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ABSTRACT 

  

 The separation of carbon dioxide from natural gas is of great interest from the 

environmental and energy perspective, respectively. From the environmental point of 

view, capturing CO2 effectively from power plants can have a positive impact on 

reducing greenhouse gas emissions. From the energy point of view, CO2 is an undesirable 

impurity in natural gas wells, with concentrations as high as 70%. Membrane technology 

can play a major role in making natural gas purification processes economically feasible. 

A novel membrane composed of Metal-organic-framework material 

Zn8(Ad)4(BPDC)6O 2Me2NH2 (Bio-MOF-1) was designed and created to effectively 

separate CO2/CH4 gas mixtures. The crystalline structure, composition, and textural 

properties of Bio-MOF-1 membranes were confirmed through x-ray diffractometry, CHN 

analysis, transmission electron microscopy, adsorption measurements and BET surface 

area. 

A secondary seeded growth approach was employed to prepare these membranes 

on tubular stainless steel porous support. These membranes displayed high CO2 

permeances (11.5x10
-7

 mol / m
2
 s Pa) and moderate CO2/CH4 separation selectivities (1.2 

-2.5). The observed selectivities are above the Knudsen selectivity and indicate that the 

separation is promoted by preferential CO2 adsorption over CH4. This preferential 

adsorption is attributed to the presence of adeninate amino basic sites present in the Bio-

MOF-1 structure. The work demonstrated shows the feasibility of the development of a 

novel type of membrane that could be promising for diverse molecular gas separations.  
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NOMENCLATURE 

 

 

Ad   = adenine 

Å   = angstrom 

a.u.   =  arbitrary unit 

atm   = atmosphere 

BPDC   = 4,4’- biphenyl dicarboxylic acid 

BET   = Brunauer Emmett Teller 

CO2   = carbon dioxide 

CHN   = Carbon, Hydrogen, Nitrogen 
o
C   = Celsius 

Cu   = Copper 

cm
3
   =  cubic centimeter 

DEA   = diethanolamine 

θ   = diffraction angle (degree) 

DMF   = N’N - dimethylformamide 

d   = d-spacing (Angstrom) 

GC-MS  = gas chromatograph – mass spectrometry 

Tg   = glass transition temperature (Celcius) 

g   = gram 

hr   = hour 

H2S   = hydrogen sulfide 

n   = integer 

Kα   = K-alpha x-rays 

K   = kelvin 

KPa   = kilopascal 

kV   = kilovolt 

P/Po   =  measured pressure / saturation pressure 

Mg   = megagram 

MW   = megawatt 

Bio-MOF  = metal-biomolecule framework 

MOF   = metal-organic framework 

CH4   = methane 

MDEA   = methyldiethanolamine 

µm   = micrometer 

mA   =  milliamp 

mL   = milliliter 

mmol   = millimole 

MMBtu  = million metric british thermal units 

MMT   =  million metric ton 

min   =  minute 
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MEA   = monoethanolamine 

HNO3   = nitric acid 

PPM   = parts per million 

Pa   = pascal 

PEI   = polyethlenimine 

Pi   =  permeance of species i (mol / m
2
 s Pa) 

RPM   = revolutions per minute 

SEM   = scanning electron microscopy 

s   = second 

m
2
   =  square meter 

TR   = thermally rearranged 

TGA   = thermogravimetric analysis 

TEM   = transition electron microscopy 

H2O   =  water 

λ   = wavelength (Å) 

XRD   = x-ray diffractometry 

Zn(O2CCH3)2(H2O)2 = zinc acetate dehydrate 

Zn4O   = zinc oxide clusters 

ZnO4   = zinc oxide tetrahedra 
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I. INTRODUCTION 

 

 

A. Environmental and Energy Concerns for Carbon Dioxide 

 

1. Greenhouse Gas Emissions and a Rising Concern 

Since the industrial revolution, human involvement has been increasingly adding 

to the amount of carbon dioxide in the atmosphere from 280 to 360 PPM
1
. In the past 250 

years, the atmospheric level of carbon dioxide has risen by around 31%
2
. Carbon dioxide 

contributes to 60% of the greenhouse gases that cause global warming
1
. Figure 1 shows 

the distribution of CO2 emissions among different US sectors by fuel source. In 2000 

alone, CO2 emissions accounted for 83% of total U.S. greenhouse gas emissions
3
. 

 

FIGURE 1 – CO2 Emissions in the US by sector and fuel (in MMT)
32 



 As these gases, especially CO2, continue to increase, potential adverse effects on 

regional and global climate, ecosystem function, and human health increase as well. In an 

effort to reduce these emissions, many national governments are looking to introduce 

mandatory reporting of greenhouse gas emissions. As recently as July 2009, a 1,200 page 
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climate-change and energy bill (H.R. 2454) made its way through Congress in order to 

establish a “cap and trade” system to reduce carbon dioxide emissions
4
. The bill would 

cut emissions by 17% of 2005 levels by 2020 and by 83% of 2005 levels by 2050
4
. 

Reporting emissions using thresholds is also part of efforts in the EU and Canada to 

monitor greenhouse gas emissions. The Ontario Ministry of the Environment (MOE) 

currently has a mandatory emissions monitoring and reporting program that requires 

facilities to report if emissions exceed 100,000 Mg of CO2
5
. Although steps around the 

globe have been initiated to quell the situation, world energy-related CO2 emissions will 

increase by approximately 40% by 2040 according to current projected rates
4
. 

2. Natural Gas as an Alternative Fuel Source and Associated Challenges 

Coinciding with the growing concern of atmospheric CO2 concentrations is world 

energy demands. Fossil fuels account for approximately 80% of the worldwide energy 

demand which produces CO2
6
. In an effort to reduce fossil fuel energy production, 

research is being directed towards alternative fuels, carbon capture, and carbon 

sequestration. With the emergence of these new technologies, estimates suggest that U.S. 

natural gas reserves have doubled and gas prices have dropped from a high of 

$15/MMBtu in 2006 to less than $3/MMBtu in early 2012
7
. Low costs combined with an 

abundance of supply makes natural gas combustion turbines look extremely attractive for 

electricity generation. U.S. power generation from natural gas grew from 14% in 1997 to 

23% in 2010
7
. Natural gas power plants provide many advantages including higher 

efficiency and lower sulfur and CO2 emissions per MW generated
7
. If CO2 emissions 

become heavily regulated, a shift towards natural gas power plants will accelerate in the 

future.  
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In order to effectively use natural gas as a fuel source, the fuel supply must be 

purified of any impurities to increase its energy content. Carbon dioxide is an undesirable 

impurity in natural gas wells, with concentrations as high as 70%
8
. In addition to 

lowering the energy content of natural gas, carbon dioxide is acidic and corrosive in the 

presence of H2O. Current pipeline specifications require a CO2 concentration below 2-

3%
9
. 

 

 

3. Current Separation Methods and a Shift to Green Technologies 

The most widely used process to purify natural gas utilizes alkanolamine aqueous 

solution to absorb selectively CO2 and H2S from natural gas streams
10

. The most 

commonly used amines in industrial plants are the alkanolamines monoethanolamine 

(MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA), all of which are 

harmful to the environment and human health
11

. This process is extremely energy 

intensive and requires multiple steps in preparation for the separation and solution 

recovery (heating of the solution, recovery of acid gases, etc.). Figure 2 displays a 

common schematic for an alkanolamine treating process for natural gas purification. 
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FIGURE 2 – Process Flow Diagram of Natural Gas Alkanolamine Treatment
11

 

 

In an effort to reduce the high energy consumption, chemicals involved, phase 

changes, complex equipment, and proneness to pollution, membrane technology is being 

increasingly adopted in the industry
12

. Rather than subject the feed gas stream to multiple 

steps, a simple, pressure driven design would promote the separation of CO2 from CH4. 

 

FIGURE 3 – Conventional Membrane Technology for Gas Separation
13

 

Figure 3 shows this technology where a gaseous mixture (in this case CO2/CH4) 

would enter the tubular support from the left and the CO2 would permeate through the 

walls while the remaining CH4 would exit the support. Polymeric membranes have been 
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the industry standard for separation because of their competitive performance as well as 

their low manufacturing/production costs
14

. For gaseous separations, nonporous 

membranes are used. The vapors and gases are separated by their difference in solubility 

and diffusivity in the polymers
15

. Small molecules move among the polymer chains 

according to the formation of local gaps by thermal motion of polymer segments. Porous 

membranes rely solely on the Knudsen diffusion for the separation of gaseous mixtures
15

. 

 

B. Gaseous Mixture Separations Utilizing Nanoporous Material Membranes 

 

1. What are Metal-Organic Frameworks? 

While polymeric membranes are highly sought after for their low 

manufacturing/production costs and high performance, they do have weaknesses. 

Plasticization is a common occurrence for polymeric membranes. With the sorption of 

CO2, polymers swell and change in mechanical and physical properties. The most 

important of these is the reduction of the glass transition temperature (Tg), simply called 

plasticization
16

. The CO2 molecules interact with the basic site within the polymer and 

reduce chain-chain interactions. This reduction increases the mobility of polymer 

segments thus reducing the glass transition temperature (Tg). Plasticization causes 

thermal instability and can lead to fracturing of the polymeric membrane
16

. Materials that 

are able to withstand harsh conditions (thermally and chemically stable) while able to 

adsorb large amounts of CO2 (high surface areas) are needed for the purification of 

natural gas. 

A family of materials that are able to provide each of these characteristics is 

metal-organic frameworks (MOFs). MOFs are crystalline compounds consisting of metal 
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ions or clusters coordinated to often rigid organic molecules to form three-dimensional 

porous structures. Figure 4 displays the prototypical metal-organic framework MOF-5
20

. 

 

FIGURE 4 - Cubic Topology of MOF-5
17

 

 

MOF-5 is built up by Zn4O groups on the corners of a cubic lattice, 

interconnected by terephthalic acid ligands. ZnO4 tetrahedra (polyherda) are joined by 

benzene dicarboxylate linkers (O and C) creating pore apertures of 8 Angstroms and a 12 

Angstrom pore diameter (sphere). MOF-5 has thermal stability up to 400°C and a high 

surface area of 2900 m
2
g

-1 18
. Compared to zeolites, another family of well-known 

materials used in the separation of gaseous mixtures, MOFs have a much larger diversity 

in porosity allowing for a broad range of applications such catalysis (large pore 

diameter/volume) and especially gas separations (small pore diameter/volume). Figure 5 

compares several MOFS (dots and squares) to a few zeolites (diamonds) to visually 

display the diversity within this family of materials. 
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FIGURE 5 – Porosity of MOFS Compared to Zeolites
19

 

2. How do MOFs differ from Bio-MOFs? 

The ability of MOFs to be carefully tailored, coupled with their diverse 

applications, makes them one of the most growing areas of research. New generations of 

MOFS are being designed to be compatible with the environment and human body
20

. To 

accomplish this task, biomolecules are incorporated in the construction of MOFs as 

ligands, as opposed to traditional organic ligand (imidazole, etc.). This subset of materials 

in the MOF family is known as Bio-MOFs. With the introduction of biomolecules as 

ligands, additional advantages are introduced such as structural diversity (rigid or 

flexible) which impacts the functional nature of the Bio-MOF, as well as high CO2 

adsorption capacity
20

. 

The biomolecules available for the construction of Bio-MOFs can be categorized 

within one of five groups: amino acids, peptides, proteins, nucleobases, and saccharides 

(carbohydrates). Each group of biomolecules provides excellent ligands. However, 
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nucleobases (key constituent of nucleic acids which is involved in base-pairing) make the 

ideal bio-linkers
20

. Nucleobases have H-bonding capabilities and multiple nitrogen 

electron lone pairs which allows for rich binding sites (multidentate). Of the wide range 

of nucleobases existing, adenine (Figure 6) has been the most reported
20

. Adenine offers 

five binding sites, each located at an amino group. 

 

FIGURE 6 – Adenine Molecule Displaying Multiple Binding Sites
21

 

3. Background and Research on Bio-MOF-1 

The first three-dimensional permanently porous framework using adenine to 

derive a Bio-MOF was Zn8(Ad)4(BPDC)6O·2(NH2(CH3)2)+, 8 DMF, 11 H2O, also 

known as Bio-MOF-1
20

. Bio-MOF-1 consists of Zn(II)-Adeninate column composed of 

octahedral cages with each cage consisting of 8 Zn
2+

 cations with 4 adeninate linkers, 

Figure 7
22

. 

http://en.wikipedia.org/wiki/File:Adenine_chemical_structure.png


9 

 

 

FIGURE 7 – Structural Features of Bio-MOF-1, Columns (Left) and Framework 

(Right)
22

 

 

 Each column is interconnected via biphenyldicarboxlyate forming a tetragonal 

lattice crystal system with pore apertures of approximately 5.2 Angstroms. Nitrogen 

adsorption studies revealed that Bio-MOF-1 has a BET surface area of 1700 m
2
 g

-1
. 

Thermogravimetric analysis (TGA) revealed a decomposition temperature of 

approximately 300
o
C

22
. 

 

 

C. Justification 

 

Bio-MOF-1 possesses some highly appealing properties that are necessary for the 

separation of CO2 from CH4 in an effort to purifying natural gas wells. The biomolecule 

adenine used as a ligand provides rich binding sites for carbon dioxide adsorption. Other 

promising properties of Bio-MOF-1 include high surface area, thermal stability, and 

chemical stability. 
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D. Objectives 

 

The objectives of the current study are to: 

 

1) Develop Bio-MOF-1 crystals displaying narrow size distribution and 

enhanced CO2 adsorption properties. 

2) Develop reproducible and continuous Bio-MOF-1 membranes for CO2/CH4 

separation. 

3) Establish basic structure/separation relationships of Bio-MOF-1 membranes in 

relevant functional gas separations related to natural gas. 
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II. EXPERIMENTATION 

 

 

A. Synthesis of Bio-MOF-1 

 

The zinc-adeninate metal-organic framework Bio-MOF-1 was synthesized 

similarly to the method described by Rosi’s group
22

.  In a typical synthesis, shown in 

Figure 8, 0.25mmol of Adenine (C5H5N5, Sigma Aldrich Inc., ≥99.0%), 0.5mmol of 4,4’-

biphenyl dicarboxylic acid (BPDC, HO2CC6H4C6H4CO2H,  Sigma Aldrich Inc., 97%), 

and 0.75mmol of zinc acetate dihydrate (Zn(O2CCH3)2(H2O)2, Sigma Aldrich Inc., 

≥99%) were dissolved in a mixture of 2mmol of nitric acid (HNO3, Sigma Aldrich Inc., 

≥90.0%), 2mL of deionized water, and 13.5mL of N,N-dimethylformamide (DMF, 

HCON(CH3)2, Acros Organics, 99.8%). To facilitate the disolution, the solution was 

vigorously stirred for 30 minutes at 300 RPM.  The prepared gel solution was poured into 

a 50 mL Teflon vessel.  Each vessel was placed into an autoclave to allow the solution to 

reach an autogenous pressure as heated.  The autoclave was placed into a programmable 

oven with a 1
o
C/min ramp up from room temperature to 130°C for 24 hours.   

Rod-shaped colorless crystals obtained after synthesis were separated from the 

effluent by centrifugation at 3000 RPM and washed three times with 3mL of DMF.  The 

resulting crystals were then placed in a Precision vacuum oven and subjected to drying in 

an argon atmosphere at a temperature of 125 °C for 2 hours. 
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FIGURE 8 – Bio-MOF-1 Crystal Synthesis 

 

B. Bio-MOF-1 Characterization 

 

The resulting crystals were then characterized using X-ray diffraction, scanning 

electron microscopy, transmission electron microscopy, CHN analysis and BET surface 

area.  The powder X-ray diffraction patterns were gathered by use of the Bruker D8-

Discover diffractometer, Figure 15, at 40 kV, 40 mA with Cu Kα radiation.  The BET 

surface area measurements were taken on a Micromeritics Tristar 3000 porosimeter 

which operated at 77 K using liquid nitrogen as coolant.  The samples were degassed at 

130 °C for three hours directly before being placed in the porosimeter.  The scanning 

electron microscopy was performed using a FE-SEM (FEI Nova 600) with an 



13 

 

acceleration voltage of 6 kV. The quantitative analysis of elemental carbon, hydrogen, 

and nitrogen were carried out at Midwest Microlab, LLC (Indianapolis). 

 

C. Bio-MOF-1 Membrane Preparation and Testing 

 

Bio-MOF-1 membranes were prepared via secondary seeded growth inside 

tubular porous stainless steel supports (0.1 grade, 0.27 µm pores, Mott Corporation), 

Figure 9. The synthesis solution preparation and composition is similar to that use for the 

synthesis of Bio-MOF-1 seeds. The membranes were prepared by rubbing the inside 

surface of porous supports with dry Bio-MOF-1 seeds using cotton swabs. The rubbed 

porous supports, with their outside wrapped in Teflon tape, were then placed vertically in 

a 50mL Teflon autoclave and filled with the synthesis solution. The reaction was carried 

out at the same conditions for seed synthesis (130
o
C for 24 hours) in the Ney® Vulcan 3-

550 Furnace. The resulting membranes were gently washed with DMF not only to rinse 

the membrane, but also remove excess buildup of crystals within the tubular support. 

Multiple layers were applied following the same procedure. The membranes were dried 

at 100
o
C under an argon atmosphere within the Precision Vacuum Oven. 

FIGURE 9 – Bio-MOF-1 Membrane Synthesis 

The separation performance of the Bio-MOF-1 membranes for equimolar 

CO2/CH4 gas mixture was measured in a separation system shown in Figure 10. The 

membranes were mounted in a stainless steel module with silicone O-rings as seals on 
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both ends. The driving force across the membrane was provided by a pressure drop of 

138 KPa with the permeate pressure being 99.5 KPa (atmospheric). The permeate gas 

rate was measured by a soap film bubble flow meter. The total flow rate was 100 

mL/min. The compositions of the feed, retentate, and permeate streams were measured 

using a gas chromatograph (SRI instruments, 8610C) equipped with a thermal 

conductivity detector and HAYESEP-D packed column, Figure 19. The oven, injector 

and detector temperatures in the GC were kept at 65
o
C, 100

o
C and 150

o
C respectively. 

 

 

FIGURE 10 – Gas Separation System Schematic 
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E. Equipment 

 

1. Synthesis of Bio-MOF-1 

 
 

FIGURE 11 - Hydrothermal Autoclave with 50mL Teflon Vessel 

 

 
FIGURE 12 - Ney® Vulcan 3-550 Furnace 

Dentsupply Ceramco International 

Serial No.: 9493308 

York, PA 17404 
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FIGURE 13 - Eppendorf Centrifuge 

Model No: 5702 

Serial No: 5702YN320989 
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FIGURE 14 - Precision Vacuum Oven 

Model No.: 29 

Serial No.: 69902505 

Winchester, VA 22602 

 

 

2. Bio-MOF-1 Characterization 

 

 
FIGURE 15 - X-Ray Diffraction, 

Bruker AXS – Diffraktometer D8 

Serial No.: 203407 

Karlsruhe, Germany D76181
23

 



18 

 

 

 
FIGURE 16 - Micromeritics Tristar 3000 Porosimeter 

 

 

 
FIGURE 17 - Nova NanoSEM 600 

FEI
24
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3. Bio-MOF-1 Membrane Testing 

 
FIGURE 18 - Stainless Steel High Pressure Gas Separation System 

Model No: 4576A 

 

 

 

 
FIGURE 19 - GC-MS 

HP 5890 Gas Chromatograph equipped with 5970 Mass Selective Detector 
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III. RESULTS AND DISCUSSION 

 

 

A. Characterization of Bio-MOF-1 

The method provided by Rosi was followed closely to create Bio-MOF-1
22

.  

Several samples were successfully created using this method, each of approximately 0.1 g 

of product. This yielded the correct crystalline structure, with the powder X-ray 

diffraction pattern matching closely that shown in Figure 20.  The relative intensity and 

peak positions of the XRD pattern are in agreement with the typical structure of Bio-

MOF-1
22

.
 
Some of the secondary peaks were broader and less intense than the reported 

XRD pattern of Bio-MOF-1 from Rosi’s group, indicating that although the Bio-MOF-1 

crystals maintained long-range cystallinity, its framework may have a greater degree of 

local structural disorder. Local structural distortions have been associated with surface 

relation effects and/or the presence of extended structural defects
25

. 
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FIGURE 20 – XRD Pattern of Bio-MOF-1
26

 

Scanning electron microscopy images of Bio-MOF-1 crystals can be seen in 

Figure 21. The sample shown on the left displays two phases, a nanobar crystalline phase 

and an amorphous spherical phase. The presence of the amorphous Bio-MOF-1 phase 

suggests that the necessary synthesis reaction time had not been met.  The sample on the 

right displays well-defined nanobars with lengths ranging from 0.5-4.5 µm and widths 

from 0.05-0.15 µm were observed
26

. The uniform surface morphology and crystal size 

suggests that membrane formation is possible due to excellent packing. Excellent packing 

is imperative in membrane formation in the reduction in nonselective pathways.  
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FIGURE 21 – SEM surface morphology of two phase Bio-MOF-1 crystals (Left) 

and pure nanobar Bio-MOF-1 crystals (Right)
26

 

 

The apparent BET surface area of the Bio-MOF-1 crystals was approximately 800 

m
2 

g
-1

. While this value is much lower than previous reports
22, 20

, the lower surface area 

may be related to the incomplete removal of dimethylammonium cations, DMF or to 

water residing in the pores of the structure and/or to the extent of local disorder in the 

framework as noted from the XRD pattern inconsistencies
26

. Attempts to remove these 

molecules by solvent exchange (chloroform, methanol, etc.) resulted in the framework 

collapsing. Other varying drying methods were attempted in opening the Bio-MOF-1 

framework such as under vacuum (20 inHG) and at varying temperatures, however, all 

attempts again led to the framework collapsing.  

CHN analysis revealed that the carbon, hydrogen, and nitrogen contents of the 

Bio-MOF-1 framework were C-46.6%, H-3.9%, and N-11.7%
26

, which agree with the 

calculated theoretical amounts of C-46.7%, H-4.7%, and N-12.3%
22

. The adsorption 

isotherms at low P/Po relative pressure of CO2 and CH4 for Bio-MOF-1 were collected at 

room temperature. Figure 22 shows that Bio-MOF-1 crystals preferentially adsorbed CO2 

over CH4. At P/Po approximately 0.04, the crystals adsorbed 9 times more CO2 than CH4 

reaffirming their appealing nature for CO2 separation from other gases
26

. This preferential 
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adsorption can be attributed to the presence of adeninate amino basic sites within the 

porous framework
26

. 

 

 

FIGURE 22 – Bio-MOF-1 CO2 and CH4 adsorption capacities
26

 

Transmission electron microscopy (TEM) was employed as an additional means 

of characterizing the synthesized seeds. Figure 23 shows the TEM images of two 

nanobars selected from the crystalline sample shown in Figure 21. Below each TEM 

images is the visual diffraction pattern presenting the spacing between particular crystal 

planes.  

CO2 

CH4 
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FIGURE 23 – TEM and Diffraction Patterns (Left) and XRD Pattern (Right) for 

Bio-MOF-1 Seeds 

 

Utilizing Bragg’s law
27

, the d-spacings calculated agree well with those found 

through the TEM analysis as indicated in the XRD pattern in Figure 23. 

          

Where n is an integer,   is the wavelength of the incident wave, d is the spacing 

between the planes in the atomic lattice, and   is the angle between the incident ray and 

the scattering planes. 

 

B. Membrane Separation Performance 

 

As described in Bio-MOF-1 membrane preparation and testing, the secondary 

seeded growth approach was employed to prepare the membranes. This method provides 

nucleation sites for membrane growth as well as eliminates gaps in between the particles 

through the addition of multiple layers. Elimination occurs either through attachment of 

newly formed crystals or by the growth of the crystals already present on the 
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membrane
26

. Figure 24 presents SEM images obtained of the top view as well as the 

cross section. 

 
 

FIGURE 24 – SEM images of Bio-MOF-1 Membrane Surface Morphology: Top view 

(Left) and Cross-Section (Right)
26

 

 

The Bio-MOF-1 membrane surface and cross sectional views display the same 

nanobar crystal morphology as seen previously in the synthesized seeds (Figure 21). 

Lengths in the ~ 9-11 µm range and widths in the ~ 1-2 µm range were observed.  The 

increase in size is related to the recrystallization and growth of the crystals with the 

incorporation of multiple layers
26

. The preferential perpendicular growth direction 

suggests an epitaxial growth mechanism
26

. The thickness of this particular membrane was 

~15 µm. The XRD pattern of the membrane corresponds to the structure of Bio-MOF-1, 

Figure 25. 
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FIGURE 25 – XRD Pattern of Bio-MOF-1 Membrane (M1) 

The difference in peak intensity, between the main peak and secondary peaks, as 

compared to the XRD pattern of the seeds, Figure 20, may indicate the preferential 

orientation of the crystals. This behavior has been observed in other MOF films
28

. 

The CO2/CH4 separation performance of the stainless steel supported Bio-MOF-1 

membranes is show in Table 1. At least 3 layers were needed to obtain continuous 

membranes. Membranes M1 and M2 were prepared with three layers, M3 with 4 layers, 

and M4 with 7 layers. CO2 permeances as high as 11.9 x 10
-7

 mol·m
-2

s
-1

Pa
-1

 and 

CO2/CH4 selectivities of 2.6 were observed
26

. Membrane reproducibility was confirmed 

by the similar separation performances of M1 and M2. The addition of multiple layers 

correlated with a decrease in CO2 permeance and CO2/CH4 selectivity. 

 

 

 

 

 

 

 



27 

 

TABLE I 

 

 CO2/CH4 SEPARATION PERFORMANCE OF BIO-MOF-1 MEMBRANES AT 

TRANS-MEMBRANE PRESSURE DROP OF 138 KPA AND 298K
26

. 

 

Membrane 
a
 PCO2  (x10

-7
)
 

mol/m
2
·s·Pa 

PCH4  (x10
-7
) 

mol/m
2
·s·Pa 

CO2/CH4 

selectivity 

M1 (3) 11.5 4.6 2.5 

M2 (3) 11.9 4.6 2.6 

M3 (4) 10.5 4.8 2.2 

M4 (7) 5.8 4.7 1.2 

a) Numbers in parenthesis indicate number of layers 

 

 The decrease in CO2 permeance is due to an increase in membrane thickness. The 

addition of more layers results in an increase of Bio-MOF-1 pores (selective) and non-

Bio-MOF-1 pores (non-selective)
26

. The selective transport pathways for CO2 are a 

consequence of the basic adeninate sites. The non-selective pathways associate with 

intercrystalline boundaries and/or amorphous regions, since these pores differ in size and 

adsorption properties compared to the selective pathways. Therefore, the decrease in 

CO2/CH4 selectivity suggests the addition of more layers results in a higher concentration 

of non-selective pathways
26

. The observed CO2/CH4 selectivities are greater than 0.6 

suggesting that the main mechanism of separation is preferential adsorption of CO2 over 

CH4 and not Knudsen selectivity
29

. Again, this is supported by Figure 22 which shows 

that the CO2 adsorption capacities of Bio-MOF-1 crystals are higher than that of CH4. 

 The Robeson plot for CO2/CH4 separation selectivities as a function of CO2 

permeabilities (permeance x membrane thickness) of polymeric membranes has been 

widely used to compare the performance of membranes
30

. For comparison, the separation 

performance for Bio-MOF-1 membrane M1 has been included in this plot, shown in 

Figure 26. 
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FIGURE 26 – Robeson Plot for CO2/CH4 Mixtures
30

 

 

The data point for the Bio-MOF-1 membrane lies in the region of conventional 

polymeric membranes. Although its separation performance is lower than that of 

thermally rearranged (TR) polymeric membranes and most zeolitic membranes, it lies at 

the upper extremities for CO2 permeances
31

. Further optimization of synthesis and 

processing parameters during the preparation of these membranes could potentially lead 

to more CO2 selective membranes and ultimately extremely competitive and sought after 

membranes. 

  

 

  

*
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IV. CONCLUSIONS 

Bio-MOF-1 crystals were developed following the presented methods by Rosi
22

.  

Comprehensive characterization techniques were used to study the textural and 

morphological properties of the generated Bio-MOF-1. TEM, CHN analysis, and XRD 

all confirmed the synthesized material was indeed Bio-MOF-1. Local structural disorder 

was observed from the obtained XRD patterns by noticing the broader and less intense 

secondary peaks. The crystals obtained displayed a BET surface area of ~800 m
2
 g

-1
. This 

value is only half of that reported
22

 and can be attributed to dimethyl ammonium cations, 

DEF solvent, and water remaining within the framework. Further attempts (solvent 

exchange, vacuum drying, etc.) failed to vacate the Bio-MOF-1 pores. Scanning electron 

microscopy was also performed on the Bio-MOF-1 crystals, previously unreported.  The 

SEM images reveal nanobar shaped particles of length ranging from 0.5-4.5 µm and 

width from 0.05-0.15 µm. Adsorption isotherms were acquired displaying CO2 adsorbed 

9 times more than CH4 reaffirming their appealing nature for separation. 

The preparation of continuous and reproducible Bio-MOF membranes was 

demonstrated for a functional gas mixture separation for the first time. The membranes 

were prepared via secondary seeded growth on tubular porous supports. At least 3 layers 

were needed to obtain continuous membranes. The reproducibility was confirmed by the 

similar separation performance of M1 and M2 membranes. These membranes displayed 

high CO2 permeances (11.5 x 10
-7

 mol·m
-2

s
-1

Pa
-1

) and separation ability for CO2/CH4 gas 

mixtures. The observed CO2/CH4 selectivites (2.5-2.6) were above the Knudsen 
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selectivity indicating that the separation is promoted by preferential CO2 adsorption over 

CH4. This preferential CO2 adsorption was attributed to the presence of adeninate amino 

basic sites in the Bio-MOF-1 structure. The addition of more layers resulted in a decrease 

in CO2 permeance and CO2/CH4 selectivity. The decrease in separation performance was 

related to the increase in concentration of non-selective pathways. SEM images of the 

membrane revealed intergrown bunches of nanobar crystals covering the surface of the 

support. Lengths in the 9-11 µm range and widths in the 1-2 µm were observed. The 

increase in size and preferred growth direction suggest epitaxial growth.  
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V. RECOMMENDATIONS  

 

A. Synthesis of Bio-MOF-1 

 

Difficulties were encountered with repeatability in the synthesis of high surface 

area Bio-MOF-1. Various other chemicals could be utilized in the solvent exchange such 

as acetone, ethanol, and toluene in hopes of vacating the porous framework. Different 

Bio-MOF-1 compositions need to be explored as well as different parameters such as 

inorganic precursors, synthesis time, and treatment temperature. Each of these could 

result in the reduction in local structural disorder and thus increasing the stability of the 

framework for solvent removal. 

 

B. Characterization of Bio-MOF-1 

 

Additional characterization techniques can be used to investigate the Bio-MOF-1 

crystal and membrane framework. It would also be helpful to run a comparative TGA on 

the crystals with respect to the published literature. The thermal stability of the crystals 

may have decreased due to the large amount of structural disorder, thus leading to the 

collapse of the framework during drying and drastically reducing the surface area.  

 

C. Separation Performance of Bio-MOF-1 

 

Future experiments of Bio-MOF-1 membrane synthesis should focus on 

employing different seeding techniques in an effort to prepare more robust, continuous 

membranes. The secondary seeded growth mechanism provides nucleation sites; 
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however, wherever there are vacancies located on the tubular support, the seeds cannot 

establish growth. By employing a method utilizing a PEI (polyethylenimine) solution, 

anchoring of Bio-MOF-1 seeds to the entire surface is possible removing the chance for 

non-selective pathways, invariably increasing the separation performance. As stated 

previously, several of the synthesis parameters (gel composition, treatment time and 

temperature) can be explored during membrane synthesis, coupled with seeding 

mechanisms, to increase the robust nature of the membrane.  
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TABLE II 

 

BET TABULAR RESULTS FOR BIO-MOF-1 SEEDS 

 

Relative Pressure 
(P/Po) 

Quantity Adsorbed 
(cm³/g STP) 

Relative Pressure 
(P/Po) 

Quantity Adsorbed 
(cm³/g STP) 

0.085284884 101.0416346 0.988505632 202.4063994 

0.141860462 104.0001233 0.973981437 196.6911398 

0.201808211 106.2501795 0.958531702 189.8380122 

0.241422118 107.5643403 0.940030582 183.6617938 

0.299912856 109.2279586 0.924635831 179.6340394 

0.349478361 110.5649683 0.906950282 175.4540002 

0.447326429 112.9701176 0.876976432 169.8707106 

0.546429907 115.5581823 0.842319976 165.0035217 

0.645560837 118.8837421 0.803475779 159.910523 

0.734648608 123.6798326 0.742813275 153.3590492 

0.795036187 129.8059179 0.651920325 148.1732261 

0.835832231 137.1362219 0.555455965 144.7931218 

0.870030478 147.068239 0.447830418 119.6655654 

0.900865679 158.8131435 0.348424522 116.1584689 

0.922986443 167.4247847 0.224790326 112.7515423 

0.937611403 173.1665736   

0.950916804 178.3030655   

0.961711466 182.9093868   

0.969500442 186.5590045   

0.975475075 189.9578135   

0.980606686 193.6100396   

0.983071645 196.0481408   

0.985545808 198.4882379   

0.987085227 200.4397495   

0.988505632 202.4063994   
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FIGURE 27 – BET Isotherms for Bio-MOF-1 Seeds 
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TABLE III 

 

BET TABULAR RESULTS FOR BIO-MOF-1 MEMBRANE CRYSTALS 

 

Relative Pressure 
(P/Po) 

Quantity Adsorbed 
(cm³/g STP) 

Relative Pressure 
(P/Po) 

Quantity Adsorbed 
(cm³/g STP) 

0.087852798 198.6660322 0.988338981 242.9892746 

0.14363503 202.5710531 0.969738226 241.0465045 

0.203083625 205.3480062 0.945568241 240.2291491 

0.242925223 206.8653635 0.921298621 239.7563644 

0.299893054 208.6339085 0.886827064 239.1664989 

0.349428544 210.0313368 0.875060839 238.9382772 

0.447333898 212.3701049 0.841326532 238.2232195 

0.5463551 214.8314134 0.801514808 237.4051002 

0.645386274 218.3524254 0.74230533 236.2066259 

0.734584095 224.0874745 0.653486106 234.0497556 

0.796981655 229.2355451 0.553677834 230.542763 

0.837959044 232.3943754 0.450003981 214.7805157 

0.872440614 234.9787888 0.351122259 212.1115687 

0.902568437 237.2927268 0.224065469 208.5533649 

0.923440695 238.4398766   

0.93846468 238.9318747   

0.951426445 239.369909   

0.962614722 239.9088276   

0.969947428 240.3326504   

0.975925209 240.8502315   

0.981046081 241.4252457   

0.98322796 241.7867135   

0.985230512 242.1786736   

0.987163304 242.6522096   

0.988338981 242.9892746   
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FIGURE 28 - BET Isotherms for Bio-MOF-1 Membrane Crystals 
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