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ABSTRACT

Nicholas R. Blumenthal

August 2008

The past decade has brought about major advances in the realms of both 

healthcare and biometrics.  New technologies and techniques in the field of biometrics 

has allowed for the quick and efficient identification of people, while new healthcare 

technologies are allowing for less invasive monitoring of a person’s physiological state 

indicators.  The combination of these two fields has allowed for a whole new frontier of 

science to be explored in the form of smart rooms.

Smart rooms use the fusion of biometrics and healthcare monitoring to provide a 

solution to the problem of how best to monitor a patient to ensure their best possible 

health, safety, and comfort.  This work attempts to push the boundaries of the field by 

creating a smart room technology that can provide nonintrusive monitoring of patient 

heart rate.  This type of room could be used to revolutionize patient monitoring in terms 

of both comfort and safety.

In this thesis, the culmination of several technological advances in the Computer 

Vision and Image Processing Lab were utilized to develop a methodology for the non-

contact detection of a subject's pulse.  The algorithms and methodology employed in this 

thesis resulted in a system that was able to identify a subject's pulse with 91.2% accuracy 
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in a partially automated system.  This demonstrates the proof of concept and shows a 

wide new range of possibilities for the world of medicine and patient monitoring.

6



TABLE OF CONTENTS

ACKNOWLEDGEMENTS................................................................................................4
ABSTRACT........................................................................................................................5
TABLE OF CONTENTS....................................................................................................7
LIST OF TABLES..............................................................................................................8
LIST OF FIGURES............................................................................................................9
CHAPTER I – INTRODUCTION....................................................................................10
CHAPTER II – LITERATURE REVIEW.........................................................................13

2.1 Pulse Overview................................................................................................13
2.2 Thermal Imaging..............................................................................................19
2.3 Continuous Wavelet Transform Analysis........................................................26
2.4 Summary..........................................................................................................37

CHAPTER III – SYSTEM DESIGN................................................................................38
3.1 Non Contact Pulse Measurement Process.......................................................38
3.2 Macro Scale Facial Tracking...........................................................................41
3.3 Micro Scale Vessel Tracking...........................................................................49
3.4 Arterial Pulse Signal Construction and Filtering.............................................54
3.5 Summary..........................................................................................................59

CHAPTER IV – EXPERIMENTAL DESIGN..................................................................60
4.1 Summary..........................................................................................................65

CHAPTER V – RESULTS................................................................................................70
CHAPTER VI – CONCLUSIONS AND FUTURE WORK............................................76
REFERENCES..................................................................................................................80
APPENDICES...................................................................................................................85

7



LIST OF TABLES

Table 1:  Infrared Spectrum...............................................................................................20
Table 2:  Focal Plane Arrays..............................................................................................23
Table 3:  Experimental Results..........................................................................................67

8



LIST OF FIGURES

Figure 1:   Overview of the cardiovascular system...........................................................14
Figure 2:   Diagram of the heart........................................................................................15
Figure 3:   Anatomy of the vascular structure of the face.................................................18
Figure 4:   Electromagnetic spectrum...............................................................................19
Figure 5:   Transmittance of infrared energy through atmosphere....................................20
Figure 6:   Radiation spectrum of a blackbody at varying temperatures...........................22
Figure 7:   Demonstration of emissivity............................................................................24
Figure 8:   Meyer wavelet..................................................................................................27
Figure 9:   Morelet wavelet................................................................................................28
Figure 10: Mexican Hat wavelet.......................................................................................28
Figure 11: Dilation of the Mexican Hat wavelet...............................................................31
Figure 12: Translation of the Mexican Hat wavelet..........................................................31
Figure 13: Signal with time varying frequency.................................................................33
Figure 14: Fourier Transform of signal.............................................................................33
Figure 15: Reconstruction of signal from Fourier Transformation...................................34
Figure 16: Continuous Wavelet Transform of signal........................................................35
Figure 17: Reconstruction from CWT...............................................................................35
Figure 18: Non contact pulse measurement processing....................................................38
Figure 19: Individual particle filter....................................................................................41
Figure 20: Macro tracking example..................................................................................58
Figure 21: Manual selection of artery...............................................................................52
Figure 22: Artery segmentation after snakes algorithms..................................................52
Figure 23: Vascular tracking points..................................................................................53
Figure 24: Phoenix Indigo LWIR camera.........................................................................61
Figure 25: Image acquisition system with chin restrictions.............................................62 
Figure 26: Raw and filtered signal....................................................................................69

9



CHAPTER I:

INTRODUCTION

Few things in the world are as important as one's physical well-being.  To this 

end, trillions of dollars are spent on healthcare, fitness, and medicine every year for the 

sole purpose of ensuring that the physical body continues to operate at its peak efficiency 

[1].  In almost every medical situation there are several key indicators of person's 

physiological state that help the medical professional determine a person's level of health 

and fitness.  

These indicators, commonly referred to as vital signs, convey different 

information about a person's physical and psychological state.  The four main vital signs 

are respiration, temperature, blood pressure, and pulse.  These indicators give medical 

professionals a starting point from which to base their diagnosis as well as important 

indicators with which to measure the continuing progress of patients after treatments or 

injuries [2].

As the name indicates, vital signs are integral to any diagnosis and there are a 

plethora of methods for measuring each vital sign with a range of accuracy and 

invasiveness for each measurement technique.  Cuffs and thermometers can be used for 

blood pressure and temperature respectively, while all-purpose monitoring equipment 

such as electrocardiograms can be used to monitor respiration and pulse.  Indeed, the 
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pulse is a very important human physiological measurement with a huge variety of 

techniques to detect it.  These techniques include palpation, photoplethysmography, and 

even measurement of the electrical signals guiding the heart such as in 

electrocardiograms.  Invariably however, all of these available techniques use some form 

of contact for measurement, which yields an integral problem that this thesis work 

attempts to solve. 

Under certain circumstances, contact measurement of vital signs is not a large 

problem for either the patient of the medical professional.  There are however, a large 

number of medical situations where the use of contact measurement devices could create 

discomfort for the patient or create a sustained burden on the medical professional in 

charge of patient care.  These circumstances often arise in extended care situations, such 

as long hospital stays for surgeries or in elderly care scenarios, where the patient needs to 

have his or her vital signs monitored for an lengthy period of time.  In these situations, it 

can often be uncomfortable for the patient to be connected to monitoring equipment such 

as an ECG device for extended periods of time.  In addition, these devices can often be 

dislodged by normal patient activity such as movement while sleeping.  This creates an 

extra burden on the medical staff as they are often called to reattach the monitoring 

devices.  In extreme situations, such as severe burn victims, the attachment of measuring 

devices may be impossible due to the excessive pain they cause the patient.  These types 

of injuries are not so rare as one might expect, with over 20,000 burn victims suffering 

severe burns over 25% of their bodies in the United States each year [3].  The solution to 
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this dilemma is the subject of this thesis, which is the creation of a non-contact form of 

vital sign measurement.

Due to the disparate nature of the vital signs, only the pulse was chosen as the 

target vital sign to achieve a form of non-contact measurement.  Indeed, non-contact 

measurement of the pulse has been achieved through the use of active monitoring via a 

radar measurement device as explored in Geisheimer's 1998 article: “Radar Vital Signs 

Monitor.”  Unfortunately, this equipment was an active measurement technique and 

easily corrupted by subject movement.  Conversely, the goal of this project is to create a 

passive measuring device with which the pulse can be ascertained from a distance from 

the subject, even in the presence of a certain threshold of movement.  

To achieve this goal, this project utilizes thermal imaging techniques to peek 

underneath the human skin and view the heat patterns due to the perfusion of blood, 

which is related to the pulse rate.  The methodology then employs novel mapping, 

segmenting, and signal processing techniques to extract a final heart rate from the thermal 

videos of the subjects.  The end result is a methodology which can serve as a basis for 

non-contact pulse measurement and which can vastly improve patient comfort while 

reducing the burden placed on healthcare providers.
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CHAPTER II: 

LITERATURE REVIEW

2.1 PULSE OVERVIEW

An understanding of the basic mechanics of the pulse and the cardiovascular 

system is necessary to understand the various measurement techniques.  The 

cardiovascular system is a collection of organs and tissues which are designed to 

transport nutrients and chemicals to the tissues of the body while collecting waste 

products that need to be expelled from the body [4].  This system can be visualized to be 

similar to a train system.  The train is analogous to the blood and plasma on which the 

passengers of nutrients, gases, and metabolic wastes are transported to their assigned 

destinations.  These destinations might be any of the various tissues and organs of the 

body, such as the lungs or brain.  The tracks of this body-wide train network are the blood 

vessels which consist of arteries that carry the blood away from the heart, veins that carry 

blood to the heart, and capillaries which are the small vessels that are the location for the 

exchange of the nutrients and waste.  The motor of this system is the heart, which serves 

to provide the force necessary to circulate the blood and nutrients throughout the entire 

system.  Figure 1 shows a simplified version of the entire system as it permeates the 

entire breadth of the human body [4].
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Figure 1: Overview of the circulatory system. Taken from [5].

The heart is a vital piece of the entire system and is an intricately designed pump 

which serves to circulate blood throughout the system for a human's entire life-span, 

equating to upwards of over 2.5 billion beats [6].  The heart accomplishes this amazing 
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feat through a designed honed by millennia of evolution.  The heart consists of four 

chambers as seen in Figure 2

Figure 2: Diagram of the heart. Taken from [6].

These chambers are the left and right atria and ventricles.  During a normal heartbeat, 

these chambers work in unison to cycle the blood throughout the body.  Each heartbeat 

actually consists of two stages.  The first stage is the systole stage.  In this stage, the 

ventricles contract and force blood out of the heart.  The right ventricle forces oxygen 

poor blood to the lungs where waste gases can be exchanged for oxygen.  At the same 

time, the left ventricle forces out oxygen rich blood fresh from the lungs into the 

circulatory system.  During the diastole phase, the ventricles relax and receive blood from 

their respective atria.  The entire process is controlled by the sinoatrial and 
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atrioventricular nerves which send electrical signals to the muscles of the heart in order to 

coordinate the contraction of the muscles in a smooth and continuous motion [4]. 

Each contraction of the heart creates a pressure wave as blood is expelled from the 

chambers and into the circulatory system.  This is because the walls of the blood vessels 

are elastic and each contraction of the heart muscles causes a distention of these walls as 

the non-compressible liquid is expelled into the closed system.  This pressure wave is 

transmitted throughout the entire circulatory system and can travel almost fifteen times 

faster than the actual speed of the fluid in the system.  This pulse pressure wave creates 

the distention that can be manually palpated as one methodology for measuring the pulse. 

In healthy hearts, this rate of occurrence of pressure waves is a direct measure of the 

heart rate, although heart abnormalities, such as arrhythmia can create misleading 

readings because the heart may not create a noticeable pressure wave during some beats 

[7].   In addition to creating a pressure wave that causes a physical distention of arterial 

walls, the pulse also creates a heat signature.  This is because the blood is pumped from 

the core of the body and is at a hotter temperature than the outer tissues which are 

experiencing heat loss due to exposure to the outside elements.  Thus hot blood is 

transmitted to cooler external tissues.  Additionally, the physical distention of the artery 

can create a small heat signature as the heat is transmitted to a wider surface area and 

then is transmitted to the surrounding tissues.  This heat signature forms the basis of the 

non-contact approach to pulse measurement that is pursued in this thesis work [8].

This leads to the question of where best to try and detect these heat signatures for 

use in non-contact pulse measurement.  Certain conditions would need to be met for a 
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vascular structure to qualify as a good measurement location.  First, the structure needs to 

be sufficiently large to create a heat distribution which can be detected with the current 

available instrumentation.  Second, the vascular structure needs to be sufficiently close to 

the surface of the skin to produce a distinct a heat signature.  And finally, the structure 

would need to be consistently present in the vast majority of the human population in 

order to make the overall methodology applicable for use in general medical and 

industrial practices.  A study of the human anatomy shows three distinct locations which 

would be ideal for viewing the heat signature.  The first location would be the radial 

artery of the arm as this artery can often be found close to the surface of the skin. 

However, this artery can also be covered by larger amounts of tissues deposits depending 

on the subject's body type of the subject.  Another possible measuring site is the carotid 

artery which runs up through the neck and into the head.  As with the radial artery, this 

vessel can also be covered by varying amounts of tissue depending on the body 

composition of the subject.  The final solution lies in the superficial temporal artery 

which lies in the forehead region.  This artery is an eventual branch off the carotid artery. 

It benefits from being highly exposed in the majority of subjects and also it tends to be 

covered by very little body tissue.  Anatomy studies of 27 subject show that all 27 of 

them contained the vascular structure [9] [10].  Thus, the superficial temporal artery 

meets the necessary requirements of creating a large heat signature in an exposed location 

which is present in the vast majority of the population.  The next exploration lies in the 

area of acquiring the heat signature.
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Figure 3: Anatomy of the vascular structure of the face. Note the superficial 

temporal artery runs next to the ear and branches into two segments in the forehead. The 

frontal branch is the targeted area for signal acquisition.  Taken from [11].
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2.2 THERMAL IMAGING

Thermal imaging is a novel technology that allows humans to expand their vision 

into the world of infrared energy.  Nature has constrained humans to view their 

environment by perceiving the electromagnetic spectrum in a limited range commonly 

called the visible spectrum, however, this is a very small portion of the information that is 

truly conveyed.  The infrared spectrum consists of electromagnetic energy just below the 

threshold of human vision, with wavelengths spanning from roughly 750 nanometers up 

to 1 millimeter.

Figure 4: Electromagnetic spectrum showing infrared band . Taken from [12].
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The spectrum can be further broken down into narrower bands as illustrated in Table 1:

Table 1: Infrared Spectrum Breakdown

Near Infrared: .75-1.4 um
Short Wave Infrared: 1.4-3 um

Mid Wave Infrared: 3-8 um
Long Wave Infrared: 8-15 um

Far Infrared: 15-1000 um

The full extent of these bands is not always available in certain atmospheres, as the 

presence of certain chemicals can absorb specific portions of the spectrum.  The 

transmittance of the infrared spectrum can be seen in the figure below.  The figure shows 

that there are several gaps in transmission, where the infrared energy is absorbed by gases 

in the atmosphere. 

Figure 5: Transmittance of infrared energy through atmosphere. Absorption from certain 

elements reduces transmittance in specific bands.  Taken from [12].
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Thermal imaging is useful because all objects radiate infrared energy with a 

continuum of frequencies that are proportional to the temperature of the object.  The 

spectrum of frequencies emitted is determined by Planck's Law of Radiation as shown 

below in equation 1:

(1)                            

where I is the spectral radiance of a body for a given frequency, v, and a given 

temperature, T.  Thus, as the temperature of a radiating body increases, the main 

frequency of its radiated energy increases as shown in the figure below [13].
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Figure 6: Radiation spectrum of a blackbody at varying temperatures.  Taken from [13]

The figure shows that as the temperature of the blackbody increases, the average 

frequency of the emitted radiation increases as well.  Thus, with the proper sensor and 

environmental conditions, it is possible to detect infrared radiation from any object.

The basic process of thermal imaging is much like digital imaging in the visible 

spectrum.  The purpose of the imaging process is to create a representation of a scene 

based off of the radiation emitted, reflected, and transmitted by the objects within the 

scene.  Thus, any thermal imaging system must be able to collect and focus the 

appropriate spectral energy on a sensor that can then analyze the incoming data and 

represent it in a format appropriate for the human visual system.
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There are many varieties of sensors that can be used for the detection of infrared 

radiation.  Commonly called focal plane arrays, or FPAs, these sensor consist of mixtures 

of materials that make them sensitive to radiation within a specific bandwidth.  Some 

common FPAs are listed with their bandwidths below in Table 2:

Table 2 : Focal Plane Arrays

Indium Gallium Arsenide - Near IR
Indium Antimonide -Mid Wave IR

Quantum Well Infrared Photodetector - Long Wave IR

While the FPAs may be constructed with different materials, they all serve the purpose of 

receptor to infrared signals, which allows the quantization of incident energy to occur.

Focal plane arrays do not actually directly measure the temperature of an imaged 

object.  Instead, they measure the radiosity of the target.  Radiosity is “the  infrared 

energy coming from a target modulated by the intervening atmosphere, and consists of 

emitted, reflected and sometimes transmitted IR energy” [14].  As indicated by the 

definition, several components come together to create the radiosity of an object.  The 

first component is emissivity.  Emissivity is a measure of how easily an object emits its 

infrared radiation.  Highly emissive objects will readily emit their thermal energy, while 

objects with a low emissivity will not readily emit radiation.  Thus for two objects at the 

same temperature, the more emissive one will appear 'brighter' to the focal plane array 

because it emits more radiation.  The converse of emissivity is reflectance.  This refers to 

the ability of objects to reflect infrared radiation emitted by other objects around them. 

Highly emissive objects will have low reflectance, while objects with low emissivity will 

23



have a high reflectance.  This can be seen in Figure 7, which shows metal cans at 

different temperatures.  The cans have highly emissive tape on them which is at the same 

temperature as the cans.  Since the tape is more emissive than the cans, it appears 'hotter' 

in the thermograph, while in truth it is simply more emissive. (Orlove, 2003)

Figure 7: Demonstration of emissivity. The tape and cans are at the same temperature, 

however the tape appears brighter or colder relatively, due to it's high level of emission. 

Taken from [14].

Since different receptors are sensitive to different bandwidths of infrared radiation 

it is important to select an imaging system which is tailored for the infrared emitted by 

the subject matter during thermal imaging.  Humans naturally emit the bulk of their 

radiation in the range of 8-9um, which makes them ideal subjects for long wave IR 

sensitive systems.  While they can be imaged in other spectral bands, the greatest 

sensitivity is available in the long wave IR band [10].  Due to the fact that the radiation is 

from internal body heat, this means that human subjects can be imaged even without any 

ambient lighting, which is useful for a variety of surveillance and identification purposes. 
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Additionally this property of humans makes it very useful for medical imaging, as the 

measure of a person's body temperatures can be useful in diagnosing conditions and vital 

signs.

In humans, thermal images are formed due to the convergence of several factors. 

First, humans naturally emit radiation in the 8-9 um range due to the fact that core 

temperatures in humans tend to be a constant 98.6 degrees Fahrenheit.  This core 

temperature is then transferred to the skin through the tissues of the body.  Muscles, bone, 

and fat tend to serve as insulators and keep hotter temperatures near the core, while the 

circulatory system tends to provide the main source to convect heat to the body's surface 

where it can be detected through thermal imaging systems [8].  The skin directly above 

the vessels of the circulatory system tends to be hotter than the surrounding skin because 

the blood is heated in the core and then carries that heat to the surface of the skin.  The 

skin itself is subject to a variety of factors which can affect its appearance in thermal 

imaging systems.  This is because the skin is susceptible to perspiration for heat 

regulation as well as thermal influences from the surrounding atmosphere, such as 

convection.  However, in controlled environments noise due to external factors tends to 

be minimized.  A lack of perspiration and convection heat losses will help ensure there is 

a maximal signal to noise ratio when taking thermal images of human subjects.  Despite 

this though, techniques still need to be created to filter out noise which will invariably 

creep into any imaging system due to things such as atmospheric disturbances.
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2.3 CONTINUOUS WAVELET TRANSFORM ANALYSIS

One of the main challenges in recovering the pulse signal from thermal imagery is 

the problem of noise.  Noise comes from a variety of influences and can greatly corrupt 

the pulse signal's magnitude, which is often small in comparison to the magnitude of the 

noise.  Factors that contribute to noise include motion, atmospheric interference, and 

extraneous heat signals due to physiological responses.  In order to combat the effect of 

noise, continuous wavelet transform analysis is utilized in order to find the appropriate 

pulse signal.

Continuous wavelet transform analysis is a method for analyzing signals.  In 

many ways it is similar to the Fourier transform, however it has some distinct advantages 

over the Fourier transform.  The Fourier transform does an excellent job of indicating the 

frequencies present in a signal, however it does not indicate where in time those given 

frequencies occurred.  Thus, for any time varying signal, the results of the Fourier 

transform can be somewhat ambiguous, as there is no indication of when the frequencies 

occurred.  This creates problems when trying to transfer back to the time domain from a 

set of filtered frequencies in the frequency domain.  Unlike the Fourier transform though, 

the continuous wavelet transform preserves the spatial or time location of the frequencies 

present in the signal.  This makes it ideal for analyzing time variant signals such as pulse. 
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The methods will by which this is achieved will be examined in the next few pages 

(Polikar, 2009)[15].

To gather a better understanding of the Continuous Wavelet Transform, we will 

first look at its formulation and then break it down into its component parts to see how 

analysis through this method benefits the detection of a pulse signal.  The formulation for 

the Continuous Wavelet Transform is shown in Equation 2:

(2)                

Where, x(t) is the signal in time, ψ* is the complex conjugate of the mother wavelet ψ(t), 

and a and b are the scaling and translation of the mother wavelet, respectively.  The 

mother wavelet refers to a compactly supported or finite duration oscillating function. 

(citation needed) There are a multitude of possible mother wavelets such as the ones 

shown in figures 8-10 below:

Figure 8: Meyer Wavelet.
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Figure  9: Morelet Wavelet.

Figure 10: Mexican Hat Wavelet.

A little exploration into the idea and mathematics of wavelets is necessary to gain 

complete understanding of the subject.  The main idea of a wavelet is that it can be used 

to analyze a signal at different scales in order to detect differing features because the 
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wavelets are compactly supported in time; that is they do not extend to infinity so they 

are useful for analyzing non-periodic signals.  In order to create a meaningful 

mathematical way of dealing with wavelets, the idea of mother wavelets is introduced. 

The mother wavelet is the template for the daughter wavelets, which are produced using 

equation 3:

        

(3)                      

                         

In this equation, the daughter wavelet ψs,τ(t) is made up of a version of the mother 

wavelet, ψ, which has been scaled by s and translated by τ.  The scaling factor in front of 

the equation is for energy normalization [16] [17].  The wavelets themselves have to 

satisfy two conditions known as the “admissibility and regularity conditions.”  The 

admissibility condition is given in equation 4 and from this equation, one can determine 

that equation 5 is also necessary.

              (4)        

              

                                (5)
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This condition is necessary because square integrable waves can be used to “analyze and 

reconstruct a signal without loss of information” [16].  Equation 5 indicates that the 

wavelet has an area of zero underneath the curve which indicates that the wave indeed 

does have a wavelike feature of oscillation.  The regularity conditions are imposed to 

cause the signal to decay rapidly with scale, which is desirable for the purposes of 

analyzing signals with a compactly supported wavelet. [16]

For the purposes of the thesis, the mother wavelet that was used for analysis was 

the Mexican hat wavelet which is formulated using equation 6, which is simply the 

negative of the second derivative of the Gaussian equation:

(6)           

             

It is the mother wavelet that will be scaled and translated to produce the daughter which 

will be used to analyze the signal.

Each mother wavelet is controlled by the scaling and translation factors to 

produce daughter wavelets.  Scaling serves to compress or dilate the mother wavelet, 

while translation moves the central location of the wavelet in time as seen in figures 11-

12 below:
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Figure 11: Dilation of the mexican hat wavelet, a = 5.

Figure 12: Translation of the mexican Hat Wavelet, b = 10.

Thus, it can be seen from the formulation that for every point in time, a scaled and 

translated version of the mother wavelet is convolved with the signal.  If the signal is 
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similar to the wavelet with a given scaling and time translation, it will produce a strong 

response which is captured as XW.  The location of  XW is given by a and b in 2-D space 

and indicates what scaling and translation are used in order to generate the given 

response.  It can be seen from simple observation that scale correlates to the frequency of 

the signal.  The relationship between scale and frequency is an inverse one, with higher 

scales correlating to lower frequencies and lower scales correlating to high frequencies.

In many ways, this formulation is much like the Fourier transform.  However, one 

of the major differences between the two formulations is that the continuous wavelet 

transform utilizes a wavelet which has a frequency component within some discrete 

portion of time.  In contrast, the Fourier transform convolves the input signal with infinite 

sinusoidal signals, whose frequency components are not localized to a specific time scale. 

The difference between the two methodologies is what gives the continuous wavelet 

transform its specific strengths.  By utilizing a finite duration pulse, the location of 

specific frequency components can be determined in time.  This is in contrast to the 

Fourier Transform, where the strengths of frequency components in a signal can be 

measured, but their location in time cannot be given.  Thus, a signal that has a time-

varying frequency component can not be accurately reconstructed using the Fourier 

transform, while it can be simulated with the coefficients derived from the continuous 

wavelet transform.

Consider the example of the signal plotted below in figure 13:
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Figure  13: Signal with time varying frequency.

It can be seen from observation that the signal's frequency changes over time.  An 

examination of the Fourier transform reveals the following data presented in figure 14:

Figure  14: Fourier transform of signal in figure 13.

The data reveals the three distinct frequencies that occur in the signal, however it does 

not reveal when those frequencies occurred.  Thus, a reconstruction of the signal from the 
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absolute coefficients derived from the Fourier transform yields the following signal, 

shown in figure 15:

Figure  15: Reconstruction of signal from inverse Fourier transform and Fourier 

Transform in figure 14.

These results are obviously different from the original signal and this is due to the 

inability of the Fourier transform to localize frequencies in time.   However, a look at the 

results of the continuous wavelet transform in Figure 16 reveals far more information. 

The transform shows the three distinct frequencies as well as their location in time.  This 

is seen as the three distinct peaked sections that shift over time.  The left most section 

corresponds to the lower frequency (higher scales) portion of the signal and then 

transitions to higher frequency (lower scales) over time.  This additional information 

allows for the accurate reconstruction of the signal as seen in figure 16 below.
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Figure  16: Continuous wavelet transform of signal showing changing frequencies over 

time.

Figure  17: Reconstruction of signal from inverse continuous wavelet transform.
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There is an intrinsic trade-off present in the formulation of the continuous wavelet 

transform in terms of the accuracy of the temporal location of the frequencies.  Higher 

scales, which correspond to lower frequencies, lead to better resolution in the frequency 

domain, but poorer resolution in the time domain.  This is because the lower frequency 

wavelets require a larger temporal basis and thus reduce the accuracy in pinpointing when 

in time a frequency component occurs.  Higher frequency wavelets need much smaller 

temporal basis which allows for a more precise time location.  However, there is more 

ambiguity as to what the exact frequency value is as the scales get closer and closer to 

zero; this is what causes the loss in frequency resolution.  This trade-off is well-suited for 

the vast majority of signal analysis applications though, since signals of interest are 

usually composed of low frequency terms for the majority of the time, with higher 

frequency pulses coming at specific time segments [18].
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2.4 SUMMARY

This chapter provided an introduction to a variety of topics that will be used in the 

solution of how to achieve non-contact pulse measurement.  It first introduced the 

cardiovascular system and the elements that make up the pulse.  Then, the concepts 

related to thermal imaging were introduced, including the spectral components of the 

infrared band as well as the concepts of emissivity and how thermal energy is generated 

and modulated in humans.  The final concept introduced in this chapter was the idea of 

Continuous Wavelet Transformation.  The chapter developed an understanding of the 

concept as well as it's strengths and weaknesses in terms of its capabilities in the signal 

processing field.  Additionally, the chapter looked at the mathematical background 

behind the construction and use of wavelets.
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CHAPTER III: SYSTEM DESIGN

3.1 NON-CONTACT PULSE MEASUREMENT PROCESS

The process of performing non-contact pulse measurement is a multistep process 

that covers a wide variety of mathematical and scientific topics.  This section will give an 

overview of the challenges in pulse measurement and a broad overview of the techniques 

used to overcome them.  Subsequent sections will delve deeper into the specifics of these 

techniques to provide a deep understanding of the entire process.

A general overview of the process is shown in figure 18 below:

Figure  18: Non-Contact Pulse Measurement Process.

38

Thermal Image Acquisition

Creation of Vascular Map

Vessel Selection

Micro Level Tracking

Pulse Signal Creation

Signal Filtering

Pulse Rate Calculation

Macro Level Tracking



The first step in the process is image acquisition followed by generalized facial 

tracking, which is termed “macro-level tracking”.  The ultimate goal of this work is to 

develop a system that can improve the conditions of those in long term medical care. 

Therefore, the system must be able to track the area of measurement as the patient 

exercises a certain degree of mobility necessary for comfort.  In order to accommodate 

this need, a system of particle filters using game theory is employed to determine the 

location of the region of interest.  In the case of pulse detection, the general area of 

interest is the forehead, as the vessel of interest, the superficial temporal artery lies in this 

region.  Therefore, the forehead tracker is used to locate this region in each frame and 

serves as an input into the next portion of the procedure.

The next step in the process is vessel tracking or “micro-level tracking”.  Within 

each frame, the specific vessel of interest needs to be located and tracked throughout 

time.  This is of extreme importance because even slight movements due to natural 

muscle contractions and breathing can destroy the measured signal.  Micro-level tracking 

ensures that each measurement in time is taken at the precise location inhabited by the 

vessel.  The tracking is accomplished through a few steps.  The first step is the manual 

selection of the vessel of interest by drawing a line over the general vicinity of the 

clearest branch of the superficial temporal artery.  The program then employs a snakes 

algorithm to contour the measurement points to the shape of the vessel.  This is necessary 

because the vessel usually follows a unique and tortuous route through the forehead 

region and therefore it is necessary to employ a more complex shape than just a simple 

line to map the path of the vessel.  After the vessel has been segmented, the micro-level 
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tracking process employs a routine to determine the best scaling, translation, and rotation 

that will yield the nearest fit from the initial frame to all following frames.

The next step in the process is to extract the raw and unfiltered version of the 

arterial pulse signal from each measurement point along the vessel.  This is done by using 

the tracking information to provide the location of points of interest then by taking the 

thermal measurements as the raw signal.  This raw signal is subject to a variety of noise 

influences, however it holds the true data within it.

The final step is to filter the raw data to extract the true pulse rate.  This can be 

accomplished using the techniques available with the continuous wavelet transform. 

Additionally, the combination of multiple measurement points helps yield a higher level 

of accuracy as the bulk of the measurement points should yield a consensus as to what the 

pulse truly is.  A final Fourier analysis of the filtered signal is then used to give an 

average pulse rate over the time frame of image acquisition.
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3.2 MACRO-LEVEL FACIAL TRACKING

The goal of macro-level facial tracking is to provide a general search area for the 

micro-level tracking routine.  Therefore, it must provide an input region which includes 

the vessel of interest which is to be measured.  This is accomplished by creating an 

algorithm which tracks the entire forehead region.  The algorithm used is a version of the 

coalition tracking network developed and explained by Dowdall et. al in the 2007 paper, 

“Coalition Tracking” [19].

The coalition tracking method uses a network of simple particle filters to achieve 

high performance tracking without extreme complexity.  Each particle filter consists of a 

simple sub-sampling block as seen in figure 19 below:

Figure  19: Individual particle filter used for forehead tracking.
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A small exploration of the mathematics of particle filters will reveal the theory 

behind their physical workings.  To begin, the general goal of this process is to estimate 

some process X with only access to a process Y.  In other words, we are attempting to 

know the state of the entire image X with only the sampling of pixel values which can be 

considered to be the process Y.  Mathematically, this can be thought of as attempting to 

determine the distribution given in equation 7:

   {p(xn|y1:n)}n>0                (7)

In essence we are attempting to determine the probability distribution of the state of 

process X at a specific time n given the observation of process Y from the beginning of 

the process until time n.  As time progresses, we continue to use the newly acquired 

values from the process Y to update our understanding of process X.  In this way, the 

process is an offshoot of typical Monte Carlo algorithms which use random samplings to 

guide the program to an approximation of a density function for a process at a given time 

using the previous samplings over time.  In order to determine the distribution given in 

equation 8, we have to break down the steps mathematically.  To determine tracking 

motion, we need to determine which set of motion parameters has the highest probability 

of occurring at a given time.  We can represent this as seen in equation 8:

(8)                              
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Here, the probability of a given motion set occurring given that a previous history of 

motion sets have occurred is equal to the probability of that set occurring given the 

current sampling of pixel values and all past motion set histories.  To approximate this 

probability, we use a set of weights, which are issued based on the closest match between 

pixel subsamplings from observation yn-1 to yn given some set of possible motions Xn.  The 

highest weighted motion set is then considered to have the maximum probability of 

occurring and becomes the new motion set, xn [20]. 

Physically speaking, each individual particle filter serves to take a sub-sampling 

of the pixel values at it's location.  In addition, each particle filter has a set of parameters 

which include position, scale, and orientation.  Each particle filter tries to track the pixels 

within it by a simple error-minimization algorithm.  The algorithm attempts to minimize 

the error between pixel values between each frame by finding the translation, rotation, 

and scaling which yields the minimum difference between sampled pixel values.  This 

method works well for objects where lighting conditions are held constant, as the 

introduction of shadow or new light sources can cause error for this simple tracking 

routine.  Since thermal video relies only on radiation emitted from the subject and not on 

external lighting, this makes it an ideal visual system on which to perform this style of 

tracking.

Taken individually, each particle filter is of only moderate accuracy due to its 

simplified tracking design.  However, the use of a network of particle filters can serve to 

improve the overall accuracy of the tracking process.  In this instance, the network of 

particle filters is controlled by factors determined via the use of game theory.  Game 
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theory is an attempt to “mathematically capture behavior in strategic situations, in which 

an individuals success in making choices depends on the choices of others” (Game 

Theory, 2009). This type of mathematical modeling has been explored since the early part 

of the 20th century and has been very successful in describing a wide range of situations, 

ranging from economic conditions to political scenarios.  In it's simplest form game 

theory explores the actions, known as strategies, that a set of players makes for a given 

set of conditions.  Generally, each action has a result which can be thought of as payoff 

that will be dependent on the state of the other players.  Each player seeks to find the 

action that will maximize his or her payoff [19].  

This formulation is a perfect fit for the natural problem posed by having a 

network of particle filters.  Each individual particle filter is considered to be a player in 

the game and seeks to find the set of translations, rotations, and scalings that will 

maximize its payoff in terms of overall tracking performance.  In order to further improve 

performance, groups of high performing trackers will form coalitions and propagate their 

influence to other, lower performing trackers.  This ensures that accurate trackers will 

keep lost trackers in a position such that they can regain tracking capabilities.

In order to determine the best coalition, a set of four criteria are established and 

used to quantify the tracking performance of all possible coalition combinations.  The 

first criterion is known as the template match score.  This score can be calculated using :

equation 9.

(9)                                

                                  

44



where, t is the time, Ck is the given coalition consisting of the set of k individual particle 

filters, with each individual particle filter being designated by mi. The value αmi refers to 

the template match score of an individual tracker and is given by equation 10.

(10)                          

where T(c) are the values of the pixel samples at the transformation which minimizes the 

error between those samples and the values at the previous time step, given in T(c0). 

Essentially, this is just a distance measure between the pixel samples at time t and time 

t-1.  

The second criterion is the geometric alignment score, β(t).  This score is used to 

ensure that coalitions have the best possible geometric alignment between trackers by 

ensuring that each tracker in a given coalition gives similar translation, scaling, and 

rotational corrections for the entire network.

The third criterion is the inter-frame projection agreement score, γ(t).  This score is 

very similar to the geometric alignment score, except it rewards geometric alignment 

over time instead of between different particle trackers.  The score calculates the 

alignment between the projections of a tracker at time t and time t-1.  Again, good 

tracking performance is usually indicated by a high correlation between alignments and 

the score rewards those coalitions that have highly aligned trackers over the course of 

time.
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The final criterion is the inter-frame membership retention score, δ(t).  In general, 

well performing coalitions tend to retain their members and this criterion is used to 

reward those coalitions that have constant membership over time.  Therefore, coalitions 

that have the same members are awarded additional points, whereas coalitions that are 

swapping points do not receive the scoring benefit and are less likely to be viewed as 

winners in the 'game' scenario.

All possible combinations of coalitions are considered in terms of the previous 

scoring programs.  The coalition that maximizes the payoff is considered the 'winner' and 

the translation, scaling, and rotational factors from that specific coalition are applied to 

all possible trackers in the network.  The results of this process can be seen in the figure 

below, where a box tracks the forehead region as the subject moves across the field of 

view of the camera.
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Figure  20: Macro tracking example.  Shows the progression of the tracking block (blue) 

over the course of 30 seconds of thermal imaging as it tracks the forehead region.
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3.3 MICRO-LEVEL VESSEL TRACKING

Macro-level tracking serves to give a large-scale search space for finding the 

required vessels of interests.  Once these desired vessels have been selected through an 

initial manual segmentation though, a much finer tracking system is needed to ensure that 

all measurements are taken as accurately and precisely as possible.  To meet this need, 

micro-level tracking must be implemented

There are three main steps to the micro-tracking process: vascular mapping, 

segmentation, and tracking.  The starting step is the creation of a vascular map.  This map 

shows the location of the vascular structures as derived from the thermal images.  The 

creation of the vascular map is in itself a multi-step process.  The first step is the 

segmentation of skin tissue from either background or non-skin tissue such as hair.  Since 

the input into the micro-scale tracking step will consist of a frame filled entirely by the 

forehead, segmentation of the head from the background is unnecessary.  Therefore, 

simple thresholding segmentation can be performed to remove the pixels that show hair, 

since hair will be cooler than skin tissue and can be easily and quickly segmented with 

this methodology.  If this step was not taken, the hair would show up as vascular 

structures in the following steps.
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The next step in the vascular mapping process is the transformation of the image 

into the blood perfusion domain.  This transformation essentially enhances the visibility 

and contrast of the vessels and should cause areas that experience a large amount of blood 

flow to show up 'hotter' on the thermal image.  This transformation takes the form of a 

simple gamma transformation which enhances contrast changes in the hotter portion of 

the image while suppressing change in the colder portions of the image.  This helps 

reduce noise related to cooler thermal process that should not be related to the hot effects 

of the pulse [8].

After these preprocessing steps have been accomplished, the bulk of the vascular 

algorithm can be performed.  First, the image must be smoothed.  However, the image 

cannot be indiscriminately smoothed as this would destroy the edges that result from the 

vessels themselves.  Thus, anisotropic filtering is employed to filter the image while 

maintaining edges.  Anisotropic filtering is useful because it performs 'intra-region' 

smoothing, 'as opposed to inter-region smoothing' which is commonly found in filters 

such as Gaussian blurring [21].  This preserves the edges developed by the vessels while 

ridding the image of noise due to other processes.  After blurring has been performed, 

white top-hat segmentation can be performed.  White top-hat employs a combination of 

'erosion and dilation operations' to segment out bright or 'hot' objects from an image. 

This final step produces an image that shows the center line of vessel passages that can 

serve as a map.  The map can then be utilized in the segmentation and tracking portions 

of the process [21].
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The second step is the segmentation portion, where an accurate estimate of the 

shape and position of the vessel of interest must be created in order to proceed onto the 

tracking portion of the process.  The most basic solution to this problem is to manually 

pick points out along the pathway of the vessel of interest in order to provide a structural 

and positional model of the vessel.  However, this process can be time consuming, so an 

easier solution was devised using a semi-automated method.  This method requires the 

user to select the general vessel of interest by drawing a line along the length of the 

artery.  The line is then conformed to the vessel's pathway via a deformable contours style 

algorithm.

Deformable contours are an important concept within image processing and are 

commonly referred to as snakes.  They are especially important for image segmentation 

purposes, making the subject ideally suited for the problem of segmenting out a vessel of 

interest.  In this simple version of the concept, the model to be deformed consists of a 

basic line.  The line is acted upon by various forces which are allowed to deform the line 

into a curve.  The forces can be grouped into two categories: external and internal forces. 

External forces consist of the forces generated by the image on the line itself and are 

easily modeled as the gradient of the image at the location of the line.  Internal forces can 

be used to create certain characteristics within the line as it deforms, such as curvature 

and bending properties.  In this case, the internal forces were used to try to keep the line 

at its original length as it deformed, thus preventing it from expanding to infinity or 

contracting into a single point.
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Figure  21: Manual selection of artery.

Figure  22: Artery segmentation after snakes algorithms.
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Once the artery segmentation has been performed, the second part of the process 

is initialized.  This is the actual tracking portion of the procedure and it relies on a few 

basic assumptions.  The first assumption is that the tracking procedure must compensate 

for translational, scaling, and rotational effects.  The second assumption is that despite the 

translation, scaling, and rotation of the imaged subject, the vessel of interest itself will 

still maintain a constant relative shape.  Thus, the initial segmentation should be able to 

be matched to some similar vascular shape at a future time so long as the apparent 

translation, scaling, and rotation effects are accounted for.

In order to do the micro-level tracking, the initial segmentation is transformed by 

a set of possible translations, rotations, and scalings.  For each transformation, the error 

between the initial segmentation and the vascular map at time t are compared.  The 

transformation that gives the least amount of error then becomes the specified 

transformation for time t.  Figure 23 shows an example of the measuring points tracking 

the vascular map at some random time, t.  

.

Figure  23: Vascular tracking points (shown in red) on vascular map.
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3.4 ARTERIAL PULSE SIGNAL CONSTRUCTION AND FILTERING

Once the preprocessing segments have been completed, the true task of pulse 

detection can be approached.  In this portion of the project, the goal is to extract the pulse 

signal and quantify the pulse rate.  This portion has two main subject areas, the 

construction of the raw arterial pulse signal and the filtering of the detected signal to 

remove noisy components which are not related to the true pulse signal.

The first portion, consisting of the construction of the raw arterial pulse, is 

relatively straightforward.  The previous steps constructed a set of initial measuring 

positions which have an x and y location in the thermal image.  This set of points will be 

denoted as Ln with n = {1 : Number of measuring locations}.  Additionally, each set of 

points has a corresponding transformation which consists of a scaling, rotation, and 

translations for each step in time.  This will be denoted as Tn(t).  Finally, the images 

essentially form a three dimensional array with x and y dimensions and the third 

dimension consisting of time.  Therefore, a specific pixel will be denoted as I(x,y,t). 

Putting these components together, we can formulate the raw arterial pulse signal, APn(t) 

as shown in equation 11:

  APn(t) = I(Tn(t) * Ln,t)          (11)
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Essentially, this can be visualized as taking a single pixel location and gathering it's 

values over time while compensating for the motion artifacts naturally introduced during 

the image acquisition process.

The second part of this task is the far more challenging aspect of filtering the raw 

signal.  Corruption of the arterial pulse signal can occur from a variety of sources. 

Motion artifacts can be a major source of noise, even with the compensatory tracking 

measures in place.  If the measurement locations are not consistently in the same position 

relative to the vascular network, they may pick up on different components of the pulse 

wave and thus, add noise to the signal.  In addition, the environment can be a source of 

noise to the signal as well.  Air currents can cause convective cooling which can be 

another source of noise interference.  Finally, other sources of infrared radiation in the 

imaging environment can be reflected from the skin.  Fortunately, the emissivity of 

human skin is roughly .98 [22].  Since reflectance is the converse of emissivity, this 

means that the reflectance of thermal energy from other sources by the skin is relatively 

low and not likely to introduce considerable noise into the process.

Therefore, the challenge of this project is to separate the noisy non-periodic 

elements from the periodic pulses due to the redistribution of heat to the surface of the 

skin with every beat of the heart.  One of the more robust approaches for filtering this 

type of signal is the application of the continuous wavelet transform.  As described in the 

section continuous wavelet transform Analysis, the CWT method is very useful for the 

analysis of time-varying signals.  The results of the transform yield a detailed view of the 

spectral components of the signal over time which can then be used for filtering.
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Once the CWT of the signal has been acquired, the art of filtering can take place. 

An exploration of the transforms of various signal types revealed patterns that allow 

filtering to take place.  Pulse type signals tend to have high energy components that run 

from high to low scales in the CWT with the high energy corresponding to the peaks of 

the signal in time domain [23] [24].  On the other hand, extraneous noise is typically 

higher frequency and manifests itself as very low scale signals which do not consistently 

run from high to low scales.  Therefore, the first step of the filtering process is to remove 

the low scale components of the transform which serves to filter out the high frequency 

noise.    The next step of the process is to remove components which do not traverse from 

high to low scales as does the typical pulse signal.  This is accomplished by examining 

each column in the two dimensional CWT transform and finding the maximum.  If the 

maximum is not above a certain threshold it is considered to be too weak to be a pulse 

signal and the entire column is set to zero.  The minimum threshold is the average of the 

entire CWT data set.  If the maximum is above this threshold, the algorithm then 

examines the coefficients from high to low scales until it finds a minimum below the 

threshold and zeros the column out after that minimum.  In this way components with a 

strong tendency to contain energy from high to low scales for a given position in time are 

preserved, while transient signals and noise are filtered out [23] [24].

Once these filtering steps have been performed, the signal can be reconstructed 

from the filtered transform, yielding a signal whose frequencies should be more closely 

related to the heart rate than the original unfiltered signal.  This signal is then analyzed 

with Fourier analysis to see what the dominant frequencies are over the time span of the 
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acquired signal.  While these steps reduce a large bulk of the noise, the Fourier analysis 

can still be somewhat inconclusive for a single point of measurement.  To solve this 

problem, the entire process is performed on multiple measuring points along the length of 

the vessel of interest.  Due to the propagation of the pulse itself, the initial signals cannot 

be combined in the time domain because the pulse peaks could occur at different times as 

the pulse travels along the length of the vessel.  However, a difference in the time domain 

becomes a simple phase shift in the frequency domain, which is removed when the 

absolute value of the frequency is determined.  Thus, the frequency components of the 

multiple measuring positions can be combined without problem.  By averaging these 

frequency readings together, the overall level of accuracy is improved as a smaller range 

of dominate frequencies is revealed.

To further improve the level of accuracy, the averaging of the frequencies is 

weighted by the apparent performance of each signal measurement point.  A simple 

averaging without weighting could potentially corrupt the answer by providing equal 

weighting for measurement points that returned both clear and noisy signals.  In order to 

quantify the performance of a signal, the concept of periodicity is used.  Periodicity, as 

it's name indicates, is a measure of how close a signal is to being truly periodic.  A true 

pulse signal will be highly periodic even if the pulse rate varies slightly over time. 

Conversely, a signal that is composed of mostly noise elements will have little evidence 

of strong periodicity.  Therefore, signals that are highly periodic should contain more true 

signal than ones that are not highly periodic.  To quantify what the periodicity measure is, 

the following algorithm as proposed by Chekmenev in his 2008 dissertation is used:
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 Determine number of local maxima above a set threshold in the signal

 Determine the average distance between peaks for a perfectly periodic signal as: 

Davg=(t1-tn)/n, where ti is the time location of the first maximum and tn is the 

location of the last maximum and there are n maxima

 Determine the difference between each consecutive maxima as Ln = tn-tn-1, for all 

n

 Set the periodicity score as PM = ∑|Ln – Davg|, for all n.

Thus, it can be seen that highly periodic signals will have small differences between the 

consecutive differences between the maxima and the desired distance for a truly periodic 

signal.  Conversely, signals which are not highly periodic will tend to acquire larger and 

larger values in the periodicity measurement score.  Therefore, it is desirable to have a 

lower periodicity measurement score, with the best possible score being zero.  Signals 

with low periodicity measurement scores are considered to be better indicators of the 

pulse signal and thus the signals' corresponding frequency components are given a higher 

weighting in the averaging process.  This further increases the overall accuracy of the 

returned pulse measurement.

The combination of all of these techniques serves to provide a method for filtering 

the raw data that is input into the system and returns a value that indicates the average 

pulse rate over a predefined period of  time.  The next stage involves designing an 

experiment which can be used to test and validate the methodologies described above.
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3.5 SUMMARY

This chapter gives an overview of the design of system with the end goal being 

non-contact pulse measurement.  The chapter gives a high level overview of the entire 

process and then first delves into an introduction to large scale or macro-level tracking 

via the use of a network of particle filters.  It next explores how to create a vascular map 

in order to select a region of interest for signal acquisition.  Thirdly, the chapter explores 

the use of a micro-level tracking program to compensate for tiny, involuntary motions 

while acquiring thermal images of the subject.  The last section of the chapter shows the 

process used for acquiring the raw signal and then processing it in order to extract the 

final estimate of the pulse rate.
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CHAPTER 4:

EXPERIMENTAL DESIGN

In order to test the accuracy and capabilities of the pulse measurement process, an 

experimental setup was created with the goal of creating a low noise environment for 

acquiring controlled thermal images, as well as ground truth vital signs, for validating the 

experimental results.  This section will describe the setup and the progression of 

experimental designs which were utilized to explore the concepts in this thesis.

The cornerstone to the entire project is naturally the thermal imaging system, 

since this piece of equipment is utilized to acquire the pulse signal itself.  The thermal 

imaging system that was utilized was the Indigo Phoenix Camera System with Real Time 

Imaging Electronics as seen in figure 24 (Product #420-0011-007, REV 120, S/N 0013). 

In order to capture the thermal radiation emitted by the human body, the long wave IR 

camera was employed.  This camera detects radiation in the range of 8.0 – 9.2 µm.  The 

camera uses a quantum well infrared photodetector (QWIP) as the focal plane array in 

order to detect incoming thermal radiation.  It also uses a Stirling cycle cooling system to 

cool the camera equipment down to roughly 70 Kelvin.  This helps reduce noise incident 

on the focal plane array from hot components in the camera itself which might normally 

emit radiation at room temperature.  The readings from the focal plane array are digitized 

and sent to the computing system via a frame grabber.  Talon Ultra 5.2 image acquisition 
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software, provided by Image-Pro Plus (Ver. 4.5.1.27) is used to grab the required number 

of frames, with the frame rate being 30 frames per second.

Figure  24: Phoenix Indigo LWIR camera.

The camera itself is mounted on a gantry which rotates around a central platform, 

on which the subject can be seated for image acquisition.  The gantry has black drapes on 

the opposite side of the imaging system to prevent noise from background objects 

interfering with the signal.  Likewise, foam padding was placed over the warmer 

electrical equipment in order to prevent thermal reflections from providing another 

source of noise.  

The center platform of the gantry is equipped with a chair so the subject can be 

seated during the image acquisition process.  In order to provide stability for initial 
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testing, a chin rest was also employed as shown in Figure  25; this helped in reducing 

motion artifacts.  However, later algorithmic improvements have allowed for the free 

seated acquisition of thermal images without any additional stabilization devices.  

Figure  25: Image acquisition system with chin rest for stability.

The system utilizes the Advisor Vital Signs Monitor to determine the ground truth signal 

with which the computed pulse rate is compared.  The Advisor Vital Signs Monitor offers 

the capability of measuring pulse rate through either electrocardiography (ECG) or 

photoplethysmography (pulse oximetry).  The photoplethysmography device employs a 

finger clip which can easily be attached to the subject and then the heart rate can be 

measured over the period of image acquisition.  This device has a usable range of 30-250 

beats per minute with an accuracy of the larger of either +- 2 beats per minutes or +-2% 
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of the heart rate.  The ECG has a slightly extended range of 30-300 accuracy and an 

identical accuracy.  Due to the somewhat invasive nature of attaching electrodes to the 

subject's chest and abdomen region with the ECG, the pulse oximeter 

(photoplethysmography) method was employed for ground truth observations.  

The process for experimentation is as follows.  The subject is seated in a 

comfortable position in the chair in the center of the gantry.  The thermal camera is then 

focused on the upper left corner of subject's forehead and the pulse oximeter is attached 

to his or her finger.  The subject is then asked to remain as still as possible, while 1024 

frames of thermal data are collected at 30 frames per second.  1024 frames are collected 

to provide an easier analysis using the Fourier transform as described in the previous 

sections.  This corresponds to 34.13 seconds of thermal imaging data.  The pulse reading 

is noted at 0, 10, 20, and 30 seconds, and those readings are averaged and rounded to the 

nearest beat to determine the overall ground truth value for accuracy analysis.  The only 

exception to this procedure was for the first five test trials where the subject used the chin 

rest without straps for stabilization.  However even under this scenario the motion 

tracking software was used to alleviate the noise due to small motions that inevitably 

occur.

The collected data is then input into the processing algorithm.  Once the thermal 

data set is input into the algorithm, a vascular map is automatically generated for each 

frame.  From the initial frame, the user then selects a general vessel of interest by 

drawing a straight line over the vessel of interest in the graphical user interface.  The 

snakes algorithm is utilized to precisely segment the vessel from the user indicated area 
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of interest by contouring the straight line segment to the tortuous route of the vessel. 

Once this is accomplished, the tracking routine is utilized to compensate for scaling, 

translation, and rotation effects through time.  Then the pulse signal is extracted and 

filtered to provide an overall estimate of the pulse rate for the duration of the acquired 

signal.  This is then compared to the ground truth measurement and an accuracy 

measurement in generated.  The Complement of the Absolute Normalized Difference 

(CAND) measure, in equation 12, was used to determine accuracy:

      CAND = 1 - |Ground Truth – Measured| / Ground Truth  (12)

The image acquisition procedure was performed on a variety of subjects in the 

Computer Vision and Image Processing lab over the course of several weeks.  Subjects 

where imaged multiple times and at a variety of points throughout the day in order to 

acquire a broad base of possible normal heart rates.  Traditionally, normal heart rates are 

characterized as being between 60-80 beats per minute and the heart rates of the test 

subjects ranged from 58 to 90 beats per minute according to the Advisor Vital Signs 

Monitor, which represents a good range of test data.  There were 13 total subjects.  11 

were male and 2 were female.  In terms of ethnicities, 6 were Caucasian, 1 was African 

American, 1 was Asian, and 6 were Middle Eastern.  Ages ranged from 18 to 38.  This 

study is approved for human subject under IRB 457 study titled "Biometric Study of 

Heart Rate, Breathing Rate, and Gait" at the University of Louisville.
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4.1 SUMMARY

Chapter 4 develops the methodology used for validating the system design 

presented in chapter 3.  The acquisition equipment and setup are described, as is the 

process for the experimental setup.  Finally, the chapter describes the method for 

calculating the accuracy of the results.  In addition, this section describes the data 

protocol in terms of the IRB process.
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CHAPTER 5:

5.1 RESULTS

The initial results of the experimentation show great promise for the procedure. 

An initial experiment was performed on nine different individuals with multiple data sets 

being taken for each individual.  A follow up experiment was then conducted on a larger 

pool of 31 individuals with one data set for each person.  As described in the section 

titled “Experimental Design,” each person was imaged while ground truth data was 

gathered using a pulse oximeter.  The results of the experimentation are shown below in 

table 3 and table 4 as well as the accuracy as calculated with the Complement of the 

Absolute Normalized Difference (CAND).
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Table  3: Experimental Results for Group 1

Subject # Trial # Ground Truth 
(BPM)

Calculated 
(BPM)

CAND

1 1 70 61.8 88.3%
1 2 70 65.9 94.1%
1 3 80 70.0 87.5%
1 4 76 78.2 97.1%
1 5 79 67.1 84.9%
2 1 75 67.1 89.5%
3 1 85 86.4 98.4%
3 2 58 74.1 72.2%
4 1 81 74.1 91.5%
5 1 75 74.1 98.8%
6 1 81 78.2 96.5%
6 2 60 65.8 94.2%
7 1 60 61.8 97.2%
8 1 90 90.6 99.3%
8 2 85 61.8 72.7%
9 1 88 78.2 88.9%
9 2 86 82.4 95.8%
10 1 70 74.1 94.1%
11 1 64 74.1 84.2%
12 1 76 82.4 91.6%
13 1 74 74.1 99.9%
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Table  4: Experimental Results for Group 2

Subject # Trial # Ground Truth (BPM) Calculated (BPM) CAND

1 1 79.2 70.0 88.4%
2 1 82.1 90.6 89.7%
3 1 67.5 70.0 96.2%
4 1 64.5 57.7 89.4%
5 1 64.5 74.1 85.1%
6 1 61.6 65.9 93.0%
7 1 79.2 74.1 93.6%
8 1 79.2 90.6 85.6%
9 1 105.6 107.1 98.6%
10 1 70.4 61.8 87.8%
11 1 67.5 65.9 97.7%
12 1 73.3 78.2 98.9%
15 1 82.1 86.5 94.7%
16 1 67.5 65.9 97.7%
17 1 82.1 78.2 95.3%
18 1 82.1 86.5 94.7%
19 1 58.7 57.7 98.3%
20 1 99.7 94.7 95.0%
21 1 64.5 74.0 85.3%
22 1 87.9 94.7 92.4%
23 1 70.4 78.2 88.8%
24 1 76.3 74.1 97.2%
25 1 73.3 74.1 98.9%
26 1 82.1 78.2 95.3%
27 1 96.8 94.7 97.9%
28 1 96.8 86.5 89.4%
30 1 64.5 78.2 78.7%
31 1 61.6 78.2 73.0%
32 1 70.4 78.2 88.8%
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The experiment yielded an average CAND accuracy of 91.2% with a standard deviation 

of 8.00% for group 1.  This means that the average error from ground truth in beats per 

minute was approximately 6.69 BPM.  For group 2, the average CAND was 91.9% and 

the variance was 6.30%.  The similarity of results in both groups indicates the strength of 

the results.

In order to judge the value of these results, it is beneficial to compare them to 

similar works.  Within the Computer Vision and Image Processing Lab, previous work on 

the challenge of non-contact pulse measurement had yielded an average accuracies of 

86.3%.  Additionally, this methodology was further constrained by the fact that the 

subject had to be stabilized with the use of a chin rest as demonstrated in the initial 

experimental setup section.  These results also compare well with the work of Garby, et. 

al., published in 2007 which performed non-contact pulse measurement through infrared 

imaging.  That study utilized a Fourier-based signal filtering method with motion tracking 

and achieved an average CAND accuracy of 88.5% across 34 trials.  Thus, the results 

indicate that the outcomes of this work stand well in light of the body of work available 

for comparison.

Additionally, the results need to be judged in light of their statistical significance. 

To determine this, the Pearson product-moment correlation coefficient is calculated via 

equation 13:

(13)                          
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Since certain subjects had differing numbers of trials, only the first trial for each subject 

was considered in the determination of statistical significance.  This yields a correlation 

coefficient, r, equal to 0.76 indicating strong correlation between the ground truth and the 

calculated values.  To test the significance of this, equation 13 is used to determine the t 

value.  If this t value is larger than 3.055, the null hypothesis that r = 0.0 can be rejected 

and it can be claimed that this is statistically significant at p = 0.01.

(14)                            

                              

The resultant t value from equation 8 is 3.878, indicating that the results from group 1 are 

indeed highly significant.  Likewise, group 2 has an r value of .83 which yields a t value 

of 7.73 which indicates the results are highly significant.

The results showed that the filtering works to bring out the frequency content 

related to the pulse rate, however visual inspection of the signal before and after filtering 

does not show noticeable information.  Figure 26 shows the raw signal on top and the 

filtered signal on bottom.
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Figure 26: Top shows raw pulse signal and bottom shows filtered signal.

The visual appearance of the raw signal does indeed show it is noisy, while the filtered 

signal is misleading because the discontinuities at the beginning and ending of the signal 

produce large spikes.  However, the frequency content is detectable and indeed in the 

filtered signal we can see the smaller spikes which are correlated to the actual pulse in 

terms of frequency.

The results also show that measured values tend to cluster around distinct 

measurement values as a result of the filtering method.  Since the final analysis after 

filtering relies on Fourier analysis, the accuracy of the returned measurements is limited 

by the sampling frequency and number of samples.  In the case of this thesis, the sample 

rate is 30 Hz and 512 samples are used for calculating the heart rate.  This means the best 

resolution of the final Fourier analysis is the sample rate divided by the number of 

samples or 3.5 BPM.  This effectively yields 'binning' of results, such that the returned 

values lie in bins spaced roughly three beats per minute apart from each other.  This 

binning effect could be reduced by including more samples in the data for the given 

sample rate.  However, this would extend the measurement time and increases heart rate 

variability, which is less useful for the application of this technology to medical 
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applications.  Another solution would be the use of more advanced technology that had a 

faster sample rate.  This would be the more advantageous solution, however, it would 

require the use of expensive technology not currently available for use.  Thus, in the end 

it is concluded that this was an acceptable level of error in the trial measurements to 

ascertain the viability of the work.  

Another aspect that was revealed by the results was the importance of proper 

vessel selection.  Some vascular networks were the result of noise due to hair and other 

data that managed to remain unfiltered throughout the algorithm.  Selection of those false 

vessels yielded vastly inaccurate results.  However, selecting the proper vessel along the 

superficial temporal artery brought about a much closer match with the ground truth 

value.  An examination of vessel selection choices in the Results section of the Appendix 

shows the high level of variability in vessel selection.  Consistently, the choices appear to 

be along a branch of the Superficial Temporal Artery, however the exact location along 

the artery differs from trial to trial.  Likewise, the location of the artery itself has a high 

level of variability within individuals and contributes to the diverse array of measurement 

locations.

Additionally, the results indicate that the methodology works even with the small, 

inevitable motions that could often cause noise during the signal acquisition process. 

This represents a definitive step forward from the previous work in this area and brings 

the technology one step closer to feasible application.  This demonstrates that the tracking 

technology utilized in the project is useful in decreasing the amount of detected noise in 

the thermal imagery.  Investigation revealed that, for people who were not constrained 
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but requested to remain stationary during the acquisition process, the macro-level facial 

tracking was not necessary for vascular tracking.  This is because the experimental 

protocol required the person to sit passively and therefore no subjects experienced 

involuntary motions of such magnitude where macro-level tracking was required for 

compensation.  Therefore, only micro-level tracking was utilized for vessel tracking. 

This helped lower computational overhead and decreased runtime.

Another observation during the course of acquiring the results was that little 

rotational and scaling motion was perceived during vascular tracking.  Thus, it was 

possible to remove both the rotational and scaling tracking factors with minimal error to 

the tracking performance.  Since the algorithm relies on a looping structure to check all 

combinations of translations, rotations, and scaling, this also allowed for a vast reduction 

in computational time.

The problem of runtime was revealed to be a major issue during the 

experimentation.  Due to the programming of the algorithm in Matlab, the entire process , 

from tracking all the way through to final pulse rate calculation, could take up to 45 

minutes to complete.   Obviously, this result reveals that for medical applications, the 

computational process would need to be streamlined and implemented in a format which 

would allow for realtime calculation of pulse rate.

Another issue that was revealed in experimentation was the problem of thermal 

camera focus.  In order to create a proper vascular map, the camera needs to have an 

excellent focus on the subject which will reveal the fine details that allow the 

construction of an accurate map.  While the tracking software compensated for a variety 
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of motions there are very few ways to compensate for an out-of-focus acquisition 

scenario in terms of software.  Thus, the subject was required to attempt to not drift closer 

or farther away from the camera, as this would greatly hamper the tracking process. 

Fortunately, very few subjects had enough motion to produce focus problems.  One 

subject had to be imaged again because the focal problems became so great that the 

vascular map failed entirely and thus tracking was not possible and subjects 13, 14, and 

29 were not used in the testing due to acquisition errors which made vascular mapping 

impossible. 
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5.1 SUMMARY

This chapter describes the results that came about due to the effort invested in this 

thesis.  It details the results and their statistical significance as well as the many 

qualitative results that arose from this research.  It explores possible reasonings for these 

results and lays the groundwork for the future work which is discussed in chapter 6.
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CHAPTER 6:

CONCLUSIONS AND FUTURE WORK

In summary, the work of this thesis proved the concept of using thermal imaging 

to provide a new physiological indicator in the form of pulse rate for the use in smart 

room applications.  An experimental system was designed which used thermal imaging 

capabilities combined with tracking and filtering software to produce an estimation of an 

average heart rate over a short time period.  With an average accuracy of roughly 91%, 

the experiment shows that high accuracy measurements can be obtained even with the 

presence of small motion artifacts associated with uncontrollable muscle motion.  This 

technology could be used to revolutionize the comfort and effectiveness of smart rooms 

worldwide.

Naturally, this work leads to several other areas of work that could be pursued for 

vast performance improvements.  One major area would be the automatic selection of the 

vessel of interest.  This work sacrifices true autonomy for decreased calculation time. 

With improved segmentation technology or a faster processing platform, automatic vessel 

selection is implementable.  This would yield a truly automated process, since the current 

work requires the user to provide an initial manual selection.

Additionally, the motion tracking software was used to deal only with small-scale 

motion artifacts, not large scale movement.  Future work should test the viability of this 
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technology under more challenging motion options and other visual scenarios such as 

partial occlusion.  This might require the use of multiple imaging systems to compensate 

for various pose issues which were held constant under the current body of work.

Mechanical improvements could also be made to the system which would help 

with both the tracking and focal issues which were discussed in the Results section.  To 

achieve consistent proper focus, an auto-focus system would need to be developed which 

could keep the thermal camera in constant proper focus.  This could be achieved by using 

a range finder which could monitor subject distance and calibrate the camera 

appropriately.  Additionally, the camera system could also employ a mechanical system 

to keep it directed on the patient which could allow for much broader tracking 

capabilities than even a software system which would require the subject to always be 

within the camera's field of view.

Naturally, for true future use in medical scenarios, the system will have to be 

optimized for speed.  Under the current body of work, the Matlab programming language 

is used and while this is useful for ease of coding and development, it is not created for 

optimal speed.  This is because Matlab is an interpreted programming language which 

needs to be reduced to machine code at run time.  Future implementations should utilize 

compiled languages such as C#, which could dramatically decrease calculation times 

because the code is compiled before execution.  Eventually, this process needs to be 

optimized to an extent that it could be run in real time, as the eventual application for it in 

medical scenarios would require near-instantaneous results.  For instance, the Advisor 

Vital Signs Monitor utilized for ground truth measurement has a response time to heart 

77



rate changes of six seconds.  Therefore, any future application of this work would have a 

similar goal in terms of computation speed.  This would allow the device to be 

implemented in smart room scenarios where it could be used to replace the current 

monitoring technology.

Finally, future work should also have the end goal of higher accuracy.  An 

accuracy of 91% translates into an error of roughly 6 – 10 BPM for the range of heart 

rates tested under this work.   However, current ECG and pulse monitoring devices 

typically have an accuracy that allows them to calculate the heart rate within +/- 2 BPM. 

This yields an average accuracy of 97 – 99% for the heart beats in the range of 60 – 80 

beats per minute.  This should obviously be the target accuracy for future systems, 

although this would represent an enormous leap in technology as the process also has to 

compensate for a variety of factors not present in contact measurement techniques such 

as pulse oximetry.  Still, this can be achieved in several forms.  Naturally, longer 

acquisition periods can allow for less error during the Fourier analysis.  However, this 

would not typically be feasible for medical work, where high accuracy measurements are 

required over short time durations.  Another method for increasing the accuracy is to 

increase the sampling rate via better image acquisition systems with faster frame rates.

Considering the work done in this thesis and future improvements, this 

technology could be a great benefit to health systems around the world.  The thesis served 

as a conclusive demonstration that non contact pulse measurement is indeed a feasible 

reality.  It sets the basis for a new arena of research with the hopes of creating a fully 
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functional smart room that can utilize the benefits of technology to improve the health 

and safety of its users.
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APPENDICES

Trial Results from Group 1
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Subject 1, Trial 1, Ground Truth = 70 BPM, Calculated = 61.8 BPM

85



Subject 1, Trial 2, Ground Truth 70 BPM, Calculated 65.9 BPM
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Subject 1, Trial 3, Ground Truth = 80 BPM, Calculated = 70.0 BPM
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Subject 1, Trial 4, Ground Truth = 76 BPM, Calculated = 78.2 BPM
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Subject 1, Trial 5, Ground Truth = 79, Calculated = 67.1
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Subject 2, Trial 1, Ground Truth = 75 BPM, Calculated = 67.1 BPM
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Subject 3, Trial 1, Ground Truth = 85 BPM, Calculated = 86.4 BPM
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Subject 3, Trial 2, Ground Truth = 58 BPM, Calculated = 74.1 BPM
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Subject 4, Trial 1, Ground Truth = 81 BPM, Calculated = 74.1 BPM
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Subject 5, Trial 1, Ground Truth = 75 BPM, Calculated = 74.1 BPM
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Subject 6, Trial 1, Ground Truth = 81, Calculated = 78.2
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Subject 6, Trial 2, Ground Truth = 60.0, Calculated = 65.8
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Subject 7, Trial 1, Ground Truth = 60 BPM, Calculated = 61.8 BPM
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Subject 8, Trial 1, Ground Truth = 90 BPM, Calculated = 90.6 BPM

98



Subject 8, Trial 2, Ground Truth = 85 BPM, Calculated = 61.8 BPM
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Subject 9, Trial 1, Ground Truth = 88 BPM, Calculated = 78.2 BPM
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Subject 9, Trial 2, Ground Truth = 86 BPM, Calculated = 82.4 BPM
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Subject 10, Trial 1, Ground Truth = 70 BPM, Calculated = 74.1 BPM
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Subject 11, Trial 1, Ground Truth = 64, Calculated = 74.1
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Subject 12, Trial 1, Ground Truth = 76, Calculated = 82.4
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Subject 13, Trial 1, Ground Truth = 74, Calculated = 74.1
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