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ABSTRACT

SEMI-BLIND ROBUST IDENTIFICATION AND ROBUST CONTROL

APPROACH TO PERSONALIZED ANEMIA MANAGEMENT

Elom Akabua

2014-06-10

The homeostatic blood hemoglobin (Hb) content of a healthy individual varies between

the range of 14-18 g/dL for a male and 12-16 g/dL for a female. This quantity provides

an estimate of red blood cell (RBC) count in circulation at any given moment. RBC is a

protein carrying substance that transports oxygen from the lungs to other tissues in the

body and is synthesized by the kidney through a process known as erythropoiesis where

erythropoietin is secreted in response to hypoxia. In this regard, the kidneys act not

only as a controller but also as a sensor in regulating RBC levels. Patients with chronic

kidney diseases (CKD) have dysfunctional kidneys that compromise these fundamental

kidney functions. Consequently, anemia is developed.

Anemics of CKD have low levels of Hb that must be controlled and properly reg-

ulated to the appropriate therapeutic range. Until the discovery of recombinant human

erythropoietin (EPO) over three decades ago, treatment procedure of anemia conditions

primarily involved repeated blood transfusions–a process known to be associated with

several other health related complications. This discovery resulted in a paradigm shift

in anemia management from blood transfusions to dosage therapies. The main objective

of anemia management with EPO is to increase patients’ hemoglobin level from low to

a suitable therapeutic range as defined by the National Kidney Foundation-Kidney Dis-
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ease Outcomes Quality Initiative (NKF-KDOI) to be in the range of 10 - 12 g/dL while

avoiding response values beyond 14 g/dL to prevent other complications associated with

EPO medication. It is therefore imperative that clinicians balance dosage efficacy and

toxicity in anemia management therapies. At most treatment facilities, protocols are

developed to conform to NKF-KDOI recommendations. These protocols are generally

based on EPO packet inserts and the expected Hb responses from the average patient.

The inevitable variability within the patient group makes this “one-size-fits-all” dosing

scheme non-optimal, at best, and potentially dangerous for certain group of patients that

do not adhere to the notion of expected “average” response. A dosing strategy that is

tailored to the individual patients’ response to EPO medication could provide a better

alternative to the current treatment methods.

An objective of this work is to develop EPO dosing strategies tailored to the

individual patients using robust identification techniques and modern feedback control

methods. First, a unique model is developed based on Hb responses and dosage EPO of

the individual patients using semi-blind robust identification techniques. This provides

a nominal model and a quantitative information on model uncertainty that accounts for

other possible patient’s dynamics not considered in the modeling process. This is in the

framework of generalized interpolation theory. Then, from the derived nominal model

and the associated uncertainty information, robust controller is designed via the µ/H∞-

synthesis methods to provide a new dosing strategies for the individual patients. The

H∞ control theory has a feature of minimizing the influence of some unknown worst-

case gain disturbance on a system. Finally, a framework is provided to strategize dosing

protocols for newly admitted patients.
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CHAPTER 1
INTRODUCTION

Anemia of End-Stage Renal Disease (ESRD) results from insufficient produc-

tion of erythropoietin, a glycoprotein promoting the growth of red blood cells (RBC) in

the bone marrow as a response to hypoxia. When RBC level is low, the kidneys secrete

erythropoietin to stimulate the proliferation of red blood cell precursors that eventually

lead to an increased level of matured RBC counts. RBC contains hemoglobin (Hb) that

transports oxygen from the lungs to other tissues. Patients of anemia due to ESRD have

dysfunctional kidneys that are incapable of producing sufficient endogenous erythropoi-

etin to initiate the RBC production process to sustain a good quality of life. As a result,

they develop anemia.

Until a little over three decades ago, management of anemia conditions primar-

ily involved repeated blood transfusion, a procedure known to be associated to several

other health related complications. However, the discovery of recombinant human ery-

thropoietin (EPO) over three decades ago [1] shifted anemia treatment process from

blood transfusion to dosage therapy. The overall objective is to elevate the low Hb level

to an effective therapeutic Hb range. Although the dosing of EPO has been shown to

interrupt the progress of anemia of ESRD and in some cases corrects it [2–4], the is-

sues of developing comprehensive dosing strategies that consistently meet the design

objectives remains a major challenge. This is primarily due to the large patient vari-

ability in erythropoietic responses. As a consequence, the decision process involved in

EPO dosage medication consists mostly of trial-and-error [5]. To standardize anemia
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FIGURE 1.1: Patient-Physician interaction in a feedback loop.

treatment process, the National Kidney Foundation’s Kidney Disease Outcomes Quality

Initiative (NKF-KDOQI) has established guidelines with the recommendation that the

hemoglobin levels of patients of ESRD to be maintained within a narrow range of 10-12

g/dL [6].

Many therapeutic solutions are closely related to system control problems and

feedback measurements [7–9]. Regarding EPO dosage therapy, this relation is summa-

rized in Figure 1.1. In this figure, Hbd and Hbm represent certain desired and measured

hemoglobin levels, respectively. The goal of a physician is to gather information on

the patient, including past input and output measurement data, and apply the proper

dose of EPO in an attempt to regulate the subsequent Hb values to some desired range.

However, factors such as noise and disturbance in the feedback configuration make this

objective challenging. This is a typical phenomenon in most practical drug dosage treat-

ment methods. The aim is to translate the anemia management problem into a feedback

control problem and use the tools of modern feedback control techniques to develop a

dosing strategy that is consistent and robust to unknown disturbances. Achieving this

objective requires unique mathematical model for each patient that describes the rela-

tionship between measured hemoglobin level and input erythropoietin.

2



1.1 NONPARAMETRIC IDENTIFICATION TECHNIQUES IN DOSAGE

THERAPIES

A necessary requirement for feedback control design methods is a mathemati-

cal description of the process to be controlled. For certain systems such as mechanical

and electromechanical systems, this description can be estimated based on first princi-

ples. Modeling from first principles approach is not suitable for certain systems with

complex dynamics. Using classical system identification methods requires sufficiently

large sample size, a luxury that is not common in modeling with clinical data with low

sampling frequency [10, 11]. In addition, the classical system identification techniques

require that model structure to be specified in advance, a requirement that is often done

in trial-and-error fashion.

The classical system identification technique works well, provided the specified

model structure is in agreement with that of the true system structure. By contrast,

if the assumed structure differs from that of the system’s, results from the technique

may produce an unsatisfactory outcome [12, 13]. This is primarily due to the fact that

this identification method only yields a single mathematical model that is presumed to

be capable of describing the overall dynamics of the actual system, regardless of its

complexity. System dynamics and parameter values may change and neglecting such

eventualities at the modeling stage may yield inferior results. Additionally, the very no-

tion of randomness in measurement values may be questionable. It is well understood

that any derived mathematical description of a system is a simplified version of the true

plant and that it is impossible to provide models that completely describe the true behav-

ior of a system. Changes in estimated parameter values during operation and unknown

uncertainty entering the process must be considered at the modeling stage. This change

in parameter values during operation leads to the concept of plant uncertainty. Another

source of uncertainty is the one due to external signals including measured and unmea-

3



sured disturbances, referenced input signal, etc. To completely describe the dynamic

behavior of any system, it is essential to consider the effect of uncertainty on the overall

behavior of the model.

Basic requirements for robust control design technique are a nominal model and

a quantifiable information on the associated uncertainty in the derived model. As a

result, any robust control oriented identification procedure must deliver not only such

nominal model but also a quantitative information on the model uncertainty. These

requirements for robust control initiated a new identification methods termed control-

oriented identification in the 90s (see [14–19]). The techniques of robust identification

diverge considerably from that of classical system identification methods. Particularly,

the procedure does not require any statistical information on noise affecting measure-

ments nor does it require information on the structure of the system to be identified. In

this identification procedure, the only a priori requirement is that the following three

constants must be available: the maximum gain of the system K, the stability margin of

the system response ρ, and a bound on noise ε. Depending on the nature of the a posteri-

ori information, the robust identification techniques may lead to different identification

methods.

When experimental data originates from frequency domain1, the technique leads

to H∞-identification procedure (see [14–16, 20–23]) which measures the uncertainty

bounds in terms of the H∞-norm and is sufficient for H∞ optimal controller or µ-

synthesis design techniques. On the other hand, when experimental data originate from

time domain data, the `1-identification technique is used ( see [24–28]) which provides

an `1 error bounds and is suitable for `1 optimal control design techniques [29]. Oc-

casionally, both time and frequency domain data may be available or generated from

a single plant. In this case, the mixed H∞/`1 robust identification procedure is used

1Frequency domain data are data obtained from frequency response of the system while time domain

data are those obtained from time response of the system

4
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FIGURE 1.2 – Blind identification with unknown system h(·) and input u(·).

(see [30–33]). Obviously, with both time and frequency domain experimental data

available, a much smaller consistency set can be derived; however, for most systems,

it is generally a challenge or costly to perform frequency domain experiment. Since the

clinical data available for this work is of the time domain nature, this work focuses on

the `1 identification technique.

In modeling from measurement data, a common assumption is that experimen-

tal data are generated precisely at time t0 = 0 while ignoring the effects of the system

dynamics prior to the identification step. While this assumption simplifies the problem,

it may introduce a very high prediction error in the model. To address this problem,

a new approach to identification with nonzero initial conditions is considered. This is

achieved by a new identification method called semi-blind robust identification [34]. In

this recently developed identification method, the goal is to estimate, in addition to the

system’s impulse responses, the system dynamics prior to the identification process us-

ing only output measurements. Figure 1.2 shows the objectives of the technique. From

the figure, both the system and the initial inputs are unknown and are to be determined

from the measurement output. This problem generally leads to a non-convex optimiza-

tion problem. However, by relaxing the problem by assuming a minimal information on

the system, it is shown that the problem can be solved [35].
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1.2 MODEL VALIDATION

Models obtained from the robust identification technique must be validated. If

a derived model is combined with the associated uncertainty bound is found not to be

able to produce the system experimental data, a new a priori information on the sys-

tem must be assumed or an additional experiment must be constructed. It should be

emphasized here that one cannot truly validate a model but rather invalidate it since

it is always possible to provide conditions to falsify any given model. To this effect,

when outputs of the estimated model is combined with the corresponding uncertainty

bound and is found to be consistent with the system output measurements, it is said

that the estimated model is not invalidated. On the other hands, when the outputs mea-

surements of the estimated model and its uncertainty bounds does not correspond with

the system output measurement, it is said that the estimated model is invalidated. The

problems of model (in)validation in linear time invariant (LTI) systems is not new. This

problem was initiated by Smith etc. [36] and has since attracted the attention of several

researchers [37–39]. Techniques exist to partially solve this problem for unstructured

uncertainty models. The objective here is to reduced the problem into a convex opti-

mization problem that can be solved with any optimization tools. For structured LTI

uncertainty models, this problem remains to be an NP-hard problem [40]. It should be

mentioned that even in the case of unstructured uncertainty model (in)validation prob-

lems solved above, the assumption is that the initial conditions of the system model are

zero.
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CHAPTER 2
PRELIMINARIES

This chapter provides an overview of some needed notations, equations, func-

tions, and generalized interpolation conditions that are used in the thesis.

2.1 NOTATIONS

Below summary is a list of notations used throughout the thesis.

R set of real numbers

C set of complex numbers

Z (Z+) set of integers (non-negative)

x vector containing real values (otherwise stated)

xk kth element of vector x

‖x‖p p-norm of vector x defined as ‖x‖p
.
= (

∑m
k=1|xk |p)

1
p ,where p ∈

[1,∞), ‖x‖∞
.
= max

k=1,...m
|xk|

‖A‖p induced p-norm of matrix A, such that ‖A‖p =̇ max‖Ax‖q‖x‖q for x 6= 0

AT conjugate transpose of matrix A

λ(A) eigenvalue of matrix A

σ(A) maximum singular value of matrix A

7



A > (≥) 0 A = AT positive (semi) definite of matrix A such that xTAx > (≥

) 0 ∀x ∈ Cn,x 6= 0

BX (γ) an open γ-ball in X such that BX (γ) = {x ∈ X : ‖x‖X < γ}

BX (γ) closure of BX (γ)

BX
(
BX
)

open (closed) unit ball in X

(X ,m) metric space of elements in X equipped with the metric m (x1 , x2 )

r (A) radius of a set A ⊆ X : r (A)
.
= inf

x∈X
sup
a∈A

m(x, a)

d (A) diameter of a set A ⊆ X : d (A)
.
= sup

x,a∈A
m(x, a)

`mp extended Banach space of vector valued real sequences equipped with

norm: ‖x‖p

L∞ Lebesgue space of complex-valued matrix functions essentially

bounded on the unit circle equipped with the norm: ‖G‖∞
.
=

ess sup
|z|=1

σ (G(z))

H∞ subspace of functions in L∞ with bounded analytic continuation

inside the unit disk and equipped with the norm: ‖G‖∞
.
=

ess sup
|z|<1

σ (G(z))

H∞,ρ space of transfer matrices analytic in |z| ≤ ρ with the norm

‖G‖∞,ρσ(G(z))

X (z) right-sided Z-transform of real sequence {x} : X (z) =
∑∞

i=0 xiz
i

TN
x lower triangular block Toeplitz matrix of a finite sequence xk, k =

0, 1, . . . , N − 1 defined as:

x0 0 · · · 0

x1 x0 · · · 0

... . . . . . . 0

xN−1 · · · x1 x0
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ΓN
x Given a finite sequence xk, k = 1 : N, ΓNx denotes the Hankel matrix

defined as:

x1 x2 · · · xN

x2 x3 · · · xN+1

... . . . . . . ...

xN xN+1 · · · x2N−1



2.2 SIGNALS AND SYSTEMS

A signal is a time or space property of a physical phenomenon that can be used to

convey information. Signals can be classified as having either a discrete or a continuous

properties or both. Most natural signals are continuous; however, they can be discretized

for analysis as seen in Figure 2.1 where a sine signal is discretized at an equally spaced

time intervals to produce discrete samples.

A system is defined as a function that maps an input signal to a corresponding

output signal. That is, given an input-output data sequence, an operator G maps the input

sequence to the output values. This function can be represented as either a (rational)

complex valued function as defined in Equation (2.1) or as a state space representation

of Equation (2.2).

G(z)
.
=
∞∑
i=0

giz
i (2.1)

xk+1 = Axk +Buk

yk = Cxk +Duk (2.2)
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FIGURE 2.1 – Signal representation.

In Equation (2.1), gi represents the impulse response vector corresponding to system G.

Similarly, parameters of Equation (2.2) are defined as follow: xk ∈ Rn is the state of

the system, uk ∈ Rp defines the input sequence, and yk ∈ Rq defines the output of the

system. Parameters A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, and D ∈ Rq×p represent state,

input, output, and feedforward matrices of the system, respectively. A more compact

form of representing the state space of Equation (2.2) is the minimal state-space real-

ization form as shown in Equation (2.3) where the matrices carry the same meaning as

indicated above.

G ≡

 A B

C D

 (2.3)

Given the input sequence uk with a known system impulse response sequence,

the corresponding output can be determined through the convolution sum as shown in

Equation (2.4).

yk = G(z)uk (2.4)
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2.3 LINEAR MATRIX INEQUALITIES

Many control engineering problems can be translated into a set of Linear Matrix

Inequalities (LMI) formulation and solved with any linear optimization solvers [41].

LMI techniques have been used in many application areas such as system estimation,

identification, optimal design methods, etc. The technique benefits from its ability to

combine various constraints and/or objectives problems into a numerically tractable one.

Equation (2.5) shows the form of LMI constraints.

L(x) = L0 + x1L1 + x2L2 + · · ·+ xNLN < 0 (2.5)

where

• x = (x1, x2, . . . , xN) is a vector of unknown scalar which is also the decision or

the design variable

• L0, L1, . . . , LN are some given symmetric matrices,

• “ < 0” implies “negative definiteness”, which is the largest eigenvalue of L(x).

Constraints of the forms L(x) > 0 and L(x) < N(x) are special case of Equation (2.5)

since they can be rewritten as −L(x) < 0 and L(x) − N(x) < 0, respectively. Indeed,

several LMI constraint problems can be combined to form a single LMI problem as

shown in Equation (2.7).

L0(x) < 0, L1(x) < 0, L2(x) < 0, . . . , LN(x) < 0 (2.6)

L(x) =



L0(x) 0 · · · 0

0 L1(x) · · · 0

... . . . . . . 0

0 · · · 0 LN(x)


< 0 (2.7)
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LMI techniques can be extended to nonlinear control problems through Schur’s com-

plements transformation as summarized in Equation (2.8) [41].Q(x) S(x)

S(x)T R(x)

 < 0

Q(x) = Q(x)T

R(x) = R(x)T (2.8)

Here, S(x) depends affinely on “x” and is equivalent to

R(x) < 0

Q(x)− S(x)R(x)−1S(x)T < 0

Linear Matrix Inequalities problems are classified into three main categories

[41]:

• Feasibility problem: This LMI types involves finding a solution P to the LMI

system L(P ) < 0

• Linear Objective Minimization problem: Minimize a convex objective under LMI

constraints

min CP

s.t. L(P ) < 0

• Generalized eigenvalue minimization problem: given by

min λ

s.t.


L(P ) < λB(P )

B(P ) > 0

C(P ) < 0

12



CHAPTER 3
ANEMIA MANAGEMENT PROBLEM

In this chapter, an overview of the anemia management problem is reviewed.

First, the anemia management “problem” is defined, then a review of some of the ex-

isting approaches in the literature that have been used to address this problem. Finally,

anemia management as a feedback control problem is provided to conclude the chapter.

3.1 INTRODUCTION

A healthy individual synthesizes about 1010 red blood cells (RBC) per hour to

maintain acceptable Hb level in the range of 12 to 18 g/dL [42]. This process is driven by

erythropoietin, a hormone produced primarily in the kidney cortex [2]. In chronic kid-

ney disease (CKD) patients, natural production of this hormone is compromised leading

to chronic anemia. The preferred treatment method of this condition involved exter-

nal administration of EPO; however, determining the exact amount of the medication

to administer to achieve treatment objectives while avoiding toxic side effects remains

a major challenge. As a result, most EPO dosing strategies focus on treatment proce-

dures based on “average” population-wide patient responses and EPO packet informa-

tion. However, inter-patient and intra-individual variability in erythropoietic responses

makes this dosing strategy non-optimal to an already costly medication and potentially

dangerous aberrant patient groups.
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FIGURE 3.1 – Simulated Hb concentration of the desired (left) vs actual (right) obser-
vations.

3.2 DEFINITION

The primary aim of treatment with EPO medication is to achieve and stabilize Hb

concentration of ESRD patients to reduce the need for blood transfusions. The National

Kidney Foundation’s Dialysis Outcomes Quality Initiative stipulated that patients with

such condition maintain Hb value in the range of 10-12 g/dL [6].

To meet this requirement, several dialysis facilities developed protocols for EPO

dosage adjustments [43] that comprise information on FDA approved EPO packet in-

serts and average patients response to the medication. As such, this dosing strategy tend

to address dosage as a population-wide issue and neglect to consider the erythropoietic

responses of the few patients with aberrant Hb responses. Therefore, to achieve an effi-

cient and accurate treatment method, it is important to consider the inherent variability
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within patient Hb responses to EPO. Figure 3.1 shows the simulated Hb responses of

patients under EPO treatment for both the ideal and actual situation. The figure on the

left indicates the desired Hb response pattern after EPO administration which clearly

shows Hb measurement values are within the targeted range of 10 to 12 g/dL. By con-

trast, the figure on the right shows Hb response values that are typically observed in

the clinical settings, which is clearly undesirable. In both figures, dark filled circles are

used to represent Hb measurement and two horizontal lines are used to denote lower

and upper limit of desired Hb response of 10 - 12 g/dL. A challenge to EPO therapy

is maintaining patient hemoglobin response within the targeted therapeutic range; how-

ever, a phenomenon known as hemoglobin cycling, attributed to uncertainty in dosing

strategies [44], makes this objective difficult to achieve. An immediate solution to this

difficulty is a patient-specific approach to dosage therapy. Optimal dosing decisions for

individual patients can be derived using feedback control approaches based on a patient-

specific dose-response model estimated from the initial treatment data.

3.3 ERYTHROPOIESIS DRUG DELIVERY STRATEGY

Several attempts to automate EPO delivery have already been reported in the lit-

erature [45–56]. Bayesian network-based drug delivery optimization was performed

with patient population data in [46]. This approach was subsequently enhanced by

the Fuzzy rule-based control strategy in [57]. In [53] and [56], Artificial Neural Net-

work models were evaluated in anemia patient model development. However, none

of the above techniques is able to provide models based on the individual measure-

ment response data. Few attempts have been made to develop patient-specific mod-

els [47, 54, 55, 58]. Support Vector Regression [58] and Approximate Dynamic Pro-
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gramming in [47, 54, 55] have been proposed previously to personalize EPO dosing.

In [58], the procedure was mainly to predict input EPO rather than output hemoglobin.

This objective is less desirable than predicting hemoglobin output since predicting out-

puts provides a means to determine the required input value; however, the converse is

not true. In [47, 54, 55] individualized anemia management was attempted; however,

the approach was aimed at optimizing the EPO dosage rather than developing individ-

ualized patient models. To summarize, none of the above modeling techniques used

individual patient measurement data in the model discovery. Furthermore, none con-

sidered the effects of patients initial conditions prior to any modeling techniques and

more importantly, none was able to deliver models with a quantifiable information on

the model uncertainty.

3.4 ANEMIA MANAGEMENT AS A FEEDBACK CONTROL PROBLEM

The feedback configuration of Figure 1.1 depicts a possible interaction between

a physician and a patient of ESRD where Hbd and Hbm represent the desired and mea-

sured hemoglobin values, respectively. In the figure, EPO values to administer are de-

termined by the physician based on past observations. The objective here is to provide

dosing strategies to minimize the error between the measured and desired Hb value

while taking into account the effect of unknown disturbances resulting from changes

in fluid volume level, undiagnosed blood loss, acute conditions, and other unknown

elements in the overall dynamics. Mathematical description of patient input-output dy-

namics in the feedback figure can be derived from the EPO and Hb information using

identification techniques. An issue with the standard system modeling methods is data

insufficiency common in clinical environment as patients often omit future appointments
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and/or switch medications during treatment procedures. This is because the classical

system identification techniques rely on the concept of central limit theory and statisti-

cal information where it assumes large measurement sample of the process is available

for the model development. A modeling technique that requires less data sample could

provide solution to this problem.

The robust identification approach employed here makes no assumption on sta-

tistical information on the nature of noise affecting measurements which makes the

technique appropriate for personalized modeling. These properties make it capable of

providing model based on sparse data. It should be mentioned that model-free based

control algorithms are available and can be used [47] to achieve similar goal of stabiliz-

ing hemoglobin levels. However, this approach lacks an important benefit mathematical

models provide such as a clear relation between EPO to Hb response as provided in

model based approaches.
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CHAPTER 4
SEMI-BLIND ROBUST IDENTIFICATION

This chapter provides an overview on robust identification of dynamical systems

from the worst-case points of view.

4.1 ROBUST IDENTIFICATION: AN OVERVIEW

Estimating mathematical models of an unknown system from measured infor-

mation is a well known problem dating back to the work of Friedrich Gauss who in

1795 used the least squares approach to calculate the orbits of celestial bodies. In recent

times, the least squares methods have expanded into other parametric system estimation

techniques such as the output error method (OE), the autoregressive with exogenous in-

put (ARX), etc [59]. The basic requirements of parametric system estimation methods

are model structure, including the orders, and measurement noise characteristics. Gen-

erally, polynomial functions with unknown parameters are used to define the assumed

system structures. Then, measurement data obtained from the physical system are used

to estimate these unknown parameters by minimizing certain objective functions usu-

ally of `2-norm types. Clearly, results from this technique depend on the specified

model structure. Furthermore, the classical modeling technique does not provide any

additional information on quantifying errors due to model structure misspecification. In

this chapter, the issues of the parametric system modeling are addressed through a new
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identification technique called the robust identification method which assumes no prior

information on the system structure nor assume any statistical information on the noise

characteristics affecting measurement samples. Additionally, the technique provides a

quantitative norm bounded uncertainty on the derived model.

The robust identification technique is based on dimensionality reduction methods

popular in a subfield of mathematics called fractional analysis. The basic idea is to first

understand that the unknown system is complex and that no mathematical model can

completely represent its dynamics and that any information that is obtained or assumed

to be known about the system is incomplete. In addition, the information obtained is

corrupted and priced. Therefore, any estimates derived of the system must be accom-

panied by its associated uncertainty error information. To achieve this, it is generally

assumed that the investigated system belongs to a class of systems that share certain

basic properties such as time constant, gain, etc. These basic properties are call the

a priori information on the system and are used to specify the aforementioned system

class structure.

This prior knowledge, when combined, form a set consisting of all possible sys-

tems capable of generating the measured a posteriori data. Given the a posteriori infor-

mation, the aim is to minimize the set consisting of systems that could possibly produce

the measured output. The idea is that any system that satisfies both the a priori and the a

posteriori information is capable of generating the experimental data provided the a pri-

ori information on the system is correctly specified. When such a priori information is

validated with new measurement data (a posteriori information), then any model in this

set could be selected as a nominal model and its corresponding uncertainty is defined by

the radius of the set. Mathematical procedures are provided to test for the consistency

between the a priori and a posteriori information. It is shown that when the two infor-

mation sources are consistent, the maximum possible error that could be obtained as a

result of using any model within the set as a nominal model could not produce an error
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more than two times that of any hypothetical optimal interpolatory algorithm.

In classical system identification methods such as the ARX, OE, etc, there ex-

ists a familiar dilemma regarding model structure selection. This is related to model

complexity. A model structure with a low complexity level has a low probability of

identifying the true system model; however, if a model is found, the probabilities of the

derived model representing that of the true system’s model increase. This increases the

variance error. In contrast, a model with a high level of complexity has a high likelihood

of including the true system dynamics but it also includes other models that are nearly

impossible to be generated by the true system. In this case, the bias error of the model

increases. This dilemma is shown in Figure 4.1. In the figure, the dotted line represents

the bias error profile which decreases as model complexity level increases. By contrast,

the variance error increases with an increase in model complexity as shown with dashed

line in the same figure. The solid line profile shows the combined errors of the two

error sources while the single dot point in the figure shows the optimal model complex-

ity level. Given a fixed measurement record, there exists an optimum model order that

minimizes the total possible error contributions from the two error sources.

4.2 NONPARAMETRIC IDENTIFICATION IN PHYSIOLOGICAL SYSTEMS

The requirements that model orders to be specified in advance in the parametric

identification techniques as discussed previously can be address by using the nonpara-

metric methods. In the nonparametric approach, the system model structures do not

need to be specified a priori ; however, this requires that large measurement samples

be available to generate meaningful results. Techniques such as the correlation and

spectral density functions are commonly used in this technique. The minimal a priori
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FIGURE 4.1 – Bias-variance tradeoff in model complexity level.

information requirements in the nonparametric technique is extremely useful for mod-

eling physiological systems since, in most cases, the available a posteriori information

on these systems is minimal. In a way, the aim is to allow the data to “explain itself”.

The classical approach of nonparametric identification methods is not suitable for mod-

eling physiological system especially since it requires significant amount of data to be

available and that the datasets to be stationary [60]. Identification techniques based

on nonparametric approach that requires minimal a priori information as well as small

data segment (a posteriori measurements) seems to fulfill the benchmarks for modeling

physiological systems. By estimating the system initial conditions using the semi-blind

identification methods, the modeling techniques provided meets the needs for nonpara-

metric modeling of physiological systems.

During system modeling, the common assumption is that the system to be identi-

fied has zero initial conditions. This assumption simplifies the problem; however, it can

limit the performance of the identification results. The goal here is to establish a frame-

work that estimates the nonzero initial conditions of the system using the measurement
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samples. Then, a procedure is provided that determines the worst-case prediction error

which is defined as the difference between the model predicted output and the system

measurement output. This worst-case prediction error value is an upper bound measure

which is always greater than the difference between the two output values. If this con-

dition is ever violated, the implication is that the assumed a priori information on the

system is no longer valid and a new a priori information must be assumed.

4.3 ROBUST IDENTIFICATION IN TIME DOMAIN: AN OVERVIEW

System identification is a technique of using finite, partial, and corrupted mea-

surement information to develop mathematical models of the system of interest. Several

techniques and procedures are available to achieve this objective. When the ultimate

goal of the model is to be able to control the behavior of the system by designing ef-

ficient controllers, it is important that the final model is of a low model order, or to

have “parsimonious” model orders. This objective is particularly common to the field of

systems with electrical and mechanical properties. The parametric identification tech-

niques are appropriate for the modeling of systems with these properties. The other

reason for modeling a system is to obtain a better understanding of the internal working

behavior of the system. Nonparametric identification techniques are usually used for

this modeling objectives that require less a priori knowledge of the system to be stated.

Identification methods employing this technique are usually preferable for systems with

physiological properties. The robust identification method is a nonparametric approach

which assumes very minimal a priori information on the system of interest, yet is ca-

pable of providing models that are of much lower order than classical nonparametric

identification methods.
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The goal of the robust identification method is to identify the dynamical behavior

of a linear time invariant system using noisy measurement data. Assumptions on the

noise information affecting measurements is that it is unknown but bounded by a known

value. That is the noise is bounded in the `∞-norm sense. Furthermore, the system

error term is defined in the `1-norm sense, which provides information on the worst-

case identification. The worst-case in this context an identification algorithm that yields

a nominal model as well as a quantitative worst-case bound on the model error.

Consider the problem of estimating system G0 of Equation (4.1) by using N

input-output measurement samples where the variable yk represents output measure-

ment sequences and uk some known input sequences. Variable ηk represents the noise.

In the classical system identification methods, this noise sequence is usually defined by

assuming it originates from certain probability distribution functions such as the Gaus-

sian. Though a perfectly valid assumption in certain situations such as cases where there

are sufficiently large data available, this assumption on error in measurement fails when

the size of data available for the identification is significantly small. In worst-case iden-

tification, the only requirement on the noise sequence {ηk} is that its values are bounded

by a known value. Mathematically, this is represented by Equation (4.2) where ε is de-

fined by the upper bound on the measurement error. For most applications of interest,

this upper bound value is usually available and provided by the measuring instrument

manufacturers.

yk = G0(q, θ)uk + ηk (4.1)

|ηk| ≤ εk (4.2)

To effect, the worst-case identification approach addresses the same problem

from a different perspective by making use of the a priori information available on the

noise. From Equation (4.1) and Equation (4.2), Equation (4.3) is derived by a way of
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FIGURE 4.2 – An LTI block diagram with input u and measured output y. Noise signal
η is unknown but bounded while z is the unmeasurable signal coming from the system.

algebra. Problem parameter values which satisfies Equation (4.3) contains a convex

set called the feasible parameter set [61–64] which is defined as the intersection of

parameter values satisfying Equation (4.4).

|yk −G0(q, θ)| ≤ εk (4.3)

θ ∈ Θ =
N⋂
k=1

{θ : |yk −G(q, θ)uk| ≤ εk} (4.4)

4.4 NONPARAMETRIC `1 ROBUST IDENTIFICATION FROM TIME DO-

MAIN DATA

The situation illustrated in the above section assumes the available information

on the structure (model order) of the system. Such assumption is applicable for paramet-

ric identification methods. For nonparametric identification, the attempt is to produce

models with minimal a priori information on the system which effectively allows data

to explain itself. This means there should be no assumption on the system order. The ro-

bustness aspects of the identification methods implies the derived model should provide

a deterministic bound on the modeling error. To achieve this, it is required that there

should be no stochastic assumptions on the noise affecting the measurements.

A basic assumption in classical system identification methods is that the system
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of interest has a well defined model structure and the measurement noise is assumed

to originate from a certain known probability distribution [59, 65–67]. In this case, the

only mismatch between the system response values and model predicted values is at-

tributed to the noise. Noise description is only one of the factors affecting the quality

of an identified model. An important element is the unrealistic notion that a complex

system could be fully explained by a fixed model structure. In reality, the only available

information on the system are partial information and a means to quantify the missing

piece of information is necessary to provide a meaningful description of the true system

behavior. As a result, the robust identification algorithm assumes no such information

on the system order nor does it assume any statistical information on noise affecting

measurements. The a priori information requirements are very minimum. Such in-

formation includes the maximum gain on the system K > 0, the lower bound on the

relative stability margin of the system dynamics ρ > 1, and an upper bound on the noise

in measurements ε > 0. Given the available a priori information, Figure 4.3 represents

a possible impulse response profile. Using the available a priori information, it is as-

sumed the true system belongs to a set defined by the given a priori and a posteriori

information (measurement data) provided the a priori information is correct. In this

case, the robust identification algorithm provides not only a nominal model but also the

uncertainty bound on the model error on the derived nominal model which describes a

set containing models capable of explaining the a posteriori information with the given

a priori information. Equation (4.5) gives an example of a system setG(z) described by

a nominal model G0 and additive uncertainty description ∆. Its pictorial representation

can be seen in Figure 4.4. Although the uncertainty description of Equation (4.5) can be

rearranged to be in the form of Equation (4.2) which describes only the mismatch be-

tween measurement values of the system and that of the model, it should be emphasized

here that the uncertainty description of Equation (4.5) is a culmination of model error

and the measurement error. As such, Equation (4.5) can be described as a norm-bounded
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FIGURE 4.4 – Representation of a system described by a nominal model G0 and an
additive uncertainty bound ∆.

uncertainty as given in Equation (4.6).

G(z) = G0(z) + ∆ (4.5)

‖G(z)−G0(z)‖∞ ≤ ∆ (4.6)

Research direction towards the worst-case identification methods originated when

it was realized that the classical system identification techniques were unable to provide

the needed requirements for robust controller feedback design synthesis. Aside from

the usual requirement of a nominal model common for most advanced controller de-

sign based technique, robust controller design technique requires an additional set of

information viz uncertainty description on the derived nominal model. Traditional iden-

tification methods only provides probabilistic bound , which is a “soft” bound; whereas,
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a “hard” bound model error is required for the robust controller design techniques. To

meet this hard bound requirement, intensive research efforts on identification technique

which achieve such information requirements. This direction of research effort began

with Helmicki and co-authors [14–16, 21, 68, 69] and attracted several other researcher’s

attention [18, 32, 70]. The research in this area took two directions depending on a pos-

teriori information. The case where measurement data originates from frequency do-

main leads to H∞ methods [14, 21, 35, 39, 71]; whose results could be readily applied

in H∞ [72] controller design synthesis. When measurement data originates from time-

domain experiments, `1 identification techniques [21, 25, 28] are used. In the ideal case

of full system information including infinite measurement data and zero noise, both

techniques provide identical results. However, in the case of non-ideal situations identi-

fication technique in one domain may provide an added information not easily accessible

in the other domain. As a result, a new identification method that considers both source

of information was studied in [30, 32, 33, 73, 74]. This joint identification method is

appropriately termed Mixed Time/Frequency Identification methods which is useful for

systems with both source of information available.

4.4.1 The Robust Identification Problem

The class of systems considered in this work are causal, single-input-single-

output linear time-invariant discrete time systems which can be extended to the case

of multiple input-multiple output system. Within this framework, a sequence of inputs

u in a particular space to sequence of outputs y in another space through a linear op-

erator S defined by a set of exponentially stable systems whose impulse response is

bounded by Kρ−k, ∀k ≥ 0 where K > 0 and ρ > 1. The parameter value K and ρ

which provided by the a priori information on the system. Equation (4.7) defines the

z-transform of the impulse response {hk}∞k=0 of a system in system class S such that
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H ∈ S = B̄H∞,ρ(K).

H(z) =
∞∑
k=0

hkz
−k (4.7)

For the robust identification problem, the input information provided to the ro-

bust identification algorithms consists of the class of candidate models, the measurement

noise class, and the experimental data. As a result, the robust identification procedure is

based not only on the experimental data but also on the available a priori information on

the system. To reiterate, the selected system class is a set of exponentially stable systems

whose impulse response is defined by hk = Kρ−k where K is the bound on the impulse

response and ρ defines its decay rate. Let the output measurement data yk = Huk + ηk

be the collected N samples in response to the input uk. Then, the robust identification

problem can be stated as follows:

Problem 1. Given the a priori and the a posteriori experimental data, determine

1. whether the a priori and a posteriori information are consistent, i.e decide whether

the models in H∞,ρ(K) interpolates the given measurement points with error

bounded by the a priori error information.

2. If the two sources of information are consistent, then obtain such model as well

as the bound on the worst-case identification error.

Definition 1. The a priori information (S,N ) and a posteriori experimental data (

{uk, yk}N−1
k=0 ) are consistent if and only if the following set is nonempty

T .
= h ∈ S|yk = (h ∗ u)k + ηk for some error sequence ηk ∈ N , k = 0, 1, 2, . . . , N−1

(4.8)

If the consistency set T is empty, then the experimental data sequence {uk, yk}N−1
k=0

invalidates the a priori assumptions on the system model class. In such case, a new set

of a priori information should be considered to find a more suitable model class. Fig-

ure 4.5 shows an overview of the robust identification problem. To solve the consistency
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FIGURE 4.5 – An overview of the robust identification technique.

problem, the well known Carathéodory-Fejér Interpolation problem is introduced as be-

low:

Problem 2. Carathéodory-Fejér [35]: Given sequence of complex points, ci, i = 0, 1, . . . , n−

1 , determine a function f ∈ B̂H∞ such that

f(z) = c0 + c1z + c2z
2 + . . .+ cn−1z

n−1 + znĝ(z), (4.9)

where ĝ ∈ B̂H∞ . In other words, the first n Taylor series coefficients of the function f

must be determined to match the corresponding complex points such that:

c0 =
f(0)

1
(4.10)

c1 =
f ′(0)

1

c2 =
f ′′(0)

1 · 2

c3 =
f ′′′(0)

1 · 2 · 3
...

...
...

ci =
f (i)(0)

i!

Solution to the Carathéodory-Fejér Interpolation Problem exists if the following

Carathéodory-Fejér Theorem holds:

Theorem 1. [35] Given complex set of points, there exists a function f ∈ B̂H∞ such
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that (4.9) is satisfied if and only if

I−TH
c Tc ≥ 0, (4.11)

where Tc is an n x n lower triangular Toeplitz matrix associated with the sequence

[c0, c1, . . . , cn−1]. For equality in (4.11) (rank deficient), the solution to (4.9) is unique;

non-unique otherwise. When it is non-unique, the function can be parameterized.

In [35], it is shown that solution to the Carathéodory-Fejér Interpolation Theo-

rem exists if and only if there exists a vector h = [h0, h1, h2, . . . , hN−1] such that the

following Linear Matrix Inequalities (LMIs) holds:

M(h) =

 KR−2 (TNh )T

TNh KR2

 ≥ 0

|y − TNu h| ≤ ε

(4.12)

30



where R = diag[ 1 ρ ρ2 . . . ρN−1 ] and

TNu =



u0 u1 . . . uN−1

0 u0 . . . uN−2

...
... . . . ...

0 0 . . . u0



TNh =



h0 h1 . . . hN−1

0 h0 . . . hN−2

...
... . . . ...

0 0 . . . h0



y = [y0, y1, . . . , yN−1]T

u = [u0, u1, . . . , uN−1]T

(4.13)

4.4.2 Parametric Inclusion

As mentioned in the previous section, robust identification procedures that are

solely based on nonparametric assumptions may yield conservative results especially if

parts of the model have a clear parametric structure. Less conservative bound can be de-

rived if information on the parametric portion is included in the identification procedure.

In that case, the new a priori information on the system class becomes

S .
= {G(z) = H(z) + P (z)} (4.14)

where H(z) is the nonparametric portion of the system as defined in the section above

and P (z) is the known parametric portion of the system, respectively. Furthermore, it is
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assumed that the parametric portion of the system, P (z), belongs to some affine set P

of the form described in Equation (4.15)

P .
= {P (z) = pTGp(z), p ∈ RNP } (4.15)

where p ∈ RNP is some unknown vector of some a priori known component Gp and Np

is the number of unknown p parameters to be determined. The inclusion of parametric

information does not significantly change LMI feasibility problem defined in (4.12). In

fact, Equation (4.16) shows this modification where (P )k
.
= [g1

k g
2
k . . . g

Np

k ], gik denotes

the kth Markov parameter of the ith transfer function of the parametric portion and hk

are the Markov parameters of the nonparametric portion.

MR(h) =

 KR−2 (TNh )T

TNh KR2

 ≥ 0

|y − (TNu pP + TNu h)| ≤ ε

(4.16)

In both purely nonparametric and the combined parametric/nonparametric cases,

the system class S is assumed to contain the true system producing the a posteriori

measurement data. The following information shows the procedures used to determine

the nominal model from the a priori model class. This is performed by parameterizing

the set S with a free parameter Q(z) ∈ BH∞. A simple such parameter of choice is the

zero parameter, thus Q(z) = 0 leads to the central model Scentral = H0(z) + pTGp(z)

where explicit state space realization of H0(z) can be determined as follows [75]:
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H(z) =

 AH BH

CH DH

 = CH(zI − AH)−1BH +DH

AH = A− [CT
−C− + (AT − I)MR]−1CT

−C−(A− I)

BH = −[(AT − I)MR + CT
−C−]−1C−

CH = C+[(AT − I)MR + CT
−C−]−1CT

−C−(A− I)− C+(A− I)

DH = C+[(AT − I)MR + CT
−C−]−1CT

−

(4.17)

where

A =

 0 IN×N

0 0

 , C− = [

N︷ ︸︸ ︷
1 0 . . . 0], C+ =

hTR

K

and MR is defined in Equation (4.16).
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4.5 SEMI-BLIND ROBUST IDENTIFICATION OF LTI SYSTEMS

Until now, system G is identified while assuming a zero initial conditions on its

dynamics. However, such assumption on systems that are already in progress is erro-

neous and could introduce artificially large identification errors on the model predicted

values. In this section, a recently discovered robust identification technique called semi-

blind robust identification is introduced. With this new technique, the robust identifi-

cation method attempts to provide information on the system initial conditions prior to

the identification process. To incorporate the effects of the initial conditions on the sys-

tem, a new set of parameter is introduced which the robust identification algorithm must

find in addition to the solutions to the original problem of impulse response estimates

formulated as follows [75, 76]:

Problem 3. Given:

1. an unknown plant G(z) = H(z) + P(z), where H(z) and P(z) are the nonparametric

and parametric portion of system G(z), respectively,

2. a priori sets of candidate models and noise (S,N ),

3. a characteristics of the set of the past input sequence u−=̇{uk, k = −1,−2, · · ·−

N} ∈ U− applied prior to time t0,

4. a finite set of input u = {u0, u1, . . . , uN−1} and output data y = y0, y1, . . . , yN−1,

corrupted by additive measurement noise η.

Determine whether the set T (y) is non-empty, where

T (y) = {G ∈ S : yk = (TN
g u+)k+(ΓN

g u−)k+η for some sequence η ∈ N , and u− ∈ U−}

(4.18)

Then for a nonempty set T (y), find the model G ∈ T (y)
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The set T (y) contains all systems G compatible with the given a priori informa-

tion and a posteriori measurement data. In equation (4.18), the first part corresponds to

the response of G to the input u while the second part corresponds to the portion of sys-

tem G responsible for inputs prior to the identification. TN
g and ΓN

g are the Toeplitz and

the Hankel matrix operators associated with current and past system dynamics, respec-

tively. To represent the dynamics of the system prior to the identification procedure, we

first replace the system past inputs convolved with the system dynamics by some value

xk where xk = (ΓN
g u−)k for some u− ∈ U . Assuming, as part of the a priori informa-

tion, we have available a bound on the input U = B`p(Ku) and a bound on the system

prior to the identification process ‖Γg‖`p→`∞ ≤ γ. With this new information, the new

problem can be stated as follow:

Problem 4. [76] Given an unknown plant, a priori sets of candidate models and noise

set (S,N ) and a finite set of samples u to the plant and its corresponding output y

corrupted by additive measurement noise η, find a model g compatible with both the a

priori information and a posteriori experimental data such that g ∈ T (y) where

T (y)
.
= {yk =

k∑
i=0

Giuk−i + CGA
k−1
G x0 + η,

k = 0, 1, . . . N − 1; for some sequence η ∈ N}

where

G ≡

 AG BG

CG DG

 g0 = DG; gi = CG(AG)i−1BG. (4.19)

Solution to the above Equation (4.19) involves solving a Bi-Affine Matrix In-

equalities problem x0 and gi, which is known to generally be non-convex and NP-hard

optimization problem. However, it has been shown [77] that such problem can be re-

duced to a tractable problem and solved with a minimal relaxation on the system. This
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convex relaxation approach is valid because of the controllability and observability as-

sumptions on the system. The convex relaxation problem is stated and summarized

below:

Problem 5. [76] Given an unknown plant, the a priori candidate models set, past

inputs and noise set S,U ,N and a finite set of samples of the input and output u,y of

the system in [0,N-1], find a model g ∈ T , where

T (y) = {g ∈ S : yk − (TN
g u+)k − xk ∈ N

for some sequence

|x|k ≤ γKu (k = 0, 1, . . . , N − 1)} (4.20)

The problem stated above has solution if the following set of LMIs in h and x

are feasible

Proposition 1.

M(h) =

 KR−2 (TNh )T

TNh KR2

 ≥ 0

|y − (TNu pP + TNu h)− x| ∈ N

−γKu ≤ x ≤ γKu

(4.21)

where γ, Ku, p, and P represent system gain, maximum input values, affine parame-

ter, and the parametric portion of the system, respectively. Additionally, the TNu and

TNh are the N Toeplitz matrix formed with the input and the system impulse responses,

respectively.

Proof. See [78]
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CHAPTER 5
SEMI-BLIND ROBUST IDENTIFICATION APPROACH TO ANEMIA

MANAGEMENT PROBLEM

In this chapter the semi-blind robust identification technique introduced in the

previous chapter is applied to establish individualized models for patients of anemia

based on response samples.

5.1 INDIVIDUALIZING ANEMIA PATIENTS

The Bayesian approach to drug dosing has extensively been used to optimize the

performance erythropoietin in anemia management [46, 79]. The basic requirement of

this technique is that the a priori assumption on certain parameters must be specified

in advance, originating from a known probability distribution function. Clearly, the

accuracy of these parameter distributions is a major challenge [80]. Additionally, the

very nature of stochastic a priori assumptions limits one’s ability to obtain hard bound

on modeling error to concretely determine when a given system model is no longer

suitable for the intended application. A technique that is capable of providing such hard

bound is desirable in clinical settings since it provides a mechanism to invalidate any a

priori assumptions on the existing patient model.

In the literature on ESRD management with EPO medication, patients are clas-

sified as either a poor or normal responder to treatment where the later group are
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patients that respond well to an average dose, defined as 12,000 Units per week, of

EPO [47, 57, 81]. In contrast, patients belonging to the poor responder group respond

poorly to treatment and pose a major challenge to practitioners to strategize a consistent

treatment methods. To make use of the semi-blind identification framework proposed

in the previous chapter, it is necessary to characterize the past input values into a set U−

which contains all possible EPO values prior to the identification process. In principle,

this set could be defined as EPO values less than or equal to the maximum administered

EPO to a given patient such that u− ∈ U−, where u− ≤ |u|max; however, this assump-

tion may be too coerced and conservative to account for possible intervention events

such as blood loss and hemodialysis treatments. Therefore, a proper choice for bound

on this set is the change in the EPO values; consequently, the modeling problem then

becomes identifying an operator S mapping the change in EPO, uk = EPOk−EPOk−1

to Hbk+1. From this definition, it should be emphasized that the a priori information on

the system should include an integrator which can be considered as a parametric contri-

bution of the system. Figure 5.2 provides a visual view of this integrator where uk is the

difference in EPO values and Hbk+1 and p is a an unknown constant parameter of the

parametric portion of the model P (z). To improve the performance of the optimization

process, the input data were uniformly rescaled to the interval of [-1,1].

Equation (5.1) provides a summary of both the a priori system and noise sets

where P (z) and H(z) represent the parametric and nonparametric portions of the sys-

tem, respectively.

S = {G(z) = H(z) + P (z), P (z) = p z
z−1

, H ∈ BH∞,ρ(K)}

N = {η ∈ `∞ : |η| ≤ ε}, ε = 0.31

U− = {u ∈ `∞ : |uk| ≤ umax}

(5.1)

An error bound of ε = 0.31 is selected based on measurement error information ob-

tained from the hematocrit measuring device used at the dialysis facility [82] and umax
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FIGURE 5.1 – Anemia Patient model connected with semi-blind robust identification
configuration
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FIGURE 5.2 – This figure represents the parametric portion of the system.
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Patient# K ρ N Respondent Group

1 0.295 1.0604 15 ×

28 0.280 1.0900 17 ×

30 0.266 1.0700 18 ×

6 0.280 1.0214 15 X

37 0.176 1.0870 15 X

TABLE 5.1

Some a priori parameter information for the selected patients of poor responders pa-
tients #1, #28, and #30 and normal responders, patients #6 and #37. N represents the
number of data points used in the identification and we indicated with a check mark
whether patient belongs to a responder or non-responder groups.

is the maximum input value that is determined from the individual patient data. Table

5.1 summarizes the remaining a priori information on the selected patients. The gain,

K, is determined by the LMIs of Equation (4.16) and the decay rate values, ρ, are heuris-

tically determined to obtain suitable results. Though there may exist some optimization

algorithm to determine the optimal decay rate values, ρ, such procedure is not known to

us at the time of this study.

Fifty-six clinical patient data consisting of weekly information on EPO medica-

tion and Hb measurements are obtained from the University of Louisville Kidney Dis-

ease Program for this analysis. Generally, doses are administered three times per week

whereas Hb measurements are taken weekly. Since the identification process requires

an input/output pairs of the same length, a preprocessing of the data is performed by

summing up the total amount of dosage administered in a given week to a correspond-

ing Hb measurement values. In addition, to have sufficient data for both identification

and validation, a minimum of fifteen data length is set. That is after performing the pre-

processing, patients with less than fifteen input/output pairs are omitted; as such, six of

the total patients are omitted in the study. Using the aforementioned semi-blind robust
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identification procedure, we obtained models ranging from first to third order models for

the remaining fifty patients. Results from five patients are summarized below. Three of

which are considered to belong to the poor responder group (Figures 5.3, 5.4, and 5.5)

and two normal responder group (Figures 5.6 and 5.7). A one-step-ahead prediction is

performed in predicting the hemoglobin levels in each case. Running the proposed

algorithm for the measured Hb data and the corresponding EPO and after performing

model reduction by eliminating uncontrollable and unobservable states, transfer func-

tion equations are derived as shown in Equations (5.2) through (5.6) for the selected

patients where a superscript is used to indicate patient ID number. For example the

G1(z) of Equation (5.2) shows the transfer function of patient number one.

G1(z) =
1.03z3 + 1.398z2 + 0.841z − 0.0413

z3 + 0.317z2 − 0.501z − 0.816
(5.2)

G28(z) =
0.516z2 − .361z + 0.472

z2 − .368z + .632
(5.3)

G30(z) =
1.018z + 0.244

z − 1
(5.4)

G6(z) =
0.824z2 + 0.832z + 0.162

z2 − 0.114z − 0.886
(5.5)

G37(z) =
1.046z + 0.080

z − 1
(5.6)

Using the time delay properties of the z-transform Z−1{znG(z)} = gk+n, Equations
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(5.2) through (5.6) are equivalently represented as follows:

Hb1
k+3 = −0.317Hbk+2 + 0.501Hbk+1 + 0.816Hbk

+1.030uk+3 + 1.398uk+2 + 0.841uk+1 − 0.0413uk

(5.7)

Hb28
k+2 = 0.368Hbk+1 − 0.632Hbk

+0.516uk+2 − 0.361uk+1 + 0.472uk

(5.8)

Hb30
k+1 = Hbk + 1.018uk+1 + 0.244uk (5.9)

Hb6
k+2 = 0.114Hbk+1 + 0.886Hbk

+0.824uk+2 + 0.832uk+1 + 0.162uk

(5.10)

Hb37
k+1 = Hbk + 1.046uk+1 + 0.0803uk (5.11)

where Hbk and uk are the Hb and the change in EPO at time k, respectively.

5.1.1 Performance Measure

The forecasting power of the proposed approach can be seen in Figures 5.3 to 5.7

for the selected patients of #1, #28, #30, #6, and #37, respectively. In all of the figures,

“+” signs are used to denote experimental data used during the identification stage and

“*” signs are used to indicate the data used for forecasting. Predicted output values of

the model are denoted by “o”. In addition, a dotted vertical line is used to demarcate

data used during the identification process and those used for validation. Maximum and

average prediction errors defined in Equations (5.12) and (5.13) ,respectively, are used

as a performance measure of the models. In these equations ydata and ypred. are the

measured and predicted Hb values, respectively.

42



Patient# errormax errorrms

1 1.07 0.28

28 0.68 0.37

30 1.35 0.40

6 0.65 0.26

37 0.99 0.35

TABLE 5.2

Average and maximum prediction error for the selected patients

|error|max = |ydata(i)− ypred.(i)|∞ (5.12)

errorRMS =

√∑N
i=1(ydata(i)− ypred.(i))2

N
(5.13)

Table 5.2 provides a summary of both error types for the selected patients. While

the maximum prediction error values may seem high for certain patients, it should be

emphasized that there were no patient specific attributes such as weight, race, gender,

etc. are considered at the modeling process. From the root means square prediction

error, however, one can conclude the computed error values are acceptable given the

width of the target range (11-12 g/dL).

Figure 5.8 provides a summary of maximum prediction error for the remaining

patient data. In the figure, star “?” symbol is used to represent the absolute predicted

values for patients with sufficient data for both prediction and validation while circles are

used to denote patients with insufficient data for prediction and forecasting as described

above.
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FIGURE 5.3 – Semi-blind robust identification results for patient #1. [Top] Hb predic-
tion with a vertical line used to demarcate data used for identification and for forecasting.
A (+) is used to denote experimental data used during the identification and (*) is used
to denote data not used in the identification. (o) symbol is used to indicate predicted re-
sults with 3rd order model. [Bottom] Administered erythropoietin dose in x1000 Units
per week.
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FIGURE 5.4 – Semi-blind robust identification results for patient #28. [Top] Hb predic-
tion with a vertical line used to demarcate data used for identification and for forecasting.
A (+) is used to denote experimental data used during the identification and (*) is used
to denote data not used in the identification. (o) symbol is used to indicate predicted re-
sults with 2nd order model. [Bottom] Administered erythropoietin dose in x1000 Units
per week.
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FIGURE 5.5 – Semi-blind robust identification results for patient #30. [Top] Hb predic-
tion with a vertical line used to demarcate data used for identification and for forecasting.
A (+) is used to denote experimental data used during the identification and (*) is used
to denote data not used in the identification. (o) symbol is used to indicate predicted
results with 1st order model. [Bottom] Administered erythropoietin dose in x1000 Units
per week.
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FIGURE 5.6 – Semi-blind robust identification results for patient #6. [Top] Hb predic-
tion with a vertical line used to demarcate data used for identification and for forecasting.
A (+) is used to denote experimental data used during the identification and (*) is used
to denote data not used in the identification. (o) symbol is used to indicate predicted re-
sults with 2nd order model. [Bottom] Administered erythropoietin dose in x1000 Units
per week.
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FIGURE 5.7 – Semi-blind robust identification results for patient #37. [Top] Hb predic-
tion with a vertical line used to demarcate data used for identification and for forecasting.
A (+) is used to denote experimental data used during the identification and (*) is used
to denote data not used in the identification. (o) symbol is used to indicate predicted
results with 1st order model. [Bottom] Administered erythropoietin dose in x1000 Units
per week.
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5.2 WORST-CASE PREDICTION ERROR BOUNDS

The algorithm introduced in the last section is an interpolation algorithm which

implies the true system model belongs to the consistency set T (y) specified by the a

priori information and the a posteriori measurements, provided the a priori information

is correctly specified. By using the derivations in [75–77], summarized here, one can

state that given the first N measurements such that {yi}N−1
0 , the error bound on the next

output values at t = N is defined as:

|eN | ≤ sup
g1,g2∈T (y)

∣∣(Tg1 − Tg2)u+ + Γg1(u
−)1 − Γg2(u

−1)2

∣∣
N

= d[T (y)]

≤ sup
y
d[T (y)] = D(I) (5.14)

where d(.) and D(I) defines the radius and the diameter of information of the set T ,

respectively. Additionally, g1 and g2 represent two systems within the consistency set.

It should be noted here that the set T (y) forms a convex symmetric set with symmetric

point gs = 0 and η = 0, and there exists a function in T (y) that is compatible with the

zero outcome: yk = 0,∀k ∈ (1 : N − 1). The diameter of information can be defined

by [76]

D(I) ≤ sup
g∈T (0)

∣∣∣∣∣p.iN +
N∑
j=0

hN−j.uj +K.Ku
ρ−N+1

ρ− 1

∣∣∣∣∣ . (5.15)
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Consequently, the previous equation leads to

max

∣∣∣∣∣p.iN +
N∑
j=0

hN−j.uj +K.Ku
ρ−N+1

ρ− 1

∣∣∣∣∣
subject to

M(h) =

 KR−2 (TNh )T

TNh KR2

 ≥ 0

|y − (TNu pP + TNu h)− x| ≤ ε

|xj| ≤ K.Ku
ρ−j

ρ−1

|u(N)| ≤ umax

|EpoN | ≤ Epomax

|hN | ≤ Kρ−N

Using Equation (5.16), the worst-case identification error can be computed to validate

the model [75].

xk = p.EPOk + xnpk

where

|xnpn | ≤ K
ρ−n

ρ− 1
Ku

xk = p.
k∑

j=−∞

(EPOj − EPOj−1) = p.EPOk (5.16)

5.3 ARX MODEL

The autoregressive with exogenous input (ARX) modeling structure is a versatile

linear parametric technique that is capable of estimating system models from measure-
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ment samples. This modeling structure is the most commonly used parametric system

identification techniques due to its simplicity and ability to estimate complex dynami-

cal models. The general structure of the ARX model is given in Equation (5.17) where

B(q)
A(q)

is the system transfer function and 1
A(q)

is the noise transfer function and e(k) is

assumed to be of white Gaussian form. The parameter q is a forward-shift operator such

as q−1uk = u(k − 1). In this structure, it is assumed that both the input signal, u(k),

and the output measurements, y(k), are known and available. Using both the input and

the output information, the aim is to estimate the system transfer function B(q)
A(q)

. Due

to its simplicity and versatility, the ARX is often referred to as “the mother of all” dy-

namical models [67]. As such, ARX model results are used as a benchmark against the

semi-blind identification results. Table 5.3 provides a summary of results from the ARX

model. It should be emphasized that although certain average response values are better

with the ARX identification method, their maximum prediction error value are signifi-

cantly higher than those obtained from the semi-blind identification techniques. This is

because the semi-blind robust identification method attempts to minimize the maximum

possible error that can be attained while the classical identification method attempts to

minimize the average predication error.

y(k) =
B(q)

A(q)
u(k) +

1

A(q)
e(k) (5.17)
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Patient# errormax errorrms

1 2.68 0.40

28 2.28 0.31

30 5.74 0.84

6 4.22 0.67

37 2.65 0.33

TABLE 5.3

Average and maximum prediction errors from ARX results.
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FIGURE 5.9 – ARX model results for patient #37. [Top] Hb prediction with a vertical
line used to demarcate data used for identification and for forecasting. A (+) is used to
denote experimental data used during the identification and (*) is used to denote data
not used in the identification. (o) symbol is used to indicate predicted results with 1st

order model. [Bottom] Administered erythropoietin dose in x1000 Units per week.
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FIGURE 5.10 – ARX model results for patient #6. [Top] Hb prediction with a vertical
line used to demarcate data used for identification and for forecasting. A (+) is used to
denote experimental data used during the identification and (*) is used to denote data
not used in the identification. (o) symbol is used to indicate predicted results with 2nd

order model. [Bottom] Administered erythropoietin dose in x1000 Units per week.
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FIGURE 5.11 – ARX model results for patient #30. [Top] Hb prediction with a vertical
line used to demarcate data used for identification and for forecasting. A (+) is used to
denote experimental data used during the identification and (*) is used to denote data
not used in the identification. (o) symbol is used to indicate predicted results with 1st

order model. [Bottom] Administered erythropoietin dose in x1000 Units per week.
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FIGURE 5.12 – ARX model results for patient #28. [Top] Hb prediction with a vertical
line used to demarcate data used for identification and for forecasting. A (+) is used to
denote experimental data used during the identification and (*) is used to denote data
not used in the identification. (o) symbol is used to indicate predicted results with 2nd

order model. [Bottom] Administered erythropoietin dose in x1000 Units per week.
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FIGURE 5.13 – ARX model results for patient #1. [Top] Hb prediction with a vertical
line used to demarcate data used for identification and for forecasting. A (+) is used to
denote experimental data used during the identification and (*) is used to denote data
not used in the identification. (o) symbol is used to indicate predicted results with 3rd

order model. [Bottom] Administered erythropoietin dose in x1000 Units per week.

57



CHAPTER 6
ROBUST CONTROL SYNTHESIS FOR ANEMIA MANAGEMENT PROBLEM

The previous chapter provided techniques that derives mathematical models from

measurement data using semi-blind robust identification. This chapter extends on that

development by designing robust feedback controller in the µ/H∞ design framework

from the derived models. Additionally, a robust control design technique is provided

to strategize dosage regimen for newly admitted patients using a second order transfer

function equation that represents RBC profile.

6.1 ROBUST CONTROL SYNTHESIS

Consider the feedback control configuration in Figure 6.1 with the plant defined

by G, reference signal r, measured signal y, and a disturbance signal d. The design ob-

jective is to derive a controller K such that the measured signal y mimics the behavior

of a certain reference signal r, despite the presence of unknown disturbance d. In classi-

cal control design problems, this objective is achieved while assuming the mathematical

description of the processG accurately represents the true system to be controlled. How-

ever, it is well understood that system G is only an approximation of the actual system

as certain dynamics are often excluded at the model derivation stage in order to achieve

tractable results. As such, it is importation to describe system G as a family of models

consisting of a nominal model and uncertainty in the model. Then, the robust control
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FIGURE 6.1: Feedback system.

design problem becomes designing a single controller K such that the set of plants de-

scribed by the family of models satisfies the required performance specifications.

Several uncertainty model descriptions are available in the literature [83]; how-

ever, the two commonly used descriptions are the additive and multiplicative uncertainty.

In this thesis, the multiplicative model uncertainty considered as this description directly

provides the means to describe uncertainty as a percentage change in the nominal value

over the frequency of interest. Equation (6.1) describes this multiplicative uncertainty

where Gp(s) is the generalized plant, G(s) defines the nominal model, and Wm(s) is an

unknown function that bounds the generalized system plant as shown in Equation (6.2).

Figure 6.2 shows the feedback configuration with the multiplicative uncertainty descrip-

tion.

Gp(s) = [1 +Wm(s)∆(s)]G(s)

|∆(jω)| ≤ 1, ∀ω (6.1)

M(ω) = max
Gp∈G

∣∣∣∣Gp(jω)−G(jω)

G(jω)

∣∣∣∣
|Wm(jω)| ≥M(ω) ∀ω (6.2)
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FIGURE 6.2: Multiplicative uncertainty in a feedback loop.

6.2 ROBUST CONTROLLER DESIGN: SOME DEFINITIONS

In feedback control design problems, a controller is considered to be robust if

the following definitions are satisfied:

6.2.1 Nominal Stability (NS)

Nominal stability is the basic requirement of any feedback control system. The

Nyquist stability criterion can be used to test for nominal stability conditions while

assuming zero uncertainty in the model. That is by making ∆ = 0.

6.2.2 Nominal Performance (NP)

The nominal performance condition ensures that the designed controller satisfies

performance specifications. This can be achieved by solving for the closed loop transfer

function of Figure 6.1, for example. From the figure, the closed loop transfer function

is defined in Equation (6.3) where G is the nominal system and K is the controller to be

designed.

Tyr =
GK

1 +GK
(6.3)

For tracking problems, it is generally required that the sensitivity function S, defined as

I − Tyr , to be kept small in the frequency of interest.
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6.2.3 Robust Stability (RS)

The robust stability condition requires that the controller K stabilizes the set of

perturbed systems described in Equation (6.1), which includes the nominal system. In

other words, given a controller K that satisfies both NS and NP conditions, does the

said controller also satisfy plants in the given set: G0 ∈ Gp ⊂ G? If so, under what

condition will the said controller not be valid? To answer the RS problem, consider the

controllerK that stabilizes the systemG in Equation (6.1), it is shown that the perturbed

complementary sensitivity function, defined in Equation (6.4) whereGi is any system in

the set G, and T iyr is its corresponding complementary function, is also stable provided

Equation (6.5) is satisfied [83]. In the equation, Wm is the multiplicative uncertainty

function.

T iyr =
GiK

1 +GiK
(6.4)

sup
ω
|TyrWm(jω)| < 1, ∀ω ≥ 0 (6.5)

6.2.4 Robust Performance (RP)

The final objective of robust control design is to achieve the performance require-

ments for all systems in the set G. Assuming the primary objective is to track a certain

reference signal, as considered in the nominal performance case. Then, the controller

K achieves robust performance if Equation (6.6) is satisfied, where Si is the sensitivity

function of all systems in G

sup
ω
|Si(jω)Wm(jω)| < 1, ∀ω ≥ 0. (6.6)

Equation (6.6) is shown to be equivalent to Equation (6.7) where Wd is the disturbance

weighting function.

‖Wd(jω)S(jω)|+ |Wm(jω)T (jω)‖∞ ≤ 1 (6.7)
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6.3 ROBUST CONTROL DESIGN SOLUTION TO THE ANEMIA MAN-

AGEMENT PROBLEM

Results from the semi-blind robust identification models derived in Section 5.1

provided a relationship between erythropoietin (EPO) and hemoglobin (Hb) measure of

anemia patients under uncertainty. From these established results, the robust feedback

controller be synthesized to optimize anemia management problems. For the purpose

of the controller design, Equation (5.2) through Equation (5.6) are considered as the

nominal models of the selected patients (Equation (5.2) is restated in Equation (6.8) as

a reference). In each of these equations, the Hb(z) represents measured hemoglobin

value while EPO(z) represents dosage erythropoietin. From Equations (6.1) and (6.2),

it is clear that the robust control synthesis is formulated in the continuous frequency

domain while the derived transfer function of Equation (6.8) is of discrete time na-

ture. However, by using the bilinear transformation [84], one can translate the discrete

time Equation (6.8) into the corresponding continuous time of Equation (6.9). Similar

transformation is applied to the other patient models. It should also be stated that to

distinguish between other patient models, superscripts are used to indicate patient ID

numbers. For example in Equations (6.8) and (6.9), superscript 1 represents patient #1.

However, to simplify the analysis, this identifier is omitted in the subsequent sections of

this thesis, unless such an indicator is absolutely necessary.

G1(z) = Hb(z)
EPO(z)

= 1.030z3+1.398z2+0.841z−0.041
z3+0.317z2−0.501z−0.816

(6.8)

G1(s) = Hb(s)
EPO(s)

= 0.515s3+1.459s215.11s+25.88
s3+1.475s2+25.11s

(6.9)
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FIGURE 6.3 – Generalized Plant Framework

6.3.1 Generalized Plant Description

The robust feedback control configuration shown in Figure 6.2 can be rearranged

to represent Figure 6.3. In this configuration, w represents all external inputs, including

reference signal to the plant, u represents the control inputs, z represents output signal

of interest including error signals, and y represents the measured output which is the

input to the controller K. In this setting, the overall objective is to determine a single

controller K that minimizes the output signal z. Equation (6.10) provides a summary of

such dynamics.

z
y

 =

G11 G12

G21 G22


w
u


u = Ky (6.10)
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6.4 WEIGHTING FUNCTIONS

In robust feedback control design methods, closed loop performance specifica-

tions are defined through opened loop weighting functions that can be translated into

an optimization problem and then solved. The two most important objectives of the

anemia control problem are that (1) the designed controller must track certain reference

(desired) hemoglobin value and (2) when possible, dosage medication must be mini-

mized. Achieving these two objectives requires that both the error and dosage weighting

functions to be included in the robust optimization process. In Figure 6.4, the weight-

ing functions We and Wu are defined as an attempt to minimize both the error signal

and dosage medication, respectively. Although there exist no direct method in deter-

mining these weighting functions, Equation (6.11) and Equation (6.12) are generally an

excellent starting points. Parameters M , wb, and A in Equation (6.11) represents the

percentage overshot, bandwidth, and steady state error, respectively. In Equation (6.12),

Umax defines the desired maximum input.

We =
s
M

+ wb

s+ wbA
(6.11)

Wu =
1

Umax
(6.12)

6.5 AUGMENTED PLANT

The H∞ controller design is a two stage control problem. First, the plant is aug-

mented by removing the controller from the entire feedback loop, then the controller K

is determined to satisfy the system requirements. Figure 6.5 shows the augmented plant
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FIGURE 6.4: Anemia management as a robust control problem in a feedback loop.
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FIGURE 6.5: Uncertainty feedback system loop.

configuration where the controller is removed from the feedback loop. As previously

defined, We,Wu, and Wm are the system weighting functions representing the error,

input, and the multiplicative uncertainty, respectively. From the figure, the augmented

system matrix is derived and shown in Equation (6.13).



Ze

Zu

y∆

y


=



−WeG −We −WeG

0 0 Wu

0 0 Wm

G 1 G




u∆

d

u

 (6.13)
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6.6 H∞-CONTROL SYNTHESIS AND RESULTS

The feedback system in Figure 6.4 represents the overall performance objective

of the robust control design. In the figure, the uncertainty system Gp defines a set con-

taining perturbed plants as defined in Equation (6.2). As previously stated, the objective

is to design a controller that satisfies certain performance specification. To achieve this

objective via robust feedback control setup, weighting functions are introduced to the

feedback dynamics. As an example, Equations (6.14) through (6.16) show the weight-

ing functions used to design robust controller for patient #1. They represent the error,

multiplicative, and control input weighting functions, respectively. Figure 6.6 and 6.7

show simulated results of patient #1 and #37. In each of these figures, the top portion

represents output Hb response values while the bottom shows the input EPO administra-

tion. Additionally, the four plots in each of these figures represent four possible patient

Hb profiles.

W 1
e =

0.8333s+ 0.03

s+ 0.00282
(6.14)

W 1
m =

s+ 0.1

s+ 1
(6.15)

W 1
u =

1

4000
(6.16)
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FIGURE 6.6 – Robust control results for patient #1. [Top] Hemoglobin response. [Bot-
tom:] EPO values.
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FIGURE 6.7 – Robust control results for patient #37. [Top] Hemoglobin response. [Bot-
tom:] EPO values.
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6.7 ROBUST CONTROL DESIGN FOR THE INITIAL DOSE REGIMEN

To provide personalized model using the semi-blind robust identification tech-

nique introduced in the previous chapter requires that at least fifteen measurement sam-

ples to be available. Since Hb values are measured on a weekly basis, this requirement

translates into fifteen weeks of data and since this time frame is too long for patients to

receive treatment, a procedure is provided to provide initial dosage regimen from the ro-

bust control design framework. This is achieved by introducing a second order transfer

function equation with unknown parameter values k and τ as shown in (6.17). In this

equation, the constant k defines sensitivity to the medication. This value ranges from

0.1− 0.9 and it indicates responsiveness to the medication. A low value shows insensi-

tive to the medication while high k value shows very responsive to medication. The τ

parameter value defines red blood cell (RBC) lifespan that ranges from 60− 120 days.

Ginitial =
k

(sτ + 1)2
(6.17)

6.7.1 Baseline Hb Level

In addition to the k and τ parameters of Equation (6.17), baseline hemoglobin

value must also be specified. This value defines patient’s initial Hb value prior to treat-

ment and it ranges from 6 − 8 g/dL. This is defined here as Hb0. As previously stated,

the objective of the feedback controller design is to increase patient’s hemoglobin value

from Hb0 to the desired range of 10− 12 g/dL . From the robust control design point of

view, this parameter value introduces an additional uncertainty in the robust controller

design process. Figure 6.8 shows the step response profile of the nine possible transfer

functions for low, middle, and high values of k and τ from Equation (6.17) with the

nominal Hb0 of 7 to represent the starting hemoglobin value of a hypothetical patient.

Table 6.1 provides a summary of k and τ values where the midpoint values are used for
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FIGURE 6.8 – Step response of partitioned system plant

k τ

Low 0.1 60

Mid 0.55 90

High 0.9 120

TABLE 6.1

Low, Mid, and High values of k and τ parameters.

the nominal transfer function indicated by red in Figure 6.8. As can be observed in the

figure, a baseline hemoglobin, Hb0, value of 7g/dL is selected as a the nominal baseline

hemoglobin.

6.7.2 Weighting Function

The weighting function as defined in the previous section is a mathematical equa-

tion that is used to encompass all possible plants in the robust controller design. Fig-

ure 6.9 shows the Bode plot of the uncertainty system with the multiplication uncertainty

function shown in red which has the transfer function equation shown in Equation (6.18).
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Figure 6.10 shows the corresponding step response of possible plant dynamics for the

given parameter values.

W a
m =

1.043s2 + 0.1553s+ 0.00508

s2 + 0.1219s+ 0.00566
(6.18)

6.8 CONTROLLER DESIGN

6.8.1 Results

Figure 6.11 shows the robust controller results of possible patients response pro-

file from the system set defined by the transfer function Equation (6.17). In the figure,

the top figure represents the output Hb value while the bottom one represents the input

EPO medication. Each line could be considered as a possible patient response profile

for a given EPO and Hb. Also shown are three randomly selected baseline Hb values

from the range 6 − 8 g/dL. It is clearly seen that the controller is able to stabilize the
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FIGURE 6.10 – Step response of possible plant dynamics.

patient response value to the desired Hb value of 11 g/dL. From the figure, however,

one can observe two anomalies: 1.) the wide range of dosage medication ( approxi-

mately 3, 000 to 120, 000 Units), and 2.) the slow response profile for certain patient

( up to 1, 500 days). These usual behavior is the controller’s attempt to satisfy the de-

sign requirements for the wide range in parameters describing the transfer functions of

the system set described in Equation (6.17). A solution to address these issues is to a

robust controller for functions with a smaller parameter ranges that can be achieved by

partitioning all parameter spaces of the transfer function in Equation (6.17).

6.9 PARAMETER SPACE PARTITION AND RESULTS

To design a control strategy to mimic response value of an actual patient, param-

eters of Equation (6.17), k and τ , must be partitioned to reflect poor, average, and high

response. Table 6.2 shows the partitioned parameter space for both k and τ values.

Figures 6.12, 6.13, and 6.14 show H∞ control simulation results for poor, av-
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FIGURE 6.11 – Controller result for the general transfer function equation. Top: Hb
response stabilized at 11 g/dL. Bottom: EPO medication.
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τ -range k-range

60-80 0.1-0.25

- 0.4-0.65

- 0.65-0.9

80-100 0.1-0.25

- 0.4-0.65

- 0.65-0.9

100-120 0.1-0.25

- 0.4-0.65

- 0.65-0.9

TABLE 6.2

Partitioned k and τ parameter ranges.

erage, and highly responsive patients under EPO medication. It can be noted that by

refining the parameter spaces to short ranges, better controller performance is achieved.

In each of these figures, the four plot lines show two different patient response profile

that starts from two randomly selected baseline Hb value. Their corresponding EPO

profiles are shown at in the bottom figures.
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FIGURE 6.12 – Hb (top) vs. EPO (bottom) for poorly responsive patients
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FIGURE 6.13 – Hb (top) vs. EPO (bottom) for average responsive patients
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSION

Personalizing treatment regimen for patients with chronic kidney condition is a

major challenge to clinicians. This is primarily due to the fact that most of the existing

approaches focus on addressing the issue as a population-wide problem that rely on the

performance of the general patient population responses to the drug treatment. However,

the presence of inter-variability in erythropoietic responses makes such a dosing strategy

nonoptimal with respect to the cost of the medication. In some instances, this strategy

may be potentially dangerous to the welfare of certain patients. An alternative approach

is to individualize treatment strategy by developing models based uniquely on the indi-

vidual patient’s hemoglobin response to erythropoietin. In this work, the techniques of

semi-blind robust identification is used to derive such models. These models are suit-

able for feedback controller design methods including robust control design techniques.

As such, the robust µ/H∞ controller was implemented using the derived models to im-

prove on treatment strategy in anemia patients. Additionally, a procedure is provided

to implement robust control design technique on newly arrived patients with limited

measurement samples to generate individualized models.
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7.2 DIRECTIONS FOR FUTURE RESEARCH

There are several possibilities for future work related to this proposal. In this last

section we provide few of such possibilities, but certainty not limited to the list:

• Decay rate parameter determination: Currently, heuristic approach is used to

select the decay rate parameter for the semi-blind robust identification. This pa-

rameter value is an application specific parameter that must be known prior to the

identification technique. A means of deriving this parameter value from measure-

ment samples alone will greatly speed up the identification process.

• Automate the identification process with a user friendly interface: The cur-

rent identification and control procedures rely on sequence of codes that must be

executed. Using these sets of codes may pose a challenge to certain end-users,

particularly those in clinical fields who may be unfamiliar with the source codes.

A solution to this problem is to design a user-friendly interface to provide ease-

of-use for these individuals.

• Extend the algorithm to incorporate patients with multiple conditions and

multiple dosage treatments (MIMO): This work explored treatment of anemia

conditions with dosage erythropoietin. An extension to this work might include

treatment with multiple health conditions and with multiple dosage medications

(MIMO). For instance, patient with kidney condition might also have heart prob-

lems that might be administered EPO and Warferin for treatment of the two con-

ditions, respectively.
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