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ABSTRACT 

Introduction: Over time, continuous flow ventricular assist devices (VADs) have 

become the primary form of implanted mechanical circulatory support (MCS) due 

to their smaller size, higher energy efficiency, longer durability, and fewer LVAD-

related complications when compared to pulsatile flow VADs.  However, 

continuous and pulsatile flows may elicit different cellular and tissue response, 

particularly in the arterial vasculature, which could have a profound impact on 

the future operation of MCS devices.  Therefore, a unique ex vivo perfusion 

system integrated with a mock adult circulatory system was design to study the 

impact of VAD-generated flow patterns on vascular function. 

 

Methods: The benefits of a mock circulatory loop and an ex vivo perfusion 

system were combined by designing and integrating a vessel perfusion chamber 

to an adult-sized mock circulatory loop as a parallel flow branch distal to VAD 

outflow.  Testing was conducted using a mock over several physiologic 

conditions (normal, heart failure, and hypertension) and at various levels of VAD 

flow.  The system was integrated into an incubator to allow for control of pH and 

temperature in future studies and fitted with a vessel for feasibility testing.  Data 

was collected using a custom Labview program and analyzed using the HEART 

program, an automated beat-to-beat cardiovascular analysis program based in 

Matlab. 
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Results: The chamber was successfully fabricated and installed in the mock 

circulatory system, allowing for perfusion and longitudinal stretching of bovine 

carotid arteries.  The waveforms and values for pressures and flows created in 

the mock loop were similar to physiologic values under each tested condition.  

Under normal hemodynamic conditions (CO = 4.5 L/min, MAP = 91 mmHg) 

perfusion chamber flow was 0.51 L/min, while under HF conditions (CO = 3.3 

L/min, MAP = 81 mmHg) it was reduced to 0.18 L/min, which are representative 

of in vivo carotid artery hemodynamics.  Due to physiologic preloads and 

afterloads, VAD performance was as would be expected in clinical application.  

The system was found to be sufficient for future testing with bovine carotid 

arteries and extended perfusion times (>24 hours). 

 

Conclusions:  This study resulted in an ex vivo vessel perfusion system that can 

successfully expose bovine carotid arteries to physiologic and VAD-specific 

hemodynamic waveforms.  The ability to combine the mock ventricle with 

clinically implanted VADs makes this system both unique and clinically relevant 

for studying the effects of continuous versus pulsatile flow on the peripheral 

vasculature.   
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CHAPTER I – INTRODUCTION 

A. Heart Failure 

An estimated 5.1 million Americans over the age of 20 are currently living with 

heart failure6, while over 200,000 of that population have refractory end-stage 

heart failure with a mortality rate of 70% - 90%7.  That number is expected to 

increase by 25% by the year 2030. Cardiovascular disease is also costly, as it is 

projected to incur $358 billion in medical expenses in 2015, with that number 

climbing to $818.1 billion by 2030.  Congestive heart failure (CHF) alone 

accounts for $32.4 billion and $77.7 billion of those figures, respectively, or 

approximately 9% of the total cost.  These numbers indicate that CHF is a 

disease that warrants continued research and attention. 

CHF occurs when blood backs up in other areas of the body due to ineffective 

pumping of the heart8.  This ineffectiveness can result from systolic failure, when 

the heart is too weak to eject a sufficient volume of blood, or diastolic failure, 

when the cardiac muscle becomes stiff and does not fill with blood easily.  

Typically, CHF results from a combination of these deficiencies and thus prohibits 

the heart from delivering sufficient amounts of oxygen-rich blood to the body 

due to decreased pressures and compliances throughout the cardiovascular 

system. 

As CHF progresses, the body initiates a multitude of compensatory mechanisms 

in varying degrees.  The Frank-Starling mechanism allows the heart to change its 
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force of contraction and therefore stroke volume in response to venous return9.  

In CHF, this mechanism can have potentially adverse effects, leading to 

ventricular dilation and increased heartrate.  Several neurohumoral responses 

are also initiated, such as the activation of the sympathetic nerves, the renin-

angiotensin system of the kidneys, and increased release of antidiuretic hormone 

and atrial natriuretic peptide.  These mechanisms result in increased fluid 

retention and edema, leading to arterial vasoconstriction, venous constriction, 

and increased blood pressure.  

 

B. Treatment Options 

The most effective long-term remedy for CHF is a heart transplant.  

Unfortunately, less than 2,400 such procedures are performed in the United 

States each year due to a widespread shortage of available donor organs 

(Figure 1).  The number of annual heart transplants has been consistent for 

over 20 years, even in spite of the increasing HF diagnoses.  For the remaining 

end-stage HF patients who are unable to receive a transplant due to lack of 

donor organs, age, or other comorbidities, additional treatment methods must be 

utilized. 
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Figure 1. Trends in heart transplantations in the U.S.6 

 
For patients suffering from New York Heart Association (NYHA) Class I and Class 

II heart failure, proper medical management is the first step in effectively 

managing its symptoms.  Two common classes of medications prescribed in the 

treatment of heart failure are inotropes and beta-blockers. Inotropes are used to 

alter the force of cardiac muscle contraction by either weakening the 

contractions (negative inotropes) or strengthening them (positive inotropes)10. 

Examples include epinephrine, norepinephrine, and dobutamine.  Beta-blockers 

reduce the workload on the heart and dilate your blood vessels, causing your 

heart to beat slower and with less force1.  These medications are often best used 

in combination and supplemented with diuretics and ACE inhibitors. 

When patients enter the NYHA Class III and IV stages of heart failure and proper 

medical management is not enough to combat their severe limitations in activity, 

mechanical circulatory support (MCS) must be considered.  The original form of 

MCS was the cardiopulmonary bypass (CPB) machine, in which a series of 
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external roller pumps takes over the heart’s blood-pumping function while the 

blood is simultaneously oxygenated extracorporeally.  Fully implantable devices 

known as ventricular assist devices (VADs) were later developed.  VADs provided 

more prolonged periods of MCS outside of the hospital. 

The first generation of VADs were introduced in the late 1970s and consisted of 

bulky, pneumatically driven pumps, such as the HeartMate XVE (Thoratec Corp., 

Pleasanton, CA) and the Novacor LVAD (Novacor Corp., Oakland, CA), that 

produced pulsatile flow (PF) patterns.  Like most VADs, these pumps were 

designed to supplement the function of a single ventricle, typically the left.    

Despite the restrictive size and associated risks with early generation PF VADs, 

clinical management of HF with these devices was largely successful and 

established VADs as an effective option for late-stage HF patients. 

This second generation of VADs, led by the HeartMate II (Thoratec Corp., 

Pleasanton, CA) and the HVAD (HeartWare, Inc., Framingham, MA), gained 

widespread clinical acceptance after the turn of the century due to their smaller 

pump size and driver size, increased reliability, and improved efficiency.  

Improvements on this technology have allowed for even smaller and less 

invasive devices to be developed.  Still other devices in development include the 

third generation of VADs, such as the HeartMate III (Thoratec Corp., Pleasanton, 

CA), that are CF but have the capability to produce PF through various 

algorithms currently under development.  
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C. Effects of VADs 

As previously mentioned, CF VADs have become the primary form of implanted 

MCS for several reasons.  First, their smaller size allows them to be more easily 

implanted in the thoracic cavity.  CF VADs have also demonstrated higher energy 

efficiency, longer durability, and fewer post-surgical LVAD-related complications 

when compared to their PF counterparts11.  However, the effects of continuous 

versus pulsatile flow on the body continue to be studied and could have a 

profound impact on future MCS device technologies. 

The effects of flow patterns can be seen on various levels of bodily organization, 

from the cellular level, to the vascular level, and finally to the level of organ 

systems and their interactions.  On a cellular level, pulsatile flow has been shown 

to reduce endothelial damage compared to nonpulsatile flow12 and possibly 

suppress the release of potentially harmful cyotkines13, 14.  Increased pulse 

pressure from pulsatile flow in baroreceptor units has been shown to decrease 

systemic vascular resistance15 and the frequency-dependent component of these 

baroreceptors can be altered during different hemodynamic conditions16  Studies 

also show that the endothelial release of nitric oxide, a key cellular component in 

cardiovascular function, in the peripheral vasculature is enhanced by pulsatile 

flow17.  

On a vascular level, the effects of critical shear stresses can be seen through the 

activation and manipulation of several different biological mechanisms within the 
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vasculature, which are induced by two types of mechanical stretch in the 

vessels18, 19.   These changes can have long term effects on endothelial-mediated 

vascular adaptive mechanisms20.  Moreover, nonpulsatile flow in a total artificial 

heart experiment has been shown to cause narrowing and rarefaction in the 

microcirculatory network, causing dystrophy in samples from the lungs, liver, and 

kidneys21.  

Those microcirculatory effects can lead to changes in end-organ behavior 

stemming from the varying flow patterns.  In the kidneys, short-term results 

seem to favor the use of pulsatile flow22, while long-term continuous flow obtains 

better renal perfusion than short-term usage and is not technically inferior to 

pulsatile flow 23.  Studies conducted on the liver show that pulsatile flow sustains 

total hepatic blood flow more effectively than continuous flow, due to the specific 

preservation of hepatic arterial and portal venous blood flow (attributed to 

prevention of hepatic arterial vasoconstriction)24.  Similar impact was reported in 

the neurological system, in that lower vascular resistance and higher flow rates 

were associated with pulsatile versus nonpulsatile flow23, 25. Studies conducted 

on the gastrointestinal (GI) system are concerning, where data has shown that 

continuous flow is significantly more likely to cause GI bleeding than pulsatile 

flow, with a near ten-fold incidence difference in some cases26.   

Among many others, these findings have driven a growing movement by 

researchers to determine whether pulsatility is truly needed in the human 

cardiovascular system and, if so, to what degree it is needed.  While studies are 
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being conducted to investigate the need for this pulsatility27, the VAD industry 

and engineers are preemptively developing PF algorithms for current and next-

generation CF VADs28.  In order to test the biologic responses to these highly-

specialized VAD flow patterns with adequate scientific rigor and accuracy, 

specialized flow simulation systems must be developed. 

 

D. Mock Circulatory Loops 

A common method of mimicking in vivo flow conditions for the study of various 

flow patterns and/or MCS devices is the mock circulatory loop.  These loops 

begin with a source of flow, typically a mock ventricle driven pneumatically or 

with a piston29. Compliance chambers for arterial and/or venous compliance 

adjustment are typically used30, along with some sort of adjustable resistance to 

account for systemic and pulmonary vascular resistance31. Connections are made 

via polypropylene or other plastic tubing.  While the components seem basic, 

mock circulatory loops can be modified via any number of components or 

configurations to study many different circulatory scenarios. 

Many mock loop systems are created in order to be able to adapt to test the 

various types of MCS devices32-37. Other systems are more complex and 

specified, such as those used to study a pediatric circulation38, 39 or the 

associated Norwood procedure40 and Fontan circulation41.  Still others are used 

to develop and verify the aforementioned pulsatile flow patterns produced by 

continuous flow VADs42-44.   
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This diversity and adjustability is one of the main advantages of mock circulatory 

systems. Not only can these systems be set up to mimic various types of 

circulation, but the compliance, resistance, preload, afterload, and other included 

parameters can be adjusted to create a multitude of different cardiovascular 

conditions, such as hypertension or heart failure. Devices ranging from VADs33, 

to TAHs43, to IABPs36 can be included, as well as other prostheses37. Fluids of 

varying viscosities, such as water, glycerol, or blood can be utilized to achieve 

desired viscosities. Mock circulatory loops enable the user to instantaneously 

change hemodynamic conditions and spare the lives of animals that would 

typically be experimented on, while also being more cost efficient and 

reproducible than said animal experiments.  

The biggest disadvantage of these systems is that they are only models, and 

assumptions must inherently be made and accounted for. However, systems with 

increased complexity are able to account for more variables and therefore can 

provide highly accurate models of natural hemodynamic conditions. 

One such system is the standard mock loop setup used by investigators at the 

Cardiovascular Innovation Institute (CII). The standard setup consists of a 

silicone left ventricle pneumatically driven by an external driver, aorta, arterial 

resistance and compliance, and venous reservoir.  These elements are connected 

using plastic tubing connectors and flexible ¾” silicone tubing.  Ventricular 

pressure, heart rate, resistances, and compliances can be adjusted to reproduce 

hemodynamic pressure and flow waveforms of the physiology of an adult human 
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in several distinct conditions: normal, heart failure, and hypertension.  Aortic and 

LVAD flows are measured using in-line and clamp Transonic Flow Probes 

(Transonic Systems, Ithica, NY), respectively.  Aortic and left ventricular 

pressures are measured using single-tipped Millar pressure catheters (Millar 

Instruments, TX).  One of two pneumatic ventricle drivers can be used (LB 

Engineering, Germany; Thoratec Corp., Pleasanton, CA).  These drivers enable 

the modification and adjustment of key parameters such as ventricle systolic and 

diastolic time periods and pressure, vacuum, and motor percentages.  

 

E. Ex vivo Perfusion Systems 

Ex vivo perfusion systems are another tool with a multitude of uses. As the name 

implies, these systems involve the perfusion of blood or another nutrient-rich 

substance throughout a group of cells, tissue, or an organ in an environment 

outside the body.  These systems come in a wide range of sizes, from smaller 

systems for the perfusion of cell cultures to large configurations for the perfusion 

of entire organs. 

Two transplanted organs that are often perfused are the lungs and kidneys.  

Lungs can be perfused for 4-6 hours prior to transplant45, often 

normothermically46, 47 and in combination with static cold preservation to remedy 

the effects of warm ischemia48. This ex vivo lung perfusion has proven to be an 

effective way to help separate ‘good’ lungs from a previously rejected pool to 

assist with the shortage of donor lungs49. Specific interest lies in the area of 
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donation after circulatory death46, 50. In terms of kidneys, simple systems of 

normothermic perfusion immediately prior to transplant have been effective after 

prolonged periods of static cold storage51.  Because of this success, perfusion of 

kidneys with various substances has been studied52, 53. Other ex vivo perfusion 

systems have involved liver REFs, cirrhotic tissue REF, mouse placentas REF, and 

even bone REF, among others54-61. 

It is not surprising that ex vivo perfusion systems for cardiovascular tissues are 

extensively used in scientific research. Specifically, researchers have developed 

various systems for the perfusion of hearts.  As with other organs, the primary 

focus is preparing hearts for transplant62, 63.  Some systems have utilized animal 

hearts in order to develop tools to assess the viability of hearts for transplant64-

67.  While different parameters for evaluating the potential hearts are being 

determined68, 69, the effects of various parameters on the peripheral vasculature 

are also being examined. 

Like all ex vivo perfusion systems, these vascular perfusion systems can also vary 

widely in size, beginning with smaller microfluidic systems used for the perfusion 

of vascular endothelial cell cultures.  These types of systems are useful for 

identifying the effects of pulse waves on a cellular level and use similar 

components to mock circulatory loops, such as pulsatile blood pumps and flow 

meters70.  Unfortunately, these systems can typically only study a specific cell 

type, as opposed to the effects of flow on an entire vessel or organ. 
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More advanced systems attempt to mimic vessels by culturing vascular cells in 

flexible rubber tubing71, 72.  These systems are able to moderate shear stress 

levels72 and even mimic disease states71, but are unable to generate physiologic 

waveforms or waveforms associated with pathologic conditions.  Additional 

systems are also able to produce pulsatile flow patterns, but only incorporate 

static cell cultures and have issues with retrograde flow and shear stress and 

strain measurements73, 74.  

Similar to static culture protocol,  ex vivo perfusion of blood vessels requires 

them to be cultured at physiologic temperature and pH, and with appropriate 

culture medium with antibiotic and antifungal agents, with the added parameter 

of being exposed to various flow patterns.  Systems are typically driven via 

peristaltic pumps75-78 in order to mimic various pulsatile flow waveforms.  They 

typically utilize precise pressure, flow, and gas exchange control to measure a 

variety of endpoints, such as fluid mechanical forces75, 76 and biological marker 

expression78-82.  Some even have unique abilities like the capacity for longitudinal 

stretch77, 79 or the measurement of vessel diameter80, 83.  Like mock circulatory 

loops, these systems are highly adaptable and can be modified to support a 

variety of research needs. 

 

F. Purpose of the Research 

Although the effects of mechanical stimulation to the vasculature have been 

extensively studied, the response to CF VAD-generated continuous flow and 
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pulsatile flow profiles has not been examined. This project combines the 

advantages of a mock circulatory loop with those of an ex vivo perfusion by 

attaching a vessel within the mock loop and exposing it to those unique flow 

profiles.  By mimicking the complexity of the physiologic in vivo environment by 

using the combination of a pneumatic ventricle and VAD in series, this system is 

capable of providing valuable information on the effects of continuous and 

pulsatile flow on the peripheral vasculature. 

The ex vivo perfusion system in this project will be able to accept a bovine 

carotid artery in order to accurately mimic in vivo conditions.  The chamber will 

be able to be integrated into a mock adult circulatory flow loop, and the system 

will include design features for temperature control, pH regulation, media 

exchange, and sterilization.   

The research performed in this thesis project accomplishes several aims. An ex 

vivo perfusion chamber is designed and integrated into the mock loop to prove 

feasibility of the system. Physiologic, pathologic, and mechanically-altered 

hemodynamics are created. Finally, the mock circulation system is reduced and 

re-designed for tissue culture considerations.  In addition, improvements to the 

perfusion chamber are presented, which are ready for fabrication and 

implementation with future studies. 

The vessel chamber for the artery is watertight, with cannulas at each end to 

attach the vessel and three ports for fluid exchange, ventilation, and proper gas 
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exchange.  The system is adjustable in length to allow for proper vessel 

stretching and is completely sterilizable.  

Once the chamber was completed, the mock circulatory loop was modified for 

integration of the perfusion system in order to demonstrate that physiologic 

flows and pressures can be achieved.  First, the chamber was integrated with 

only the mock ventricle to demonstrate normal physiologic pressures and flows.  

The CF VAD (HVAD, HeartWare Corp., Framingham, MA) was then added to 

demonstrate typical flows of the VAD in conjunction with the native ventricle. 

Finally, the pulsatile flow algorithm was implemented and data was collected.  

The mock loop system was then transferred to an incubator to achieve 

physiologic temperature and pH, as described in the following section. 
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CHAPTER II – MATERIALS AND METHODS 

 

A. Ex vivo Vessel Perfusion Chamber 

The ex vivo vessel perfusion chamber was created using a 100 mL syringe of 

inner diameter 1.4 inches.  The tip was first cut off to create a hollow tube of 

length 4.8 inches. Three holes were drilled in the side of the tube: two to allow 

for fluid recirculation and one to vent.  Luer lock ports were then fixed in each 

hole and capped.  The handles of two syringe plungers were then removed so 

that only the rubber end was intact.  A hole was drilled in each plunger to allow 

for the insertion of a ¼” to 3/16” plastic tubing connector.  One end of each 

connector was connected externally to ¼” silicone tubing, while the end on the 

inside of the chamber was connected to the vessel.  Because no actual vessels 

were used in this study, a piece of 3/16” tubing was used to simulate the vessel 

for the preliminary design.  In hemodynamic verification studies, a section of 

penrose drain was used, as it better mimicked the elasticity of a natural vessel.  

The prototype can be seen in Figure 2. 
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Figure 2. Prototype of vessel perfusion chamber 

 

B. Mock Circulatory Loop 

 

For the purpose of this study, several modifications were made to the standard 

mock circulatory system to allow for testing of the carotid artery.  The ex vivo 

vessel perfusion chamber with the mock carotid artery, as described in the next 

section, was placed in a looped branch after the proximal compliance chamber.  

While a connection of the branch between the arterial and venous sides was 

considered, as this would be more physiologically accurate, the resulting system 

would likely require an additional compliance chamber and fluid reservoir, adding 

to the overall complexity of the system.  A second compliance chamber was 

added to represent the additional compliance of the carotid artery branch.  The 

remainder of the system remained physically unchanged.  An additional clamp 

Transonic Flow Probe (Transonic Systems, Ithica, NY) was placed just promixal 

to the vessel chamber to measure carotid artery pressure and an additional 
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single-tipped Millar pressure catheter (Millar Instruments, TX) was placed just 

distal to the chamber to measure carotid artery flow. A block diagram of the 

system can be seen in Figure 3, as well as the complete setup in Figure 4. 

  

Figure 3. Block diagram of modified mock circulatory loop with components: A. 

pneumatic ventricle, B. VAD, C. proximal compliance, D. vessel chamber, E. distal 

compliance, and F. volume reservoir. 
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Figure 4.  Complete setup of modified mock circulatory loop 

One of the key advantages of this ex vivo arterial perfusion system is the ability 

to integrate various MCS devices into the circulation, including several types of 

LVADs and counter-pulsation devices.  For the purposes of this study, the LVAD 

used was the centrifugal flow HVAD by HeartWare (Miami Lakes, FL).  For the 

first portion of the experiment, the standard controller was used to provide 

continuous flow to the system.   

However, the second portion of the experiment involved the use of a pulsatile 

flow algorithm for the pump.  For this purpose, a controller was programmed by 

engineers at HeartWare under the direction of the investigators to enable LVAD 

pump speed modulation (Figure 5).  The program enabled the user to alter the 

degree of pulsatility by changing three parameters: the change in RPM 

(amplitude), the time period, and the time interval between pulses.  This 
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controller allowed for the creation of pulsatile waveforms from the continuous 

flow HVAD to test the carotid artery under various flow conditions. 

 

Figure 5. Screenshot of HVAD pulsatility controller 

 

C. Incubator Integration 

For additional testing, the mock circulatory system was integrated into the 

incubator (Isotemp, Fischer Scientific) in order to prepare the system for testing 

under physiologic pH and temperature with actual carotid arteries.  The lack of 

space in the interior made some slight modifications necessary, including the 

shortening of tubing lengths and the fixation of the fluid reservoir at a fixed 

height.  A new fluid reservoir was also fabricated from a shallow plastic bin to 

allow it to be placed on the top shelf of the incubator. The complete setup can 

be seen in Figure 6 and a full schematic is attached in Appendix A. Once 
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integrated, data sets were collected at the same physiologic conditions as the 

initial testing to demonstrate similar performance of the system in its new 

configuration. 

 

Figure 6. Incubator testing setup 

 

D. Testing 

After the creation of the vessel chamber, testing was conducted using the 

aforementioned mock circulatory system.  First, data was collected under normal 

physiologic conditions without the inclusion of the HVAD.  This data was 
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collected at varying levels of pressure and flow in an attempt to match target 

values and waveforms (Table 1). The HVAD was then included and data sets 

were collected for heart failure and hypertension conditions at the following 

levels of VAD flow: no flow, low flow, medium flow, and high flow.  Low flow was 

defined as 2000 rpm.  High flow was defined as 3200 rpm according to the high 

rpm setting used clinically by physicians associated with the CII.  Medium flow 

was then taken as the midway point between low and high flow, 2600 rpm. The 

heart failure condition was created by increasing the compliance to reduce pulse 

pressures and decreasing the drive pressure and increasing the preload to 

simulate a dilated left ventricle and increase left ventricular end-diastolic 

pressure.  The hypertensive condition was created by increasing resistance and 

decreasing compliance to simulate stiffening of the arteries. 

Table 1. Target blood pressures for hemodynamic states1-5.  Values without 

literature references were extrapolated from known values in other conditions. 

Hemodynamic 
Condition 

AoP (mmHg) CdAP (mmHg) CdAF 
(L/min) 

AoF 
(L/min) Systolic Diastolic Pulse Systolic Diastolic Pulse 

Normal 120 76 44 100 65 35 0.24 - 0.66 4.70 

Heart Failure 97 60 37 81 51 30 0.17 - 0.49 3.50 

Hypertension  >140 > 90 50 > 117 > 77 40 0.15 - 0.42 3.00 

 

In the second round of testing, after integration into the incubator, additional 

levels of flow were added.  A ‘full flow’ VAD condition set at 3800 rpm was added 

in an attempt to significantly reduce any remaining pulse pressure and 

completely unload the ventricle.  Prior to the administration of pulsatile flow 
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algorithms, a modified heart failure condition was created to match the exact 

parameters used in previous work84. Pulsatile flow algorithms at 2900 +/- 1100 

rpm and 3200 +/- 800 rpm were then added.  As detailed previously85, the first 

condition allowed for the maximum rpm modulation, while the second condition 

provided full unloading of the ventricle.  These two conditions were run both 

asynchronously at periods of 0.4, 0.5, 0.8, and 1.6 seconds and synchronously.  

In order for this to be accomplished, the cardiac cycle on the ventricle driver was 

set at 0.8 seconds and at 0.79 seconds on the VAD controller. This allowed the 

VAD to drift from phases of co-pulsation to counter-pulsation over a two minute 

data set.  Co-pulsation occurs when the VAD produces flow at the same time the 

ventricle is contracting, whereas counter-pulsation occurs when the VAD 

produces flow when the ventricle is filling.  The difference can be observed in the 

offset between the pulses of the aortic and left ventricular pressures.  In co-

pulsation, a zero degree offset exists between the pulses, whereas a 180 degree 

offset exists in counter-pulsation. 

In the final round of testing, a bovine carotid artery (1/8” diameter) was 

incorporated into the system (Figure 7) in the vessel perfusion chamber to 

prove feasibility of the system.  No vessel viability testing was conducted, but 

similar conditions as in the first two testing sets were replicated.  Specifically, 

baseline normal and heart failure conditions were established, followed by 

several data sets of continuous and pulsatile VAD flow. 
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Figure 7. Bovine carotid artery integrated into vessel perfusion chamber 

 

E. Data Collection and Analysis 

Data was collected using a custom Labview program designed by investigators at 

the CII.  This program allows for the display of up to 9 pressures and flows and 

the acquisition of data sets of any size.  In this study, the parameters recorded 

were left ventricular pressure, aortic pressure, carotid artery pressure, aortic 

flow, VAD flow, and carotid artery flow.  Data sets of 15 or 30 seconds in length 

were acquired during bench top testing and for the basic hemodynamic and CF 

VAD conditions in incubator testing.  For the asynchronous pulsatile VAD flow 

modulation data sets, data sets ranging from 12 – 48 seconds were taken in 

order to record 15 ‘beats’ of the VAD.  For synchronous VAD data sets, data sets 

of two minutes were taken in order to record periods of both co-pulsation and 

counter-pulsation.  Prior to the commencement of each data set, the circulatory 

loop was run for 20 – 30 seconds to achieve a steady state for each condition.  

The data was analyzed using the HEART program, an automated beat-to-beat 

cardiovascular analysis package using Matlab86, along with additional custom 
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Matlab programs developed for the analysis of pulsatile VAD waveforms85.  This 

beat analysis allowed for the calibration of data channels, the calculation of 

various peaks, averages, and pulses, and the creation of data plots. Four second 

plots of pressure and flow waveforms were plotted to provide a snapshot of the 

data sets. 
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CHAPTER III – RESULTS 

 

A. Bench Top Testing Results 

Initial testing of the ex vivo arterial perfusion system was successful in 

replicating physiologic and pathologic (heart failure and hypertension) waveforms 

for various pressures and flows.  Target pressure and flow parameters are listed 

in Table 1.  Resistance, compliance, and ventricle driver settings were first 

adjusted to create a baseline condition (no VAD) representing normal 

cardiovascular parameters (Figure 8).  It should be noted that large spikes in 

pressure and flow will appear due to ringing of the mechanical aortic and mitral 

valves.  Baseline aortic flow (AoF) was kept at approximately 4.0 L/min to 

represent a normal cardiac output.  Normal average pressures of 95 mmHg for 

AoP and 86 mmHg for CdAP were also obtained.  The baseline condition was 

followed by data sets of low, medium, and high VAD flow to verify proper 

functionality of the VAD and perfusion system setup (Appendix A).  



25 
 

 

Figure 8. Baseline pressures 

Next, a heart failure condition was created.  At the onset of the heart failure 

condition, left ventricular end-diastolic pressure rose (Figure 9).  This resulted in 

an overall decrease in pressures.  Mean AoF decreased to 3.3 L/min, while mean 

CdAF decreased to 0.18 L/min. 

 

Figure 9. Pressures in heart failure condition 
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Similar to the hypertensive condition, pressures and flows increased with 

increasing VAD support until the ventricle became fully unloaded (Figure 10).  

However, AoF dropped below zero due to the elimination of flow through the 

aortic valve with increased ventricular unloading along with some slight 

retrograde flow due to the mock loop setup (Figure 11). 

 

Figure 10. Pressures in heart failure condition with high VAD flow 
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Figure 11. Flows in heart failure condition with high VAD flow 

 

After an additional baseline condition was created to restore normal function, a 

hypertensive condition was created (Figure 12).  This resulted in higher 

pressures, including higher pulse pressures for the aorta and carotid artery, 

caused in vivo by the stiffening of the vascular walls.  Due to the increased 

resistance, mean AoF was decreased to approximately 3 L/min and mean CdAF 

to 0.12 L/min, values that were slightly below literature references (Table 2).  
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Figure 12. Pressures in hypertensive condition 

Again, data sets of low, medium, and high VAD flow were taken to simulate VAD 

function in a hypertensive condition.  Pressures increased, likely due to the 

increased flow through the vessels (Figure 13), as the major hemodynamic 

effect of VAD support is increased pressure and flow87.  Mean AoF decreased 

with increasing VADF as more of the flow bypassed the aortic valve and went 

through the VAD and the ventricle became increasingly unloaded (Figure 14). 
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Figure 13. Pressures for hypertensive condition with high VAD flow 

 

Figure 14. Flows for hypertensive condition with high VAD flow 
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obtained (Table 2), waveform morphology for the CdAF differed slightly from 

published figures4, 88, 89.   

Table 2. Carotid artery pressures and flows in bench top testing versus target 

values. Values were obtained from figures due to influence of valve ringing in 

data analysis.  Bolded values fall within 10% sensor error range of target values. 

 
Target Values Obtained Values 

Hemodynamic 
Condition 

CdAP (mmHg) CdAF 
(L/min) 

CdAP (mmHg) CdAF 
(L/min) Systolic Diastolic Pulse Systolic Diastolic Pulse 

Normal 100 65 35 0.24 - 0.66 98 69 29 0.20 

Heart Failure 81 51 30 0.17 - 0.49 85 59 26 0.18 

Hypertension  > 117 > 77 40 0.15 - 0.42 140 100 40 0.12 

 

 

B. Incubator Testing Results 

Once the ex vivo arterial perfusion system was transferred from the bench top to 

the incubator, the first goal of testing was to reestablish proper pressure and 

flow waveforms for baseline, heart failure, and hypertensive hemodynamic 

conditions (Figures 15-17).  
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Figure 15. Pressures in baseline condition 

 

Figure 16. Pressures in heart failure condition 
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Figure 17. Pressures in hyptertensive condition 

After each of these basic conditions were established, four levels of VAD support 

were tested under each condition.  The three levels used in the initial testing 

were replicated along with the addition of the aforementioned ‘full VAD’ 

condition, in which the VAD was set to 3800 rpm in order to fully unload the 

ventricle and reduce or eliminate any pulse pressures.  As expected and 

observed in the initial testing, the pulse pressures were reduced as the level of 

CF VAD support increased to full ventricular unloading (Figure 18). However, 

they still remained slightly higher than the pulse pressures that have been 

observed in clinical VAD patients, which can drop as low as 3 – 5 mmHg, 

although pulse pressures are often kept between 10 – 20 mmHg in optimal VAD 

use87.  
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Figure 18. Pulse pressures (mmHg) in incubator testing with increasing CF VAD 

support 

While carotid artery pressures were similar to those from the initial testing, a 

calibration error led to negative readings for the carotid artery flows.  While the 

flows were negative, they still showed similar amplitude and waveform 

morphology as those in previous testing.  The error was remedied for the final 

round of testing and proper flows were achieved. 

Table 3. Carotid artery pressures and flows in incubator testing versus target 

values. Values were obtained from figures due to influence of valve ringing in 

data analysis. Bolded values fall within 10% sensor error range of target values. 

 
Target Values Obtained Values 

Hemodynamic 
Condition 

CdAP (mmHg) CdAF 
(L/min) 

CdAP (mmHg) CdAF 
(L/min) Systolic Diastolic Pulse Systolic Diastolic Pulse 

Normal 100 65 35 0.24 - 0.66 99 69  30 -0.29 

Heart Failure 81 51 30 0.17 - 0.49  87 66   21 -0.38 

Hypertension  > 117 > 77 40 0.15 - 0.42  140 108   32 -0.51 
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As one of the primary advantages of this system is its ability to create a 

multitude of VAD-specific waveforms, a laptop fitted with a VAD pulsatility 

program was then connected to the system as the VAD controller.  Prior to the 

VAD pulsation data sets, an altered heart failure state was created to match the 

state established by Ising in previous research85.  As detailed in the previous 

section, the VAD was pulsed asynchronously and synchronously at varying time 

periods and levels of rpm modulation. In the asynchronous mode, unique, yet 

inconsistent waveforms can be produced when the asynchronous timing 

produces high degrees of variability in pulse pressure (Figure 19). In the 

synchronous mode, the VAD support drifted from periods of co-pulsation (Figure 

20) to counter-pulsation (Figure 21).   

 

Figure 19. Pressures in asynchronous VAD operation at 3200 +/- 800; cycle 

time 3.2 seconds 
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Figure 20. Synchronous co-pulsation at 3200 +/- 800 rpm; cycle time 0.795 

seconds 

 

Figure 21. Synchronous counter-pulsation at 3200 +/- 800 rpm; cycle time 

0.795 seconds 

In the clinical context, the ultimate goal of these algorithms is to increase 
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calculation of AoP and CdAP pulse pressures.  In the experimental context, these 

tests were performed to demonstrate that the ex vivo system could create 

complicated VAD-specific hemodynamic waveforms in the presence of a mock 

left ventricle and with the potential to support artery perfusion. The results in the 

incubator setup show that, particularly in the synchronous co-pulsation mode of 

operation, as the 180 degree offset of the pulses in counter-pulsation mode 

produces destructive interference and results in a near continuous signal.  The 

co-pulsation synchronous mode is able to show near-physiologic aortic pulse 

pressures, while the counter-pulsation synchronous mode exhibits low aortic 

pulse pressures.  The asynchronous mode of pulsatile VAD flow delivers a 

variable pulse pressure from beat to beat, which is still greater than pulse 

pressures provided on full CF VAD support.  These compare to a pulse pressure 

of approximately 10 mmHg at a continuous VAD output of 3200 rpm (Figure 

22).  It should be noted that the low pulse pressure during asynchronous 

pulsation at 3200 +/- 800 rpm with a pulse width of 0.4 seconds is due to the 

timing of the pulses, which happened to occur in exact counter-pulsation to the 

pulses of the ventricle, minimizing pulse pressure as in synchronous counter-

pulsation mode.  
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Figure 22. Pressures at full VAD support in Heart Failure condition 

Table 4. Pulse pressures in pulsatile mode of VAD operation during incubator 

testing 

Mode rpm Δt AoP Pulse 

Asynchronous 

2900 +/- 1100 0.4 36 

2900 +/- 1100 0.5 39 

2900 +/- 1100 0.8 56 

2900 +/- 1100 1.6 102 

3200 +/- 800 0.4 6 

3200 +/- 800 0.5 44 

3200 +/- 800 0.8 50 

3200 +/- 800 1.6 85 

Sync Co-pulse 
2900 +/- 1100 0.3975 35 

3200 +/- 800 0.3975 33 

Sync Counter-pulse 
2900 +/- 1100 0.3975 9 

3200 +/- 800 0.3975 9 
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C. Vessel Testing Results 

Baseline normal (Figure 23) and heart failure (Figure 24) conditions were 

again established, followed by CF VAD conditions at low, medium, high, and full 

VAD flow.  Trends in flow and pressure in these conditions were normal and 

matched previous testing results (Figure 25).  

 

Figure 23. Pressures in normal condition during vessel testing 
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Figure 24. Pressures in heart failure condition during vessel testing 

 

 Figure 25. Change in CdAP with increasing VAD flow in heart failure condition 
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and pressures matched their target values (Table 5).  All other data from the 

vessel testing can be found in Appendix C.  

Table 5. Carotid artery pressures and flows in vessel testing versus target 

values.  Values were obtained from figures due to influence of valve ringing in 

data analysis.  Bolded values fall within 10% sensor error range of target values. 

 
Target Values Obtained Values 

Hemodynamic 
Condition 

CdAP (mmHg) CdAF 
(L/min) 

CdAP (mmHg) CdAF 
(L/min) Systolic Diastolic Pulse Systolic Diastolic Pulse 

Normal 100 65 35 0.24 - 0.66 102 68 34 0.46 

Heart Failure 81 51 30 0.17 - 0.49 86 56 30 0.29 

 

D. Shear Stress Calculations 

As previously mentioned, shear stresses in vessels have profound effects on a 

wide variety of vascular response mechanisms71-73, 90-101.  Therefore, shear 

stresses were calculated from the obtained volumetric flow measurements, per 

the methods utilized by Estrada et al91.  First, the kinematic viscosity of the fluid 

solution used was calculated using equation (1):   

     
 

 
   (1) 

Normosol-R, a a sterile, nonpyrogenic isotonic solution of balanced electrolytes in 

water102, was used as the fluid solution in order to provide the slight increase in 

viscosity over water needed for HVAD operation.  Its density was assumed to be 

1,010 kg/m3, between the densities of water and blood plasma103.  Likewise, the 
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dynamic viscosity was assumed to be 1.10 cP to lie between those of water and 

blood plasma104.  Because of their low dynamic viscosities, water and plasma are 

assumed to be Newtonian fluids whose viscosity is not dependent upon flow 

rate105.  Therefore, Normosol-R is also assumed to be a Newtonian fluid.  To 

characterize the flow, the dimensionless Reynold’s number was then obtained 

using equation (2):  

   
   

  
   (2) 

 

The volumetric flow rate, Q, was attained from the CdAF flow sensor.  The 

hydrodynamic diameter, DH, for a cylindrical tube is simply the diameter of the 

tube, and A is the cross-sectional area.  The calculation resulted in a value of 

1,074, indicating laminar flow.  Next, to evaluate the ratio of pulsatile flow 

frequency to viscous effect, the Wormersly Number was calculated using 

equation (3): 

     √
   

 
   (3) 

The pulsatile frequency, f, was taken as 1.167 Hz for the heart rate of 70 bpm 

used in most data sets.  Similarly to the hydrodynamic diameter, the 

hydrodynamic radius, RH, is merely the radius of the tube.  A value of 8.238 was 

obtained, indicating that the pulse frequency is sufficiently low that a parabolic 
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velocity profile develops during each cycle and is a good approximation to 

Poiseiulle Flow91.  Because of this, the shear stress could be estimated using 

equation (4): 

   
 

√ 
 
   

   
   (4)91 

The radius of the carotid artery channel is represented here as r.  Using this 

equation, the shear stresses for each hemodynamic condition were calculated 

and plotted using Matlab (Figure 26).   

 

Figure 26. Fluid shear stresses as a function of flow for each hemodynamic 

condition in initial testing 
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conditions are approximately 5-10 dynes/cm2 higher than in heart failure.  

Average values are not presented, as they are skewed due to the influence of 

the mechanical valve ringing. 
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CHAPTER IV – CONCLUSIONS 

 

A. Limitations 

While the system has major advantages over others in literature, it is not without 

its limitations.  First and foremost, there are inherent limitations associated with 

mock circulatory systems.  The mechanical valves cause a ringing effect on the 

AoP and CdAP, while also having some effect on the LVP waveform.  If there 

effects were considered to be detrimental, the inclusion of tissue valves in the 

system may remedy some of these effects. 

The choice of the incubator for tissue preservation severely constrains the space 

for the system.  However, the majority of the components were able to fit inside. 

The only exception is the volume reservoir, which required some slight 

modifications. In the end, the data shows that this limitation was overcome, as 

the pressure and flow waveforms from the bench top testing were matched in 

the incubator testing.  Expansion of the current system would be difficult given 

the space constraints of the incubator. 

Finally, two limitations specific to the perfusion chamber are vessel loading and 

throughput.  The two unconstrained plungers could cause the vessel to twist and 

tear in loading, so a more sophisticated loading system is desirable.  Also, the 

single vessel system provides low throughput, although a multiple vessel system 

is not feasible due to greatly increased complexity to the system and the space 

constraints previously mentioned. 
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B. Discussion 

Due to limitations of the system, there are some unique features in the data that 

require explanation.  In some instances, the left ventricular pressure drops below 

zero during diastole.  This suction can occur clinically in patients with mitral valve 

stenosis106.  As a mechanical valve is rigid, it can behave similarly to a stenosed 

valve and produce similar suction, depending on the drive pressure of the 

ventricle.  This behavior can also explain the LVP spike in some conditions, as 

the pressure builds up inside the ventricle momentarily between the time the 

mitral and aortic valves open.  Finally, the ringing cause by the mechanical aortic 

valve is visible in the pressure waveforms for both AoP and CdAP.  While this 

makes the calculation of pulse pressures more difficult, it otherwise has no effect 

on the overall results.  

While most of the data agrees with known clinical and literature values, some 

discrepancies do exist.  Some pulse pressures and flows are slightly below 

literature values, which can likely be attributed to operator error.  These values 

can be difficult to attain in real time and are not generated until the full analysis 

is complete.  However, after several rounds of testing and modification, all 

carotid artery flows and pressures generated fell into their target ranges (Table 

5), indicating that the system is indeed capable of generating the necessary 

pressures and flows for the next phase of vessel testing.  

Another interesting observation from the results is the behavior of the pulse 

pressures with increasing VAD flow.  The pulse pressures increase slightly with 
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the introduction of low VAD flow then proceed to drop with increasing VAD flow 

to below their original levels.  An explanation for this trend is that the low VAD 

flow brings the cardiac output back to a normal level, providing the left ventricle 

with enough pressure to generate a normal pulse pressure in the arteries.  

However, as the VAD speed increases and the ventricle is unloaded, this pulse 

pressure slowly dissipates to levels below the initial value.   

One more noteworthy finding from the results is the morphology of the CdAF 

waveform.  While peak and mean CdAF values matched those found in literature, 

as previously discussed, the resulting waveform was visibly less complex than 

the referenced waveform (Figure 27) 88.  The reasoning behind this is the 

limited complexity of the system.  In the end, the available combinations of 

resistors and compliance chambers were unable to perfectly recreate the 

measured waveform and the wave reflections exhibited in a true physiologic 

circulation.  This is most clearly observed when the best fit estimations of both 

literature and obtained CdAF waveforms were plotted (Figure 28).  However, 

with additional testing in the pulsatile VAD, a more accurate waveform may be 

created due to the ability of the VAD pulsatility to create more complex 

waveforms (Figure 29). 
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Figure 27. Carotid artery waveform in vivo measured via MRI88 

 

Figure 28. Overlay of obtained CdAF waveform versus estimated polynomial 

best fit of literature waveform of CdAF 
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Figure 29. Segment of CdAF waveform in vessel testing during asynchronous 

VAD pulsation at 3200 +/- 800 rpm; cycle time 3.2 seconds 

In conclusion, the benefits of the system certainly outweigh its limitations.  The 

hybrid system integrates an ex vivo perfusion chamber into a mock circulatory 

loop driven by a combination of a mock ventricle and VAD in series.  This allows 

to system to expose any type of vessel to physiologic, pathologic, and VAD-

specific flows and pressures, a feat that is unprecedented in the current 

literature.  With the help of future testing, this system will allow for the collection 

of valuable data on the vascular response to a wide variety of VAD-specific flow 

conditions.  

C. Design Improvements 

The first and simplest design improvement that could be addressed is 

incorporating a thicker plastic tube for the vessel perfusion chamber.  For the 
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current prototype, a 100 mL syringe was used, which has a wall thickness of just 

under 1/16”.  This presented an issue when the three screw-in Luer lock ports 

were inserted into the tubing for fluid exchange and ventilation.  The minimal 

wall thickness required the addition of multiple epoxies and sealants to provide 

enough material for the ports to screw into.  A potential solution would be to use 

plastic PVC pipe of the same inner diameter, but with an increased thickness of 

at least 1/8”.  This would allow the ports to be screwed in to the tubing and 

create a watertight seal without the use of epoxies and sealants that could 

potentially have adverse effects on the biocompatibility of the chamber.  The 

placement of these ports could also be adjusted so that the two ports for 

perfusate circulation are located farther apart to prevent the creation of 

microcurrents during fluid recirculation. 

The main functional flaw with the vessel perfusion chamber prototype was the 

difficulty in attaching the vessel to the two unconstrained and free moving 

plungers, then inserting the system into the tube.  The possibility existed for the 

vessel to become twisted or tear, prompting the need for a design that provides 

a more rigid structure for the cannulated vessel and plungers during reloading 

into the tube.  An additional desired feature was the ability to adjust the length 

of the vessel inside the chamber.  Thus, a screw system similar to that used in a 

syringe pump (Figure 30) was designed.  While one plunger remains stationary, 

the other can be adjusted simply by turning the knob at the end of the threaded 

rod.  O-rings and proper seals should be used to ensure the chamber remained 
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watertight and the entire system was removable from the tube to allow for 

proper vessel loading.  

 

 

Figure 30. Vessel length adjustment system with components: A. rotating knob, 

B. traveling screw element, C. fixed plunger, D. sliding plunger 

 

Another design improvement would be to address one of the main constraints of 

the incubator setup: the inability to properly adjust the height of the fluid 

reservoir.  This controls the preload and has a direct effect on the left ventricular 

end-diastolic pressure.  The lack of adjustability is due to the reservoir being 

contained on the top shelf of the incubator, which is set at a maximum height 

due to the height of the two compliance chambers below.  However, a vacant 

space exists below the top shelf and above the mock ventricle to the side of the 

compliance chambers.  A potential solution to allow some degree of preload 

adjustment is to create a secondary shelf that attaches to the top incubator 

shelf.  The shelf would be half the width of the main incubator shelves so as not 

to interfere with the compliance chambers, and would be suspended from the 

upper shelf by four metal rods that would rise up through the holes in the metal 
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shelf.  The height of the shelf would be adjustable by knobs at the end of each 

rod, thus allowing for the maximal degree of preload adjustability. 

 

D. Future Testing 

This ex vivo vessel perfusion system lays the foundation for a tremendous 

amount of testing on bovine carotid arteries utilizing complex hemodynamic and 

VAD-specific waveforms.  These proposed studies will test the hypothesis that 

diminished pulsatility produced by CF VAD adversely alters vascular function and 

remodeling, which may contribute to the observed clinical complications, as well 

as limit the potential for myocardial recovery.  If substantiated experimentally in 

these studies, flow modulation by varying pump speed (rpm) may provide a 

viable solution.  To test this hypothesis, two specific aims will be completed. 

The first specific aim is to quantify the vascular function of carotid arteries and 

aorta from healthy and heart failure (HF) bovine models in a mock circulation 

system with ex vivo perfusion for 72 hours and compare aortic gene expression 

to human HF patients.  These experiments will utilize the ex vivo vessel perfusion 

system to demonstrate that ex vivo bovine carotid arteries and aortas remain 

viable for up to 72 hours with simulated physiologic flows.  Tissue viability will be 

measured using hematoxylin and eosin (H&E) staining and methyl thiazole 

tetrazolium (MTT) assays.  Arterial contractility, endothelial function, and 

mechanical properties will be quantified for normal and HF animals.  This will be 

accomplished by using flow-mediated dilation techniques, examining pressure-
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diameter-thickness relationships, performing calculations of compliance, using 

vascular tension assays, and comparing clinical gene expression.  

Finally, the second specific aim will test the hypothesis that increased vascular 

pulsatility by flow modulation of rotary blood pumps can restore vascular 

phenotype, structure, and function using the ex vivo perfusion system.  This aim 

will measure arterial responses to CF VAD flow modulation, including 

vasoconstriction, endothelial function, and arterial remodeling via methods 

previously described in the first two specific aims.  Testing will again be 

performed at three VAD speeds in addition to various levels of flow modulation 

using the aforementioned VAD pulsatility program. 

The long-term objective of this testing is to continue to improve HF patient 

outcomes and quality of life by developing safe and effective mechanical support 

strategies for ventricular unloading as well as peripheral targets of the integrated 

HF condition.  While much testing still needs to be performed, the creation of the 

ex vivo vessel perfusion system is the first step in the process.  The system’s 

ability to create hemodynamically complex, VAD-specific waveforms via the 

combination of the mock ventricle and VAD in series in three different 

hemodynamic conditions, while still being small enough to fit in the incubator 

lays a foundation for years of clinically-relevant future experimentation, 

specifically on the influence of pulsatile versus continuous VAD-generated flow 

on the arteries.  
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APPENDIX A – BENCH TOP TESTING DATA 
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APPENDIX B – INCUBATOR TESTING DATA 
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APPENDIX C – VESSEL TESTING DATA 

 

 

 

 

 

 

 

 

 

002 003 004 005 006 007

baseline modified HF HF, lo VAD HF, med VAD HF, hi VAD HF, full VAD

LVHR 74.672 74.703 74.734 74.679 74.691 74.686 LVHR

LVSV 69.233 53.301 27.455 4.9203 0.00061392 0 LVSV

LVCO 5.1697 3.9817 2.0518 0.36745 4.60E-05 0 LVCO

LVPbd 14.663 11.776 38.08 36.034 34.246 31.908 LVPbd

LVPed 21.063 36.109 20.108 29.645 29.355 19.479 LVPed

LVPpksys 146.81 119.7 134.66 131.52 128.52 121.56 LVPpksys

LVppdPdt 4048.9 3422.7 9829 9401.2 9617.7 9269.1 LVppdPdt

LVpndPdt -3743.1 -3203.3 -9492.7 -9356.2 -9498.6 -9490.6 LVpndPdt

LVEd 0.092439 0.45639 0.1236 1.7087 207.14           NaN LVEd

LVEW 7470.4 3964.8 2130.8 428.35 -0.17921 -0.92132 LVEW

AoPavg 92.155 75.991 81.262 94.963 118.49 148.5 AoPavg

AoPpulse 96.043 83.169 72.974 32.207 18.026 16.662 AoPpulse

AoPsys 167.11 141.32 134.99 115.84 127.69 157.06 AoPsys

AoPdia 71.065 58.152 62.013 83.634 109.66 140.4 AoPdia

AoFavg 4.8139 3.6885 1.7599 0.056954 -0.32597 -0.43026 AoFavg

AoFpulse 23.405 17.111 11.851 3.4949 0.48393 0.37386 AoFpulse

AoFpkpos 18.415 12.608 7.8923 2.0376 -0.05578 -0.22685 AoFpkpos

AoFpkneg -4.9897 -4.5032 -3.9592 -1.4573 -0.53971 -0.60071 AoFpkneg

TPRc 1531.7 1648.8 3697.9 1.39E+05 -29162 -27712 TPRc

CdAPavg 86.329 71.252 75.811 89.237 111.39 139.63 CdAPavg

CdAPmax 149.79 123.35 111.99 104.23 119.24 146.58 CdAPmax

CdAPmin 52.244 41.108 53.612 80.144 103.77 132.88 CdAPmin

LVPavg 57.095 51.451 50.462 50.782 47.435 42.231 LVPavg

LVPmax 146.81 119.7 127.17 131.52 128.52 121.56 LVPmax

LVPmin 4.009 3.1183 -19.922 -22.145 -25.517 -28.72 LVPmin

CdAFavg 0.4558 0.29041 0.32644 0.34437 0.33255 0.46865 CdAFavg

CdAFpkpos 1.045 0.67858 0.79536 0.57406 0.46783 0.65522 CdAFpkpos

CdAFpkneg 0.079613 0.02929 0.072997 0.18039 0.20823 0.30817 CdAFpkneg

CdAFpulse 0.96536 0.64929 0.72237 0.39366 0.2596 0.34705 CdAFpulse
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