2. Shape Model Construction

In this chapter, shape reconstruction, using 2D-PCA, isgilie height map! in
order to extract the most significant information of tragnimages. Unlike the conven-
tional PCA, 2D-PCA as the name implies will have matrix imf@tion rather than vector

information which means that there is no need to get imagérarsformed into a vector,

a height map is a raster image used to store values, suchfasesefevation data (The depth in the

proposed case)
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let more coéicients will be needed to represent the image [115-117]. Adwsls incorpo-
ration of the conventional PCA in a further step to reducedineensionality of principle

component matrix of 2D-PCA.

Now, let the training set consist &f training height map$U,, ..., Uy} with size
nx m. All images are pre-aligned. As in [115-117], the mean oftthaing shapedJ,
is obtained as the average of thédeheight maps. To extract the shape variabilitigs,
is subtracted from each of the training height maps. Theidtdamean-fiset functions
(U =U;-U, i=1,---,M)canbe represented f3,, ..., Uy}. These new functions are
used to measure the variabilities of the training imagdstraining teeth (for each type)

images with 100« 100 pixels are used in the experiment. According to [115}1hé M

mean-dfset height maps are used to construct the covariance niates following:

G=

Z-

M
uru. (46)
=1

The goal of 2D-PCA is to find the optimKl eigenvectors ofs corresponding to the
largestK eigenvalues. The value &f helps to capture the necessary shape variation with
minimum information. Experimentally, the minimum suitaMalue is found to b& = 10
that give enough variations. After choosing the eigenvsatorresponding to the 10 largest
eigenvaluesB = by, b,, ..., Dby), the principle component matriX;(m = 100x K = 10)
are obtained for each height map of the trainingiset, 2, ..., M), whereY; = U;B". For
more dimensional reduction, the conventional PCA is apiphie the principle components
{\?1, . \?M }. It should be noted tha?, is the vector representation¥f The reconstructed

components (after retransforming to matrix representatiall be:

Y in=Deyp (47)

WhereD is the matrix which containis eigenvectors correspondingltdargest eigenvalues
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A,(1=212,...,L), ande, is the set of model parameters which can be described as:
ein=hvaA (48)

wherel = {1,...,L}, h={-u,...u,}, andu is a constant which can be chosen arbitrarily.

The new principle components of training height maps areessmted as$Yi,...,Yn)

instead of Y4, ..., Yu} whereN is a constant which can be chosen arbitrarily.
Giventhe setY1, ..., Yn}, the new projected training height maps are obtained as:
Uo=Y.B", n=12...,N. (49)

The shape model is required to capture the variations irré@ng set. This model

is considered to be a weighted sum of the projected heighsif#) as:

N
u(x) = U+ > waOp, (50)
n=1

whereU is the mean height map (mean tooth shapk)is then™ orthogonal mode
of variation in the shape (also calletgenteeth andw = {w,} is called the vector of eigen
codficients or the shape vector. OrY/principal components are considered in the sum,
whereN should be chosen large enough to be able to capture the pgohsinape variations

present in the human teeth.

The function given in Equation 50 is used as explicit repnéest@on of teeth shape.

Therefore, by varyingv, u(x) is varied.

D. Integration Tooth Shape Priors into SFS-framework

In this phase, the prior shape model is embedded in SFS frarkdw guide the
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solution. The Oren-Nayar-Wldiffuse reflection model with a near light source and per-

spective camera is considered.

As explained before in VI.B, alignment is needed before thestruction step be-
tween the input brightness image to be reconstructed andahstructed shape model.
A 2D rigid image registration technique with maximizatidmautual information [113] is
conducted to achieve the alignment. The Oren-NayamfiWaoddel is applied for reflectance
with a camera that obeys perspective projection and a lmgintce is located at the cameras
optical center. Intensity of the light is attenuated withiaeged distance. The idea here is to

solve for the height map(x) that minimizes the energy functional

e= | (1(X) = Ru(x))%dx, (51)
/

where

_ 2 i
RU(X)) = Al -F(6,?) r(‘2:0549 + Bsirto (52)

From the definitions of the perspective camera,focan be written as:

cosh = ;u(x), (53)

A great advantage of the above optimization problem (5J)asthe solution search space

is shrunk into a finite numbeN) of weights. The goal here is to find the solution:

W, = argming,n=1,--- N, (54)
Wn

Gradient descent optimization is used for computipas follows:

oW, oe
ot low,

(55)
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wheren is real positive learning constant. The gradient will bec®vs:

O _ f 2 [1(%) = RU(X))] (—8R(”(X»)dx. (56)
Q

6 Wn awn

E. Experimental Results

1. Reconstruction of the Single Tooth

To evaluate the performance of the proposed 3D reconstruatiethod, the pro-
posed approach is applied on real human teeth. Premolad pfvatedibular molar, Mandibu-
lar third molar, Maxillary molar, and maxillary deciduousodels are constructed from
30, 30, 100 40, and 30 teeth respectively. The shape priors are trained ositiof-training
samples with instances using the CT-scan of the respeettk.tThe accuracy of the tooth
reconstruction is assessed by comparing it to the 3D growtkdsurface as obtained from
CT scan. The proposed algorithm (AAA) is evaluated with tdgodathms. The first al-
gorithm (DD) [21] is more recent. Itis a SFS algorithm thataestructs 3D shape of the
human teeth based on the shape priors that are built usingicional PCA. The other
algorithm (B) [6] is a conventional SFS approach based omibrix of Ahmed ancet al.
in [12].

Table 5 summarizes the keyfidirences between the proposed algorithm (AAA) and

the others algorithms (DD and B).

Figure 38 illustrated samples results from the three amhe@ under evaluation.
Figure 38(a) demonstrates the 2D input images fiedent teeth model®(g. mandibular
molar, mandibular third molar, maxillary molar, and maail} deciduous). Figure 38(b)
shows the corresponding ground-truth (GT) as obtained €dmscans. Figure 38(c) shows

the results of the proposed method AAA. Figure 38(d) showes3B reconstruction of
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TABLE 5: Summary of approaches under experimental comparig\ll algorithm are a

perspective camera projection and the light source at time@aoptical center.

Reflectance Priors Reference
AAA-new Oren-Nayar-Wdf 2D-PCA Proposed
DD Oren-Nayar PCA [21]
B Oren-Nayar no [6]

TABLE 6: Average tooth surface reconstruction accurd®@y1g in mm

Tooth Type Proposed (AAA) | algorithm (DD) [21] | SFS (B) [6]
Premolar 0.2872 0.6502 1.3739
Mandibular molar 0.3017 0.6825 1.1098
Mandibular third molar 0.2058 0.5625 1.0702
Maxillary molar 0.3288 0.6646 1.2738
Maxillary deciduous 0.2591 0.5711 1.4317

the human teeth using algorithm (DD) while the 3D reconsioncusing the traditional
well-known SFS in Figure 38 (e). Clearly, better construetis provided by the proposed
method. The root-mean-squaR\ error is measured between the reconstruction surface

and the GT after performing the 3D rigid registration.

The average teeth reconstruction accuracy (RM$)imfor algorithms AAA, DD
and B is compared for various tooth types in Table 6. It isictbat the proposed algo-
rithm (AAA) outperforms the other algorithms. It is worthemtioning that throughout the
experimentations the proposed method is faster than #hgo(DD). The CPU timing is
computed on a PC with Core i7 CPU@ 2.2GHz processor &@BRIAM The average time

for the proposed method is 40 seconds. while the other dtgoiDD) is 80 seconds.
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FIGURE 37: Tooth reconstruction from thredfdrent algorithms. (a) 2D-image captured
by the intraoral camera.(b) GT occlusal surface generated & CT scan of the tooth. (c)
3D Reconstruction of the human teeth using the proposedad&tiAA. (d) Reconstruc-
tion using Algorithm DD. (e) Reconstruction using AlgonttB(well-known SFS method).

Beneath each reconstruction is the root-mean-sq&aviy error.
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2. Reconstruction of the Whole Jaw

The triangular meshes of the training ensemble are obtamoed a high reso-
lution computer tomography (CG%) scan of human jaw molds where the Expectation-
Maximization (EM) algorithm for segmentation is used. Dewgsrrespondence between
jaw samples is obtained using the 3D thin-plate spline wkiegealignment procedure is
guided by the sparse set of anatomical jaw landmarks. 3DBpaite spline is also used to
provide a warping function between image pixels (assumée tan the xy-plane in the 3D
space) and surface points using image landmarks and slafadmarks as control points.
Orthographic projection is applied to re-represent thantyular meshes in terms of Monge

patches which provides a bijective mapping between sugdao#s and image coordinates.

In order to evaluate the performance of the proposed appysageral experiments
are carried out on real human jaw, other than the ones usecbfwtructing the shape
prior model. Upper jaw models are constructed from 52 upg&molds belonging to 33
males and 19 females with on average age of 20 years old. A kneer jaw models are
constructed from 58 lower jaw molds belonging to 33 maleszti@males with on average
age of 19 years old. There are two samples per subject, orepag jaw and another
post-repair jaw, referring to the jaw status before andra&fgplying an orthodontic teeth
alignment process, respectively. The shape priors areetlaising out-of-training samples
with pre- and post-repair instances using the CT-scan ofdbpective molds(lower and
upper jaws). The accuracy of the jaw reconstruction is agsklsy comparing it to the 3D

ground-truth surface as obtained from CT scan.

The proposed algorithm is compare¥,§ with two algorithms. The first algorithm
(Bw) is Lambertian statistical SFS(SSFS) and recent for toetbmstruction [118]. The
other algorithmC,,) [6] is a conventional SFS approach based on the work of Ahaned

etal. [12]. In [12], their work is based on viscosity solutsofor Hamilton-Jacobi type

12A Cone-beam CT (KODAK 9000 3D Extraoral) scanner is used.
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formulation of the image irradiance equation. This aldoritwas developed in [9] for the
Lambertian case assuming a perspective camera projeciiba lgght source at the camera

optical center. Later [12] was extended to the Oren-Nayfsa@nce model.
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FIGURE 38: Sample reconstruction result of a lower jaw (Reptir )from three dferent algorithms. (a) Image acquired by the CCD cam-
era.(b) Ground-truth generated from a CT scan of the jaw.R@jonstruction using the proposed Algorit#g (with shape priors). (d)
Reconstruction using AlgorithrB,,. (e) Reconstruction using method (Algoritidy). Beneath each reconstruction is the root-mean-square

(RMS) error when compared to the ground-truth surface frdm C



TABLE 7: Summary of approaches under experimental comgavis

Reflectance Priors Reference
Ay Oren-Nayar-Wdf 2D-PCA Proposed
Bw Lambertian PCA [118]
Cw Oren-Nayar No [6]

Table 7 summarizes the keyfidirences between the proposed algoritiy) @nd

the others algorithmd(, andC,,).

The isosurface of the jaw scan is a metric reference to gigatign the reconstructed 3D
point from SFS to share the same metric coordinate framealigprment, the first and sec-
ond moments are normalized [96] withotifexting the scale. This initializes an ICP-based
rigid registration algorithm [85]. Point correspondenetvieen CT and the reconstructed
surface is obtained based on Haustldistance [97]. The SFS algorithms are compared in
accordance with an error estimator based on the root meamnesRMS error between the

3D points from the CT scan and the corresponding reconstistirface points.

Sample results from the approaches under evaluation arerdgtrated in Figure 38.
Figure 38(a) shows the 2D input images for lower jaws, whilgukFe 38(b) shows the
corresponding ground-truth tooth surface as obtained f@dnscans. The output of the
proposed algorithmA,) is shown in Figure 38(c). reconstruction by Algorithnig, @nd
Cyw) are shown in Figure 38(d), and Figure 38(e) respectivdlyarly, reconstruction using
the formulations with algorithmA,,) (Figure 38(c)) have shown the most success in that
regard. Beneath each reconstruction is the root-mearresR®S error between the re-
construction and the ground-truth after performing 3Ddigggistration. Consistently, the

proposed algorithmA,) provides the smallest RMS errors.

The average jaws reconstruction accurd@¥@ in mmfor algorithmsA,,, B,, and
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TABLE 8: Average whole jaw surface reconstruction accu(@8¥S in mm

Jaw Type ProposedA,,) | Lambertian SSF®*,) | SFS Cu)
Upper, Pre-repair 0.6805 2.0899 15.2995
Upper, Post-repair 0.6015 2.0233 16.3098
Lower, Pre-repair 0.7281 3.1191 12.1241
Lower, Post-repail 0.7759 2.5711 13.4959

C is compared for various jaw types in Table 8. It is clear that proposed algorithm

(Aw) outperforms the other algorithms.

To further demonstrate the gain out of the shape priors hen@xperiment is per-
formed on real human jaws with fillings that cover significpatts of the teeth, see Fig-
ure 39(a). Ground-truth generated from a CT scan of the jawshn Figure 39(b). Fig-
ure 39(c) shows the corresponding surface reconstrudbyptise proposed algorithrd\).
Note that the teeth are successfully and completely reamtst and outperform the work
[6] (see Figure 39(d)), in spite of the tooth filling regiongmdifferent colors and albedo
characteristics in the input images. This notable outcofribe proposed approach be-
comes more evident when compared to the tooth reconstrulsticAlgorithmC,, in Fig-
ure 39(d). The filling regions gave rise to significant vadleynd grooves in Algorithn,)

results.

110



TTT

RMS=0.7905 mm RMS=15.4871 mm

(a) (b) (c) (d)

FIGURE 39: Experiment on teeth with significant fillings. (aput test image. (b) Reconstruction by the proposed algoriA,).

Reconstruction by algorithn€(,)(with no shape priors).
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F.  Summary

A 3D reconstruction of human tooth models from optical intgge proposed using
shape from shading with 2D-PCA shape priors. The propos¢kdadémproves on the 3D
reconstruction of the human teeth by incorporating mordstigated reflectance models.
In dental application, improvements are considered sigamtieven if the improvement is
a fraction of millimeter. The Oren-Nayar-Wbleflectance model is used which is a physi-
cally deep model for diuse reflectance from shiny but slightly rough surfaces. Reate
preferred to other approaches in the literature since fiothtdetails can be reconstructed
and the resulting surface is more realistic. Also the exendime is reasonable and practi-
cal in the sense of applying the proposed system in clinioter major diference in the
proposed approach, the output file of the proposed approaitbe readily available as an

STL file instead of locked in a proprietary format such as caroal systems have done.

Moreover, the focus has been on developing and validatingistic approach for
image-based 3D reconstruction of the human jaw. The acgofé8D reconstruction of the
human teethaw is increased using SFS with 2D-PCA shape priors. Thequegapproach
has successfully reconstructed teeth with challengingditions, such as scattered specular

spots and significant changes in color and albedo charstitsri
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CHAPTER VIII

THREE-DIMENSIONAL MODELING AND STRESS ANALYSIS IN DENTAL
BIOMECHANICS USING FINITE ELEMENT ANALYSIS

Finite Element Analysis (FEA) or Finite Element Methods PEs a powerful
analytic technique for calculating stresses and straikenfal structures. Many Finite El-
ement (FE) studies carried out used approximate 2D modelthid chapter, an accurate
three-dimensional CAD model is proposed. 3D stress andatisments of dferent teeth
type are successfully carried out. A newly developed omene® finite element solver,
Finite Elements for Biomechanics (FEBIo), has been usea lifiitations of the experi-
mental and analytical approaches used for stress and cispént analysis are overcome
by using FEA tool benefits such as dealing with complex gegnaetd complex loading
conditions. The experiments provide qualitative and gtetite metric results for the five
models (Anterior tooth, mandibular third molar, mandilutaolar, maxillary third molar

and two touched teeth) undeffidgirent loading conditions.

A. Introduction

Teeth which are positioned improperly are corrected byaaitimtic dentistry. Crooked
teeth and teeth which do not fit together propeffgets one’s health since they are harder
to clean and are at continuous risk of early tooth decay andgmntal disease while also
causing headaches as well as shoulder and back pain duerdcsétss on the chewing

muscles.

Bone remodeling and orthodontic tooth movement are ieididty the mechanical
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FIGURE 40: Overall approach of the proposed method.

activation of an orthodontic appliance where force systaregproduced to displace teeth
in a predictable as well as controllable manner. Force sysf@imarily involve moments
and forces where the ratio of moment to force being appliegéth control the type of
tooth movement. After an immediate application of a forbe, tboth moves by an elastic
deformation of its periodontal ligament (PDL) which is atig around the root of the tooth.
The mechanical stress in the PDL initiates the bone remuagl@iocess which results in
orthodontic tooth movement. Such a process is triggerechaypges in the stressrain
distribution; it involves bone formation in tension regsaand bone resorption (breakage) in
stretched regions. In literature, there are several thedhat explain the bone remodeling
process [119] such as pressure-tension theory, distostidiending of the alveolar bone

and alveolar bone apposition.

Several biomechanical models have been proposed in literahey are mainly

based on the computation of stress and strain distributicthe PDL combined with a
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bone remodeling law [120]. For example, Provatidis [121d &chepdael [122] proposed
an analytical model to describe the stresses and straiteipdriodontal ligament of an
axisymmetric tooth of paraboloid shape during translatibhe PDL was assumed to be
linearly elastic and the method was validated using finiement methods. While this
analytical model provides easier and lower-computatiaoat compared to classical FE
methods without sacrificing accuracy, this work lacks twarmeaspects: (1) it did not
address the issue of estimating the geometric parametetre d?DL given the 3D root
information and (2) it did not address th&ext of applying a force system to the whole jaw

where the movement of one tooth will exert force on neighimpteeth.

There has been an enormous increase in use of FEA teg4X23-129]) due to
evolution in computational approaches using commercibteuch as Abaqus, ANSYS,
SolidWorks, etc. Most of these studies have been simplifieckvand used 2D analy-
sis techniques. Unfortunately, such assumptions are rgetdmeld in the actual scenario
present in the dental structure in terms of geometry. Furibee, these commercial soft-

wares are very expensive because they require licences.

In this chapter, computational models are investigategltha describe tooth move-
ment process in order to be a useful dental tool in clinicatpce as well as research. Dif-
ferent theories provide means for the calculation of thesstand strain levels in the PDL.
While in research, this might enable validating a specificadeling theory; this can also be
used in clinical practice to (1) predict tooth movement gieethodontic appliance (force
system), (2) simulate tooth movement for orthodontics, @)danalyze the strefrain
field in the alveolar bone to quantify treatment reactionthiis study, an accurate three-
dimensional CAD model is proposed. 3D stress and displacepidive different teeth
using FEA solver are successfully measured. In particklaBio [130] is used which is a
newly developed open-source finite element solver. To tlsé dfeknowledge this has not
been used before in orthodontic. FEBio has been developifisally for biomechanical

applications [130]. Nonetheless, theet of applying a force system to the two teeth is
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addressed where the movement of one tooth will exert foraseayhboring teeth.

B. Orthodontic Tooth Movement

Teeth which are positioned improperly are corrected byaaftimtic dentistry. Crooked
teeth and teeth which do not fit together propeffiets ones health since they are harder to
clean and are at continuous risk of early tooth decay andgenital disease while causing

headaches shoulder and back pain due to extra stress orethimmghmuscles.

Bone remodeling and orthodontic tooth movement are ieididty the mechanical
activation of an orthodontic appliance where force systamsroduced to displace teeth
in a predictable as well as controllable manner. Force sysf@imarily involves moments
and forces where the ratio of moment to force being appliethteontrol the type of tooth
movement. After an immediate application of a force, thehaooves by an elastic de-
formation of its periodontal ligament (PDL) which is a ligiaround the root of the tooth.
The mechanical stress in the PDL initiates the bone remugl@iocess which results in
orthodontic tooth movement. Such process is triggered byngés in the stredrain dis-
tribution; it involves bone formation in tension regionddone resorption (breakage) in
stretched regions. In literature, there are several the@xplain the bone remodeling pro-
cess [119] such as pressure-tension theory, distortiordibg of the alveolar bone and

alveolar bone apposition.

Although there exist some typical and known orthodontiatiment plans, to-date,
such treatment is primarily dependent on the experiencheobtthodontist. Further, the
treatment reaction is flerent from one patient to another causing lengthening gagrtrent
time due to plan adjustment while increasing the cost to #tept. Time, cost and patient
inconvenience are the main motivations behind having alsithon tool for orthodontic
tooth movement where the orthodontist can virtually appifedent treatment plans and

simulate bone reactions versus time. Such a tool requifigsa 8D representation of the
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patients visible jaw, hence our 3D reconstructions coneepidy, (2) augmenting the visi-
ble jaw with 3D root information and (3) modeling tooth movemw.r.t. different moment

to force ratiosij.e. different movement typeg Q. rotation, translation and tipping).

On the tooth movement side, we are seeking to investigatéhwheomputational
models can describe tooth movement process in order to befal aental tool in clini-
cal practice as well as research fierent theories provide means for the calculation of the
stress and strain levels in the PDL. While in research, tighbenable validating a specific
remodeling theory, this can also be used in clinical pradiic(1) predict tooth movement
given orthodontic appliance (force system), (2) simulat#ht movement for orthodontics,
and (3) analyze the stre¢sgain field in the alveolar bone to quantify treatment rieact
Nonetheless, the outcome of these theories is dependemteenrhain factors: (1) Geome-
try and morphology where tooth and alveolar bone are tylyicainsidered as rigid bodies
while differences according to micromorphology have not been yetaddd [119]. (2)
Material properties where PDL is non-linear visco-elastaterial while most works con-
sider it homogeneous, linear-elastic and isotropic. ()riétary conditions where the type

of tooth movement is controlled by the moment to force ratio.

In literature, diferent approaches for modeling orthodontic tooth movenmswotve
designing either a biomechanical or a mechanobiologicalghoWhile the former focus
on the mechanics of the process while taking into accounithibiae and tissues are con-
stantly adapting living tissues. The later models the lgigal processes involved in bone
formation and resorption including cell and growth factoncentrations [131]. Nonethe-
less, such types of models are more complex and computhlyi@xgensive for clinical
use when compared to biomechanical ones due the compleseraiteells and growth

factors [131]. Yet, they are suited as research tools.

Several biomechanical models have been proposed in literaThey are mainly
based on the computation of stress and strain distributicthe PDL combined with a

bone remodeling law [120]. For example, Provatidis [12-pgmsed an analytical model
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to describe the stresses and strains in the periodontahéighof an axisymmetric tooth
of paraboloid shape, during translation. The PDL was asdumée linearly elastic and
the method was validated using finite element (FE) methoésetal.[132] proposed an
interface model of the periodontal ligament. Their key i to model the PDL as a
non-linear interface in a FE model of the root and the alvelotme. That way, the non-
linearity of the PDL is captured without defining it expligias a third material in the FE
calculations. The drawback of this approach is that, alghaesults are obtained for the
stresses and strains inside the alveolar bone, the sti@sdasrains inside the PDL are not
calculated. Zhurov et al. [133] developed a constitutivelel@f the PDL, describing it as
a compressible transversely isotropic visco-hyperadisisue. They took into account the
fact that the PDL is a composite material, composed of celidtpers that can only bear
tensile stresses and a viscous matrix component that hatares to tension and compres-
sion. The advantage of such a model is its completeness) bbtain accurate results, itis
essential that all the material parameters are identifiecctly, which is not yet the case.
Kojima et al. [134-136] assumed that amount of bone remodeling is in ptigooto the
mean stress being calculated in the PDL. While they weretalsienulate tooth movement,

the validation of their model in clinical practice is still question.

Clinical practice would benefit from a low-computational sebwhile being easy-
to-use for orthodontists. Recently, Schepdztedl.[137] proposed an analytical approach
to design a biomechanical model for tooth movement wheng alieided the use of clas-
sical FE methods to decrease computational time and irenesexr friendliness. Their
approach did not require setting up a complicated 3D modt#ietooth. Their model in-
volves two main stages: (1) analytical determination afsgpatterns in the PDL during or-
thodontic tooth movement and (2) simulating bone remodginocess as a viscous process
where tooth movement of single- and multi-rooted teeth eapredicted. They validated
their model against FE models showing minimal average avittr lower computational
complexity. While handling multi-rooted teeth, they impeal on Provatidis [121] by pre-

dicting all types of tooth movements rather than only roabhslation and better modeling
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the shape of the root using an elliptic paraboloid.

While this analytical model provides easier and lower-cataponal cost compared
to classical FE methods without sacrificing accuracy, tlagiacks two main aspects: (1)
it did not address the issue of estimating the geometricnpaters of the PDL given the
3D root information and (2) it did not address th&eet of applying a force system to the

whole jaw where the movement of one tooth will exert force eighboring teeth.

C. The Finite Element Methods

The FEM were first invented by structural engineers, who thdeemselves on
accurately physical basis. Later, mathematicians diseovthat FEM methods could be
classified as a subset of the Galerkin Methods for the sol@id®DEs. By this way the
method gained a mathematical foundation which extendedsiésto many engineering
problems. None the less thigi@irence in the engineering and mathematics points of view
resulted in two dterent interpretations which alsdéfects the way the method is used in

practice applications.

e Physical Interpretation:
The continous physical model is divided into finite piecdiedeelements and laws of
nature are applied on the generic element. The resultsemeagsembled to represent

the continuum.

e Mathematical Interpretation:
The diferetional equation reppresenting the system is conventedai variational

form and solved by the linear combination of a finite set @lthinctions.
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1. FEM Notation

FEM treat the continuous problem domain as a collection dividual finite ele-
ments. The problem parameters are defined on each of the obadgpical element. The

key definitions of the FEM notation have been described aotloavs:

e Dimensionality: The elements can be defined depending omprbiglem context.

Dimensionality expresses whether the element has 1, 2 cax@gpmensions.

¢ Nodal Points: Every element is described by its nodal poifte nodal points are
chosen to be the corners of the element. In the case of naar lggometries nodal

points are defined on the edges.

e Geometry: The geometry is used to describe the domain onhwvitrite element

discretization needs to be applied as shown in Figure 41.

e Nodal Forces: A set of nodal forces.

2. Physical Problems, Mathematical Models and Finite El@rSelution

The finite element analysis method is used to solve physroéll@ms in engineer-
ing analysis and design. The flowchart shown in Figure 42 sarz@s the process of finite
element analysis. The physical problem involves an straatamponent to certain loads.
To convert the physical model to the mathematical modeliregicertain assumptions
that together lead ffierential equations governing the mathematical model. Triadel
is solved by using finite element analysis. Since the finieeneint solution approach is
a numerical procedure, it is indispensable to rate the isolitccuracy. If the estimated
accuracy is not met the actual accuracy, the numeriga) finite element) solution has to
be repeated with adjusted the solution parameters (suchexsnfieshes) until a suitable

accuracy is reached.

120



e
AN
£
»

FIGURE 41: Finite element geometries: First row: 1D. Secawvdt 2D. Third row: 2D.

Fourth row: 3D.

D. Equations for Three-Dimensional Solids

1. Stress and Strain

Figure 43 shows a continuous three-dimensional (3D) elastiid tooth with a
volumeV and a surfacé&. The surface of the solid tooth is divided into two types of
surfaces: 1) a surface on which the external forces are nivescis denotede. 2) a
surface on which the displacements are prescribed is d@i$SteThe solid can also be
loaded by body forcd, and surface forcés in any distributed fashion in the volume of the

solid [138].

Figure 44 shows at any point in the solid, the componentsretstare indicated
on the surface of an ’infinitely’ small cubic volume. On eachface, there will be the

normal stress component, and two components of sheariggstfhe first subscript letter
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Change of the physical
problem

(a) Physical problem

i

(b) Mathematical model

Governed by differential equations
Assumptions on:
Geometry

Kinematics Improve the
Loading mathematical model

Material law
Boundary conditions
Efc.

(c) Finite element solution

Choice of
= Finite elements N
= Solution parameters

Representation of Refine mesh, solution
= Loading parameters, etc.
= Boundary conditions
= Etc.

Assessment of accuracy of the finite element
solution of mathematical model

] | Refine | |
Interpretation of the results  [— analysis

Design improvements
Structural optimization

FIGURE 42: The flowchart of the process of finite element asialy(a) The physical
problem. (b) Finite element solution of mathematical mode) postprocessing step: in-

terpretation the results, design improvements and straiadptimization.
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FIGURE 43: Solid tooth subjected to forces applied withia solid (body force) and on

the surface of the solid tooth (surface force).
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represents the surface on which the stress is acting, ansettend letter represents the
direction of the stress. The directions of the stressestithted in the Figure 44 are taken to
be the positive directions. By calculating the moments efftirces about the central axes

of the cube at the state of equilibrium, it is easy to prové: tha

Oxy = Oyx; Oxz = Ozx Ozy=0yz (57)

Thus, there are six stress components in total at a pointicthssd hese stresses are

often called a stress tensor. They are often written in aovéotm as follows:

-
o ={ ox Oyy Ozz Oyz Oxz 0'xy} (58)

At any pointin a solid, there are six train components cqoesling to the six stress

tensors.The six strain components can also be written imgesivector form of:

T
g ={ exx Ey Ezz Eyz Exz Sxy} (59)

Strain is define as the change of displacement per unit lergith therefore the

components of strain can be obtained from the derivativéiseoflisplacements as follows:

ou, ov ow

Exx = (9_)(’ Eyy = c’)_y’ Ez2z= E, ©0)
ou oOv. ou ow. ov  ow

I T T T Tt ey

whereu, v andw are the displacement components in g andz directions, re-
spectively. The six straindisplacement relationshipsqodtion 60 can be rewritten in the

matrix form as:
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e=LU (61)

whereU is the displacement vector, and has the form of

U=1v (62)

andL is a matrix of partial dierential operators obtained simply by inspection on

Equation 60:

d/ox 0 0

0 d/oay O
0 0 d/oz

L = (63)
0 d/oz 0/dy

d/oz 0 9/ox

9/dy 9/ox 0 |

2. Constitutive Equation

The relationship between the stress and strain in the rahtdéra solid called con-
stitutive equation. It is often termed Hookes law. The gelsed Hookes law for general

anisotropic materials can be given in the matrix form asofell

o =Cce (64)
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wherec is a matrix of material constants, which are normally ol#dithrough

experiments. The constitutive equation can be writtenieilyl as:

O xx Ci1 Ci2 Ci3 Cig Cis Cig| | Exx
Oyy C2 Co3 Coq Cp5 Cpgf |&yy
Ozz C33 C34 C35 Cz6| | &2z
= (65)
Oyz Caa Cu5 Cyg| | &yz
Oxz sym Cs5 Csg| | &xz
ag Xy 066 8xy

Note that, since;; = c; , there are altogether 21 independent material constants
, Which is the case for a fully anisotropic material. Foriiepic materials, howevec,can

be reduced to:

Ci1 Ci2 Ci3 0 0 0
Ci1 Cp2 0 0 0
C11 0 0 0
C = (66)
(C11—C12)/2 0 0
sym (C11—C12)/2 0
(C11— Ci12)/2

where,

_ _Ed» . _ E o
= ma Oz T 2 (67)

in which E,v andG are Youngs modulus, Poissons ratio, and the shear modulus

of the material, respectively. There are only two indepabdenstants among these three
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FIGURE 44: Six independent stress components at a pointahicasewed on the surfaces

of an infinitely small cubic block.

constants. The relationship between these three constants

E

G= 2(1+v) (68)

That is to say, for any isotropic material, given any two ¢ three constants, the

other one can be calculated using the above equation.
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FIGURE 45: Stresses on an infinitely small block. Equilibmiaquations are derived based

on this state of stresses.
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3. Dynamic Equilibrium Equation

The formulation of the dynamic equilibrium equations depen assuming an in-
finitely small block of solid (see Figure 45). In equilibriucase, The forces should be
applied on all directions. Since this is a general, dynaiystesn, the inertial forces of the

block is considered. The equilibrium of forces in thdirection gives as follows:

(0xx + dox)dydz— oy dydz+ (oyx + doyy)dXdz— oyxdxdz

+ (03¢ + o, )dxdy— o, dxdy+ fy = pudxdydz (69)

where,p U dx dy dzs the inertial force termfy is the external body force applied

at the centre of the small block adet,, doyx anddo,, defined as follow:

_ Ooxx

Aoy = 222dx doyx = 222dy, doy = Z2dz (70)

ox ay [7)

Hence, Equation 69 becomes one of the equilibrium equatvariiten as:

00 xx 50'yx 00 2%
+ +
0X ay 0z

+ fy = pl (71)

Similarly, the equilibrium of forces in thgandz directions results as:

00y N doyy N 004y
0X ay 0z

+ £, = piv (72)

0oy, n 80—)/2 n do 4,

ox 8y 0z = pW (73)
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From Equations 71 to 73, the equilibrium equations can b#ewin matrix form

as:

LTo +f, = pU (74)

wherefy, is the vector of external body forces in thgy andz directions:

fo =41, (75)

4. Boundary Conditions

There are two types of boundary conditions: 1) displacertesgential). 2) force
(natural) boundary conditions. The displacement boundanglition can be simply written

as:

u=u andor v=v and/or w=w (76)

on displacement boundaries. For most of the actual sinomstithe displacement
is used to describe the support or constraints on the soldklspand hence the prescribed
displacement values are often zero. In such cases, the aguodndition is character-
ize as a homogenous boundary condition. Otherwise, theinaoenogeneous boundary

conditions.

The force boundary condition is written as:
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no=t (77)

on force boundaries, whereis given by

nkn 0 0 0 n, ny

nN=|10 n 0 n, 0 ny (78)

»O 0 n, ng ny OA

in whichn;(i = x,y, 2) are cosines of the outwards normal on the boundary. A force
boundary condition can also be both homogenous and inhameogs. If the condition is

homogeneous, it implies that the boundary is a free surface.

E. Materials and Methods

1. Mesh generation(Pre-processing)

To perform FEA of human tooth, PDL, and bone deformationppreessing tech-
niques are needed: image segmentation, mesh generatibmeasurement of the me-
chanical properties. In this section, each one of these@cepsing techniques performed

in this Chapter is explained in detail.

1) Image Segmentatiormhe triangular meshes of the training ensemble are ob-
tained from a high resolution computer tomography scan ofdminvitro teeth. A Cone-
beam CT (KODAK 9000 3D Extraoral) scanner at a resolution.d&®.2 x 0.2mmis then
used to models, where the Expectation-Maximization (EMpathm is used for segmen-

tation [139].
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FIGURE 46: Ensemble of 20 models generated using the prdpos¢hod illustrated with

different colors. First row: solid volumes generated from thes€an of the anterior teeth.
Second row: solid volumes generated from the CT scan of thedibalar third molars.
Third row: solid volumes generated from the CT scan of theditanar molars. Last row:

solid volumes generated from the CT scan of the maxillamgtiriolars

132



2) Mesh GeneratianVolumetric mesh generation depends on decomposing the
object volume into a finite union of geometrically simple dmalinded elements. In the
context of the medical imaging, some mesh generators weidett for image registra-
tion [140, 141]. In this chapter, the interest is generahigh quality tetrahedral meshes
that conform to the input surface meshes. To carry out this tie images are firstly seg-
mented using EM segmentation algorithm and then converségenented images into a
stereolithographic file(STL) using VTK [142]. Then, the STare used to generate 3D
solid meshes of the tooth (see Figure 46), PDL and corticaébo

2. FEA using FEBIo

1) Materials Properties Equations are developed for each element in the FEM
mesh and assembled together into a set of global equatiansitidel the properties of the
entire system. Table 9 [1-4] summarizes the mechanicakptiep of the enemal, dentin,

PDL and cortical bone.

2) Loads and Boundary Conditions (LBC’shh this step, loads and boundary

conditions defined on discreized models dfelient teeth in PreView? [130].

3) Processing In this step, FEA solver FEBi&* [130] is used to calculate dis-

placement and stress due to loading conditions.

The 3D form of Hooke’s law can be written as [143]:

3preView is a finite element preprocessing software pacKégyerimary function is to set up the boundary

conditions and material properties for finite element asialwith the software FEBIo.
14FEBio is a nonlinear finite element solver that is specificd#isigned for biomechanical applications.
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Tzx

Ex

Ex

Yxy

Yyz

Yzx

(79)

whereo andr are the stress and shear stress respectively andy are the strain

and shear strain respectively is called the stregstrain or constitutive matrix and is

defined by:

E
D=ara-a

(80)

whereE is defined as the modulus of elasticity (Young’s modulus)aisd?oisson’s

ratio.
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TABLE 9: Mechanical properties of human teeth (Youngs madand poissions ratio of

the tooth) [1-4].

Material property Young’s modulus(GPa) Poisson’s ratio
Enamel 80 0.33
Dentine 18.6 0.31

PDL 0.0689 0.45
Cortical bone 1.37 0.30

3. Visualization

Finally, the output of the FEBIo is used as the input to Past/® [130] to show

the stress and displacement on the tooth.

Figure 40 summarizes the overall procedure used in the ehgpdetermine the

stress and displacement irffeirent teeth.

F. Experimental Results and Discussions

In order to evaluate the performance of the proposed appysageral experiments

are carried out on real human teeth, other than the onesaiseatfstructing the 3D models.

1. Horizontal Forces

Differences were determined for the displacement and strésbution a five mod-
els (Anterior tooth, mandibular third molar, mandibularlaxpmaxillary third molar and

two touched teeth) underféierent loading conditions.

15postView is a finite element (FE) post-processing appbcetiat is designed to view FEBio output files.
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In this study, simple horizontal orally directed forceseagths BN to 3N were
applied on five diferent models. This force is simple tipping which was appbedhe

tooth crown, perpendicular to its longitudinal axis.

Figure 47 shows the stress and displacement distributidouindifferent models.
Figure 47(a) illustrates the 3D solid mesh that we get it ftb STL surface mesh and
loaded with tipping force near the crown. Stress increases trown to root as shown
in Figure 47(b). Maximum stress is near the root and the mamimalue of displacement

near to the crown (see Figure 47(c)).

Figure 48 simulates the invivo force on the human teeth amdthe movement of
the tooth &ects the neighboring teeth. Figure 48(a) shows the solichrfeesgwo neigh-
borhood teeth. Figure 48(b) shows tHEeetive stress due to the force (3N) on the left tooth

in the opposite y-direction and the pressure of the righthton the left tooth.

2. \ertical Forces

In order to evaluate the performance of the proposed appysageral experiments
are done on 250 real human teeth (40 anterior models, 125imaackhird molars models,
40 mandibular molars models and 45 maxillary molars modédsiferences were deter-
mined for the stress, displacement and pressure distibbegtween models (mandibular
third molar, mandibular molar and maxillary) undeffdrent loading conditions(see Fig-

ure 49 to Figure 53).

In this study, simple vertical orally directed forces, styth overall 200l was di-
vided into three vectors (cusps)in some cases and four ngectothe others. This force
was applied on the tooth crown, perpendicular to its octlesdace. The 208 load used
in this chapter was selected, as average chewing force hvdhsupposed to be one third

of the maximum biting force [144]. Under the compressivalldhe axial test simulations
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FIGURE 47: (a) Finite element mesh (solid mesh) with the niteroperty and initial
conditions. (b) Hective stress for the tooth due to orthodontic forces wepgctid as

concentrated force. (c) The correspondence total displacefor the anterior tooth
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FIGURE 48: The mechanism of transferring the load from om¢htdo its neighborhood:
(a) Finite element meshes with the material property an@hlrgsonditions. (b) The ef-
fective stress (expressed in MPa) due to the force (3N) oretiheooth in the opposite
y-direction and the pressure of the right tooth on the leftho (c) The correspondence

total displacement.

predicted that tooth fracture might occur betweenN'@hd 80N [144]. In addition, the
boundary conditions of each model simulated the contadt mgighbouring teeth. In the
first model (mandibular third molar with three roots), thess values ranged fron4D8 to
4.08K Pa, the displacement values ranged fromh@5x 1078 to 1.65x 107 and compression
values range from1.65x 10° to 0.0599x 10° as shown in Figure 49. In the second model
(mandibular molar)(see Figure 50 and Figure 51), the stralsges ranged from.222 to
4.43K Pa, the displacement values ranged fromh@®x 1078 to 1.48x 108 and compression
values range from-11 to 135x 1C®. In the third model (Maxillary third molar with two
roots)(see Figure 52 and Figure 53), the stress valuesddngm 0325 to 361KPa, the
displacement values ranged fromi87x 1078 to 4.45x 10-8 and compression values range

from —1.96 to Q127 x 10°.

G. Summary
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(a)

FIGURE 49: 3D model and stress, displacement and compressstributions in the
mandibular third molar with cusp 4 points loading. (a) Ferlement mesh (solid mesh)
with the material property and initial conditions. (bjféctive stress for the tooth due to
orthodontic 200! tensile forces were depicted as four concentrated forcezidirection
(as a tensile force). (c) The correspondence total dispiané (d) The correspondence

compression.

Total displacement
Time =1
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FIGURE 50: 3D model and stress, displacement and compressributions in the
mandibular molar (three roots) with cusp 3 points loadirg).Hinite element mesh (solid
mesh) with the material property and initial conditions. Efective stress for the tooth due
to orthodontic 200! tensile forces were depicted as four concentrated forcedirection
(as a compression force). (c) The correspondence totdbdesment. (d) The correspon-

dence compression.
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(a) (b) (c) (d)

FIGURE 51: 3D model and stress, displacement and comprestsiributions in the
mandibular molar (three roots) with cusp 4 points loadirg).Hinite element mesh (solid
mesh) with the material property and initial conditions. Eifective stress for the tooth due
to orthodontic 200! tensile forces were depicted as four concentrated foreedinection
(as a compression force). (c) The correspondence totdbdement. (d) The correspon-

dence compression.

o
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FIGURE 52: 3D model and stress, displacement and compredstiibutions in the max-
illary 3rd molar (two roots) with cusp 3 points loading. (anie element mesh (solid mesh)
with the material property and initial conditions. (bjféctive stress for the tooth due to
orthodontic 200! tensile forces were depicted as four concentrated forcezidirection
(tensile force). (c) The correspondence total displaceémeh The correspondence com-

pression.
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(a) (b) () (d)

FIGURE 53: 3D model and stress, displacement and compredstiibutions in the max-
illary 3rd molar (two roots) with cusp 4 points loading. (anie element mesh (solid mesh)
with the material property and initial conditions. (bjféctive stress for the tooth due to
orthodontic 200! tensile forces were depicted as four concentrated foreezidirection.

(c) The correspondence total displacement. (d) The carrelgnce compression.

In this chapter, an accurate three-dimensional CAD modpteposed from DI-
COM images and converted to STL. Then the STL file convertegliome (solid mesh) to
use it further in FEA. 3D stress and displacements fiedent real teeth type are success-
fully carried out on Anterior tooth, mandibular third mglarandibular molar and maxillary
third molar models using open-source finite element soMeBio. The limitations of the
experimental and analytical approaches used for stresdigpldcement analysis are over-
come by using FEA tool benefits such as dealing with complegry and complex
loading conditions. Thefkect of applying a force system to the two teeth is addressed
where the movement of one tooth will exert force on neighipteeth. Qualitative and
guantitative analysis based on FEBIo’s progressive visaklr scale, ranging from dark

blue to red are illustrated.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

This dissertation has presented 3D reconstruction using3teS approaches and
shape modeling with applications to dentistry. Moreoviestudied the orthodontic tooth

movement using analytical and FEA methods.

A. Summary of Contributions

The findings from this dissertation make several contrangito the current litera-

ture which can be summarized as follows:

e Chapter lll, a 3D library of teeffaw is built and is made it available for other’s

research.

e Chapter IV focused on the 3D surface reconstruction aspeditfman teeth based
on a single image. A more realistic formulation of the SFSpem is introduced by
considering the image formation components: the cameedjght source, and the
surface reflectance. We propose a non-Lambertian SFS thigouinder perspective
projection which benefits from camera calibration paramsetd he attenuation of

illumination due to near-field imaging is taken into account

e Chapter V proposed a novel approach for 3D surface recantigtnuof the human
jaw [20]. Due to the diiculties of setting up a data acquisition system inside the

mouth, an intraoral camera is used to capture a sequencklrhted images. These
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images are registered together to build a panoramic vieweojaw.

e Chapter VI, an approach for realistic 3D reconstructiorhefhuman teeth is devel-
oped using shape from shading with statistical shape pridrs work has addressed
several challenges including near illumination and canpenagpective projection,
while taking into account the deviation from the simplifgihambertian assump-
tion. The Oren-Nayar reflectance model is used fdiude rough surfaces with the

roughness parameter being physically measured by an bgticace profiler.

e Chapter VIl enhanced the current algorithms presentedeiptavious chapter (VI).
The approach developed in this chapter reconstructs ttiefteen single image shad-
ing with 2D-PCA shape priors that have a more sophisticafelatance model. The

Oren-Nayar-Waf model was used for modeling the surface reflectance.

e In Chapter VIII, an accurate three-dimensional CAD modgbrigposed from DI-
COM images and converted to STL. Then the STL file converteebtome (solid
mesh) to use it further in FEA. 3D stress and displacementiftarent real teeth
type are successfully carried out on Anterior tooth, mamldibthird molar, mandibu-
lar molar and maxillary third molar models using open-seuigite element solver,

FEBIo.

B. Limitations and Suggested Future Directions

The analysis also lead to a number of interesting obsengtgbme of which may

be considered as lines of future research.

e The next step is to investigate the fusion of SFS and SSFSen8IEE provides the
object-specific constructions while SSFS is perform shapewvery based on partial

information.
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¢ Designing and developing algorithms to construct a corei@&model of the human
jaw that includes crows, roots, and gum information by fggime 3D surface and

teeth databases as well as x-ray images.

e Evaluatiorivalidation of the reconstruction approach with respeataditional meth-

ods for specific dental practices.
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Appendix A

A. Derivatives of the 3D point vector

From EQ.(25)

M =B (sm-b) (A-1)
N o]
My=B*(sm+s{ 0, My=B*sm+s| 1| (A-2)
! 0 | ! 0 |

whereM is the first derivative of the 3D poitM with respect tax, andMy is the

first derivative of the 3D pointl with respect toy.

Mxy:B_l(Sxym+Sx 11+ 0 ),

0 0
0 0

Myx=B(sxm+s| 1 [+s] 1 (A-3)
0 0

whereM,, is the first derivative oM , with respect tg/, andM, is the first deriva-

tive of My with respect tox.

155



Mx = B (Som + 25| 0 |), (A-4)
! 0 ]
"

My =B (sym+2s,| 1) (A-5)
L 0 |

whereM,, is the second derivative of the 3D poivt with respect tok, andMy is

the second derivative of the 3D poidt with respect tgy.

M XXX — B_l(sxxx m + Ssxx 0 ), (A'6)

Myy =B (sym +3s,y| 1 |) (A-7)

whereM ,y is the third derivative of the 3D poifl with respect tax, andMy is

the third derivative of the 3D poirll with respect toy.
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M xxxx = B™H(SooxM + 48| 0 |), (A-8)
| O |
N

Myyy =B (syyym+4sy| 1 |) (A-9)
| O |

whereM . is the fourth derivative of the 3D poild with respect tax, andMy,y

is the fourth derivative of the 3D poit with respect toy.

B. Brightness Constraint Derivatives

From Eq.(55) we assume:

fi=( -R)? (A-10)
and the surface reflectance :
V-L
R= (A-11)
VWV

where V =M, x M,

681 _ 81‘1 6 81‘1 6 6f1
ds  0s ax[asM] ay[asy] (A-12)

where is the first derivative ofe; with respect tcs.

aJs

VIV)(Z) - V(VTE
i L e (r-13)
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afy VIV)(G) - V(V' &

—1=-_2(0-R o By
7s, (I = R)( (VTS
of, (VTV)(%) - V(VT%
— =-2( - R L
(935, (VTV)1~5
%:62/|SXXM),+MXX%
1 [0
=Bt 0 [xMy+MxB™?| 1
0 0
= (B 'm)x M,
1

d ,0V

— (B! -
&(E)—(B 0 |[)xMy + (B™'m)x My

AV _ oM
sy — 9sy

oMy
dsy

X My + My x

=M, x (B™*m)

J 0V
@(£)=Mxyx(3_lm)+|\/|x><(3_l 11)
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(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)



VX = MXX X My+ MX X Myx (A'Zl)

1. Smoothness Constraint Derivatives

From EQ.(28) set:

M, +MIM (A-23)
Then,

% — _i[a_fz] — g[a_fz]
ds  ox 9sc Iy ds

% _of, 0% of,

— —[= A-24
toelasg T oy, (A-24)
1 0
oe _ _
6—2 =-4aML B 0 |-4M] B 1
S
0 0
+2M BT M+ 2M g B (A-25)

C. Integrability Constraint Derivatives
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From Eq.(29) set:

f3 = (M xy Myx)T(M xy Myx)

(A-26)
= (S — $0%(B~'m)T(B™'m)
Then,
0sg & [afg] s &2 af3]
s OXJy 0Sy  OYOX OSx
= Z(B_lm)T(B_lm)(Sxyyx_ Syxyx = Sxyxy + Syxxy) (A-27)
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