Endemic Human Coronaviruses in Hospitalized Adults with Community-Acquired Pneumonia in the City of Louisville, Kentucky

Forest W. Arnold1,5, DO, MSc; Mark V. Burns1,5, MD; Kamran Mahmood1,5, MD; Darmaan Aden1,5, MD; Stephen Furmanek1,5, MPH, MS; Mahder Tella1,5, MPH; Connor Glick1,5, MS; Anupama Raghuraman1,5, MD; Leslie Beavin1,5, MD; Rodrigo Cavallazzi1,5, MD; Dawn Balcom1,5, DNP; Leslie Wolf1,5, PhD; Kenneth E. Palmer1, PhD; Ruth Carrico1,5, PhD; Julio A. Ramirez1,5, MD; for the Center of Excellence for Research in Infectious Diseases (CERID) Coronavirus Study Group3

Abstract

Introduction: There are four endemic serotypes of human coronavirus (HCoV) that may cause community-acquired pneumonia (CAP) in humans. The clinical syndrome of CAP due to HCoVs is not well characterized. The objectives of this study were to evaluate incidence, epidemiology, and outcomes of CAP in adults due to HCoV and to compare them to CAP due to influenza.

Methods: The Louisville Pneumonia Study (LPS) is a prospective observational study of hospitalized adult patients with CAP in the city of Louisville. Patients enrolled in the LPS in whom a respiratory viral panel polymerase chain reaction (PCR) was obtained were evaluated. Incidence, epidemiology, and outcomes were compared for patients with a positive PCR for HCoV versus patients with a positive PCR for influenza.

Results: From 1,974 CAP patients with a PCR performed, HCoV was identified in 65 patients (3.3%), corresponding to the following serotypes: HCoV-229E in 12 patients, HCoV-OC43 in 38 patients, HCoV-NL63 in 6 patients and HCoV-HKU1 in 9 patients. No differences were observed for clinical presentation and early outcomes for patients with CAP due to HCoV when compared to 244 patients with CAP due to influenza. One-year mortality after hospitalization was 32% for patients with CAP due to HCoV versus 13% for patients with CAP due to influenza.

Conclusions: When compared to patients with CAP due to influenza, the clinical presentation of patients with CAP due to HCoV is similar, but these patients have significantly worse outcomes one year after hospitalization.

Introduction

Community-acquired pneumonia (CAP) causes significant morbidity and causes more deaths in the US than any other infectious disease.[1] Approximately 23% percent of CAP is attributed to viruses.[2] That figure is made up of multiple viruses including: human rhinovirus, influenza A and B viruses, respiratory syncytial virus, parainfluenza virus types 1, 2, and 3, and coronaviruses 229E, OC43, NL63, and HKU1 among others. Presently, there is an interest in CAP due to the Coronoviridae family. Clinical aspects of the disease are well described in children, but not adults, especially with CAP. The Middle East Respiratory Syndrome (MERS-CoV), severe acute respiratory syndrome (SARS-CoV), and now the novel 2019 coronavirus (SARS-CoV-2) are well known, and fortunately not endemic like the others.

Coronaviruses are enveloped, single-stranded RNA viruses characterized by club-like spikes that project from their surface. Genera that can cause human disease include alphacoronaviridae and betacoronaviridae. Endemic strains of human coronavirus
Endemic Human Coronaviruses in Hospitalized Adults with Community-Acquired Pneumonia in the City of Louisville, Kentucky

(HCoV) include -229E, -OC43, -NL63 and -HKU1. These strains are associated mainly with illnesses of the upper respiratory and gastrointestinal tracts consistent with a common cold. Approximately 90% of epidemiological data is from samples obtained from children; it exhibits winter seasonality, a prevalent strain that varies year to year, and at least one strain, HCoV-OC43, that has a higher correlation with infections of the lower respiratory tract.[3,4] There is minimal existing data of adults with CAP due to HCoV. On the other hand, the clinical course of influenza with CAP and its outcomes have been well described, so it serves as a familiar infection to which HCoV with CAP may be compared.

In Louisville, KY, nasopharyngeal specimens were collected as standard of care for viral testing over three years in adult patients admitted with CAP.[5] Among those specimens were patients with viral infections, including influenza virus and HCoV. From those data, we sought to evaluate incidence, epidemiology, and outcomes of hospitalized adults with CAP due to endemic HCoV and compare them to CAP due to influenza virus.

Methods

This was a secondary analysis of adult patients from the Louisville Pneumonia Study; a large prospective population-based cohort study of hospitalized adults with CAP aged ≥18 years in Louisville, Kentucky. The primary study was performed in all nine adult acute-care hospitals in Louisville over three years, from June 1, 2014 to May 31, 2016 and from October 1, 2016 to March 31, 2017. It included 7449 patients and defined incidence, epidemiology, and mortality of adult patients hospitalized with CAP in an entire city.[5] The study was exempt from informed consent. Both studies were approved by the research offices at each participating hospital, and by the Institutional Review Board (IRB number 11.0615).

Patients meeting screening requirements were further screened using the following inclusion criteria: positive lung imaging for CAP by chest radiograph or chest computed tomography plus one clinical criterion addressing cough, temperature or white blood cell count.[5] Patients with HCoV or influenza presented once in the study period. Multiple co-infections were acceptable for inclusion, with the exception of HCoV and influenza viruses together. Exclusion criteria were as follows: non-Louisville residency, incarceration, a diagnosis of pneumonia more than 72 hours after admission, a lack of a social security number and laboratory tests positive for both HCoV and influenza virus in the same patient.

Variables evaluated in the medical record at the time of enrollment are in Table 1. Pneumonia severity was measured using the pneumonia severity index. The four endemic strains HCoV-229E, -OC43, -NL63 and -HKU1, as well as influenza A and B, were detected by routine standard of care from a nasopharyngeal swab. Time to clinical stability was followed up to seven days as defined previously.[6] It required attaining four clinical criteria. Length of hospital stay was calculated by subtracting the date of admission from the date of discharge up to 14 days; after that time-period, length of stay was censored in an effort to capture length of stay only related to CAP. All-cause mortality was measured as in-hospital, 30-day, 6-month and 1-year.

Continuous variables were reported as medians and interquartile ranges. Categorical variables were reported as frequencies and percentages. Mann-Whitney U tests and Chi-Squared tests were used to compare baseline characteristics between groups where appropriate. A Kaplan-Meier curve for time to mortality was produced. Survival times were compared using log-rank tests.

Results

Patients that had PCR viral tests performed in the study totaled 1,974. Among the excluded patients, one tested positive for both HCoV and influenza. Sixty-five patients had HCoV, and 244 had influenza virus. There were 23 HCoV patients with a co-infection and 45 influenza patients with a co-infection. (Figure 1) Serotypes identified in the 65 patients included: 229E in 12 patients, OC43 in 38 patients, NL63 in 6 patients, and HKU1 in 9 patients.

Epidemiology

The median age for patients with HCoV was 69 years, and with influenza was 68 years. (Table 1) The distribution of patients by age was highest for ages ≥65 years. (Figure 2) Female patients comprised 53% of patients with HCoV, and 57% of patients with influenza. Comorbidities were similar in both groups with four exceptions that were small, but statistically significant: body mass index (BMI), temperature, platelet count and white blood cell count. (Table 1) The proportion with two or greater comorbidities was 57% in both groups. More viral tests were performed during winter months, November to March, and the incidences for HCoV and influenza were higher during that time. (Figure 3)
Table 1. Characteristics of hospitalized adults admitted with community-acquired pneumonia with a positive test for either endemic human coronavirus or influenza virus. Frequency with percent or median with the interquartile range is used as marked accordingly.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coronavirus</th>
<th>Influenza</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no.</td>
<td>65</td>
<td>244</td>
<td></td>
</tr>
</tbody>
</table>

Demographics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median [IQR]</td>
<td>69 [52, 79]</td>
<td>0.607</td>
</tr>
<tr>
<td>Sex: Male</td>
<td>28 (43)</td>
<td>0.658</td>
</tr>
<tr>
<td>Race: Black</td>
<td>7 (11)</td>
<td>0.078</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>16 (25)</td>
<td>0.534</td>
</tr>
<tr>
<td>Nursing Home Resident (%)</td>
<td>5 (8)</td>
<td>>0.999</td>
</tr>
</tbody>
</table>

Comorbidities

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Neoplastic disease</td>
<td>11 (17)</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>12 (18)</td>
</tr>
<tr>
<td>Cerebrovascular Disease</td>
<td>10 (15)</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Liver Disease</td>
<td>4 (6)</td>
</tr>
<tr>
<td>Renal Disease</td>
<td>14 (22)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>19 (29)</td>
</tr>
<tr>
<td>COPD</td>
<td>25 (38)</td>
</tr>
<tr>
<td>BMI, median [IQR]</td>
<td>25 [22, 29]</td>
</tr>
<tr>
<td>Obesity (BMI > 30)</td>
<td>15 (23)</td>
</tr>
</tbody>
</table>

Laboratory and Physical Findings

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median [IQR]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>37 [37, 39]</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>58 [49, 69]</td>
</tr>
<tr>
<td>Systolic Blood Pressure (mm Hg)</td>
<td>115 [103, 131]</td>
</tr>
<tr>
<td>Respiratory Rate (breaths/minute)</td>
<td>23 [20, 28]</td>
</tr>
<tr>
<td>Heart Rate (beats/minute)</td>
<td>108 [94, 122]</td>
</tr>
<tr>
<td>Serum Glucose (mg/dL)</td>
<td>144 [117, 197]</td>
</tr>
<tr>
<td>Platelets per 1000/μL</td>
<td>231 [173, 282]</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>1 [1, 1]</td>
</tr>
<tr>
<td>Serum Potassium (mEq/L)</td>
<td>4 [4, 4]</td>
</tr>
<tr>
<td>Serum sodium (mEq/L)</td>
<td>136 [134, 140]</td>
</tr>
<tr>
<td>Blood Urea Nitrogen (mg/dL)</td>
<td>17 [13, 23]</td>
</tr>
<tr>
<td>WBC per 1000/μL</td>
<td>12 [10, 17]</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>12 [11, 13]</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>36 [32, 39]</td>
</tr>
</tbody>
</table>

Severity of Disease (on admission)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilatory Support</td>
<td>4 (6)</td>
</tr>
<tr>
<td>Vasopressors</td>
<td>2 (3)</td>
</tr>
<tr>
<td>PSI Risk Class IV/V</td>
<td>40 (62)</td>
</tr>
<tr>
<td>Altered Mental Status</td>
<td>11 (17)</td>
</tr>
<tr>
<td>Direct Admission to the ICU</td>
<td>12 (18)</td>
</tr>
</tbody>
</table>

COPD, chronic obstructive pulmonary disease; HIV, human immunodeficiency virus; ICU, intensive care unit; IQR, interquartile range; PSI, pneumonia severity index; WBC, white blood cell count.

COPD, chronic obstructive pulmonary disease; HIV, human immunodeficiency virus; ICU, intensive care unit; IQR, interquartile range; PSI, pneumonia severity index; WBC, white blood cell count.
Endemic Human Coronaviruses in Hospitalized Adults with Community-Acquired Pneumonia in the City of Louisville, Kentucky

Figure 1. The proportion of each type of coinfection among hospitalized adults admitted with community-acquired pneumonia with either endemic coronavirus or influenza.

![Coinfection Proportion](image)

- **CAP Coronavirus**
 - No Coinfection: 63
 - Bacterial Coinfection: 28
 - Viral Coinfection: 2
 - Fungal Coinfection: 2

- **CAP Influenza**
 - No Coinfection: 82
 - Bacterial Coinfection: 8
 - Viral Coinfection: 16
 - Fungal Coinfection: 2

Figure 2. Characteristics of hospitalized adults admitted with community-acquired pneumonia with a positive test for either endemic human coronavirus or influenza virus.

![Pneumonia Cases by Age](image)

- **18-49 Years**
 - CAP Coronavirus: 14
 - CAP Influenza: 35

- **50-64 Years**
 - CAP Coronavirus: 15
 - CAP Influenza: 63

- **65+ Years**
 - CAP Coronavirus: 36
 - CAP Influenza: 146

Imaging

A representative chest radiograph of a patient with CAP due to HCoV showed a lobar infiltrate. (Figure 4) Older adults with comorbidities, such as chronic obstructive pulmonary disease, and a co-infection had infiltrates concomitant with chronic lung disease. (Figure 4)

Outcomes

No differences in early outcomes were found. (Table 2) For the entire population, the median time to clinical stability was 2 days with an interquartile range (IQR) of 1-4 days, and the length of stay was 4 days with an interquartile range of 3-7 days. Mortality was higher in those with influenza for in-hospital and 30-day mortality ($P>0.05$), while it was higher in those with HCoV for 6-month ($P>0.05$) and 1-year mortality ($P=0.041$). (Table 2) One-year survival is shown in Figure 5, with significant differences in survival found between the two groups ($P=0.048$).

Discussion

Our data showed that outcomes, including time to clinical stability, length of stay and mortality up to six months were similar to influenza, but the 1-year mortality was statistically different with 32% among HCoV patients and 17% among influenza patients. The reason for this difference in mortality is unknown; however, it is clear that the Coronaviridae family, including MERS-CoV, SARS-CoV and SARS-CoV-2, has the potential to cause significant morbidity and mor-
tality. The incidence of HCoV CAP in our study was 3.6%. This figure is similar to what has been reported in the literature.[2,7]

Demographics were similar overall as well with most cases occurring in patients >65 years and in 57% having at least two comorbidities. There were a few statistically significant differences, including temperature, platelet count, white blood count, and body mass index, but the difference in platelet count between each group was not clinically significant.

For patients admitted with CAP, there did not appear to be any clinically discernable difference when considering a patient’s hospital course, but this data reveals that a difference was found compared to influenza among patients after a year had passed. Physicians and other primary care professionals should be aware of the long-term consequences that a seemingly innocuous HCoV may have later for patients, especially if they are older or have comorbidities.

Most publications regarding adults with CAP due to HCoV are case reports or a series of ten or fewer patients. Although studies exist with larger sample sizes tested, all reported similarly small numbers of positive patients.[8-20] (Table 3) In one study of patients with CAP, 254 viral PCR tests were performed and only seven patients were positive for HCoV.[17] In another study of patients with lower respiratory tract infections, 3,104 viral PCR tests were performed and only six patients were positive for HCoV.[21] Two studies included other potentially relevant patients, but children and adults were reported together in one study and rhinovirus and HCoV were reported together in another study.[22,23] Overall, 52 cases have been reported until this study; six of whom died.

Patient characteristics for adults with CAP due to viral etiologies in general have been described. In a study of 78 patients with suspected CAP and a positive viral PCR test, the most common viruses were influenza (35%), rhinovirus (26%), RSV (9%), and coronavirus (9%).[17] The median patient age was 60 and the predominant clinical features were
Endemic Human Coronaviruses in Hospitalized Adults with Community-Acquired Pneumonia in the City of Louisville, Kentucky

Figure 4. A representative chest radiograph of a 64-year-old female hospitalized with community-acquired pneumonia with a test positive for endemic human coronavirus (no co-infection) (a) and a similar patient, but who had chronic obstructive pulmonary disease (b).

Table 2. Outcomes of hospitalized adults admitted with community-acquired pneumonia with a positive test for either endemic human coronavirus or influenza. Frequency with percent or median with the interquartile range is used as marked accordingly.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coronavirus</th>
<th>Influenza</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no.</td>
<td>65</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Time to clinical stability (median [IQR])</td>
<td>3 [1, 5]</td>
<td>2 [1, 4]</td>
<td>0.152</td>
</tr>
<tr>
<td>Hospitalized length of stay (median [IQR])</td>
<td>5 [3, 8]</td>
<td>4 [3, 8]</td>
<td>0.621</td>
</tr>
<tr>
<td>In-hospital mortality (%)</td>
<td>1 (2)</td>
<td>10 (4)</td>
<td>0.540</td>
</tr>
<tr>
<td>30-day mortality (%)</td>
<td>3 (5)</td>
<td>21 (9)</td>
<td>0.418</td>
</tr>
<tr>
<td>6-month mortality (%)</td>
<td>14 (22)</td>
<td>31 (13)</td>
<td>0.134</td>
</tr>
<tr>
<td>1-year mortality (%)</td>
<td>19 (32)</td>
<td>39 (17)</td>
<td>0.041</td>
</tr>
</tbody>
</table>

IQR, interquartile range
In patients with community-acquired pneumonia, Kaplan-Meier curves for time to mortality over one year were compared between those with endemic human coronavirus and influenza.

Table 3. Manuscripts identifying cases of adult patients hospitalized for community-acquired pneumonia with endemic human coronavirus.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>no. cases</th>
<th>HCoV strain</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folz et al. [7]</td>
<td>1999</td>
<td>Durham, NC</td>
<td>1</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Falsey et al. [8]</td>
<td>2002</td>
<td>Rochester, NY</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>van Elden et al. [9]</td>
<td>2002</td>
<td>Netherlands</td>
<td>1</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>van Elden et al. [10]</td>
<td>2004</td>
<td>Netherlands</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Johnstone et al. [12]</td>
<td>2008</td>
<td>Canada</td>
<td>4</td>
<td>OC43</td>
<td>-</td>
</tr>
<tr>
<td>Oosterhof et al. [13]</td>
<td>2010</td>
<td>Denmark</td>
<td>1</td>
<td>NL63</td>
<td>1</td>
</tr>
<tr>
<td>van Gageldonk et al. [14]</td>
<td>2013</td>
<td>Netherlands</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zhan et al. [15]</td>
<td>2014</td>
<td>China</td>
<td>2</td>
<td>OC43</td>
<td>0</td>
</tr>
<tr>
<td>Das et al. [16]</td>
<td>2015</td>
<td>France</td>
<td>6 (a)</td>
<td>not HKU1</td>
<td>-</td>
</tr>
<tr>
<td>Mayer et al. [17]</td>
<td>2016</td>
<td>Germany</td>
<td>1</td>
<td>NL63</td>
<td>1</td>
</tr>
<tr>
<td>Galante O et al. [18]</td>
<td>2016</td>
<td>Israel</td>
<td>1</td>
<td>NL63</td>
<td>1</td>
</tr>
<tr>
<td>Pianana et al. [19]</td>
<td>2017</td>
<td>Spain</td>
<td>7 (b)</td>
<td>OC43, NL63</td>
<td>1</td>
</tr>
<tr>
<td>leven et al. [20]</td>
<td>2018</td>
<td>11 European countries</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arnold et al. (Present study)</td>
<td>2020</td>
<td>Louisville, KY</td>
<td>65</td>
<td>229E, OC43, NL63, HKU1</td>
<td>3 (c)</td>
</tr>
</tbody>
</table>

a. Five definite cases, one probable and one possible.
b. Three confirmed cases due to NL63, and four possible due to OC43.
c. 30-day mortality.
cough (92%), dyspnea (74%), sputum production (62%), and fever (36%). The most common underlying comorbidity was chronic lung disease, with 27% of the patients affected. Comparatively, in the nine adults with CAP due to HCoV-HKU1 described by Woo et al, the mean age was slightly older at 71 and the predominating symptoms were again fever (80%), cough (70%), sputum production (60%), and dyspnea (60%).[12] Seven of the nine patients had underlying comorbidities with three patients having underlying lung disease. Notably, two of the nine patients did die, and both had severe underlying comorbidities including malignancy. Overall, the patient characteristics were essentially clinically indistinguishable from other CAP illnesses.

One limitation of the present study was that viral PCR panels were obtained primarily during the winter seasons as standard of practice. Another limitation of the study was that co-infections might bias the comparisons between groups. One strength of the present study was that it nearly doubled the number of cases of HCoV CAP reported in the literature, providing a significant contribution to the epidemiology of the disease.

In conclusion, HCoV is found in 3% of patients hospitalized for CAP. The clinical presentation is similar to CAP caused by influenza. It is unclear, however, why patients with HCoV CAP have twice the one-year mortality compared to those with influenza CAP.

Acknowledgements

Jessica Petrey, MSLS, Associate Director-Clinical Services, Kornhauser Health Sciences Library, University of Louisville, Louisville, KY.

References

Appendix: Center of Excellence for Research in Infectious Diseases (CERID)
Coronavirus Study Group

CERID Leadership
Julio Ramirez, MD, Executive Director
Forest Arnold, DO, Associate Director
Ruth Carrico, PhD, Director of Epidemiological Research
Leslie Wolf, PhD, Director of Laboratory Research
Senen Peña, MD, Director of Research Operations
Emily Just, MA, Director of Administrative Operations

CERID Scientific Advisory Board
Rodrigo Cavallazzi, MD
Anupama Raghuram, MD
Leslie Beavin, MD
Mark Burns, MD
Barbara Wojda, MD
Julio Ramirez, MD (Executive Director)

CERID Operating Units
Implementation Unit
Amr Aboelnasr (Lead)
Vidyulata Salunkhe
Daniya Sheikh
Prashant Tripathi
Mohammed Abbas
Ahmed Abdelhaleem
Mutaseb Abuhalaweh
Ahmed Adel
Khaled Alsweis
Omar Altantawi
Ibrahim Asha
Kareem Ashraf
Pradeepthi Badugu
Marilhia Cornejo
Farah Daas
Deepthi Deepthi
Rafik Elbeblawy
Sherin Elgohary
Athar Eysa
Omar Fahmy
Rolando Cordoves Feria
Islam Gadelmoula
Ahmed Gana
Evelyn Exposito Gonzalez
Basel Haddad
Marjan Haider
Dina Haroun
Mohamed Ismail
Bibodh Jung Karki
Dilip KC
Ahsan Masood Khan
Simra Kiran
Dana Mantash
Ahmed Mowafy
Pavani Nathala
Ahmed Omran

Implementation Unit, cont.
Pranav Pillai
Sarav Ponnekanti
Ramya Praveen Kumar
Edisley Reyes Fundora
Balachandran Rishinaradamangalam
Harideep Samanapally
Balaji Sekaran
Ayesha Shameem
Ahmed Ali Shebl
Nishita Tripathi
Darman Aden, MD (Fellow)
Kamran Mahmood, MD (Fellow)
Angeline Prabhu, MD (Fellow)

Data Management Unit
Mahder Tella, MPH (Lead)

Biostatistics Unit
Stephen Furmanek, MPH (Lead)
Mahder Tella, MPH
Connor Glick, MS

Research & Diagnostic Laboratory Unit
Leslie Wolf, PhD (Lead)

Biorepository Unit
Subathra Marimuthu, PhD (Lead)

Quality Assurance Unit
Mohammed Tahboub (Lead)
Iqbal Ahmed
Duremala Duremala
Raghava Sekhar
Sahaj Hardeep Singh

Regulatory & Compliance Unit
Maria Hill (Lead)

Clinical Research Internship
Morgan Stanley (Lead)
Mohamed Abdelnabi
Mahmoud Abdelsamia
Yousra Alghalban
Arshdeep Batth
Arpan Chawala
Lakshmi Cherukuwada
Arashpreet Chhina
Satya Durugu
Mostafa El Razzaq
Salman Elgharabawy
Durgaprasad Garedreddi
Reham Gendi
Shivam Gulati
Zahid Imran
Endemic Human Coronaviruses in Hospitalized Adults with Community-Acquired Pneumonia in the City of Louisville, Kentucky

Divya Menghani
Clinical Research Internship, cont.
Jeremiah Olabiyi
Lucia Puga Sanchez
Nida Qadir
Adnan Qureshi
Gowthami Ramineni
Ashraf Rjob
Syed Shah
Hammad Tanzeem

Marketing Unit
Tonya Augustine (Lead)
Tessa Chilton
Trevor Bosley

University Outreach Unit
Ruth Carrico, PhD (Lead)

Community Outreach Unit
Dawn Balcom, PhD (Lead)

Medical Writing Unit
Forest Arnold, DO (Lead)

Informatics Unit
William Mattingly, PhD (Lead)
Matthew Grassman
Rakhi Shah
Gregory Lindauer

Administration Unit
Emily Just, MA (Lead)
Eman Abbas
Morgan Stanley
Catherine Bryan

Financial Unit
Dan Kapp (Lead)