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ABSTRACT

GEOMETRIC MODELING OF NON-RIGID 3D SHAPES: THEORY AND

APPLICATION TO OBJECT RECOGNITION

Mostafa Aly Ahmed Abdelrahman

November 20th 2013

One of the major goals of computer vision is the development of flexible and

efficient methods for shape representation. This is true, especially for non-rigid 3D

shapes where a great variety of shapes are produced as a result of deformations of

a non-rigid object. Modeling these non-rigid shapes is a very challenging problem.

Being able to analyze the properties of such shapes and describe their behavior

is the key issue in research. Also, considering photometric features can play an

important role in many shape analysis applications, such as shape matching and

correspondence because it contains rich information about the visual appearance

of real objects. This new information (contained in photometric features) and its

important applications add another, new dimension to the problem’s difficulty.

Two main approaches have been adopted in the literature for shape mod-

eling for the matching and retrieval problem, local and global approaches. Lo-

cal matching is performed between sparse points or regions of the shape, while

the global shape approaches similarity is measured among entire models. These

methods have an underlying assumption that shapes are rigidly transformed. And

Most descriptors proposed so far are confined to shape, that is, they analyze only

geometric and/or topological properties of 3D models.

A shape descriptor or model should be isometry invariant, scale invariant,
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be able to capture the fine details of the shape, computationally efficient, and have

many other good properties. A shape descriptor or model is needed. This shape

descriptor should be: able to deal with the non-rigid shape deformation, able to

handle the scale variation problem with less sensitivity to noise, able to match

shapes related to the same class even if these shapes have missing parts, and able

to encode both the photometric, and geometric information in one descriptor.

This dissertation will address the problem of 3D non-rigid shape representation

and textured 3D non-rigid shapes based on local features. Two approaches will be

proposed for non-rigid shape matching and retrieval based on Heat Kernel (HK),

and Scale-Invariant Heat Kernel (SI-HK) and one approach for modeling textured

3D non-rigid shapes based on scale-invariant Weighted Heat Kernel Signature (W-

HKS).

For the first approach, the Laplace-Beltrami eigenfunctions is used to de-

tect a small number of critical points on the shape surface. Then a shape descrip-

tor is formed based on the heat kernels at the detected critical points for different

scales. Sparse representation is used to reduce the dimensionality of the calculated

descriptor. The proposed descriptor is used for classification via the Collaborative

Representation-based Classification with a Regularized Least Square (CRC-RLS)

algorithm. The experimental results have shown that the proposed descriptor can

achieve state-of-the-art results on two benchmark data sets.

For the second approach, an improved method to introduce scale-invariance

has been also proposed to avoid noise-sensitive operations in the original trans-

formation method. Then a new 3D shape descriptor is formed based on the his-

tograms of the scale-invariant HK for a number of critical points on the shape at

different time scales. A Collaborative Classification (CC) scheme is then employed

for object classification. The experimental results have shown that the proposed

descriptor can achieve high performance on the two benchmark data sets. An im-

portant observation from the experiments is that the proposed approach is more
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able to handle data under several distortion scenarios (noise, shot-noise, scale,

and under missing parts) than the well-known approaches.

For modeling textured 3D non-rigid shapes, this dissertation introduces, for

the first time, a mathematical framework for the diffusion geometry on textured

shapes. This dissertation presents an approach for shape matching and retrieval

based on a weighted heat kernel signature. It shows how to include photometric

information as a weight over the shape manifold, and it also propose a novel

formulation for heat diffusion over weighted manifolds. Then this dissertation

presents a new discretization method for the weighted heat kernel induced by

the linear FEM weights. Finally, the weighted heat kernel signature is used as

a shape descriptor. The proposed descriptor encodes both the photometric, and

geometric information based on the solution of one equation.

Finally, this dissertation proposes an approach for 3D face recognition

based on the front contours of heat propagation over the face surface. The front

contours are extracted automatically as heat is propagating starting from a de-

tected set of landmarks. The propagation contours are used to successfully dis-

criminate the various faces. The proposed approach is evaluated on the largest

publicly available database of 3D facial images and successfully compared to the

state-of-the-art approaches in the literature.

This work can be extended to the problem of dense correspondence be-

tween non-rigid shapes. The proposed approaches with the properties of the

Laplace-Beltrami eigenfunction can be utilized for 3D mesh segmentation. An-

other possible application of the proposed approach is the view point selection for

3D objects by selecting the most informative views that collectively provide the

most descriptive presentation of the surface.
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CHAPTER 1

INTRODUCTION

In everyday experience, people are often unaware of how complex the shape

analysis performed by their brain is. Recognizing objects and making a decision

requires the analysis of the geometric as well as the photometric information

of these objects. The human visual system represents and easily recognizes de-

formable three-dimensional objects. Various psychophysical and physiological

studies have indicated that the human visual system encodes three dimensional

objects as multiple viewpoint-specific two-dimensional representations with ap-

propriate depth information. Human visual performances are still superior to

that of computer vision in many aspects.

For computers, computer vision attempts to imitate the ability of human

vision, and aims to make the computer see as a human. A lot of research has

been done in the area of computer object recognition (or classification), to find an

object-invariant representation, and to search for a robust feature detector and

an invariant model for 3D objects, especially non-rigid objects.

There are a great variety of shapes produced as a result of deformations of

a non-rigid object. Modeling these non-rigid shapes is a very challenging problem

in the area of computer vision. Being able to analyze the properties of such shapes

and describe their behavior is the key issue in research.

Geometric modeling is fundamental for visual computing because it pro-

vides shape representation for geometric objects by trying to understand their
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shapes properties. Geometrical representation of shapes take many forms: two-

dimensional, three-dimensional point clouds, triangular meshes, and parametric

or implicit surfaces.

After modeling each shape it is needed to look for a distance measure

between these shape models. If this distance is small, this conclude that the

shapes are similar. In case of non-rigid shapes finding a discriminant distance

measure is critical due to the fact that an object can take many forms as a result

of its deformations, where the same object shapes seem to be dissimilar due to

large deformation.

To be able to correctly check the similarity of non-rigid shapes, it is needed

to look for the properties that distinguish between these shapes. Such properties

are called deformation invariant signatures, and the similarity measure based

on these properties is called deformation-invariant similarity. So deformation

invariant signatures and deformation-invariant similarity measure is needed for

non-rigid 3D objects.

Recently, many sensors are able to acquire the color information besides

the 3D shape. Also multiple-view stereo techniques are able to recover both

geometric and photometric information. These photometric features can play an

important role in many shape analysis applications, such as shape matching and

correspondence because they contain rich information about the visual appearance

of real objects. This new requirement and its important applications adds another,

new dimension to the difficulty of the problem. Most descriptors proposed so far

are confined to shape, that is, they analyze only geometric and/or topological

properties of 3D models. Therefore more effort is needed to consider color in

addition to shape in object representation and description.

Non-rigid objects are all around, and there is no particular problems in

dealing with them in the daily lives. The world is full of objects that, due to

their physical properties, are non-rigid and therefore can be deformed and bent.
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Non-rigid shapes appear at all scales in nature, for example, the human body, its

organs and tissues. However the mathematical tools available for the description

and analysis of these deformable objects are few, and only relatively recently

researchers in graphics and computer vision have started paying due attention to

them. During the past decades, a large number of shape matching and searching

techniques have been developed (e.g. using moments, spherical harmonics, or

Reeb graphs,...,etc.). Evaluation of 3D shape modeling methods, with respect to

other requirements, can be found in [9, 10, 11, 12, 13].

1.1 Shape Representation

Recently, using 3D object’s data has become more important in the area

of computer vision, as recognition systems based on 3D models are less sensitive,

or may be invariant, to lighting conditions and pose variations as compared to

2D models. The emergence of laser/lidar sensors, reliable multi-view stereo tech-

niques and more recently consumer depth cameras have made the acquisition of

3D models easier than before. Also recent advances in 3D hardware acquisition

devices, such as 3D cameras, laser scanners, magnetic resonance (MR), and com-

puted tomography (CT), made it easy to reconstruct high-quality 3D models,

which have to be analyzed or visualized in a concise way. While 3D models can

be described by their color, texture, and shape information, both color and tex-

ture (photometric data) are not always available, depending on the reconstruction

method or acquisition technique. Therefore, shape is the lowest common denom-

inator in describing 3D objects.

Today understanding shape is of great importance in pattern analysis and

machine intelligence. One of the major goals of computer vision and machine

intelligence is the development of flexible and efficient methods for shape repre-

sentation or the creation of a shape descriptor or signature for shape matching.

The descriptor captures the properties of the shape that distinguish it from shapes
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Requirement Description

Isometry invariant Isometric shapes should have the same descriptor
regarding the objects given representation and location.

Scale invariant For some applications, it is necessary that the descriptor is
independent of the objects size, therefore the descriptor

should optionally be scale invariant.
Similarity Similarly shaped objects should have similar descriptors.
Completeness (or shape-awareness) Descriptor should give a complete

characterization of the shape, thus representing the
shape uniquely.

Scope It must be able to describe all classes of shapes.
Hierarchical It must describe the shape at multiple scales in a similar

fashion to a hierarchical structure (i.e, provides a coarse
to fine level of detail).

Accessibility It must be easy to implement.
Efficiency It must be computationally efficient, or the time and space

needed to compute those descriptors should be reasonable.

Table 1.1: Requirements of ideal shape representation method.

belonging to other classes.

Many geometric shape invariants (e.g. circumference, surface area, volume,

bounding sphere or eigenvalues of the inertia tensor) have strong limitations, and

are not invariant to shape deformation.

1.1.1 Properties of Shape Descriptor

Evaluating the quality of a shape representation is not a trivial task because

the method of choice depends on the properties of the described shape and the

used application. Shape descriptor should have as many of the properties in

Table 1.1 as possible [2], [14].

M. Reuter [2] Defined the properties Isometry and Congruency as: Two

geometric objects are isometric if a homeomorphism from one to the other exists

preserving (geodesic) distances, i.e. mapping curves to curves with equal arc

length. This homeomorphism is then called an isometry.

This is right if the geodesic distances is considered as a deformation invari-
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ant representation. But this work considers deformation (or transformation) that

does not preserve the length of the curves. So Isometry in general can be defined

as:

Definition 1 Isometry: Two geometric objects are isometric if there exists a

distance-preserving map between metric spaces.

A more precise definition will be given in Section 3.1.7 then and Congruency can

be defined as:

Definition 2 Congruency: Two geometric objects are congruent if they can be

transformed into each other by rigid motions (translations and rotations) as well

as reflections.

1.1.2 Data Representation of Shapes

The 3D shapes can be represented in different levels: The first level is a

set of points in 3D space. The second level is the shape boundary. And the third

level is the volume of the shape.

1.1.2.1 Point-based Representation

One important way, among other possibilities, to represent the acquired

3D model is a 3D point cloud, which can be developed into a surface through

meshing. The boundary of the object is described by either a cloud of points as

shown in Figure 1.1 (a) or range images. Range images are similar to intensity

images in the sense that they capture the shape from one point of view except

that the color information of the pixel carries the depth information of the surface

point from the camera.

In general, point-based representation lacks the structure information of a

shape but it is enough for visualization purposes.
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(a)

(b)

(c)

Figure 1.1: (a) Point-based shape representation using cloud of points, (b)
Surface-based shape representation using polygonal mesh, (c) Volume based shape
representation using grid of voxels.
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(a) (b)

Figure 1.2: (a) Microsoft Kinect, (b) Example of 3D reconstruction generated by
the Kinect.

Kinect (see Figure 1.2 (a)) is an amazing sensor that can be used to gener-

ate range and RGB images. The depth data from Kinect can be used to track the

3D pose of the sensor and reconstruct, geometrically precise, 3D models of the

physical scene in real-time, see Figure 1.2 (b). Also it can provide the photometric

information in the RGB image.

1.1.2.2 Boundary-based Representation

A 3D object can be represented in terms of its boundary or surface, which

is the common representation in a computer aided design (CAD) and in computer

graphics industries. The boundary data can be described by polygonal meshes as

shown in Figure 1.1 (b), parametric forms, or implicit surfaces.

1.1.2.3 Volume-based Representation

A 3D shape is represented by the volume it occupies. The volumetric data

is described by voxels as shown in Figure 1.1 (c) or solid primitives. A voxel is

the minimum 3D unit of a volume. This representation is commonly used in the

field of computer vision and medical imaging due to the nature of the acquisition

process.

7



1.1.3 Model-based Shape Representation Techniques

Although literature is rich with several shape descriptors definitions, they

can be classified under two main categories: model-based or view-based. Model-

based methods directly make use of the 3D data, while view-based methods

store a number of 2D projections of the 3D object. Previous investigations, such

as [15], [16] demonstrate that view-based methods with pose normalization pre-

processing can achieve better performance in retrieving rigid shapes, but at higher

storage and computational cost than many other 3D descriptors.

Model-based techniques can be categorized into global feature-based tech-

niques, graph-based techniques, and local feature techniques.

Definition 3 Descriptor: A feature descriptor is a representation of a feature,

or a region around a feature, computed from attributes such as intensity, color or

texture of the feature or the region.

Definition 4 Global feature: Global features describe objects as a whole using

a single descriptor.

1.1.3.1 Global Feature-based Techniques

Global feature-based methods use global properties of the object such as

moments and spherical harmonics to represent its shape. Moments were used in

mechanics for purposes other than shape description.

The advantage of moment based-methods is that they are mathematically

concise. The disadvantage is that it is difficult to correlate high-order moments

with shape features. Spherical harmonics [17] is another alternative, in which a

linear combination of the spherical harmonics are used to describe the surface of

the object. Spherical harmonics are a decomposition of a spherical function by

finding the Fourier transform on a sphere.
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The spherical harmonic coefficients can be used to reconstruct an approx-

imation of the original object at different levels.

In general, global feature-based methods fail to capture the local details of

a shape and are not very robust [18].

1.1.3.2 Graph-based Techniques

Since the topology of an object is an important shape characteristic, graph-

based methods aim at reducing the shape into a graph that captures its topology.

The major advantage in representing a 3D model as a topological graph is that

it allows representation at multiple levels of detail and hence facilitates analysis

and matching of local geometry.

B-Rep Graph: Boundary representation (B-Rep) is a common represen-

tation in CAD and computer graphics industries, where the object’s boundary is

represented as a graph. The nodes of the graph represent the set of bounding

surfaces while the edges represent the intersecting curves between corresponding

surfaces.

Skeletal Graph: Skeletal graph-based techniques compute a 1D skeleton

of an object and then convert it into a skeletal graph as its shape representation.

A skeleton is a compact representation of a shape that maintains its topology.

Each point of the skeleton is associated with a radius function, that is the radius

of its maximal disk/sphere. Therefore, the shape can be represented with less

information than the original one.

Generally, graph-based techniques suffer from missing parts and noise ar-

tifacts.

1.1.3.3 Local Feature-based Techniques

Although global shape descriptors have shown good performance on many

data sets, they have an underlying assumption that shapes are rigidly transformed.
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Different approaches used local feature detection and a local descriptor to describe

3D shapes, such as spin images [19], surface point signature [20], contour and edge

detection features [21], local patches [22], and conformal factor [23]. However

these methods cannot deal with the non-rigid shape deformation, and cannot

cover the properties of the desired shape descriptor.

The problem of non-rigid shapes deformation needs more work to com-

pensate for the degrees of freedom resulting from local deformations. Early work

by Elad and Kimmel [4, 24] proposed modeling shapes as metric spaces with the

geodesic distances as an intrinsic metric, which are invariant to inelastic defor-

mations. Ling and Jacobs [25] and Bronstein et al. [26] used this framework with

a metric defined by internal distances in 2D shapes. Reuter et al. [2, 27] used the

Laplacian spectra as intrinsic shape descriptors, and they employed the Laplace-

Beltrami spectra as ’shape-DNA’ or a numerical fingerprint of any 2D or 3D man-

ifold (surface or solid). They proved that ’shape-DNA’ is an isometry-invariant

shape descriptor. Rustamov [28] used an isometry-invariant shape representation

in the Euclidean space, and then histograms of Euclidean distances to compare

between shapes.

1.2 Why this Work?

One of the most challenging settings is the case of non-rigid or deformable

shapes, in which the class of transformations may be very wide due to the capa-

bility of such shapes to bend and assume different forms. When trying to adapt

feature-based approaches applied to 2D images to 3D shapes, the following have

to be considered:

• First, the invariance type in non-rigid 3D shapes is different than these

in images. In images typical feature detectors and descriptors should be

invariant to affine transformations. In case of non-rigid shapes, the varia-
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tion of transformations is much larger, including changes in pose, bending,

and connectivity changes. Since many natural shape deformations such as

bending can be approximated by isometries, so the shape descriptors de-

pend on intrinsic properties of the shape. This makes it invariant to such

deformations.

• Second, shapes are not rich in features like 2D images, making it harder to

detect a large number of repeatable and stable key-points. This difficulty

motivates a lot of researchers to avoid feature detection at all and use dense

descriptors instead.

• Finally, shapes are often represented as triangular meshes, point clouds,

voxels, level sets, etc. Therefore, local features is desirable to be computable

across multiple representations.

As such, the area of shape modelling and representation still needs more

work, and this is the domain of the current dissertation. Also, considering photo-

metric features can play an important role in many shape analysis applications,

such as shape matching and correspondence because it contains rich information

about the visual appearance of real objects. This new information (contained in

photometric features) and its important applications adds another, new dimension

to the problem difficulty. Most descriptors proposed so far are confined to shape,

that is, they analyze only geometric and/or topological properties of 3D models.

Therefore more efforts need to be done to consider color in addition to shape

in object representation and description. This dissertation will consider also the

representation of textured shapes in order to develop an efficient descriptor that

combines the color information as well as the geometric shape information. The

sought representation should cope with non-rigid transformations, which is a key

requirement for many target applications.
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1.2.1 Motivation Behind this Work

Although global shape descriptors have shown good performance on many

data sets, they have an underlying assumption that shapes are rigidly transformed.

So global methods cannot deal with the non-rigid shape deformation. Other

methods use local feature detectors and local descriptors to describe 3D shapes,

but these methods cannot deal with the non-rigid shape deformation, cannot

cover the properties of the desired shape descriptor, and suffer a lot when shapes

are corrupted with noise or in the case of partial shape matching. Recent work

by Bronstein et al [3] uses the Heat Kernel Signature (HKS) and scale-invariant

heat kernel signature as a shape descriptor. However their method to handle the

scale variation is sensitive to noise, and their descriptor does not perform well for

partial shape matching or in case of shapes with missing parts.

A shape descriptor or model that has as many of the properties in Table 1.1

as possible is needed. This descriptor should be able to deal with the non-rigid

shape deformation, should handle the scale variation problem with less sensitivity

to noise, should be able to match shapes related to the same class even if these

shapes have missing parts.

Recently, taking the photometric information into account to calculate a

3D shape descriptor has attracted more research. The work by Kovnatsky et

al. [29] is the most related work to this work; it uses the diffusion geometry

framework for the fusion of geometric and photometric information in local and

global shape descriptors. Their construction is based on an ad hoc definition of a

diffusion process on the shape manifold embedded into a high-dimensional space

where the embedding coordinates represent the photometric information. Their

method fails to provide a mathematical justification for their proposed heat kernel

framework or the proposed discretization method. So a shape descriptor or model

that encodes both the photometric, and geometric information is needed.
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1.3 Contributions and Proposed Approach

The construction of a feature-based representation of an image typically

consists of two stages, feature detection and feature description, often combined

into a single algorithm. The main goal of a feature detector is to find stable points

or regions in an image that carry significant information on one hand and can be

repeatedly found in transformed versions of the image on the other. The same

methodology will be used with the 3D shapes.

For the feature detection stage, and as a first contribution of this disser-

tation, a new method for feature detection on 3D shapes is proposed. A small

number of critical points are detected on the shape surface. An observation shows

that shapes belonging to the same class consistently have almost the same num-

ber of critical points, whereas these numbers differ from one class to another. As

such, this number can be used as one of the discriminatory features between the

different classes.

The next stage is feature description. A feature descriptor uses a represen-

tation of local image information in the neighborhood of each feature point. As a

second contribution, this dissertation proposes two new feature descriptors, one

based on the Heat Kernels (HK) [30], and another constructed from scale-invariant

heat kernels [31]. The heat kernels are calculated at the detected critical points

for different scales. This reduces the size or dimensionality of the descriptors, yet

does not sacrifice the accuracy of the presentation. Evaluate the proposed descrip-

tors will be given on the problem of 3D shape retrieval and object classification.

Different classification methods are assessed for that goal.

This dissertation also introduces, for the first time, a mathematical frame-

work for the diffusion geometry on textured shapes. It presents an approach for

shape matching and retrieval based on a weighted heat kernel signature. This dis-

sertation shows how to include photometric information as a weight over the shape
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manifold, also proposes a novel formulation for heat diffusion over weighted man-

ifolds. Then it presents a new discretization method for the weighted heat kernel

induced by the linear Finite Elements Method (FEM) weights. This dissertation

also proposes a new method to introduce the scale invariance for the weighted

heat kernel signature. Finally, the weighted heat kernel signature is used as a

shape descriptor. The proposed descriptor encodes both the photometric, and

geometric information based on the solution of one equation.

Finally, this dissertation proposes an approach for 3D face recognition,

in the framework of the Biometric Optical Surveillance System (BOSS) in the

Computer Vision and Image Processing Laboratory (CVIP Lab.), based on the

front contours of heat propagation over the face surface. The front contours are

extracted automatically as heat is propagating starting from a detected set of

landmarks. The propagation contours are used to successfully discriminate the

various faces. The proposed approach is evaluated on the largest publicly available

database of 3D facial images and successfully compared to the state-of-the-art

approaches in the literature.

As such, the specific objectives of this dissertation can be summarized as

follows:

• To review literature for the existing methods for non-rigid shape modeling.

• To study the solution of the heat equation and the reconstruction of the

heat kernels as a promising direction for shape representation.

• To design a feature detector for non-rigid 3D shapes.

• To design a shape descriptor based on the heat kernel and scale-invariant

heat kernels.

• To design a framework for the diffusion geometry on textured shapes.
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• To study the application of using the front propagation contours for 3D face

recognition.

• To evaluate the proposed methods on existing benchmark data sets.

1.4 Dissertation Organization

This document is organized as follows: Chapter 2 reviews the existing

2D and 3D descriptors. Chapter 3 gives an introduction to the geometry funda-

mentals, and discusses the definition of basic terms in geometry and topology, the

length spaces, isometries, manifolds, embedded surfaces, first fundamental form,

curvature and the second fundamental form. It also details the derivation of the

heat equation. Then it describes the Initial Boundary Value Problem (IBV). Also

it gives the details of the the Laplace-Beltrami operator, its properties, the dis-

cretization of the Laplace-Beltrami operator, and how to use it to solve the heat

equation IBV problem on a manifold. After that it talks about the solution of

the heat equation and the basics of diffusion on Riemannian manifolds that are

necessary to define the heat kernel, and how to solve for the heat kernels using

Finite Element Method (FEM) approximation. Chapter 4 introduces two pro-

posed approaches for shape matching and retrieval based on heat kernel (HK),

and scale-invariant heat kernel (HK). Chapter 5 presents in detail the heat diffu-

sion over weighted manifolds as a new descriptor for textured 3D non-rigid shapes.

Chapter 6 presents a framework for 3D face recognition based on the front prop-

agation contours of heat kernels. Chapter 7 concludes the proposal and gives

insight for extensions and future work to be tackled during this research.
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CHAPTER 2

EXISTING 2D AND 3D SHAPE

DESCRIPTORS

The fast development of 3D data rendering and acquisition techniques

brings high attention to the applications related to 3D models (security, multi-

media, and biometrics). This development attracted both the scientific and the

engineering communities to the problem of shape modeling. The modeling and

retrieval of 3D shapes remains a challenging problem. Now, the most important

objectives is to be able to simply represent 3D objects, and efficiently carry out

operations such as object classification, recognition and retrieval.

An active area of research in the image domain is image retrieval: the

problem of finding images depicting similar scenes or objects. Images have signif-

icant variability similar to three-dimensional shapes, Figure 2.1, and the aim of a

successful retrieval approach is to be invariant to such changes, while maintain-

ing high discriminative power. Significant advances have been made in designing

efficient image retrieval techniques (see an overview in [32]). Many approaches

were recently proposed to describe a 3D object. Some of these approaches are

extended from the 2D image application to the 3D domain. Other methods are

mainly built for 3D shapes [33]. A 3D shape retrieval algorithm should be able

to retrieve shapes belonging to the same class even with different deformations.

When considering the photometric information the 3D shape retrieval algorithm

should be able to retrieve shapes with similar texture first as shown in Figure 2.1.

This chapter will review the existing 2D and 3D descriptors especially local feature
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Figure 2.1: Examples of 2D object retrieval (top), 3D shape retrieval (middle),
and textured 3D shape retrieval (bottom). Shown on the left is a query, and on the
right, examples of retrieved or matched objects. Transformations shown in image
retrieval are viewpoint variation, different color, and background variation, in
shape retrieval different non-rigid shape deformations are shown, and for textured
3D shape retrieval similar shapes with similar texture are shown.

which is the domain of the current dissertation.

2.1 2D Detectors and Descriptors

The state-of-the-art image matching algorithm consists of three parts: fea-

ture detector, feature descriptor, and feature matching. In some cases, using

one feature that has a strong discriminatory is sufficient to distinguish between

objects. For example, the color of the objects can be used as a feature to dis-
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tinguish between objects. However, in many cases one feature is not enough for

recognition. For example, fruits can be distinguished using the shape and color,

and color is not a distinctive feature to distinguish between two flowers. In this

case, color and texture may be combined together to provide this sort of dis-

tinction. Among the methods used for object description are: Local invariant

features, global features, image segments, and exhaustive and random sampling

of features.

2.1.1 Local Features

Local (invariant) features are a powerful tool, that have been applied suc-

cessfully in a wide range of systems and applications. The features must be at

least partially invariant to illumination, 3D projective transforms, and common

object variations. On the other hand, the features must also be sufficiently dis-

tinctive to identify specific objects among many alternatives. The difficulty of

the object recognition problem is due to the lack of success in finding such image

features. However, recent research on the use of dense local features e.g., Schmid

and Mohr [34] has shown that efficient recognition can often be achieved by using

local image descriptors. Some commercial object recognition systems depend on

correlation-based template matching. When object pose and illumination are not

controlled enough, then template matching becomes computationally infeasible.

When there are object rotation, scale, illumination, and 3D pose, it will be even

more challenging.

This problem become more challenging when dealing with partial visibility

and large model databases. Instead of searching all image locations for matches

the idea is to extract features from the image that are partially invariant to the

image formation then process and match those features. Many candidate feature

types have been proposed, including line segments [35], groupings of edges [36],

and regions [37], among many other works. While these features have worked well
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for certain object classes, they are often not detected frequently enough or with

sufficient stability to form a basis for reliable recognition. There has been recent

work on developing more dense image features. One approach has been to use a

corner detector around which local image properties can be measured.

Zhang et al. [38] used the Harris corner detector to identify feature loca-

tions for epipolar alignment of images taken from differing viewpoints. Rather

than attempting to correlate regions from one image against all possible regions in

a second image, large savings in computation time were achieved by only match-

ing regions centered at corner points in each image. For the object recognition

problem, Schmid and Mohr [34] also used the Harris corner detector to iden-

tify interest points, and then created a local image descriptor at each interest

point from an orientation-invariant vector of Derivative-of-Gaussian image mea-

surements. These image descriptors were used for robust object recognition. The

corner detectors used in these previous approaches have a major failing, which

is that they examine an image at only a single scale. As the change in scale be-

comes significant, these detectors respond to different image points. Also, since

the detector does not provide an indication of the object scale, it is necessary to

create image descriptors and attempt matching at a large number of scales.

Some current successful methods for object classification learn and apply

quite precise geometric constraints on feature locations [39], others ignore geom-

etry and use a ”Bag-of-Features (BoF)” approach that ignores the locations of

individual features [39], [40]. Intermediate approaches retain some coarsely-coded

location information [41] or record the locations of features relative to the object

center [42], [43].

Large database image recognition refers to the task of correctly matching

a query image to an image of the same object selected from a large database. In

this context large refers to image sets where the amount of data exceeds what can

be stored in available memory. Conventional approaches which store individual
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local descriptors for each image [36] are no longer suitable as the number of im-

ages rises into the millions or higher. One solution to this problem was proposed

by Sivic and Zisserman [44], in which image descriptors are quantized into visual

words. Quantized matching is performed using a Bag-of-Words (BOW) method, in

which visual word occurrences alone are used to measure image similarity. Their

approach employs a term-frequency inverse document-frequency (tf-idf ) weight-

ing scheme similar to that used in text retrieval. In current BOW methods, all

descriptors from the initial image set are quantized and discarded while their ge-

ometric data are preserved for later matching. Quantization significantly reduces

the storage requirements for features as invariant descriptors do not need to be

retained, but can be summarized by a single cluster center for all features in a

visual word. However, other information must still be retained for each feature,

such as its source image ID, as well as location, scale, and orientation within that

image for final geometric checking. In practice, the use of visual words provides,

at most, a one order of magnitude reduction in memory usage regardless of the

number of features within each visual word.

This section will discuss the properties of the ideal local feature, the differ-

ent types of corners and region detectors, and different local invariant descriptors.

2.1.2 Properties of the Ideal Local Feature

Local features typically have a spatial extent, i.e., the local neighborhood

of pixels mentioned above. In contrast to classical segmentation, this can be

any subset of an image. The region boundaries do not have to correspond to

changes in image appearance such as color or texture. Also, multiple regions

may overlap, and uninteresting parts of the image such as homogeneous areas can

remain uncovered.

Ideally, one would like such local features to correspond to semantically

meaningful object parts. In practice, however, this is unfeasible, as this would
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require high-level interpretation of the scene content, which is not available at

this early stage. Instead, detectors select local features directly based on the

underlying intensity patterns. Good features should have the following properties:

• Repeatability: Given two images of the same object under different viewing

conditions, the features detected on the scene part visible in both images

should be found in both images.

• Distinctiveness/informativeness: The intensity patterns underlying the de-

tected features should show a lot of variation.

• Locality: The features should be local, so as to reduce the probability of

occlusion and to allow simple model approximations of the geometric and

photometric deformations.

• Quantity: The number of detected features should be a reasonable number.

However, the optimal number of features depends on the application. Ide-

ally, the number of detected features should be adaptable over a large range

by a simple and intuitive threshold.

• Accuracy: The detected features should be accurately localized in image

location, as with respect to scale and possibly shape.

• Efficiency: Preferably, the detection of features in a new image should allow

for time-critical applications.

• Invariance: When large deformations are to be expected, the preferred

approach is to model these mathematically if possible, and then develop

methods for feature detection that are unaffected by these mathematical

transformations.

• Robustness: In the case of relatively small deformations, it often suffices to

make feature detection methods less sensitive to such deformations. Typical
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deformations that are tackled using robustness are image noise, discretiza-

tion effects, compression artifacts, blur, etc.

2.1.3 Local Feature Detectors

A large number of local feature detectors have been proposed in the liter-

ature. Example of local feature detectors are:

• Corner detectors:

Harris detector [45].

Smallest Univalue Segment Assimilating Nucleus (SUSAN)Detector [46].

Harris-Laplace: scale invariant corner detector [47].

Harris-Affine: affine-invariant corner detector [48].

• Blob detectors [49]:

Hessian detector.

Hessian-Laplace.

Hessian-Affine.

Difference-of-Gaussians (DoG) (used in Scale Invariant Feature Trans-

form(SIFT) [50], (ASIFT) [51], (C-SIFT) [52], and (n-SFIT) [53]).

FAST: Features from Accelerated Segment Test.

• Region detectors:

Edge-based regions detector.

Salient region detector [54].

Intensity-based regions.

Maximally Stable Extremal Regions (MSER) [55].
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2.1.4 Local Feature Descriptors

A large number of Local feature descriptors have been proposed in the

literature. Example of local feature detectors are:

• SIFT [50].

• Shape context [56].

• SURF: Speeded Up Robust Features [57].

• DAISY descriptor [58].

• Binary descriptors:

LBP: Local Binary Patterns [59].

BRIEF: Binary Robust Independent Elementary Features [60].

ORB: Oriented FAST and Rotated BRIEF [61].

BRISK: Binary Robust Invariant Scalable Keypoints [62].

LIOP: Local Intensity Order Pattern for Feature Description [63].

Almost all of these descriptors have been extended form 2D to 3D. Details

about these algorithms will not be discussed here because this is not the focus of

the current research.

2.2 3D Detectors and Descriptors

The problem of 3D Shape Retrieval has become an active research area and

attracted more researchers from several research communities including pattern

recognition [9, 10], computer graphics [13], computer vision [64, 65], and applied

mathematics [11].

When try to adapt feature-based approaches applied to 2D images to 3D

shapes, have to consider that the invariance type in non-rigid shapes is different
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than these in images, where variation of transformations is much larger, including

changes in pose, bending, and connectivity changes. Since many natural shape

deformations such as bending can be approximated by isometries, so the shape

descriptor should depends on intrinsic properties of the shape, this dependency

makes it invariant to such deformations.

Also shapes are not rich in features like images, making it harder to de-

tect a large number of repeatable and stable keypoints. This motivates a lot of

researchers to avoid feature detection at all and use dense descriptors instead. As

such, the area of 3D shape descriptors for shape matching and retrieval still needs

more work.

Although literature is rich with several shape descriptors definitions, they

can be classified under two main categories: model-based or view-based. Model

based methods directly make use of the 3D data, while view based methods

store a number of 2D projections of the 3D object. Previous investigations, such

as [15], [16] demonstrate that view-based methods with pose normalization pre-

processing can achieve better performance in retrieving rigid shapes, but at higher

storage and computational cost than many other 3D descriptors.

Model based techniques can be categorized into global feature-based tech-

niques and local feature techniques. Local matching [66] is performed between

sparse points or regions of the shape, while in the global shape approaches simi-

larity is measured among entire models [67]. For global or whole-to-whole shape

matching, various descriptors have been proposed for representing the distribution

of a shapes surface area. The Spherical Harmonic descriptor [68] represents the

distribution of surface area in each shell as a series of spherical harmonic coeffi-

cients. Other descriptors include geometric moments [69], distribution of pair-wise

Euclidean distances [70], volume and area descriptors [71], Self-similarity (sym-

metry) Kazhdan et al. [68], and the work by Hassouna et al. [72] which represents

a 3D shape by a set of one-dimensional curves that are locally symmetric with
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respect to its boundary. Evaluation of 3D shape retrieval methods with respect

to other several requirements can be found in [12].

Although global shape descriptors have shown good performance on many

data sets, they have an underlying assumption that shapes are rigidly transformed.

Different approaches used local feature detection and a local descriptor to describe

3D shapes, such as spin images [19], surface point signature [20], contour and edge

detection features [21], local patches [22], and conformal factor [23]. However

these methods cannot deal with the non-rigid shape deformation, and can not

cover the properties of the desired shape descriptor.

The problem of non-rigid shape deformation needs more work to compen-

sate for the degrees of freedom resulting from local deformations. Early work

by Elad and Kimmel [4, 24] proposed modeling shapes as metric spaces with

the geodesic distances as an intrinsic metric, these spaces are invariant to in-

elastic deformations. Ling and Jacobs [25] and Bronstein et al. [26] used this

framework with a metric defined by internal distances in 2D shapes. Reuter et

al. [2, 27] used the Laplacian spectra as intrinsic shape descriptors, and they em-

ployed the Laplace-Beltrami spectra as ’shape-DNA’ or a numerical fingerprint of

any 2D or 3D manifold (surface or solid). They proved that ’shape-DNA’ is an

isometry-invariant shape descriptor. Rustamov [28] used an isometry-invariant

shape representation in the Euclidean space, and then histograms of Euclidean

distances to compare between shapes.

Another type of intrinsic geometry is generated by heat diffusion processes

on the shape. Coifman and Lafon [73] popularized the notation of diffusion geom-

etry, which is closely related to scale-space methods in image processing. Recently

Sun et al. [74] proposed heat kernel signatures (HKS) as a deformation-invariant

descriptor based on diffusion of multi-scale heat kernels. HKS is a point based

signature satisfying all of the good descriptor properties except for scale invari-

ance. It characterizes each vertex on the meshed surface using a vector. However,
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Figure 2.2: Example of a 3D shape to the left and the detected points to the right
using Harris 3D detector.

the authors did not demonstrate how to retrieve shapes using HKS, although they

pointed out its potential in shape retrieval applications. Bronstein et al. [75] tried

to tackle the scale problem in HKS. Fang et al. [1, 76] defined the temperature dis-

tribution (TD) of the heat mean signature (HMS) as a shape descriptor for shape

matching, and they used the same heat kernel for mesh segmentation. Their TD

is a global shape descriptor and they used the L2 norm which is a very basic

matching method to compute the distance between two TD descriptors. Shape

Google work by Bronstein et al. [3] introduces a shape retrieval method based on

the Heat Kernel Signature (HKS) and its scale-invariant version. The idea is to

evaluate HKS at all points of a shape or alternatively at some feature points of a

shape and to represent the shape by a Bag of Features (BoF) vector. Sparsity in

the time domain is enforced by preselecting some values of the time t.

There are several local detection and description algorithms for 3D shapes.

An overview some of them follows.

2.2.1 3D Feature Detectors

An interest point detector in 3D mesh must have some of these properties:
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• It must be invariant to affine transformations.

• It must be robust to noise, which can be introduced during the capture

process.

• It must be robust to different tessellations.

This section will examine some examples of the feature detectors.

2.2.1.1 Harris 3D

The Harris operator is an effective feature detection method, first proposed

in images [45], and was extended to 3D shapes by Sipiran and Bustos [77]. This

method detects interest points for 3D objects based on the Harris operator. They

propose an adaptive technique to determine the neighborhood of a vertex, over

which the Harris response on that vertex is calculated. Figure 2.2 shows an

example of detected points using this approach.

2.2.1.2 Mesh DOG

Difference of Gaussians (DOG) is a classical feature detection approach

used in computer vision. Among these methods that use the DOG for feature

detection in 3D is Zaharescu et al. [78] which introduces the mesh DOG approach

by first applying Gaussian filtering to functions defined on the shape. The ex-

trema of the functions Laplacian (DOG) are found across scales using a one-ring

neighbourhood, then detected extrema are thresholded. After that the unsta-

ble extrema are eliminated. Examples of detected features using Mesh DOG are

shown in Figure 2.3.

2.2.1.3 Heat Kernel Feature Detectors

Sun et al. [74] proposed a feature detection methods based on the heat

kernel. These methods define a function on the shape, and measure the amount
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Figure 2.3: Examples of detected features using Mesh DOG on individual 3D
human teeth.

of heat remaining at a point x after large time t given a point source at x at time

0. Then use local maxima of this function as feature points.

2.2.2 3D Feature Descriptors

A local descriptor for a 3D shape must have some of these properties defined

in Table 1.1. Some examples of local description algorithms will be examined

bellow.

2.2.2.1 Shape Context

Though originally proposed for 2D shapes and images [56], shape context

has also been generalized to 3D shapes. Such a descriptor is translation-invariant

and can be made rotation-invariant. It is computable on any kind of shape rep-

resentation, including point clouds, voxels, and triangular meshes, but it is not

deformation invariant, therefore it is not suitable for non-rigid shape analysis

applications.

2.2.2.2 Spin Images

Perhaps one of the best known classes of feature descriptors are spin im-

ages, which is introduced by Johnson and Hebert [19]. This method originally

developed for rigid shape comparison, and is thus very sensitive to non-rigid shape

deformations.
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2.2.2.3 Mesh HOG

Zaharescu et al. [78] use the histogram of gradients of a function defined in

a local neighborhood of a point, as a point descriptor (similar to the Histogram of

Gradients (HOG) technique used in computer vision). Zaharescu et al. [78] show

insensitivity of their descriptor to non-rigid deformations.

2.2.2.4 Geodesic Distance

A Riemannian manifold is a manifold M with a Riemannian metric U(u, v),

also called the first fundamental form. The Riemannian metric is an inner product

in the tangent space and can be defined for two tangent vectors x1 and x2 with the

help of the first fundamental matrix G. After calculating the lengths, the shortest

distances can be computed between two points x, y ∈M along the surface. This

shortest distance called the geodesic distance Dy(x), between any point x and y

can be obtained by solving the Eikonal equation

|∇Txi
D(x)| = 1, (2.1)

with boundary condition Dy(y) = 0.

2.2.2.5 ShapeDNA

The ShapeDNA has been introduced in [2] as the first spectral method

used for non-rigid shape analysis. Spectral methods have later been employed by

the authors for local shape analysis of structures in the human brain to analyse

disease effects [27] and for automatic shape segmentation [6]. ShapeDNA is the

first n eigenvalues of the Laplace-Beltrami Operator (LBO) for 2D surfaces or 3D

solids. The proposed approach will be compared with ShapeDNA in Chapter 3.

29



Figure 2.4: Example of feature matching using meshSIFT on 3D colon parts.

2.2.2.6 Heat Kernel Signatures (HKS)

Recently, there has been increased interest in the use of diffusion geometry

for shape recognition by Rustamov [28], Sun et al. [74] Bronstein et al. [75], and

Raviv et al. [79]. This type of geometry arises from the heat equation.

2.2.2.7 Scale Invariant Heat Kernel Signatures (SI-HKS)

Bronstein et al. [75] solved the HKS scale problem through a series of

transformations. The same research group has recently introduced the Shape

Google approach [3] based on the scaled-invariant HKS. The idea is to use HKS

at all points of a shape, or alternatively at some shape feature points, to represent

the shape by a Bag of Features (BoF) vector. Chapter 3 will compare the proposed

approach with the technique used in Shape Google [3].
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2.2.2.8 Scale Invariant Feature Transform for Meshes (meshSIFT)

The meshSIFT [80] algorithm is an extention of the 2D SIFT [36]to 3D

meshes. It consists of four major components: keypoint detection, orientation

assignment, the local feature description and feature matching. An example of

feature matching using meshSIFT is shown in Figure 2.4.

2.3 Summary

This chapter reviewed the existing 2D and 3D descriptors, and gave a quick

literature review about the 2D descriptors. Then it introduced the global and

local 3D shape descriptors, also this chapter gave some examples of the famous

3D feature detectors and descriptors.
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CHAPTER 3

FUNDAMENTALS OF HEAT EQUATION

AND THE LAPLACE-BELTRAMI

It is well-known that heat diffusion on the surface of a shape is fully de-

scribed by the heat kernel, associated with the Laplace-Beltrami operator. This

chapter, will study the solution of the heat equation and the reconstruction of

the heat kernels (HK) as a promising direction for shape representation. It starts

with an introduction to fundamentals of geometry, topology, the length spaces,

isometries, manifolds, embedded surfaces, first fundamental form, curvature and

the second fundamental form that will allow for the formulation of properties of

non-rigid objects.

The chapter, will detail the derivation of the heat equation, describe the

Initial Boundary Value Problem (IBV), give the details of the the Laplace-Beltrami

operator, its properties, and the discretization of the Laplace-Beltrami operator

and how to use it to solve the heat equation IBV problem on a manifold. Then

it will talk about the solution of the heat equation and the basics of diffusion on

Riemannian manifolds that are necessary to define the heat kernel, and how to

solve for the heat kernels using Finite Element Method (FEM).

3.1 Fundamentals of Geometry

Geometry means earth measure, this ancient term used by greek Eratos-

thenes ”who first measured the earth”. He simultaneously (by hourglasses) mea-
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sured shadows at two locations in Egypt to calculate the distance between them,

and so, the earth’s circumference was roughly extrapolated. Also ancient Egyp-

tian geometers knew that the value of pi was represented by the fraction 22/7, so

880 royal cubits was the length of two base sides of the Great Pyramid, and 280

royal cubits for its height, because 880/280 equals pi.

Euclid and Archimedes then significantly advance the field of the modern

geometry. Today, geometry is very important for engineers, they use it for mod-

eling of physical objects. Geometric tools are necessary for the description of the

non-rigid shapes. This section, will give an introduction for geometry fundamen-

tals that will allow to formulate properties of non-rigid objects.

3.1.1 Basic Terms in Geometry and Topology

Distance is one of the most fundamental concepts in geometry. The dis-

tance between two points can be measured as the length of the straight line con-

necting them. However, the three-dimensional space with the Euclidean distance

is simply a particular instance of a more general notion called the metric space.

Before defining the distance the function and what is the meaning of continuity

need to be defined.

Definition 5 Function: A function f is a well-defined rule assigning to each

element of a set A a unique element in the set B it is denoted by f : A→ B. The

set A is the domainof the function f and the receiving set B is its codomain.

The image or range of the function can be defined as f(A) = {f(a) ∈ B| a ∈ A}

which is a subset of B.

Definition 6 Continuous Function: f : R→ R be a single-variable function,

where R is the set of real numbers, this function is continuous at a point xo ∈

R if for every ε > 0, there is δ > 0, such that whenever |x− xo| < δ, then

|f(x)− f(xo)| < ε.
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Then the metric space need to defined.

Definition 7 Metric Space: A metric space is a set X together with a dis-

tance function d : X×X→ R satisfying the following:

1. (x, y) ≥ 0 for all x, y ∈ X.

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x) for all x, y ∈ X.

4. The triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

In topology, the most general object to deal with is a set of points on

which functions can be defined. This sub-section, will investigate sets of points

at a microscopic level, beginning with definitions and notations.

Consider point sets which are subsets of the real Euclidean n-space which is

defined as follows: Real Euclidean n−space is given by Rn = {x = (x1, x2, . . . , xn)|xi ∈

R} where x denotes a point with n-coordinates. A distance measure for Euclidean

space can be defined using the Euclidean metric which is given by the following

definition. Given two points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn,

the Euclidean distance (metric) between x and y is given by:

d(x,y) = |x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

Hence, a disc or ball centered at x with radius r can be defined asDn(x, r) =

y ∈ Rn : ‖x− y‖ < r}. Dn(x, r) is called (disc) neighborhood of x ∈ Rn which

is an open disc containing x. Consider a set of points in the Euclidean n-space

i.e. Rn, a point x can be related to this set in terms of its neighborhood in one

of the following ways.

Let A be a set of points with A ⊆ Rn and Rn − A be all points not in A,

i.e. the complement of A:

1. A point x ∈ Rn is an interior point of A if there is a neighborhood N of x

such that x ∈ N ⊆ A, i.e. the disc is totally enclosed in A.
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Figure 3.1: Point x is an interior point of A, point y is an exterior point of A,
while z is a boundary point of A.

2. A point x ∈ Rn is an exterior point of A if there is a neighborhood Nofx

such that x ∈ N ⊆ (Rn−A), i.e. the disc is totally outside A. Another way

of saying this is N ∩ A = φ.

3. A point x ∈ Rn is a limit/accumulation point of A if every neighborhood

N of x contains at least one point of A, thus N ∩A 6= φ. Hence every point

of A is a limit point of A.

4. A point x ∈ Rn is an isolated point of A if x ∈ A and it has a neighbor-

hood Nsatisfying N ∩ A = {x}. Hence a point x is not isolated if every

neighborhood of x contains at least one point in A other than itself.

5. A point x ∈ Rn is a boundary/frontier point of A if every neighborhood

N of x intersects both A and Rn − A, i.e. contains points in and outside

A. Thus boundary points are also limit points.

see Figure 3.1 for the definition of interior, exterior, and boundary points.

It is important to note that any point in x ∈ Rn must be either interior,

exterior or a boundary point of A, a point cannot be both interior and exterior

to A. Also note that interior points are elements of A while exterior points are

elements of its complement, on the other hand boundary and limit points might

lies in A or its complement.
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The definition of open and closed sets will be as following:

Definition 8 Open set: A set A is said to be open if every point x ∈ A is an

interior point.

Definition 9 Closed set: A set A is said to be closed if every point x /∈ A is

an exterior point.

Another way to view an open set is that it does not contain points on its boundary

hence all points which lie in an open set are interior points to this set. However, if

a set is not open this does not mean that it is closed, a set might neither be open

nor closed. On the other hand a closed set means that any point lying outside

this set is totally outside it, i.e. points that are not in a closed set are neither

interior nor boundary points to this set.

Definition 10 Bounded set: A set A ⊆ Rn is said to be bounded if A ⊆

Dn(0, r) for some r. Thus the set A can be enclosed in some sufficiently large

disc centered at its origin, i.e. A does not go on forever.

Definition 11 Connected set: A set A is (sequentially) compact if every

infinite sequence of points in A has a limit point in A, that is if {xi}∞i=1 is a

sequence and xi ∈ A for each i, then there is a point x ∈ A such that x is a limit

point of {xi}∞i=1.

Note that this definition has two claims, the first one is that every sequence

has at least one limit points and the second is that this limit point will actually

lie inside the set. Consider the following examples.

Examples:

1. The real line R is not compact, since the sequence {1, 2, 3, . . . } = {n}∞n=1

consists of points in R but has no limit points in R.
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Figure 3.2: Two types of metrics.

2. The interval (0, 1), the number 0 is a limit point for the sequence
{

1
2
, 1

3
, 1

4
, , . . .

}
=

{ 1
n
}∞
n=2
⊆ (0, 1), but 0 /∈ (0, 1), hence the open interval (0, 1) is not compact.

Another fundamental notion in topology is the number of pieces or compo-

nents an object has, if an object contains only one piece, it is considered connected;

this is true if all its parts are stuck to each other.

Definition 12 Connected set: A set S is connected if whenever S is divided

into two non-empty sets such that S = A
⋃
B, A 6= ∅, B 6= ∅ and A ∩ B = ∅,

then either A or B contains a limit point of the other.

3.1.2 Length Spaces

The Metric spaces is defined in Section 3.1.1, metric spaces allow the def-

inition of an abstract distance function between points. However, in many cases

the notion of distance is somehow unclear. The example given by Burago et
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al. [81] illustrate the difference between the length of the path and the Euclidean

distance. Using the Euclidean distance, one can claim that the distance between

New York and Sydney is about 8, 000 miles; however, this number is of little use to

an aircraft pilot, as it assumes travelling along a straight tunnel dug through the

Earth between the two cities. The meaning of distance is born from the lengths of

paths. Now Consider the path as a continuous map γ : [a, b]→ X of an interval.

And let length of the path to be the function L(γ) that assigns a nonnegative

number to every path. Using these two concepts, A metric induced by the length

can be defined as

dL(x, y) = inf
γ
{L(γ) s.t. γ : [a, b]→ X, γ(a) = x1, γ(b) = x2} (3.1)

The distance between two points is thereby the infimum of lengths of paths

connecting between them. Such a metric is called a length metric and a metric

space (X, dL) is called a length space. See Figure 3.2 for the difference between

the Euclidean distance and the path length.

3.1.3 Manifolds

Definition 13 Manifold: An n-dimensional manifold is a topological space

such that every point has a neighborhood topologically equivalent to an n-dimensional

open disc with center x and radius r i.e. Dn(x, r) = {x ∈ Rn : |x− x| < r}. It is

required that any two distinct points have disjoint neighborhoods. A 2-manifold is

often called a surface.

There may exist metric and length spaces that are not manifolds and mani-

folds without a metric. This discussion will focus on manifolds that are also metric

or length spaces. Also to distinguish between a manifold and a manifold with a

boundary (see Figure 3.3). Consider as an example a closed subset A ⊂ Rn of the
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Figure 3.3: The two types of manifolds.

Euclidean space. Points inside A have open neighborhoods homeomorphic to Rn

and thus the interior of A is, indeed, a manifold. However, points belonging to

the ”edge” of A are clearly not homeomorphic to Rn but to the closed Euclidean

half-space [0,∞)×Rn−1. So a manifold with a boundary is a non-empty space X

in which every point has a neighborhood that can be charted either in Rn or in

[0,∞)×Rn−1. The set of points in X that can be charted only in [0,∞)×Rn−1

is called the boundary and denoted by ∂X, whereas their complement is referred

to as the interior and is denoted by int(X).

Example: The sphere, denoted by S2, is a surface, even though it exists

in 3-dimensional space (this emphasizes the difference between intrinsic and ex-

trinsic properties, where intrinsic properties have to do with the object itself, in

contrast to extrinsic properties which describe how the object is embedded in the

surrounding space). If one considers a point x ∈ S2 as a point in R3, it will have

a neighborhood that looks like a ball. However as a point on the sphere, with

the relative topology, x has neighborhoods of the form: N = Dn(x, r) = {y ∈

R3 : ‖x−y‖ < r and y ∈ S2 }, these neighborhoods look like 2-dimensional discs

which have been warped a bit.
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Figure 3.4: 3D surface parametrization, tangent plane, and normal.

3.1.4 Embedded Surfaces

Surfaces of all physical objects can be represented as smooth two-dimensional

manifolds in three-dimensional Euclidean space. Such manifolds are often referred

to as embedded surfaces. Such surfaces can often be described by a smooth map

f : U → R3 from a subset U of R2 to R3. The set U is called a parametriza-

tion domain. The parametrization f maps all points p = (u, v) ∈ U to a point

x = f(u, v) on the 3D surface. And the surface S which has a global parametriza-

tion (i.e. a local parametrization (U, f) for which f(U) = S ) is called a simple

surface.

If S is a surface and (U, f) is a local parametrization of S , then, if x(u, v) =

x1(u, v), x2(u, v), x3(u, v)), then the equations x1 = x1(u, v), x2 = x2(u, v), x3 =

x3(u, v), where (u, v) ∈ U , are called the parametric equations of the surface.

When the derivatives x1 = ∂ux and x2 = ∂vx of x with respect to the

coordinates are linearly independent for every (u, v) ∈ U , then x is regular. In

such a case, the vectors x1,x2 span a two-dimensional space at x = f(u, v),

referred to as the tangent plane or the tangent space and denoted by TxS. the

vector perpendicular to the tangent plane is called the normal to the surface and

is denoted by n. See Figure 3.4.
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Figure 3.5: Illustration of first fundamental form.

3.1.5 First Fundamental Form

Let p be a point in the parametrization domain U and the corresponding

point x = f(p) on the surface S, and consider a displacement by dp = (du, dv)

around p will displace the point on the surface to f(p+dp) = x+x1du+x2dv =

x +Jdp Here, J is a 3× 2 matrix having x1 and x2 as the columns; this matrix is

called the Jacobian of the parametrization f : U → S at a point p. To quantify

the length of the displacement dx = Jdp, It can be written as:

dl2 = ‖dx‖2 = ‖Jdp‖2 = dpTJTJdp = dpTGdp (3.2)

where G = JTJ is a symmetric 2× 2 matrix, whose elements are the inner

products gij = 〈xi,xj〉. And G is positive definite since g11g22 − g2
21 > 0. The

quadratic form 3.2 is called the first fundamental form of the surface or the

Riemannian metric. See Figure 3.5. The first fundamental form of a surface

completely describes its intrinsic geometry or the length metric of the surface.
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3.1.6 Curvature and the Second Fundamental Form

The curvature can be expressed in terms of how fast the normal vector

rotates with the movement on a surface. The directional derivative of the normal

vector can be used to measure the rate of change of the normal. Given a point

x ∈ TxS and a direction v ∈ TxS, the directional derivative of N is defined as

DvN = lim
t→0

1

t
(N(γ(t))−N(x)) =

d

dt
N(γ(t)) |t=0 (3.3)

where γ is a path or smooth curve passes through x and v. DvN ∈ TxS

is a vector in R3 measuring the change in N as mahing a differential step in

the direction v, and it is perpendicular to the normal. The second fundamental

form can be defined as the matrix B with elements bij = −〈∂uiN,xj〉, where

ui ∈ {u, v}. the second fundamental form is responsible for the extrinsic geometry

of the surface, that is, the way the surface resides in the Euclidean space.

Now for any point x ∈ S let E = 〈x1,x1〉, F = 〈x1,x2〉, and G = 〈x2,x2〉

The unit surface normal n can be calculated as:

n =
x1 × x2

‖x1 × x2‖
(3.4)

where,× denotes the cross product.

The second fundamental forms L, M and N of S are expressed as follows.

L = 〈x11,n〉, M = 〈x12,n〉, N = 〈x22,n〉,

where the second derivatives x11 = ∂u∂ux, x12 = ∂u∂vx and x22 = ∂v∂vx

of x with respect to the coordinates are linearly independent for every (u, v) ∈ U .

Then the maximum principal curvature κ1 and the minimum principal curvature
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κ2 are defined as the two roots λ1 and λ2, which satisfy the following identity:

∣∣∣∣∣∣∣
Eλ− L Fλ−M

Fλ−M Gλ−N

∣∣∣∣∣∣∣ = 0 (3.5)

Simplifying Equation 3.5, then:

(EG− F 2)λ2 + (2FM − EN −GL)λ+ (LN −M2) = 0 (3.6)

As a result, Gaussian curvature K and mean curvature H can be defined as:

K = κ1κ2 = λ1λ2 =
LN −M2

EG− F 2
(3.7)

H =
1

2
(κ1 + κ2) =

1

2
(λ1 + λ2) =

EN − 2FM +GL

2(EG− F 2)
(3.8)

Then the two principal curvatures can be computed as

κ1 = H +
√
H2 −K (3.9)

κ2 = H −
√
H2 −K (3.10)

The values of K and H define the local behavior of the surface, that is, how the

surface is curved at the point x. For example, a plane has K = H = 0 at every

point. A sphere has K > 0. A hyperbolic surface has K < 0 because one of the

principal curvatures is positive and one is negative. See Figure 3.6.

3.1.7 Isometries

Isometries copy metric geometries which make isometric spaces equivalent

from the point of view of metric geometry. Two metric spaces (X, α) and (Y, β)

are equivalent if there exists a distance-preserving map (isometry) ϕ : (X, α) →

(Y, β) satisfying β ◦ (ϕ×ϕ) ≈ α such that (X, α) and (Y, β) are called isometric,
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Figure 3.6: illustration of maximum principal curvature κ1 and the minimum
principal curvature κ2 in the upper row, and Gaussian curvature K and mean
curvature H in the lower row.

and denoted by (X, α)(Y, β). Examples of isometries are shown in Figure 3.7.

The three shapes are isometric with respect to α the original shape metric is

(X, α), after some transformation (rotation, translation, or reflection) it gives the

Euclidean isometric metric (τX, α), then after deformation it gives the second

isometric metric (X, β).

The previous section gave an introduction to the geometry fundamentals.

It discussed the definition of basic terms in geometry and topology, the length

spaces, isometries, manifolds, embedded surfaces, first fundamental form, curva-

ture and the second fundamental form. These terminologies will be used in the

following section, and it will allow to formulate the heat equation.
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Figure 3.7: Two types of isometries, the original shape (X, α), the Euclidean
isometric copy (τX, α), and the deformed isometric copy (X, β).

3.2 The Heat Equation

Heat1 is energy transferred from one system to another by thermal inter-

action, it is always accompanied by a transfer of entropy. The heat equation is an

important partial differential equation which describes the distribution of heat (or

variation in temperature) in a given region over time. This section, will discuss

the derivation of the heat equation from the physical properties of the object,

and from the rate of heat flow through the boundaries of the object. Since the

Laplace-Beltrami and the heat diffusion operator, together with the correspond-

ing Laplacian eigenmaps have been used in several contexts for shape represen-

tation, the Initial Boundary Value Problems (IBV) will be described. Also the

details of the the Laplace-Beltrami operator, its properties, the discretization of

the Laplace-Beltrami operator will be given, and how Laplace-Beltrami operator

1In this discussion when mention the term heat it refer to the quantity of heat in an object.
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will be used to solve the heat equation IBV problem on a manifold. After that

this section will talk about the solution of the heat equation and the basics of

diffusion on Riemannian manifolds that are necessary to define the heat kernel.

Finally it will mention the heat kernel signature and its properties.

For the derivation of the heat equation in 1D see Appendix A. The heat

equation, also known as the diffusion equation models the flow of heat at time t.

The heat equation is a second order parabolic partial differential equation, and

usually written as

Ut = kUxx (3.11)

3.2.1 Initial Boundary Value Problems (IBV)

In order to solve the heat equation the problem initial conditions should

be assumed. The temperature of every point along the rod at time t = 0 need to

be defined, so the problem is to find U(x, t) such that

Ut(x, t) = kUxx(x, t) for 0 ≤ x ≤ L and t > 0,

U(x, 0) = u(x) for 0 ≤ x ≤ L,

U(0, t) = T0 and U(L, t) = TL for t > 0 (3.12)

This is the general form for the heat equation as an IBV problem.

3.2.2 The Heat Equation on a Manifold

Modeling the flow of heat at time t on a manifold M, the heat equation is

a second order parabolic partial differential equation [82], and is usually written

as

4MU(x, t) = −1

2

∂

∂t
U(x, t), (3.13)
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where 4M denotes the positive semi-definite Laplace-Beltrami operator of M ,

which is the Riemannian equivalent of the Laplacian (Note: there can be a ”con-

ductivity” constant in the Right Hand Side (RHS) that did not used here). The

solution U(x, t) of the heat equation with initial condition U(x, 0) = u(x) de-

scribes the amount of heat on the surface at point x in time t. U(x, t) is required

to satisfy the Dirichlet boundary condition U(x, t) = 0 for all x ∈ ∂M and all t.

The following section, will introduce the Laplace-Beltrami operator and its

properties, and the discretization of the Laplace-Beltrami operator, then it will

see how Laplace-Beltrami operator will be used to solve the heat equation IBV

problem on a manifold.

3.3 Laplace-Beltrami

Discrete Laplace-Beltrami operators on triangulated surfaces are a very

important ingredient to various applications in geometry processing, including

parametrization, modeling, editing, fairing, shape analysis, interpolation, seg-

mentation, remeshing, compression, and matching [83],[84],[27]. Reuter et al. [85]

propose to use the set of Laplace-Beltrami eigenvalues spectrum as a shape signa-

ture. They show that the spectrum contains enough information to discriminate

shapes. Also the Laplace-Beltrami operator is strictly related to the heat diffusion

equation, since the discrete heat kernel can be derived from the Laplace-Beltrami

eigenfunctions.

3.3.1 Laplace-Beltrami Operator

The Laplace-Beltrami operator is a generalization of the Laplace operator

to real-valued (twice differentiable) functions f ∈ C2 on any Riemannian manifold

M equipped with the Riemannian metric g, and f : M → R be a real-valued

function, with f ∈ C2, defined on a Riemannian manifold M. The Laplace-
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Beltrami operator can be defined as:

∆Mf = −div(∇f) (3.14)

It can be alternatively defined as:

∆Mf = trace(∇2f) (3.15)

In coordinate notation the Laplace-Beltrami is given by:

∆Mf =
1√

det(G)

∑
ij

∂

∂xi
f
∂

∂xj
det(G) (3.16)

where G is as defined in 3.1.5

If M is a domain in the Euclidean plane R2, the Laplace-Beltrami operator

reduces to the well-known Laplacian:

∆Mf =
∂2f

∂x2 +
∂2f

∂y2 (3.17)

3.3.2 Discrete Laplace-Beltrami Operator

The Laplace-Beltrami operator is uniquely defined, whereas the discrete

Laplacian can be defined in many ways, and it would not converge to the Laplace-

Beltrami operator. In discrete geometry, a distinction is usually made between

discrete (or combinatorial) and discretized Laplacian. Discrete Laplacian arises

from a discrete object, a triangular mesh representing the shape. Discretized

Laplacian, on the other hand, is a consistent numerical approximation of the

Laplace-Beltrami operator of the shape, the Laplacian need to be independent

or at least minimally dependent on the triangular mesh and thus need the dis-

cretized rather than the combinatorial Laplacian. The properties of the contin-

uous Laplace-Beltrami operator will be listed bellow. A consistent discretization
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must have properties corresponding to (some subset of) these properties. [86].

Properties of Smooth Laplacian:

• (CL1)1 Constant eigenfunction: ∆Mf = 0 for any f = const.

• (CL2) Symmetry: 〈∆Mf, h〉L2(M) = 〈h,∆Mf〉L2(M).

• (CL3) Locality: ∆Mf is independent of f(x′) for any points ∆Mf 6= ∆Mf
′

on M, or Altering the function value at a distant point will not affect the

action of the Laplacian locally.

• (CL4) Euclidean case: if M is a part of R2, for any linear function of the

form f(x, y) = ax+ by + c,∆Mf = 0.

• (CL5) Maximum principle: harmonic functions (those for which ∆Mf = 0

in the interior of S) have no local maxima (or minima) at interior points.

• (CL6) Positive semidefiniteness: 〈∆Mf, h〉L2(M) ≥ 0.

To construct a discrete version of the Laplace-Beltrami operator 4MU ,

assume that the shape M is sampled at N points x1, . . . ,xN and represented as

a triangular mesh TM. Assuming that a function U on the shape is discretized

and given as a vector with elements Ui = U(xi) for i = 1, . . . , N. The discrete

Laplacian is defined as a linear operator of the form

(4MU)i =
N∑
j=1

wij(Ui − Uj) (3.18)

Properties of Discrete Laplacian: To check if the Properties of Smooth

Laplacian (CL1)-(CL6) are satisfied for the discrete version in Equation 3.18 test

the following properties:

• (DL1)2 for any U = const, 4MU = 0.

1CL denote continuous Laplacian
2DL denote discrete Laplacian
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• (DL2) Symmetry: 4M = 4T
M.

• (DL3) Locality: wij = 0 if i and j do not share an edge.

• (DL4) Euclidean case: if M is a part of R2, U(x, y) = ax+ by + c then

(4MU)i =
N∑
j=1

wij(Ui − Uj) = 0

for all interior vertices (here xj ∈ R2 denotes the planar coordinates of the

jth sample).

• (DL5) Positive semidefiniteness: 4MU � 0.

By satisfying (DL2) and (DL5) it is guarantee that the eigenvalues of the

discrete Laplacians are real and non-negative, and its eigenvectors orthogonal. It

is also common to add the following constraint:

• (DL6) Positive weights: wij ≥ 0 for all i , and for each i, there exists at

least one j such that wij > 0.

• (DL7) Convergence: solution to the discrete PDE involving 4M converges

to the solution of the smooth PDE involving the smooth Laplacians as ,

N →∞ assuming appropriate boundary conditions.

Desbrun et al. [87], proposed a discretization for the Laplace-Beltrami

Operator, this discretization is as accurate as the method in [88, 89], so such

discretization is a good choice for shape description. According to Desbrun et

al. [87], the value of 4MU at vertix xi is approximated as:

(4MU)i = − 1

Ai

∑
j∈Nei(i)

(cotαij + cot βij)(Ui − Uj), (3.19)

where (4MU)i for a mesh function U denotes its discrete Laplacian eval-

uated at vertex i (for i = 1, 2, ...., n), n is the number of vertices, and Ai is the
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Figure 3.8: Discretization of the Laplace-Betrami operator using cotangent
weights. Left: a vertex xi and its adjacent faces Middle: the definition of the
angles αij and βij Right: the definition of the area Ai

Voronoi area at ith mesh vertex [90], as shown in Figure 3.8 and αij, βij are the two

angles supporting the edge connecting vertices i and j. This discretization pre-

serves many important properties of the continuous Laplace-Beltrami operator,

such as positive semi-definiteness, symmetry, and locality, and it is numerically

consistent [86].

In a matrix form it can written as:

(4MU)i = Lu, (3.20)

the mesh Laplace operator L, is a sparse matrix of size n × n, which can

be written as L = A−1W where A = diag(Ai), W = diag(
∑

l 6=iwil) − wij, and

wij = (cotαij +cot βij). The first k smallest eigenvalues and eigenfunctions of the

Laplace-Beltrami operator discretized according to (3.20) are computed by solving

the generalized eigendecomposition problem Wφ = λAφ, where L = φΛφTA, Λ

is a diagonal matrix of eigenvalues,and φ is a matrix whose columns correspond

to the right eigenvectors of L.

Today, state-of-the-art approaches to shape analysis, synthesis, and cor-

respondence rely on these natural harmonic Laplacian eigenfunctions. The use

of Laplacian eigenbases has been shown to be fruitful in many computer graph-

ics applications. Several papers have studied consistent discretizations of the
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Laplace-Beltrami operator [86, 91, 92].

An experiment to show the consistency of the Laplace-Beltrami eigenfunc-

tions has been done. The discretization of the Laplace-Beltrami operator was

done using the cotangent formula 3.19. The first non-trivial eigenfunctions of

the Laplace-Beltrami operator for different deformed shapes from two different

classes from the nonrigid world data set [4, 5] are shown in Figure 3.9 and Fig-

ure 3.10. This figure shows that the first non-trivial eigenfunctions are invariant

to the shape deformation.

Figure 3.11 and Figure 3.12 show the first four and the first three eigen-

functions of the Laplace-Beltrami operator of human shapes with different defor-

mations. The figure clearly demonstrates that the eigenfunctions are invariant to

the shape deformation, and that they can be even used for mesh segmentation [6].

Figure 3.13 and Figure 3.14 show the spectral projection [6] of the first

three eigenfunctions of the Laplace-Beltrami of human and dog shapes under

different deformation. Notice the difference in the projection of the human shape

and for the dog shape. The figure clearly demonstrates that the eigenfunction’s

spectral projection are invariant to the shape deformation, and that can be even

used as a shape model for recognition or shape normalization.

However, many applications involving multiple shapes are obstacled by

the fact that Laplacian eigenbases computed independently on different shapes

are often incompatible with each other [93]. It requires an approximate joint

diagonalization for the construction of coupled bases of the Laplacians of multiple

shapes.

3.4 Heat Operator and Heat Kernel

This section, introduces the basics of diffusion on Riemannian manifolds

that are necessary to define the purposed heat kernel signature. The shape will

be modeled as a Riemannian manifold possibly with boundary. Two methods
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Figure 3.9: The first non-zero eigenfunctions of the Laplace-Beltrami operator
of cat shape from the nonrigid world data set [4, 5] with two different views.
Colors represent the values of the eigenfunction at each point of the shape. This
illustration shows that the first non-trivial eigenfunctions are invariant to the
shape deformation.
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Figure 3.10: The first non-zero eigenfunctions of the Laplace-Beltrami operator of
lion shape with two different views. Colors represent the values of the eigenfunc-
tion at each point of the shape. This illustration shows that the first non-trivial
eigenfunctions are invariant to the shape deformation.
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Figure 3.11: The first four eigenfunctions of the Laplace-Beltrami operator of
human shapes with different deformation. This illustration shows that the eigen-
functions are invariant to the shape deformation and can be used for shape seg-
mentation as [6].

55



F
ig

u
re

3.
12

:
T

h
e

fi
rs

t
th

re
e

ei
ge

n
fu

n
ct

io
n
s

of
th

e
L

ap
la

ce
-B

el
tr

am
i

op
er

at
or

of
w

om
en

sh
ap

es
w

it
h

d
iff

er
en

t
d
ef

or
m

at
io

n
.

T
h
is

il
lu

st
ra

ti
on

sh
ow

s
th

at
th

e
ei

ge
n
fu

n
ct

io
n
s

ar
e

in
va

ri
an

t
to

th
e

sh
ap

e
d
ef

or
m

at
io

n
an

d
ca

n
b

e
u
se

d
fo

r
sh

ap
e

se
gm

en
ta

ti
on

as
[6

].

56



Figure 3.13: Spectral projection onto the first 3 eigenfunctions of the Laplace-
Beltrami of human shape with different deformation. Left: the 3D shape, Middle:
the spectral projection as a surface, Right: the spectral projection as a triangu-
lated mesh.
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Figure 3.14: Spectral projection onto the first 3 eigenfunctions of the Laplace-
Beltrami of dog shape with different deformation. Notice the difference in the
projection over this of the human shape in Figure 3.13 Left: the 3D shape, Mid-
dle: the spectral projection as a surface, Right: the spectral projection as a
triangulated mesh.
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will be shown to reconstruct the heat kernels: the first method is based on the

property that Laplace- Beltrami operator and the heat operator share the same

eigenfunctions, and the second method is based on linear FEM approximation of

the heat equation to derive a discrete heat kernel.

3.4.1 Heat Kernel

The heat diffusion propagation over M is governed by the heat equation

(3.13). Given an initial heat distribution u : M ⊆ Rd → R, as a scalar function

defined on a compact manifold M, the scale based representation U : M × R →

R of u with, limt→0 U(x, t) = u(x) satisfies the heat equation for all t. To

interpret the heat operator and the heat kernel in the discrete setting, the heat

equation on a mesh that approximates the underlying manifold can be re-written

as:

∂

∂t
U(x, t) = e−tLu(x) (3.21)

When L = φΛφTA as stated before, then e−tL = φe−tΛφTA

The heat kernel can be thought of as the amount of heat that is transferred

from x to y in time t given a unit heat source at x. Since M is compact then the

solution U(x, t) can be written as U(x, t) =
∫
M
K(x,y, t)u(y)dy. where K(x,y, t)

is the heat kernel.

Then the heat kernel K(x,y, t) = e−tL has the following spectral decom-

position

K(x,y, t) =
∞∑
i=1

e−λitφi(x)φi(y), (3.22)

where λi and φi are the ith eigenvalue and the ith eigenfunction of the Laplace-

Beltrami operator respectively, and x and y denote two vertices. The heat ker-

nel 3.22 is one way to approximate the heat operator based on the spectral de-
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composition of the Laplace-Beltrami operator. In the following, a more accurate

method for the discretization of the heat kernel based on the weighted linear Finite

Elements Method (FEM) [94] will be described. FEM gives a way of discretizing

(i.e. finding a discrete approximation) of a continuous equation.

3.4.2 Finite Element Discretization of the Heat Equation

The weak formulation of the heat equation (3.13) through the Galerkin

formulation with test function ϕ ∈ C2 yields

∫
M

ϕ
∂

∂t
U(x, t)dσ +

1

2

∫
M

ϕ4MU(x, t)dσ = 0, (3.23)

where dσ is the Riemannian measure, and the integration is carried out over the

manifold M. Then, using the Green formula Equation 3.23 will be:

∫
M

ϕ
∂

∂t
Udσ +

1

2

∫
M

div(∇U)ϕdσ = 0, (3.24)

or equivalently, ∫
M

ϕ
∂

∂t
Udσ +

1

2

∫
M

(∇U) · ∇ϕdσ = 0. (3.25)

Thus the weak formulation of (3.13) can be written as:

∫
M

ϕ
∂

∂t
Udσ +

1

2

∫
M

(∇U.∇ϕ)dσ = 0 (3.26)

Let B = {ϕi}ni=1 be a family of n linearly independent C2 functions. An

approximation Ũ(x, t) to U(x, t) can be defined as:

Ũ(·, t) :=
n∑
i=1

ai(t)ϕi, t > 0. (3.27)
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Replacing U by Ũ in (5.6) then:

n∑
i=1

∂

∂t
ai(t)

∫
M

ϕiϕjdσ +
1

2

n∑
i=1

ai(t)

∫
M

(∇ϕi · ∇ϕj)dσ = 0, (3.28)

or simply as:
n∑
i=1

B(i, j)
∂

∂t
ai(t) +

1

2

n∑
i=1

L(i, j)ai(t) = 0 (3.29)

where

B(i, j) =

∫
M

ϕiϕjdσ, and (3.30)

L(i, j) =

∫
M

(∇ϕi · ∇ϕj)dσ. (3.31)

To discretize Equation 3.29 let N = (M ;T) be a triangulated surface that

approximates M. Here M := {xi; i = 1, . . . , n} is a set of n vertices and T

is an abstract simplicial complex containing the adjacency information. Assume

linearly independent basis functions B = {ϕi}ni=1, where ϕi(xj) = δij that are

equal to 1 at vertex i, 0 at all other vertices, and linearly interpolate between 1

and 0 on all triangles incident to vertex i. Label vertex xi simply as i. If i, j, k

are the distinct vertices of a triangle tk, αi, αj, αk denote the interior angles of

T at vertices i, j, k respectively, and | tk | is the area of tk, then it can be shown

that:

∇ϕi · ∇ϕj = − cotαk
2 | tk |

| ∇ϕ |2 =
cotαj + cotαk

2 | tk |∫
T

ϕidσ =
| tk |

3∫
T

ϕ2
i dσ =

| tk |
6∫

T

ϕiϕjdσ =
| tk |
12

(3.32)
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For the proofs of ( 3.32) see Appendix B.

Then B will be:

B(i, j) =


|tr|+|ts|

12
if j ∈ Ne(i)∑

k∈Ne(i)|tk|
6

if i = j
(3.33)

L(i, j) is given by

L(i, j) =


w(i, j) =

cotαij+cotβij
2

if j ∈ Ne(i)

−
∑

k∈Ne(i) w(i, k) if i = j

0 else

(3.34)

where Ne(i) is the 1-star neighbors of vertex i, | tk | is the area of triangle

tk, and tr and ts are the triangles that share the edge (i, j). For the proofs of

3.33 and 3.34 see Appendix C.

To compute the solution to (3.13), consider the generalized eigensystem

{λi, φi}ni=1 of (L,B), which satisfies the relations Lφi = λiBφi, i = 1, . . . , n. Since

the Laplacian eigenvectors {φi}ni=1 form a basis of Rn and (Ũ(x, t))ni=1 ∈ Rn, for

any t ∈ R+ the solution Ũ(x, t) can be expressed as Ũ(·, t) :=
∑n

i=1 ai(t)φi where

a = (ai(t))
n
i=1 is the unknown vector.

After solving for the coefficients ai(t), then ai(t) = exp(−1
2
λit)〈u(x), φi〉B

where u(x) is the initial value of Ũ(x, t). Then:

Ũ(·, t) :=
n∑
i=1

exp(−1

2
λit)〈u(xφi〉Bφi, (3.35)

or in a matrix form:

Ũ(·, t) := φD(t)φTBu(x) (3.36)

where φ = [φ1, φ2, . . . , φn], and

D(t) = diag(exp(−1
2
λ1t), exp(−1

2
λ2t), . . . , exp(−1

2
λnt)).
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Then the heat kernel will be:

K(x,y, t) := φD(t)φTB, (3.37)

3.4.3 Properties of the Heat Kernel

The heat kernel K(x,y, t) has many good properties [74, 95]:

• K(x,y, t) is symmetric.

• It is invariant under isometric deformations, which is a direct consequence

of the invariance of the Laplace-Beltrami operator.

• It is informative: by only considering its restriction to the temporal domain,

a concise and informative signature can be obtained .

• It is multi-scale: for different values of t the heat kernel reflects local prop-

erties of the shape around x at small t and the global structure of M from

the point of view of x at large values of t.

• And it is stable under perturbations of the underlying manifold.

[74] proved that heat kernel is closely related to curvature, diffusion distance [73],

and the Global Point Signature (GPS) [28].

3.4.4 Heat Kernel Signature

Sun et al. [74] proposed to use the HKS as a local shape descriptor, and it

can be written as:

K(x, t) = K(x,x, t) =
∞∑
k=1

e−λitφi(x)2, (3.38)

The HKS has several desired properties [74]: it is intrinsic and thus isometry-

invariant (two isometric shapes have equal HKS), multi-scale and thus captures
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both local features and global shape structure, and also informative: under mild

conditions, if two shapes have equal heat kernel signatures, they are isometric.

3.4.5 Temperature Distribution Descriptor (TD)

In [76], the heat mean signature (HMS) was defined for quantitatively

evaluating the temperature distribution resulting from the heat flow process. The

HMS has the following formulation:

HMS(i) =
1

N

∑
j,j 6=i

Ht(i, j), (3.39)

where i and j denote the ith and jth vertex on the surface, respectively and N is

the total number of vertices. HMS(i) can be physically interpreted as the average

temperature on the surface obtained by applying a unit amount of heat on the

vertex i and after a certain amount of time of heat dissipation. TD descriptor is

constructed based on the distribution of the values of heat mean signature over

the meshed surface as in [1]. The TD descriptor will be used for the sake of

comparison with the proposed method in the next chapter.

3.5 Summary

This chapter gave the derivation of the heat equation from the physical

properties of the object, and from the rate of heat flow through the boundaries

of the object. Then it described the Initial Boundary Value Problem (IBV). Also

this chapter gave the details of the Laplace-Beltrami operator, its properties, the

discretization of the Laplace-Beltrami operator, and how to use it to solve the

heat equation IBV problem on a manifold. After that it talked about the solution

of the heat equation and the basics of diffusion on Riemannian manifolds that are

necessary to define the heat kernel. Finally it described the heat kernel signature

and its properties.
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CHAPTER 4

PROPOSED SHAPE DESCRIPTORS

Object matching algorithms consist of three major parts: feature detec-

tion, feature description, and a feature matching. Figure 4.1 illustrates a typical

approach of object recognition using local features.

Several interest point detectors have been developed in the literature (see

Section 2.2.1). For every detected interest point, a numerical vector called the

”feature descriptor” is built to describe that point, or a patch (local neighbor-

hood), around it.

To be able to correctly check the similarity of non-rigid shapes, it is needed

to look for the properties that distinguish between these shapes. Such properties

are called deformation invariant signatures, and the similarity measure based on

these properties is called deformation-invariant similarity. The shape signature

(or descriptor) captures the properties of the shape that distinguish it from shapes

belonging to other classes. This chapter looks for deformation invariant signatures

and deformation-invariant similarity measure to model non-rigid 3D objects.

This chapter proposes an approach for shape modeling using heat kernels

(HK). This shape model will be used for shape matching and retrieval. It proposes

two different types of shape descriptors:

Figure 4.1: The three parts of object matching algorithms.
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The first one is based on the histograms of the HK [30]. The HK calcu-

lated at a small a number of critical points detected on the shape surface. The

HK is calculated at different time scales, then is combined with the normalized

eigenvalues of the Laplace-Beltrami operator. The proposed descriptors are then

used for classification via the collaborative representation-based classification with

regularized least square (CRC-RLS) algorithm.

The second descriptor is based on scale-invariant heat kernels [31]. The

first non-trivial Laplace-Beltrami eigenfunction is used to detect a small number

of sparse critical points on the shape surface. These points are robust to the

shape class, and their number can in itself be used as one of the discriminatory

features among the various classes. The HK is calculated only at the detected

critical points at different time scales. This reduces the size or dimensionality of

the descriptors, yet does not sacrifice the accuracy of the presentation. Then scale

invariance is achieved using a novel transformation method that is simpler and

considerably less noise sensitive than the method proposed in [3]. A concatenation

of the histograms of the significant components of the scale-invariant HK for all

the points, combined with the normalized eigenvalues of the Laplace-Beltrami

operator, is used as a feature vector for classification. The resulting descriptor

is then used for classification via the relaxed collaborative representation (RCR)

model [96, 97]. The resulting descriptor captures the local as well as global shape

information since it uses the temperature distribution at the critical points at

several time samples.

The proposed descriptors are compact in size, and efficient in computa-

tion. For comparison the proposed approaches are compared to state-of-the-art

approaches on two different data sets: the nonrigid world data set and the SHREC

2011. The results have indeed confirmed the improved performance of the sparse

representation over the original non-reduced descriptors, yet reducing the time

and space complicity for the shape retrieval problem.
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The following section describes the proposed method for 3D feature Points

Detection. Then it gives the details of the two shape descriptors.

4.1 Critical Points Detection

For a piecewise linear real-valued function φ given by the values at the

vertices (φi) of a triangle mesh, a critical point is defined as a vertex i whose

function φi is a maximum or minimum over its neighborhood (in two rings).

These points are detected using the local maxima/minima of the first non-trivial

Laplace-Beltrami eigenfunction [6]. Critical points detected near the boundary

are discarded. Figure 4.2 shows the critical points detected from the first non-

trivial eigenfunction for several sample shapes. The figure gives the total number

of critical points for each shape. It is interesting to observe that shapes belonging

to the same class consistently have almost the same number of critical points,

whereas these numbers differ from one class to another. As such, this number can

be used as one of the discriminatory features between the different classes.

4.2 Shape Descriptor Based on Heat Kernels

This section presents an approach for shape matching and retrieval based

on scale-invariant heat kernel (HK). Several aspects are novel in this approach.

The problem of scale invariance found in HKS as proposed in [74] is solved by nor-

malizing the Laplace-Beltrami eigenvalues and eigenfunctions. This section also

proposes a new shape descriptor. The first non-trivial Laplace-Beltrami eigen-

function is used to detect a small number of sparse critical points on the surface

of the shape. These points are robust to the shape class, and their number can in

itself be used as one of the discriminatory features among the various classes. The

shape descriptor consists of the HK at the detected critical points for different

time samples, combined with the normalized eigenvalues of the Laplace-Beltrami
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Figure 4.2: Critical points detected for different shapes with different deforma-
tion. Number below each shape represents the total number of shape critical
points. Colors indicate the average temperature induced from these critical points
throughout all shape vertices.
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operator. Sparse representation [97] is used to reduce the descriptor dimension-

ality. The resulting descriptor is then used for classification via the collaborative

representation-based classification with the regularized least square (CRC-RLS)

algorithm [97]. The proposed descriptor is compact in size (the feature vector can

be down to 64), and efficient in computation (since it is constructed from the HK

at sparse points). This descriptor increases the accuracy of the recall, yet reduces

the time and space complexity for the shape retrieval problem. It captures the

local as well as global shape information since it uses the HK at several time

scales. Further go to the extreme it will be shown that this descriptor computed

at just one critical point still works rather well for shape retrieval. The proposed

approach is compared to the shape-DNA [2] and the TD approach of [1] on two

different 3D data sets, the nonrigid world data set [4, 5] and the SHREC 2011-

Shape Retrieval Contest of Non-rigid 3D Watertight Meshes [98]. This approach

achieves state-of-the-art results on the two data sets.

The most related work to this approach is the recent Shape Google ap-

proach [3]. However ours is different in several aspects: 1) Shape Google uses

dense or sparse descriptors. The sparse descriptor is closer to this work, but re-

quires the calculation of HKS on all vertices to detect critical points. However in

the proposed approach critical points are detected from the first non-trivial Eigen

functions of the Laplace-Beltrami operator which is already calculated, this saves

time. 2) Scale-invariance of HKS is achieved by using Fourier magnitude to avoid

scale detection. In the current case it is achieved by normalizing Laplace-Beltrami

eigenvalues and Eigenfunctions. 3) Shape Google uses the Bag of Features (BoF),

but this method uses the CRC-RLS algorithm [97]. Overall, the proposed sparse

representation is more compact, efficient to compute, and still discriminative.

The HK construct is constructed at a given vertex x using:

K(x,y, t) =
∞∑
i=1

e−λitφi(x)φi(y), (4.1)
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where λi and φi are the ith eigenvalue and the ith eigenfunction of the Laplace-

Beltrami operator respectively, and x and y denote two vertices. As described in

Chapter 3 Section 3.4.1.

Figure 4.3 shows the HK induced from one critical point for one sample

shape at different time samples. For a smaller amount of time, the signature

captures local shape information. As time elapses, the signature tends to capture

more global shape details.

4.2.1 The Heat Kernel Descriptor

Figure 4.4 shows the steps for the construction of the proposed descrip-

tor. The proposed descriptor of a given shape is constructed as follows: HKs are

calculated for all critical points at various (about 100) time samples. Since com-

plexity of using the heat kernel as a signature is extremely high, and it would be

difficult to compare signatures of two different points, the histograms and sparse

representation is used to overcome signature alignment problem and reduce the

descriptor size. At each time sample, a histogram of 100 pin is calculated, then

all the histograms for different times and from all detected critical points are con-

catenated to build a long feature vector. Then the normalized eigenvalues of the

Laplace-Beltrami operator (the nonzero diagonal elements of Λ) are appended to

this vector. This vector, dubbed Critical Points-based Temperature Distribution

(CP-TD), can be used for shape retrieval in its current form, or reduced to a

sparse representation of a lower dimensionality, then used for classification using

the collaborative representation-based classification with regularized least square

(CRC-RLS) algorithm [97], which is described in the next section. This sparse

descriptor is called Sparse Representation of CP-TD (SRCP-TD).
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(0.01) (0.089) (0.168)

(0.247) (0.326) (0.405)

(0.484) (0.642) (0.721)

Figure 4.3: HKS induced from one critical point detected at the nose of the dog
shape at different time samples. The shown numbers indicate the time samples
t. Colors represent the values of the heat induced from the source point to each
vertex of the shape. For a smaller amount of time, the signature is more local.
As time progresses, the signature becomes more global.
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Figure 4.4: Construction of the proposed descriptor (N is the number of object
vertices).

4.2.2 Sparse Representation of HK

As a recently proposed technique, sparse representation based classification

(SRC) has been widely used for face recognition (FR). Recently, sparse represen-

tation has also been used in pattern classification. Huang et al. [99] sparsely

coded a signal over a set of redundant bases and classified the signal based on its

coding vector.

Sparse representation (or coding) codes a signal y over a dictionary φ such

that y = φα and α is a sparse vector. The sparsity of α can be measured by

l0 − norm, which counts the number of non-zeros in α. Since the combinatorial

l0-minimization is NP-hard, the l1-minimization, as the closest convex function to

l0-minimization, is widely employed in sparse coding: minα ‖α‖1s.t.‖y − φα‖2 <

ε , where ε is a small constant. Zhang [97] indicated that it is the CR, but

not the l1-norm sparsity, that plays the essential role for classification in SRC,

and proposed a new classification scheme, namely collaborative representation
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(CR) based classification with regularized least square (CRC-RLS), which has

significantly less complexity than SRC but leads to very competitive classification

results. The same approach is used to reduce the dimensionality of the proposed

descriptor and improve the classification results.

4.2.3 Experimental Results

To test the performance of the proposed descriptors two data sets are used.

The first one is the nonrigid world data set [4, 5]. The database contains a total of

148 3D nonrigid objects in a variety of poses, including 9 cats, 11 dogs, 3 wolves,

17 horses, 15 lions, 21 gorillas, 1 shark, 24 female figures, and two different male

figures, containing 15 and 20 poses. The database also contains 6 centaurs, and 6

seahorses for partial similarity experiments. Each object contains approximately

3400 vertices. The second database is the SHREC 2011 - Shape Retrieval data

set [98]. This is a large-scale database consists of 600 non-rigid 3D objects that

are derived from 30 original models.

For the sake of comparison, this work shows the results of the Shape-

DNA approach [2], describing shapes by the vector of the first eigenvalues of the

Laplace-Beltrami operator. The first 15 eigenvalues are used to construct the

Shape-DNA descriptors. Eigenvalues were computed using the same cotangent

weight discretization. Also the proposed approach is compared to the method

in [1] that uses the (TD) as a shape descriptor.

Figure 4.5 shows sample shape retrieval results of the SRCP-TD descriptor

on the nonrigid world data set using the CRC-RLS algorithm [97]. The retrieved

objects per each query are ranked from left to right based on the distance measure

of the classification algorithm. The figure clearly demonstrates the high retrieval

rate of the approach. It is interesting to note that the objects similar to the query

pose are retrieved first, then come objects of the same shape but with different

poses. This shows that this descriptor can be used for object pose estimation as
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well. The wrong matches in the first, second and last row (colored in green) are

only retrieved after all objects of correct shape have been already retrieved.

Figure 4.6 shows sample shape retrieval results of the same SRCP-TD

descriptor on the SHREC 2011 data set using the CRC-RLS algorithm as well.

The figure shows the first 15 matches for each query ranked according to the

distance measure of the CRC-RLS algorithm. Afterwards, the objects ranked

from 30− 35 for each query are shown on the right. Several of these objects are

also similar in shape to the query object.

For the sake of quantitative assessment of the approach performance, the

following standard five evaluation measures are recorded (see [100] for detailed def-

initions): Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), E-measure

(E), and Discounted Cumulative Gain (DCG). Table 4.1 lists these measures on

the nonrigid world data set. The table compares the proposed descriptor (SRCP-

TD) against the TD and the shape-DNA descriptors using two different classifiers:

the K-NN classifier and the CRC-RLS algorithm. The SRCP-TD using the CRC-

RLS algorithm consistently provides the highest scores. Analogously, Table 4.2

shows the performance on the SHREC 2011 data set. The SRCP-TD descriptor

again exhibits the best performance but using the K-NN classifier this time.

In the previous experiments, all the critical points detected on a shape have

been used to construct the shape descriptor. Table 4.3 gives the five evaluation

measures on the non-rigid world data set computed for the proposed descriptor

at only one critical point. This point is located at the minimum of the heat mean

signature of the whole shape. Figure 4.7 shows the detected single point on sample

shapes of the non-rigid world data set. However the measures still reflect the high

performance of the proposed descriptors. Comparing this results to Table 4.1 it

is clear that the descriptor at only one critical point achieves better performance

for the NN measure. But detecting this single point requires to calculate the heat

mean signature of the whole shape which is computationally complex.
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Figure 4.5: Some shape retrieval results on the nonrigid world data set. Left:
Queries. Right: First 10 matches using the SRCP-TD descriptor. The color
represents the mean temperature induced from only the detected critical points.
The detected sparse points are shown in yellow. The green-colored shapes are
wrong matches.
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Method NN 1-Tier 2-Tier e-Measure DCG

TD 0.59 0.36 0.50 0.33 0.66
Shape-DNA 0.96 0.64 0.87 0.55 0.90
SRCP-TD 0.96 0.67 0.90 0.56 0.91
TD 0.25 0.18 0.31 0.20 0.503
Shape-DNA 0.94 0.78 0.90 0.55 0.93
SRCP-TD 0.97 0.81 0.93 0.56 0.95

Table 4.1: Results on the non-rigid world data set. Upper four rows are results
using KNN, while lower four rows are results using CRC-RLS.

Method NN 1-Tier 2-Tier e-Measure DCG

TD 0.64 0.37 0.47 0.33 0.66
Shape-DNA 0.99 0.85 0.92 0.67 0.96
SRCP-TD 0.99 0.86 0.94 0.69 0.96
TD 0.18 0.14 0.24 0.16 0.46
Shape-DNA 0.56 0.58 0.74 0.55 0.78
SRCP-TD 0.97 0.80 0.89 0.65 0.94

Table 4.2: Results on SHREC’11 data set. Upper four rows are results using
KNN, while lower four rows are results using CRC-RLS.

This experiment also investigated the effect of the reduction of the SRCP-

TD descriptor on the performance on the SHREC 2011 data set. Table 4.4 lists

the five evaluation measures for several sizes of the descriptor. Expectedly, the

performance improves as the size of the descriptor is increased. However after

a size of 104 (or even 64), the improvement is rather marginal. So a compact

descriptor of size 64 can be sufficient to provide high performance on the data

set.

Method NN 1-Tier 2-Tier e-Measure DCG

SRCP-TD 0.9833 0.7621 0.9209 0.5633 0.9493
SRCP-TD 64 0.9750 0.8056 0.9278 0.5652 0.9480

Table 4.3: Results on the non-rigid world data set using the proposed descriptors
computed at only one critical point. Upper row using KNN, while lower row using
CRC-RLS.
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N NN 1-Tier 2-Tier e-Measure DCG

24 0.7733 0.6838 0.8175 0.5886 0.8653
44 0.9200 0.7362 0.8509 0.6173 0.9059
64 0.9600 0.7783 0.8818 0.6446 0.9323
84 0.9683 0.7944 0.8875 0.6496 0.9385
104 0.9783 0.8087 0.8976 0.6592 0.9453
124 0.9783 0.8111 0.8998 0.6602 0.9467
144 0.9783 0.8106 0.8996 0.6603 0.9468

Table 4.4: Results on SHREC’11 data set with respect to size (N) of the SRCP-TD
descriptor using the CRC-RLS.

Figure 4.7: Single critical points detected for several shapes of the non-rigid world
data set.
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Figure 4.8: noise-corrupted models. from left to right 0.0, levels 1, 2, and 3 NSR.

4.2.4 Noise Effect Analysis

Normally 3D smoothing filter is used to preprocess the data before cal-

culating the HK. Thus this method is expected to be less sensitive to noise. To

demonstrate this, an experiment is done on non-rigid world data set by perturb-

ing the vertices of the original model using various levels of numerical noise. By

adding Gaussian noise with varying Noise-to-Signal Ratio (NSR) between the

variance of noise and variance of the original signal (coordinates of the vertices),

the number of critical points for the centaur shape is 22 at NSR = 0.001, and

22 at NSR = 0.01 versus 19 for the noise-free shape, which shows rather good

insensitivity to noise. Figure 4.8 shows sample 3D models, corrupted by different

levels of noise (before the filter step). Table 4.5 gives the five evaluation measures

on the non-rigid world data set computed for the proposed descriptor computed

at different NSR. The tabulated measures also demonstrate that the proposed

descriptor is rather insensitive to noise.
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NSR NN 1-Tier 2-Tier e-Measure DCG

0.0 0.97 0.81 0.93 0.56 0.95
0.001 0.92 0.74 0.92 0.55 0.93
0.01 0.87 0.67 0.85 0.50 0.88

Table 4.5: Results on non-rigid world data set with different NSR of the SRCP-TD
descriptor using the CRC-RLS.

4.3 A Shape Descriptor Based on Scale Invariant Heat

Kernels

This section develops a new feature descriptor based on scale-invariant heat

kernels [31]. The proposed method uses the first non-trivial Laplace-Beltrami

eigenfunction to detect a small number of sparse critical points on the shape

surface, as described in Section 4.1. These points are robust to the shape class,

and their number can in itself be used as one of the discriminatory features among

the various classes. Then the HK is calculated only at the detected critical points

at different time scales. This reduces the size or dimensionality of the descriptors,

yet does not sacrifice the accuracy of the presentation. Then scale invariance is

achieved using a novel transformation method that is simpler and considerably

less noise sensitive than the method proposed in [3]. A concatenation of the

histograms of the significant components of the scale-invariant HK for all the

points is used as a feature vector for classification. The resulting descriptor is

then used for classification via the relaxed collaborative representation (RCR)

model [96, 97]. The resulting descriptor captures the local as well as global shape

information since it uses the temperature distribution at the critical points at

several time samples.

This section also evaluates the proposed descriptor on the problem of 3D

shape retrieval and object classification. For the sake of comparison, the approach

is compared to the state-of-the-art approaches, namely, the shape-DNA [2], the
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Figure 4.9: Construction of the proposed descriptor (N is the number of object
vertices).

TD approach [1] and the Shape Google approach [3] on two standard 3D data

sets, the nonrigid world data set [5] and the SHREC 2011- Shape Retrieval Con-

test of Non-rigid 3D Watertight Meshes [98]. Demonstration shows that the new

approach can outperform these methods even on different object scales and con-

siderably noisy data.

4.3.1 Weak And Discrete Formulation of The Heat Equa-

tion

To compute the solution to (3.13) the weak formulation through the Galerkin

formulation is used, as described in Section 3.4.2. Then the heat kernel will be:

K(x,y, t) := φD(t)φTB, (4.2)
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4.3.2 Scale Invariance

Scale invariance is a desirable property of the shape descriptor, which can

be achieved by one of the following four different methods:

1. Trying detecting the scale, as done in most feature descriptors (e.g. SIFT)

in image analysis. However, 3D shapes are usually poorer in features and

scale detection can be done reliably only at a sparse set of feature points.

2. Normalizing of Laplace-Beltrami eigenvalues, but this method may suffer if

the object has missing parts [75]. In such case, the scale invariance must be

introduced locally rather than globally.

3. Utilizing a series of transformations applied to the HKS [75] in order to

avoid scale detection. This allows creating a dense descriptor. This method

is considered local, thus can work with objects with missing parts.

4. Using the local equi-affine invariant Laplace-Beltrami operator proposed

by [79].

This work, proposes a novel local scale normalization method based on

simple operations (thus belonging to the third category above). It was shown [75]

that scaling a shape by a factor β results in changing H(x, t) to β2 H(x, β2t).

Thus, a series of transformations are applied to HK as follows. Starting

from each critical point x, the HK is sampled at every surface point y algorith-

mically in time (t = ατ ) and the function:

hτ = H(x, ατ ) (4.3)

is formed. Scaling the shape by β results in a time shift s = 2 logα β and amplitude

scaling by β2. That is:

h′τ = β2hτ+s (4.4)
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[75] proposed to take the logarithmic transformation log h′τ = 2 log β +

log hτ+s which decouples the multiplicative constant from hτ+s. Then they pro-

posed to take the derivative afterwards to remove the effect of the resulting addi-

tive 2 log β term and then taking the amplitude of the Fourier Transform (FT) of

the derivative to remove the effect of the time shift s. Since the derivative oper-

ator is sensitive to noise, their method is not robust enough. This work proposes

to apply the FT directly to h′τ in Equation 4.4 to get:

H ′(w) = β2H(w) exp(j 2π w s). (4.5)

Then taking the amplitude of the FT it will be:

| H ′(w) |= β2 | H(w) | (4.6)

The effect of the multiplicative constant β2 is eliminated by normalizing

the | H ′(w) | by the sum of the amplitudes of the FT components. The amplitudes

of the first significant FT components (normally 6) are employed to construct the

scale-invariant shape descriptor. This proposed method eliminates the scale effect

without having to use the noise-sensitive derivative operation or the logarithmic

transformation that both were used in [75]. Thus, the proposed method is simpler,

more computationally-efficient and more robust to noise. This is clearly verified

in Figure 4.10 that shows the scale-invariant heat kernel for a HK computed at a

vertex of a 3D shape and another HK computed for the same object with 3-times

scale up under different noise levels. The two descriptors computed at the two

different scales are virtually identical using the proposed method even at high

noise levels. The method in [3] demonstrates a significant influence of the noise

on the computed descriptors.
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Figure 4.10: Construction of the scale-invariant heat kernel under several noise
levels. (Left) heat kernel computed at a point on a shape at different time (red)
and the scaled heat kernel (in green) computed at a corresponding point on a
shape scaled up by a factor of 3. (Middle) The amplitude of the first 15 fourier
transform components of | H(w) | for the two heat kernels (again in red and
green) using the proposed method showing complete overlapping specially in the
first four noise levels. (Right) Similar but using the method in [3]. First row
shows signal without noise. Then noise level is increased in the subsequent rows.
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4.3.3 Scale Invariant Heat Kernel Descriptor

Figure 4.9 shows the steps for the construction of the proposed descriptor.

The proposed shape descriptor is constructed as follows: HKs are calculated at

some critical points detected on the surface at various (about 100) time samples.

The dimension of the heat kernel is N×100×n where N is the number of the shape

vertices, and n is the number of detected critical points. Then scale-invariance

is introduced in the computed HK as explained in the previous subsection. The

first 6 FT component are used at each critical point. The size of the feature now

is N × 6 × n. Since it would be difficult to compare descriptors of shapes with

different number of vertices, histograms of scale-invariant HK is used to overcome

the descriptor alignment problem and to reduce the descriptor size. For each

FT component, a histogram of 100 pins for all HKs is calculated. This reduces

the descriptor size to 100 × 6 1D feature vector. Afterwards, the number of the

detected critical points is added to this descriptor. In addition, the normalized

eigenvalues of the Laplace-Beltrami operator are appended. Eventually, the size

of the feature vector is 700. This vector, dubbed Critical Points-based Heat

Kernel (CP-HK), can be used for classification using some well-known classifiers.

However, for the latter part, the collaborative classification [96] is used as a feature

classifier.

4.3.4 Collaborative Classification

Recently, collaborative representation has also been used in pattern clas-

sification. Zhang [97] proposed a new classification scheme, namely collaborative

representation (CR) based classification with regularized least square (CRC-RLS),

which has significantly less complexity than SRC but leads to very competitive

classification results. Then [96] propose a relaxed collaborative representation

(RCR) model. Zhang [96] showed that RCR is simple, and very competitive with
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state-of-the-art image classification methods.

It considers both the similarity and distinctiveness of different features in

coding and classification stages.

A new term is added to the collaborative representation equation to regu-

larize the coding vectors of different features over their associated dictionaries

min
αk

K∑
k=1

ωk ‖ αk − ᾱk ‖2
2 (4.7)

where αk, k = 1, 2, , K is the coding vector of the kth feature vector yk over the

kth dictionary Dk , ᾱk is the mean vector of all αk, and ωk is the weight assigned

to the kth feature. So the collaborative representation equation will be

min
αk

K∑
k=1

(‖ yk −Dkαk ‖2
2 +λ ‖ αk ‖2

2 +τωk ‖ αk − ᾱk ‖2
2)s.t.priorωk (4.8)

where λ and τ are positive constants and priorωk means the prior made on weights

ωk. The weights are optimized simultaneously with the coding to address the

distinctiveness of different features. In the classification stage, the query sample is

assigned to the class which yields the lowest weighted coding residual. The RCR

approach is used for the coding and classification of the proposed descriptors.

More details about the algorithm in [96].

4.3.5 Experimental Results

To test the performance of the proposed descriptors two data sets are used.

The first one is the nonrigid world data set [4, 5]. The database contains a total of

148 3D nonrigid objects in a variety of poses, including 9 cats, 11 dogs, 3 wolves,

17 horses, 15 lions, 21 gorillas, 1 shark, 24 female figures, and two different male

figures, containing 15 and 20 poses. The database also contains 6 centaurs, and 6

seahorses for partial similarity experiments. Each object contains approximately
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3400 vertices. The second database is the SHREC 2011 - Shape Retrieval data

set [98]. This is a large-scale database consists of 600 non-rigid 3D objects that

are derived from 30 original models.

For the sake of comparison, this work shows the results of the Shape-

DNA approach [2], describing shapes by the vector of the first eigenvalues of the

Laplace-Beltrami operator. The first 15 eigenvalues are used to construct the

Shape-DNA descriptors. Eigenvalues were computed using the same cotangent

weight discretization. Also the proposed approach is compared to the method

in [1] that uses the (TD) as a shape descriptor with an L2 classifier, and the

Shape Google approach [3] that is based on the bag of features (BoF) technique.

Figure 4.11 shows sample shape retrieval results of the CP-HK descriptor

on the nonrigid world data set using the RCR classifier. The retrieved objects

per each query are ranked from left to right based on the distance measure of the

classification algorithm. The figure clearly demonstrates the high retrieval rate

of the approach. It is interesting to note that the objects similar to the query

pose are retrieved first, then come objects of the same shape but with different

poses. This shows that this descriptor can be used for object pose estimation as

well. The wrong matches are shown in light green, where some of them are only

retrieved after all objects of the correct shape have been already retrieved.

Figure 4.12 shows sample shape retrieval results of the CP-HK descriptor

on the SHREC 2011 data set. The figure shows the first 20 matches for each query

ranked according to the distance measure of the RCR classifier. Note that these

first ranked matches cover almost all the shapes found in the database belonging

to the same query shape, which indicates the high quality of the proposed shape

descriptor.

An illustration of confusion matrix for the SHREC’11 data set using the

CP-HK descriptor is shown in Figure 4.13. It is clear that the confusion matrix

is diagonal, and almost the first 20 matched shapes for each query come are from
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Measure TD Shape-DNA Shape-Google Proposed method

NN 0.5917 0.9833 0.9000 0.9667
1-Tier 0.3646 0.7972 0.6666 0.7750
2-Tier 0.5036 0.9298 0.8656 0.9053
e-Measure 0.3307 0.5618 0.5443 0.5430
DCG 0.6654 0.9585 0.8874 0.9389

Table 4.6: Results on non-rigid world data set. The proposed method is compared
to TD [1], Shape-DNA [2], and Shape-Google [3].

Measure TD Shape-DNA Shape-Google Proposed method

NN 0.6483 0.9833 0.9567 0.9733
1-Tier 0.3704 0.6917 0.6225 0.7798
2-Tier 0.4768 0.8050 0.7288 0.8823
e-Measure 0.3369 0.5827 0.5245 0.6443
DCG 0.6684 0.9155 0.8718 0.9364

Table 4.7: Results on SHREC’11 data set. The proposed method is compared to
TD [1], Shape-DNA [2], and Shape-Google [3].

the same class.

For the sake of quantitative assessment of the approach performance, the

following standard five evaluation measures are recorded (see [100] for detailed

definitions): Nearest Neighbor (NN) where N = 1, First Tier (FT), Second Tier

(ST), E-measure (E), and Discounted Cumulative Gain (DCG). Table 4.6 lists

these measures on the nonrigid world data set, and Table 4.7 lists these measures

on the the SHREC 2011 data set. The tables compares the proposed approach

against the TD, Shape-DNA and Shape Google approaches. The proposed ap-

proach significantly outperforms the TD and the Shape Google approaches on

both data sets. While the Shape-DNA approach shows slightly better perfor-

mance than the proposed approach on the non-rigid world data set, the perfor-

mance measures become in favor of the proposed approach on the larger-scale

SHREC’11 database. Moreover, the Shape-DNA performance severely suffers on

noisy and scaled data, as will be demonstrated in the next experiment.
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Figure 4.11: Some shape retrieval results on the nonrigid world data set. Left:
Queries. Right: First 10 matches using the CP-HK descriptor. The detected
sparse points are shown in yellow. The light green-colored shapes are wrong
matches.

89



Figure 4.12: Shape retrieval results of SHREC’11 data set. Left: queries (colored).
Then First 20 matches using the proposed descriptor. The light green colored
shapes represent wrong matches. The detected critical points are shown in yellow.
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Figure 4.13: An illustration of confusion matrix (600 × 600) for the SHREC’11
data set. Each row in this matrix represents the first 20 match retrieval results
for each shape in the data set(600 shapes). Note that the shapes belonging to the
same class are sorted to be next to each other.

91



White Noise Level Proposed Approach Shape Google Shape-DNA

1 1.0000 1.0000 1.0000
2 1.0000 0.9000 0.9667
3 0.9000 0.1333 0.6000

Shot Noise Level Proposed Approach Shape Google Shape-DNA

1 1.000 0.93331 1.000
2 1.000 0.86662 0.9667
3 0.966 0.53333 0.4000

Scale Level Proposed Approach Shape Google Shape-DNA

1 1.0000 0.8000 0.9667
2 1.0000 0.4666 0.9667
3 1.0000 0.2333 0.9667

Table 4.8: Performance versus white noise, shot-noise, and scale in three severity
levels of the proposed CP-HK descriptor using the RCR classifier compared to
those of Shape Google [3] and Shape-DNA [2] (1.00 mean 100%).

4.3.6 Distorted Data Experiment

Another experiment is carried out to assess the approach performance un-

der several distorted data scenarios. Here the performance of the proposed ap-

proach is compared with those of the Shape-DNA and Shape Google approaches.

A query set is formed consisting of 30 shapes taken from the SHREC’11 data

set, after applying several distortions: a Gaussian white noise, shot-noise, and

different scales. The performance in terms of the Nearest Neighbor (NN) mea-

sure [100] versus these three distortions in three different levels of severity is

shown in Table 4.8. Figure 4.14 illustrates sample shapes corrupted with three

degrees of white noise along with the query results using the proposed approach.

Also Figure 4.15 illustrates sample shapes corrupted with three degrees of shot

noise along with the query results using the proposed approach. The performance

against missing parts is demonstrated in Figure 4.16.

The proposed approach has shown significantly better results than the

other two approaches. For example, the proposed approach has 90% accuracy on

the third severe level of white noise, whereas the Shape Google performance drops
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Figure 4.14: Some shape retrieval results for different shapes with different noise
levels. Left: queries. Right: the first 5 matched shapes.

to 13% and Shape-DNA has only 60% accuracy. Moreover, the proposed approach

has retrieved shapes with different scales with 100% accuracy, thanks to the new

scale invariance method, while the Shape Google presented considerably lower

performance. The Shape-DNA has a constant performance against scale due to its

normalization of the Laplace-Beltrami eigenvalues. Note that in this experiment,

in contrast to a similar Shape Google experiment reported in [3], similar-class

positive shapes (males and females, centaur, horse, and human shapes) did not

ignored. As such, a result of the female shape in response to a male shape query,

for example, is counted against the method, which was not in [3]. This justifies

why the performance of Shape Google in Table 4.7 and Table 4.8 is lower compared

to that reported in [3].

4.3.7 Using Different Classifiers

Without combining the normalized eigenvalues of the Laplace-Beltrami

operator with the scale invariant HK descriptor, several classifiers are experi-
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Figure 4.15: Some shape retrieval results for different shapes with different shot
noise levels. Left: queries. Right: the first 5 matched shapes.

Figure 4.16: Some shape retrieval results for different shapes with different missing
parts. Left: queries. Right: the first 5 matched shapes.
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Classifier TP rate FP rate Precision Recall ROC area

C4.5 0.883 0.016 0.893 0.883 0.939
Naive Bayes 0.858 0.022 0.845 0.858 0.954
NN 0.883 0.021 0.901 0.883 0.931
SVM 0.908 0.015 0.917 0.908 0.984
C4.5 0.608 0.067 0.601 0.608 0.789
Naive Bayes 0.542 0.071 0.57 0.542 0.848
NN 0.533 0.079 0.535 0.533 0.727
SVM 0.642 0.063 0.641 0.642 0.876
C4.5 0.933 0.009 0.94 0.933 0.962
Naive Bayes 0.867 0.018 0.876 0.867 0.983
NN 0.975 0.005 0.975 0.975 0.985
SVM 0.983 0.003 0.983 0.983 0.996

Table 4.9: Average accuracy measures on the non-rigid world data set with differ-
ent classifiers. For all measures, the higher the better except the FP rate, where
the lower the better. Upper four rows are the proposed approach, middle are for
the TD method, while the lower four rows are for the Shape-DNA.

mented [101], namely, the Nearest Neighbor (NN) classifier, Naive Bayes classifier,

Decision trees using the C 4.5 algorithm, and Support Vector Machines (SVM).

For the sake of quantitative assessment of the approach performance with

all the tested classifiers, the following standard five evaluation measures are

recorded: True Positive (TP) rate, False Positive (FP) rate, precision, recall,

and ROC area. Table 4.9 lists the average measures over all classes in the non-

rigid world data set. The table compares the proposed descriptor against the

TD and the shape-DNA descriptors using the four different classifiers. Analo-

gously, Table 4.10 shows the performance on the SHREC 2011 data set. Except

for the Shape-DNA, the CP-HK descriptor exhibits the best performance using

the SVM. Although the Shape-DNA shows very good performance in this exper-

iment,(except for the SHREC data set with the SVM classifier it is not good) it

severely suffers when there are missing parts in the objects (i.e., on partial shape

matching). This is clearly demonstrated in the next experiment.

Another experiment is carried out to assess the approach performance un-

der several distorted data scenarios. A query set consisting of 30 shapes are
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Classifier TP rate FP rate Precision Recall ROC Area

C4.5 0.826 0.006 0.827 0.826 0.916
Naive Bayes 0.859 0.005 0.885 0.859 0.974
NN 0.862 0.005 0.88 0.862 0.929
SVM 0.914 0.003 0.916 0.914 0.983
C4.5 0.646 0.012 0.659 0.646 0.831
Naive Bayes 0.648 0.012 0.69 0.648 0.922
NN 0.513 0.017 0.569 0.513 0.748
SVM 0.619 0.013 0.596 0.619 0.925
C4.5 0.951 0.002 0.954 0.951 0.975
Naive Bayes 0.966 0.001 0.967 0.966 0.998
NN 0.99 0 0.99 0.99 0.995
SVM 0.824 0.006 0.873 0.824 0.978

Table 4.10: Average accuracy measures on the SHREC’11 data set with different
classifiers. For all measures, the higher the better except the FP rate, where the
lower the better. Upper four rows are the proposed approach, middle are for the
TD method, while the lower four rows are for the Shape-DNA.

Noise Level TP rate FP rate Precision Recall ROC area

1 0.933 0.002 0.900 0.933 0.998
2 0.900 0.003 0.85 0.900 0.996
3 0.733 0.009 0.636 0.733 0.948
1 0.800 0.007 0.733 0.800 0.756
2 0.800 0.007 0.733 0.800 0.756
3 0.733 0.009 0.644 0.733 0.672

Table 4.11: Average accuracy measures on the SHREC’11 data set with different
noise levels, Upper is the proposed method, Lower is Shape-DNA.

formed from the SHREC’11 data set, after applying several distortions: a Gaus-

sian white noise, shot-noise, scaling each in three different levels of severity. The

performance versus noise and shot noise is shown in Table 4.11 and Table 4.12.

Shapes with different scales have been retrieved with 100% accuracy at rank 1 as

shown in Table 4.13.

4.4 Summary

This chapter presented two approaches for shape matching and retrieval

based on heat kernel (HK), and scale-invariant heat kernel (HK). For the first
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Noise Level TP rate FP rate Precision Recall ROC area

1 0.800 0.007 0.722 0.800 0.9447
2 0.867 0.005 0.825 0.867 0.958
3 0.467 0.018 0.394 0.467 0.928

Table 4.12: Average accuracy measures on the SHREC’11 data set with different
shot-noise levels.

Scale Level TP rate FP rate Precision Recall ROC area

1,2,3 1 0 1 1 1
1,2,3 0.833 0.006 0.767 0.833 0.971

Table 4.13: Average accuracy measures on the SHREC’11 data set with different
scale levels. Upper is the proposed method, Lower is Shape-DNA.

approach proposed to use the first non-trivial Laplace-Beltrami eigenfunction to

detect a small number of sparse critical points on the surface of the shape. These

points were shown to be robust to the shape class, and their count can in itself

be used as one of the discriminatory features among the various classes.

A feature vector (descriptor) computed at these critical points is sufficient

for shape matching. Sparse representation of the descriptor can be obtained to

reduce its dimensionality before shape classification. The proposed descriptors are

compact in size, the feature vector can be down to 64, and efficient in computation

since it is constructed at sparse points.

The experimental results have shown that the proposed descriptor can

achieve state-of-the-art results on the two benchmark data sets. The results have

indeed confirmed the improved performance of the sparse representation over the

original non-reduced descriptors, yet reducing the time and space complicity for

the shape retrieval problem. In addition, results have shown that the descriptor

can be constructed using one critical point with no significant sacrifice in the

performance.

The second approach presented a new approach for shape matching and

retrieval based on scale-invariant heat kernel (HK). The first non-trivial Laplace-
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Beltrami eigenfunction is used to detect a small number of sparse critical points on

the surface of the shape. These points were shown to be robust to the shape class,

and their count can in itself be used as one of the discriminatory features among

the various classes. The proposed descriptor is based on the histograms of HKs at

different time scales computed at these critical points. It thus can capture the local

(at small time scales) as well as global shape information (at bigger time scales).

A new local transformation method to introduce scale-invariance has been also

proposed, which is shown to be simpler, more computationally efficient and noise-

robust compared to a well-known method [3]. A collaborative classification scheme

for object matching and retrieval is used to classify the proposed descriptor.

The experimental results have shown that the proposed descriptor can

achieve high performance on two popular benchmark data sets. The proposed

approach has outperformed state-of-the-art approaches for shape representation

and retrieval. The results have demonstrated that the proposed descriptor enjoys

many of the properties desirable in a shape descriptor (those given in Chapter 1.4):

It is isometry-invariant, able to deal with the non-rigid shape deformation. It is

independent of the object’s size. It is stable to small changes in the shape. It

is less sensitive to noise, as the descriptor is computed at a number of points on

the shape, rather than the whole shape. It is computationally efficient. And it

has similarity, uniqueness and scope properties, it has retrieved almost all the

database shapes truly matching the same query shape. An important observation

from experiment results is that the proposed approach is more able to handle data

under several distortion scenarios (white noise, shot-noise, and scale changes) than

the well-known Shape Google and Shape-DNA approaches.
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CHAPTER 5

HEAT DIFFUSION OVER WEIGHTED

MANIFOLDS: A NEW DESCRIPTOR FOR

TEXTURED 3D NON-RIGID SHAPES

This chapter proposes an approach for modeling textured 3D non-rigid

models based on Weighted Heat Kernel Signature(W-HKS). As a first contri-

bution, this chapter shows how to include photometric information as a weight

over the shape manifold, it also proposes a novel formulation for heat diffusion

over weighted manifolds. As a second contribution this chapter presents a new

discretization method for the proposed heat equation using finite element approx-

imation. Finally, the weighted heat kernel signature is used as a shape descriptor.

The proposed descriptor encodes both the photometric, and geometric informa-

tion based on the solution of one equation. The performance is tested on a

benchmark data set. The results have indeed confirmed the high performance of

the proposed approach on the textured shape retrieval problem, and show that

the proposed method is useful in coping with different challenges of shape analysis

where pure geometric and pure photometric methods fail.

5.1 Introduction

Recently, many sensors are able to acquire the color information besides

the 3D shape, also multiple-view stereo techniques are able to recover both ge-

ometric and photometric information. These photometric features can play an
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important role in many shape analysis applications, such as shape matching and

correspondence because it contains rich information about the visual appearance

of real objects. This new requirement and its important applications adds an-

other, new dimension to the problem difficulty. Most descriptors proposed so

far are confined to shape, that is, they analyze only geometric and/or topological

properties of 3D models. Therefore more efforts are needed to be done to consider

color in addition to shape in object representation and description. The domain

of research in this chapter is the representation of textured shapes in order to

develop an efficient descriptor that combines the color information as well as the

geometric shape information. The sought representation should cope with non-

rigid transformations, which is a key requirement for many target applications.

5.1.1 Review of Related Work

There has been an extensive work on constructing descriptors for 3D shapes

(e.g., [15, 16, 19, 22, 23, 68, 69]). One of the challenging issues in that regard is

how to handle handling non-rigid transformation. The problem of non-rigid shape

deformation needs more work to compensate for the degrees of freedom resulting

from local deformations. In the past decade, significant effort has been invested

in extending the invariance properties to non-rigid shape deformations.

Sun et al. [74], and [102] proposed heat kernel signatures (HKS) as deformation-

invariant descriptors based on diffusion of multi-scale heat kernels. HKS is a point

based signature satisfying many of the good descriptor properties but suffers from

sensitivity to scale. The authors did not demonstrate how to retrieve shapes using

HKS, although they pointed out the future potentials in shape retrieval applica-

tions. Bronstein et al. [3, 75] and the current dissertation [31] solved the HKS

scale problem through a series of transformations.

All these efforts have focused only on the 3D shape. Recently, taking the

photometric information into account to calculate a 3D shape descriptor has at-
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tracted more research. Liu et al. [103] proposed a method that picks points in

regions of either geometry-high variation or color-high variation, and defines a

signature at these points. A geometric SIFT-like descriptor for textured shapes

defined directly on the surface in [104]. The work of Kovnatsky et al. [29] is

the most related work to the proposed approach; it uses the diffusion geometry

framework for the fusion of geometric and photometric information in local and

global shape descriptors. Their construction is based on an ad hoc definition of a

diffusion process on the shape manifold embedded into a high-dimensional space

where the embedding coordinates represent the photometric information. Their

method fails to provide a mathematical justification for their proposed heat ker-

nel framework or the proposed discretization method. Iglesias and Kimmel [105]

used the diffusion distances based on Schrodinger operators incorporating tex-

ture data, then compare the histograms of Schrodinger diffusion distances with

the earth movers distance. Finally, S. Biasotti et al. [106] proposed the PHOG

descriptor as a combination of photometric, hybrid and geometric descriptions

into one descriptor for textured 3D object retrieval.

5.1.2 Contribution

This chapter develops a mathematical framework for the diffusion geometry

on textured shapes. It presents an approach for shape matching and retrieval

based on weighted heat kernel signature. As a first contribution, it shows how

to include photometric information as a weight over the shape manifold, also

propose a novel formulation for heat diffusion over weighted manifolds. As a

second contribution this chapter presents a new discretization method for the

weighted heat kernel induced by the linear FEM weights. It also proposed a new

method to introduce the scale invariance for the weighted heat kernel signature.

This proposed scale normalization method eliminates the scale effect with less

sensitivity to noise. Finally, the weighted heat kernel signature is used as a shape
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Figure 5.1: Construction of the proposed descriptor.

descriptor. The proposed descriptor encodes both the photometric, and geometric

information based on the solution of one equation. Figure 5.1 shows the steps for

the construction of the proposed descriptor.

5.2 Heat Kernel on Weighted Manifold

The heat diffusion propagation over a manifold M is governed by the heat

equation (3.13) as described in Section 3.2.2 . A weighted manifold (called also a

manifold with density) [107] is a Riemannian manifold M endowed with a measure

µ that has a smooth positive density h with respect to the Riemannian measure σ.

The weighted Laplace operator4M,µ, generalizing the Laplace-Beltrami operator,

is defined by

4M,µU = divµ∇U

=
1

h
div(h∇U)

=
1

h
√
detg

∂

∂xi
(h
√
detg)

∂

∂xi
U (5.1)

for any smooth function U on M, where g be the Riemannian metric on M. It is

possible to extend 4M,µ to a self-adjoint operator in L2(M,µ), which allows one

to define the heat semigroup e−t4M,µ . The heat semigroup has the integral kernel

K(x,y, t), called the heat kernel of (M, µ).

For the heat diffusion propagation over a weighted manifold (M, µ) the
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weighted heat equation is proposed as:

4M,µU(x, t) = −1

2

∂

∂t
U(x, t) (5.2)

with initial condition U(x, 0) = u(x) and Dirichlet boundary condition U(x, t) = 0

for all x ∈ ∂M and all t > 0. In the following, a method for the discretization of

the weighted heat equation based on the weighted linear finite elements method

(FEM) [94] will be described.

5.2.1 Finite Element Discretization of the Weighted Heat

Equation

The weak formulation of the weighted heat equation (5.2) is obtained by

multiplying by the density h and a test function ϕ ∈ C2 and integrating the

resulting relation over the weighted manifold (M, µ)

∫
M

ϕ
∂

∂t
U(x, t)hdσ +

1

2

∫
M

ϕ4M,µU(x, t)hdσ = 0 (5.3)

where dσ is the Riemannian measure. Then, using the Green formula it will be:

∫
M

ϕ
∂

∂t
Uhdσ +

1

2

∫
M

div(h∇U)ϕdσ = 0, (5.4)

or equivalently, ∫
M

ϕ
∂

∂t
Uhdσ +

1

2

∫
M

(h∇U) · ∇ϕdσ = 0. (5.5)

This is called the weak formulation of (5.2). Substituting hdσ by dµ then:

∫
M

ϕ
∂

∂t
Udµ+

1

2

∫
M

(∇U · ∇ϕ)dµ = 0 (5.6)

Let B = {ϕi}ni=1 be a family of n linearly independent C2 functions. An
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approximation Ũ(x, t) to U(x, t) can be defined as:

Ũ(·, t) :=
n∑
i=1

ai(t)ϕi, t > 0. (5.7)

Replacing U by Ũ in (5.6) then it will be:

n∑
i=1

∂

∂t
ai(t)

∫
M

ϕiϕjdµ+
1

2

n∑
i=1

ai(t)

∫
M

(∇ϕi · ∇ϕj)dµ = 0, (5.8)

or simply
n∑
i=1

B(i, j)
∂

∂t
ai(t) +

1

2

n∑
i=1

L(i, j)ai(t) = 0 (5.9)

where

B(i, j) =

∫
M

ϕi ϕj h dσ, and

L(i, j) =

∫
M

(∇ϕi · ∇ϕj) h dσ.

To discretize (5.9) let N = (M ; T) be a triangulated surface that approx-

imates M. Here M := {xi; i = 1, . . . , n} is a set of n vertices and T is an

abstract simplicial complex containing the adjacency information. Choose lin-

early independent basis functions B = {ϕi}ni=1, where ϕi(xj) = δij are equal to

1 at vertex i, 0 at all other vertices, and linearly interpolates between 1 and 0

on all triangles incident to vertex i. Label vertex xi simply as i. If i, j, k are

the distinct vertices of a triangle T , αi, αj, αk denote the interior angles of T at
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vertices i, j, k respectively, and A(T ) is the area of T then it can be shown that:

∇ϕi · ∇ϕj = − cotαk
2A(T )

| ∇ϕ |2 =
cotαj + cotαk

2A(T )∫
T

ϕidσ =
A(T )

3∫
T

ϕ2
i dσ =

A(T )

6∫
T

ϕiϕjdσ =
A(T )

12∫
T

ϕ3
i dσ =

A(T )

10∫
T

ϕ2
iϕjdσ =

A(T )

30∫
T

ϕiϕjϕkdσ =
A(T )

60

(5.10)

For the proofs of 5.10 see Appendix D.

Denote by hT the average value of a function h over a triangle T , and

Ne(i) the set of vertices adjacent to i. Given j ∈ Ne(i) denote by Tα and Tβ the

triangles having (i, j) as an edge and by α and β the interior angles of Tα and Tβ

opposite edge (i, j). Then:

B(i, j) = (hi + hj)
A(Tα) + A(Tβ)

60
+
hTαA(Tα) + hTβA(Tβ)

20
(5.11)

whenever j ∈ Ne(i),

B(i, i) =
∑

k∈Ne(i)

A(Tk)(
hi
15

+
hTk
10

) (5.12)

where Tk is the counter-clockwise oriented triangle with vertices i and k,

and B(i, j) = 0 whenever i and j are nonadjacent vertices. Likewise, L(i, j) is
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given by

L(i, j) =

 −
hTα cotα+hTβ cotβ

2
if j ∈ Ne(i)∑

k∈Ne(i) L(i, k) if i = j
(5.13)

where hTα , and hTβ are the average values of a function h over a triangles Tα,

and Tβ. And L(i, j) = 0 otherwise. For the proofs of 5.11, 5.12, and 5.13 see

Appendix E.

To compute the solution to Equation 5.2, let us consider the generalized

eigensystem {λi, φi}ni=1 of (L,B), which satisfies the relations Lφi = λiBφi, i =

1, . . . , n. Since the Laplacian eigenvectors {φi}ni=1 form a basis of Rn and

(Ũ(x, t))ni=1 ∈ Rn, for any t ∈ R+ the solution Ũ(·, t) can be expressed as

Ũ(·, t) :=
∑n

i=1 ai(t)φi where a = (ai(t))
n
i=1 is the unknown vector.

After solving for the coefficients ai(t), then ai(t) = exp(−1
2
λit)〈u(x), φi〉B

where u(x) is the initial value of Ũ(x, t). Then,

Ũ(·, t) :=
n∑
i=1

exp(−1

2
λit)〈u(xφi〉Bφi, (5.14)

or in a matrix form

Ũ(·, t) := φD(t)φTBu(x) (5.15)

where φ = [φ1, φ2, . . . , φn], and

D(t) = diag(exp(−1
2
λ1t), exp(−1

2
λ2t), . . . , exp(−1

2
λnt).

Then the heat kernel will be

K(x,y, t) := φD(t)φTB, (5.16)

and the weighted heat kernel signature will be

K(x,x, t) := Bφ2diag(D(t)) (5.17)
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The heat kernel signature was introduced by [3, 74, 75] as an intrinsic

local shape descriptor based on diffusion scale-space analysis. Here the weighted

version is introduced by considering the color information at each vertex as the

weight h as discussed earlier.

5.3 Weighted Heat Kernel Signature (W-HKS)

This section, proposes an approach for shape modeling and retrieval using

weighted heat kernel signature. Figure 5.1 shows the steps for the construction of

the proposed descriptor. The proposed descriptor is based on the BoF represen-

tation of the W-HKS calculated all shape vertices at different time scales. This

work proposes a novel method to achieve scale-invariance of HK which is shown

to be noise-robust in Chapter 4.4. The scale normalization step is applied to the

W-HKS before the BoF representation as explained in the following subsection.

The proposed descriptor is compact in size, and efficient in computation.

The proposed descriptor is constructed as follows: The W-HKS descriptor

is calculated for each triangle mesh based on Equation 5.17. The W-HKS is

calculated at all points of a shape over the three normalized color channels (RGB).

The W-HKS is calculated at different time scales, A logarithmic scale-space is

used with base α = 2 and τ ranging form 0.01 to 8 with step 1/16 for each color

band. Then the scale normalization step is applied as explained in Section 4.3.2.

Considering only the first 20 significant FT components the size of the descriptor

now will be N×20 for N vertex shape. Then the Bag of Features (BoF) technique

is used to represent the shape as one feature vector. The bags of features were

created using the a vocabulary of size 64. Thus the feature vector size is 64 × 3

for the three color channels for any 3D shape.
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5.4 Experimental Results

The SHREC’13 data set [7] is used to test the performance of the proposed

approach. This data set is a collection made of 240 texture shapes, organized in

10 classes, each with 24 models. Each class (humans, four legs animals, vases etc.)

contains six null models, that is, two base meshes endowed with three different

textures. Each null shape is then modified via four transformations, including two

non-metric-preserving deformations, one non-rigid deformation, and one additive

Gaussian noise perturbation. All transformations are applied at different strength

levels for the ten classes. Also, the same texture may be shared by models in

different classes, see Figure 5.2 for sample of different classes for the data set.

The proposed method is compared to the best four methods in the retrieval

competition on textured 3D models [7]: a method based on Scale Invariant Heat

Kernels combined with the color histogram(A2), the Color-weighted Histograms

of Area Projection Transform (Gi),a method based on 2D multi-view and bag-

of-features approach (G2), and one method merging a shape description based

on geodesic distance matrices with RGB histograms (V2). Also, the proposed

method is compared to the PHOG approach proposed in [108].

The average precision-recall curves, Nearest Neighbor (NN), First Tier

(FT), Second Tier (ST), and Average Dynamic Recall (ADR) are used as eval-

uation measures. To compute these measures, two objects are assumed to be

belonging to the same class if they share both geometric and texture information.

The final scores is the average on all possible queries and it is always less than 1.

Table 5.1 lists the average measures over all classes in the SHREC’13 data

set. The table compares the proposed descriptor (W-HKS1) against the (A2)

based on Scale Invariant Heat Kernels combined with the color histogram. The

NN and ADR measures prove that the proposed descriptor has better performance

because it encode the color as well as the geometric information.
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Figure 5.2: Sample of 4 different classes of the SHREC’13 benchmark [7] with
different texture and deformation show the challenge of the data set. For each null
shape there are a transformed versions of it that include non-rigid deformation,
nonmetric-preserving deformations and additive Gaussian noise perturbation.
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Run NN 1-Tier 2-Tier ADR

A2 0.508 0.561 0.730 0.380
W-HKS1 0.7765 0.5350 0.6458 0.4047

Table 5.1: Results on SHREC’13 data set compares the proposed descriptor (W-
HKS1) against the (A2) based on Scale Invariant Heat Kernels combined with
the color histogram.

Another version, called (W-HKS2), of the proposed descriptor is formed by

appending the color histogram to the original descriptor (W-HKS1). Table 5.2,

lists the average measures on the same data set. The table compares the proposed

descriptor (W-HKS2) against the five different methods. The highest measures

(in bold) clearly show that the proposed descriptor has the best performance.

Figure 5.3 shows some retrieval results. The models are ordered from left

to right. The first column represents the query model. The retrieved objects

per each query are ranked from left to right based on the distance measure (L1-

Norm) between the query and all shapes in the data set. Only the first 15 retrieved

models are shown. The figure clearly demonstrates the high retrieval rate of the

approach. It can be observed that the proposed method has retrieved the similar

shapes with similar texture first.

Figure 5.4 shows the performances of all methods in terms of average

precision-recall curves. The larger the area below such a curve, the better the

performance under examination. This figure shows that the proposed descriptor

indeed achieves the highest performance over the other five methods.

5.5 Summary

This chapter has addressed the problem of textured 3D shapes represen-

tation. A new approach for shape matching and retrieval based on Weighted

Heat Kernel Signature (W-HKS) is presented. The color information is used as

a weight over the shape manifold. A novel formulation for heat diffusion over
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Figure 5.3: Shape retrieval results of SHREC’13 data set. Left: queries. Right:
First 15 matches using the CHKS descriptor.

Run NN 1-Tier 2-Tier ADR

A2 0.508 0.561 0.730 0.380
G1 0.788 0.658 0.748 0.470
G2 0.898 0.733 0.893 0.508
V2 0.879 0.764 0.904 0.520
PHOG 0.951 0.773 0.899 0.534
W-HKS2 0.9242 0.8338 0.9257 0.5701

Table 5.2: Results on SHREC’13 data set lists the average measures on SHREC’13
data set. The table compares the proposed descriptor (W-HKS2) against five
different methods.
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Figure 5.4: Shape retrieval results of SHREC’13 data set. Precision-recall curves
for all methods.

weighted manifolds is proposed. Also this chapter presented a new discretization

method for the weighted heat kernel based on FEM. It proposed a new method

to introduce the scale invariance for the weighted heat kernel signature. The

”bag of features” (BoF) approach is used to construct compact and informative

shape descriptors. Finally, the weighted heat kernel signature is used as a shape

descriptor.

The experimental results have shown that the proposed descriptor can

achieve high performance on SHREC’13 benchmark data sets. The proposed

approach has outperformed state-of-the-art approaches (five different methods)

for textured shapes representation and retrieval. Different evaluation measures

approved the high accuracy of the proposed framework.
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CHAPTER 6

HEAT FRONT PROPAGATION CONTOURS

FOR 3D FACE RECOGNITION

Face recognition is a key biometric method aiming at identifying individ-

uals by the features of face. Due to the challenges facing face recognition from

2D images, researchers have resorted to 3D face recognition. The work in this

chapter is motivated by the recent and remarkable success of heat-based features

for 3D object classification and retrieval. This chapter proposes an approach for

3D face recognition based on the front contours of heat propagation over the face

surface. The front contours are extracted automatically as heat is propagating

starting from a detected set of landmarks. The propagation contours are used to

successfully discriminate the various faces. The proposed approach is evaluated

on the largest publicly available database of 3D facial images and successfully

compared to the state-of-the-art approaches in the literature.

6.1 Introduction

Face recognition is one of the biometric methods identifying individuals

by the features of face. Automatic face recognition has evolved from small scale

research systems to a wide range of commercial products. Therefore, computer

vision methodology for automatic face recognition has become an attractive re-

search area in the past three decades (for more details see [109, 110]).

In the beginning, most efforts were directed towards 2D facial recogni-
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Figure 6.1: The basic idea of the proposed approach: The heat propagation front
contours for a virtual heat source at some facial landmarks (nose tip here) are
used as discriminating features between different faces. First and second faces
are for the same subject thus having similar contours, while the third face has
different contours because it is for another subject.

tion [111]. However, there are challenging issues, when using 2D images for face

recognition. The face needs to be well lit by controlled light sources in order to

acquire high quality images. In addition, faces can be obstructed by hair, glasses,

hats, scarves etc. Variances, such as disguises, makeup, change over time (ag-

ing), expression and pose, might have a minor to major negative impact on a

face recognition system, decreasing its ability to recognize faces. A study of com-

mercial face recognition systems called the Face Recognition Vendor Test (FRVT)

2002-2006 [112] concluded that identification and verification accuracy suffers sig-

nificantly when there were differences in pose and illumination between gallery

enrollment and probing.

To address pose and illumination challenges, researchers have resorted to

3D face recognition (for more details see [113, 114, 115]). Facial 3D geometry

either can be acquired using 3D sensing devices such as laser scanners [116] or

reconstructed from one or more images [117]. Using 3D sensing devices has proven

to be effective in 3D face recognition [118]. Also a lot of work has been done on 3D

face reconstruction either from stereo images or from a single image, which enables

the extraction of 3D information from 2D acquired facial images. There is a wide

range of approaches for 3D face reconstruction including shape from shading [117],
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space carving [119], shape from motion [120], stereo reconstruction, shape from

texture and analysis by synthesis using morphable models [121]. Each approach

has its own assumptions and might work in certain cases and might not work in

other cases when the assumptions are violated.

Face recognition from 3D has some advantages over 2D facial images. Their

pose can be easily corrected by rigid rotations in 3D space. They also provide

structural information about the face (e.g., surface curvature and geodesic dis-

tances), which cannot be obtained from a single 2D image. Lastly, 3D face recog-

nition algorithms have been shown to be robust to variations in illumination

conditions during image acquisition.

3D face recognition approaches can be divided to three main categories.

The first category of Local features approaches utilizes local features, such as

SIFT for meshes and face symmetry [122]. In the second category, deformable

template-based approaches have been proposed. As an example, Kakadiaris et

al. [123] utilize an annotated face model to study geometrical variability across

faces. The annotated face model is deformed elastically to fit each face, thus

matching different anatomical areas such as the nose, eyes and mouth. In the

third category of surface-distance based approaches, distances between feature

points on the face surface are employed. Gupta et al. [8] use Euclidean/geodesic

distances between fiducial points, in conjunction with linear classifiers. As stated

earlier, the problem of automated detection of fiducial points is non-trivial and

hinders automation of these methods. Also Bronstein et al. [124] provide a limited

experimental illustration of this invariance by comparing changes in surface dis-

tances with the Euclidean distances between corresponding points on a canonical

face surface. To handle the open mouth problem, they first detect and remove

the lip region, and then compute the surface distance in presence of a hole corre-

sponding to the removed part.

This method is motivated by the recent and remarkable success of heat-
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based features for 3D object classification and retrieval [3, 31]. The idea is to

propose an approach for 3D face recognition based on the front contours of heat

propagation over the face surface, see Figure 6.1. The front contours are extracted

automatically as heat is propagating starting from a detected set of landmarks.

The extraction of those fiducial landmarks is fully automated. The proposed

approach encodes the local face features as well as the diffusion distance over

the surface around these landmarks. The propagation contours are used to suc-

cessfully discriminate the various faces. The proposed approach is evaluated on

the Texas 3D face recognition database [8] as it is the largest publicly available

database of 3D facial images acquired using a stereo imaging system. It is also

compared to the state-of-the-art approaches in the 3D face recognition literature.

6.2 Proposed Approach for 3D Face Recognition

This work presents an approach for 3D face recognition based on heat

kernel (HK). It develops a new approach to extract the geometric points that

have the same diffusion distance from a source landmark point. These points lie

on a contour around a source landmark point. These contours are unique for

each face, and using it as a face descriptor is able to discriminate between human

faces. This section will describe how the landmarks points are detected. Then it

will give the details about the solution of heat equation over a manifold, and the

reconstruction of the heat kernel based on the eigenfunctions and eigenvalues of

the Laplace-Beltrami operator. This will allow to explain how the contours are

extracted around the facial landmark. Figure 6.2 shows the Proposed approach

framework.
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Figure 6.2: Proposed approach: Given a depth image, triangulation to get 3D
mesh, feature point extraction, heat kernel reconstruction for each feature point,
3D contours extraction, then contour sampling.

6.2.1 Facial Landmark Detection

The relationship among facial feature positions is commonly modeled as a

single Gaussian distribution function [125], which is the model used by the Active

Appearance Model (AAM) and Active Shape Model (ASM) algorithms. Evering-

ham et.al [126] modelled the probability distribution over the joint position of the

features using a mixture of Gaussian trees. The appearance of each facial feature

is assumed independent of the other features and is modelled using a variation of

the AdaBoost algorithm [127]. Figure 6.3 shows the facial features detected on

sample faces.

This work uses the method proposed in [126] to detect a small set of

facial landmarks (exactly nine points). The landmarks are extracted from the 2D

image and then mapped to the 3D surface. These points are used to initialized the

Extended Active Shape Model (STASM) [128] for mesh fitting, where the STASM

base mesh is warped to these nine points. The output of this step is 68 facial

landmarks. Figure 6.3 illustrates an example for fitting STASM-based meshes on

sample faces of Texas 3D data set. Later it will be will shown that just a subset

of 12 points will be used.
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Figure 6.3: Facial landmarks detected on sample faces from Texas 3D faces data
set.

6.2.2 Heat Front Propagation Contours

Section 3.4.2 provided a solution of the heat equation based on a linear

Finite Element Method (FEM) approximation to derive a discrete heat kernel.

To compute the solution to (3.13) the weak formulation through the Galerkin

formulation is used, as described in Section 3.4.2, then the heat kernel will be:

K(x,y, t) := φD(t)φTB, (6.1)

The heat kernels are calculated at each detected landmark point for dif-

ferent time scales. Then a set of 3D contours on the face surface are extracted

based on the heat kernel. These contours can be used to discriminate between

the different faces.

Figure 6.4 shows the first four eigenfunctions of the Laplace-Beltrami op-

erator of a human face. The first n = 100 eigenfunctions and eigenvalues of

the Laplace-Beltrami operator will be used to construct the heat kernels in the

following subsection.

Figure 6.5 shows the HKs induced from three different critical point for
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Figure 6.4: The first four non-zero eigenfunctions of the Laplace-Beltrami opera-
tor of human faces

one sample face at different time samples. For small time, the signature captures

local shape information. As time elapses, the signature tends to capture more

global shape details.

6.2.3 Contours Matching

After calculating the heat kernels at each point, the 3D contours are ex-

tracted at the 3D point on the face surface that have equal heat values. A pre-

determined number of the contours is used around each point. Then each contour

is sampled with a fixed number of points. This representation gives a finite and

ordered set of 3D points per face. To match two faces, the Iterative Closest Point

(ICP) algorithm is used to estimate rigid transformation parameters between the

corresponding point sets for the found contours on the two faces. The L2−norm

distance between the contour points of the probe face and gallery faces after regis-

tration is used as the distance measure, and the gallery faces are ranked based on

this distance measure. The Iterative Closest Point (ICP) algorithm is described

in Appendix F.
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Figure 6.6: Upper row: The selected 12 landmarks, Lower row: The reconstructed
one contour around each point. These 12 contours are used as a descriptor for
the 3D face.

6.3 Experimental Results

To assess the performance of the proposed approach, a test is done on the

Texas 3D face recognition database [8, 129]. Currently, Texas 3D face recognition

database is the largest publicly available database of 3D facial images acquired

using a stereo imaging system. The database contains 1149 3D models of 118

adult human subjects. The number of images of each subject varies from 1 per

subject to 89 per subject. The subjects ages range from ∼ 22 − 75 years. The

database includes images of both males and females from the major ethnic groups

of Caucasians, Africans, Asians, East Indians, and Hispanics. Samples of the RGB

image, depth image and the 3D mesh are shown in Figure 6.7. The 3D mesh are

created by triangulating the depth image. This experiment uses a gallery set

of 105 subjects (only one 3D model for each subject is used). The probe set is

selected from 480 sessions (3D faces).

A series of initial experiments are done to test different number of contours

around each facial landmark. It was found that using as few as one contour can

provide a good recognition rate. Using more contours could improve the results

further but at the cost of increased computational time. In the reported results,

one contour per each landmark is employed. Also only 12 landmark points are
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Figure 6.7: Samples of Texas 3D faces data set [8], from top to bottom The RGB
image, the depth image and the 3D mesh.

used in this experiment, Figure 6.6 shows sample of 3D faces with the used feature

points and the extracted contours.

For the sake of comparison, the results of five methods are shown: the

eigensurfaces of Chang et al. [130], fishersurfaces of BenAbdelkader and Grif-

fin [131], and ICP algorithms Lu et al. [132], the anthroface 3D algorithm [8],

based on 25 manually located points, and the anthroface 3D algorithm that em-

ployed 10 automatically located points [8]. using the same probe and gallery

sets.

Figure 6.9 shows the Cumulative Rank Curves (CMC) for the five algo-

rithms together with the proposed approach results. The proposed approach has

achieved a 100% recognition rate at rank 4. The results indeed confirm the supe-

rior performance of the proposed approach over the state-of-the-art approaches

for 3D face recognition.
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Figure 6.8: 3D face recognition framework.

6.4 Summary

This chapter, addressed the problem of 3D face recognition. It presented

a new approach based on the front contours of heat propagation over the face

surface. This was motivated by the recent and remarkable success of heat-based

features (Chapter 4.4) for 3D object classification and retrieval [31]. The front con-

tours are extracted automatically as heat is propagating starting from a detected

set of landmarks. The extraction of those fiducial landmarks is fully automated.

The approach encodes the local face features as well as the diffusion distance over

the surface around these landmarks.

The proposed approach has been evaluated on the Texas 3D Face Recog-

nition Database [8] as it is the largest publicly available database of 3D facial

images acquired using a stereo imaging system. The results have demonstrated

the superior performance of the proposed approach over several state-of-the-art
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Figure 6.9: The CMC curves, for the eigensurfaces, fishersurfaces, ICP algorithms,
anthroface 3D algorithm based on 25 manually located points, the anthroface 3D
algorithm that employed 10 automatically located points [8], and the proposed
approach HFPC.

approaches in the 3D face recognition literature. Future work may include testing

the proposed approach on different databases.

124



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation has proposed a number of advances in modeling 3D non-

rigid shapes. The findings from this dissertation make several contributions to

the current literature which can be summarized as follows:

Chapter 4, proposed a new method for feature detection on 3D shapes. It

proposed to use the first non-trivial Laplace-Beltrami eigenfunction to detect a

small number of sparse critical points on the surface of the shape. An observation

shows that shapes belonging to the same class consistently have almost the same

number of critical points, whereas these numbers differ from one class to another.

As such, this number can be used as one of the discriminatory features between

the different classes.

As a second contribution, two new feature descriptors are proposed, one

based on the heat kernels, and another constructed from scale-invariant heat ker-

nels. For the first approach, a feature vector (descriptor) computed at these criti-

cal points is sufficient for shape matching. Sparse representation of the descriptor

can be obtained to reduce its dimensionality before shape classification.The pro-

posed descriptors are compact in size, the feature vector can be down to 64, and

efficient in computation since it is constructed at sparse points.

The experimental results have shown that the proposed descriptor can

achieve state-of-the-art results on the two benchmark data sets. The results have

indeed confirmed the improved performance of the sparse representation over the

original non-reduced descriptors, yet reducing the time and space complicity for

the shape retrieval problem. In addition, results have shown that using one critical
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point will not sacrifices the performance.

The second approach presented a new approach for shape matching and

retrieval based on scale-invariant heat kernel (HK). The proposed descriptor is

based on the histograms of HKs at different time scales computed at these criti-

cal points. It thus can capture the local (at small time scales) as well as global

shape information (at bigger time scales). A new local transformation method

to introduce scale-invariance has been also proposed, which is shown to be sim-

pler, more computationally efficient and noise-robust compared to a well-known

method. The collaborative classification is used as a feature classifier

The experimental results have shown that the proposed descriptor can

achieve high performance on two popular benchmark data sets. The proposed

approach has outperformed state-of-the-art approaches for shape representation

and retrieval. The results have demonstrated that the proposed descriptor enjoys

many of the properties desirable in a shape descriptor: it is isometry-invariant,

able to deal with the non-rigid shape deformation. It is independent of the object’s

size, stable to small changes in the shape, and less sensitive to noise. As the

descriptor is computed at a number of points on the shape, rather than the whole

shape, it is computationally efficient. It has similarity, uniqueness and scope

properties; it has retrieved almost all the database shapes truly matching the

same query shape. An important observation from the experiments is that the

proposed approach is more able to handle data under several distortion scenarios

(white noise, shot-noise, and scale changes) than the well-known Shape Google

and Shape-DNA approaches.

Chapter 5, addressed the problem of textured 3D shapes representation.

It presented a new approach for shape matching and retrieval based on Weighted

Heat Kernel Signature (W-HKS). This chapter proposed to use the color infor-

mation as a weight over the shape manifold. It also proposed a novel formulation

for heat diffusion over weighted manifolds. Then it presented a new discretization
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method for the weighted heat kernel based on FEM. This chapter also proposed

a new method to introduce the scale invariance for the weighted heat kernel sig-

nature. The ”bag of features” (BoF) approach is used to construct compact and

informative shape descriptors. Finally, the weighted heat kernel signature is used

as a shape descriptor. The experimental results have shown that the proposed

descriptor can achieve high performance on SHREC13 benchmark data sets. The

proposed approach has outperformed state-of-the-art approaches (five different

methods) for textured shapes representation and retrieval. Different evaluation

measures approved the high accuracy of the proposed framework.

Chapter 6, addressed the problem of 3D face recognition, in the framework

of the BOSS project in the CVIP lab. It presented a new approach based on the

front contours of heat propagation over the face surface. The front contours are

extracted automatically as heat is propagating starting from a detected set of

landmarks. The extraction of those fiducial landmarks is fully automated. The

proposed approach encodes the local face features as well as the diffusion distance

over the surface around these landmarks. The proposed approach has been evalu-

ated on the largest publicly available database of 3D facial images acquired using

a stereo imaging system. The results have demonstrated the superior performance

of the proposed approach over several state-of-the-art approaches in the 3D face

recognition literature.

The analysis also lead to a number of interesting observations, some of

which may be considered as lines of future research. Below one outlines some

limitations as well as several important directions of further research.

• Using the proposed approach to address dense correspondence between non-

rigid shapes.

• Use the proposed approach with the properties of the Laplace-Beltrami

eigenfunction for 3D mesh segmentation.
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• Use the proposed approach for view point selection for 3D object by selecting

the most informative views that collectively provide the most descriptive

presentation of the surface.

• Address the problem of joint diagonalization for the construction of coupled

bases of the Laplacians of multiple shapes.

In conclusion, this dissertation has presented an analytical framework for

modeling 3d non-rigid shapes, textured 3d non-rigid shapes, and 3D face recog-

nition. One believes that there is still much progress to be made in the future.
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Appendix A: The Derivation of the Heat

Equation

In this appendix, seeking to drive the heat equation (1D case) from the

physical properties a solution for the rate of heat flow through an object will be

given, first from the properties of the object, and second by measuring the rate

of heat flow through the boundaries of the object.

Experimental calculations show that the heat Q in a small volume 4V at

time t can be defined by:

4Q = cρU4V (A-1)

where c is the specific heat, ρ is the density, and U is the temperature.

Consider a thin bar of a homogenous material and perfectly insulated along its

length so that heat can only flow through its ends. Any position along the bar

is denoted as x, and the length of the bar is denoted as L such that 0 ≤ x ≤ L.

The temperature U depends on the position x and time t. Thus

4Q = cρU(x, t)4V (A-2)

Now consider a small section of the bar U defined as the interval from

Figure A-1: Thin bar of a homogenous material, any position along the bar is
denoted as x, and the length of the bar is denoted as L such that 0 ≤ x ≤ L.
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x = atox = b as shown in Figure A-1.

The cross sectional area is defined as S, and the width of this section is

4x. This gives 4V = S4x.

The amount of heat in the cross-sectional area can be expressed as:

4Q = cρU(x, t)S4x (A-3)

Taking the integral to find the amount of heat in the section U at time t,

it will be:

Q(t) =

∫ b

a

cρU(x, t)Sdx (A-4)

Since the rod has uniform thickness, S doesn’t change with respect to

time, and assume dealing with homogenous materials c and ρ do not change with

respect to time. Thus, by differentiating and taking the partial of U to find the

change in heat with respect to time, it will be:

dQ

dt
=

∫ b

a

cρ
∂U

∂t
Sdx (A-5)

Now from the rate of heat flow through the boundaries of the object another

equation for dQ
dt

can be driven.

Since the rate of heat flow through the bar is inversely proportional to the

width 4x of U , and directly proportional to the cross-sectional area.

4Q = −CU(a+4x, t)− U(a, t)

4x
S (A-6)

The proportionality constant C is known as the thermal conductivity. Let-

ting 4x → 0 in Equation A-6, then the rate of heat flow through U at x = a is

given by
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−C∂U
∂x

(a, t)S (A-7)

Following the same argument it can be shown that the rate of heat flow

through U at b is defined as:

−C∂U
∂x

(b, t)S (A-8)

Therefore, the amount of heat that U obtains at time t can be given by

dQ

dt
= C[

∂U

∂x
(b, t)− ∂U

∂x
(a, t)]S (A-9)

Or,

dQ

dt
=

∫ b

a

d

dx
(C
∂U

∂x
S)dx (A-10)

Since the material of the bar is homogeneous and the cross-sectional area

is constant, so C and S to be constant. Therefore the expression becomes

dQ

dt
= C

∫ b

a

∂2U

∂x2
Sdx (A-11)

From Equation A-5, and Equation A-11

cρ

∫ b

a

∂U

∂t
Sdx = C

∫ b

a

∂2U

∂x2
Sdx (A-12)

cρ

∫ b

a

∂U

∂t
dx− C

∫ b

a

∂2U

∂x2
dx = 0, (A-13)

∂U

∂t
− k∂

2U

∂x2
= 0, (A-14)

where k = C/cρ and it is called thermal diffusivity. Now the heat equation
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is developed, also known as the diffusion equation. This equation models the flow

of heat at time t. The heat equation is a second order parabolic partial differential

equations, and usually written as

Ut = kUxx, (A-15)

�
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Appendix B: Analytic Derivation of

Equation 3.32

To discretize (3.29) let N = (M ;T) be a triangulated surface that approxi-

mates M. Here M := {xi; i = 1, . . . , n} is a set of n vertices and T is an abstract

simplicial complex containing the adjacency information. Choose linearly inde-

pendent basis functions B = {ϕi}ni=1, where ϕi(xj) = δij is equal to 1 at vertex i,

0 at all other vertices, and linearly interpolates between 1 and 0 on all triangles

incident to vertex i. Label vertex xi simply as i. If i, j, k are the distinct ver-

tices of a triangle tk, αi, αj, αk denote the interior angles of T at vertices i, j, k

respectively, and | tk | is the area of tk, as shown in Figure B-1, then it can be

shown that:

Figure B-1: Discrete triangulated surface. Left:A vertex xi and its adjacent faces
Middle:the definition of the angles αij and βij Right: the definition of the interior
angles αi, αj, αk of triangle T at vertices i, j, k respectively.
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Figure B-2: Shearing a regular triangle to a right angle triangle by changing
variables

∇ϕi · ∇ϕj = − cotαk
2 | tk |

(B-1)

| ∇ϕi |2 =
cotαj + cotαk

2 | tk |
(B-2)∫

T

ϕidσ =
| tk |

3
(B-3)∫

T

ϕ2
i dσ =

| tk |
6

(B-4)∫
T

ϕiϕjdσ =
| tk |
12

(B-5)

(B-6)

For simplicity, assume a shearing transformation is applied on a general

triangle S to get a right angle triangle R as shown in Figure B-2, then define ϕi :=

y
c

so it will be 1 at vertex i and 0 on all triangles incident, and ϕj := −b
ac

(y − b
c
x)

so it will be 1 at vertex j and 0 on all triangles incident, then ∇ϕi = (0, 1
c
), and

∇ϕj = ( 1
a
,− b

ac
), and the product 〈∇ϕi · ∇ϕj〉 will be:

〈∇ϕi · ∇ϕj〉 =
−b
ac2

=
−b
c

ac
=
− cotαk
ac

= − cotαk
2 | tk |

(B-7)

this proofs the first part.

Also, | ∇ϕ |2= 1
c2

= b+a−b
ac2

=
b
c
+a−b

c

ac
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this implies that:

| ∇ϕ |2=
cotαj+cotαk

2|tk|

where | tk | is the area of R this proofs the second part.

To do the proof of the other parts of 3.32 the integration by substitution

will be used, also known as u-substitution, is a method for finding integrals. Using

the fundamental theorem of calculus often requires finding an antiderivative.

Let f : R2 → R be a function defined on a triangle S, a shearing transfor-

mation will be applied on S to get a right angle triangle R as shown in Figure B-2,

then: ∫
S

f(x, y)dxdy =

∫
R

f(x(u, v), y(u, v)) |∂(x, y)

∂(u, v)
| dudv (B-8)

if αc = b then x = u+ αv = u+ b
c
v, and y = v

|∂(x,y)
∂(u,v)

| =

∣∣∣∣∣∣∣
1 b

c

0 1

∣∣∣∣∣∣∣ = 1

∫
S

ϕi(x, y)dxdy =
1

c

∫
S

ydxdy

=
1

c

∫
R

vdudv

=
1

c

∫ c

0

∫ a−a
c
v

0

vdudv

=
1

c

∫ c

0

v(a− a

c
v)dv

=
1

c
(
ac2

2
− ac3

3c
)

= (
ac

2
− ac

3
)

=
ac

6

=
| tk |

3

(B-9)
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∫
S

ϕi(x, y)2dxdy =
1

c2

∫
S

y2dxdy

=
1

c2

∫
R

v2dudv

=
1

c2

∫ c

0

∫ a−a
c
v

0

v2dudv

=
1

c2

∫ c

0

v2(a− a

c
v)dv

=
1

c2
(
ac3

3
− ac4

4c
)

= (
ac

3
− ac

4
)

=
ac

12

=
| tk |

6

(B-10)

∫
S

ϕi(x, y)ϕj(x, y)dxdy =
−b
ac2

∫
S

y(y − b

c
x)dxdy

=
−b
ac2

∫
R

v(v − c

b
(u+

b

c
v)).1.dudv

=
−b
ac2

∫
R

v(v − c

b
u− v)).1.dudv

=
1

ac

∫
R

uvdudv

=
1

ac

∫ c

0

∫ a−a
c
v

0

uvdudv

=
1

2ac

∫ c

0

v(a− a

c
v)2dv

=
1

2ac
(
a2c2

2
− 2

a2c3

3c
+
a2c4

4c2
)

=
ac

24

=
| tk |
12

(B-11)
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Appendix C: Analytic Derivation of

Equations 3.34 and 3.34

Let N = (M ;T) be a triangulated surface that approximates M. Here

M := {xi; i = 1, . . . , n} is a set of n vertices and T is an abstract simplicial

complex containing the adjacency information. Choose linearly independent basis

functions B = {ϕi}ni=1, where ϕi(xj) = δij are equal to 1 at vertex i, 0 at all other

vertices, and linearly interpolates between 1 and 0 on all triangles incident to

vertex i. Label vertex xi simply as i. If i, j, k are the distinct vertices of a triangle

tk, αi, αj, αk denote the interior angles of T at vertices i, j, k respectively, and

| tk | is the area of tk, as shown in Figure B-1. If i and j are distinct nonadjacent

vertices, then B(i, j) = L(i, j) = 0. If i and j are adjacent vertices then:

B(i, j) =

∫
M

ϕi ϕj dσ,

Assuming that integration over M is equal to summing the integrations over all

triangles, substituting from Equation B-1, then:

B(i, j) =
∑
i,j

∫
tk

ϕiϕjdσ

=
∑
i,j

| tk |
12
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and,

B(i, i) =
∑
i,i

∫
tk

ϕiϕidσ

=
∑
i,i

| tk |
6

so

B(i, j) =


|tr|+|ts|

12
if j ∈ Ne(i)∑

k∈Ne(i)|tk|
6

if i = j
(C-1)

Similarly,

L(i, j) =

∫
M

(∇ϕi · ∇ϕj)dσ.

then:

L(i, j) =
∑
i,j

∫
tk

∇ϕi · ∇ϕjdσ

=
∑
i,j

| tk | (−
cotαk
2 | tk |

)

by substitution from Equation B-1, then:

L(i, j) =


w(i, j) =

cotαij+cotβij
2

if j ∈ Ne(i)

−
∑

k∈Ne(i) w(i, k) if i = j

0 else

(C-2)

�
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Appendix D: Analytic Derivation of

Equation 5.10

This appendix derives the analytic expression of the 5.10

To discretize (5.9) let N = (M ; T) be a triangulated surface that approx-

imates M. Here M := {xi; i = 1, . . . , n} is a set of n vertices and T is an

abstract simplicial complex containing the adjacency information. Choose lin-

early independent basis functions B = {ϕi}ni=1, where ϕi(xj) = δij are equal to

1 at vertex i, 0 at all other vertices, and linearly interpolates between 1 and 0

on all triangles incident to vertex i. Label vertex xi simply as i. If i, j, k are

the distinct vertices of a triangle T , αi, αj, αk denote the interior angles of T at

vertices i, j, k respectively, and A(T ) is the area of T , as shown in Figure B-1,

Figure D-1: Shearing a regular triangle to a right angle triangle by changing
variables.
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then it can be shown that:

∇ϕi · ∇ϕj = − cotαk
2A(T )

| ∇ϕ |2 =
cotαj + cotαk

2A(T )∫
T

ϕidσ =
A(T )

3∫
T

ϕ2
i dσ =

A(T )

6∫
T

ϕiϕjdσ =
A(T )

12∫
T

ϕ3
i dσ =

A(T )

10∫
T

ϕ2
iϕjdσ =

A(T )

30∫
T

ϕiϕjϕkdσ =
A(T )

60

(D-1)

The first four parts of 5.10 are given in Appendix B. Similarly and referring

to Figure D-1, let ϕi := y
c

so it will be 1 at vertex i and 0 on all triangles incident,

ϕj := −b
ac

(y − b
c
x) so it will be 1 at vertex j and 0 on all triangles incident, and

ϕk := b−a
ac

(y− b
b−a(x−a)) so it will be 1 at vertex j and 0 on all triangles incident.
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∫
S

ϕi(x, y)3dxdy =
1

c3

∫
S

y3dxdy

=
1

c3

∫
R

v3dudv

=
1

c3

∫ c

0

∫ a−a
c
v

0

v3dudv

=
1

c3

∫ c

0

v3(a− a

c
v)dv

=
1

c3
(
ac4

4
− ac5

5c
)

= (
ac

4
− ac

5
)

=
ac

20

=
A(T )

10

(D-2)

∫
S

ϕi(x, y)2ϕj(x, y)dxdy =
−b
ac2

∫
S

y2(y − b

c
x)dxdy

=
−b
ac3

∫
R

v2(v − c

b
(u+

b

c
v)).1.dudv

=
−b
ac3

∫
R

v2(v − c

b
u− v)).1.dudv

=
1

ac2

∫
R

uv2dudv

=
1

ac2

∫ c

0

∫ a−a
c
v

0

uv2dudv

=
1

2ac2

∫ c

0

v2(a− a

c
v)2dv

=
1

2ac2
(
a2c3

3
− 2

a2c4

4c
+
a2c5

5c2
)

=
ac

60

=
A(T )

30

(D-3)
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∫
S

ϕi(x, y)ϕj(x, y)ϕkdxdy =
−b(b− a)

a2c3

∫
S

y(y − b

c
x)(y − b

b− a
(x− a))dxdy

=
1

ac

∫
R

uvdudv − 1

a2c

∫
R

uv2dudv − 1

ac2

∫
R

uv2dudv

=
ac

24
− ac

60
− ac

60

=
ac

120

=
A(T )

60

(D-4)

�
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Appendix E: Analytic Derivation of

Equations 5.11, 5.12, and 5.13

To discretize (5.9) let N = (M ; T) be a triangulated surface that approx-

imates M. Here M := {xi; i = 1, . . . , n} is a set of n vertices and T is an

abstract simplicial complex containing the adjacency information. Choose lin-

early independent basis functions B = {ϕi}ni=1, where ϕi(xj) = δij are equal to

1 at vertex i, 0 at all other vertices, and linearly interpolates between 1 and 0

on all triangles incident to vertex i. Label vertex xi simply as i. If i, j, k are

the distinct vertices of a triangle T , αi, αj, αk denote the interior angles of T at

vertices i, j, k respectively, and A(T ) is the area of T , as shown in Figure B-1.

If i and j are distinct nonadjacent vertices, then B(i, j) = L(i, j) = 0. If i and j

are adjacent vertices then:

B(i, j) =

∫
M

ϕiϕjhdσ,

Assuming that integration over M is equal to summing the integrations over all

triangles, then:

B(i, j) =
∑
i,j

∫
T

ϕiϕjhdσ
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Figure E-1: The definition of the angles αij and βij and the weights hTα and hTβ .

and substituting h by hiϕi + hjϕj + hkϕk, then:

B(i, i) =
∑
i,i

∫
T

ϕiϕihdσ

=
∑
i,i

∫
T

ϕiϕi(hiϕi + hjϕj + hkϕk)dσ

=
∑
i,i

∫
T

(ϕ2
iϕjhi + ϕiϕ

2
jhj + ϕiϕjϕkhk)dσ

Denote by hT the average value of a function h over a triangle T . Denote

by Ne(i) the set of vertices adjacent to i. Given j ∈ Ne(i) denote by Tα and Tβ the

triangles having (i, j) as an edge and by α and β the interior angles of Tα and Tβ

opposite edge (i, j), as shown in Figure E-1, and substituting from Equation D-1,

then:

B(i, j) = (hi + hj)
A(Tα) + A(Tβ)

60
+
hTαA(Tα) + hTβA(Tβ)

20
(E-1)

whenever j ∈ Ne(i),
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B(i, i) =
∑

k∈Ne(i)

A(Tk)(
hi
15

+
hTk
10

) (E-2)

Similarly,

L(i, j) =

∫
M

(∇ϕi.∇ϕj)hdσ.

Substituting h by hiϕi + hjϕj + hkϕk, then:

L(i, j) =
∑
i,j

∫
T

∇ϕi.∇ϕj(hiϕi + hjϕj + hkϕk)dσ

=
∑
i,j

(− cotαk
2A(T )

)

∫
T

(hiϕi + hjϕj + hkϕk)dσ

Substituting from Equation D-1, then:

L(i, j) =

 −
hTα cotα+hTβ cotβ

2
if j ∈ Ne(i)∑

k∈Ne(i) L(i, k) if i = j
(E-3)

where hTα , and hTβ are the average values of a function h over a triangles

Tα, and Tβ.

�
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Appendix F: Iterative Closest Point (ICP)

Algorithm

The objective of this section is to formulate the registration between two

different 3D surface models [133]. Given a source surface model Ms and a target

shape Mt, a transformation A that moves points from Ms to Mt is needed. The

selected transformation has a set of parameters will be estimated to minimize a

certain energy function.Assume that the transformation is affine and hence it will

have the following homogeneous format:

A =



a1

a5

a9

0

a2

a6

a10

0

a3

a7

a11

0

a4

a8

a12

1


(F-1)

Assume that xi ∈Ms, i = 1, 2, ..., Ns and yi ∈Mt is the closest point to Axi on

the target shape where Ns is the number of points on the source surface. Note

that both xi =



xi1

xi2

xi3

1


and yi =



yi1

yi2

yi3

1


points are put in the homogeneous

vector notation of size 4×1. Consider the Euclidean distance between the moved

point and its closes position to be the dissimilarity measure as follows:

di = ||Axi − yi||. (F-2)

And hence, the summation of squared differences can be written as the
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objective energy function:

E = E(a1, a2, ..., a12) =
Ns∑
i=1

1

2
(Axi − yi)T (Axi − yi) (F-3)

Dividing by two just to remove numbers from the derivative equations as

follows. The transformation parameters {ak} are required to minimize the above

functional. Taking the derivative of the energy with respect to ak will result in:

∂E

∂ak
=

Ns∑
i=1

(Axi − yi)T (Aakxi) (F-4)

where Aak is the derivative of the transformation matrix A with respect to the

parameter ak. So, any element Aak(m,n) in row m and column n of the derivative

matrix can be written in the following format:

Aak(m,n) =

 1 ifk == 4(m− 1) + n

0 otherwise
(F-5)

Taking derivatives with respect to all the 12 parameters will result in a

linear system of equations as shown below:

ΨΘ = Λ (F-6)

where Θ = (a1a2...a11a12)T . The column vector Λ has 12 elements defined

as follows:
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Λ = ΣNs
i=1



xi1yi1

xi2yi1

xi3yi1

yi1

xi1yi2

xi2yi2

xi3yi2

yi2

xi1yi3

xi2yi3

xi3yi3

yi3



(F-7)

The square matrix Ψ has 12× 12 elements in Eq. F-8.

Ψ = ΣNs
i=1


Xij 0 0

0 Xij 0

0 0 Xij

 (F-8)

Where

Xij =



x2
i1 xi1xi2 xi1xi3 xi1

xi1xi2 x2
i2 xi2xi3 xi2

xi1xi3 xi2xi3 x2
i3 xi3

xi1 xi2 xi3 1


(F-9)

Solving the above linear system will compute the parameters of the affine

transformation that minimizes the distance between the two shape models. This

process in repeated on the transformed surface until the change in the transformed

points is not significant.
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NOMENCLATURE

List of Abbreviations

BoF Bag of Features

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

CAD Computer Aided Design

CRC-RLS Collaborative Representation-Based Classification with Regular-

ized Least Square

DCG Discounted Cumulative Gain

DOG Difference of Gaussians

FP False Positive rate

HKS Heat Kernel Signatures

HOG Histogram of Gradients

LBP Local Binary Patterns

LIOP Local Intensity Order Pattern for Feature Description

NN Nearest Neighbor

ORB Oriented FAST and Rotated BRIEF

SI-HKS Scale Invariant Heat Kernel Signatures
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SIFT Scale Invariant Feature Transform

SURF Speeded Up Robust Features

TP True Positive rate

W-HKS Weighted Heat Kernel Signatures

List of Symbols

E, F, G the three first fundamental forms

(u,v) an orthogonal basis on a tangent plane of S

αi, αj, αk Interior angles of T at vertices i, j, k respectively

∆Mf Laplace-Beltrami operator

dQ
dt

The change in heat with respect to time

γ the path of an interval

κ1 maximum principal curvature

κ2 minimum principal curvature

〈·, ·〉 Inner product

R The real numbers

Rn n-dimensional Euclidean space

R2 2D real number Cartesian space

R3 3D real number Cartesian space

S a compact, regular and orientable 3D surface

X The metric space

166



x = (x, y, z) a vertex on the 3D surface S

B = {ϕi}ni=1 Linearly independent basis functions

C Class of r-times continuously differentiable maps

C The thermal conductivity

M Riemannian manifold

c The specific heat

µ A measure over manifold M

∇f Gradient of function f

ρ The density

L, M, N the three second fundamental forms

4Q The heat Q in a small volume 4V at time t

4V Small volume

A(T ) The area of triangle T

AT Transpose of matrix A

aij ijth element of matrix A

B(i, j) The weight matrix

dL metric induced by the length

det(A) Determinant of matrix A

g The Riemannian metric

H mean curvature
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K Gaussian curvature

L length of the path

L(i, j) The laplacian matrix

Q The heat

trace(A) Trace of matrix A

U The temperature
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