
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

7-2006

Advancements in frameworks for educational games through Advancements in frameworks for educational games through

sound software engineering principles. sound software engineering principles.

Christy M. Bogard
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Bogard, Christy M., "Advancements in frameworks for educational games through sound software
engineering principles." (2006). Electronic Theses and Dissertations. Paper 121.
https://doi.org/10.18297/etd/121

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Fetd%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/121
mailto:thinkir@louisville.edu

ADVANCEMENTS IN FRAMEWORKS FOR EDUCATIONAL GAMES
THROUGH SOUND SOFTWARE ENGINEERING PRINCIPLES

By

Christy M. Bogard
B.S., University of Louisville, 2004

A Thesis
Submitted to the Faculty of the

University of Louisville
J. B. Speed School of Engineering

in Partial Fulfillment of the Requirements
for the Professional Degree

MASTER OF ENGINEERING

 Department of Computer Engineering and Computer Science

July 2006

ADVANCEMENTS IN EDUCATIONAL GAMES
THROUGH SOUND SOFTWARE ENGINEERING PRINCIPLES

Submitted by: __________________________________
Christy M. Bogard

A Thesis Approved on

(Date)

by the Following Reading and Examination Committee:

Dr. Rammohan K. Ragade, Thesis Director

Dr. Ibrahim N. Imam

Dr. Julius P. Wong

iii

DEDICATION

For Mom and Jim,
You told me I could accomplish anything.

And I believed you.

For Stephanie and Leah,
You’ve shown me that life is a series of humorous moments,

and the only way to survive is to laugh at it all.

For Jason,
Your inquisitive mind and constant encouragement

have helped me accomplish the impossible.

For My Teachers,
You pushed me to greatness,

then showed me how to go even further.

iv

ABSTRACT

 Educational games have steadily entered classrooms as a means of challenging

advanced students and tutoring those lacking comprehension. However, without

adequate educational benefits, instructors are struggling to continually justify the

marginal value added of using these programs. It is the intent of this thesis to

demonstrate that sound software engineering principles can improve the framework of

educational games. First, the core framework requirements of computer-based

educational games are outlined. Current educational games are then evaluated based on

their ability to meet these requirements. From this analysis, necessary architectural

changes are recommended to best facilitate future game advancements. Finally, to

demonstrate the viability of the changes, a functional, elementary level educational game

is developed based on the recommended modular architecture with low coupling and high

cohesion.

v

TABLE OF CONTENTS

DEDICATION...III

ABSTRACT... IV

LIST OF FIGURES .. VII

I. INTRODUCTION.. 1

II. LITERATURE REVIEW ... 3

2.1 EDUCATIONAL GAME GROWTH AND LITERATURE .. 3

2.2 CURRENT EDUCATIONAL GAME TYPES AVAILABLE ... 4

2.3 DESIGNING AN ENTERTAINING GAME ... 7

2.4 DETERMINING CLIENT REQUIREMENTS... 8

III. DESIGNING EDUCATIONAL SOFTWARE .. 16

3.1 EXAMINING THE UNDERLYING PROBLEM ... 16

3.2 DEVELOPING A SOUND EDUCATIONAL GAME ARCHITECTURE 18

IV. IMPLEMENTATION OF AN EDUCATIONAL GAME 20

4.1 AN OVERVIEW OF THE SYSTEM DESIGN.. 20

4.2 GAME PLAY DEVELOPMENT ... 20

4.3 GAME CONTENT AND SCORING... 21

V. USER INTEFACES ... 26

5.1 USER INTERFACES OVERVIEW .. 26

5.2 WELCOME INTERFACE .. 29

5.3 NEW STUDENT ACCOUNT SETUP .. 31

5.4 GAMING INTERFACE ... 32

5.5 INSTRUCTOR SIGN ON... 33

5.6 INSTRUCTOR’S INTERFACE .. 34

5.7 STUDENT SELECTION .. 36

5.8 ADD INSTRUCTORS ... 37

5.9 REMOVE INSTRUCTORS ... 37

5.10 DATABASE MODIFICATION ... 38

5.11 ADDITIONAL CONSIDERATIONS .. 39

VI. DATABASE DESIGN.. 40

6.1 OVERVIEW OF DATABASE DESIGN .. 40

6.2 STUDENT INFORMATION TABLE .. 41

6.3 QUESTIONS TABLE .. 42

vi

6.4 GAME PLAY RESULTS TABLE ... 43

6.5 INSTRUCTORS.. 44

6.6 INTERDEPENDENCIES .. 44

VII. GAMING ARCHITECTURE.. 46

7.1 GAMING ARCHITECTURE .. 46

7.2 DATABASE PACKAGE ARCHITECTURE .. 46

7.3 FILE_ACCESS PACKAGE ARCHITECTURE .. 48

7.4 GAME_PLAY PACKAGE ARCHITECTURE ... 50

7.5 GUI_INTERFACE PACKAGE ARCHITECTURE .. 55

7.6 GAME ARCHITECTURE .. 57

7.7 LIMITATIONS... 59

7.8 CHOOSING THE IMPLEMENTATION LANGUAGE ... 61

VIII. CONCLUSIONS AND FUTURE ENHANCEMENTS 64

IX. REFERENCES ... 67

vii

LIST OF FIGURES

Figure 2-1: Evaluation of Current Educational Games... 13

Figure 4-1: Question Bank Breakdown Based on the Student’s Points Earned 23

Figure 5-1: User Interface Interactions for the Student Perspective................................. 27

Figure 5-2: User Interfaces Interactions for the Instructor Perspective............................ 28

Figure 5-3: Welcome Interface ... 30

Figure 5-4: New Student Account Setup .. 32

Figure 5-5: Gaming Interface.. 33

Figure 5-6: Instructor Sign On.. 34

Figure 5-7: Instructor’s Interface .. 35

Figure 5-8: Student Selection.. 36

Figure 5-9: New Instructor Setup ... 37

Figure 5-10: Instructor Removal... 38

Figure 6-1: Database Tables ... 40

Figure 6-2: Student Information Table ... 42

Figure 6-3: Questions Table.. 42

Figure 6-4: Game Play Results Table ... 43

Figure 6-5: Instructor’s Table ... 44

Figure 6-6: Table Relationships.. 45

Figure 7-1: Database Package Architecture.. 48

Figure 7-2: File_Access Package Architecture... 49

Figure 7-3: Game_Play Package Architecture.. 51

Figure 7-4: Sequence Diagram for Establishing New Game Content 53

viii

Figure 7-5: Sequence Diagram for Student’s Second Attempt at the Question 54

Figure 7-6: Gui_Interface Package Architecture .. 56

Figure 7-7: Game Architecture ... 58

Figure 8-1: Evaluation of Developed Educational Game... 66

1

I. INTRODUCTION

 Students have a higher retention rate of subject material when it is reinforced by

additional sources outside of classroom instruction. Instructional simulations and

educational games have the potential to provide this additional reinforcement. However,

educational software, as it exists today, has fragmented content. When designed, a small

to mid-size cluster of programmers attempt to address a single concept or problem.

Often, it will take several months to a year to adequately address the concept or problem

within a single focalized application. The specialized nature of the developed application

then makes it very difficult to be of value to a broad audience of students. Without an

effective interface to combine a multitude of these specialized applications, instructors

are overwhelmed attempting to justify the myriad of necessary applications required to

reinforce course content. This limitation, combined with limited high quality educational

products available, outweighs the benefits of using educational software within the

classroom [3, 5, 8, 11, 15].

 Given the myriad of specialized software developed to address single concepts or

problems, it becomes essential for educational components to be developed modularly for

educational games and simulations to continually advance. If a new component is

developed based on the current architecture of a specialized application, it becomes

virtually impossible to integrate the new component with any other currently available

application. Currently, high coupling within these specialized applications prevents

component modularity among different educational applications. As such, advancements

2

in development, while valuable to the application in which it is focused, are virtually

obsolete elsewhere.

 While there is currently limited potential of interfacing these specialized

applications due to their high coupling, components that are implemented as modular

shells independent of current applications have increased reusability. This project

develops an independent external interface to enhance needed educational components,

such as incremental advancement of problem difficulty to continually challenge students

at the appropriate level, record of student progress to enable instructors to analyze a

student’s strengths and weaknesses, and capability to tailor the computer game to an

instructor’s individual classroom specifications.

 To incorporate these necessary components within an educational game, the

application’s interface controls the interaction between the student and the game by

making the necessary calls to the game’s modular game components. These components,

in turn, make relevant calls to an underlying database, maintaining separation of

component implementation and game content. Using an associated database to contain

game questions eliminates the specialized nature of many current applications because

the database can be easily modified to address more than one concept or problem.

3

II. LITERATURE REVIEW

2.1 Educational Game Growth and Literature

 While the gaming industry has been growing at an unprecedented rate, expecting

to grow by 71 percent to $85.7 billion by 2006, the educational software sector has

dramatically lagged, representing only 6.5% of the computer and video game dollar sales.

As such, published literature on educational computer games has only begun gaining

substantial volume since 2000 [7, 13, 15, 16, 17, 18, 25].

 However, even given the substantial growth in literature, leading researchers are

divided on how useful computer and video games are. Those in favor of these games

claim they can further develop social and cognitive skills, increase in the retention of

information, and keep students engaged and motivated in learning. Those against these

games claim they can increase youthful aggression, result in social isolation, and because

of their addictive nature, cause weight and health complications [2, 4, 9, 10].

 Given the lack of consensus on the usefulness of computer and video games

within the classroom, the majority of published literature on educational software has

focused on the following four categories:

 The first category of articles contains general overviews of computer and video

games coming to the market. These articles focus on what new games have been

developed and how they meet a specific need. In most cases, because the primary

intention of the authors is to sell the given product, only a biased evaluation is presented,

giving a skewed representation of educational value contained within.

4

 The second category of articles is focused on pre- and post- testing of specific

educational software within a controlled environment. Because they resemble short-term,

limited case studies often on a single narrow topic, conclusions reached are often difficult

to reproduce and even more difficult to generalize in order to make the results beneficial

outside their narrow scope.

 The third category of research is focused on the effects of gaming on individuals.

This is the largest and most controversial area of research, examining the physiological,

cognitive and social effects of playing games on users. These articles are often co-

authored by psychologists, focusing more on the benefits or consequences of educational

games, not on the educational games themselves.

 The fourth and final category is focused on research reviews and meta-analyses.

This sector of articles is often authored by educators and aimed at critiquing the

components of educational software. Game developers are most interested in this area of

research because it provides a glimpse into user specifications for educational software.

However, deciphering key specifications is often more difficult, as educators are

primarily focused on what hinders usefulness in the classroom and not what is necessary

to make the games beneficial [15, 16, 18, 21].

2.2 Current Educational Game Types Available

 Before one can determine clear client requirements, it is critical to have an

understanding of the games currently available. Educational games can be divided into

five general categories: Drill and Practice Games, Half and Half Games, Discovery

Games, Content Games, and Non-Traditional Games. These five games range from a

5

primary focus on educational content to a primary focus on entertainment, respectively

[12, 20, 23, 24].

 Drill and Practice Games, the first type of game, place focus on continually

presenting similar problems centered on a single concept. The student practices over and

over until he or she can successfully complete a predetermined number of problems. At

such time, the student is rewarded, usually with a miniature activity game or animation.

Because students are often relentlessly drilled on the concepts within the classroom, this

type of game is typically only entertaining to, and thus effective for, elementary-age

youth. Often, these games are presented in “Jeopardy”-like atmospheres, where players

create a simple virtual character that gains points or money when he or she correctly

answers the posed question and loses points or fined a set amount of money when he or

she incorrectly answers the posed question.

 Half and Half Games are the second type of educational games. These games,

considered the foundation of edutainment, present educational content within an

entertaining game environment. Players are rewarded by increasingly more difficult

scenarios as they successfully complete the previously presented challenge. Because the

game environment is highly interwoven with the educational content presented, the scope

of the educational game is often very narrow, making the game too specific to be

valuable to a broad audience. One such example is Oregon Trail. Oregon Trail defines

survival problems for the game player as they move across the western plains. While

players are presented with some differing scenarios as they progress, these scenarios are

limited in variety to ensure completion of key educational modules.

6

 Discovery Games expand the Half and Half games by shifting the focus even

further to the entertaining aspect of the game. This is achieved by introducing an

exploration aspect to the game. Students are encouraged to seek out the solution to the

challenge presented through a less structured game environment. Given the increased

time required to complete a challenge or reach a suitable stopping point, these types of

games are often unsuited to the classroom because most students are forced to leave the

task unfinished, an undesirable state. “Where in the World is Carmen Sandiego?” is one

such Discovery Game. Students must move throughout the world in search of clues as to

where Carmen has fled to with a precious artifact. While the student has vastly more

control over his or her interactions, the game provides a myriad of clues to assist a lost

player.

 Content games expand upon the Discovery Games by shifting the focus primarily

to the entertaining environment aspect, making the educational content presented the

secondary focus. These games introduce an increased risk aspect and further exploration

aspects by reducing the structured rules of the Discovery Games. However, the reduced

structure combined with the shift in focus away from the educational content make these

games extremely difficult to use within the classroom setting because success is often

based on lucky or random discovery of key pieces of knowledge. An example of a

Content Game is the “Riddle of the Sphinx.” A player is released into the desert to

discover the ancient Egyptian world with only limited instructions. While the student can

ultimately complete the objective at hand, it is often difficult to accurately measure one’s

accomplishments due to lack of guidance.

7

 Finally, Non-Traditional Games are the fifth type of educational game. These

games have some clear educational value presented to the student, but weren’t originally

developed for educational purposes. As such, these games do not easily classify into the

four traditional game types aforementioned [20, 23, 24].

2.3 Designing an Entertaining Game

 Understanding what the five types of games are lends itself to a discussion of

what elements make a game entertaining. First, and most importantly, games must have

an interactive environment. The player’s decisions should drive the game’s responses,

making the interactive element the distinctive thread separating games from other artistic

ventures such as movies, music, or paintings. Thus, entertaining games must present

scenarios in which users choose between different options.

 Decision-making brings the next element into focus. The game must

appropriately respond to different selections made by the user. If the game doesn’t

produce different responses to alternative selections, then the game lacks true

interactivity.

 The game also needs an element of achievement, the third critical element. While

achievement can take on different meanings with different game contexts, successfully

completing progressive challenges indicates a natural advancement through the game in

actively seeking the end challenge. With elements of achievement, there also needs to be

varying degrees of failure. Not successfully completing a challenge should result in a

setback in the journey to the conclusion. However, failures should not result in

unconquerable game scenarios.

8

 The next element needed to make a game entertaining is a clearly defined

challenge. Additionally, the problem presented should be interesting and having a logical

solution that can be reached by interacting with the game. The key is finding the

appropriate problem level that is not too simplistic as to bore the user to move on to other

games and not too complex as to frustrate the user to quit entirely.

 An entertaining game must also be fully self-encapsulated, creating an

environment in which the user becomes self-absorbed within the game world. This is

often called suspension of disbelief, because the user is so engaged in the game that he or

she is unaware of one’s surroundings.

 Finally, an entertaining game should have a personal experience for the user,

meaning that while users will have similar experiences, there are specific aspects that

appeal to each individual user. This is often subdivided into what the user perceives as

fun, what the user learns from the experience, and what alternative reality the user

supplements with the actual game environment.

 These are only a few of the components important to creating an entertaining

game, but they represent the basic building blocks of the game. It is also critical to

recognize that games are created uniquely in their selected trade-offs in each of these

basic elements [4, 5, 8, 10, 11, 15].

2.4 Determining Client Requirements

Understanding the types of educational games available and the critical

components that make a game entertaining leads to the determination of what additional

requirements the clients, or school educators in this context, are seeking. To aid game

9

developers in determining the specific needs of educators, leading officials have begun

evaluating aspects that are critical for a game to have educational value within the

classroom. For example, Bringing Educational Creativity To All (BECTa) and Teachers

Evaluating Educational Multimedia (TEEM), two leading research organizations in

educational computer games, have both developed comprehensive lists of components

that are required for games to contribute value within the classroom, but are currently not

present.

 First, it is critical for the educational game to record what the student completed

during the gaming session. Educational games are valuable in the classroom if it can

both increase a student’s understanding of a concept and provide an analysis of the

student’s learning to the instructor. Current educational games on the market only record

a student’s level of mastery, often given as a percent success rate or subjective

description of mastery such as “excellent” or “good.” Because of the limited artificial

intelligence within the educational games, instructors cannot determine the underlying

concepts that a student does or does not understand based on a level of mastery.

In order to provide instructors with the needed information, the game play

interface must record what the student was able to successfully accomplish and what the

student failed to master. Because learning is a complex process that does not easily fit

into precise categories, games should not attempt to determine the underlying

misconception, but instead provide the most amount of information possible to the

instructor through a record of the student’s interactions with the game.

Secondly, educational games should be able to adapt to students with different

skill levels. In order to continually challenge a student requires a custom-tailored

10

program that reacts appropriately to his or her demonstrated skills. Advancing question

difficulty only after a student has fully demonstrated mastery of the previous challenge

level results in boredom when a student has gained mastery but has not yet completed the

current level requirements and frustration when a student cannot achieve success at the

next challenge level.

In addition to being able to adapt to students with different skills levels,

educational games should provide similar, but not identical, repeated experiences. This is

especially beneficial when all students do not interact with the game simultaneously, but

instead play sequentially. This ensures the latter students are not simply reproducing

memorized experiences relayed from the former students. Furthermore, similar but

unique gaming experiences promote classroom discussion and enable students to

comprehend the experiences of their peers without having exactly the same experience.

The fourth component required to make educational games beneficial within the

classroom is providing suitable breaking points during the game play. Using an

educational game within the classroom is often inhibited by time constraints and possible

interruptions. Providing stopping points allows the student to complete a task while not

feeling unsatisfied for having an uncompleted task. Additionally, providing completion

points can often reduce unnecessary time repeating previous accomplishments to resume

game play.

Another critical component currently lacking is appropriate management tools

provided to instructors. Educational games currently on the market lack developed

Instructor’s manuals that include pertinent information on structure content and

underlying game models. For example, game scenarios should mimic realistic

11

expectations and physical properties of the real world, furthering psychological, social,

and intellectual development in students. Providing this information allows instructors to

analyze games for their educational value as well as their appropriateness to the

instructor’s classroom.

While most educational games provide limited instructions for the instructors, the

educational game play may require elaborate written instructions to be understood by the

user. When such instructions are required, the reading comprehension level should match

the target audience age. It is essential game designers recognize that an educational game

played within the classroom setting must be capable of functioning independently of

instructor’s involvement, as instructors are often engaged with students not currently

engaged with the educational game.

Finally, educational games should foster an encouraging environment that

motivates students to continue involvement with the game, such as through satisfaction,

desire, anger, absorption, interest, excitement, enjoyment, and pride in achievement.

Educational games that do not continually engage the student’s interest are often

dismissed as futile, quickly rendering any educational value added ineffective.

While BECTa and TEEM have differing opinions as to the priority of these

components, both agree that without these components, the costs of using educational

software within the classroom will continue to outweigh the benefits. Unfortunately,

these components are often expensive to implement. Commercially, these investments

are justified by the substantial return on investment through the mass sale of the produced

game. For example, Electronic Arts, the leading producer of computer games, reported

2004 revenues at nearly three billion dollars. But educational software cannot produce

12

these high revenues. As such, producers of educational games lack the necessary

resources to produce a high quality product comparable to the currently available

entertainment computer games. This is further illustrated by examining educational

games currently on the market and what components they successfully incorporate. The

table presented below outlines twelve of the most popular educational games currently

available on the market. These games are compared to the critical components outlined

by both BECTa and TEEM. As one can see, no game currently available meets even half

of the listed requirements outlined [3, 5, 12, 13, 15, 19].

13

 Educational Game

 Key Components

Finding

Nemo:

Learning with

Nemo

JumpStart

Reading

Nancy Drew:

Curse of

Blackmoor

Manor

Charlie and

the Chocolate

Factory

Pre-Algebra

Solved!

The Charles

W. Morgan

Record of student progress

Adaptable level of challenge

Non-identically repeated experiences √

Ability to save and restart games √ √ √

Suitable stopping points throughout game

play
√ √ √

Instructor’s manual including information

on structure content and underlying game

models

√

Game scenarios mimic realistic

expectations and physical properties of the

real world

√ √ √ √

User interface and instructions that do not

require elaborate written instructions
√ √

Limited noise and distractions for non-users √ √

Player interaction that enables users to

choose what to do within limits, while still

following rules

√ √ √

Encouraging environment that motivates

students
√ √ √ √

Play environment that offers complements

to ‘real’ play
√ √

Sophisticated user interface and content to

match game players’ expectations.
√ √ √

 Figure 2-1: Evaluation of Current Educational Games

14

 Educational Game

 Key Components

The Book of

Lulu

The Number

Devil

Stationary

Studio

Clifford the

Big Red Dog:

Phonics

I Spy Fantasy Brother Bear

Record of student progress

Adaptable level of challenge

Non-identically repeated experiences

Ability to save and restart games √ √ √

Suitable stopping points throughout game

play
√ √ √

Instructor’s manual including information

on structure content and underlying game

models

√ √

Game scenarios mimic realistic

expectations and physical properties of the

real world

√ √

User interface and instructions that do not

require elaborate written instructions
√ √ √

Limited noise and distractions for non-users √ √

Player interaction that enables users to

choose what to do within limits, while still

following rules

√ √ √ √ √

Encouraging environment that motivates

students
√ √ √ √ √

Play environment that offers complements

to ‘real’ play

Sophisticated user interface and content to

match game players’ expectations.
√ √ √

 Figure 2-1 (cont): Evaluation of Current Educational Games

15

 Reviewing the currently available educational games reveals that the majority of

the critical components listed are implemented in at least a few of the games evaluated.

However, three of the critical components listed above have either been implemented in

only one currently available game or are not implemented at all. As such, to demonstrate

the benefits of the design concepts presented in this thesis, these three components were

selected for implementation in a functional, elementary level educational game developed

as a proof of concept model.

 The first component selected is the incremental advancement of problem

difficulty to continually challenge students at the appropriate level. If the educational

game only increases difficulty once the student has thoroughly demonstrated

comprehension, then the student only progresses once he or she has become bored with

the material. Additionally, if the educational game increases in difficulty as a concretely

defined transition point, then the student may quickly feel overwhelmed, frustrated, or

inadequate at the sudden inability to comprehend the new material.

 The second component selected is to record student progress to enable instructors

to analyze a student’s strengths and weaknesses. Games that offer only an overall

success rate offer no insight into actual student accomplishments and areas lacking

comprehension, both of which are required to appropriately address the student’s

education.

 Finally, the third component selected is the capability to tailor the game to an

instructor’s individual classroom specifications. Specialized software may adequately

address a given subject matter, but may not be suited to the individual instructor’s needs,

making it difficult to justify the use of the game within the classroom setting.

16

III. DESIGNING EDUCATIONAL SOFTWARE

3.1 Examining the Underlying Problem

Game developers have long believed that the limited revenues in educational

games have made it virtually impossible to develop a game capable of meeting all of the

specifications needed to make it beneficial to the classroom. However, using today’s

software engineering concepts, the current educational game architecture can be modified

to make implementation of every key component possible within reasonable budgetary

constraints.

Perhaps the most inhibiting factor in educational games today is the lack of sound

software architecture. Once the software manufacturer has formulated an idea for an

educational game within an entertaining environment, focus is directed to quick

implementation in order to have minimal time to market. Such hastily implemented

programs do not give due consideration to software design issues. The result is often a

highly coupled, minimally cohesive software application. Highly coupled applications

are characterized by high dependency between the application subsystems. Thus,

modifications to one subsystem will affect all other application subsystems that interact

with the modified version [6, 11, 14].

Minimally cohesive applications are characterized by the lack of similarity

between objects and activities within a given subsystem. In other words, it appears as if

the subsystem was created by combining objects and activities based on an obscure,

unknown, or non-existent set of criteria. Thus, when modifications are made to one

17

object or activity within the subsystem, it is often difficult to distinguish if there are any

additional modifications required as a result.

A sound software application will have architecture based on low coupling and

high cohesion. In other words, the application should be divided into primarily

independent subsystems based on a defined set of criteria that clearly indicates how the

objects and actions of the subsystem are related. While this statement seems rather

intuitive, it can have vast implications for game development.

First, low coupling and high cohesion dramatically increase the maintainability of

the game source code. Since each separate component is contained within an

independent subsystem, modifications to one application component can be easily

isolated and completed within a minimal time frame without affecting the remaining

application components. Additionally, component functionality can be verified for its

accuracy independent of the application being developed.

Because consumer needs are continuously changing, maintainability enables to

the code to be modified with relative ease to meet these ever changing needs. Thus,

software applications with increased maintainability also have a higher tendency of

survivability. Survivability implies that the application is flexible enough that it can

continually meet the needs of the consumer over an extended period of time.

Low coupling and high cohesion also dramatically increase the reusability of

application components. Because the application components are contained within an

independent subsystem, multiple applications can effortlessly incorporate established

components by including the subsystem within the project. Such reusability enables a

reduction in the amount of implementation required when developing new applications.

18

Similar to reusability, portability enables the application to be used on several

different platforms. Because the application’s functionality is loosely coupled with the

application’s interface, developers can implement one functional set of components with

multiple platform-dependent interfaces. Therefore, a single application can now meet a

broader audience.

 High coupling and low cohesion, as pertaining to educational game design

architecture, is most evident in the application’s functionality extensively interwoven

within the application’s interface. Such poorly designed architecture restricts the

application’s functionality to the single game being developed, as components cannot be

easily isolated for reusability. Additionally, such restriction prevents the educational

game from being updated, expanded, or easily maintained, making the game virtually

obsolete from its introduction [6, 22].

3.2 Developing a Sound Educational Game Architecture

 Educational games can avoid such obsolescence by reevaluating the game’s

architecture. At the highest level, the educational game’s functionality needs to be

implemented independent of the game’s interface. This enables a single game

functionality to be contained with various types of educational game environments. For

example, a mathematics – based game can be presented as both a Drill and Practice Game

as well as a Content Game by modifying only the game’s interface. Conversely, a single

game interface, such as that of a Half and Half Game, can be used to present a

mathematics game, a science game, and a reading comprehension game by modifying

only the focus of the educational content outside of the game’s interface.

19

 Once the educational game is subdivided into functionality and interface

subsystems, these subsystems need to be modularized into subclasses based on the

component’s cohesion. For example, the interface subsystem should be partitioned into

each of the modules presented to the user. Thus, the interface subsystem should have a

separate subclass containing the implementation of the welcome screen all users interact

with when initializing the game. A second, separate subclass should be used to

implement the module for establishing a new user account. Likewise, any additional,

independent module presented to the user should be implemented within its own subclass

of the interface subsystem.

 Analogous to the interface subsystem, the functionality subsystem also must be

partitioned based on each of the components implemented for the game. For example,

the functionality subsystem should be subdivided into separate subclasses for the

educational content presented, the game play semantics, the scoring mechanisms, and

user movement between the different challenge levels. Because each of these subclasses

is still rather large, implementing a variety of independent behaviors, these subclasses

should be further modularized until each module contains only one distinct, independent

object and its behaviors.

 Designing an architecture that is modularized in this manner induces a low

coupling and high cohesion application capable of meeting the specifications outlined for

not only the current game being developed, but expansions and future games that can

benefit from implementation already completed.

20

IV. IMPLEMENTATION OF AN EDUCATIONAL GAME

4.1 An Overview of the System Design

 The educational game is divided into three key subsections, each addressing a

separate function of the game. First, the user interfaces control all of the interactions

between the users and the program. Next, the game play contains the presentation of the

game content and the scoring of student progress within the presented game environment.

Finally, the database subsection contains the specific, interchangeable information related

to the game. This type of design enables each component to be developed virtually

independent of the remaining subsections of the game, then be pulled together seamlessly

with minimal interdependencies.

 In addition to the three key subsections of the game listed above, the educational

game also includes a separate, fourth package that implements the ability to write to an

external file. Because such functionality is a separate, additional ability of the game, it is

developed in its own independent package within the game project. This maintains

modular code design with low coupling and high cohesion. A discussion of each of the

three subsections follows in the proceeding chapters.

4.2 Game Play Development

 The game play portion of the educational game is focused on the presentation of

the game content and the scoring of student progress within the presented game

environment. Recognizing that this needs to be developed independent of the material

being presented, the package focuses on retrieving the appropriate information from an

21

outside subsection – the database – and loading the information into the game.

Additionally, the game play portion retrieves from the game the appropriate information

regarding the student’s interaction and then sends the information to the database section

to appropriately record the information. Thus, as simplistic as these may seem, it serves

to meet to of the outlined specifications of the educational game.

4.3 Game Content and Scoring

 First, the game play portion controls the retrieving of the appropriate content for

the student’s level. Thus, as a student continues to interact with the game, the game play

package must continually adapt the level of challenge to meet the student’s demonstrated

skills. While there is conflicting educational documentation as to how best to set up

instructional design, most educational references believe that as a student consistently

shows understanding of a given subject’s difficulty level, questions of higher difficulty

should be gradually introduced into the game play. Continued subject mastery through

gradually increasing levels of difficulty ensures a thorough and complete comprehension

of subject material. Conversely, the game must also be able to adapt if a student cannot

demonstrate skills compatible with the questions being presented. If a student

continually struggles with a subject’s difficulty, questions of lower difficulty should be

reintroduced to the student.

 In order to continually challenge a student at his or her level requires a custom-

tailored program that reacts appropriately to a student’s demonstrated skills. Advancing

question difficulty only after a student has fully demonstrated mastery of the previous

challenge level results in boredom when a student has gained mastery, but has not yet

22

completed the current level requirements, and frustration when a student cannot achieve

success at the next challenge level. To dissolve these defined challenge levels, the

developed game works to seamlessly blend challenge levels to meet the student’s skills

by increasingly challenging the student with higher difficulty questions while maintaining

a level of success by integrating questions from one challenge level less than the

student’s current level. Determining the appropriate blend of these questions requires a

more complex approach than the traditional method to ascertain the student’s skill level.

 The student’s current challenge level is subdivided into a three-tier hierarchy.

First, the student has a given subject in which he or she is attempting. For demonstration

purposes, the developed game tests basic addition, subtraction, multiplication, and

division at the elementary level.

 Within each subject, there are different difficulty levels representing the

complexity of questions within the category. To accommodate for expansion, the

difficulty level begins at level 1 and increases, providing an unlimited number of levels

that can be contained within a given subject category.

 Finally, within each difficulty level are a series of point levels that indicate the

student’s current mastery of the subject at the given difficulty level. The student’s score

indicates in which of the four points levels a student resides. These levels determine the

blend of question difficulty levels presented to the student. For example, if the student

has a score of 3.25 points, 25% of the questions presented will be from the previous

difficulty level and 75% of the questions presented will be from the current difficulty

level. When a student has earned 15 points, the questions from the student’s current level

are no longer supplemented with questions from the previous difficulty level, but instead

23

with questions from the next difficulty level. Finally, when a student has earned 25

points, his or her difficulty level is increased to the next level and his or her points are

reset to -5 points. Conversely, if a student does not demonstrate an understanding of the

material and gradually decreases his or her score to -5 points, then the difficulty level is

reduced to the previous level and the student’s points are reset to 24.5. A summary of the

four points level is given in the Figure 4-1. While the points distributions are

prepackaged within the educational game developed, they can be modified to

accommodate the differing needs of instructors.

Points Levels

Percentage of

Questions from

Previous Level

Percentage of

Questions from

Current Level

Percentage of

Questions from

Next Level

-5 to 0

40% 60% 0%

0 to 7

25% 75% 0%

7 to 15

15% 85% 0%

15 to 25

0% 80% 20%

Figure 4-1: Question Bank Breakdown Based on the Student’s Points Earned

 In order to verify that the appropriate percentage of questions from each difficulty

level is being presented based on the student’s current points level, questions are selected

from a separate question bank subset representing the student’s current level. The subset

is created in two stages. First, all questions from the student’s current subject and

difficulty level are added to the question bank subset. Then, a count of the total number

24

of questions pulled paired with the student’s points level indicates how many questions

should be pulled from either the previous challenge level or the next challenge level, as

indicated by the student’s points. For example, if 100 total questions were at the

student’s current subject and difficulty level, and the student currently has a score of 8

points, then 15% of the questions would be from the previous challenge level.

Multiplying the total number of questions pulled form the student’s current level by the

percentage needed indicates the number of questions needed from the previous difficulty

level. A random sampling based on the current time stamp is used to pull the required

number of questions from the previous difficulty level. These randomly selected

questions are then added to the question bank subset.

 Once the question bank subset has been created, the game play content class will

then randomly select questions from the question bank subset. As the student gains or

losses points based on game play, moving between the different points levels, the

question bank subset is reconfigured for the new challenge level.

 While this method does not guarantee that the student will always receive the

exact percentage of questions based on his or her current points level, it does seamlessly

integrate questions from different levels while maintaining a non-identically repeated

experience for each student. In fact, given the randomization used to select the questions

included in the question bank subset and the randomization used to select the questions

presented during game play, students who repeat a challenge level will not have the same

experience as the last game play.

 As implied in the game content section, the points earned by the student are an

integral part of the game content. The points range from -5 to 24.5 points, subdivided

25

into four distinct levels. When a student enters a new challenge level, he or she begins

with -5 points. If the student answers the question presented correctly on the first try, 0.5

is added to his or her score. If the student incorrectly answers the question presented on

the first try, but answers the question presented correctly on the second try, 0.125 is

added to his or her score. Finally, if the student incorrectly answers the questions

presented on both attempts, 0.25 is subtracted from his or her score.

26

V. USER INTEFACES

 When designed effectively, user interfaces provide a visual representation of a

software program’s processes and capabilities in an intuitive, easy to follow layout,

without revealing the complex implementation required to complete such tasks. Thus, a

usability engineer must carefully consider what visual aspects enhance comprehension

and productivity so that a user can move seamlessly through the application to reach a

desirable end state without being inhibited by the application’s complex implementation.

The focus of this chapter is to examine and understand the user interfaces designed for

the functional educational game developed.

5.1 User Interfaces Overview

 Within the functional educational game developed, there are two different

perspectives that can be invoked, each represented by its own set of user interfaces. The

game initially opens to the Welcome Interface, which enables the respective interfaces

based on the interactions with the user. If the user is determined to be a student, they can

enter the game play portion of the game by entering his or her unique Student ID and

clicking the Start Program button. Alternatively, the student can establish a new student

account by clicking the New Account Setup button. This opens a new interface to get the

necessary information from the user, then moves to the game play portion of the game.

 The Welcome Interface also holds the ability to enable the instructor’s

perspective. By clicking on the small i button located in the lower left hand corner, the

user is prompted with the Instructor’s Sign On Interface. After entering the correct

27

credentials, the instructor is moved to the Instructor’s Interface. The Instructor’s

Interface contains all of the administrative abilities available, which each open either a

corresponding interface or application. These interfaces are discussed individually in the

following sections. Figure 5-1 and Figure 5-2 show the user interface flow of the

educational game for the student perspective and the instructor perspective, respectively.

Figure 5-1: User Interface Interactions for the Student Perspective

28

 Figure 5-2: User Interfaces Interactions for the Instructor Perspective

29

5.2 Welcome Interface

 When the educational game is instantiated, the user is presented with the

Welcome Interface. The primary purpose of the Welcome Interface is to establish the

user perspective and enable the corresponding game features associated with the given

perspective. Since the most common perspective is the returning student, the user is

presented with the student sign-on. To sign into the game, the returning student enters

his or her unique student id, then selects to the start the program by clicking the Start

Program button.

 Recognizing that a student may not be a returning student, the welcome interface

also includes the option to set up a new account. Because establishing a new account is a

one-time process for a given user, the process is segregated into an external form. New

students can access the form by clicking the New Account Setup button that will prompt

the student to create an account.

 In addition to the student perspective, instructors also utilize the game to perform

a variety of administrative tasks. In order to avoid interfering with the student game

play, the Instructor’s Interface is accessible by clicking the small i button in the lower

left-hand corner. While not the most intuitive option available, current software

applications often minimize the intrusiveness of administrative functions by hiding the

functionality behind a small, dismissible button. Instructions for gaining administrative

access are discussed in the User Manual associated with a given game. Upon clicking the

i button to enable administrative aspect, a new visual interface is provided in order to

maintain ease of use for the instructors as well.

30

 Figure 5-3: Welcome Interface

 In addition to establishing the user’s perspective, the Welcome Interface

establishes a clean starting and ending points for the game environment. Once a user has

completed their desired objectives, regardless of his or her perspective, the user can click

on the Exit button to terminate the game. By ensuring that all users must terminate the

game in the same manner ensures all remaining aspects can be terminated appropriately.

For example, the educational game developed maintains a continual connection with an

external database. Forcing the user to terminate the program with the Exit button verifies

that the database connection will be closed appropriately.

 Finally, it is important to note that the Welcome Interface also includes visual

aesthetics that provide clarity for use. For example, instructions are given to inform the

student, regardless if he or she is returning or new, as to how to sign on to the game.

While this seems to be only a minor aspect, visual aesthetics can be the deciding factor to

the ease of use of a software application.

31

5.3 New Student Account Setup

 From the Welcome Interface, a new student can select the New Account Setup

button to create a new student account. Selecting to open a new student account will

instantiate the New Student Setup form. The New Student Setup form contains three

input fields and two buttons. Each of the fields prompts the student to enter in a required

piece of information. The first field is the Student ID, a unique identifier in which the

student will use to sign on to the game. The second and third fields are the first and last

name of the student, respectively. These enable the Student ID, which can be any unique

combination of letters, numbers, and symbols, to be identified with a particular student by

an instructor.

 The two buttons included on the New Student Account Setup represent the two

distinct actions in which the student can take. The first option is the ability to cancel the

new account setup. Selecting this option clears the New Student Account Setup form and

returns the user to the Welcome Interface. The second option establishes the new student

account. In establishing a new student account, the program verifies all fields are

completed, the Student ID is a unique identifier, and then starts the program game play.

32

 Figure 5-4: New Student Account Setup

5.4 Gaming Interface

 Regardless as to whether the student instantiates the game play through the Start

Program button from the Welcome Interface or the New Student Account Setup form, the

Game Play Interface is opened. Because the game developed is intended to demonstrate

functionality, it is designed as a Drill and Practice Game, meaning students are

continually presented with a series of questions until they can demonstrate mastery. As

such, the game play environment consists of only four components: the question

presented, the list of possible solutions, the submit button, and the logout button.

 When the game is in the play, the question label is replaced with the question

content presented to the user. The student is also provided with four possible solutions

in which he or she can choose by selecting the corresponding radio button. Once the

student has made his or her selection, the student can finalize the answer by clicking the

submit button. If the student has selected the correct answer, then he or she is presented

33

with a new question. If the student has selected an incorrect answer, then he or she is

given a second opportunity to select the correct response. After two attempts, a new

question is presented to the student.

 Figure 5-5: Gaming Interface

 The fourth component of the game play interface is the ability to logout of the

game. Clicking the logout button will return the student to the Welcome Interface, where

he or she can exit the game entirely or a new user can being game play.

5.5 Instructor Sign On

 The remaining user interfaces associated with the educational game are associated

with the instructor’s perspective. As discussed previously, the Instructor’s Interface is

accessible by clicking the small i button in the lower left-hand corner of the Welcome

34

Interface. Upon clicking the i button, the Instructor Sign On form is launched in order to

verify the user’s accessibility. An instructor will enter his or her Instructor ID and

Password into their respective fields. Once completed correctly, the instructor can click

the Submit button to open the Instructor’s Interface. In the event the user is not a valid

instructor, the user can click the Cancel button to return back to the game’s Welcome

Interface.

 Figure 5-6: Instructor Sign On

5.6 Instructor’s Interface

 If the instructor has entered the correct credentials in the Instructor Sign On form,

then the Instructor’s Interface is opened. The Instructor’s Interface contains the four

administrative tasks in which an instructor can perform: review student progress, setup a

new instructor, remove a current instructor, and modify the database associated with the

game. Additionally, the Instructor’s Interface contains a Logout button to exit out of

administrative capabilities and return the game back to the Welcome Interface.

35

 Figure 5-7: Instructor’s Interface

 Each of the four administrative tasks is distinguished by a button contained within

the Instructor’s Interface. Three of the four tasks instantiate an additional interface to

obtain the additional information required, while the fourth directly performs the

associated option. The first option, the Student Progress button, opens a separate interface

in which the instructor selects from a list of current students which he or she wishes to

review the progress of. Similarly, the Instructor Removal button opens a separate

interface in which the instructor selects from a list of current instructors which he or she

wishes to remove. The third option, the Instructor Setup option, opens a separate form in

which the credentials of the new Instructor are entered. Finally, the Database

Modification option directly opens the game’s corresponding database for editing,

without requiring additional information from the instructor.

 Using an independent interface for the instructor enables the educational game to

be expanded for remote instructor access. By modifying the directory of the external

game content to point to a centralized server rather than to the local terminal will allow

36

instructors to be capable of accessing the administrative features remotely. Given the

diversity of technology among educational institutions, this is an important game design

attribute that enables the educational game to be adapted to the respected level.

5.7 Student Selection

 The first administrative task, as described above, is the progress review of

selected students. Choosing this option from the Instructor’s Interface will open the

Student Selection form containing a scrollable, alphabetical list of students who currently

have a game account. An instructor then selects the student(s) in which he or she wishes

to review and then clicks the List Student Records button.

 Figure 5-8: Student Selection

 Once the instructor has selected to list the student records, the game pulls the

appropriate records for each student selected, exports the results to a tab delimited text

file, and returns the instructor back to the Instructor’s Interface.

37

5.8 Add Instructors

 The second administrative task capable through the Instructor’s Interface is the

ability to add additional instructors to the game. Selecting the Instructor Setup button

opens a corresponding form prompting the administrator to enter a unique instructor id,

the first and last name, and an associated password. Once the credentials are complete,

the administrator then presses the Submit button to finalize the setup, and is returned to

the Instructor’s Interface. In the event the administrator chooses not to create the

account, he or she can click the Cancel button to be returned to the Instructor’s Interface.

 Figure 5-9: New Instructor Setup

5.9 Remove Instructors

 Just as an instructor has the ability to add additional instructors to the game, the

instructor can also remove instructors from the game by selecting the Instructor Removal

button on the Instructor’s Interface. Choosing this option from the Instructor’s Interface

will open the Instructor Removal form containing a scrollable, alphabetical list of current

38

instructors. An instructor then selects the instructor(s) in which he or she wishes to

remove and then clicks the Submit button to finalize the request. Once the instructor has

submitted the request, he or she is returned to the Instructor’s Interface. Again, a Cancel

button is provided in the lower left-hand corner enabling the instructor to cancel the

request prior to submission.

 Figure 5-10: Instructor Removal

5.10 Database Modification

 The Database Modification option, the fourth and final administrative task,

directly opens the game’s corresponding database for editing. Because the application

can complete this task without requiring additional information from the instructor, no

interface is necessary. The instructor remains at the Instructor’s Interface.

39

5.11 Additional Considerations

 It is important to note that the primary objective of the user interfaces is to

demonstrate the necessary components and their functionality. It is not the intention of

this thesis to portray the additional graphs that command the computer games currently

on the market. These aesthetics are left as a future enhancement to the game. It is the

intention of this thesis to demonstrate what aspects need to be included to address the

sound software engineering architecture within a functional, elementary level educational

game.

40

VI. DATABASE DESIGN

6.1 Overview of Database Design

 The database design developed for the educational game created is simplistic in

nature, but fully accomplishes the functionality necessary to meet the game

specifications. It consists of four distinct tables, each representing a critical functionality

developed within the gaming program. The Student Information Table contains records

for each student game player. The Question Table contains the corresponding questions

associated with the game. The Game Play Results Table contains each interaction

between the users and the game. Finally, the Instructors Table contains a list of all the

corresponding Instructors with administrative access to the game. These tables are

discussed individually in the following sections.

 Figure 6-1: Database Tables

41

 It is important to note that the database is compliant with Access 2000 File

Format Specifications. While this is not the latest software file format for the database

design, it offers a greater compatibility with more educational institutions software.

Recognizing that educational institutions are faced with limited resources to purchase the

most updated software applications, the database was created in an older file format so

that institutions who have not upgraded, regardless of the reasons why, are still capable of

benefiting from the educational game. Additionally, the updated Access 2003 File

Format is backwards compatible, meaning databases designed for previous Access File

Formats can still be read by the updated file format, ensuring that the educational game is

not restricted to a limited target audience based on software compliance.

6.2 Student Information Table

 The first table contained within the associated database is the Student Information

Table. The Student Information Table contains a record for each student who has created

a student account for the game. It contains six columns corresponding to the UserName,

Last Name, First Name, Subject, Difficulty, and Points Earned. The UserName is the

unique identifier in which the student uses to log into the game. The First and Last Name

are used to identify each of the unique UserNames to the corresponding student. The

Subject is a numerical value representing the corresponding questions in the Question

Table, and the Difficulty is a numerical value representing a difficulty level of questions

contained within each of the subjects. Finally, the Points represent the points currently

earned by the student during game play.

42

Figure 6-2: Student Information Table

6.3 Questions Table

 Also contained within the database is the Questions Table. The Questions Table

contains a list of all possible questions that can be asked during game play. Similar to

each of the student records, each question has a corresponding unique Question ID. In

addition to the unique Question ID, the record also contains the question being presented,

the correct solution to the problem, four possible choices the user can select from, and the

identifying subject and difficulty of the question.

Figure 6-3: Questions Table

43

6.4 Game Play Results Table

 The third table contained within the database is the Game Play Results Table.

This table records the interactions of the student with the game. A unique, auto-

generated number is assigned as the Record ID to uniquely identify each interaction with

the game. The second column included in the table is the unique Question ID associated

with the question being presented to the user. The UserName column indicates which

student was presented with the question. Two columns are presented to record which

answer the user selected for the first and second attempts respectively. Finally, a Validity

column is included as an indicator of how well the student answered the question. If the

student is able to correctly answer the question on the first attempt, the Validity column is

assigned a value of one; if the student is able to correctly answer the question on the

second attempt, the Validity column is assigned a value of half; finally, if the student was

unable to correctly answer the question on either two of the attempts, the Validity column

is assigned a value of zero.

Figure 6-4: Game Play Results Table

44

6.5 Instructors

 The last table included in the database is the Instructors Table. The Instructors

Table includes a list of all of the instructors who have administrative access to the

program. It includes the uniquely identifying UserName, the Instructor’s corresponding

First and Last Name, and the Access Code associated with the UserName to gain

administrative access within the program.

 Figure 6-5: Instructor’s Table

6.6 Interdependencies

 The four tables included in the database are subdivided into two distinct groups of

relations, as outlined in Figure 6-5. First, and the simplest, is the instructor’s relation.

The Instructor’s Table is isolated from the remainder of the database. It is self-contained,

meaning it does not interact with any other table contained within the database. This

design fits the intended purpose of the table: to provide a list of instructors granted

administrative access to the program.

 The second relation contained within the database contains the remaining three

tables representing the game play and scoring functionalities of the database. Rather than

45

duplicate information contained within the Questions Table and the Student Information

Table, two critical relationships are defined between these two tables and the Game Play

Results Table to link corresponding fields in each of the tables. First, rather than

duplicating the question and its corresponding solution, possible choices, subject, and

difficulty, only the unique Question ID is contained within the Game Play Results Table

in order to reference the information already contained within the Questions Table.

Similarly, the second relationship exists in order to reduce duplication from the Student

Information Table. Rather than duplicating the information for a particular student,

information that is continually changing, only the unique Student ID is contained within

the Game Play results table.

Figure 6-6: Table Relationships

46

VII. GAMING ARCHITECTURE

7.1 Gaming Architecture

 Understanding the purpose of each component discussed thus far gives only a

partial understanding of the game’s architecture. It is important to understand how these

components are designed as well as how they interact in order to comprehend how the

game’s design meets the specified requirements. In other words, the software

architecture defines the structure of the source code that defines the program [1, 6, 22].

 Within the developed educational game, there are four packages – database,

file_access, game_play, and gui_Interface – each of which independently develops a

component or requirement of the game. After reviewing each of these packages

separately, an analysis of their interactions is discussed.

7.2 Database Package Architecture

 The database package is responsible for establishing the connection to the

external database, controlling all information retrieved from and passed to the external

database, and closing the connection upon termination of the game. The package consists

of four key classes. First, the DBConnection class is responsible for the connection and

disconnection to the database. It is the only object class contained within the package.

Upon entering the game, an instance of DBConnection is created. DBConnection verifies

the correct system drivers are present and opens the connection to the database. When

the user has completed their gaming interaction, DBConnection closes the termination to

the database, and is then terminated.

47

 DBAction is the second class contained with the database package. DBAction

controls all of the information retrieved from and passed to the database, defining all of

the possible interactions that can occur between the game itself and the external database.

Because DBAction controls the interactions but is not an object itself, it is a static class,

implying that an object of its type is never instantiated; only its class methods are called

to complete the necessary database interaction.

 In addition to DBConnection and DBAction, there are two support classes

included within the package. First, SQLStatements is provided to correctly generate and

format all sequel statements required by the DBAction class. This ensures

standardization and compatibility across all statements. Removing the sequel statement

constructs from the program enables ease of maintainability, as any necessary changes to

the construct can be made from a single location without redundantly replicating the

change throughout the DBAction class.

 The second support class contained within the database package is the

DBConstants class. In order to isolate the database architecture from the game, all

database tables and constants are represented in a separate, static class. Thus, should

there be dramatic changes to the database, only the table nomenclature would need to be

modified from within the constants class, as all DBActions pull the constants from the

constants class. Given such a purpose, it is important to note that the DBConstants class

implements no methods, as the values contained are considered final, meaning they will

not change during the course of game play.

48

Figure 7-1: Database Package Architecture

7.3 File_Access Package Architecture

 The file_access package is responsible for exporting any information to an

external file. Within the developed game, this class is used to export the student records

to an external Microsoft Excel file so that instructors can retain the information outside of

49

the game environment. Given only this single purpose, the file_access package consists

of one functional class and one support class. File_Writer, the functional class contained

within the package, creates the external file based on the tab delimited resultset passed to

the method. The class then opens the corresponding application and file for the user.

Similar to the DBAction class, the File_Writer class is a static class; it controls the

interactions necessary to write to an external file, but is not an object itself.

 The second class contained within the file_access package is the File_Constants

support class. In order to isolate the operating system architecture and export file from

the game, these constants are included in a separate, static class. Thus, changes required

based on the given operating system can be made from a single location. Again, given

such a purpose, it is important to note that the File_Constants class implements no

methods, as the values contained are considered final.

 Figure 7-2: File_Access Package Architecture

50

7.4 Game_Play Package Architecture

 The game_play package controls two primary functions of the game – correctly

scoring the student responses to the game and loading the content of the game

accordingly. As such, the game_play package consists of only two classes. First, the

Game_Content class is responsible for the loading the appropriate questions and

corresponding solution choices based on the current game level of the student. Once

loaded, the Game_Content object waits for a student response, and then responds

according to their progress.

 The second class contained within the game_play package is the Game_Scoring

class. The Game_Scoring class controls how the student is scored based on his or her

given responses to the game. If the student is demonstrating comprehension, the

Game_Scoring class informs the Game_Content class to provide more challenging

questions. Conversely, if the student is lacking comprehension of the subject, then the

Game_Scoring class informs the Game_Content class to provide less challenging

questions. Further elaboration as to how the game responds to student interactions is

discussed in Section 4.3 Game Content and Scoring.

 Understanding that these two classes are highly cohesive within the game_play

package indicates an increased level of aggregation. When the Game_Content class is

instantiated, the Game_Scoring class will automatically be instantiated. This is an

important element of the game_play package architecture, as neither of the classes can

functionally exist without the other.

51

Figure 7-3: Game_Play Package Architecture

 Because of the complex interweaving of the Game_Content and Game_Scoring

classes, sequence diagrams are key to understanding the architecture between these two

classes. There are two key scenarios that can exist between the two classes. First, the

student has completed the previous question – regardless if completed correctly on the

52

first attempt, second attempt, or incorrectly responded on both attempts – and the game

content needs to load a new question. To do this, the Gaming_Interface calls the

Game_Content class to establish the corresponding game response to update the

educational content presented. The game response method recognizes that a new

question is required, and as such, updates the corresponding question bank if necessary,

determines and records the student’s progress, loads a new question accordingly, and

waits for a new response from the user.

53

Actor1
Game_Content

Actor2
Game_ScoringInterface Database

gameResponse()

UpdateQuestionBank()

studentProgress()

updateStudentRecord()

loadQuestionBank()

getStudentValues()

getCorrespondingQuestions()

reportStudentScores()

recordStudentScores()

loadQuestion()

loadSolutionChoices

EduContentFeedback

 Figure 7-4: Sequence Diagram for Establishing New Game Content

 The second key scenario is when the student has incorrectly responded to the

game content on the first attempt. This scenario is different from the previous three

because the game is to provide the student with the opportunity to attempt the question

54

again. This scenario is similar to the first scenario, with a few critical adjustments. First,

as with the first scenario, the Gaming_Interface calls the Game_Content class to establish

the corresponding game response to update the educational content presented. The game

response method recognizes that the student has incorrectly attempted the question once

and needs to be provided with a second opportunity. As such, the Game_Content class

checks to see if the questions need to be lowered in difficulty, determines and records the

student’s progress, and returns control back to the Gaming_Interface to wait for the user’s

second attempt to the question.

 Figure 7-5: Sequence Diagram for Student’s Second Attempt at the Question

55

7.5 Gui_Interface Package Architecture

 The fourth and final package of the developed architecture is the gui_Interface

package. The gui_Interface package controls all of the game’s interfaces that control the

interactions between the students. Each of the user interfaces contained within the

gui_Interface package are discussed at length in Chapter 5.

 It is important to understand that the gui_Interface package, which represents the

user interfaces interactions, are architecturally designed to represent the game’s flow.

Thus, the game initially opens to the Welcome_Interface, which enables the respective

interfaces based on the interactions with the user. If the user is determined to be a

student, they can enter the game play portion of the game by entering his or her unique

Student ID and clicking the Start Program button. Alternatively, the student can establish

a new student account by clicking the New Account Setup button. This opens a new

interface to get the necessary information from the user, then moves to the game play

portion of the game.

 The Welcome Interface also holds the ability to enable the instructor’s

perspective. By clicking on the small i button located in the lower left hand corner, the

user is prompted with the Instructor’s Sign On Interface. After entering the correct

credentials, the instructor is moved to the Instructor’s Interface. The Instructor’s

Interface contains all of the administrative abilities available to the instructor, including

adding and removing additional instructors, reviewing student progress, and modifying

the database associated with the game. Each of these game elements are invoked by

either instantiating a corresponding interface or launching the corresponding application.

56

Figure 7-6: Gui_Interface Package Architecture

57

7.6 Game Architecture

 Understanding how each of the packages is architecturally designed lends itself to

a discussion of the game architecture as a whole. When the game is instantiated, the

Welcome_Interface calls upon the DBConnection class within the database package to

establish a database connection, then waits for the user response. Depending on the user

response, the Welcome_Interface launches the Gaming_Interface, the

New_Student_Setup Interface, or the Instructor_Sign_On Interface. Each of these

interfaces then corresponds to the interactions with the user by calling the appropriate

methods from the DBAction class within the database package.

 Once the student has entered the game play portion of the game, the

Gaming_Interface corresponds with only the Game_Content class with the game_play

package to control the appropriate response. The Game_Content class then becomes

responsible to controlling the game scoring and corresponding content loaded by calling

upon the Game_Scoring class and the DBAction class, respectively.

 Alternatively, the instructor can instantiate the Instructor_Interface by verifying

his or her credentials through the Instructor_Sign_On Interface. Once the instructor has

entered the Instructor Interface, he or she can instantiate one of the administrative tasks

by clicking on the corresponding button within the Instructor_Interface. Each of these

subordinate interfaces then responds to the instructor’s request by making the appropriate

calls to the DBAction class.

 Notice how closely the overall architecture of the game corresponds so closely to

the gui_Interface package. This is to be expected, as the game responses are controlled

through the user interactions within the corresponding interfaces.

58

DBConnection

Database

SQLStatement

DBAction

DBConstants

File_Constants

File_Writer

File_Access

Game_Content

Game_Play

Game_Scoring

Gaming_Interface

New_Student_Setup

Student Selection

Instructor Interface

Instructor_Sign_On

Welcome_Interface

GUI_Interface

New_Instructor_Setup

Instructor Removal

1

1
1

1

1 1
1
1

1

0..1

0..1

0..1

0..1

0..1

0..1 0..1

0..1
1

1

1

1

1
1

1

Educational Game Content
Defined by the Instructor

 Figure 7-7: Game Architecture

59

7.7 Limitations

 In addition to understanding the benefits achieved through the redesign of the

educational game architecture, it is imperative that one understand the limitations of such

a design relative to the different types of educational games available. As discussed in

Chapter II, educational games can be divided into five general categories: Drill and

Practice Games, Half and Half Games, Discovery Games, Content Games, and Non-

Traditional Games.

 Drill and Practice Games, the first type of game, place focus on continually

presenting similar problems centered on a single concept. The student practices over and

over until he or she can successfully demonstrate comprehension of the subject matter.

This type of game lends itself to the modular architecture presented within the developed

educational game because students are continually presented with a series of questions

until mastery is demonstrated. Limited entertaining features and simplistic game

environment make it ideal to separate content from game play. Such design enables

designers to simply substitute different educational content into the game environment to

meet the differing needs of instructors.

 Half and Half Games are the second type of educational games. These games

present educational content within an entertaining game environment. Though the

complexity of the content has become more coupled with the game environment, this

type of game still lends itself to the modular architecture presented. Currently, the

content presented within the game is stored within an external database. The educational

content contained within the Half and Half Game would need to be further sectored into

two subsections. First, the game content would need to contain different entertaining

60

scenarios in which could be used to establish the game environment. Separately, the

actual educational content presented should be contained within another subsection.

Thus, when the game is presented, the game engine selects a game environment, then

populates it with the scenario content. Thus, even though the game has increased in

complexity, one is capable of substituting different content scenarios without redesigning

a new game.

 The remaining three types of games, however, are far more difficult to develop

based on the modular architecture presented. Discovery Games expand the Half and Half

Games by shifting focus to the exploration aspect of the game. Thus, this type of game is

centered around the development of a virtual world in which the user interacts. While

some features and components can be easily reused among different games, it is virtually

impossible to separate the content presented from the game environment. Thus, the focus

is moved away from separating the content from the environment to separating the

general game environment from the additional game components required.

 Content Games, the fourth type of educational game, are also impaired by the

complex coupling between the game environment and game content. This impairment is

only further complicated by the increased emphasis on the entertaining environment

aspect over the educational content presented. So, while the concept of a modular

architecture can be applied to the game, it adds a level of complexity that often hinders

the overall purpose of the game.

 Finally, Non-Traditional Games represent the fifth type of educational game.

Because these games were not originally developed for educational purpose, but have

inadvertently presented some clear educational value, they often do not meet the

61

architectural design of any educational game. These games are considered an anomaly in

the educational game field and as such, are often accepted at face value.

7.8 Choosing the Implementation Language

 In addition to designing an educational game with an architecture based on sound

software engineering principles, it is also important that the game be developed in a

language conducive to effectively communicating between necessary components for

current and future educational games. However, there is currently no common

implementation language used among developers, making the choice of implementation

language worth further consideration.

 The majority of current game development is with the C and C++ programming

languages. However, both C and C++ have disadvantages that hinder game development.

For example, C is considered the most efficient game development language, but is often

too simplistic for complex games. C++, one of the most popular game development

languages, has supporting components for virtually every aspect of game development,

but has many of the lower level bugs with memory allocation and bounds checking from

its inception from the C language.

Because of the limitations of C and C++, other languages are quickly entering the

industry, each with its own advantages and disadvantages. For example, C++.Net

incorporates many of the libraries and engines that eliminate memory allocation and

bounds checking errors, but lacks the speed that can be achieved through the use of

unmanaged languages. C#, a clean high productivity development environment integrates

almost seamlessly with many currently available languages, but lacks the portability to

62

platforms outside of Windows. VisualBasic.NET enables Rapid Application

Development (RAD), Graphical User Interface (GUI), and easy integration of ActiveX

controls and database elements, which are central components of many games, but lacks

the ability to develop complex game environments needed in game development. Java

offers ease of modular design through object oriented programming, but is not well

supported by current game engines and game libraries [6, 14, 19, 20].

Thus, with the lack of consensus on the best game development languages,

component development must either be developed independent of the game language or

must be developed cross-platform to ensure its effective integration with current games.

After reviewing the advantages and disadvantages of current gaming programming

languages, two programming languages stood out as the best possible candidates for

development of the functional educational game. First, Microsoft’s Visual Studio .NET

framework is one of the best currently available alternatives to addressing the cross-

platform language barrier. .NET programs reside as modules within the common

language runtime (CLR). The CLR decomposes language-specific source code to create

runtime executables using a common intermediate language. Within the Visual Studio

.NET framework, Visual Basic still remains as the best programming language for

programmable databases, a key component of the functional educational game developed.

 The second alternative considered was Java. Java offers ease in implementing

modular programs through its object oriented programming. Additionally, the Java

Virtual Machine enables programs to be developed independent of the computing

platform, thus broadening the scope of compatible operating systems and limiting the

additional software required. While the Java language lacks broad support by current

63

game engines and game libraries, this is considered an inhibiting factor at this time. As

more games are developed using Java, support will become more widely available. Thus,

after careful analysis, Java was selected as the implementation language.

64

VIII. CONCLUSIONS AND FUTURE ENHANCEMENTS

 While poorly designed architecture restricts the application’s functionality to a

single game being deployed, a modular architecture designed with low coupling and high

cohesion can increase maintainability, survivability, reusability, and portability. This

thesis recommends necessary architecture changes to best facilitate future game

advancements and demonstrates sound software engineering principles through the

development of a functional, elementary level educational game.

 To meet the recommended modular architecture, the developed educational game

is divided into three subsections – the game interfaces, the game play environment, and

the educational content contained within. Each of these subsections function

independently of the remaining sections, ensuring low coupling among the different

packages. Within each package, there are several classes, each of which contributes a

significant functionality to the specific component, representing the high cohesion among

packages.

 In addition to demonstrating the recommended modular architecture, the

functional educational game developed implements three of the components listed by

BECTa and TEEM as critical components to educational games and either not

implemented or implemented in only a limited number of current leading educational

games. These components are incremental advancement of problem difficulty to

continually challenge students at the appropriate level, to record student progress to

enable instructors to analyze a student’s strengths and weaknesses, and the capability to

tailor the game to an instructor’s individual classroom specifications.

65

 It is important to note that the developed educational game is intended to

demonstrate the recommended modular architecture. As such, it does not implement all

of the components listed as critical by BECTa and TEEM. An evaluation of the

developed educational game compared with the list of components reveals several

lacking components. Given the scope of the developed educational game, these lacking

components are considered future enhancements.

 Additionally, there are several crucial components included in professional,

computer-based educational games that are omitted from the developed game. First,

details concerning educational content within the game play environment are not

addressed. The modular architecture of the developed game facilitates exchangeable

educational content, thus enabling an instructor to satisfy any content-specific

requirements he or she may have. This includes entertainment related content, gender

specific or gender neutral content, and graphics related to content presentation associated

with specific educational games.

 Secondly, there are additional security concerns related to educational games not

addressed within the developed game. For example, instructors signing into the

instructor interface are authenticated with only their username and associated non-

encrypted password. Professional educational games should include additional

authentication and protection to prevent unauthorized individuals from altering game

data.

66

 Educational Game

 Key Components

Erksmoff

Record of student progress √

Adaptable level of challenge √

Non-identically repeated experiences √

Ability to save and restart games

Suitable stopping points throughout game

play
√

Instructor’s manual including information

on structure content and underlying game

models

Game scenarios mimic realistic

expectations and physical properties of

the real world

User interface and instructions that do not

require elaborate written instructions

Limited noise and distractions for non-

users

Player interaction that enables users to

choose what to do within limits, while

still following rules

Encouraging environment that motivates

students

Play environment that offers complements

to ‘real’ play

Sophisticated user interface and content to

match game players’ expectations.

 Figure 8-1: Evaluation of Developed Educational Game

67

IX. REFERENCES

1. Albin, Stephen T. 2003. The Art of Software Architecture: Design Methods and

Techniques. Indianapolis: Wiley Publishing.

2. Anderson, CA and BJ Bushman. 2001. Effects of Violent Video Games on

Aggressive Behavior, Aggressive Cognition, Aggressive Affect, Physiological
Arousal and Prosocial Behavior: A Meta-Analysis Review of the Scientific
Literature. Psychological Science. Vol 12: 353-359.

3. Arter, Judith A and Jay McTighe. 2001. Scoring Rubrics in the Classroom. Thousand

Oaks, CA: Corwin Press.

4. Bensley, L and Van Eenwky. 2001. Video Games and Real-Life Aggression: Review

of the Literature. Journal of Adolescent Health. Vol 29: 244-257.

5. Bringing Educational Creativity To All. 2001. Computer Games in Education

Project. UK: BECTa.

6. Bruegge, Bernd & Allen H. Dutoit. 2004. Object-Oriented Software Engineering:

Using UML, Patterns and Java (2
nd

 edition). Upper Saddle River, NJ: Pearson
Prentice Hall.

7. Entertainment Software Association. 2005. 2005 Essential Facts about the Computer
and Video Game Industry. E3 Annual Conference. Los Angeles, CA.

8. Garris, Rosemary and Robert Ahlers. 2002. Games, Motivations, and Learning: A
Research and Practice Model. Simulation and Gaming. Vol 33 (4): 441-467.

9. Griffiths, M D. 1999. Violent Video Games and Aggression: A Review of the

Literature. Aggression and Violent Behavior. Vol 4: 203-212.

10. Harris, J. 1999. Secondary School Students’ Use of Computers at Home. British

Journal of Educational Technology, Vol 30: 331-339.

11. Harvey, James. 1995. The Market for Educational Software. RAND. US Department

of Education.

12. Informa Telecoms & Media. 2005. Dynamics of Games (5

th
 edition).London:

Informa Media Group.

13. Interactive Digital Software Association. 2005. State of the Industry: Report 2003-

2004. IDSA Newsletter. Washington, D.C: IDSA.

68

14. Maidment, Robert and Russell Bronstein. 1973. Simulation Games: Design and

Implementation. Columbus, OH: Merrill.

15. McFarlane, Angela, Anne Sparrowhawk, and Ysanne Heald. 2002. Report on the

Educational Use of Games: An exploration by TEEM of the contribution which
games can make to the education process. Cambridge, MA: Teachers
Evaluating Educational Multimedia.

16. Mitchell, Alice and Carol Savill-Smith. 2004. The Use of Computer and Video

Games for Learning: A review of literature. London, UK: Learning and Skills
Development Agency.

17. National Governors Association. 2002. The Fiscal Survey of States. Washington, DC:

National Governors Association.

18. Orey, Michael, Mary Ann Fitzgerald, and Robert Maribe Branch. 2004. Issues and

Trends in Instructional Technology. Educational Media and Technology

Yearbook 2004. Westport, CT: Greenwood Publishing.

19. Roschelle, Jeremy, et. al. 1999. Developing Educational Software Components. Web-

Based Learning and Collaboration. Los Alamitos, CA: IEEE Computer Society
Press.

20. Sawyer, Ben. 1996. The Ultimate Game Developer’s SourceBook. Scottsdale, AZ:

Coriolis Group Books.

21. Siraj-Blatchford, John and David Whitebread. 2003. Supporting Information and

Communications Technology in the Early Years. Berkshire, UK: Open
University Press.

22. Sommerville, Ian. 2001. Software Engineering. Harlow: Pearson Education Limited.

23. Swords, Tara. 2005. At the Top of Their Game. Dell Insight. (Jan): 6-11.

24. Taylor, John and Rex Walford. 1978. Learning and the Simulation Game. Beverly

Hills: SAGE Publications, Inc.

25. Trotter, A. 2003. Budget Crises Leads to Delays for Technology. Education Week.

Vol 22 (34): 1-2.

	Advancements in frameworks for educational games through sound software engineering principles.
	Recommended Citation

	Microsoft Word - CMBOGARD_FINAL.doc

