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ABSTRACT 

COMPARATIVE LINEAR ACCURACY OF CONE BEAM CT DERIVED 3D 

IMAGES IN ORTHODONTIC ANALYSIS 

April A. Brown, BS, D.M.D. 

May 10,2008 

Objective: To compare the in vitro reliability and accuracy of linear measurements 

between cephalometric landmarks on CBCT 3D images with varying basis projection 

images to direct measurements on human skulls. 

Methods: Sixteen linear dimensions between anatomical sites marked on 19 human skulls 

were directly measured. Skulls were imaged with CBCT at three settings: 153, 306, and 

612 basis projections. The mean absolute error and modality mean oflinear 

measurements between landmarks on 3D images were compared to the anatomic truth. 

Results: No difference in mean absolute error between the scan settings was found .. The 

average skull absolute error between marked reference points were less than the distances 

between unmarked reference sites. 

Conclusion: CBCT measurements were consistent between scan sequences and for direct 

measurements between marked reference points. Reducing the number of projections for 

3D reconstruction did not lead to reduced dimensional accuracy and potentially provides 

reduced patient radiation exposure. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Radiographic imaging is an important diagnostic adjunct in the assessment of 

skeletal and dental relationships for the orthodontic patient. Historically, cephalometric 

analysis of the maxillofacial complex for orthodontic diagnosis and treatment planning 

has been determined from linear and angular measurements made on film or digital two 

dimensional (2D) cephalograms. Over the past decade. cone beam computed tomography 

(CBCT) specifically for imaging the maxillofacial region has been developed. CBCT is 

capable of providing sub-millimeter spatial resolution for images of the craniofacial 

complex with relatively short scanning times (8-70 sec.) and generally lower radiation 

dosages than ascribed to fan-beam or helical CT imaging methods. [1] Time and dose 

requirements for CBCT have been suggested to be a similar order of magnitude to other 

dental radiographic modalities. [2-4] 

While CBCT images provide useful infOlmation for the orthodontist in regard to 

the position and location of impacted teeth and other pathologies. datasets can be used to 

generate both two dimensional (2D) planar projection and three dimensional (3~) surface 

or volume rendered images for use in orthodontic assessment and treatment planning. 

CBCT has a number of advantages compared to conventional CT imaging for 

cephalometric imaging including sub-millimeter resolution and reduced radiation 



exposure. Perhaps the most important clinical advantage is that CBCT volumetric 

datasets can be exported as DICOM files, imported into personal computers and third 

party software used to provide 3D reconstruction of the craniofacial skeleton. This 

possibility, and the increasing access of CBCT imaging in orthodontics, is a component 

of the paradigm that is directing imaging analysis from 2D cephalometry to 3D 

visualization of craniofacial morphology.[5] The availability of fast scan CBCT now 

provides multi-planar reformatted (MPR) imaging and the possibility of 3D image 

reconstruction of the maxillofacial complex with minimal distortion. 

The linear accuracy of CBCT derived 2Dplanar and 3D reconstructions has been 

previously reported for orthodontic assessment. However the effect of operating 

parameters on image quality or accuracy directed at reducing dose has not been 

investigated. There are numerous factors that may affect CBCT image quality including; 

1) X-ray beam quality. 2) Detector performance and matrix size, 3) Scan time and 

number of projections. 4) Completeness of scanning trajectory, 5) Field of view and, 6) 

Reconstruction algorithm. For most current CBCT units the operator can only adjust 

parameters 1),3) and 5). Reducing the number of projections used to reconstruct the 

volumetric database provides a proportionate reduction in patient radiation exposure but 

may lead to reduced image quality. As CBCT technology is being applied to 3D 

orthodontic imaging, the use of techniques to minimize patient exposure and their effect 

on cephalometric analysis accuracy should be investigated. 

Therefore this study was undertaken to compare the in vitro reliability and 

accuracy of linear measurements between cephalometric landmarks obtained from 3D 

surface rendered images from maxillofacial CBCT using variable numbers of basis 
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projection images. 

The Limitations of Conventional Film Based Cephalometric Analysis 

Since 1931. 20 transmission X-ray images have been used to identify specific 

skull landmarks from which vertical and antero-posterior skeletal and dental dimensions 

are derived. These lateral skull radiographs. made under standard projection conditions, 

are currently the image format used in the analysis of both bony and soft tissue landmarks 

for orthodontic diagnostic purposes as well as for growth evaluation. Post-treatment 

cephalograms may also serve to evaluate orthodontic treatment outcome and success. 

Traditionally. cephalograms have been utilized for their cost and radiation efficiency as 

well as their ease of use. However. characteristics related to pr~jection geometry such as 

inherent magnification. superimposition of bilateral anatomic structures and distortion as 

well as the nature of the detector system can diminish accuracy and reliability in 

evaluation of craniofacial structures and anomalies. 

Digital Cephalometries 

Many conventional film based cephalostats are being replaced by digital systems. 

The advantages of digital cephalometric imaging versus conventional film based 

modalities include instantaneous imaging. lack of user and performance sensitive 

chemical developing processes. facilitated patient communication, ease of storage and 

retrieval, and the ability to enhance images for size or contrast.[ 6-8] Currently, three 

methods are available to produce digital images: digitization of film radiographs, solid 

state systems (charge-coupled device - CCD; complementary metal oxide semiconductor 
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- CMOS; thin film transistor - TFT). and photostimulable phosphor systems (PSP).l6-l 0] 

Secondary capture through digitization of film radiographs can be achieved using a 

scanner with a radiograph/transparency adaptor. This method allows for digitization of all 

film radiographs. however. it is important to note that the quality of scanned images 

cannot exceed the quality of the original radiograph.[8] CCD detectors are sometimes 

incorrectly listed in the dental literature as direct digital imaging modalities. because the 

output is transferred via cables to a computer system and digitized by the frame 

grabber. [1 0] They are in fact usually indirect imaging devices as they employ a 

scintillator in most cases. similar to that used with indirect screen film. CCD is the more 

costly option for cephalometry in orthodontics. Photostimulable phosphor systems (PSP) 

are reusable and use an imaging plate that superficially resembles scintillating screens 

used for traditional extra-oral radiography.[8] These phosphor plates are illuminated by a 

solid state laser beam to release photoluminesence. The released light is photomultiplied 

and collected by a digital imaging chip and the signals are then analyzed by the image 

processor. [6-10] 

Image quality in cephalometries either analog or digitaL is determined by two 

parameters: image accuracy and image quality 

Cephalometric Image Accuracy 

Cephalometric radiography is based on use of a standardized, reproducible head 

position in relation to the X-ray source and detector. Ear rods are used to prevent the head 

from rotating about the verticaL sagittal and transverse axes. A third reference, a nasal 

positioner. may be used to prevent the nose from rotating about the transverse axis. 
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However, when the device is used to contact the external auditory meatus and soft tissues 

of the patient, the head can be incorrectly positioned sagittally. antero-posteriorly. or 

vertically. as the head can be slightly rotated within the head-holding device. 

Due to these errors caused by different positioning of the head, cephalometric 

linear and angular measurements can vary depending on the different locations of 

anatomic structures against the central ray. Malkoc et uf. found that horizontal linear and 

angular measurements between the horizontal planes on lateral cephalograms were 

subject to changes from 16.1 % to 44.7% with a 14() rotation oflhe head position. For PA 

cephalograms. they reported horizontal linear measurements. particularly mandibular 

length. were subject to a projection error of up to 34.9% with head rotation.[II] 

20 transmission cephalometric radiography is subject to inherent geometric 

differential magnification. All resulting images are magnified. because X-rays do not 

radiate parallel to the whole part of the projected object. The ratio of magnification varies 

in the different planes. and hence the image is distorted. In cephalometric radiography, 

each landmark is not located at the same distance from the focal area of the anode. As a 

result. changes may be caused in the relationship of the landmarks to one and another on 

the cephalogram. [12.13] 

Cephalometric Image Clarity 

Clarity is the term used to describe the visibility of diagnostically important detail 

in an image. It is determined by two factors: radiographic contrast and image quality. 

Radiographic contrast is the ability to determine the difference in density between areas 

of the image. For both analog radiographic film and digital detectors contrast depends on 
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radiation energy. subject contrast and scatter; however. a fourth element. detector 

contrast. is also a factor due to inherent dissimilarity between detection systems. 

Image quality is defined as the ability to record each point in an object as a point 

on the detector. For film imaging it is partly determined by radiographic mottle (a feature 

of the film screen system and film graininess). sharpness and resolution. For digital 

detectors. seven essential characteristics should be considered: size of active area. signal­

to-noise ratio. contrast resolution. spatial resolution. modulation transfer function. 

quantum efficiency and detective quantum efficiency.[8.15,16] 

1. Active Area: No standard active areas have been specified for digital imaging 

systems comparable to the ISOI ANSI standards for the conventional X-ray 

film. For solid-state extra-oral systems. a narrower receptor is sometimes used 

for detecting the image and the image is formed via virtual movement. The 

plates used in storage phosphor systems can be cut to exactly replicate the size 

of their film counterparts and exposure is similar to cassette motion. 

2. Signal-to-Noise Ratio: For any imaging system. the useful signal must be 

compared with background noise which. in analog flilm, is comparable to the 

base density plus fog. The base plus fog density for conventional processed 

film is about 1/20 of the signal density. Both newer CCO and PSP systems 

outperform film in signal-to-noise ratios (SNS) if base plus fog is considered 

to be equivalent to SNR. Newer CCO systems exhibit a SNR of 

approximately 50: 1. No matter what the system. all SNRs improve with 

increased radiation dose. 

3. Contrast Resolution: In imaging. the ability to separate and distinguish 
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depends upon contrast between adjacent structures. Using current display 

monitors. working on the WINDOWS system. the maximum number of gray 

levels is 242 because the operating system in the past has been reported to use 

14 shades and the total supported shades is 256 for an 8-bit display. This is 

usually the maximum contrast resolution available. 

4. Spatial Resolution: Resolutions comparable to those of conventional 

cephalometric radiographs are readily obtained using digital 

systems/detectors. Table 1 compares detector resolution for a number of 

currently available conventional film. CCD systems and PSP systems. [14] 

5. Modulation Transfer Function: MTF is the ability of the detector to transfer 

the modulation of the input signal at a certain frequency to its output and deals 

with the display of contrast and object size. MTF is responsible for converting 

contrast values of different sized objects into contrast intensity levels within 

the image. Therefore. modulation transfer function (MTF) is a useful measure 

of true or effective resolution. because it accounts for the amount of contrast 

and blur over a range of spatial frequencies. [1 5] 

6. Quantum Efficiency: The average number of electrons photoelectrically 

emitted from a photocathode per incident photon of a given wavelength in a 

phototube. Quantum efficiency (QE) is a quantity defined for a photosensitive 

device such as photographic film or a charge-coupled device (CCD) as the 

percentage of photons hitting the photoreactive surface that will produce an 

electron-hole pair. It is an accurate measurement of the device's sensitivity. It 

is often measured over a range of different wavelengths to characterize a 
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device's efficiency at each energy. Photographic film typically has a QE of 

much less than 10%. while CCDs can have a QE of well over 90% at some 

wavelengths. [16] 

7. Detective Quantum Efficiency: Detective quantum efficiency (DQE) refers 

to the efficiency of a detector in converting incident x-ray energy into an 

image signal. and is calculated by comparing the signal-to-noise ratio at the 

detector output with that at the detector input as a function of spatial 

frequency. It is dependent upon radiation exposure. spatial frequency, MTF, 

and detector material as well as the quality ofthe radiation applied. High DQE 

levels indicate that less radiation is needed to achieve identical image quality, 

therefore. improved image quality can be obtained by increasing DQE and 

leaving radiation exposure constant. An ideal detector would have a DQE of 

1, indicating that all radiation energy is absorbed and converted into image 

information. However. in clinical practice the DQE of digital detectors is 

limited to roughly 0.45 at 0.5 cycles/mm.[15] 

Table 1. Comparison of Maximum Resolution of Imaging Modalities 

Analog Film Storage 
(T-Mat G) Phosphor CCD-Based 

Maximum OP 100 OP 100 Prototype OP 
Resolution OP 100 DenOptix DigiPan 100D 

lp/mm 
>5:<6 >5:<6 

>4.47: 
>5;<6 

<4.86 
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Digital cephalometric images have been reported to be diagnostically acceptable 

for orthodontic treatment planning purposes:[7-1 0] however. there is a need to further 

compare various radiographic modes of image capture for cephalometry such as 

conventional vs. digital radiographs and scanned conventional films vs. digital 

radiographs. [9] 

Advanced Imaging Modalities in Orthodontics 

Advanced technologies are those that acquire images using a digital receptor and 

that provide the possibility of multiple planar reformatting (MPR). In these modalities, 

multiple images become truly inter-relational in that direct comparisons in multiple 

planes can be made. Some advanced technologies that are available to image the 

maxillofacial complex include magnetic resonance imaging (MRI), fan-beam 

computerized tomography (CT). and Cone Beam Computed Tomography (CBeT). The 

basis of advanced imaging is the recording of transmitted. attenuated x-rays of an object 

by a digital receptor to produce a digital image. Digital images are composed of pixels, or 

picture clements. arranged in a 2-dimensional rectangular grid. Each pixel has a specific 

size. color. intensity value. and location within an image and is the smallest element of 

the digitized image. In general. radiographic images use gray color with an intensity 

value between 8 bits (256 shades of gray) and 16 bits (65.536 shades of gray). The 

number of pixels per given length of an image (pixels/mm). the number of gray levels per 

pixel (bits), and the management of the gray levels determine image resolution or the 

degree of sharpness of the image. A voxel is a three-dimensional stack of bitmapped 

images, (each voxel having a height. width, and thickness) and is the smallest element of 
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a three-dimensional image.[18] 

Computed Tomography 

In addition to utilizing images that are digitaL technological advancements now 

allow dentistry to create images of the maxillofacial region in 3-dimensions. The first 3D 

imaging technique used in dentistry was computerized tomography (CT). CT units can be 

divided into two groups based on the acquisition X-ray geometry: fan beam and cone 

beam (Figure 1). Essentially. the latter method for capturing an image differs from the 

traditional CT in that it does so by cone beam volumetric tomography. A three­

dimensional X-ray beam passes through the object volume investigated. Simultaneously, 

the beam hits a two-dimensional extended detector and forms a true volumetric 

acquisition in a single scan (Figure 1). 

a. b. 

Figure 1. X-ray beam projection scheme comparing conventional or (a.) "fan beam" CT 

and (b.) cone beam CT (Images courtesy Predag Sukovic, Xoran Technologies, Ann 

Arbor. MI USA) 
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Fan Beam Acquisition 

CT scanners consist of an X-ray source and detector mounted on a rotating gantry 

(Figure 1 a). During one rotation of the gantry. the detector detects the flux (1.) of x-rays 

that have passed through the patient. These integrals constitute so-called "raw data" that 

are then fed into an image reconstruction method that generates cross-sectional images 

whose pixel values correspond to linear attenuation coefficients. Such machines acquire 

image data through a thin. broad. fan shaped X-ray beam which is transmitted through the 

patient. These scanners use a large. arc-shaped detector that acquires an entire projection 

without the need for translation. This rotate-only design. frequently referred to as "fan­

beam", utilizes the power of the X-ray tube much more efficiently than the previous 

generations. Recent advances in CT include multi-row detectors and spiral scanning. 

Multi-row scanning allows for the acquisition of several cross-sectional slices at the same 

time, reducing scanning times. Today's state-of-the-art scanners have 64 rows of 

detectors. Spiral (helical) scanning incorporates a moving table with the rotating X-ray 

tube. with the net effect that the X-ray tube describes a helical path around the patient. 

Cone Beam Acquisition 

CBCT scanners often utilize a 20 flat panel detector (Figure 1 b). which allows for 

a rotation of the gantry to generate a scan of the entire region of interest using a 180 

degree or greater rotation (up to two 360 degree rotations). as compared to conventional 

CT scanners whose multiple "slices" must be stacked to obtain a complete image. In 

comparison with conventional fan-beam or spiral-scan geometries. cone-beam geometry 

has higher efficiency in X-ray use, inherent quickness in volumetric data acquisition, and 
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potential for reducing the cost of CT. Conventional fan-beam scans are obtained by 

illuminating an object with a narrow, fan-shaped, beam of X-rays. The X-ray beam 

generated by the tube is focused to a fan-shaped beam by rejecting the photons outside 

the fan, resulting in a highly inefficient use of the X-ray photons. Further, the fan-beam 

approach requires reconstructing the object slice-by-slice and then stacking the slices to 

obtain a 3D representation of the object. Each individual slice requires a separate scan 

and separate 20 reconstruction. The cone beam technique, on the other hand, requires 

only a single scan to capture the entire object with a cone of X-rays. Thus, the time 

required to acquire a single cone-beam projection is the same as that required by a single 

fan-beam projection. However, since it takes several fan beam scans to complete the 

imaging of a single object the acquisition time for the fan beam tends to be much longer 

than with the cone beam. Although it may be possible to reduce the acquisition time of 

the fan beam method by using a higher power X-ray tube, this increases the cost and size 

of the scanner as well as the electric power consumption, thus making the design 

unsuitable for a compact scanner. 

Although CBCT equipment has existed for over two decades, only recently has it 

become possible to develop clinical systems that are both inexpt~nsive and small enough 

to be used in operating room, medical offices, emergency rooms, and intensive care. Four 

technological and application-specific factors have converged to make this possible. First, 

compact and high-quality flat-panel detector arrays were developed. Second, the 

computer power necessary for cone-beam image reconstruction has become widely 

available and is relatively inexpensive. Third, x-ray tubes necessary for cone-beam 

scanning are orders-of-magnitude less expensive than those required for conventional 
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CT. Fourth, by focusing on head/neck scanning only, one can eliminate the need for sub­

second gantry rotation speeds that are needed for cardiac and thoracic imaging. This 

significantly reduces the complexity and cost of the gantry. 

CBCT in Oral and Maxillofacial Imaging 

Currently available CBCT units in the United States are the NewTom QR DVT 

3G and VG (Dent-X/Quantitative Radiology s.r.l., Verona, Italy), CB MercuRay (Hitachi 

Medical Corp., Chiba-ken, Japan), i-CAT Next Generation (Danaher/Imaging Sciences 

International, Hatfield, PA), Gendex CB 500 (DanaheriGendex. Chicago, Illinois), Iluma, 

(Kodak Dental Imaging, Atlanta, GAllmtec Imaging, Ardmore, OK, USA), Kodak 9000 

OS (Kodak Dental Imaging, Atlanta, GA), Galileos, (Sirona Dental Systems,Charlotte 

NC), 3D Accu-i-tomo - XYZ Slice View Tomograph, (J. Morita Mfg. Corp., Kyoto, 

Japan), Promax (Planmeca Oy, Helsinki, Finland), E. Woo EPX/Imp!a and Trio (Vatech 

Industries, Korea), and Scanora 3D (Soredex, Helsinki, Finland), and PSR 9000N 

(Belmontl Asahi Roentgen, Kyoto, Japan). All but the five are capable of imaging the 

skull to include most anthropometric landmarks used in cephalometric analysis (Figure 

2)(Table 2). Several additional units are in various stages of testing or FDA approval. 
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a. b. c. d. 

Figure 2: Examples of current commercially available CBCT units for dento­

maxillofacial radiology. a. Newtom 9000G (Quantitative Radiology, Verona, Italy) b. CB 

MercuRay (Hitachi, Medical Corp., Kashiwa-shi, Chiba-ken, Japan) c. 3D Accuitomo -

XYZ Slice View Tomograph, (J. Morita Mfg. Corp., Kyoto, Japan) d. i-CAT 

(DanaherlImaging Sciences International, Hatfield, PA) 
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Table 2. Comparative Specifications of Representative FDA-Approved CBCT Systems (Modified from: [19]) 

J. Morita Imaging Hitachi Sirona Dental Vendor AFP-Dent-X Medical Kodak Dental Systems Mnfr. Corp. Sciences IntL Systems Systems 

CBCTName NewTom3G 3D Accu-i- iCAT CB MercuRay ILUMA Ultra Cone Gali1eos tomo Beam CT Scanner 

Headquarters Elmsford, NY Kyoto, Japan Hatfield, P A Tokyo, Japan Ardmore, OK Charlotte, NC 

Initial 
FOAlCDRH March 2001 May 2003 October 2003 October 2003 November 2005 July 2006 
Approval 

Grayscale 12 Bit 12 Bit 12 Bit 12 Bit 14 Bit 12 Bit-sw 16 bit ...... 
Vl Foot Print (H 2.08 x 1.62 x 1.83 x 1.12 x 2.25 x 1.96 x xWxD) 2x2xO.74 1.2 1.49 1.9 1.06 x 1.42 x 2.1 5 2 x 1.60 x 1.60 

(meters) 

Cesium iodide Cesium iodide 127- micron Image Image CsI/amorphous CsI/amorphous Image amorphous silicon flat Proprietary Siemens 
Detector intensifier/CCO silicon flat silicon flat intensifier/CCO panel Technology 

panel panel 

Rotation per 1 1 lor2 1 Single 3600 Rotation 2100 200 single 
scan shots 

Patient Supine Seated Seated Seated Seated with rear-head Standing/sitting Positioning stabilization 



Table 2 (continued). Comparative Specifications of Representative FDA-Approved CBCT Systems (Modified from: [19]) 

J. Morita Imaging Hitachi Sirona Dental Vendor AFP-Dent-X Medical Kodak Dental Systems Mn/r. Corp. Sciences IntL Systems Systems 

Pre-Installed NewTom3G i-Dixe! Xoran Cat CBWorks ILLUMINA VISION3D SIDEXIS/GALAXIS Software 

Scan time (s) 5.6-36 17 10-4- 9.6 20-40 14 

mA 15 max 1-10 3-5 2-15 4-7 5-7 

Kv 110 max 60-80 120 120 120 85 

Scan 
diameter 25 4-6 17 25 17-19 15 

0'1 (cm) 

Scan height 
15-30 4-6 6-27.4 15-30 10-19 15 (cm) 

Slice width 
0.1-0.5 0.125-2.0 0.2-0.4 0.1-0.5 0.0936-0.4 

Voxel size: 150/300 
(mm) microns 



The cone-beamed technique uses a single scan in which the x-ray source and a 

reciprocating x-ray detector are attached by a "U-" or C-arm and rotate around the 

patienfs head acquiring multiple projection scan images. The field of view (FOV) or area 

of interest able to be covered is primarily dependent on the detector size (Image 

intensifier/CCO. CMOS or a:SiTFT field dimensions) and beam projection geometry. 

While the FOV can be varied by the application of zoomed image reconstruction (e.g. 

MercuRay [Hitachi. Medical Corp .. Kashiwa-shi. Chiba-ken. Japan]) this is usually done 

at the loss of image resolution. 

Data is obtained from a series of multiple single-projection scan images as the x­

ray source rotates around the patient" s head. The number of images comprising the 

projection data is determined by the frame rate (number of images acquired per second). 

the completeness of the trajectory arc and the speed of the rotation. The number of 

projection scans comprising the data set is variable. depending on the system. The 

number of projection scans comprising a single scan may be fixed (e.g. Ne\Viom 3G. QR. 

Inc. Verona. Italy: Iluma. Imtec Inc .. Ardmore. OK: Galileos. Sirona AG. Bensheim. 

Germany. or Promax 3~. Planmeca Oy. Helsinki. Finland) or variable (e.g. iCAT. 

Imaging Sciences International. Hatfield. PA: PreXion 3~. Terarecon. San Mateo. CA). 

For example. the i-CJ\ T has a choice of 10 second. 20 second (standard) and 40 second 

scans in the Classic Generation. and 8 second. 15 second and 20 second scans with the i­

CAT Next Generation. For pulsed generator units. the number of basis images produced 

is roughly proportional to the exposure time reflecting a relatively constant frame rate. 

More projection data provides more information to reconstruct the image. allo\\/s 

for greater spatial and contrast resolution. increases thc signal-to-noise ratio producing 
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"smoother" images and reduces metallic artifacts. However this is usually accomplished 

with a longer scan time, a higher patient dose and longer primary reconstruction time. 

Reducing the number of projections used to reconstruct the volumetric database provides 

a proportionate reduction in patient radiation exposure but may lead to reduced image 

quality (Figure 3). As CBCT technology is being applied to 3D orthodontic imaging, the 

use of techniques to minimize patient exposure and their effect on cephalometric analysis 

accuracy should be investigated. 

Figure 3: Axial orthogonal image of phantom demonstrating the effect of image quality 

of increasing the number of projections used to construct a volumetric dataset from (a.) 

306 projections (20s scan) to (b.) 612 projections (40s scan). 

CBCT Advantages 

Because CBCT provides images of high contrasting structures well, it is 

extremely useful for evaluating osseous structures. Combined with the limitation of FOV, 

CBCT is therefore well suited towards the imaging of the craniofacial area. Currently, 

limitations exist in the application of this technology for soft tissue,[23, 24] but efforts 

are being directed towards the development of software algorithms to improve signal-to-
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noise and optimize available contrast. 

The utilization of CBCT technology in clinical practice provides a number of 

potential advantages compared with conventional CT related to the beam limitation. scan 

time reduction. and image display. Specifically the advantages ofCBCT are as follows 

[19]: 

1) Variable FOV. Collimation of the CBCT primary x-·ray beam enables 

limitation of the X-radiation to the area of interest. For most (but not all) 

CBeT systems an optimal FOY (field of view) can be selected for each 

patient based on suspected disease presentation and the region to be imaged. 

For example. radiographic investigation of the mandible can be performed by 

selection of an appropriate rOY. This functionality provides additional dose 

savings by limiting the irradiation field to fit the FOV. with a resulting 

exposure reduction to the patient. 

2) Sub-millimeter resolutioll. Maxillofacial diagnostic CBCT units all use mega­

pixel solid state devices for x-ray detection providing a minimal voxel 

resolution of < O.25mm isotropically. exceeding the specifications of 

commonly used multi-slice CT systems in terms of spatial resolution. 

3) High speed scanning. Because CBCT acquires all projection images in a 

single rotation. scan time can be reduced enormously. In the fan-beam cr 

system. particularl;, in high resolution. each thin slice thickness can take up to 

several tens of seconds. However. various CBCT systems can scan an entire 

head in 10 seconds or less. While faster scanning times usually mean less 

number of projections from vvhich to reconstruct the MPR images. motion 
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artifact due to subject movement is reduced. Reconstruction times vary 

depending on FOV and scanning speed. 

4) Dose reduction. Preliminary reports indicate that CBCT patient absorbed dose 

can be significantly reduced when compared to conventional CT used with 

manufacturer recommended sequences.[25] The Newtom 9000 system 

(Quantitative Radiology. Verona. Italy) also has an automatic exposure 

control device \vhich selects the starting intensity of the x-ray beam. 

depending on the size of the patient. and modifies the anodic current 

according to the density of the transversed tissues (maximum value 15mA). 

This reduces the patient absorbed dose to approximately that of a film-based 

periapical survey of the dentition [26-28] or 1-7 times that of a single 

panoramic image (varying with the panoramic system used).[29. 30 J 

Depending on bone density. a traditional CT exposes the patient to 

approximately 6-8 times that amount when evaluating either the maxilla or 

mandible [29] and 15 times the amount of CBCT exposure when imaging both 

the maxilla and mandible.[31] Table 3 compares radiation exposures from 

CBCT and other imaging modalities. 
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Table 3. Radiation Exposures from CBCT and Other Imaging Modalities (Modified from: [19]) 

Effective Dose Dose In single Dose In days per Dose In % medical Dose % annual per 
(pSv) using 1990 panoramic capita background CT equivalent capita background 

Machine & Technique ICRP multiples 

NewTom 30 full (12") FOV 45 7 4 2.1 1.2 

NewTom 30 wi chin tilt & 28 4 3 1.3 0.8 
thyroid shield 

CB McrcuRay full (12") 477 74 48 22.7 13.2 
FOV 10 mA-I00kV 

CB MercuRay P (9") FOV 289 45 29 13.8 8 

N 
CB MercuRay I (6") FOV 169 26 17 12 4.7 ...... 125 (maxillary) 

CB MercuRay I (6") FOV 125 19 12 5.9 3.5 
wi chin tilt 

iCAT full (12") FOV 135 21 13 6.4 3.7 

iCAT wi chin tilt & thyroid 57 9 6 2.7 1.6 
shield 

Panoramic (OrthoPhos Plus 6 1 0.3 0.3 DS) 

CT maxilla & mandible 2100 385 243 100 58.3 

CTmaxilla 1400 164 103 100 38.9 

Oalileos Pending Pending Pending Pending Pending 



5) Voxel isotropy. The smallest element of a volumetric dataset is the voxel. 

Voxels have a dimension of thickness as well as the height and width of a 2-

dimensional pixel. Voxel representation and therefore resolution are 

dependent on lateral slice thickness. determined principally by the matrix size 

of the detector and longitudinal sl ice thickness (body axis). which in 

conventional CT is determined by slice pitch. a function of gantry motion. 

Therefore. conventional CT data is obtained anisotropically. where axial voxel 

dimensions are equal. but where coronal dimensions are greater and are 

determined by slice pitch. usually a 1 mm minimum (Figure 3a). Therefore. 

spatial resolution in the longitudinal slice (body axis direction) is poorer than 

that oflateral slice. On the other hand. the CBCT uses a 20 detector and the 

same high resolution is obtained in the longitudinal slice (body axis direction) 

and lateral slice (transverse direction). This voxel representation is known as 

isotropic (Figure 4b). Because of this characteristic, coronal multi-planar 

reformatting (MPR) of CBCT data has the same resolution as axial data. 
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a. Anisotropic V oxel b. Isotropic Voxel 

Figure 4: Comparison ofvoxel acquisition features on conventional "fan beam" CT 

(a.tand "cone beam" CT (b.) 

6) Real time analysis and manipulation. Although conventional CT data is 

inherently digital, images are supplied to referring clinicians as fixed format, 

hard copies on film transparencies. CT image algorithms necessary to 

reformat the data require the computing power of workstations. While such 

data can be "converted" and imported into proprietary programs for use on 

personal computers (e.g. Simplant and Simplant CMF: Materialise, Ann 

Arbor, MI, USA; Procera: Nobel Biopharma, Sweden)) this process is 

expensive and requires an intermediary stage that potentially extends the 

diagnostic phase. Reconstruction of CBCT data is performed natively by a 

personal computer. In addition, availability of software to the user, not just the 

radiologist, is available either via direct purchase or innovative "per use" 

license from the various vendors (e.g. DanaherlImaging Sciences 

International). Further, because the original data is isotropic, it can 

theoretically be re-orientated such that the patient's anatomic features are re­

aligned. At least one manufacturer has incorporated this capability into both 
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their acquisition and viewer software (Imaging Sciences International). 

Finally, the availability of cursor-driven measurement algorithms provides the 

clinician with an interactive capability for real-time dimensional assessment. 

7) Display modes unique to maxillofacial imaging. CBCT software can 

reconstruct the proj ection data to provide as many as 512 coronal, sagittal and 

axial MPR frames. Common to all standard viewing layouts are usually preset 

options providing display of coronal, sagittal and axial MPR frames. Basic 

manipulations include zoom or magnification, window/level, the capability to 

add annotation and measurement algorithms. Some proprietary software is 

capable of advanced imaging processing functions including: 

a. Oblique MPR such as linear oblique MRP (useful for TMJ assessment) 

or curved oblique MPR providing a "panoramic" image. 

b. Cross-sectional imaging provides sequential multi-slice images usually 

perpendicular to the "panoramic" MPR, useful in implant site 

assessment or lateral oblique MPR which has application in the 

assessment of the TMJ. 

c. Variable slice thickness adjustments for oblique MPR images provide 

the clinician with the possibility of producing undistorted plain 

radiograph projection-like images. One example is the creation of a 

cephalometric plane projection, either sagitally or coronally. This is 

developed by increasing the slice thickness of a mid sagittal MPR plane 

to the width of the head (l30-150mm) to produce an image composed of 

the summed voxels, an image which has been referred to as "Ray Sum". 
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This image can be exported and analyzed using third party proprietary 

cephalometric analysis software. This functionality may potentially 

reduce the need for additional radiographic exposure. Oblique MPR 

images along the curve of the dental arch with slice thickness 

comparable to the in-focus image layer of panoramic radiographs (15-

35mm) can also be individually created to provide a "panoramic" 

radiograph customized for each patient. However, unlike conventional 

panoramic radiographs, these MPR images are undistorted and are free 

from projection artifacts. 

d. Maximum intensity projection (MIP). This is a three dimensional 

volume rendering technique which is used to visualize high-intensity 

structures within volumetric data. At each pixel, the highest data value 

encountered along a corresponding viewing ray is depicted. In 

combination with oblique MPR and selection of wide slice thickness, 

this technique is capable of providing 3D surface images. This is 

particularly useful in cephalometric radiography. 

e. Surface and volume rendering algorithms are available with some 

software which provides three-dimensional reconstruction and 

presentation of data that can be interactively adjusted (Figure 5). 
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Figure 5. Surface-rendering reconstruction of i-CAT CBCT data set (3DVR, Allovision, 

Greenville, SC) produces interactive volumetric image that can be manipulated to display 

bony surfaces of maxillofacial complex from various standard orientations. 

f. Previously unavailable for viewer use, numerous image enhancement 

algorithms are now able to optimize image presentation. While the 

diagnostic efficacy of the application of these algorithms is yet to be 

studied, preliminary investigations indicate that sharpening and edge 

filters show the greatest potential in refining anatomic structures for 

interpretation. 

8) Variable acquisition modes. Many, but not all, units are capable of variable 

scanning fields of view (FOV) from large FOV capable of imaging the entire 
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craniofacial complex (currently up to 13.2cm \\ith i-CA Tand 19cm with CB 

MercuRay to limited FOV for spccific diagnostic tasks. The Iluma at the time 

of this research was limited to one full FOY. 

CBCT Applications 

The advent of CBCT technology has pawd the wa) for the development of 

relatively small and inexpensive CT scanners dedicated for use in dento-maxillofacial 

imaging. Manufacturers' web sites provide numerous examples illustrating the value of 

CBCT in evaluating the position of impacted teeth. supernumerary teeth. maxillary sinus 

position (in reference to maxillary molars). mandibular canals. and lingual nerves. 

Maxillofacial applications of CBCT imaging have also been reported for oral and 

maxillofacial surgery.[34-38] implantology. [39-42] and craniofacial assessment in 

orthodontics.[43-48] A number of researchers ha\e reported high dimensional accuracy 

of maxillofacial CBCT in measuremcnt of facial structures. r 42.49 J Other examples of 

this modality's uses include surgical assessment of pathology. and 

preoperative/postoperative assessment of craniofacial fractures.r24.28J31 

Applications in Orthodontics 

In orthodontics CBCT imaging has current and potential applications in the 

diagnosis. assessment and analysis of patients with maxillofacial orthodontic and 

orthopedic anomalies. 

In diagnosis. CBCT prO\ides numerous display modalities that can assist the 

assessment of numerous dental conditions of concern in orthodontics including impacted 
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and supernumerary teeth. The exact position of impacted teeth and their relationships to 

adjacent roots or other anatomical structures (eg. the mandibular canal) can be 

comprehended. so that surgical exposure and subsequent movement can be planned. 

Some of the most signi ficant potential gains from the introduction of CBeT in 

orthodontics are the ability of integration of information. Instead of looking at individual 

diagnostic records~the panoramic radiograph. the cephalogram and its concurrent 

analysis. the dental models and the patient photographs~a single volume that contains 

all of this information is now available allowing for a unique appreciation of the inter­

correlations bet\veen all planes and structures. Image integration. particularly three 

dimensional imaging. may help to oVI;:rcome a number of inherent deficiencies in 

orthodontic treatment planning by providing adequate visualization of anatomical 

structures.l51. 53] These include assessment of: 

I) Temporomandibular joint condition prior to treatment particularly if related to 

condylar trauma and struc1.ural development during growth 

2) Osseous structural conditions in the sagittal. vertical and transverse plane 

3) Alveolar bone width of available bone for buccolingual movement of teeth 

(i.e. arch expansion or labial movement of incisors) and evaluation of 

fenestrations and dehiscence on the buccal and lingual surfaces. 

4) Tooth inclination and torque: 3D evaluation of the axial inclination of teeth 

might provide information to supplement that obtained from models. 

5) Root resorption: Current CT machines could have too low resolution to detect 

early stages of root resorption due to orthodontic movement. but advances in 

technology might permit this in the future. 
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6) Soft tissue relationships: Lip length is currently measured on lateral 

radiographs. but mouth width is not. Three-dimensional data could provide 

information on the relationship of the corners of the mouth to the underlying 

dentition. Also. cheek thickness and cheek prominence are soft tissue 

variables that could be investigated in relation to dental arch width and facial 

esthetics. 

7) Tongue size and posture: Volume measurements of the tongue could provide a 

more objective assessment of size. to aid in the diagnosis of open bites and 

arch-width discrepancies. 

8) Ain".ay assessment: Volume measurements of the airway could assess 

patency. especially in patients who are suspected of mouth breathing, adenoid 

hypertrophy. or sleep apnea. Nasal morphology and turbinates can be clearly 

seen in CT scans. 

9) Patients requiring surgery and those with syndromes and clefts: Surgical 

planning for such patients can benefit from 3D imaging. 3D data are 

especially helpful in patients with asymmetry. where true dimensions can be 

measured, without the problems of magnification or distortion. from which 

our customary 2D projections sutler. In patients with clefts. bone and soft­

tissue defects can be understood much better. 

There is an increasing desire in orthodontics to integrate the images of all 

functional elements. both hard and so ft tissue. in the assessment of patients with 

maxillofacial anomalies. Currently. this is peri()rmed using a combination of 

photographic and radiographic images and study models. Due to the fact that 
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orthodontics involves assessment of hard tissue and soft tissue interactions. such as the 

effects of tooth movement on esthetics and on functional elements such as occlusion and 

TM1. it is highly desirable to have one imaging modality that provides images of all 

existing elements therefore leading to a better assessment of the interactions present. 

Traditionally. conventional cephalometric projections such as the lateral 

cephalogram. posterior anterior. and submentovertex were used individually or in 

combination to provide two dimensional representations of structures in three planes of 

space. There was no single imaging technique readily available to the orthodontist that 

provided accurate representation of all osseous aspects of the TM1 complex and 

associated structures until the recent commercialization of CBCT. 

Hilgers et al. studied CBCT multi-planar refonnatted projections for TM1 

examination to compare the accuracy oflinear measurements of the TM1 and related 

structures with similar measurements made using conventional cephalograms and with 

the anatomic truth. Using a digital caliper. the investigator measured linear dimensions 

between 11 anatomic sites to assess the anatomic truth for 25 dry human skulls. All skulls 

were imaged using i-CAT CBCT and digital cephalograms (PSP) were made in all three 

orthogonal planes (lateral cephalometric. posterior anterior. and submentovertex). Linear 

measurements were made on seven custom CBCT reconstructions and the digital 

cephalograms. Results showed that all CBCT measurements were accurate; however, 

three of five lateral cephalometric (LC) measurements. four of five posterior anterior 

(PA) measurements. and four of six submentO\ertex (SMV) measurements varied 

significantly from the truth. Intra-obsen;er CBCT measurements were highly reliable 

compared to the anatomic truth. and significantly more reliable than measurements made 
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from LC PA. an SMV images. The authors conclude that custom oblique MPR 

reconstructions using CBCT provides accurate and reliable linear measurements of 

mandibular and TMJ dimensions. [54] 

Since cephalometric radiology was developed. numerous analyses have been 

proposed to facilitate communication between practitioners and to describe how 

individual patients vary from norms derived from other studies. None the less. current 

cephalometric analyses are two dimensional diagnostic renderings derived from a three 

dimensional structure. Cephalometric measurements made on 2D radiographs are subject 

to projection. landmark-identification. and measurement errors.[56-58] The major source 

of cephalometric error is landmark-identification. which is influenced by many factors 

such as the quality of the radiographic image. the precision of landmark definition. the 

reproducibility of the landmark location. the operator. and the registration procedure. 

Although some cephalometric landmarks are located in the midsagittal plane. many are 

located at ditTerent depth fields leading to increased distortion errors.[56-58] In addition. 

in lateral cephalometry. it is difficult 1:0 determine the difference between right and left 

sides for superimposition of images. and the sides have different enlargement ratios. It is 

also difficult to detect defom1ities in the midfacial area and reading films is difficult due 

to the superimposition of cranial structures.[59] Despite the potential errors innate to this 

technique. cephalometric radiographs are still \\idely used and. in many cases are 

essential in the diagnosis and treatment of the patient. 

To compensate for the drawbacks of 2D measurements. many techniques have 

been developed. These techniques include the orientator.[60] the coplanar stereometric 

system.[61] the multiplane cephalometric analysis.[62] the basilar multiplane 
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cephalometric analysis.[63] and the biplanar cephalometric stereoradiography.[64] 

Since the mid 1970s. 3D analyses and related procedures in orthodontics have 

been attempted through several different approaches.[S6] There have been three 

dimensional cephalometrics proposed that use a combination oflateral and frontal 

cephalograms. These methods rely on the identification of the same point on both 

radiographs and the implementation of geometry to calculate the point three 

dimensionally. These approaches. however. are not truly three dimensional and have 

obvious limitations in that the accuracy depends on a correct correspondence between the 

landmark locations on the two radiographs. and points not visible on both radiographs 

cannot be used.[SI] Advances in the use of 3D imaging sofhvare have permitted 

important changes in the perception of 3D craniofacial structures.[S6] CBCT produces a 

lower radiation dose than spiral CT and is comparable to conventional radiographs. 

Because of its volumetric data. CBCT allows secondary reconstructions. such as 

sagittal, coronaL and para-axial cuts and 3 D reconstructions of various craniofacial 

structures.[34A3.S6] Unlike the traditional cephalometric radiograph. the CBCT 

produces images that are anatomically true (1: I in size) 3D representations. from which 

slices can be displayed from any angk~ in any part of the skull and provided digitally on 

paper or film. Other reasons for the implementation of 3D cephalometry include: [S9] 

1) actual measurements can be obtained 

2) a spatial image of the craniofacial structures can be produced 

3) the 3D image can be rotated easily by changing the rotational axis 

4) the inner structures can be observed by removing the outer surfaces 

S) various anatomical areas can be observed independently by changing the 
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density 

According to Hajeer there are numerous benefits of 3D imaging in orthodontics 

including: pre- and post-orthodontic assessment of dentoskeletal relationships and facial 

esthetics. auditing orthodontic outcomes with regard to soft and hard tissues, 3D 

treatment planning and 3D soft and hard tissue prediction. 3D orthodontics also offers 

efficiency in archiying 3 D facial. skel etal and dental records for treatment planning, 

research and medico-legal purposes.[S5] Some authors indicate that three dimensional 

CBCT images may be useful in the assessment of gro~th and deyelopment.[18.20.35-

37,50] 

However. many practitioners are accustomed to working with traditional two 

dimensional cephalograms and may be hesitant to tum to 3D. hO\vever. 2D conventional 

measurements do not have to be abandoned when moying to 3D implementation. Three 

dimensional data can be rendered as a 2D projection resembling a radiograph allowing 

traditional analyses to be completed. and customary cephalometric points can also be 

digitized in 3D on the yolumetric rendering itself.[51] Halazonetis believes that the push 

at implementation of 3D imaging in cephalometries will lead to an introduction of new 

landmarks and nev, analyses which also incorporate advances from related fields, such as 

geometric morphometrics.[51] 

Several CBCT systems permit reconstructions that are comparable with 

traditional cephalometric projections. Recently. Farman and Scarfe reported a 

methodology for generating simulated lateral cephalometric images from CBCT using 

"ray-sum" multiplanar reformatted (MPR) yolume reformation.[65] The authors describe 

a methodology in which existing CBCT image data sets acquired using a 20-second 



exposure cycle were used to create two dimensional projection images. The three 

methods of acquisition involYed: 

1) Scout method: exporting the lateral scout radiograph taken initially to confirm 

the patient's position. which only provided a lateral cephalogram, 

2) Basis image method: selecting the individual lateral and anteroposterior basis 

images with the least anatomic discrepancies betvveen the right and left sides 

corresponding to lateral and posteroanterior cephalometric projections and 

3) Ray-sum method: manipulation of the volumetric data set allowed for the 

development of cephalometric images in all three orthogonal planes. The ray­

sum method includes two dimensional cephalometric reconstructions that 

were developed by increasing the slice thickness of each plane, hence 

providing an image composed of the summed voxels, or a ray-sum image. 

The authors indicate that the major difference between the scout or basis image 

method. or conventional cephalometric images. and the ray-sum method, is that ray sum 

image projections are orthogonal and have equal magnification between the beam's 

entrance and exit sides of the patient. The authors were able to produce slices equal to the 

dimension of the chosen voxel resolution. thus removing anatomic superimposition of 

landmarks and allO\ving for more precise definition of bony landmarks. The authors 

suggest that the use of 3D surface rendering techniques such as maximum intensity 

profile algorithms (Figure 6) and volume rendering (Figure 7) will redefine orthodontic 

treatment planning due to the ability to view 3D volumes of the maxillofacial complex 

from any plane. 
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Figure 6. Application of maximum intensity projection algorithms to ray-sum 

projections show relationships of numerous elements (eg, angulation of tooth roots in 

alveolar bone) because of their transparent nature. Ray-sum projections provide 

surface representation of CBCT volumetric data as posteroanterior, submentovertex, 

and lateral skull images. [65] 
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Figure 7. Integration of hard- and soft-tissue volumetric data are achieved through 

surface- and volume-rendering techniques. Visualization of dental occlusion from 

different perspectives can be achieved via production of surface images of selected 

maxillofacial structures. [65] 

In a recent study, Moshiri et al. showed that data from full field scanners can be 

used to generate simulated cephalometric images.[66] This observational cross-sectional 

in vitro study was conducted to compare the accuracy of linear measurements made on 

planar images from photostimulable phosphor based cephalograms and two dimensional 

(2D) simulated lateral cephalograms derived from full field cone beam computed 

tomography (CBCT) with direct measurements made on human skulls. The investigator 
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measured the linear dimensions bet\veen 15 anatomical landmarks on 23 dentate dry 

human skulls using a digital caliper to provide nine orthodontic linear measurements (S-

N. Ba-N. M-N. ANS-N. ANS-PNS. Pog-Go. Go-M. Po-Or and Go-Co). The skulls were 

stabilized and imaged with CBCT with a single 360°. 20s. O.4mm voxel resolution scan. 

Three 20 simulated cephalometric projections were created: 1) Scout (S). 2) ·'ray-sum'· 

reconstructed (RS) and 3) basis projection single frame (F) images. Conventional lateral 

cephalograms (LC) were acquired using a Quint Sectograph and a storage phosphor 

imaging plate system. TIFF Images were imported into a cephalometric analysis program 

(Dolphin Imaging Cephalometric and Tracing Software. Chatsworth. CA. USA) and a 

single observer computed the linear measurements betv-;een landmarks and compared 

them to the anatomic truth. The results showed that the ICC for LC was significantly less 

than for skull and all eBeT derived modalities. Statistical differences between modalities 

were found for all measurements except Po-Or (p=0.27). For S-N. 8a-N. ANS-PNS and 

N-M. values for lateral cephalogram measurements were significantly different from 

actual dry skull dimensions. whereas CBCT values did not differ from the dry skull 

measurements. All modalities provided signiticantly different measurements for Pog-Go 

and Go-M. For ANS-N and Go-Co all eBCT measurements were significantly less than 

lateral cephalogram measurements. In addition for Go-Co. measurements from scout 

images were significantly ditTerent from actual dimensions. The study concluded that for 

most measurements in the sagittal plane. simulated 20 lateral cephalometric projections 

from CBCT are more accurate than lateral cephalogram images. The authors also add that 

while cephalometric images generated from single CBCT basis projections provide added 

accuracy in cephalometric analysis. there was no additional advantage in using ray sum 
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images generated from the CBCT volumetric dataset. 

Adams et al. conducted a study to evaluate and compare traditional 20 

cephalometric analysis to a 3-D imaging system \vith regard to accuracy in recording the 

anatomical truth as defined by physical measurements taken using a calibrated 

caliper.[67] The study used nine dried human skulls to locate thirteen skeletal landmarks 

both by traditional 2D cephalometry as well as the three dimensional approach. The high 

average intra-class correlation (0.995). variance (.054 mm\ and standard deviation (SD 

±0.237 mm) as averaged over 76 measurements derived from precision calipers, using the 

predetermined 13 skeletal landmarks. established these physical measurements as the 

gold standard for comparison of the two radiographic methods. The measurements from 

the 20 model indicated higher variability. \vith a larger mean standard deviation (6.94 

mm) compared with the 3D measures (0.54 mm). The 2D analysis lacked precision as 

compared with the 3D analysis (points clustered within 0.5 mm). As compared to the 

gold standard. the ranges between the two systems demonstrated a much larger 

magnitude of potential error inherent in the 20 system. According to the study, when 

comparing the actual distance of anatomical distances as measured on a human skull to 

the measurements derived from a 20 or 3D model. the 3D method is more accurate and 

precise than the 20. According to the authors. "Evaluating distances in 3D space with a 

20 image grossly exaggerates the true measure and offers a distorted view of craniofacial 

growth:' 

Chidiac el al. compared measurements from human skulls and their images from 

lateral and PA cephalometric radiographs and CT scanograms on thirteen adult skulls. 

They were unable to reveal any statistically significant differences between mean angular 

38 



values on cephalometric radiographs and CT views. For sagittal distances, the highest 

correlation was between the direct measure of condylion-to-pogonion and its 

radiographic image (r= 0.73). Correlations between radiographic and skull transverse 

measures were higher (0.46 < r < 0.80) than the corresponding skull vs. CT measures 

(0.06 < r < 0.38). CT and CR images are 20 slices and projections, respectively, of 3D 

structures. They found that radiographic images have a distortion (approximately 8%) 

that brings Co-Pg closer to its anatomic distance, inadwrtently contributing to better 

cl inical planning, particularly in orthognathic surgery. The pattern of distortion of PA 

images was in opposite directions for CR and CT views. They concluded that 

cephalograms and CT scanograms are close in depicting angular relations of structures, 

but they differ in the accuracy of imaging linear measurements, because the location and 

size of an object within the imaged 3D structure varies \vith both records.r68] 

Most recently, Chan e/ al. compared eight measurements [(sagittal (Sella-Nasion, 

ANS-PNS), transverse (biorbital. bicoronoidaL and palatal \vidth) and vertical (uppee 

lower, and posterior facial height)] between 12 commonly used craniometric landmarks 

made directly on five dry skulls to traditional cephalometry and CBCT (Hitachi CB 

MercuRay system) using three fields of view (6",9", and IT). Intraoperator analysis for 

skull, CBCT and cephalometric measurements showed good correlation (r>0.93). Both 

cephalometric and all CBCT measurements showed high correlation (r>0.96) and no 

statistical significant difTerence when compared to skull measurements. The average 

absolute difTerence between cephalometric and skull measurements was 3.34 ± 4.SSmm. 

Comparing skull to CBCT measurements, 6", 9", and IT FOY images showed 

differences of 0.53 ± 0.46mm, 0.48 ±0.44mm, and 0.46 ±0.45mm respectively. They 
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concluded that CBCT measurements showed reliability and more linear measurement 

accuracy than cephalometry and that CBCT linear measurement accuracy improved as 

voxel size decreased. [69] 

Although recent studies have shown that CBCT derived images are accurate in 

regard to linear cephalometric measurements.[66.67] the Cllnent challenge for clinicians 

is to understand and interpret 3D imaging. because there is currently no specific way to 

analyze these 3D images. and interpretation limitations still exist.[56] Lagravere et al. 

proposed a reference landmark for use in three dimensional cephalometric analysis with 

3-dimensional volumetric images.[56] CBCT scans were obtained on 10 patients. all 

using the same imaging protocol of having the patient lie down with the Frankfort 

horizontal plane perpendicular to the noor. Images were converted into DreOM format 

and then rendered into volumetric images using AMIRA software. The investigators used 

the sagittaL axial. and coronal slices and the 3D image reconstruction for landmark 

positioning. A point located equidistant to the points in the centers of each foramen 

spinosum (ELSA) was established as the reference point (x=o. y=O. z=o coordinates). 

Traditionally used cephalometric landmarks were located on the volumetric images and 

coordinates of the different landmarks were determined with respect to that reference. 

Coordinates of ELSA were registered in a datasheet in the form of x, y, and z dimensions 

for the 10 subjects measured at three independent times. Present statistical tests do not 

consider 3D data values. therefore in order to find the intraexaminer reliability, it was 

necessary to convert all 3D values (x. y. and z) to a sole value using the Delta E formula 

obtained from the Commission Intemationale de I'Eciairage L *a*b* color systems 

(Vienna, Austria). This system was applied because both use similar Cartesian coordinate 
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systems. The intra-examiner reliability was determined to be kappa = 0.998. Other 

cephalometric landmarks were then located in different parts of the images where linear 

and angular measurements could be determined. ELSA as an x = O. Y = O. z =0 reference 

point in 3D images was used because the location of the foramina spinosum was shown 

to have a low identification error in both the vertical and horizontal planes. The reason in 

choosing this landmark was tv,:ofold: 1) it is a small circle when viewed axially and is 

easy to locate by using the condyle and the glenoid fossa as guides. and 2) published 

literature has demonstrated that most of the cranial base grov.1h (>85%) occurs in a 

child's first 5 years with only minor changes after that age. The authors state that 

although 3D imaging is a new type of auxiliary examination in orthodontics. no validated 

method of describing change exists. Most clinicians analyze these images by visually 

identifying the structures seen without exact measurements or other quantitative analysis. 

The authors conclude that because ELSA has high intrareliability that it is an adequate 

reference point for 3D cephalometric analysis. 

Although three-dimensional imaging provides volumetric images that can be 

compared to reality in a I to 1 ratio. there is no validated method to describing change 

with this modality. because most clinicians simply analyze the images with no exact 

measurements or quantitative analysis.[70] By establishing a precise and reliable 

instrument for analyzing images produced by 3-D technology. clinicians may have new 

possibilities for determining changes produced by certain types of orthodontic treatment. 

In a subsequent study. Lagravere el (II. propose certain landmarks and planes to 

standardize 3D cephalometric image orientation.[70] CBCT scans were obtained on 10 

adolescents free from craniofacial anomalies. Images were converted into DICOM format 
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and then rendered into volumetric images using AMIRA softvvare. The investigators used 

the sagittaL axiaL and coronal slices as well as the 3D reconstruction of the images for 

landmark positioning. To determine orientation planes, the reference point ELSA from 

the previous study was located. then points located at the superior-lateral border of the 

external auditory meatus (SLEAM) bilaterally and on the mid-dorsum of foramen 

magnum (MDFM) were located. Coordinates (in mm) v,-ere established for these three 

points with respect to ELSA and intrareliability values were determined by using the 

intraclass correlation coefficient for all four points. The axial-horizontal plane (x-y plane) 

was then determined by using both superior external auditory meatus and ELSA; the 

sagittal-vertical plane (z-y plane) was formed by ELSA and mid-dorsum foramen 

magnum perpendicular to the x-y plane. Because all points are located on structures that 

are not significantly affected by grO\vth after 5 years of age these planes are adequate for 

standardizing the orientation of 3D images and eliminating the possibility of different 

results when using other landmarks or structures that might be influenced by growth or 

treatment. With these planes. the effect of the patient' s head position during image 

acquisition for analysis would be eliminated. The authors conclude that ELSA, rSLEAM, 

ISLEAM, and MDFM have high intrareliability when locating them with 3D images. The 

x-y and z-y planes formed by the respective points are an adequate way to standardize the 

orientation of 3D images. 

Conventional 3D CT Imaging Accuracy 

The clinical applicability of 3D CT has been evaluated in many studies. and a 

number of authors have investigated the accuracy of reconstruction software using 
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conventional fan beam derived data sets. [71-73] Recent studies have indicated that there 

is a high degree of accuracy of 3D reconstructions[74-76] with differences between 

measurements and actual dimensions being 2mm to 3mm.[77.78] 

The accuracy of craniometric measurements in 3 D surface rendering technique 

has previously been reported.[75] and recently a new 3D CT volume rendering protocol 

in vitro and in vim was established regarding the mental foramen. testing the accuracy 

and precision of the system.[79] Hmvever. there had previously been no report 

concerning the val idation of the soft tissue and the corresponding bone craniometric 

measurements using specific computer system tools in association with a 3D-CT volume 

rendering technique. Therefore. Cavalcanti et af. [74] inwstigated the precision and 

accuracy of anthropometric measurements using 3D conventional (spiral) CT volume 

rendering by imaging 13 cadaver heads and compared the dimensional accuracy of 10 

linear measurements on 2D and 3D reconstructed images performed by two radiologists 

with those obtained using a spatial digitizer. They used craniofacial measurements 

including AI-AI (Nasal breadth). G-Op (Skull length). N-Me (Facial height). N-Ns 

(Nasal height). Po-AI (Camper's plane). Po-G (Distance bet\veen Po and G). Po-Me 

(Distance between Po and M). Po-N (Distance betv,een Po and N). Po-Ns (Distance 

between Po and Ns). and Zy-Zy. They found no statistically significant differences 

between interobserver and intraobserver measurements or between imaging and physical 

measurements in both 30-CT protocols. The standard error was found to be between 

0.45% and 1.44% for all the measurements in both protocols. indicating a high level of 

precision. Furthermore. there was no statistically significant difference between imaging 

and physical measurements (P2'O.O I). The error between the mean actual and mean 3D-
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based linear measurements was 0.83% for bone and 1.78% fix soft tissue measurements, 

demonstrating high accuracy of both 30-CT protocols. The authors concluded that the 

new methodology allowed for a qualitatively high 3D resolution in both bone and soft 

tissue parameters. They also express that the anthropometric measurements in 3D-CT 

were considered to be accurate and precise for craniofacial applications. 

Recently. Swennen e/ al. developed a new voxel-based 3D cephalometry 

method.[80] From a single computed tomography data set. virtual lateral and frontal 

cephalograms are computed and linked vvith both hard and soft tissue 3D surface 

representations. allowing the setup of a precise and reproducible 3D cephalometric 

reference system[81.82] and reliable and accurate definition of 3D cephalometric hard 

and soft tissue landmarks[83.84]. Voxel based 3D cephalometry was developed and 

validated by using spiral multi-slice CT (MS-CT) data.[85] Statistical analysis showed 

that MS-CT 3D cephalometry is highly accurate and reliable with intraobserver 

measurement errors as low as 0.88. 0.76. and 0.84 mm for horizontal. vertical. and 

transverse orthogonal measurements. respectively. Interobserver measurement error was 

also low: 0.78. 0.86. and 1.26 mm for horizontal. vertical. and transverse orthogonal 

measurements respectively. Squared correlation coefficients showed high intraobserver 

and interobserver reliability.[86.82] The authors state that MS-CT cephalometry is a 

powerful craniofacial measurement tool with several advantages:[80] 

1) truly volumetric 3D depiction of hard and soft tissues of the skull 

2) real size (1 : I scale) and real time 3D cephalometric analysis 

3) no superimposition of anatomic structures 

4) high accuracy and reliability 
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5) the setup of a biological meaningful 3D cephalometric reference system for 

cross-sectional and longitudinal analysis of craniofacial changes. 

6) MS-CT Cephalometry is a major improvement over conventional 2D 

cephalometry. hov,:ever, some drawbacks do exist:[80] 

7) horizontal positioning of the patient during record taking falsifies the position 

of the soft tissue facial mask 

8) lack of a detailed occlusion due to artifacts 

9) limited access for the routine craniofacial patient because of higher cost 

10) higher radiation exposure than other craniofacial x-ray acquisition systems 

Most recently Park et al. [59] have described organized. methodological 

approaches to cephalometric analysis of 3D CT images. Axial images of 30 subjects were 

taken using CT Hispeed AdYantage (GE Medical System. Milwaukee) and reconstructed 

into 3D models using Vworks 4.0 (Cybenned. Seoul. Korea). Horizontal. midsagittal, 

coronal, maxillary. mid-maxillary. mandibular, and mid-mandibular planes were all 

established. 19 Landmarks were first designated on the 3D surface model. and their 

positions were verified in multiple planar reformat mode. then the Vworks 4.0 and 

Vsurgery (Cybermed) programs were used to measure the 3D models. The following 

measurements were determined: 

1) Zygoma: facial index, midface angle. and Bc point 

2) Maxilla: canting. rotation. divergence. A-point. and PNS point 

3) Mandible: canting. rotation, divergence, body length. ramal height, gonial 

angle. chin prominence. internal ramal inclination. external ramal inclination, 

lateral ramal inclination, B-point. Pog point. Me point. and mandibular facial 
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width 

4) Facial convexity (indicates the protrusive state of Bc. A. B. and Pog to the 

coronal plane) 

The results show that cephalometric measurements of the subjects were 

comparable with the normal Korean averages (t test 17:S.Ol) and no statistically 

significant differences were found. All landmarks were reproducible. and there was no 

significant intra-examiner error between the 2 sessions (p:;:,.O 1). The authors do suggest 

that there are some limitations when using conventional 3D CT as a diagnostic tool. 

Relatively large errors in the vertical position (z-coordinate) compared with the 

anteroposterior (y-coordinate) and transverse (x-coordinate) positions were found. The 

authors state that these errors can be overcome if thin slices are used during the 

reconstruction. The authors also express that high cost and radiation dose of conventional 

CT are major disadvantages. and can be improved upon by using cone beam CT. which 

offers a dose similar to the range of a conventional dental radiographic examination (40 

to 50flSv). In addition. in some craniofacial deformities. Orbitale or Porion are deviated. 

therefore. points in the horizontal plane should not be used as the reference plane. This 

limitation can also be overcome by using CBCT. in that CBCT can take an image in the 

natural head position. and the horizontal reference plane can be parallel to the floor, 

which is not influenced by Porion and Orbitale. The authors conclude that valuable 

information can be obtained from a 3D CT reconstruction. and that good treatment results 

can be obtained with a more precise diagnosis. and the continuous development of 3D 

analysis will provide more accurate data on a patient.[59] 
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Potential of CBCT 3D Cephalometry 

The application of CBCT technology has allowed the development of a new 

generation of commercial volumetric dentofacial imaging acquisition systems.[59] CBCT 

scanners allow image acquisition ofa large part of the craniofacial complex with only a 

3600 rotational sequence. and with dedicated CB reconstruction algorithms a CT data 

volume is obtained. [86] These scanners focus mainly on bony imaging. leading to a 

significant decrease in radiation dose. Interesting advantages of CBCT 3D cephalometry 

for the future include:[80] 

1. Reduced radiation exposure 

2. Natural shape of the soft tissue facial mask because of the vertical scanning 

procedure (i-CAT. CB MercuRay) 

3. Reduced artifacts at the level of the occlusion 

4. Increased access for the routine dentofacial patient because of in-office 

imaging (sufficiently compact to be installed in orthodontic and oral surgery 

outpatient clinics and private practices) 

5. Reduced cost 

Current limitations of CBCT 3D cephalometry include the scanning volume and 

positional dependency of the image value of a structure in the field of view of the 

scanner.[80] The NewTom 3G. i-CAT. and CB MercuRay CBCT scanners all have a 

scanned volume that is sufficient enough for the setup of the anatomic Cartesian 3D 

cephalometric reference system and 3D cephalometric hard and soft tissue analyses that 

do not involve the calvarium or complete ears. However. the 3D Accu-i-tomo and 

NewTom 9000 systems are not suitable for 3D cephalometry methods due to scanning 
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volumes that are too small. [80] In CBCT systems, the image value of an organ is 

dependant upon the position in the image volume. Hence. x-ray attenuation of CBeT 

acquisition systems currently produces different HU values or radiographic densities for 

similar bony and soft tissue structures in different areas of the scanned volume. An 

example of this would be that dense bone has a specific image value at the level of 

menton. but the same bone has a significantly different image value at the level of the 

cranial base.[80] Vannier states that when new developments in the synthesis and 

optimization of CBCT reconstruction algorithms allO\v the full exploitation of the 

potential of area detectors in CBCT. that CBCT will provide even more important 

benefits in craniofacial imaging.[44] Therefore it is suggested that improvements in both 

CB reconstruction algorithms and post-processing will solve or reduce this problem 

soon.[80] 

In conclusion. CBCT derived 3D cephalometry has a number of potential 

advantages for cephalometric imaging including sub-millimeter resolution, reduced 

radiation exposure. and inclusion of soft tissue profile. Perhaps the most important 

clinical advantage is that CBCT volumetric data can be exported as DICOM files and 

imported into personal computer based software to provide 3D reconstruction of the 

craniofacial skeleton. This possibility and the increasing access of CBCT imaging in 

orthodontics is a component of the paradigm that is directing imaging analysis from 20 

cephalometry to 3D visualization of craniofacial morphology.[5] The availability of fast 

scan CBCT now provides an alternate imaging modality capable of providing a 3 D 

representation of the maxillofacial complex with minimal distortion using multi-planar 

reformatted (MPR) images. 
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CHAPTER II 

STATEMENT OF OBJECTIVES AND HYPOTHESES 

Study Objectives 

The aim of this research is to compare the in vitro reliability and accuracy of 

linear measurements between cephalometric landmarks obtained from 3D surface 

rendered images from maxillofacial CBCT using variable numbers of basis projection 

images. This is important because while maxillofacial CBCT imaging is now being used 

to produce 3D images these are being acquired at appreciably higher doses than 

conventional digital cephalometric images. If CBCT protocols involving reduced number 

of images can provide comparable 3D images then this can lead to substantial patient 

radiation dose reduction. 

The specific aims of this study were to compare the: 

1. reliability oflinear measurements made on CBCT derived 3D surface 

rendered volumetric images generated using Dolphin 3D software 

(Chatsworth, C A) from various numbers of projections to direct 

measurements made on a sample of 19 human skulls. 

2. accuracy of linear measurements made on CBCT derived 3D surface rendered 

volumetric images generated using Dolphin 3D software (Chatsworth, CA) 

from various numbers of projections to direct measurements made on a 
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sample of 19 human skulls. 

Study Hypothesis 

Nul! Hypotheses (Ho) 

1. There is no difference in the reliability of linear measurements made on 

CBCT derived 3D surface rendered volumetric images generated using 

Dolphin 3D software (Chatsworth. CA) from various numbers of projections 

to direct measurements made on a sample of 19 human skulls. 

2. There is no difference in the accuracy of linear measurements made on CBCT 

derived 3D surface rendered volumetric images generated using Dolphin 3D 

software (Chatsworth. CA) from various numbers of projections to direct 

measurements made on a sample of 19 human skulls. 

Alternate Hypotheses (HI) 

1. There is a difference in the reliability of linear measurements made on CBCT 

derived 3D surface rendered volumetric images generated using Dolphin 3D 

software (Chatsworth. CA) from various numbers of projections to direct 

measurements made on a sample of 19 human skulls. 

2. There is a difference in the accuracy oflinear measurements made on CBCT 

derived 3D surface rendered volumetric images generated using Dolphin 3D 

software (Chatsworth. CA) from various numbers of projections to direct 

measurements made on a sample of 19 human skulls. 
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CHAPTER III 

METHODS AND MATERIALS 

This observational cross-sectional in vitro experiment was approved by the 

Institutional Human Remains Committee. Department of Anatomical Sciences and 

Neurobiology at our university. 

Sample 

The sample consisted of 19 dry dentate human skulls with a stable and 

reproducible occlusion. presence of a full pem1anent dentition and similar skull size. No 

demographic data was available on the studied human remains and the sample was not 

identified by age. gender or ethnicity. Fifteen anatomical landmarks, were identified on 

each skull using an indelible marker providing a total of 24 anatomical sites. A limited 

selection of 15 surface craniometric landmarks. of which nine were bilateral (Table 4 and 

5), were chosen to provide representative linear dimensions in vertical. transverse and 

horizontal planes. Operational definitions were developed as elaborations or 

modifications of those presented by previous authors. [77. 91] The dimensions between 

these specific points provided sixteen linear distances commonly used in lateral 

cephalometric orthodontic analysis (Table 6: Figure 8). To establish the true distances 

between the selected anatomic points. measurements were made by the principal author 

51 



and research associate (M~) three times independently using an electronic digital caliper 

(27-500-90. GAC. Bohemia. NY). The mean of the measurements served as anatomic 

truth. 

To provide soft-tissue equivalent attenuation. two latex balloons filled with water 

were placed in the cranial vault prior to imaging. To separate the mandibular condyle 

from the temporal fossa. a 1.5 mm thick styrofoam wedge was placed in the joint space 

between the glenoid fossa and the condylar head. For all images. the teeth were placed in 

centric occlusion (maximum intercuspation) and the jaws were held closed by bilateral 

metal springs. A custom plastic head holder. vvith a polyvinyl chloride pipe extension for 

placing into the foramen magnum, was constructed to support the skulls during imaging 

(Figure 9). 
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Table 4. Definition of Mid-Line craniometric surface landmarks used in the cephalometric analysis. 

Landmark Abbreviation Deflnltlon 

Nasion NA A mid-sagittal point on the bridge of the nose at the most superior point offronto-nasal 
suture 

Anterior Nasal spine ANS Most anterior limit of the floor of the nose, at the tip of the anterior nasal spine in the 
mid-sagittal plane 

A Point A The deepest (most posterior) on the anterior curvature of the maxilla in the mid-sagittal 
plane 

Posterior Nasal Spine PNS The most posterior extent of the hard palate in the mid-sagittal plane. 
Vl 
w 

B Point B The deepest (most posterior) point on the anterior curvature of the mandible in the mid-
sagittal plane 

Menton ME Most inferior point along the curvature of the chin in the mid-sagittal plane 



Table 5. Defmition of Bilateral craniometric swface landmarks used in the cephalometric analysis. 

Landmark Abbrniation Definition 

Medio-orbitale MO The point on the medial orbital margin that is the most distal point along the fronto­
maxillary suture 

Lateral piriform aperture NC The most lateral aspect of the piriform aperture 

Antegonion AG The most superior point in the antegonial notch 

Gonion GO A point on the inferior surface of the mandible which lies midway along the curvature 
between the ramus and the body. 

~ Zygomatic arch 

Condylion 

Zygomattcofrontal medial 
suture point 

Mental foramen 

Jugale; Maxillare 

ZA. 

CO 

Z 

MF 

J 

A point at the most lateral surface of the zygomatic arch near the zygomatlco-maxillary 
suture 

The most superior point of the condylar head 

The point at the medial margin of the orbital rim at the zygomatlcofrontal suture 

The most disto-lateral point of the mental foramen on the buccal surface of the mandible 

The most inferior point in the curvature of the lateral contour of the maxillary alveolar 
process 



Table 6. Definition of linear distances commonly used in lateral cephalometric 

orthodontic analysis. 

Definition 

Nasion - Menton 

Condylion -- Gonion (Lt & Rt side) 

Zygomaticofrontal medial suture point -­
Antegonion (Lt & Rt side) 

Nasion -- Anterior Nasal Spine 

Anterior Nasal Spine -- Posterior Nasal Spine 

Nasion -- A Point 

Nasion -- B Point 

Gonion (Rt) -- Gonion (Lt) 

Mental Foramen (Rt) -- Mental Foramen (Lt) 

Mcdio-Orbitale (Rt) -- Medio-Oribitale (Lt) 

Zygomatic Arch (Rt) -- Zygomatic Arch (Lt) 

Nasal Canal (Rt) -- Nasal Canal (Lt) 

Zygomaticofrontal medial suture point (Rt) -
Zygomaticofrontal 

Medial suture point (Lt) 

Jugale (Rt) - Jugale (Lt) 
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Type 

Vertical 

Vertical 

Vertical 

Vertical 

Vertical 

Vertical 

Vertical 

Horizontal 

I Iorizontal 

Horizontal 

Horizontal 

Horizontal 

Horizontal 

Horizontal 

Abbreviation 

Na-Me 

CO-CIO 

Z-Ag 

Na-ANS 

ANS-PNS 

Na-A 

Na-B 

Go-Go 

Mf-Mf 

Mo-Mo 

Za-Za 

NC- NC 

Z-z 

J-J 



Figure 8. Anatomic landmarks / planes used in the analysis are shown on lateral (left) and 

frontal (right) projections of 3D shaded surface rendering. Linear distances were 

determined for the following dimensions: Na-Me = Nasion - Menton; Co-Go (Lt & Rt 

side) = Condylion - Gonion; Z-Ag (Lt & Rt side) = Zygomatico-frontal medial suture 

point - Antegonion; Na-ANS = Nasion - Anterior Nasal Spine; ANS-PNS = Anterior 

Nasal Spine - Posterior Nasal Spine; Na-A = Nasion - A Point; Na-B = Nasion - B 

Point; Go-Go = Gonion (Rt) - Gonion (Lt); Mf-Mf = Mental Foramen (Rt) - Mental 

Foramen (Lt); Mo-Mo = Medio-Orbitale (Rt) - Medio-Oribitale (Lt); Za-Za = Zygomatic 

Arch (Rt) - Zygomatic Arch (Lt); NC-NC = Nasal Canal (Rt) - Nasal Canal (Lt); Z-Z = 

Zygomatico-frontal medial suture point (Rt) - Zygomatico-frontal medial suture point 

(Lt); J-J = Jugale (Rt) - Jugale (Lt). 
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Figure 9. Materials used for imaging of skulls: gloves filled with water, skull holder and 

foam wedges, and skull. 

Imaging 

Cone beam CT images were acquired using a maxillofacial CBCT unit capable of 

a full head scan (iCAT Classic, Imaging Sciences International, Hatfield, P A, USA). The 

device was operated at 3-8 rnA (pulse-mode) and 120 kV using a high frequency 

generator with fixed anode and 0.5 mm nominal focal spot size. The anterior symphyseal 

region of the mandible of each skull was inserted into the chin holder and vertical and 

horizontal lasers were used to position the skull. The specimen was oriented by 

adjustment of the chin support until the mid-sagittal plane was perpendicular to the floor 

and the horizontal laser reference coincided with the intersection of the posterior 

maxillary teeth and alveolar ridge (Figure 10). 
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Figure 10. Skull positioning for cone beam computed tomography scan 

Full trajectory (360°) rotational scans were then made for each skull with a 17.0 

cm (diameter) x 13.2 cm (height) field of view and at OAmm voxel resolution using 

XoranCat acquisition software (Xoran Technologies, Ann Arbor, MI, version 1.7.7). 

Three scan settings were used producing volumetric datasets comprised of different 

numbers of basis projections. a) CBCT 10: 10 second, 153 projections, b) CBCT 20: 20 

second, 306 projections and, c) CBCT 40: 40 second, 612 projections. 

Primary reconstruction of the data was automatically performed immediately after 

acquisition and took between 1 to 5 minutes depending on the scan setting. Secondary 

reconstruction occurred in "real time" and provided contiguous color correlated 

perpendicular axial, coronal and sagittal2D MPR slices, with isotropic OAmm voxels in 
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each orthogonal plane. 

Data Collection 

The CBCT data was exported from the XoranCat software in DrCOM multi-file 

format and imported into Dolphin 3D (V.10, Dolphin Imaging, Chatsworth, CA) on the 

same computer. All constructions and measurements were performed on a 20.I-inch flat 

panel color active matrix TFT (FlexScan L888, Eizo Nanao Technologies Inc., Cypress, 

CA) screen with a resolution of 1600 x 1200 at 85 Hz and a 0.255 mm dot pitch, operated 

at 24 bit. This software is capable of generating 3D shaded surface display volumetric 

rendered images using the entire volumetric data set. This involves generating an image 

of the skull by manually adjusting the threshold of visible pixel levels, a process called 

segmentation (Figure 11). This process provided for 3D renderings which demonstrated 

visual differences, depending on the number of basis images used in the reconstruction 

(Figure 12). 

Next the surface rendered volumetric image was reoriented such that the 

Frankfort horizontal was parallel to the lower border of the screen display in both sagittal 

and coronal projections. Then the cephalometric landmarks were located and marked on 

the surface rendered volumetric image. The Dolphin 3D software allowed 3D CBCT 

measurements from different views using rotation and translation of the rendered image. 

Landmarks were identified by using a cursor-driven pointer. This was performed by a 

sequence of pre-set volumetric orientations. 
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Figure 11. Screen capture from Dolphin 3D program demonstrating the segmentation 

process. The hard tissue volume segmentation is selected (upper left) and using the 

segmentation cursor (lower left), the displayed gray level of the voxels is dynamically 

altered to provide the most realistic appearance of the skull with minimal loss of cortical 

bone due to thin structures and minimal superimposition of artifacts and soft tissue. 

Figure 12. Comparison of 3D shaded surface rendered images from (a.) CBCT 10, (b.) 

CBCT 20 and, (c.) CBCT 40. 
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Finally measurements between specific landmarks were made. A custom analysis 

within the program ''vas de\eloped that directed the observer to identify specific anatomic 

landmarks on the images which were identified by using a cursor-driven pointer. For the 

version of the software version used. points and planes \vere unnamed. Therefore it was 

necessary to select points to identify a linear plane. This was performed in a specific 

sequence such that specific linear measurements corresponded to certain cephalometric 

planes and were calculated by the proprietary measurement algorithm implemented by 

the Dolphin software. In this way the resulting analysis pnwided specific linear 

measurements which could be exported as text data. This procedure was repeated three 

times by the principal author. 

Analysis 

All measurements from the Dolphin custom cephalometric analysis were exported 

with the "data'" export function into a text document. The text documents were entered, 

rearranged and data subsequently exported into a Microsoft Excel 2007 (Microsoft, 

Redmond. WA. USA) database. Means and standard deviations of three independent 

repeats of the measurements perfom1ed by consensus were calculated for each skull and 

used as anatomic truth. For each imaging mode the average of three triplicate 

independent analyses from the PI was used. The data files were coded for use with 

statistical software (( SPSS V .12. Chicago. 11. USA). To determine intra-observer 

reliability. absolute mean error (±s.d.) were calculated for triplicate measurements. Mean 

dimensions of the three repeated measurements within modality groups were compared 

with the repeated measure General Linear Model using the Wilks Lambda multivariate 
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test (pSO.05) and the Sidak adjustment for multiple comparisons. 
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CHAPTER IV 

RESULTS 

Table 7 shows the mean absolute intra-rater measurement error for 3D CBCT and 

skull measurements. Overall mean percentage measurement error for anatomic skull 

dimensions (.45mm ± .17mm; Range; .1 mm ± .08mm to .75mm ± .71mm) was 

significantly lower than the error for CBCT 10 (P<.OOI )(Mean diff. = .44mm), CBCT 20 

(P <.001 )(Mean diff. = .38mm) and CBCT 40 (P <.001 )(Mean diff. = .32mm). There 

were no differences between CBCT modalities. For ten of the sixteen measurements at 

least one of the CBCT mean absolute errors was significantly higher than direct skull 

measurements using the methods described. 
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Table 7. Mean absolute error (mm) and standard deviation (::i:s.d.) of Orthodontic Linear Dimensions for skulls compared to CBCT 

derived shaded surface 3D renderings reconstructed from 153 (CBCT 10), 306 (CBCT 20) and 612 (CBCT 40) basis projections. 

Modality 

Skull CBCT 10 CBCT20 CBCT40 Signtflcance 

Measurement Mean s.d. Mean s.d. Mean s.d. Mean s.d. F p 

Na-Mea 0.44- 0.24 0.968 0.48 0.77 0.63 0.878 0.52 7.08 0.003 

Co-Go (rt) 0.53 0.40 1.19 1.31 0.89 0.60 0.78 0.53 2.17 0.131 

~ Co-Go (It) 0.64 0.60 0.99 0.51 0.88 0.64 0.72 0.54 1.53 0.25 

Z-Ag (rt) 0.75 0.71 0.81 0.40 0.87 0.50 0.91 0.68 0.24 0.87 

Z-Ag (It)b 0.40b 0.25 0.79b 0.37 1.09b 0.87 0.92b 0.50 8.68 0.001 

Na-ANSo 0.32 0.21 0.58e 0.36 0.32° 0.21 0.46 0.32 3.43 0.042 

ANS-PNSd 0.71d 0.55 1.18d 0.50 0.88 0.47 1.00 0.71 3.05 0.059 

Na-Ao 0.36° 0.32 1.28e 1.08 1.05e 0.59 1.06e 0.36 10.37 <.001 

Na-Bf 0.39f 0.23 0.93 f 0.53 0.80f 0.46 0.69f 0.39 12.7 <.001 

Go-Go 0.48 0.45 0.79 0.50 0.76 0.46 0.68 0.48 2.2 0.128 
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Table 7 (continued). Mean absolute error (mm) and standard deviation (:l:s.d.) of Orthodontic Linear Dimensions for skulls compared 

to CBCT derived swface 3D renderings reconstructed from 153 (CBCT 10),306 (CBCT 20) and 612 (CBCT 40) basis projections. 

Modality 

Skull CBCTIO CBCT20 CBCT40 Slgnljlcance 

Measurement Mean s.d. Mean s.d. Mean s.d. Mean s.d. F p 

Mental f.-Mental fI 0.511 0.32 1.161 0.93 1.29" 0.81 0.981 0.51 11.4 <.001 

Mo-Moh 0.37h 0.32 0.97h 0.66 1.33h 1.15 0.95h 0.37 15.79 <.001 
0\ 
Vl 

Za-Zal 0.101 0.08 0.461 0.25 0.491 0.17 0.521 0.10 27.68 <.001 

NC- NcJ O.1gl 0.13 0.63 J 0.27 0.62J 0.28 0.601 0.19 21.49 <.001 

Z_Zk 0.40k 0.22 0.68 0.44 0.56 0.35 0.62k 0.29 3.48 0.04 

J-J 0.57 0.41 0.73 0.42 0.61 0.42 0.57 0.57 0.52 0.676 

Mean1 0.4S1 0.17 0.881 0.24 0.831 0.28 0.77 0.19 8.24 0.138 

Modality differences between skull and CBCT measurements 'Skull abs. mean error less than CBCT 10/40 (p<.001; p=.02), DSkull abs. mean error less 
than CBeT 10120/40 (p=.OOS; p=.024; p=.002), °eBCT 10 greater than CBCT 20 (p=.024), dCBCT 10 greater than eBCT 40 (p=.OS), eSkull abs. mean 
error less than CBCT 10120/40 (p=.01; p=.002; p=.006), fSkull abs. mean error less than CBCT 10/20/40 (p=.001; p=.003; p=.044), ISkull abs. mean error 
less than CBCT 10120/40 (p=.02; p=.OOS; p=.01), hSkull abs. mean error less than CBCT 10/20/40 (p=.02S; p=.19; p=O), i,JSkull abs. mean error less than 

CBCT 10/20/40 (p<.OOl), kSkull abs. mean error less than CBCT 40 (p=.038). IOverall skull abs. mean error less than CBCT 10/20/40 (p<.OOI). 



Table 8 provides comparison of mean linear measurements obtained from each of 

the 3D CBCT reconstructions and actual skull dimensions. For 6 dimensions. there were 

no differences between 3D CBCT and actual skull measurements. All CBeT scan 

settings produced lower measurements than skull values for 6 dimensions (Na-Me. Z­

Agrt/lt. ANS-PNS. Za-Za. NC -NC)(mean difference 3.1 mm ± .12mm). For Na-ANS and 

Z-Z. CBCT 20/40 dimensions were less than skull measurements (mean difference 

.56mm ± .07mm) whereas for mental f.-mental f. CBCT 10/40 dimensions were less than 

skull measurements (mean difference 2.96mm ± .18mm). For Mo-Mo .. CBeT 

measurements were greater than actual skull measurement (mean difference 3.4mm ± 

.12mm). 
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Table_S. Mean length (mm) and standard deviation (±s.d.) of Orthodontic Linear Dimensions for skulls compared to CSCT derived 

shaded surface 3D renderings reconstructed from 153 {CBCT 10),306 (CBCT 20) and 612 (CBCT 40) basis projections. 

Modlllity 

Skull CBCT10 CBCT20 CBCT40 Slgniflcllnce 

Measurement Axis Melin s.d. Melin s.d. Melin s.d. Melin s.d. F p 

Na-Mea Vertical 109.178 7.34 107.71a 7.24 107.658 7.24 107.658 7.28 4.83 0.014 

Z-Ag {rt)b Vertical 99.88b 5.13 94.71b 5.85 94.94b 5.83 95.11b 5.69 9.48 0.001 

0'1 Z-Ag (Itt Vertical 98.47° 4.97 94.92° 5.46 94.86° 5.65 94.79° 5.58 6.37 0.005 -...l 

Co-Go (rt) Vertical 58.78 4.49 59.88 4.88 59.74 5.11 59.90 5.16 0.78 0.521 

Co-Go (It) Vertical 58.08 4.64 58.36 4.49 58.50 4.82 58.56 4.64 0.55 0.658 

Na-ANSd Mid-Sagittal 46.29d 3.18 45.93 2.99 45.85d 3.05 45.84d 3.15 2.8 0.074 

ANS-PNSc Mid-Sagittal 48.84c 3.22 43.89c 2.88 44.31c 3.06 44.2c 2.99 86.8 <.001 

Na-A Mid-Sagittal 51.12 3.59 50.69 3.26 50.94 3.97 50.81 3.76 0.88 <.001 

Na-B Mid-Sagittal 89.12 5.85 89.37 6.18 89.44 6.28 89.65 6.49 0.97 0.43 



Table 8 (continued). Mean length (rom) and standard deviation (:l:s.d.) of Orthodontic Linear Dimensions for skulls compared to 

CBCT derived surface 3D renderings reconstructed from 153 (CBCT 10),306 (CBCT 20) and 612 (CBCT 40) basis projections. 

Modality 

Skull CBCTIO CBCT20 CBCT40 Significance 

Measu,.ement Axis Mean s.d. Mean s.d. Mean s.d. Mean s.d. F p 

Go-Go Coronal 90.92 8.16 88.37 5.47 88.38 5.57 88.37 5.64 1.27 0.32 

Mental f. - Mental f. f 
0'1 

Coronal 46.45f 3.96 45.67f 4.59 45.91 4.5 45.55 f 3.11 8.96 0.001 
OCI 

Mo-Mo· Coronal 19.45' 2.16 22.67' 1.75 22.891 1.59 22.87' 2.13 40.68 <.001 

Za-Zah Coronal 121.7Sh 6.13 119.07h 5.93 119.03h 6.06 119.11h 6.09 17.57 <.001 

NC-NCI Coronal 24.821 1.52 23.64' 1.4 23.39' 1.41 23.68' 1.46 17.69 <.001 

Z-ZJ Coronal 94.37J 3.28 93.76 3.35 93.6~ 3.42 93.5~ 3.37 4.85 0.014 

J-J Coronal 60.94 2.93 60.86 3.27 60.63 3.20 60.82 3.16 1.97 0.16 

·Skull dimensions greater than CBCT 10/20/40 (p=.006, p=.006, p=.OOS), b.elhSkull dimensions greater than CBCT 10/20/40 (p<.00 1), °Skull 
dimensions greater than CBCT 10/20/40 (p=.002, p=.OOI, p=.001), dSkull dimensions greater than CBCT 20/40 (p=.044, p=.047), fSkull 
dimensions greater than CBCT 10/40 (p=.OS, p=O), IISkull dimensions less than CBCT 10/20/40 (p<.001), iSkull dimensions greater than CBCT 
10/20/40 (p=0.002, p<.OOl, p<.001), jSkull dimensions greater than CBCT 20/40 (p=.02, p=.01) 



CHAPTER V 

DISCUSSION 

Maxillofacial cone beam imaging provides clinicians with an opportunity to 

generate 3D volumetric renderings using relatively inexpensive third party personal 

computer based software. The availability of this technology will undoubtedly expand the 

use and application of 3D imaging in the field of orthodontics. However, while CBCT 

provides this facility at doses substantially lower than conventional CT, patient radiation 

dose is still several times higher than conventional cephalometric and panoramic digital 

imaging modalities. Appropriate selection of exposure settings (e.g. kVp, mAs) and 

adjustment of additional technical parameters is recommended to provide protocols 

aimed at minimizing patient dose. The aim of this study was to compare the reliability 

and accuracy of linear dimensions betvveen common cephalometric landmarks on a 

sample of skulls to 3D measurements obtained from shaded surface 3D renderings 

reconstructed from CBCT datasets obtained from varying numbers of projection images. 

While the reliability of measurements taken directly on skulls (mean absolute 

ditlerence = .45mm ± .17mm) was greater than those obtained from 3D renderings 

(range; .77mm to .88mm). these are consistent \vith previously reported mean errors of 

less than 1 mm [72.77]. 

For 3D measurements we found statistical differences between actual and virtual 
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linear measurements for 10 of the 16 dimensions. Relative percentage differences for 

most were less than 5%. For NC-NC and ANS-PNS. CBCT measurements 

underestimated actual dimensions by approximately 6% and 10% respectively. However 

for Mo-Mo, CBCT measurements overestimated actual dimensions by 17%. These 

specific measurement discrepancies may be attributed to interplay of numerous sources 

of variability. Statistical differences may have resulted from small standard deviations 

within the measurements. In addition. the greater intraobserver variability demonstrated 

by the 3D measurements may have also contributed. This is likely because the observer 

had to identify each landmark on the 3D rendering \vithout the aid of a radiopaque 

fiducial reference. We believed that this task was a more representative simulation of the 

clinical situation and provides a combined assessment of inherent 3D landmark definition 

and identification error as well as error due to imaging procedure. [92] The segmentation 

process itself was customized for each skull and \vhile not standardized, was adjusted to 

provide optimal "fill-in" when the volume was observed from various projections. Finally 

it is possible that the landmarks associated with the calculation of these linear dimensions 

have an inherent error due to landmark identification. While this source ofvariability and 

it's clinical significance is well acknowledged in 2D cephalometry [92], the influence of 

this on 3D cephalometry is. as yet. unreported. 

The most clinically important finding of this study was that there were no 

differences in accuracy bet\veen measurements obtained from 3D volumetric renderings 

no matter how many projection images were used to create the reconstruction. This is of 

clinical significance. particularly for CBCT units vvhich use pulsed x-ray generators, 

because patient exposure will be directly related to the number of projection images 
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acquired. In this study 3D renderings produced using 153 basis projection images 

provided similar accuracy than those produced using 612. This represents a potential 

patient dose reduction of up to 75% and expels the concept that "more is better". 

There are numerous factors which should be considered when applying the results 

of this investigation to clinical situations. The accuracy of measurement distances 

between three dimensional landmarks on actual patients may be affected by a reduction 

in image quality due to soft-tissue attenuation. metallic artifacts and patient motion. 

There are also some potential limitations \vhen using 3D images derived from CBCT 

data. Three dimensional volumetric depictions depend on appropriate segmentation - the 

thresholding of bone pixel values and suppression of surrounding tissue values to 

enhance the structure of interest. This process is dependent on the software algorithm, the 

spatial and contrast resolution of the scan. the thickness and degree of calcification or 

corti cation of the bony structure and the technical skill of the operator. In this study, the 

Dolphin 3D software provides a semi-manual method of segmentation. dependent on the 

interaction of the operator with the data to produce a visually acceptable 3D rendering. 

These factors may. individually or in combination. result in deficiencies or voids in the 

surface of the volumetric rendering. These are most likely to occur in regions that are 

represented by few voxels or have gray values still representing bone. but outside the 

threshold. These areas include the posterior and anterior superior walls of the maxillary 

sinus. bone overlying the roots of the teeth and cortical bone of the mandibular condyle. 

Consequently this may lead to greater landmark identification error and subsequent 

measurement error. 

Anatomic landmarks used in this study \vhose accuracy may be affected by poor 
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segmentation include Mo. A point. ANS, PNS and Mental f. In addition, the method of 

establishing dimensional truth could have potentially contributed to bias in the results. 

While the landmark identification and measurements on the 3D rendered images were 

repeated three times by a single observer. the landmark identification on the skulls was 

performed only once and measurements performed independently three times by 

consensus of two observers. This reduced the error of point identification on the skulls; 

however, the establishment of a consensus landmark location was necessary to provide a 

fiducial reference to \yhich we could assess the inherent clinical inaccuracies of both 

landmark identification and measurement associated \yith the 3D image rendering. 

Based on the comparable accuracy of dimensions obtained from 3D rendered 

images reconstructed using the lowest number of projection images. it is unwise to 

interpret the findings of this study as advocating the use of CBCT in general orthodontic 

practice. Our study does not take into account the overall comparative radiation detriment 

required to produce such images nor the clinical efficacy of the technique compared to 

conventional imaging. We do however advocate clinical cost/benefit analyses 

incorporating exposure considerations to assist in developing appropriate patient 

selection criteria for the use of CBCT in cephalometric imaging. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

• Linear measurements on 3D shaded surface renderings from CBCT datasets using 

commercial cephalometric analysis software have variable accuracy perhaps due 

to dimculty in assigning points precisely using 3D radiographic images. This 

problem was not encountered in measuring ""anatomic truth" as the consensus 

points were marked on the skulls using pencil. I knee variability could be a factor 

of the inaccuracy of the human in determining unmarked points. 

• Reducing the number of image projections needed to construct a 3D shaded 

surface rendering does not result in reduced dimensional accuracy of 3D 

measurements and potentially provides reduced patient radiation exposure. 
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