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ABSTRACT 

The objective of this thesis is to develop computer programs for 

the dynamic analysis of structures. For a shear building two computer 

programs were developed: (1) Dynamic Analysis of a Shear Building 

within the Elastic Range and (2) the Dynamic Analysis of a Shear 

Building with Elasto-Plastic Behavior. 

Parallel to this computer work a study was performed to investi

gate the error due to static condensation applied to dynamic problems. 

In the development of computer programs the stiffness method and the 

consistent mass matrix were used; and viscous damping was assumed. 
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1. INTRODUCTION 

Almost any type of structure may be subjected to dynamic loading 

in one form or another during its existence. From the analytical point 

of view, it is convenient to divide the dynamic loading condition into 

two basic categories; periodic and nonperiodic. Periodic loadings are 

repetitive loads which exhibit the same time variation successively for 

a large number of cycles. A typical case for periodic motion is rotating 

machinary in a building. On the other hand nonperiodic loadings may be 

either short-duration, impulsive loadings or long duration, general forms 

of loads. A typical nonperiodic motion is a nuclear blast or an earth

quake excitation. 

In recent years considerable emphasis has been given to the 

problems of blast and earthquakes. The earthquake problem is rather 

old, but most of the knowledge on this subject was developed in the last 

two decades. The blast problem is rather new and information is made 

available mostly through publications of the Army Corps of Engineers, 

Department of Defense Agency, and other federal agencies. It is very 

important to mention the fact that in the last decade the rapid expan

sion in number and size of nuclear power plants in regions close to large 

populated centers requires very careful structural consideration. 

As an effort toward developing better techniques in the field 

of structural dynamics, the main objective of this thesis is to devel,op 

computer programs for structures modeled as a shear building subjected 

to dynamic loading conditions and the investigation of error, due to 

static condensation. 

1 



II. FREE VIBRATION OF A SHEAR BUILDING 

A. Concept of a Shear Building. A shear building may be de

fined as a structure in \'/hich there is no rotation of a horizontal sec

tion at the level of the floors. In this respect, the deflected building 

will have many of the features of a cantilever beam that is deflected by 

shear forces only; hence, the name shear building. To accomplish such 

deflection in a building, it must be assumed that (1) the total mass of 

the structure is concentrated at the levels of the floors; (2) the 

girders on the floors are infinitely rigid as compared to the columns; 

and (3) the deformation of the structure is independent of the axial 

forces present in the columns. 

B. Free Vibration. Hhen free vibration is under consideration, 

the structure is not"subjected to any external excitation (force or 

support motion) and its motion is governed only by the initial conditions. 

There are occasionally circumstances for which it is necessary to deter

mine the motion of the structure under conditions of free vibration, but 

this is seldom the case. Nevertheless, the analysis of the structure 

in free motion provides the most important dynamic properties of the 

structure which are the natural frequencies and the corresponding normal 

modes. 

Figure l(a) sho\,/s the possible displacements of a two-story 

shear building and figure l(b) shows the two possible modes of vibration. 

2 
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FIGURE l(a) - Possible Displacements of a Two Story-Shear Building 
)(20 

FIGURE l(b) - First and Second r~ode of Vtbration 

Any displacement Xl of member C-C' is resisted by the restoring forces 

of the columns. If Kl is the stiffness of the first story then the 

force on C-C' will be -Klxl. If K2 is the stiffness of the second story 

then the forces on C-C' and 0-0' are -K2(Xl-X2) and K2(X2-XI) respective

ly. The equations of motion are then obtained from the corresponding 

free body diagram as is shown in Figure 2 • 

.... . DI r:: ==~;.?t::,c==~ ~:==-=:-l 1>_' 
, I 

/ Jc1 (Xl. -><,) " 
I I 

~ .Jt==' -~::::j/c- "-
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"l 
FIGURE 2 - Free Body Diagram of a Two-Story Shear' Building 
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Hence, equating to zero the sum of forces in x direction for bodies C-C' 

and D-D' results in 

mlxl + Klxl - K2(X2-Xl) = 0 

m2x2 + K2(X2-xl) = 0 

and rearranging these equations gives 

(1) 

(2) 

(3) 

(4 ) 

where xl ' x2 are the accelerations and xl , x2 represent the displace

ments. Equations (3) and (4) may be written as 

(5) 

or in a condensed form as 

[MJ {x} + [KJ {x} = {a} .' (6) 

in which 

[MJ is the mass matrix, 

[KJ is the stiffness matrix, 

{x} is the acceleration vector, and 

{x} is the vector displacement. 
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The system of equation (5) is linear and homogeneous. and its solution 

can be expressed as 

Xl = al eiwt 

x2 =a2 eiwt 
(7) 

where al and a2 are constants, and w is a parameter to be determined. 

Substituting (7) -into (5) results in 

{-mlw2al + (K1+K2)al - K2a2leiwt = 0 

{-m2w2a2 + K2a2 - Klal}eiwt = 0 

..:=.---

which upon simplification gives 

or in matrix form 

{(KI+K2) - w2ml}al - K2a2 = 0 

-K2al + (K2-w2m2)a2 = 0 

and in condensed notation 

{[K] - w2 [M]} {a} = {OJ 

(8) 

(9 ) 

tIO} 

(11 ) 
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Equation (9) is satisfied for the trivial solution, that is, al=a2=O; 

however this solution would indicate no motion of the structure and 

therefore will not satisfy the initial conditions of the problem. 

In order to find the nontrivial solution for this homogeneous 

system of equations, the determinant of the coefficient matrix has to 

be equal to zero, that is 

= 0 (12) 

The expansion of the determinant results in a quadratic equation in w2, 

namely 

03) 

After the roots of (13), w1 and w2 (natural frequencies) are determined 

and substituting back into equation (11) the relative amplitudes of 

motion (normal modes) can be found. 

c. Orthogonality Property of the Normal ~1odes. This property 

constitutes the basis of one of the most attractive methods for solving 

dynamic problems of multi-degree-of-freedom systems. For a system of 

two-degree-of-freedom equations (11) may be written as 

(K1+K2)a1 - K2a2 = m1 w2a1 

-K2a1 + K2a2 = m2w2a 2 
(14) 
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The nonnal modes may then be considered. as ·the static deflections re

sulting from the forces on the right of (14) for any of the two modes. 

For the following two systems of loading and corresponding displacement 

System I: 

Forces: 

Displacements: 

System II: 

Forces: 

Displacements: 

The application of Betti's theorem yields: 

(15) 

or 

(16) 

If the natural frequences are different (WI t w2), it follows from (IG) 

that 

(17) 

Equation (17) is the orthogonality relation between the nonnal modes of 

a tvlO-degree-of-freedom systemo The modes are conveniently nonnalized 

to satisfy the following relation: 
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ml~fl + m2~2l = 1 

where 

~1l = 
al1 

~12 = a12 
vti11ah + m2ah 1lTi1 ah + m2a~2 

(I8) 

~21 = a2l 
~22 = a22 

v'mlah + m2a2l v'ml ai2 + m2a~2 

D. Numerical Example. To illustrate the steps of the procedure 

for the determination of the natural frequencies and normal modes, con

sider the two-degrees-of-freedorn system shown in Figure 3, in which the 

initial conditions are the following: xOl=O , x02=1.0 in , xOl=O t 

x02=0 

-

n 

II: HC.-/ 
"'2 == 2 /'''. 

KZ == '0. 000 '% 
m,.:: , It MF~ •• 

K, ::= 26, 000 ~ 

'Tr rr ,.". 

FIGURE 3 - Example of a Two Story Shear Building 

Substituting numerical values in (3) and (4) gives 

1 Xl + 30,000 Xl 10,000 x2 = ° 
2 x2 - 10,000 Xl + 10,000 x2 = ° 
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or in matrix notation 

[
1 01 [:1] + [30,000 -10,000] [XII = 0 
o 2 x2 -10,000 10,000 x2 

assumin~ solution given by (7) results in 

[ 
30,000-w2 -10,000 1 [a a 21 I = [001 

-10,000 10,000-2w2 

Then, the characteristic equation is 

30,000-w2 -10,000 
= 0 

-10,000 10,000-2w2 

and in expanded form 

which has the following roots 

2 
Wl = 31,861.4 

2 
W2 = 3,138.6 

Then, the natural frequencies for this structure are 



10 

WI = 178.49 rad/sec 

W2 = 56.02 rad/sec 

Consider the first equation of (10) and substituting the first natural 

frequency, WI = l78~49 rad/sec results in 

-1861.4 all - 10,000 a2l = 0 

A second subindex was introduced in al and a2 to indicate that 

the value al has been used in this equation. Since in this case thEre 

are two unknowns and only one independent equation it is possible to 

solve for the relative value of a2l and all' This relative value is 

known as the normal mode or modal shape corresponding to the first 

frequency. For this example, the first normal mode is 

-= -0.18614 

It is customary to describe the normal modes by assigning a unit 

value to one of the amplitudes; thus, for the first mode setting all 

equal to unity 

all = 1. 00 

- & .;£{('( 
a2l =~ 
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Simi la rly, substituting the second natural frequency, 

w2=56.02 rad/sec into (10), gives the second normal mode as 

a12 = 1. 00 

a22 = 2.6861 

The normal modes are conveniently arranged in the column of the modal 

matrix as 

1 
[aJ = 

The general solution to the equations of motion for free vibration in 

terms of constant of integration Al ' A2 ' A3 and A4 takes the follolt/ing 

form: 

xl(t)=allAl sin wlt+a llA2 cos wlt+a2lA3 sin w2t+a12A4 cos w2t 

x2(t)=a2lAl sin wlt+a2lA2 cos wlt+a22A3 sin w2t+a22A4 cos w2t 

which upon numerical substitution yields 

x2(t)=-0.186l4 Al sin wl t-0.186l4 A2 cos wlt+2.086 A3 sin w2t 

+2.686 A4 cos w2t 
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Evaluation of the constants of integration is performed·by using the 

initial conditions which for this example are 

Performing all the necessary algebra and solving for the constants of 

integration, gives 

A1=0 A2=-0.34817 

A2=Q A4= 0.34817 

Then, the general solution may be expressed as 

Xl = -0.34817 cos 178.5t + 0.34817 cos 56.02t 

x2 = 0.0648 cos 178.5t + 0.9353 ·cos 56.02t 

and finally the normalized vectors are calculated by using equation (18) 

as 

cj>u = 1 = 0.9670 
If OF + 2{-0.18614)2 

cj>12 = 1 = 0.2545 
11(1)2 + 2(2.6861)2 

cj>21 = -0.18614 = -0.18 
11(1)2 + 2{-0.8614)2 

Similarly for 
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CP22 = 0.6838 

In matrix form, the normal modes can be represented as 

.~ = [ 0.9670' 0.2545] 

-0.180 0.6838 

On free vibration of a shear building the eigenproblem was 

solved to determine the natural frequencies and normal modes of vibra-

tion. For a system of many degrees of freedom, the algebraic and 

numerical work required for the solution of an eigenproblem became a 

tedious tasko For the purpose of solving an eigenproblem, the Jacobi 

Hethod was selected among several numerical methods. 

E. Subroutine Jacobi. This subroutine program-developed by 

Professor Wilson is used throughout this thesis to solve the eigen

problem. The description of the symbols utilized in this program are 

listed as follows: 

Variables 

AO,I) 

BO,1) 

XO,I) 

EIGV(I) 

DO) 

N 

RTOL 

NSMAX 

ISPR 

Symbol in Thesis 

[K] 

[M] 

[~J 

Description 

Stiffness matrix 

Mass matrix 

Modal matrix 

Eigenvalues 

Working Vector 

Order of matrices A and B 

Convergp. Tolerance (Set to 
10.- 12 ) 

Maximum number of sweeps 
(Set to 15) 

Index for printinq during itera
tion I=Print;O=Do not Print 
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And the input data is subjected to the following formats 

Formats 

2110 

8FlO.4 

8F10.4 

Variables 

N , I FPR 

A(I,J) (read by rows) 

BO ,J) (read by rows) 



III. FORCED VIBRATION OF SHEAR BUILDINGS 

In the preceding chapter, it was sho~m that the free motion of 

a dynamic system may be expressed in terms of the normal modes in free 

vibration. The objective of this chapter is to sho\'1 that the normal 

modes may also be used to transform the system of coupled differential 

equations into a set of uncoupled differential equations in which each 

equation contains only one dependent variable. Thus, the modal super

position method reduces the problem of finding the response of a multi

degree-of-freedom system to the determination of the response of a single 

degree-of-freedom systems. 

A. Modal Superposition Method 

Considering the equation of motion for a two story building sub

jected to forced vibration. 

mlxl + (K1+K2)xl - K2x2 = F1(t) 

m2x2 - K2xl + K2x2 = F2(t) 
(19) 

In seeking the transformation from a coupled system into an un

coupled system of equations in which each equation contains only one un

known, it is necessary to express the solution in terms of the normal 

modes multiplied by some factors determining the contribution of each 

mode. Hence, the solution of (19) is assumed to be of the form: 

xl(t) = allzl(t) + aI2z2(t) 

. x2(t) = a21 z1(t) + a22z2(t) 

15 

(20) 
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Substituting (20) into (19) gives 

F1(t) (21) 

m2 a21z1 - K2al1z1 + K2a21z1 t m2a22z2 - K2a12z2 + K2a22z2 = F2(t) 

To determine the appropriate factors zl(t) and z2(t) which will uncouple 

(21) it is advantageous to make use of the orthogonality relations to 

separate the modes. This;s accomplished by multiplying the first of 

the equations (21) by aU and the second by a21. The addition of these 

equations after all the necessary algebra is performed, equation (21) 

yields: 

Similarly, multiplying the first of (21) by a12 and the second by a22' 

yields 

(22)b 

Therefore, equations (22)a and (22)b correspond to a single degree-of

freedom system which may be written as 

.. (23) 
M2Z2 + K2Z2 = P2(t) 
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. h' h M 2 2 d M 2 2 h d 1 ln w lC, l=mIall+m2a22 an 2=mla12+m2a22 are t e mo a masses; 

KI=wIMI and K2=w~M2' the modal spring constants and PI(t)=aIIFl(t)+ 

a2I F2(t) and P2(t)=aI2Fl(t)+a22F2(t) are the modal forces. Hhen the 

modal shapes are normalized, equation (23) can be written as 

•• 2 
II + WIll = Pl(t) 

Z2 + w2l 2 = P2(t) 

in which, PI and P2 are given by 

PI = ~IIFl(t) + ~2IF2(t) 

P2 = ~12FI(t) + ~22F2(t) 

(24) 

(25) 

The solution of the uncoupled equation (23) or (24) can be found by the 

application of Duhamel's integral as will be shown in a numerical example. 

B. Numerical Example 

Consider the structure of the numerical example of chapter one 

shown in Figure 3 with the only difference that, this time the first and 

the second story are subjected to constant loading applied suddenly at 

t=O; as is shown in Figure 4. 

~====~- FZ:= 2,000 !Io 

~====t- F. -1000 Jl,. ~ ,'" . 

FIGURE 4 - Building Subjected to Constant Loading 
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The values of natural frequencies, and the modes are known by 

solving the building as free vibration. This was shown in a numerical 

example in the preceding chapter. These values are:. 

WI = 178.5 rad/sec 4>11.= 0.9670 

W2 = 56.02 rad/sec 4>12 = 0.2545 

4>21 = -0.18 

4>22· = 0.6838 

To determine the appropriate functions ZI(t) and Z2(t), which will enable 

to uncouple equation (21), it is necessary to use equation (23), by sub

stituting into (25) the numerical values found in the preceding chapter, 

gives 

PI - 0.967(1000) + (-0~18)(2,000) = 607 

P2 = 0.254(1000) + (0.6838)(2,000) = 1,621.6 

Performing the numerical substitution in equation (23) yields, 

II + (178.5)2 Z1 = 607 

Z2 + (56.02)2 Z2 = 1,621.6 

Since it was assumed that F1(t) and F2(t) are constant loading applied 

suddenly at time equal zero the solution of the above equations is given 

by 

ZI ( f) = fl- (I-cos WIt) = 607 (I-cos 178. 5t ) 
WI 31,862.25 

Z2 (t) = fz- (I-cos w2 t ) = 1,621.6 (I-cos 56.02t) 
w2 3,138.24 
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and the maximum displacement by 

Zlmax = (2)~ = (2) 607 = 0.038 
wI 31,862.25 

Z2max = (2)P2{t) = (2) 1,621. 6 = 1.032 
w 2: 3,138.24 2 

A method which is widely accepted and which gives a good estima

tion of the maximum response from the spectrum values is the square root 

of the sum of the squares of the modal contributions. This calculation 

is given by 

which upon substitution gives, 

XImax = I(O.9670xO.038)L + (O.2545xl.03212 = 0.2652 

X2max = 1(-O.180xO.038)2 + (0.6838x1.032)2 = 0.7057 

C. Response of a Shear-Building to Ground Motion 

(26 ) 

The response of a shear building to the base or foundation motion 

is conveniently obtained in terms of relative displacements with respect 

to the base motion. 

For a two-story shear building shown in Figure,5a which has its 

mathematical model shown in Figure 5b, the equations of motion are ob-

tained by applying Newton's second law to Figure 5b as fo11O\'/s, 
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- "', 

FIGURE 5(b) - Mathematical Model and its Free Body Diagram 

m1i1 + K1(xl-xs ) - K2(x2-xl) = 0 

m2i 2 + K2(x2-xl) = 0 
(27) 

where xs=xsCt) is the displacement imposed to the base of the structure. 

Expressing the displacements in terms of relative displacements, 

Ul = xrxs 

u2 = xrxs 

and derivading (28) twice with respect to time yields, 

i 1 = ul+is 

~2 = u2+xS 

(28) 

(29) 
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By substituting (28) and (29) into (27) gives, 

ffi1a1 + (K1+K2)u1 - K2u2 = -m1xs 

ffi2a2 - K2uI + K2u2 = -m2~ 
(30) 

For a base motion of shear building equations (29) may be written as, 

(31) 

in a compact form gives, 

•• 2 f·· 
Zl + wI ZI = I Xs (t) 

22 + w~Z2 = f2 ~s(t} 
(32) 

where f1 and f2 are called the participation factors which are repre

sented by 

- m]ap + m2a~2 
mIa12 + m2a22 

(33) 

The relation between the modal displacement ZI ' Z2 and the relative dis

placement ul ' u2 is given in equation (20) as 

ul = allZI + al2Z2 

u2 = a21 Z1 + a22Z2 
(34) 
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The change of variable to make the second member of equation (32) equal 

Xs(t), take the fonm of 

Zl=r1 g1 

Z2= r2 g2 

substituting (35) into (32) gives 

§1 + w~gl = Xs(t) 

92 + w~92 = Xs(tl 

(35) 

(36) 

Finally, solving for gl (t) and g2(t) the uncoupled equation (36) and sub

stituting this solution into (34) and (35) gives 

ul(t) = r1al1g1(t) + r2a12g2(t) 

u2(t) = r1a21g1(t) + r2a2292(t) 
07) 

Whenever the maximum modal response glmax and g2max are obtained from 

spectral charts, the maximum values of u1max and u2max can be obtained 

by using (26) in the following form: 

(38) 

D. Subroutine Modal 

This modal is utilized to obtain the response of multiple degree 

of freedom system by using the superposition method. The theory and the 

\. 
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manipulation was sho\,1n throughout this chapter. The symbols for this 

subroutine are shown below. 

Variables 

ND 

GR 

EIGEN(I) 

X(I,J) 

DT 

TMAX 

NQ(Ll 

Mer ,J) 

T(I} 

PO) 

XIS(I) 

S~nbols in Thesis 

N 

9 

w~ 
1 

Description 

Number of degrees of freedom 

Excitation index: For support excita
tion, g-acceleration of gravity. For 
forced excitation, g=O. 

Square of natural frequencies (eigen
values) 

Modal matrix (eigen-vectors) 

Time step of integration 

Maximum time of integration 

Number of points defining the excita
tion at coordinate L 

Mass matrix 

Time at point i 

Force or acceleration at time ti 

Damping ratios 

The input data are subjected to the following formats. 

Format 

(IlO,FlO.O) 

(8FI0.4) 

(8FlO.4) 

(BFIO.4 ) 

(2FlO.4,1215) 

(8FlO.2) 

(8FlO.3) 

Variables' 

NO, GR 

M(I,J} (read by ro",s) 

EIGEN(I),(I = 1, NO) 

X(I,J) (read by rows) 

DT, TMAX, NQ(L) (L=l ••.• NG), where NG=ND when forces 
are at coordinates or NG=l "'hen 'acceleration is at 
support 

T(I), P(I) (I=l,NQ(L)) (one card per forcing func
tion) 

2SI(1), (I=l,ND) 



IV. DAMPED MOTION OF SHEAR BUILDING 

In the previous chapter the analysis of a shear building was 

based upon undamped system of motion; the techniques to determine the 

response of the shear building were discussed, giving special emphasis 

on the tranformation from coupled systems to uncoupled systems, by means 

of a transformation of coordinates which incorporate the property known 

as orthogonality of the modal shapes. 

In the consideration of damping forces in the dynamic analysis 

of shear building presented in this chapter, the system of equations of 

motion became more complicated, not only because the system will con

tain one more forcing factor, but the procedure to uncouple the system 

will also become difficult. One way to avoid this difficulty is by intro-

ducing some restrictions or conditions on the functional expression for 

the coefficients of damping. 

For practical purposes, damping. is neglected for the calculation 

of natural frequencies and modal shapes of the system. Consequently for 

the solution of the Eigenvalue problem the system is reduced to an un

damped and free vibration system. 
r3 (;)"""=====:::;::=1 t- -)(3 

t< 
Fot (~) 

! - - xl. 

K 
F, (f:) l - -X, 

~K, 
C, 

FIGURE 6(a) - Shear Building Subjected to Damped Motion 

24 
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m.j-F, 

FIGURE 6(b) - Mathematical Model of Shear Building 

A. Equation of Motion for Damped System 

For a viscously damped three-story shear building shown in Figure 

6Ca) the equation of motion can be obtained by applying Newton's second 

law to the free body diagram of the mathematical model sho\lm in Figure 

6Cb); these equations are, 

in matri x form 

[M]{x} + [c]{~} + [K]{x} = {F(t)} (40) 

where the only new factor introduced is the damping matrix [c] which is 

given by 
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Cl+C2 -C2 0 

[C] = -C2 C2+C3 -C3 

0 -C3 C3 

Since, equation (40) is obviously a coupled system of equations, then it 

is convenient to uncouple by introducing the following transformation of 

coordinates: 

{x} = [~J{Z} (41) 

where [~J is the modal matrix obtained by solving the system as undamped 

free vibration, substituting (41) into (40) gives, 

[nJ[~]{~} [cJ[~J{!} [KJ[~J{Z} {F(t)} (42) 

Premultiplying (42) by the transpose of the nth modal vector {~}~ yields 

-It is noticed that the orthogonality property of the modal shapes, is 

given by 

(44) 

Causing all components except the nth mode in the first two terms of 

(43) to vanish. A similar reduction is assumed to apply to the damping 
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term in (43) that is 

then the coefficient of the damping term in (43) \1lill reduce to 

{~}~[CJ{~}n; therefore (43) gives 

or 

in which 

.. . 
Mn Zn + Cn Zn + Kn Zn = Fn (t) 

.. . 
Zn + Zn wn Zn + w~ Zn = Fo(t} 

Mn 

Mn = {~}~[MJ{~}n 
Kn = {~}~[K]{~}n = w~Mn 
Cn = {~}~[CJ{~}n = 2~wnMn 

Fn(t) = {~}~{F(t)} 

The normalization that was presented previously 

will give Mn=l , so that (46) will reduce to 

which is a set of uncoupled differential equations. 

(45) 

(46) 

(47) 

(48) 

(49) 
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B. Conditions to Uncoupled Equations in Damped Systems 

The derivation of equation (49) was based upon the assumption 

that damping can also be uncoupled by using the normal coordinate trans

formation utilized to uncouple the inertial and elastic forces. 

It is crucial, at this point to explain the condition under 

which this uncoupling will occur, that is, the form of the damping matrix 

[C] to which (45) applies. 

Rayleigh showed that in damping matrix of the form 

(50) 

in which ao and a1 are proportionality factors, the orthogonality condi

tion will be satisfied, that is, premultiplying both sides of (50) by 

the transpose of nth mode {~}~ and postmultiplying by the modal matrix 

[~] gives equation (51) as follows: 

with the orthogonality condition (44) equation (51) reduces to 

or by (47) equation (51) takes the following form 

{~}~[CJ[~J = ao Mn + a1 Mn w~ 

{~}~[CJ[~J = (ao + a1 w~) Mn 

(51) 

(52) 
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which shows that,when the damping matrix [e] is of the 'form (50), the 

damping is coupled with equation (41). It can also be shown that [M] 

and [K] satisfy the orthogonality condition. In general, it takes the 

form 

[C] = [M] E ai ([M]-l[K])i 
i 

in which as many terms may be included as desired. 

(53) 

Rayleigh damping equation (50) obviously is contained in 

equation (53); however, by including additional terms in this equation 

it is possible to obtain a greater degree of control over the modal 

damping ratios resulting from damping matrix. With this type of damping 

matrix it is possible to compute the damping influence coefficients 

necessary to provide a decouple system having any desired damping ratios 

in any specified number of modes. For each mode n, the generalized 

damping is given by equation (54) of the following form 

(54) 

But if [e] as given by equation (53) is substituted in the expression 

for en' the series of generalized damping is 

Now, by using the equation of motion as free vibration [K]{a}=w2[M]{a} 

after nOYTnalized K{q,}n=w 2M{q,}n and performing the necessary algebra it 

j 

I 
! 

I 
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is possible to show that the damping coefficient associated with any 

mode n may be written as 

(56 ) 

from which the damping ratio can be given as 

(57) 

Equation (57) may be used to determine the constants ai for any desired 

values of modal damping ratios corresponding to any specified numbers of 

modes. For instance, to evaluate the first four damping ratios sl' s2~ 

s3' and s4 in this case (57) gives the following equation 

sl wI wf Wf wi al 

S2 W2 W2 W~ w2 a2 

S3 = 1/2 w3 wj wj w~ a3 (58) 

s4 w4 w4 w4 w4 a4 

In general (58) may be expressed symbolically and in condensed form as 

follows 

(59) 

from which it is possible to get the constant {a} as 

(60) 

-1 
t' 

I 
j 
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Finally, the damping matrix is obtained after the substitution of 

equation (60) into (53). 

It is interesting to observe from equation (57) that in the 

special case when the damping matrix is proportional to the mass 

{C}=ao [M] when i=O, the damping ratios are inversely proportional to 

the natural frequencies; thus the higher modes of the structure will be 

given very little damping. 

There is yet a second method for evaluating the damping matrix 

corresponding to any set of specified modal damping ratio. This method 

is presented starting with the following relationship 

2S1W1Ml 0 0 

[~]T[C][~] 
0 2S2w2M2 0 

[A] = = (61 ) 
0 0 2s3w3f13 
• GO •••••••••••••••••••••• 

It is evident that the damping matrix [C] may be evaluated by pre- and 

post-mul ti plyi ng (61) by the inverse of the modal matrix and its inverse 

transpose, such that 

(62) 

Therefore, for any specified set of modal damping ratios Is}, matrix [A] 

can be evaluated from (61) and damping matrix [C] from (62). However, 

in practice, the inversion of modal matrix is a tedious task. But 

taking advantage of orthogonality properties of the mode shapes, the 

following expression can be deduced. 

'1' 
I. 

r 
l 
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N 
[C] = [M] (~ 2~nwn {~}n {~}~} [M] 

n=l Mn 
(63) 

The damping matrix [C] obtained from (63) will satisfy the property of 

orthogonality and therefore, the damping term in equation (40) will be 

uncoupled with the same transformation (41) which serves to uncouple the 

inertial and elastic forces. 

C. Subroutine Damp 

This subroutine developed by Professor Paz calculates the system 

damping [C] using (63) from specified modal damping ratios. The main 

program gives the values of [~J and [M] to the subroutine, but, the 

damping ratio should be given, with the following input format. 

Variable 

xlI} 
(I=l,NL) 

Symbol in Text Format 

8F10.2 

Description 

Damping ratio for 
modes 1 to NL 

The past experience indicates that values for the modal damping 

ratios in structures are generally in the range of 2% to 10%, probably 

no more than 20%. Therefore for all practical purposes in a design of 

a dynamic structure the eng'ineer takes 10% as a typical figure. 

D. Seismic Response of an Elastic Shear Building 

The computer program that is presented in this section, calcu

lates the dynamic response of a shear building, within-the linear-

elastic range and subjected to excitation at its foundation. The modal 

superposition method of analysis is utilized to uncouple the system of 

differential equations. Subroutine Jacobi, developed by Professor Wilson, 

"1' 
" I 
l 
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is called to solve the eigenproblem resulting in eigenvalues (wi) and 

the eigenvectors which form the modal matrix [~J. Subroutine Modal, 

which is called next, solves the resulting modal equations using 

Duhamel's integral described by Professor Paz in Chapter 4 of Structural 

Dynamics. Finally at each step, ·the solution of the modal equations 

are combined in equation (41) to obtain the response in terms of the 

original coordinates of the shear building. 

The variables and input formats used in this program are shown 

in tabular form below. 

Variable 

DT 

E 

GR 

TMAX 

NEQ 

ND 

IFPR 

SI 

SL 

SMlI ,I} 

TC(I} 

P(l) 

Symbol in Thesis 

E 

g 

I 

L 

.. 
Ys 

Description 

Time increment 

Modules of elasticity 

Acceleration of gravity 

Maximum time response 

Numoer of points of the excitati on 
function 

Number of degrees of freedom 

Index for intermediate printing in 
Jacobi; l=Print, O=do not print 

Moment of inertia of story i 

Height of story i 

Mass at floor level i 

Time at point i 

Support acceleration at time ti 

These variables are subjected to the following input formats. 

, 
" I , 
j I 

i ,1 

, 
". , 

I 



Formats 

(4F1Do2, 255) 

(3F1D.2) 

(8F1D. 2) 

34 

Variables 

DT, E, GR, TMAX, NEQ, ND 

SI, SL, SM(I, n (one card for each story) 

TC(I), pel), TC(2), P(2)···TC(NEQ), P(NEQ} 

, I'" 

" i 
j 
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E. Computer Program #1 

C srIS~:C RrSFC~SE ~LAST:C SHEAR AUILD~~G ,. 
'" ! :.1f' L I C' :, i, [to l .. t. ( ~ - .... ~ C - Z ) 

o I r-I E "\ S : c~; S 1\ (:. c ~ 3 J ) ~ ~ M (3 0 ~ 30 ) ,S C (:3 C .. 30 ) • F ( ~. C ) ~ x ( 3 Co • -: 0 ) , 
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1 D UA (:3 0 ) • I.':' ( ~ Q ) ,U v ( ~ C ) .1.1 A ( :. (l) • T C (3 (] ) ~ F ( ~ 0 ) • S ( :: a ) , E" = G E \ ( 30 ) 

R :: A;:; : ': PUT D t. T t. ~ ~J C ! '.j TTl:' L : Z E 

~EAO(5,10C) T~~T~~r7.r,~~.TwtY,~EQ .. ~G~:FP~ 
~~rTE(£~lCC)T~~l~~DT'['1GR,T~t)'\~~'I~D~:FP~ 

~X=T'-'A;'/wT+2 

00 1 I=l.~:Y: 

1 FCI)=C.C 
DC 2 !=l.~:C 

DO 2 J=1 .. \8 
S~(:.J)=C.C 

SCCI.J)=O .t") 

x<:,J):::C.J 
2 SK<!.J>=G.C 

~ i) 1 :: 1·5 C • 1 
TU=Tr.:'TH·!;T 
Al=3.ITU 
A2=6./:U 
A3=TU/2. 
A~=A2/TU 

CO 7 !=l.'~ 
REAC<5,IIJ) S:.Sl.~~(:.!) 

~RITr(S'l1:0)S:.S~.S~(:,I) 

110 FCR~~T(3FIC.2,FIO.G) 
SC!)=12.0·"-*S:/SL~+3 
S C ( I , : ) :: S ~.1 ( I .. : ) 
UD(I)=C.O 

7 UV(I)=O .. C 

$(\':O+l)=O.Q 

C::l IS :=l, .... n 
I~(I.~Q.l) GO TO l~ 

S K ( ! • : - 1 ) -:: -s ( I ) 
SK(!-l,I)::-S(~) 

195KCI,:}=S(:)+S(I+l) 

C A. L l 0:' \1 P ( i'< L' , x , S ~I • s:: • :: I G [ ~: ) 

REA[)(S,12r.) (TC(L),r-(l).L=l.\f("~) 

WRITf(::J,12U <TC(U.F<t .. ) ,l=l.\~C) 
l~O F0R~:T(hrlr.?) 

DO 4 :-:l.~~G 

4 P ( 1 ) ::: r ( I ) ~ (, R 



i 
'42 
143 
i44 
145 

I:~ 
H 
49 
50 
51 
52 
53 
Sit 
55 
56 

c 

NT = T C ( '1 [ (J ) /r'T 
IF (\T.GT.TrAX/DT} \T=T~AW/DT 

r .. T 1':: '. T + 1 
F(1)=P(~) 

t.~~·:=G.a 

II=1 
0') 10 1=2.';T1 
AI=i-l 
T=AI~rT 

IF(T.GT.TC'('.rO» r.:: it: 16 
IF(T.L~.TC(::+l» 0C T: g 

. AN~=-TC(:1+1)~T-OT 
II=!!+1 

t? A ,~ .~ = A '< \ + 0 T 
F ( ! ) = P ( I ! ) + ( p ( ~ ! + 1 ) - p ( ! I ) ) * Hi r-./ ( T C ( I I + 1 ) - T C ( I I ) ) 
W~!Tr(F~110) T,F(:) 

57 10 C2'H l~:l':' 
58 16 CO~Tr~U~ 

59 
60 
61 
62· '. 

j 63 

64 

65 
66 
67 
6~ 

C 
C CALCULATE !~!TI'L GCCEL~RATIO~ 

C 

C 
C 

C 

C 
C 
C 

~T=P'A )'/D T 

X(!,~Jl)=-=(l)*S~(!,T) 

C ') 2 2 J = 1 • '; [' 
2 2 X ( ! , J ) :: S ': ( : , J) 

DC 301 L:==l,\D 
301 ~RITrC6,21~) (X(l!,LJ).LJ=1,~Dl) 

CALL S~LV[(\S,X) 

WRIT[(6,21~) (Y(L:,~C1).LI=1,~D) 

o 0 2 :3 I = 1 ~ ': r 
23 UA(l)=x(:.~Sl) 

251 FCR~AT (1~1,~Y.'T~~Et,5X,t~ISPL.t,9X,tV~LCC.'.]1X.ttCC.t/) 

\JRIT[(6.251> 

STEP 5Y ST~P LCCP TO CALCULATE qESFC~SE 

69 00 30 L=l,'.T 
70 ~L = L 
71 T=DT*4L 
72 D': 20 :~l~\D 

73 IF(:.~C.l) GC TC 2f 
74 S!<C.!-l} = -s en 
75 SK«I-1)'l)=-S (:!:> 

175 20 SK<T,I):::S (!)+S 0+1> 
77 D0 25 1=1,\0 
78 D~ 2~ J=I,'C 
79 25 X(I.J)~SKer.J)+A4·~~(T.J)+Al·~C(1,J) 
?O D~ 35 !=l,\C 

36 

~ 1 X ( ! • ~.! D 1. ) = ( ~ ( L'" 1 ) + ( r ( L + 2 ) - F ( l + 1. ) ) ., ( THE T A -1 • n ) - t: (l ) ) + ( - S ~ ( I • I ) ) 
32 D~ 3C J=I.','0 

(63 30 X(I.~Ql)=X(!,~~l)+(S~(!~J)*A2+SC(1,J)·~.O)·UV(J) 
1 .. ( <:;~' ( : ~ J ) .:: .. J + A :3 .. C' C ( j , J) ) *" U.l (~I) 

;4 3~ CC~T:~ur 

C 302 
&5 

c 

ec: 7[';: L!:l,H' 
W R ! T [ ( r, , ? 1 ~, ) (~( L •• L J ) , l J::: 1 • ~J G 1 ) 
CALL S,:LV=-('.D.X) 
~J R I T E ( ()' Z 1 (;) (, .. ( L! , r D 1 ) 'I L 1=1 , r\~) 

DC 3i. :::l.'~r: 

o L: A ( ! ) =:, II • >' ( j. ":; J ) - t.:-' • U v ( : ) -", • r' • lJ i': ( ! ) . 
OUA(!')~~ut(1 )/T~rT~ 



OUV=OT*fJA( :)+:T*("L'':'C :>/"1.0 
U ~ ( :t ) -: I.' - ( , ) +. r'I T + l'V ( ! ) + r T .. ~ T • U f: ( T ) 12 .0 + n T ,. r T" !:'l U ~ ( ! ) 16 • C 
UV<:>=CV< ~ , .. r.tJlJ 

3E CQ"JT1~l'r 

D0 50 :=l.'C 
y ( ! • ~; f) 1 ) = r= ( L + ] ) * ( - ~~' ( ! , I ) ) 
D0 45 J=l.':; 
X(!.~Dl)=k{!1'Jl)-SC(T,J)~UV(J)-SK(I~J'·UQ(J) 

4 5 X ( I • J ) = ~. I-~ ( -: • J ) 
5 0 Cr:· ''; TI r.; U r 

c 00 ~n~ L!=l,~C 

c 303 WR!T~(~.21r) (X(L!.LJ).LJ=1,~rl) 

95 CA~L SCLV:: (\['4"") 

00 
01 
02 

r 04 
05 

106 

I 

f7 106. '. 
109 
10 
11 
12 

113 
114 
115 
116 
117 
112 
119 
120 
121 
122 
123 
124 
125 
126 

'127 
J12 :. 
129 
13 () 
131 

132 
133 
134 

13~ 
13(, 

137 
1:.H. 
13, 
14 C 
141 

c WR!T~(£.,.21q (I(LI,~.Cl),L:=l,~,C) 

C ,. 
" 
C 

DO be ~=l.',L' 
Uf,(!)='y.(:,\Cl) 

6 0 ~j R ! T :- ( f: • 2 ~~ G > T. U !} ( :: ) • U v ( : ) , U II (! ) 
25D F:R~tT(Flr.~.3F15.4) 

c; 0 C (I 'JT i~. U E 
ST G? 
PD 

SUPRCUTI~[ SCLV~ (~~A) 

!r.PL!C~T R~;l ~ S (t-~,O-Z) 
DI~E~S:C\ A(30~30) 

M=1 
EPS=1.GE:-1.0 
N? L US\' =- '! + )'l 

I)::T=1.0 
DC 9 ~=1,~. 

D::T=J::T""'~ (~.~<> 

IF(D~5S(A{~,K)}.GT.EPS) GO TO 5 
""RIT~(r-,2C2) 

GC T':;9C, 
5 KP1=K+l 

DO 6 J=KP1. ~~LUS~ 

6 A(~,J)=t(V~Jl/~(K,~) 
A(K,to=l. 
o Q 9 : = 1 ~ '; 
IF (i .. [C .. V.0p..;.c~n,C:Q~o .. ) GC TO ':1 

1: A(I~J)=A{I.J)-A(:"v)"'t.'K .. J) 
fd!,K>=C.OClC 

c; C::~;TP:U:-

202 FG~~tT(~7~05~!LL P!V~T -~~T~IX MAY q~ SINSUL!R ) 
:.ie; R:TC?'; 

[\,J 

SU9q(UT!~~ JAC0~1 (A.b,X,EIGV,D_N"IFPP) 
I~PL!r!l ~~LL*~(!-~.O-7) 

D ! II r r-. s r 0 ~ ;, (3 8 , 3 (1 ) , :: (:- 0 .. 3 0 ) , ,.. (~ 0 , 3 C ) , r : G v ( 3 :; ) , [. ( 3 0 ) 

1~11I'LIZE EIG[~V5LUE A~D EICENVECTOP ~~TPICES 

~s~· A X = 1 t:, 
rT::L ':" 1.f1-)? 
leUT:::'; 

DO 10 :=1~' 
IF(Al! .. :).GT.C ... ,~!\:[l. G(J"I>.GT~O.)GO 104 
~n I T r( j CUT ~~. G 2 :) ) 
ST('\~ 

37 



142 
143 
144 
145 
14~ 

147 
14b 

C' 
C 
C 

149 
150 
151 
152 

C 
C 
C 

153 
154 
155 
155 
157 
158 
159 

C 
C 
C 

160 
161 
162 
163 
16'4 
165 
166 
167 
168 
169 
170 
171 
172' 
173 
174 
175 
176 
177 
lP 

C 
C 
C 

179 
1 a 0 
!a1 
If,2 
1 ~ 3 
1 ~ 4 
125 
In 
l~ 7 
1 ~ ~ 
}a9 

190 

4D<I):..l.(!,,:>l tl (7.r> 
Ie ~IGVC)::D(=) 

DO 30 1:-1," 
0(1 20 J ='1 4 ~' 

:>0 xn,J)=li. 
30 XU,!)::!.. 

I J: ( ~; • :: c.: • 1) F\ r T U r: " 

I ~~ I T I A LIZ t" S ~.':- ~ pc: u r .. T E P. t. ~,~ 0 f:: G T. ~, ! T f " AT: C "j 

·~S~EE.:>=O 

~ R -=~J-1 
40 ~SWEEP=~s~:-rF+l 

IF ( IF P P "E G .. 1 ) ~'i' r T ~ ( I CUT, 2 0 00 ) t. S t~ r. E P 

CHECK IF PR[SE~T ~FF-D!AG~~AL ~LE~E~T IS LARGE 

EPS=(~Gl~*\S~E~F)~~2 

DO 210 J=J ~r;R. 
JJ=J+l 
C(I 210 K:::JJ.~' 

E?T~lA=(A(0,()*A(J~K»)/(A(J~J)~A(K.K)} 

EPTOL2=(~(J4K)*~(J.K»/(P(J,J)*~(K.K» 

!F(~~TOLl..LT.:cS).~~D.(EPTCLE.LT.EPS»GG T021C 

38 

IF ZERCI~G IS REGUiRED,CtLCULATE T~E ROTATIC~ rATRIX [LEME~T C~.CG 

AKK=A(~,K)K3(J"K)-S(K.K).A(J,K) 

AJJ=A(J.J)·S(J-.K)-3(J.J}~ACJ.~) 

AB=A(J~J)*~(K~~)-t(~,K)*e(J,J) 

CM::CK=(t~r~8+~.YA~K·~JJ)/4. 

!F(CH~CV)58.f~,60 

50 ~~lT[(I0UT.2020) 
STr::> 

60 SQCh=CSCRT(C~~C~) 
Dl=l:6/2.~C:;CCr 

D2 = A e /:>. - s::; (1-' 

DE'~=Dl 
IF(JA3~(D2}.GT.CA~S(Dl)}D~~=J2 

! F ( D [ ~j ) ::, C , 7 C , h 0 
70 CA=O. 

CG=-A(J,K)/A(K,~) 

CG=-~(~.~)/~(~_K) 

GO T0 :::C 
50 CA=AKK/D~" 

CG=-AJJ/O:':', 

~o IF(~-2}lCO,lCO,100 

ICO JPl=J+l 
JM1=J-l 
K?1=K+1 
"<Ml=t<-l 
IF(J~l-l) ~~G.llr,lIG 

110 Df) 120 7=1,d v l 
AJ=:"<I.d) 
BJ=B<1,J) 
A{::t.C.I<) 

f:,K=B<!"K) 
A(: ,J) ::t.J+Cr>AK 



J
191 
192 
19 :3 
114 
195 
195 
197 
198 
1 ~9 
20 C 
201 

I 2C2 
1 203 
; 204 

J 205 

I 20!) 

1 2 C 7 
~. 2 a 8 

2C9 
210 
211 
212 
213 
214 
215 
216 
217 
218 
21 Ci 

220 
221 

c 

e(!.J)=-CJ+"r:*~j( 

A ( 1 ,\C, ) :: ~, \(' ... C A .,.. ,l J 
1206<I,r<')=::'K+C:'*::'J 
130 IF U,;:'l-'i)lLtC.140dSC 
140 CS l~C I=~rl,~ 

AJ=A(Jd) 
BJ=S(J.I) 
t.'<.=:'(K.~) 

81<=[3(,(.:> 
A(J,I)=AJ+CG*:'K 
B-CJ.:)=~J+rG*pv' 

A(I<,r)=:'K+Ct:·~J 

150 B(~.I)=S~+C~~6J 
lEe F(J;>1-K M 1>l7G.170d c C 
170 00 l~C I=J~1.K~1 

AJ=!,(J,:> 
PJ=:'(J,I) 
.a.K=A(I,V) 
S~=SC:.v) 

A(J.!)::..AJ+CG·AK 
6 (J. 1) =8J+CG*:;J, 
A(l .. Y.)=lK+C~"-~J. 

lEO a(I .. K}=?K+C~*~J 
l~O A:<=A( ..... r<) 

6K=8(K.1O 
A(K .. K)=LK+?*C~*t{J,~'+CA*CA*A(J,J) 
B(K,K)~oK+2.*Ct*~(J.\(')+C~*C~*P(J~J) 

A ( J, J) =;... ( J ~ •. :) + 2 ...... C G .,.. A ( J , K ) ... C G "C G"- p.'" 
8 ( J .. d ) ::. P ( J JIJ) ... 2 • * C G .,.. S ( J .. n ... C G *C G ... 3 j{ 

A ( J 1 ,,~) :: C .. 
BCJ,IO=C. 

C U?DAT!': HE E!G~';V:-CTCR V,ATRIX AFTER Et.C~ OOT6TI81'; 
c 

222 DO 2('0 ::=J ,:~ 

223 XJ::)(!.J) 
224 XK=X(I,~) 

225 X(!,J)::XJ+~G*x~ 

225 200 X(:,~)=YK ... C~*XJ 
227 210 CONTI\U~ 

C 
C UPJATE ThE EIG~~VtLUES tFTER EAC~ SWEEP 
C 

22& 00 22C !=l.~ 

2 2 '3 I F {A ( : , ! ) . G T • G. • L. r~ Q • 8 ( I , ! ) • G T • C .) (, (' T C' 2 ? £) 

230 WP!T[(::UT.202C) 
231 SlC'P 
232 220 [IGV(l>=t..(I_!)/?(],T) 
233 IF(IFP~.EC.C)G1 T~ 230 
234 WRITE(:CU1,?O~O) 

2 3 5 ~1 R I T f ( : r- U -; , 2 Q 1 0) (: ! G V ( r ) • i = 1 ,~:) 
C 
C CH~CK ~CP :r~V(PGE~CE 

C 
23 (, 2 :z. r C r" ? 4 1'1 T:,:: 1 , I: 

237 TOL=RT~L~D(!) 

~3~ QTF=OA~S(~:GV(: )-~(T)} 

23g IF(~lF·GT.T(L)~C TC ~~G 

240 240 rC:'lT.!"iUr: 
c ,. 
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141 
142 
1~ 3 

,14 It 
~5 

46 
147 
1~8 

c 
c 

REGU!~tD 40 

EPS=RTCL"·2 
o 0 2" G J =: 1 1 '; P 
JJ::J+l 

E.PSA::(/.\ (J.I<) *£. (J,I<» /(:: (J.J)" t(I'(,K» 
E P S ~ :: ( c, ( J • K. ) - ::0 ( J • ~ ) ) I (": (J • J ) * c ( V ,K' ) ) 

IF(EP~A.LT.E~~}.~~D.(rpSS.LT.~?~»G0 T0 2:0 

14 :; 2 :. 0 C c: ",. T ! i-tJ ::-

I 
< 
1150 
1,51 

J252 

J
253 
25 It 

.255 
256 
257 

j258 
.259 

1
260 
261 
262 
263 
26 t; 

)65 
266 

267 
268 

,269 
1
270 

1

271 
272 
27.3 
274 

.£7 5 
£76 
277 
275 
279 
280 

.281 
2F. 2 
283 
28 It 
285 
2~ 6 
287 
28 B 
2t! '3 
290 

c 
C FILL :UT ~(TTC~ TR!AhGLE OF RESULTA~T ~ATRrC[S 

C A~J SC~LE EISE\VECT:RS 
C 

c 
c 
c 

2 5 5 D Q 2 6 0 !:: 1 • t; 
D'J 260 J=l.f\j 
t.(J, 1> =:..(: ~J) 

260 8(0.:)=C(:~J) 
CO 270 J=l.\' 
Ba==DSCr:.T'E'(J,J) ) 
o (l 2 7 e K = 1 • ~J 

27C X(K,J)=X(~,J)/3D 

UPDATE ~~AT;:;.IX • 'c", 
~ " _I 

WRITE(6.2CIO) «X(LI,LJ)~LJ=l~~),Lr=l.\) 

REi'JR\ 
2eo DO 2c Q :=1,~ 
29(1 o(!)=r:c:v(:) 

IF(~SW[E?LT.~SM~X'G0 T0 40 
GC TC 2~,5 

2000 FCP~~T(/,27~:S~EEP ~U~c~R I~ ~JtC:8I* == ,!4) 

2010 
2020 

1 
2030 

FCq~AT(lh~16E2S.12) 

FOR 1.1 A T ( 25 ... (; * h ~ =: R (' q SOL lJ T! C1'~ S T C P I 
:3 a ~ ~i AiR ! C :: ~ ,,; (; T P ': S : TV:: 0 E C' I" : T E> 

FCg~AT(?f~:CURqE~T EI3[\VALUES I~ *JtC~2I*ARE,/) 

S U 2 R (. L' -: : \.:: D r:.. 1-: ~ (' 1 L ~ >' , S .... , s C ~ E ! G E P., ) 

!~PLJC:T ~[LL.'(~-~~:-7) 

DI~E~~]rN ~(30.3a) ,T(3C~30)4~~(30.3G),SC(3U,3G),ErG:~(?C) ,XIS(3C) 
REt.O (:;,11:::) O:S(UftL=l,\L) 
~RITE(~.llC) (X!S(L),L=l.~L) 

EIGE~(:)=rSbRT(~IGE\(!)} 

DC 10 J=l.,\L 
10 S:(!~J) =G.(: 

DO ;>(1 I~=l.\L 

D~ = 2.*XTS(II)·~!G[N(:r) 
o ,..... 2 C ;:: 1 • f\. L 
D020 J=l.'.L 

20 SC<I,J)::~C{i,J)+)((Tdl)*X(J,! :l*DA 
0(' : 0 ::: 1 • '4 L 
Dr: 3(1 J=l.'.L 
n:,J)=·Q.O 
DO ?)C -< :: 1.':L 

30 T(!,J) = T(T.J)+S~(!,V)*SC(~.J) 
Dr: 40 :=1. 'L 
DC 4 0 \.1:: 1 • '.; L 
SC (l.J)::O. ~1 



r 
J 
1 2" 1 

I
I 2~2 

293 
234 

. 2 C; 5 
j 296 
I 257 
I 2~' 

I 1.4 C 
~ 497.20 

212.6C 
-/ 

o ~ 1I 0 It = 1 • ~I L 
40 SC(!,J) = SC(I,J)+T(';,I<··)*S\~(K,J) 

DC "lG !=l,',L 
50 Wn:TE(',l?~) (~r(T,J).J~l.~L) 

110 F(P~AT(~Fl~~2) 
120 FOR~AT (6~14.4) 

RETJR'; 
:::~~D 

SENTRY. 
0 .. 01 3(COC(,CC. 38£. 

HO.tlO 136.00 
12C.00 6£.CO 

~EE? NUM3ER !N .JACC~:. = 1 
fURRE~T E'IG::~,VALU:.s I' "J:':CC9Iojo!RE, 

'0.13959a3512390 03 O.lr~2532747140 04 
J 
~EEP NU~aER I~ *JACCS:* = 2 
tURR::'H ~:r.:Er\VALU:S I~ +vACCE:*~R.~, 

2 " , 

1 
O.13~aS5~bl?3~G 03 O.lOF253274714C 04 
O.64363~~~4346D-Dl -C.56&52aE7566?~-Cl O.f1323C0240D~~-Cl 

) 

, , 
} 

o.co 0.CiO 
0.00000 00 
a.oooeD oe 

G~OG 

v.COGDD CO 
G.OGGeD ro 

1.00 

41 
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I T I ~'E D!SPL. VElCC. ACC. 

i~ .. 0 1 0 -0.0054 -1.0762 -107.257'1 
;0.010 -u.cnC;;ll -1.()~4'; -10;:1.4 4 7F 
! 

-t'.1~-:'~ -103.7G~: '0.02 C -G.C215 
U. C2 G -G.C217 -2 .. 16c-O -10E .:;OS·~ 
G. 03 0 -O.047P. -3.1353 -97 .q~l':. 
;~. 030 -O.04~S -~.2l;~1 -107 .. c307 

.(0. G 4 (i -G.e~"3:; -ll.C7!=~ -?r.~'33~ 

0.040 -(j.02('6 -4.31S6 -106.670:' 
0.050 -0.1291 -4.g329 -81.3(17 6 

~O. 05 G -0.1351 -5.3735 -1(!4~411C 

Ie .. 060 -0.1':23 -5.6~44 -71.140 c 

O.OF.O -O.1'""4() -6.3~67 -100.61(4 
I 
'0.070 -0.2426 -6.3514 -60.3210 
0.07(1 -0.2::29 -7.3719 -C;4 .t:l( (: 

1°. 060 -O.3C?O -E-.~':'lq3 -49 .. 24~1 
,., 0'" n -C.3412 -' .• 277? -1=6.2207 lu. :" v 
C. 09 G -0.3;'02 -7.3372 -38.2644 

Jo. a 90 -C.tI·?~·l -q.OCl(l0 -7E.31C2 
,0.100 -O.4S::3 -7.6671 -27.62=4 

rlGO -C.5~2E -S.7~66 -63.2';74 
0.11 C -0.5:32 -7. P :;34 -17.5C4f' 

'10.11 0 -0.5234 -10.3407 -47.::417 t .12 C -a.~12:< -t'.0212 -7.S"lC 
o ~ 12 ~ -Ot72:~~ -10.73!7 -3C .. 5fH 9 
10.13 C -O.C,:;?3 -6.0561 1.0654 
~O .133 -(1.2374- -10 .. °425 -11.7523 
'0.140 -0.7737 -S? .002" C. .. 653:: 
0.14 C -G.S<471 -10.'3513 7.S227 
0.1 ~ 0 -G.,-:~::q -7.p;4~ 17.771~ 

o .15 ~ -1.0:.60- -10.7';:~7 27.7G7 P 

0016 C -O •. 93D7 -7 .. 643S 26.}365 
,o.i~c -1.1['~2 -lG.4121 4E- .&502 
10 1 -, r -1.CC57 -7d4G3 34.4':103 I • , .. 
Col 7 C -1.2b36 -:;'.2566 54 .532~ 

!0.1;8 -1.(-772 -6."520: 42.96b~ 

t Pc -1."'~"7 --::.l~~F. 9(1.4~1l? 

0.1:; :) -1.1445 -6.470::4 51 •. 66 C;2 
0.1';[ -1. 4/-:- ... -F'.2654 9~ .. 764C. , 

10.200 -1.2(JO -5.7(;,4t; 60 .. 4352 

1°·200 -1.=,;:·~1 -7.122<:; 104.3233 
, 
I 

I . 
J 

I 



..I 

1 
2 

:3 

F. Computer Program #2 

SJC~ .~~~~S=5,T!~~=5,L!~~S=4~D 

C 
C S E ! S ". !:: R f :. P (: " 5 f :: LAS T .r C S H::: A R S U : lD ! ~j G 
C 

c 
c 
c 

IMPllC:T ~EAl·~(A-~,C-Z) 
O:ME~~:C~ ~K(hr,AC).~~(QO,4C) ,SC(4C,4C),X(4Q,4G), 

lOU L (4 G ) • U ["; ( If () ) , U V ( if 0 ) , U t. ( 4 0) ,S ( 4 C , • ~ ! G [P.! ( 4 0 ) 

READ PIFUT QAT:' A'::i !~1TIALIL'E 

4\JRIT~ l;:.,l;-·(1H:~G~,~:J,:FDR 

5 lOC F0RMt.~ (2r.lG.O.2 T 5) 
6 DC' 2 :::l,~!O 

7 or 2 J=l.~D 
~ S~CT,J)::O.Q 

'10 
PI 
12 
13 

114 
; 15 

ji; 
.1e 

1
19 

i2G 

21 
22 
23 
24 
25 
26 

27 

28 

29 
30 

31 
32 
3" 

.34 
35 
~fl 

37 

c 
c 
c 

c 
C 

c 
C 
C 

C 

C 
c. 
C 

C 
C 
C 

SCCI,J>::G.C 
XtI,J}-::O.f 

2 SK(!,J)::O.(I 
~~Dl=',jO"'l 

D:J 7 ::: 1 • ~! ~ 
REAQ(~.11C' S!.SL.S~(!,I) 

WRITE(6,11n)S!1SL,SM(!,!) 
110 FCR~AT(3~lG.2.~10.C) 

S(r)=12.0~E*SI/SL*~3 

S C ( I • r ) = S \' { I , ~ } 
U;)(I>=C.O 

7UV(:>=G.O 

ASSE~BLE STIFF\[SS ~ATRIX 

SO)Q+1)=0.[, 
DO 19 I=l,:'C 
!FCI.[Q.l) Gr 7C IS 
SKCI,I-1>=-S(I> 
SK<I-l ,1 )=-s(:> 

1':; SK(!,i)::S<I>·S{I+l) 

o [ T r R 0,' : ~i E ': A T !J R t. L F REG U E ~~ C ! £: S A~: 0 ~,: c ':' r S HAP r s 
CALL JACQ~! (SK.SC~Y,~IG[~.S,~C.IFPR) 

RESPO~SE U5!NG M'~AL SUPERPCS:T:0~ 

SU!:lR~UT!~:: J~r::~tl (t\~f.i,X •• !Gv.r,·-;,!FP~) 
I p.~ t' L : C' : T ;. ~_ fJ L " r:. ( A - t· , C' - Z ) 
DIME~SIC~ A(40~4J}.2(4r~4C)~Y(40.40),E!GV(40).C(4D) 

r·j s ~~ to'!:: 1: • 
RTCl = 1.[\-12 
!0UT=(· 
DO 10 !::1,\ 

43 



38 IF(A(J.!).~1.0 •• A~O. ~(r,I).GT.O.)G6 TO 4 
;39 YRrTE(!CCT.2020) 
i40 ST')P 
!41 II D(Z)=t(J.~)/E:(:,:) 
42 10 [!GV(!)~~(:) 
43 Of') 30 :=1.': 
44 J~ 20 J=1.~ 

45 20 X(I,J)=D. 
46 30 XC!,I>=l. 
47 IF(N.r~.l) R~TUR~ 

A8 
49 
50 
51 

52 
53 
54 
55 
56 
57 
58 

C 
C I~ITrlLiZ~ S~~~D C:U~TER AND [EGI~ !T~RAT:~~ 

C 

C 
C 
C 

C 
C 
C 

NS ~JE P =0 
~R:~:-l 

4 (' '';::; ~: E ::: P = ~. S '.\ ~ [f: + 1 
IF(!F?RcEQ.l)~RrT~(ICUT,2000)~S~E~P 

CHECK IF PS::S::r'T :FF-DI~GC'JAL [l[~"UH IS LARG::: 

~PS=(.Ol**\SW~~P)·~2 

00 2 1 0 J = 1 • ": R 

o Cl 2 1 a I< = J \..1 ~ r.; 
EPTCLA=(A(J,W)*A(J.K)/(!(J~J)*A(K,~» 

EPT0L3=(q(J,K}~3CJ.~»/(3(J.J)+~(K~K» 

IF«~PTGL~.LT.E~S).A~D.(E?TSL5.LT.EPS»GC Te 210 

59 ~KK=A(K,K)*E(J.K)-[(K.K)*A(J,K) 

60 AJJ:.AeJ,J'''HJ,K)-3CJ.J)*A(J,K> 
61 A6=A(J,J)*=(K.~)-A(K~K}*8(J,J) 

62 CHECK='t~·~6+4.+AKK·AJJ)/4. 

63 !F(C~EC~)5~,60.SQ 

64 50 WRIT[(:CUT,2G2C) 
65 ST(,P 
66 60 SGCH=CSCRTctHECKl 
67 Dl=AB/?+S~CH 

68 02=AP./2.-SJC~ 

69 OE~=Dl 
.10 IF(D~SS(D=).GT.DA[S(Dl»DE\=D2 

11 I F ( D E f\ 1 ~ C • 7 C .;.: 0 
72 70 CA=r:. 
73 CG=-A(J1K) I~ 0:, r:) 
74 CG=-A(J,K)/A(K.~) 

75 GO TC ~G 

76 (A=ld<o(/r'Et. 
77 C G::; - t. J J I C· ~ I.: 

78 IC'P~-2)1(:['d9u,]nO 

79 J~l=J+l 

eo J~l=J-l 
;1 K?l=K+l 
Q2 KMl=K-l 
8 3 I ;:: ( J ~. 1 - 1 ) 1 ,) 0 , 1 1 f) , 1 1 C 
84 11 (1 0 (' 1 2 0 !:. 1 • J~: 1 
85 AJ~A(I,J) 
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n 
u' 

r' 90 
H 
12 
,~ 

94 
95 

,96 
137 
17Es 
I 

1r;9 

t 01 
.102 

1103 

1
104 
jl05 
106 
107 
10~ 
109 
110 .. 
111 
112 
113 
114 
115 
116 
117 
118 
1l~ 

120 

12·1 
122 
123 
124 
125 
126 

C 
C 
C 

,.. ... 

A'<=A(r.n 
PK=o (! ,I() 

~(J,J)=t.J+CG"A\( 

£<!,J):::8J+CG"-OI'
A (1,1'\ ):::'("'C!.·~J 

.1? 0 3 ( I • K ) = 3 I{'" C :... ~!:l J 
13r IF «?1-\]1~O,140.1~O 

140 D0 150 !=Krl,~ 
AJ=A(J~!) 

SJ=f(J.~} 

AK=A(,<,!) 
BK=S(K,l) 
tdJ,I)=!.J+CG-1>!'K 
2 ( J , I ) :: P J ... r r. .. n 1<: 

A(K,!):::Ai\+C,: ... ·t.J 
150 B(~,I)=SK ... CA·6J 
160 F (J?l-·~\q 117C d 70 ,ISO 
17G Dr l~e !=JC1,~Ml 

AJ=A(J,:> 
8J::~.(J.I) 

AK=A<: .. Ic') 

BK=3(!.n 
A(J.I)=:'J+CG~AY 

B( J,!) :-·?.J+CG*qi\ 
ACI .. K)=t:.K+CA"'~J 

120 B(I.K)=5K"'C~"-5J 
13C AK=l..\I'\,K'l 

8K=3(;.(.K) 
A(K,K)=tK+2.+~j\*A(J,K>+CA*CA*~(J.J) 

B(K,K)=E(+~.*Ct*S(J,~)+CA*CA*F(J,J) 

A(J,J)=t(0.J)+2.·C~·A(J.K)+c~·rG*!K. 

B(J,J)=S(J,J)+Z.*CG*F(J,K)+CG*CG*EK 
A{J,K):::C. 
B(J.K)=O. 

UPDATE TH[ ~IGr~V[CTGR ~ATRIYAFTER EAC~ RCTt.T~C~ 

DO 200 !=l.tI! 
XJ=X<I,J) 

x ( I , J) :::)t J + C G ... 'I r, 
2CG ~(:,K)=XK~C!'XJ 

21C CO~'TJ':UE 

C UPCAT~ T~~ EIG~~V6LUES AFTER E~CH SWEEP 
C 

127 DC' 22Q 1=1.~ 

128 IF (A(~d}.GT.O .. • t·\~. S<I,I).GT.O.) GC TC 220 
125 W~!TE(:CUT.2C2C) 

130 STOP 
131 220 EIGV(!>='(:.l)/C(!.!) 
132 IF(!FPr.[n.Q)C: Te 230 
133 WRIT[(;GUT.2~3C) 

1~4 ~RITE(lnUT,201G) (E:GV(:),I=l,~) 

c 
C C H f C K FeR C c' r·: v '" R C E t: C E 
C 

13 5 2:: 0 O!) 2 i+ ~ ! = 1 • P" 

136 T0L=RT~L~D(~) 

137 DIF:DA~~(~:GV(l)-r(!» 

n~ Ir-n'lc.[·T.TCUf'··" Tr ;'f-.(1 

45 



13 " 46 
c 
C CH[CK ALL ~FF-DI~3~~Al rL[~~~TS TO S~E IF A~OT~ER ~~~r~ IS 
C RfQU!qErJ. 
C 

140 Ef'S=RTCL H 2 
14 1 D C 25 0 J = 1 4 ~~ P. 
142 JJ=J+1 
143 DO 2C;C K=JJ,~; 

144 EPSA=(A(J.K)+A(J.~»/(A(J,J)~t(K.K» 

14 5 E F' S 5 = ( ~. ( J 4 "') * F ( J , K ) ) I ( ~ ( J , J) "' :: ( 1<: , >\ ) ) 
146 IF«EPC;:A.LT.::P~).A~'ID.<EPSE'.LT.EPS»G:: Te 2~O 

147 G~ T:l 28C 
148 2C:O CC·nI~.U::: 

C FILL ~UT 8(TT~Y TR!t~Gl~ c~ RESULT~~T WATR!CrS 
C A~Q SC~LE EIGE\VECTCqS 
C 

149 255 DO 260 1-:1 4~ 
150 D I) 2 6 C J': 1 ,~: 
151 A(Jd)=:'<'::,J) 
152 260 8(J.r)=2(~"J) 
153 DO 27e J=J .. :-.j 

154 B8=DSG~T(r:> <J.J) 
155 D:' 27G K=l .. r, 
156' 270 X(K,J)=X(K,J)/2.B 

C 
C UPOAT~ MATRIX A~~ START NEY SWEE?,IF ALL~~Eo 
C 

157 WR~Tr(6,1,?9C) 

158 DC 1°-:'1 L:=1 .. r; 
159 1931 ·,JRITEU:·,2CI0) (X(L:4LJ),LJ=1.~.) 

1 (; 0 1 S 5 0 FeR MAT ( 1 1 (1 :x , • E : GEt·; V E C T C R S ' • / ) 
151 R ~ T U R ',! 
162 280 00 ~c;e I=J.N 
163 2::0 D(!)=~:GV(:) 
16 4 ! F ( '.1 S W t: ::::> • LT. ~J S !·a X ) GeT 0 4 0 
165 GO TO ~c:;c:; 

16£. 200G F0RI.\AT(/,2"'H::~~.EC? ~iU;.l8C:::R !N "'JACce1* = ,!4) 
1~7 2010 F(R~AT(1~Cc6~14.5/) 
168 202G FC'H~AT <2:.Hi>·h [PRCR SOLUT:tr~ STCP 1 

1 30H ~ATRJC~S ~OT FCSITV~ oEFI~ITE) 

169 2030 FCR~AT(3EH~CU~RE\T EIGE~VALU~S IN *JACCBI·AR~,/) 
170 ~\jD 

171 
172 
173 
174 

175 
I7£, 
177 
178 

C 
C RE5FO~SE C5I~G ~0DAL SUP~RPCS11:CN ~ETHOD 
C 

c 

SU2R0UTI\E ~~CAL(~D,E:~~~,X .. F.GR,S~) 
l~PLIC:T RrAL*~(D-r,0-Z) 

REA L • ~ : '. T 1 1 r ': T ;- , :- ~: T 3 • I ~.I T 4 , I{ , rJ 

DI~f~SIC~ ~!G[~(4G).~(4a448),Y:S(40),F(40,40),F(40),T(4(),Y(40,q0) 

1 ,U C (4 U ) .:: r ( 4 C ) , \ () ( 4 0 ) , ~ t-~ ( 4 0 • I.J. Cl ) 

C STE~E~T FU~CT!r~s 
C 

c 

I~Tl(TAU)~r~xp(XI~:·TfU)·(V!~C·~COS(~C·TAU)+k:~)SI~(WD·T~U»/S~SL 

I\T?(TAU)~rE~p(Xi~r*1aU)*(YI~C*DS:~<W8·TAU)-~D·~CaS(~D.TAU»/~W~~ 

PH 3 ( T ~ I.' ) -: I till • : • T:: ( T n! ) - X T \~ :' * :' T;; (1 ~ U ) 11) I,; :>~ + .. [ .1 t. i 1 ( 1 t L ) 10 \.; S" 
INT4(TAU)~T~U·I~Tl(TAU)-XrWD· I\Tl(TAU)/nWSQ-~D·INT2(TAL)/D~SU 



c 
c 

17 C; 
gO 

m;::"-iO 
IF(~R.\[.O.) ~G=l 

?1 1~';'.=AS 

62 R£AD(5.ll~) ~T,T~rY.(\G(l).L=l.~G) 

Ib:5 :\ f< I j E ( ~ • 11 ;:: ) ~ T 4 T 'ft:. 'i • ( ~, ~ ( l ) , L = 1 , ~: G) 
84 110 FC~~~T(?Flr.q,12rS) 
R5 DO 76 I=l.~~~ 

IP. ,; F F ( I ) = ~ • 0 
187 DC, 76 J=l, ",',; 
188 75F<I,J)=O.G 
159 00 77 IG=1.~~.G 

19 0 N E Q = ~. G ( I 0 ) 
19 1 I F ( '1 :: c. • E. J .. Cd G C' T 0 7 7 
192 REAO(t: .. l~L) (T(l),P(L),L=l,NEGJ 
1~3 wr.;!T::(Gel:C)( T(L),F(l),l=l,\U) 
194 120 FORV,AT(4FlC.:n 
195 'n = T ( 0; E G ) lei 
196 IF (>" T • G T • TAl, ! X I r T ) ~: T = T M ~ X If' T 
197 NTl=0tT+1 
198 FF(1)=P(1) 
199 AI\!~,=O .. 1 
200 II:l 
201" DO I; :=2,"T1 
202 AI=I-l 
203 TA=A!·CT 
204 IF(TA.GT.T (p·;::C» GO T:) 160 
205 IF(TA.L~.T {II+l» GC T8 ; 
206 A~~= -T(!:+1)+Tt-OT 
207 II=!!-+l 
20P S ANN=A\~+DT 
209 FF(I)=?(!T)+(~(I:.+1)-P(I!»+!J.r\i\/( T(11+1)- T(Il» 
210 F(ID,I)=FFC) 
211 1° [[\rI':U: 
212 16G CC·~T!·;U:' 

213 77 CC\T:~U~ 

214 

C 
C 
C 

T j I.', .' ~ 

215 Dr:' 17 L=l~~.~.\ 

216 Al::l-l 

A~J ::QUIVALE'~:T FGRCE:S 

217 T(l):: T<1HAL ... JT 
216 IF(GR.EC.C.) G~ T~ 17 
21 :; 0 0 1 ~ r C::: 1 .,~ C 
220 IP F(IC~l'=-~F(L)*S~(!~,!D) 

221 17 r:(i~~TP'iU: 

222 
223 

1224 

C 
C READ ):'~P!'.G ~t.TI:::'S A\O SET !f.!TIAL VAlU~S 
C 

c 

REt. 0 ( t;: , 1 C (') (X! ~ ( L ) , l = 1 , ~! C ) 
io.'" I T:- ( :.), 1 C C) ( A T S ( L ) , L -.: 1 • :'/ C' ) 

lOL FCR~AT(~FI0.3) 

C wRITf H~ACl~GS 

c 
~Rlrr· (/:,,7r-n) 

47 

J ~~: 
j 227 

700 FC.P~A1(lf~1,(,X,'SE:s~rc Rr.SPG .. ~r c;r fL~STrC SHEAR bL1lLO:I'.G''//, 
1 6)1 , ' .T ! r,' ~ , , (J y, , ' [< ! ~;:J LA C r: ~ ~ t-.< T $ , • /) 

'~T 1 = r, T -+ 1 



~28 

29 
dO 
231 
232 
233 
234 
235 
236 
237 
238 
235 
240 
241 
242 
243 
244 
24~ 

246 
247' 
248 

C 
C 
C 

249 
25 C 
251 
252 
.253 
254 
255 
256 
257. 
253 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
2'" 0 .. 

270 
271 
272 
273 
274 
275 
216 
277 
273 
279 
2R.O 

D 0 50! (\ = 1 , \' C' 
Cr. 10 :T=] ,\T1 
P(!T}=O.C 
DO 10 !=!.'.C· 

10 ~(rT)=F(!,)~~(r,:T) *X(!,!D) 
"'=1.0 
K=E1G::\(!:) 
X!=XIS(I2) 

f- Flf'o1=;::l(:>. 
TI'-'l:::T(l) 
ATl=(l.O 
G}: ::: C . G 
DAT=O.O 
D8T=O.I~ 

HID,l}::-O.fJ 
0~l:::GA=0S(i~' T (K I~) 
CRIT:::~·DS~RT(K~~) 

C=Xi*CRIT 
WD:::~~r~!*rSQPT(1.-(X!~*2» 

X n: 0 = X : ,.. O~· -: G A 
DWSQ=X!WC~~2~wD~*2 

LO~P OVfR TI~E A\J S~LVE FOR MODAL DISPLAC[~E~lS 

m':1 ='n-1 
DC 1 !:. 1 , ~, :.; 1 
Fl=P<I+l) 
T!=T<I+l> 
DFT:=Fr-F~::1 

Dn=T~-T;:"l 

FT=DFT~/CT~ 

G=F P'I-T! :·'l*FT 
AI=I~Ti(T! )-!~TI(T:~1' 

8 I = : ~;T 2 ( T : ) -! ': T 2 (T! t-. ~ ) 

VS=:~T3(T!)-:~T3(T!~1) 

VC=:~T4(T:)-!',T4(Ti~1) 

A!=A!p.!: 
AI=t.!+FT*'VC 
AT!=ATI+A: 
81=:::11-G 
8:=3:~r:T*VS 

3 T I = r~ T ! + B : 
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Y ( I J , -; -+ 1) :-.: Q::: X P ( - X :: H Q ... T ! ) • (A T ! * D S ! .~ (\oJ D 1< T I ) - 8 T! .. Dec S ( ~I C -- T I ) ) / ( v -- \oi C ) 
T I ~11 = T I 
q~'l7.j:"; 

1 C MJT ! ... L ~ 
5::1 C';'\T!';t:E 

D c 5:5 : T :: 1 • ~i T 
D0 ~? :=1,'0 
LJ~(! )::C.O 
Dr: 52 d::1,':f! 

52 lJD(~):-I:~(:)+X(~,J)~Y (v.IT) 
5 3 \J R 1 T~. ( (,. :~ 0 1) T ( 1 T ) , (u r ( L ) ~ L :: 1 ,~; 0 ) 

301 F~~~~T(FIO.~.~r14.4) 
:;fTUr.~· 

["-:D 



V. ERROR INVESTIGATION DUE TO STATIC CONDENSATION 

Due to different loading conditions, and changes in geometry; it 

is sometimes necessary to divide·the structure into a large number of 

elements. When the elements of the entire structure are assembled, the 

number of unknown displacements, or in dynamical terms, the number of 

degrees-of-freedom become very large. Therefore, the stiffness, the 

mass and the damping matrices become very large. 

In such cases the solution of .the eigenproblem to determine 

natural frequencies and mode shapes will be difficult and tedious. For 

this reason it is convenient to reduce the size of matrices in order to 

make the solution easier and manageable. 

A. Static Condensation 

A practical method of accomplishing the reduction of these 

matrices is to identify those degrees-of-freedom to be reduced as de

pendent coordinates and to express them in terms of the remaining in

dependent degrees-of-freedom. The relation between the dependent and 

independent degrees-of-freedom is found by establishing the static rela

tion between them, hence, the name static condensation method. This 

relation provides the means to reduce the stiffness matrix. 

In order to reduce the mass and the damping matrices, it is 

assumed that the same static relation between dependent and independent 

degrees-of-freedom remains valid in the dynamic problem. Hence the same 

transformation based on static condensation for the reduction of the 

stiffness matrix is also used in reducing the mass and damping matrices. 

49 
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In general this method of reducing the dyna.mic problem is not exact and 

introduces errors in the results. The magnitude of these errors depends 

on the relative numbers of degrees-of-freedom reduced as well as on the 

specific selection of these degrees-of-freedom for a given structure. No 

error is introduced in reducing massless degrees-of-freedom, that is, 

degrees-of-freedom for which there is no mass allocated. The procedure 

of static condensation also is used in static problems to eliminate un~ 

wanted degrees-of-freedom such as the internal degrees-of-freedom of an 

element used with the finite element method of analysis. Initially the 

stiffness matrix is represented by a partition matrix as follows: 

= [{O} 1 
{Fq} 

(61 ) 

which can be reduced 'or condensed by using the gauss elimination for the 

first p unknown displacement. At this stage of the elimination process, 

the stiffness equation for the structure may be arranged in partition 

matrices as follows: 

[
{O} 1 
{Fq} 

(62) 

where {Xp} is the vector corresponding to the p degrees-of-freedom to 

be reduced and {Xp} the vector corresponding to the remaining q indepen

dent degrees of freedom. It should be noted that in (62) it was assumed 

that the external forces were zero at the dependent degree-of-freedom 

{x p}. Equation (62) is equivalent to the following relations: 
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(63) 

(64) 

Equation (63) which .expresses the static relation between coordinates 

{xp} and {xq} may also be written as 

(65) 

or 

(66) 

where 

[

{x }] [[TJj {x} = p , [TJ = 
ixq} [1.] 

(67) 

Equation (64) which establishes the relation between coordinates {xq} 

and forces {Fq} is the reduced stiffness equation and [KJ the reduced 

stiffness matrix of the system, which may also be expressed as a trans

formation of the system stiffness matrix [K] as 

(68) 
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B. Static Condensation Applied to Dynamic Problems 

In a previous section a case was considered in which the dis

cretization of the mass has left a number of massless degrees-of

freedom. For this case it is only necessary to condense the stiffness 

matrix and delete from the mass matrix the rows and columns correspond

ing to the masslessdegrees-of-freedom. In this' case the methods used 

do not alter the original problem, thus the results are equivalent 

eigenproblems. 

In cases when the discretization process has allocated mass to 

the system, the procedure commonly us~d is to apply the transformation 

shown in equation (68) not only to the stiffness matrix, but also to the 

mass and to the damping matrix of the system, analytically that is: 

(69) 

and the reduced damping matrix is 

[C] = [T] T [C][T] GO} 

where the transformation matrix [T] is defined in (67). The justifica

tion of the mass and damping matrices reduction is shown as follows: 

(71 ) 

(72) 

.where V is the potential energy and the kinetic energy is represented 
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by K.E. in equations (71) and (72) respectively. 
• 

Analogously, the work oWd done by the damping forces Fd=[C]{X} 

corresponding to displacements {ot} may be expressed as: 

(73) 

By using the transformation (67) in equations (71), (72) and 

(}3) gives the follm</ing results 

v = 1/2 {Xq}T [T]T [K][T]{X q} (74) 

• T T • KoE. = 1/2 {x q} [TJ [M][T]{xq} (751 

oWd = {oXq}T[T]T[C][T]{x} (76) 

The respective substitution of [K], [M] and [e] from (68), (69) and (70) 

for the product of the three matrices in (74), (75) and (76) yields: 

(77) 

eo To' K.E. = 1/2 {xq} [M]{xq} (}8) 

• 
oWd'= {oxq}[C]{Xq} (79) 

These last three expressions represent the potential, the kinetic energy 

and the virtual work of the damping forces in terms of independent 

coordinates {Xp}. 
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C. Numerical Example 

To illustrate the theory, consider a three degree-of-freedom 

shear building shown in Figure 7, and find the natural frequencies and 
m~ :< 2.5' ,,---},,;. 

I<~:. 10000 &/'" 

rn,& 0= ~-'.-;.. 

---x~ 

r--------~.- )(.2, 

FI~URE 7-- Shear Building of Numerical Example 

modal shapes; also condense one degree-of-freedom and compare the re

sulting values obtained for natural frequencies and mode shapes. 

The equation of motion is given as free vibration in the fol-

lowing form: 

Substituting the corresponding numerical values in this equation 

yields 

100 o 40 -10 o xl o 

o 50 0 x2 +10 3 -10· 20 -10 x2 = 0 

o o 25 o -10 10 o 

assuming a solution xi=ai sin wt, and substituting into the equation of 

motion yields, 
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40,000-100w 2 -10,000 ° ° 
-10,000 20,000-50w2 10,000 (a) 

° 10,000 ° 
from whtch the characteristic determinant of the system can easily be 

deducted, such as 

40,000-100w 2 -10,000 ° 
-10,000 2Q,000-50w 2 10,000 

° 10,000 10,000-2.5w2 

expanding the determinant and solving gives 

WI ::; 84.64 rad/sec 

w2 = 400 2 

2 W3 = 536 

::; 0 

The natural frequencies are calculated by f=w/2~, so that 

f 1 = 1.464 CPS 

f2 = 3.183 1 
f3 ::; 3.685 

(b) 

The modal shapes are determined by substituting each value of natural 

frequencies into equation (a) deleting one of the equations and solving 

the remaining two equations for two of the unknowns in terms of the 
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third unknown, setting the unknown equal to one. Performing the opera

tion gives, 

a11=1.00 

a21=3.18 

a31=4.00 

a12= 1.00 

a22= 0 

a32=-1.00 

a13= 1.00 

a23=-2.88 

a33= 4.00 

Since the stiffness for this structure is 

40,000 -10,000 0 

-10,000 20,000 -10,000 

o -10,000 10,000 

By the use of gauss elimination of the first unknown gives 

1 -0.25 0 

o 17,500 -10,000 

o -10,000 10,000 

Comparing (c) with (62) indicates that 

a 1 so from (67) 

[T] = [0025 OJ 

[ 

17,500 -10,000] 
[KJ = 

-10,000 10,000 

(c) 

(d) 
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0.25 a 
[T] = 1 a (e) 

a 1 

The condensed mass matrix is calculated by substituting matrix [T] and 

its transpose from ee) into equation (69). 

[
00' 25 1 1

0
] [M] = 

a 

which results in 

100 a 
a 50 

a 

eM] = [56.25 0] 
a 25 

0.25 a 

1 a 

o 1 

Substituting the reduced stiffness and reducing mass into the equation 

of motion gi ves 

The natural frequencies and mode shapes are then determined by solving 

the eigenvalue problem. 

[ 
17,500-56.25w

2 
-10,000 ] [aa32] = [001 

-10,000 10,000-25w2 
(f) 
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equating the characteristic detenminant to zero yields 

17,500-56.25w2 -10,000 
= 0 

-10,000 10,000-25w2 

expanding the determinant and solving for the natural frequencies gives 

Then 

WI = 9.2304 rad/sec 

1 W2 = 25.018 

fl = 9.2304 = 1.47 
2n 

f2 = 25.018 = 3.98 
2n 

( .'S 

1 

The corresponding mode shapes are obtained by substituting the frequencies 

into equation (f) gives, 

a21 = 1 

a31 = 1.27 

a22 = 1 

a32 = 1.77 

For this system of only three degrees-of-freedom, the reduction of one 

coordinate gives results that compare well only for the first mode. Ex

periencing with different numbers of degrees-of-freedom, it is clear 

that the condensation process results in an eigenproblem, which provides 
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only about half of its natural frequencies and modal shapes within 

acceptable approximate values. 

D. Computer Program For Investigation of Error 

This program to investigate the error due to static condensation, 

eliminates rows or degrees-of-freedom by uSlng a subroutine program called 

CONDE. This subroutine calculates the reduced stiffness matrix [K], the 

reduced mass matrix [M], and the transformation matrix [T]; with these re

duced values, the program proceeds to solve for the natural frequencies 

and modal shapes, giving enough values to compare with the results of a 

non reduced system. 

The subroutine CONDE, in -order to perfonn the condensation of 

degrees-of-freedom uses the following variables. 

Variable 

NO 

NCR 

NL 

SMO ,J) 

SK(I,Jl 

T(I,J) 

Symbol in Thesis 

N 

p 

NO-NCR 

[M] 

[K] 

[TJ 

Description 

Total number of degrees-of
freedom 

Number of dependent modal 
coordinates 

Number of degrees-of-freedom 
minus number of dependent coordi
nates 

Mass matrix 

Stiffness matrix 

Transformation matrix 

The elimination of degrees-of-freedom can be done in an organized 

fashion. For this purpose this thesis introduces the subroutine ORDER. 

Therefore the progl~amer has the freedom to choose the des ired row to 

eliminate this and proceed to solve for the remaining degrees-of-freedom. 
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After experimenting with this program, it is obvious that the 

static condensation approach provides only about half of its eigen

values and eigenvectors within acceptable approximate values. 

E. Computer Program #3 
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C EVALUATION OF ERROR FOR MULTI - DEGREE OF FREEC~M STRUCTURE 
C 61 

1 IMPLICIT REAL*2CA-H,0-Z) 
2 OI~ENSION S~(50,50),SK(50.50),SC(50.50),T(50,~O),TTC50),EIGV(50) 

C 
C READ !~PUT DATA AND INITIALIZE 
C 

3 READ(5,100) ND,IF?R / 
4 W~ITE(6.10C)ND.IFPR 
5 100 FCR~AT(2IIO) 
6 NL=ND 
7 LClC=1 
e NM1=ND-1 
q DO 2 I=1,ND 

10 00 2 J=1.~D 
11 S~(I,J)=O.O 

12 S~(I.I)=1.0 
13 SC(I.J)=O.O 
14 SC(I.!)=1.0 
15 2 SK(I.J)=O.O 
16 DO 13 !=l.ND 
17 IF (I.EQ.1) GO TO 19 
18 SK(!,I-l)=-12. 
19 SK(I-1,!)=-12 •. 
20 l~ SK(I,!)=24. 
21 SK(ND,ND)=12. 
22· D~ 30 IC=l,ND 
23 IF(IC.[Q.l) GO TO 80 
24 NL=ND-IC+l 
25 NCR=ND-NL 
26 CALL CONDE (ND,NCR,LOC,SK,SM,SC.T) 
27 SO CALL JAC08!(SK,SC.T,EIGV.TT,NL.IFPR) 
2e 9a CONTINUE 
29 STOP 
30 END 

STATIC CONDENSATIO~ O~ STIFFNESS AND MASS MATRICES C 

31 
32 
33 

C 
C 
C 

34 
·35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
4G 
47 
48 
49 

SUBROUTINE CONDE (ND.NCR.LOC,SK,SM,SC.T) 
IMPL;C:T REAL*SCA-H.O-Z) 
OIrENSION SK(5C,50),SM(50,50),T(5C.50),TT(50),SC(50,50) 

CALCULATE THE REDUCED STIFFNESS MATRIX AND THE TRANSFORMATION MATR 

NL=ND-~~CR 
DO 9 K=1.NCR 
IF. (OABS(SI«K,K».Gt.1.D-IO) GO TO 5 
YRITE (6,2(12) I< 

202 FeRMAT (' PIVOT TOO SMALL',I10) 
GIJ TO 99 

5 K?1 = K+l 
DO 6 J=KP1,ND 

6 SK(K,J) = SK(K.J)/SK(K,K) 
SK(K.K) =1. 
DO 9 I = l.ND 
IF (I.EG.K.OR. SK(I,K) .(Q.O) GO TO 9 
00 8 J=KP1,ND 

a SK(I,J) = SK(I,J) - SK(I,K)· SK(K,J) 
SKcI,K) =: 0.0 

q CONTJt.4UE 



50 
51 
52 
53 
54 
5'5 
56 
57 
58 
5q 
60 
61 
62 
(,3 
64 
65 
66 
67 
f,8 
69 
70 
71 
72 
73 
74 

75 
76 . 
77 
78 
79 
80 
81 
82 

C 

DO 30 I = 1,NCR" 
DO ~O J = ltNL 
JJ = J+NCR 

30 T(I,J) = -SK(I,JJ) 
DO 40 I=l,NL 
I I = I + NCR 
00 50 J = 1,NL 

50 HII,J) = 0.0 
TCII,I) = 1.0 

40 CcrJTINUE 
DC 201= 1,NL 
DO 20 J = 1,NL 
! I = I + NCR 
JJ = J+NCR 

20 SK(I,J) = SK(II,JJ) 
~RITE (5,169) 

169 FORMATCIH1,5X,'THE REDUCED STIFFNESS MATRIX IS'/) 
Dr:: P,O !=1,NL 

80 WRITE (h,190) CSKCT,J),J=l,NL) 
\.J~ITE(6,170) 

170 FCRMAT(/6X,'THE TRANSFORMATION MATRIX IS'/) 
DO 81 ! = 1,ND 

81 URITE(6.190) (TCI.J),J = 1,~L) 

190 FOKMAT C~r14.4) 

IF(LOC.(Q.O) G~ TO 99 

C CALCULATE THE REDUCED MASS ~ATRIX 
C 

READ(5,100) KEY 
100 FCRMAT(!!=i) 

IFCKEY.EQ.O) GO TO 12 
CALL ORDER(~D.SK.SC) 
CALL ORDER(~D,SM,SC) 

12 CONTINUE 
99 RETURN 

END 

83 SUBROUTINE ORDER (N,A,B) 
84 IMPLICIT REAL T8(A-H,0-Z) 
65 DI~~NSICN A(SO,50),8 CSO,SO),M(50) 

C" 
C READ INPUT DATA AND INITIALIZE 
C 

86 READ(5.100) (M(L),L=1,N) 
87 ~RITE(5.10C)(~(L),L=1,N) 

sa 100 FORMATC1(15) 
89 DO 30 II=1,N 
90 I!!=N-I!+1 
91 I=~(III) 
92 DC 30 JJ=l,N 
93 JJJ=N-JJ+1 
94 J=~(JJJ) 

95 30 ~(II.JJ)=~(I,J) 
96 00 40 I=l,N 
97 DC 40 J=l,N 
9~ 40 ACI,J)=8CI.J) 
99 99 RETURN 

100 END 
C 
C S0LVE EIGfNPROBLEM USING JACCBI METHOD 
C 

62 



,101 
,102 
'10:3 

SU3ROUTINE JACCBI ("A,B,X,EIGV,D,N,IFPR)' 
IMPLIC:T REAL*e(A-H,O-Z) 
DIMENSION A(50.50),PC50.50).XC50.50).EIGV(5G),DCSO) 

C C INITIALIZE EIGENVALUE AND EIGENVECTOR MATRICES 

,104 
;1O~ 
: 106 

1
107 

-108 
j 109 
! 110 
ill1 
i 112 
!113 
1114 
t115 , 
11 16 
!117 

C 
NSMAX = 15 
RTCl = 1.0-12 
ICUT=6 
Ot:' 10 I=1,N 
IF(ACI,!).GT.O •• AND. BCI,I).GT.O.)GO TO 4 
WRITE(IOUT,2020) 
STO? 

4 oCI)=ACI.I)/BCI.I) 
10 EIGVCI>=D(J) 

DO 30 I=1,~J 
DO 20 J=1,~ 

20 X<I,J)=O. 
30 X(I,Il=1. 

IFCN.EQ.1) RETURN 
I , C 

C INITIALIZE S~EEP COUNTER AND E(GIN ITERATION 

C 
118 NSWEEP=O 

i119 NR=N-1 
:120 40 ~SWEEP=NSWEEP+1 
: 121 IF(IFPR.EQ.1)WRITEC!OUT,2000}NSWEEP 

'" I 
i 
:122 
; 12~ 
! 124 
\125 
ll~6 " 
, 12"1--,·" 
: 128 

C 
C 
C 

CHECK IF PRESE~T OFF-DIAGCNAL ELEMENT IS LARGE 

EPS=<.01**NSWEEP)**2 
DO 210 J=1,NR 
JJ=J+1 
00 210 K=JJ,N 
EPTOlA=eA(J,K>*A(J,K»/eAeJ,J>*ACK,K}) 
EPTOLB={BCJ'K)*B{J.K»/(BtJ~J>*3CK,K» 
IF«EPTOLA.LT.EPS}.ANO.(EFTOLB.LT.EPS»GO TO 210 

63 

C 
C 
C 

IF ZERCING IS REQUIRED,CAlCULATE THE ROTATION ~ATRIX ELEMENT CA,C( 

, 
: 129 
: 130 
I 

, 131 
: 132 
i 13:3 
; 134 
1 13'5 

136 
137 
138 
139 
140 

, 141 
142 
143 
144 
145 
146 
147 

AKK=AeK'K)*6eJ,K)-BCK,K)~ACJ,K) 
AJJ=A(J,J)*9CJ,K)-B(J.J)*ACJ,K) 
AP=ACJ,J}*eCK,K)-ACK,K)*8CJ,J) 
CHECK=CAB*AB+4.*AKK*AJJ)/4. 
IFC:HEC~)50.60.60 

50 WRITECIOUT,2020) 
STOP 

60 SGC~=DSQRTCCHECK) 
01=A8/2.+SQCH 
o2=AB/2.-SQCH 
OEN=Ol 
IF(JA3S(02).GT.OA3S(Dl»OEN=02 
IF(DE~)60.70,80 

70 CA=O. 
CG=-A(J.K)/A(K.K) 
CG=-A(J,K)/A(K,K) 
GO TO 90 

BO CA=AKK/DEN 
CG=-AJJ/DEN 

c C GrNERALIZED ROTATION TO ZERO THE PRESENT ~FF-DIAGO~Al ELEMENT 



14 S 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
15CJ 
160 
161 
162 
163 
164 
165 
166 
1f,7 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
1~4 

185 
186 
187 
188 
V!9 
190 

C 

90 IFCN-2)100.190.100 
100 JPl=J+l 

JM1=J-1 
KP1=K+l 
KM1=K-l 
I~(J~I-I'130,110,110 

110 DO 120 I=l,JMl 
AJ=A(J,J) 
BJ=B(I,J) 
AK=AC!,K) 
BK=B(I,K) 
A <I ,J)=AJ+CG*AK 
B(I,J)=BJ+CG*BK 
A(I,K)=AK+CA*AJ 

120 B(!.K)=BK+CA*BJ 
130 IF (KP1-N)140,140,160 
140 DO 150 1=KP1,N 

AJ=A(J,I) 
BJ=BeJ,I> 
AK=A(K,!) 
BK::B(K.I> 
A (J.I)=AJ+CG*AK 
8CJ,!)=8J+CG*BK 
A(K,r>=AK+CA*AJ 

150 B(K,I>~8K+CA*8J 
160 IFCJPI-KMl)170.170.190 
170 DO 180 I=J?1,KM1 

AJ=A(J,I) 
BJ=B(J,I) 
AK=A<I,K) 
BK=BCI,I() 
ACJ,!)=AJ+CG*AK 
B (J, 1> =BJ+CG*BK 
A (I ,K)=AK+CA*AJ 

180 Be!,K)=BK+CA*BJ 
190 AK=ACI(,K) 

BK=BeK,K) 
ACK,K)=AK+2.*CA*A(J,K)+CA*CA*ACJ,J) 
BCK.K)=8K+2. w CA-S(J,K)+CA*CA*B(J,J) 
ACJ,J)=ACJ,J)+2_*CG*ACJ,K)+CG*CG*AK 
BCJ,J)=B(J,J)+2.*:G*3(J,K)+CG*CG*BK 
A(J,K)=O. 
B(J,K>=O. 

C UPDATE THE EIGENVECTOR MATRIX AFTER EACH ROTATION 
C 

191 DO 200 !=l.N 
192 XJ=X(I,J) 
193 XK=X(I,K> 
194 X(I,J)=XJ+CG*XK 
195 200 XC1,K)=XK+CA*XJ 
196 210 CONTINUE 

C 
C UPDATE THE E1GE~VAlUES AFTER EACH SYEEP 
C 

197 DO 220 I=l.N 
19~ IF (AC!,1).GT.O •• AND. B(!,I).GT.O.) GO TO 220 
199 ~R1TE(10UT,2020) 

200 STOP 
201 220 EIGV(!>=A(I.1)/8(I.I) 
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202 
/203 
20q 

C 
C 
C 

IFCIFPR.EQ.O)GO TO 230 
WRIT[(IOUT,2030) 
WRIT(ICUT,2010) (EIGVCI),I=1,N) 

CHECK FeR CONVERGENCE 

205 230 DO 2qO J=1,N 
206 TOL=RTCL*D(I) 
207 DIF=DABS(EIGV(I)-J(I» 
208 rFCDTF.GT.TOL)GO TO 280 
209 2QO CONTINUE 

C 
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C CHECK ALL OFF-DIAGONAL ELEMENTS TO SE~ IF ANOTHER SWEEP IS 
C REQUIRED 
C 

210 EPS=RTCL**2 
211 D~ 250 J=1,NR 
212 JJ=J+1 
213 00 250 K=JJ,N 
21Q EPSA=CACJ,K)*ACJ.K»/CACJ,J)*ACK,K» 
215 EPSP=(8(J,K).9(J,K»/(E(J,J)*B(K,K» 
216 IFC(EPSA.LT.tPS).AND.(EPSS;LT.EPS»GO TO 250 
217 GO TO 280 
218 250 CONTINUE 

219 
220 
221 
222 
223 
224 
225 
226 

227 
22e 
229 
230 
231 
232 
233 
234 
235 

236 
237 

c 
C 
C 
C 

C 
C 
C 

FILL OUT BOTTOM TRIANGLE OF RESULTANT MATRICES 
AND SCALE EIGENVECTORS 

255 DO 260 I=I,N 
DO 260 J=l,N 
A(J,I>=A(l,J) 

260 B(J,I>=8(!,J) 
DO 270 J=l,N 
BB=DSQRTtBtJ,J» 
DO 270 K=l,N 

270 XCK.J)=X(K,J)/BB 

UPDATE MATRIX AND START NEW SWEEP,IF ALLOWED 

WRITE(6,2010) «X(L!,LJ),LJ=1,N),L!=1,N) 
RE T UR ~J 

280 DO 290 I=l,N 
290 OCI)=E!GVCl) 

IF(NS~EEP.LT.NSMAX)GO T~ 40 
GO TO 255 

2000 FOR~AT(/,27HOS~EEP NUMB~R IN *JACOBI* = ,14) 
2010 FCR~AT(1HO,3E20.12/) 
2020 FORMAT (25HO*** ERROR SOLUTION STOP / 

1 30H MATRIC[S ~OT POSITVE DEFINITE) 
2030 FGR~AT(36HOCURRENT EIGENVALUES IN *JACCBI*ARE,/) 

END 

'" ~ $ENTRY 
3 1 

SWEEP NUMBER IN *JAC09I* = 1 
CURRE~T EIGENVALUES IN *JACOB!*ARE, 

O.3b6969384567D 02 0.lA8498382~050 02 0.,453223252830 01 
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.! . 

S~EE~ NUMe~R IN *JAC08I* = 2 
CURRENT EIGENVALUES IN *JACCBI*ARE, 

0.3896375260570 02 0.1865Q500223 Qn 02 0.2376747170490 01 

SUEE~ NU~R~~ IN *JACOBI* = 3 
CURRENT EIGENVALUES I~ *JACOBI*AR~. 

0.3856375524460 02 O.I~65949758500 02 0.2376747170340 01 

SUEEP NUMBER IN *JACOBI* = 4 
CURRENT EIGENVALUES IN *JACOBI*ARE, 

0.389637552446D 02 0.1865949758500 02 0.2376747170340 01 

SWEEP NUMBER IN *JACOBI* = 5 
CURR~NT EIGENVALUES IN *JACOBI*ARE, 

0.3596375524460 02 0.1865949158500 02 0.2376147170340 01 

0.5910090485060 00 0.73697622~100D 00 0.3279652776060 00 

-0.7369762291000 GO 0.3279852776060 00 0.5910090485060 00 

0.3273352776060 00 -0.5910090485060 00 0.73697622Ql000 00 



l 
r 

T~E R~OUCEO STIFFNESS MATRIX IS 
( 
0.6412') 02 

-0.28610-36 
-0.2S~70-36 

0.45040 01 

THE TRA~SFCR~ATION MATRIX IS 

O.lh~70-14 
0.10000 01 
0.00000 00 
3 2 1 
3 2 1 

C.19E20-23 
0.00000 00 
0.10000 01 

S~EE~ NUMBER IN *JACOBI* = 1 
CURRENT EIGE~VALUES !~ *JACOBI*ARE, 

0.6411579825440 02 O.45041030S819D 01 
O.10000COOOOOOO 01 0.0000000000000 00 O.OOOOOooooooao 00 

0~100000000000o 01 

THE R~OUCEO STIFFNESS MATRIX IS 

0.45040 01 

THE TRANSFORMATION M~TRIX IS 

0.30630-25 
O.636S0-37 
0.10000 01 
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VI. ANALYSIS OF NONLINEAR STRUCTURAL RESPONSE 

In the analysis of linear structures subjected to any arbitrary 

dynamic loadings, the Duhamel integral provides the most convenient 

approach for the solution of the systems. However, it must be emphasized 

that the Principle of Superposition that was employed in the derivation 

of Duhamel integral, can only be used with linear systems, that is, 

systems for which the properties remain constant during the response. 

There are however, physical si"tuations for which this linear 

model does not represent adequately the dynamic characteristics of the 

structure, such as the response of a building to an earthquake motion 

severe enough to cause structural damages. Consequently, it is neces

sary to develop another method of analysis suitable to use with non-

1 inear systems. 

A. Incremental Equation of Equilibrium 

~- V"(t J 

m --P(¢.J 

FIGURE 8(a) - Mathematical Model for Nonlinear Structural Response 

fa (t) II ... fr (~) 

__ 1--_ '-_-__ -_-_-_--' - P(t) 
Fa <~). _ 

FIGURE 8lb) - Free Body Diagram 
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The structure to be considered in this section is a single degree

of-freedom shown in Figure 8Ca). The dynamic equilibrium in the system 

is established by equating to zero the forces acting on the mass of the 

system indicated in Figure 8Cb). This summation at any instant of time 

t in equilibrium of forces acting on the mass m requires 

FI(t) + FD(t) + FS(t) = F(t) (80la 

or 

(80)b 

In equation (80)b the coefficient Ci and Ki are calculated for values 

of velocity and displacement at time tie 

For an increment t.t later the equatton (80)a takes the following 

form: 

FI(t+t.t) + FD(t+t.t) + FS(t+t.t) = F(t+t.t) (8l)a 

and equation (80)b takes the form of 

(8l)b 

Subtracting (81)b from (80)b gives the following con'lenient form of dif

ferential equation in terms of increments, namely 

(82)a 
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or 

.. 
m6xi + Ci 6X i + Ki 6X i =6Fi (82)b 

where the incremental forces in (82)a may be expressed as follows: 

6F1(J) = FI(t+6t) - F1(t) Cal 

6FO(t) = Fo(t+6t) Folt} (b) 
(83} 

6FS(t) = FS(t+6t) - FsCt) (c) 

6F (t) = F (t_+6t). - F (t) Cd} 

and from equation (82)b the incremental displacement, velocity, accelera-

t;on and force are 

"6Xi = X(t;+6t) - x Cti ) (a) 

6Xi = x(ti+6t ) - x(t;) (b) 
(841 

to<; = x(ti+6t) - x(ti) fc) 

6Fi = F(ti+6t ) - AFi (d) 

The general nonlinear characteristics of spring and damping forces are 

shown in Figure (9)a,b. 

~lic) 

r(t+ 4 t:) 
oS 

X. (t:) 

FIGURE 9(a) - Nonlinear Characteristic of Spring 
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tj) (t + A.t) 1---...---.,.(. 

~(t:) 

)(t) K( .... At) 

FIGURE 9(b} - Nonlinear Characteristic of Damping Force 

In practice, the secant slope indicated could be evaluated only 

by iteration because the velocity and displacement at the end of the 

time increment depends on the damping and stiffness_properties, cor-

responding to the velocity and displacement existing during the time 

interval. For this reason the tangent slope defined at the beginning of 

the time intervals are used insteado 

Crt} = ~Fll 
dx 

K(t} = £E.s. 
dx 

(85) 

Among the methods available for the solution of equation (82)b, the most 

effective is the step by step integration method o In this method, the 

response is calculated at successive increments of time, usually taken 

at equal time intervals. At the beginning of each interval, the condi

tion of dynamic equilibrium is established o Then the response of a time 

increment ~t is evaluated approximately on the basis that the coefficients 

K(x) and C(x) remain constant during the interval ~to The nonlinear 

characteristic of these coefficients are found at the beginning of each 

time increment. The response is then obtained using the displacement 

and velocity calculated at the end of the time interval as the initial 

condition for the next time step. 
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There are several procedures avail ab 1 e for performtng the step 

by step integration of (82}b o Two of the most common used are the con

stant acceleration method. As may be expected the linear acceleration 

method \,/i 11 be presented here in detaiL 

B. Step By Step Integration (Linear Acceleration Method) 

In this method, it is assumed that the acceleration may be ex

pressed by a linear function of time during the time interval~t. When 

the acceleration is assumed to be linear function of time the interval 

of time ti to ti+1 = ti+~t, then the acceleration should be expressed as 

x(t} = xi +.~xi (t-ti) 
~t 

(86) 

where ~xi = X(ti+~t} - x(ti) as shown before; integrating (86) twice 

between the limits ti and t yields 

and 

x(t) = Xi + X(t-ti) + 1/2 ~x (t-ti)2 
~t 

(87) 

x(t) = Xi + xi{t-ti) + 1/2 Xi{t-ti)2 + 1/6 ~Xi (t-ti}3 (88) 
~t 

The evaluation of (87) and (88) at time t=ti+~t gives 

(89) 
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and 

(90) 

where 6xi and 6xi are defined in '(84)0 

Now it will be convenient to use the incremental displacement 

as the basic variable of the analysiso (89) is solved for the incre

mental acceleration 6Xi, and is substituted into equation (90) to 

obtain: 

(91) 

and 

(92) 

substituting (90) and (91) into equation (82)b leads to the following 

form of equation of motion: 

Finally transferring all terms associated with containing the unknown 

incremental displacement M; to the left side gives, 

j(. 6X· = 6F· 1 1 1 (94) 
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in which 

K· = Ki + 6m + 3Cj 
1 Atz At 

(95) 

and 

AFt = AF; + m l!t x; t 3x; J + C; fX; + ~t x; j (96) 

It should be noted that (94) is equivalent to the static incre-

mental-equilibrium equation, and may be solved for the incremental dis

placement by simply dividing the equivalent incremental load Ari by the 

equivalent spring constant Ki' that is" 

(97) 

To obtain the displacement at.time ti+l=ti+At, this value ofAXi is sub

stituted into (84)a yielding 

(98) 

Then the incremental velocity AXi is obtained from (92) and the velocity 

ti+l=t;+At from (84)b as 

(99) 



75 

Finally, the acceleration xi+I at the end of the time step is obtained 

directly from the differential equation of motion (80)b where the equa

tion is written for time ti+I=ti+lIt •. Hence from (80)b it follows that 

« • 

xi+I = .!JF(ti+I) - CHI xi+I - Ki+l xi+I} 
m 

(100) 

After the displacement, velocity and acceleration have been 

detenmined at time ti+l=t;+lIt, the outlined procedure is repeated to 

calculate these quantities at the following time step ti+2=t i +1+lIt and 

the process is continued to any desired final value of time. 

This numerical procedure involves two significant approximations; . 

11 the acceleration is assumed to vary linearly during the time incre

ment 6t; and 2) the damping and stiffness properties of the system are 

evaluated at the initiation of each time increment and qssumed to re-

main constant during ·the time interval. 

This concludes the background analysis of a single degree-of-

freedom system using step by step linear acceleration.' It was neces

sary to include this analysis in this chapter to present a modification 

of the extension of this method known as the Wilson-e method, for the 

solution of the structures with elasto-plastic behavior. 

The modification introduced by Wilson is utilized to assure the 

numerical stability of the solution process regardless of the magnitude 

selected for the time step; for this reason, such a method is said to be 

unconditionally stableo 
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c. Incremental Equation of Motion 

The basic assumption of the Wilson-e method is that the accel-

eration varies linearly over the time interval from t to t+e~t where 

e~1.o. The val ue of the factor e is determined to obtain optimum 

stability of the numerical process and accuracy of the solutiono It 

has been shown by Wilson that, for e>1.38, the method becomes uncondi

tionally stable. 

The equations expressing the incremental equilibrium conditions 

for a multidegree-of-freedom system can be derived as tile matrix equiva

lent of the incremental equation of motion of the single degree-of

freedom system (82)bo Thus taking the difference between dynamic 

equilibrium conditions defined at times ti and ti+.' where .=e~t; then 

the following incremental equations are obtainedo 

(101) 

in which the symbol over ~ indicates that the increments are associated 

with the extended time step .=e~t. Thus 

~x = x (t .+.) -x(t·) Ca) ~:'i - 1 .. 1 

~ ... 
~ . 

.. 1 = ~(t·+.) '- ~(t·) _ 1 N 1· lb) (102) 

6)( . 
-1 = x(t .+.) .. 1 - x(t.) .. 1 (c) 

and 

~F· = .. 1 F(ti+') - F(ti) .. .. (103) 
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In writing {lOll, it was assumed that the stiffness and damping 

are obtained for each time step as the initial values of tangent of the 

corresponding curves, as shown in Figure 8, rather than the slope of the 

secant line which requires iteration. Hence the stiffness coefficient 

is defined as 

K·· = dF.,.; 
1 J ---'-'-

dXj 

and the damping coefficient as 

C·· = £En.i 
lJ d X' J 

(l04) 

(l05) 

in which Fsi and FOi are respectively the elastic and damping forces 

at mopal coordinate i; Xj and Xj are respectively the displacement and 

velocity at modal coordinate j. 

D. The Wilson-8 Method 

At this point it is necessary to consider the detailed perfor

mance and efficiency of this unconditionally stable method of time inte

gration, as it has already been mentioned, on the assumption that accel

eration may be represented by a linear function during the time step 

.=e6t as ts shown in Figure 10. 
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:1 00 

I A xi 

A;«(t.) ~... -- ---

X~)~ ~ ______ ~: __ -L_K_~_+_At_) ______ ' ____ __ ., 
At: -I r .. edt 

FIGURE 10 - Linear Acceleration; Normal and Extended Time Steps 

From this figure can be written the linear expression for the accelera

tion during the extended time step as 

~(t} = ~i + ~Xj (t-ti) (106) 
't 

in which S~i is given by (l02)c. Integrating (06) twice yields 

~ .. (t) = xo + xoCt-t o) + 1/2 ~xo (t-t o)2 .. 1 -1 1 .. 1 1 (107) -.-
and 

~(t) = ~i + ~(t-ti) + 1/2 ~i(t-ti)2 + 1/6 ~~i (t-ti)3 (l08) -
't 

Evaluation of (107) and (108) at the end of the extended interval 

t=ti+. gives 

~. ~" 

~i = ~i • + 1/2 ~i 't (l09) 
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and 

(lID) 

in which Z~i and Z8i are defined.by (84)b,c respectively. Then (110) is 

solved for incremental acceleration ~gi and substituted in (109) yields 

A·· •.. 
~~i = 6 lXi - ~ ~i - 3~i :rz '[ 

(111 ) 

and 

ax. = 3 ~x· - 3x- = '[ X· 
-, -; -, -1 "2 _1 

(112) 

Finally, substituting (111) and (112) into the incremental equation of 
" motion (82)b results in an equation for incremental displacement &2; 

which may be conveniently written as 

in which 

and 

-,.. -,,-
K· tx· = t:,. F,· -1 -1 

K· = K· + 6 M + 3 Ci _, _1 ~ _ -_ 
'[ '[ 

(1l3) 

(114) 

(115) 
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Equation (113) has the same form as the static incremental equilibrium 

equation and may be solved for the incremental displacement ~~i by 

solving a system of linear equations. 
". To obtain the incremental acceleration ~i for the extended time 

interval, the value of ~i obtained from the solution of (113) is sub

stituted into (111). The incremental acceleratio"n ~i for the normal 

time interval ~t is then obtained by a simple linear interpolation. 

Hence 

..... 
&..=& (116) 

e 

To calculate the incremental velocity ~x. and incremental displacement .. 1 

~~i and incremental displacement ~i corresponding to the normal inter-

val ~t, use is made of (lOg) and (110) with the extended time interval 

parameter L substituted for ~t, that is 

6X' = x' ~t + 1/2 !Jx' ~t ... 1 .. 1 .. 1 (117) 

and 

.. 
~. = x· ~t + 1/2 x .. l' ~t2 + 1/6 ~x1' ~t2 .. 1 .. 1 (118) 

Finally, the displacement ~i+1 and velocity ~i+l at the end of the normal 

time interval are calculated by 

~i+l = ~i + L\~i (119) 



81 

and 

• • • 
X .. l"+l = x" + fiX" .. 1 .. 1 (120) 

As· mentioned in the section deal ing with single degree-of-freedom, the 

initial acceleration for the next step should be calculated from the 

condition of dynamic equilibrium at time t+flt; thus 

" . 
Xi+1 = ~-1[Ei+1-~i+1 ~i+1-~i+1 ~i+1J (121t 

in which the products ~i+l ~i+l and ~i+1 ~i+l represent respectively 

the damping force and the stiffness force vectors evaluated at the end 

of the time step ti+1=ti+flt. Once the displacement, velocity and 

acceleration vectors at time t i+1=ti+flt' then the outline procedure is 

repeated to calculate these quantities at the next step ti+2=t;+1+flt 

and the process is continued until the desired final time. 

E. Algorithm for Step-by-Step Solution of a Linear System, Using the 
Wilson-e Integration Method 

Initiation of Values: 

1. Assemble system stiffness matrix ~, mass matrix ~, and damping 

matrix ~. 

2. Set initial values for displacement ~o' velocity ~o and forces Eoo 

3. Calculate initial acceleration ~0 from 

" . 
~ Xo = Eo - f ~o - ~ ~o 
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4 . . Select time step 6t, the factor 0 (for all practical purposes taken 

as 104) and calculate the constants, T, a1' a2' a3 and a4 for the 

following relation 

50 From the effective stiffness matrix ~, namely 

For Time Intervals (one at the Hme).: 

19 Calculate by linear interpolation the incremental load ~Ei for the 

time interval ti to ti+T, from the relation 

F'+1 + (F'+2-F'+I) (8-1) - F, -1 -1 _1 _1 

20 Calculate the effective incremental load ~F; for the time interval 

t; to ti+T' from the relation 

3. " Solve for incremental displacement 6x' from _1 

40. Calculate the incremental acceleration for the· extended time inter-

val T, from the relation 
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A •• 1\ • •• 

A x. = 6 A x; - 6 X',- 3· ~i ... 1 -.,- .. 1 - .. 1 ,,~ .L . 

5. Calculate the incremental acceleration for the normal interval from 

.. ,.. .. 
A X = /::,.X .. -e 

6. Calculate the incremental velocity A~i and the incremental displace

ment A~i from time ti to ti+At from the following relations 

A~i = ~i At + 1/2 A~i At 

/::,.X. = X. At + 1/2 X. At2 + 1/6 AX. At 
-1 "'1 _1 ' -1 

7. Calculate the displacement and velocity at time t i +1=t i +At using 

A~i+1 = x· + /::,.X. 

-' -' 
. • . 

, /::"~i+1 = X· + ~i _1 

.. 
8. Calculate the acceleration ~i+1 ~t time ti+1=titAt directly from 

the equilibrium equation of motion, namely 

M ~i+1 
• 

= Ei+1 - £ ~i+1 - ~ ~i+1 
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F. Subroutine Step 

This is used for a type of dynamic loading of irregular behavior 

such as an earthquake. This subroutine will find the response for each 

modal coordinate at each increment of time up to the maximum specified 

by programer. The list of operational variables are shown in a tabular 

form, below. 

Variable 

SK(I,J} 

SMC! ,J) 

seC! ,J 1 

NO 

THETA 

DT 

TMAX 

NEQ(L} 

Te(I) ,PO) 

Symbol in Thesis 

[KJ 

[M] 

[e] 

N 

e 

ti,Fi(t) 

Oescrtption 

System stiffness matrix 

System mass matrix 

System damping matrix 

Number of degrees-of-freedom 

Wil son-e factor 

Time step of integration 

Maximum time of integration 

Number of data points for 
excitation at modal coordinates 

. (L-l ,NO) 

Time-force values 

G. Program 4 - Seismic Response of Shear Buildings 

A computer program.for the analysis of a multidegree-of-freedom 

shear building with elastoplastic behavior, linear viscous damping, sub

jected to an arbitrary acceleration at the foundation, is presented in 

this section. This program may be conceived as a combination of three 

computer programs already presented: (1) the elastoplastic single 

degree-of-freedom system; (2) the seismic response of elastic shear 

buildings using modal superposition method; and (3) the subroutine 
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STEP using the Wilson-e integration method for linear systems in this 

chaptero 

The listing of Program 4 is given on page 89 0 The program calls 

subroutine JACOBI to solve the eigenproblem of the system in the linear 

range and then calls subroutine DAMP to determine from specified modal 

damping ratios, the damping matrix of the systemo A listing of the 

principal variables used in the program are given belowo Input data 

cards and corresponding formats are indicated following the list of 

variables. 
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Variables Symbols in Thesis Description 

SK (I,J) [K] Stiffness matrix 

SM (I,J) [M] Mass matrix 

SC (1,J) [C] Damping matrix 

THETA e Wilson-e factor 

DT 6t Time step 

E E Modules of elasticity 

GR 9 Acceleration of gravity 

TMAX Maximum time of calculation 

NEQ NT Number of data points for the 
excitation 

ND N Number of degrees-of-freedom 

IFPR Printing index of subroutine 
JACOBI: l=Print eigenvalues 
during iteration; 0=00 not 
print 

SI I Moment of inertia of story 
columns 

Sl l Height of story 

S~1 (I, I l M Mass at floor level 

PM Mp Plastic moment of story 

TC(I},P(I) ti ,Fi Time-Acceleration values 
(~cceleration in gls) 

XIS (I) ~i Modal damping ratios 

Formats Variables 

(2FIO.2,3FIO.0,3I5) THETA OT E GR TMAX NEQ NO IFPR 
(8F1000) SI Sl SM(I, I} PM (one card per degree of 

freedom) 
(8FIOo2) TC(l) pel) (l=l,NEQ) 

(8F10.3) XIS(l) (l=l,NO) 
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H. Illustrative Example 

Use Program 4 to determine the response of the two-story shear

building of the example subjected to a constant acceleration of 00 28 g 

applied suddenly at the foundationo The plastic moment for the columns 

on the first or second story i s_ Mp = 15,000 1 b-i n. 

The listing of the input data followed by the computer results 

are shown on the following page o 



Input Data and Computer Results 

Input Data 

E 1(;ENV ALII[S 

SWEEP NIJMI1EH IN 1tJM:n~T!'<:: 1 
~.21NgvO 0' ~.7~q11n n" 

S~fEE~ NII"II~FR IN --J I\f:OHT); = ? 
~.21~9Vn e~ ~.l~nl~n nQ 
~.21n9~D V~ u_7~n7~n nd 

EIGENVfC llmS 

THE OAMPING MATRIX 13 

Q ~Oljr.."O .. !~ 
'" • t} V lJ ':' 0 u u 

(i • ';i Q '" v 0 (1 0 
, ~ :-. oj Ih~ t.,j) v !l. 

\ 
~ 
t 
r! 
1. 
2 
I 
? 
I 
C' 
1 
? 
I 
2 
t 
~ 
I. 
? 
1 
t' 
I, 
? 
1 
~ 
1 
2 
l 
? 
1 
~ , 
? 
I. 
? 
t 
;t 
l 
? 

o:fJ~a 
U-.I",,')!J 
V _ h.d' 
" .. L'~ v .. \ '';v "_,OJ,, 
Q .. :> \. tl 
\! .. ;t,,;J 
I,J .. ?'-';~ 
it J~ i 
t):~~V 
(l --t ~ .. ! \i: ~ i;,~ 
tt .. "t;<;.,V 
V _ f1 ~. \,t 

I) _ I •. \j 
\i _ II ,., ., 

(?_/1~,:j 

'.)6, ~"I,) 
t-' _ t.; , "~ 
,,_r~,)V 
0_1.,)(;., 
V .. () '" I) 
\). t, H l~ 

.... : (,,)~ 
\" I,',\: (I: 'I .'" 
\,1_ 1., " ', .. "")',. 
\I_ 7 r.j 
\ I 1\ , '" 
1,1:1\,,\, 
\I ,~ '-; '. 
V:t\t..;" 
v. ll .• IJ 

V .. tl ,. t' 
V .. '1 ....... 
~ .. C)I,O 

OI!1Pl~ 

-O .. 1.? 1 ,I 
-V.!?~"l, 
"'U .. (I~"(1 
"(I."n~\) 
-1.11",~· 
- t .1 t "2; il 
-:? • ;,) 1 1 '", 
-;> .. (J 1 "( II 
... ~ " t\ Ii -""<: i 17..'1 
.'1. h' ?'; 
_fl .. (,;.7,/1 

... ,., .. ~ 171'; 
-6. ?t\~.; 
.... 1\ ;> () t; -, 

#-f\:t~O"i 
... l ~; • t:; "i " '" 
.. fl.' .. 1. 'I ~\ 1 
.. ' '"I; _ 1/f,Hh 
... 1 ~ .. "'l. (. '? \") 
... 1 " • "":' ~ 
.. ) " .. 7 I "'1.(, 

... ' I!_I)~"')'I 

... 17 ... ~ I, , \.1 

.. 1.?';"l·(f) 

... lQ.Q",fl'l 

.. ? r~ _ t\ 1\ ., U 

".,l? .. tlH'-.1 
,..If) .. 71;' ~ 
... ' ...... Qh:>, 
... -~~ .. ~ .. C) .~ , r; 
.,. " '1 • :-. , ''; 'I 
... '1\ .. -r",~ I, 
.. ,,~ .. h " r .. ;.' 
.. (I "7. .. \' 1 .,'. \ 
... '. I, ... =' t~ 1 It 
...'11\.1,~"'1 ... 't V ... ~I ;> t ~~ 

~Rb. 
, r; \1 \J ',I • 
1~\J\lV. 

I • 

VElIlC. 

-n.saC), 
""1 • f) f\ 1\ ;> 
-q C}?'5~ 
- (1 : Po~) I) () 

-I'", ,>R?II 
- 1 "~ .. '~ ') ? S _?,,:bt)I' 
-? 'J • !.)? b h 
-;'" ',111 
-" ,; : 91 j ;.l 
-"J.17;>7, 
...... ' .. 1.)'7:> 
... '(, " • H ;') I., ;> 
-\'"? \,ht)') 
.. 'I > ... ~ ... f\ u i 
-,p..r;QS9 
-"7 .. 7"7."\ 
_tl;, l ;>';? 
_ 'i',· I F\ Po () 
_II';: b';Ilb 
_'-,>!\ hlJ, C} 
_,Iq- 1 HII\I 
_hI," 11'1',)9 
.. '';'''''71'''' _h:,: ')/lql\ 
... ·')h ;. It.") 7 
-I'~: Inl 4.11 
.. '"..,. /1 .... 'V 
_B"."'li7 
- t, r.. 1, 0 l 'I 
... H ':' • c) 1 , Il 
_" •• ·t\~"H 
.. <J, .. "h',/) 
... "{:I· 1"1,,.\ 
_'l'-,. I" ')'l 
.. , ~ • n 1\ 'I C; 

- 1 I) 1 .. I, 911 7 _7,,:,,11111 

2 2 

Ace. 
- 1 1I7 • Q '/ ? r; _q,. "1',f'?, 
-\(lb.RflA"l, 
- J ,s. 7 ;0,/1 
-1i)7 .. "l,~?" 
- 1 \J (') .. r:; 117 I) 
_ l ,I -, • H f 1 n A 
"'1~ .. 7 ,Jllr, 

-t,)'l"f.qhH 
- I 'I {j • (J 7 h ') 
-1,.,'1.l)?I\"] 

-7(; • 5 R 7 ;> 
-109.\l1 n -, 

-7" .. r) R ., ? 
- I 11 Q • I.' 7 F\ 7 

-7('"sn7? 
- , ,) t) • 1.1 ., r. 7 
-70. ':\ FI 7;) 

-'oQ.1l1f\7 
-711 .. '; HI? 

-1 (14. 117 A 7 
-'TI'"SH7,> 

-10\.').II7F\7 
-7 \i ~ t~ I' 7 ? ."u 4 .,,'7fl.7 
-'7 u .. l.~ n 7 ? 

-l o U"I"F\, 
-71'. 'll' 7;1 

- t I) q .. 117 F\ 7 
_7".';~~"? 

.. , ~, CJ • II" H 7 
-111. ',H' ,) 

.. t II I) _ Ii ., f\ , 
-711,,',"7;.> 

.. 1,,9.1111\7 
.. '/11 .. ') f\ -, ? 

-lu9.111"1 
-'10.,:)H/? 

88 

I 



I ',I' 

I. program Listing 89 

SJOB ,PAGES=5.TIME=5,LINES=400 
C 
C SEISMIC RESPCNSE ELASTOPLASTIC SHEAR BUILDING 
C 

1 IM?LICIT REAL*~(A-H.O-Z) 
2 DIMENSION SK(30,30),SM(30,30),SC(30,30).F(30),Y(30,30),DO(3G), 

:5 
4 
5 
6 
1 
8 
CJ 

: 10 
:11 

12 
:.13 
I 14 
15·' 

i 16 
'11 
118 
, 19 

20 
21 

: 22 
~ 23 
24 

. 25 
i 26 
1'21 

28 
I 29' 
. 30 

I ;~ 
133 

1

34 

I 

135 
I 36 
I 37 

38 
! 39 
I 40 

41 

lt2 
l4:w. 

1 DU A (30) ,U 0 ( 30) ,UV (30) ,UA ( 3 0) • T C (3 Q ) ,P c 30) ,S KP (3 G) • R T ( :3 Q )., 
1 R(30),YT(30>,YC(30).S(30>,SP(30).KEY(30).EIGE~(30) 

c 
C READ I~PUT DATA AND INITIALIZE 
C 

C 

READ(5,10Q) TH:TA.DT,:.GR,TMAX,NEQ.ND,IFPR 
WRITE(6.100)THETA.DT,E,GR,T~AX,NEQ,ND.1FPR 

100 FORMAT(2FIC.2.3FIO.0,3IS) 
NX=TMAX/DT+2 
DO 1 I =.1 , ~J \( 

1 FCI>=O.O 
DO 2 1=1. ~~ D 
DO 2 J=l,ND 
SM(I.J>=O.O 
SC(I.J)=O.O 
XCI.J)=O.O 

2 SKCI.J)=O .. G 
NDl=NO+l 
TU=THETA*DT 
Al=3./TU 
A2 =6 ./TlI 
A3=TU/2. 
A4=A2/TU 
DO 7 I=l.ND 
READ(S,11C) S!.Sl,S~(!.!>,PM 
WRITE(6.110}SI,SL,SM(!.I),PM 

110 FORMAT(3FIO.2.FI0.0) 
S(I)=12.0*~*S!/SL**3 
SPCI)=SCI> 
RT<I)=2*P~I/SL 

SC(l,I)=SM(I,I) 
UD(I>=O.O 
UV( 1>=0.0 
YT<I)=~T(I)/SCI> 

YC(I>=-RTCI)/$(I) 
KEY(I)=O 

7 SP(J)=S(J) 

C ASSEMBLE STIFFNESS MATRIX 
C 

c 

S(NO+l)=O.O 
DO 19 I=I,~D 

IF (I .[Q.l) GO TO IG 
SK(!.I-l>=-S(I) 
SK<I-l,!>=-S(J) 

19 SK(I.!)=S(!)+S(I+I) 

C DETERMI~E NATURAL FREQUENCIES AND MODE SHAPES 
C 

C 
C 
C 

DETERMI~E DAMPING MATRIX 

CALL ~AMrCNo,X.SM,~C.EIGEN) 
RrAOC5.1'O) CTCU ).PCL).I =l.~Ea) 



144 
1
45 
46 

I ~ 1 

I 
·C 

I 
c 
C 

1

48 
1+9 

150 
iS1 
I 
52 
53 
54 
55 
56 
51 
58 
59 
60 
61 
62 
63 

C 
C 
C 

64 
'65 
.66 
I 

i 61 
i 68 
! 69 
: 10 
111 
i 12 
i 13 

C 
C 

I C 
I 14 
! 15 
i 16 
I 71 
1 18 

1
19 

I 80 
. 81 
I 82 
) 83 

84 
\ , 85 
I 86 

81 
~8 , 89 

) CJ 0 ! :~ 33 
94 

~RITE(6,12C) (TC(L).P(L).L=1,N~Q) 

120 FORMAT(4FIO.2) 
00 1+ l=l.~EQ 

1+ P(I)=PCI)*GR 

INTERPOLATION PETWEEN DATA POINTS 

NT=TCOJEQ) lOT 
NT1=NT+l 
FCl)=PCl) 
ANN=O.O 
11=1 

·00 10 I=2,~T1, 
AI=!-l 
T=Al*DT 
IFCT.GT.TC(NEQ» GO TO 16 
IFCT.LE.TCCII+1» GO TO 9 
A~N=-TC(II+l)+T-OT 

II=!!+1 
9 ANN=AN~+OT 

F(I)=P(II)+(P(!I+1)-P(II»*ANN/(TC(II+l)-TC(II» 
10 CONTI~UE 
16 CCNTINUE 

INITIALIZE AND OETERMINf INITIAL ACCELERATION 

NT= T MA Y. /0 T 
DO 22 1=1. ~IO 
X(I,N01)=-F(1)*SM(I,I) 
DO 22 J=1, ~,!D 

22 XtI,J)=SM(!,J) 
CALL SOLVE(~O.X) 

DO 23 !=1,ND 
23 UA(I)=X(I~~D1) 

SPCNO+l)=O.Q 
R(NO+l>=O.O 

LOOP OVER TI~E CALCULATING RESPONSE 

WRITE U;,170) 
(1) 190 L=l,~T 

AL = L 
T=OT*AL 
DO 20 1=1,NO 
1F(I.EQ.1) GO TO 20 
SKCI,!-l) = -SP(l) 
S~«1-1>,I>=-SP(I) 

20 SKtI,!)=SP(I)+SP(I+1) 
DO 25 I=1 ~r'D 
DO 25 J=l.r,;O 

. 2~ X(I,J)=SKC!,J>+A4*S~(I,J)+A1*SC(I,J) 

90 

DO 35 I=l.~W 
X(I,NDl>=(F(L+l)+(F(L+2)-F(L+l».(THETA-l.O)-FCL»*C-SMel,I» 
DO 30 J = 1 • '~D 

30 X(I,NDl)~X(I,YDl)+(S~(I~J)·A2+SC(I.J)*3.0)*UV(J) 
1 +(SMeI,J)·~.O+A~*SC(I,J»*UA(J) 

35 CONTINUr 
CAL L SOL V [ OJ D • )( ) 
DO 38 I=l.~D . 
OUACI )=A4*X<I ,NJl>-A2*UVCI )-3.0*UA <I) 
OUA(I)=DUACI)/TH[TA 



J 
1 95 
~ 96 
)97 
198 
, 99 

!10 0 
!101 
) 

:102 , 
'.103 
;104 
\105 
"106 
,107 
',108 
'109 
i110 
)11 
<112 
)13 
'114 
'115 
(116 
117 

i
118 
_,119· 
120 .J
121 

<122 
123 
124 

1125 
126 

(127 
(128 
.129 
\130 
'131 
132 

i133 
1134 
)135 
)136 

)1~ 7 
138 

~139 

t40 

)141 
(142 
!llf 3 
) 

i144 
,145 
1146 
1147 
,J14 R 
149 
150 
151 

DUV=DT*UAC!)+DT*DUAC!)/2.0 
UD(I)= UOCI)+OT*UVCI)+OT*OT*UACI)/2.'O+OT*DT*OUACI)/6.0 

38 UVCI)=UVC!)+OUV 
OOel)=UOCl) 
DO 39 I=2.NO 

3q DoCI)=UOCI)-UDC1-1) 
DO 40 I=l,NO 
IFCKEY(I» 11,12.1'3 , 

12 RCI)=RT(I)-(YTCI)-oOCI»*StI)' 
SPCI)=S(I> 
IF (oOCI).GT.YC(I).ANO.DOCI).LT.YTCI» GO TO 40 
IFCDOCI).LT.YC(I» GO TO 15 
KEYC!>=l 
SP(I):(}.O 
RCI):RTCI) 
GO TO 40 

13 IF(UVC!).GT.O.) GC TO 40 
KEYCI)=O 
SPCI)=SCI) 
YTCI):DDC!) 
YC(!)=OOC!)-2.0*RTC!)/SCI) 
RCI)=RTC!}-(YTCI)-ooCI})*S(I) 
GO TO 4 C 

11 !FCUVCI).LT.O) GO TO 40 
KEY<I)=O 
SPCI)=S(I) 
YCCI>=OoCI) 
YTCI)=DDCI )+2.*RT<I )/SCI) 
RCI)=~TCI)-CYT(I)-OOC!»*SCI) 

GO TO 40 
15 KEYCI)=-1 

RCI):-RTCI) 
SPC!)=O.O 

4 0 CON T ! "'1 U E 
DO 50 I=l,No 
X(I.ND1)=F(L+l)*(-S~(!,I»-R(I}+R(I+l) 

DO 45 J=l'~lO 
XCI,NDl)=X(I.ND1)-SCCI,J)*UVeJ) 

45 XC!,J)=SMC!,J) 
50 COrJTI~UE 

CALL SOLVE (ND.X) 
DC 60 I = 1 , \iD 
UAC!)=XC!.NDl) 

60 URITECf.250) I,T,UDCI),UVCI)1UACI) 
90 CO"lTI"lUE 

.: .... 
> 

91 

170 FORMAT(lHl,5X,'THf RESDONSE TS',1.5X,'CORD.',6X,·TIME',9X, 
1 'DISPL.t.~X,'VELCC.',11X.'ACC.'/) 

250 FORMAT(!10.FI0.3.3FI5.4) 
STOP 
END 

SUBROUTINE SOLVE (~.A) 

IMPLICIT R[AL * ~ (A-H,O-Z) 
DIMENSrO~ A(30.30) 
M=l 
(PS=1.0E-lO 
N=>lUS"'=N+M 
OET=1.0 
DO 9 '< = 1. N 
oET=OETAA(K,K) 
IF(OAOS(ACI(,K».GT.EPS) GO TO 5 



, 154 
-155 
156 
157 
158 
159 
160 
161 

'162 
163 
164 

" 165 
.... 166 

167 
168 

169 
"" 170 
.. 171 

C 
C 

.., C 

..,172 
-173 
,.!..74 ' 
,,,,175 

176 
'-177 

178 
t(,79 

1S0 
181 .... 
182 

;;"183 
184 

'-1'35 
"186 

C 
"'" C 

C 
_: 187 

188 
~lg9 

190 .. -
C 
C 

"" 
C 

, 191 
:'P32 
:-193 
. 194 
~ 195 
" 196 

197 
C 
C 
C 

198 
;;, 199 

200 
201 

5 

6 

8 

9 
202 

99 

4 
10 

20 
30 

40 

WRITEUi,202) 
GO T099 
KP1=K+l 
DO 6 J=KPl, NPLUSM 
A(K,J)=ACK,J)/ACK,K) 
A(K,K)=l. 
DO 9 I=l.N 
IF (I.EO.K.OR.A(I.K).EO.O.) GO T09 
DO 8 J=KP1.N~LUSM 
A(I,J)=~C!,J)-ACI,K)*A(K,J) 

A(hK)=O.OOO 
CONTINUE 
FOqMATC37HOSMALl PIVOT -MATRIX MAY BE SINGULAR) 
RETURN 
E"JD 

SUBRCUT!~~ JACOB! (A,B,X,EIGV,D,N,IFPR) 
IMPLICIT REAL*~(A-H,O-Z) 
DIMENSION A(30,30),BC30,30),X(30,30),EIGV(30),D(30) 

INITIALIZE rrGE~VALUE AND EIGENVECTOR MATRICES 

WRITE (f.,1980) 
NSMAX = 15 
RTCL = 1.0-12 
IOUT=6 
DO 10 I=1.r-j 
IF(A(I.I).GT.O •• AND. S(!.I).GT.O.)GO TO 4 
LJRITEC!OUT.202C) 
STOP 
D(I>=A(!,!)/9(!,I) 
EIGVCI>=DCT) 
DO 30 I=l,"l 
00 20 J= 1 .. ~ 
X(I,J)=O. 
X(!,!)=l. 
IFC~.EQ.1) RETUR~ 

INITIALIZE SWEEP CDUNTER AND [[GIN ITERATION 

NSWEE=>=O 
NR=N-l 
~SW~EP=NS~rrp+l . 
!F(IFPR.EQ.l)WR!TECIOUT,2000)NSW~EP 

CrlECK IF PRESENT OFF-D!AGONAL ELEME~T IS LARGE 

EPS=C.Ol**NSWEEP)**2 
DO 210 J=l,NR 
JJ=J+l 
DC 210 K=JJ.N 
EPTOLA=(ACJ,K)*ACJ,K»/CA(J,J)*A(K,K» 
[PTCLB=CB(J.K)*BCJ.K»/(SCJ,J)*8(K,K» 
IF«EPTOLA.LT.[PS).AND.CEPTOLB.LT.EPS»GO TO 210 

"92 

IF ZEROING IS REQUIRED,CALCULATE THE ROTATION ~~TRIX ELEMENT CA,CG 

AKK=A(K,K)~R(J,K)-8CK,K)*ACJ,K) 

AJJ=A(J,J)*OCJ.Kl-P(J,J)*ACJ,K) 
Ae=ACJ,J)·P(K,K)-A(K,~)*MCJ.J) 

CHECK=CAB*A8+4.*AKK*AJJ)/4. 



l202 
203 

'204 
~ 20 5 
206 
207 

\208 
209 

'210 
211 
212 
213 

'214 
215 
216 

'217 
218 
21'1 
220 
221 
222 
223 
L(! 4 . 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
2~2 

243 
21+4 
245 
246 
247 
248 
24 q 

250 
251 
252 
253 
251+ 
255 
256 
257 
25 ~ 
25 q 

c 
C 
C 

IF(CHECK)50,60,60 
50 URITECICUT,2020) 

STOP 
60 SQCH=OSQRT(C~ECK) 

01=AB 12 .+saCH. 
02=AB/2.-SQCH 
OEN=Dl 
IFCOA8S(02).GT.OABSCOl»OEN=02 
IF ( 0 E ~n 80 ,70 .80 

70 CA=O. 
CG=-ACJ,K)/ACK,K) 
CG=-A(J,K)/ACK,K) 
GO TO qo 

80 CA=AK'</OE~ 
CG=-AJJ/DE~ 

93 

GENERALIZED ROTATION TO ZERO THE PRESENT OFF-DIAGONAL ELEMENT 

90 IF(N-2)10Q,190.100 
100 J?l=J+l 

JMl=J-l 
KPl=K+l 
KMl=K-l 
IFeJ Ml-l)130,110.110 

110 DC 120 I=1.JMl 
AJ=ACI,J) 
BJ=B(!,J) 
AK=A<I,K) 
BK=8c:r,K) 
AeI,J)=AJ+CG*AK 
B(I,J>=8J+CG*8K 
ACI.K)=AK+CA*AJ 

120 BCI.K)=BK+CA*BJ 
130 IF (K?1-N)140,140,160 
140 DO 150 I=KPl,N 

AJ=ACJ,I) 
BJ=B(Jd) 
AK=A(K,I) 
BK=BCKd) 
AeJ,I>=AJ+CG*AK 
BeJ,I)=PJ+CG*BK 
ACK.!>=AK+CA*AJ 

150 BCK,!)=BK+CA*BJ 
160 I=CJPI-KMl)170,170,1~O 
170 DO 180 I=J P 1,KM1 

AJ=ACJ,I) 
BJ=BCJ,J) 
AK=A<I.K) 
BK=8(!,K) 
ACJ,I)=AJ+CG*AK 
B(J,I>=BJ+CG*8K 
ACI,K)=AK+CA*AJ 

180 BCI,K)=8K+CA*BJ 
190 AK=ACK.K) 

BK=B Co{ ,K) 
ACK,K)=AK+2.*CA*ACJ,K)+CA*CA*ACJ.J) 
BCK,K)=PK+2.*CA*BCJ,K)+CA*CA*A(J.J) 
A(J,J)=ACJ.J)+2.*r.G*ACJ,K)+CG*CG*AK 
B(J,J)=oeJ.J)+2.*CG*BCJ,K)+CG*CG*BK 
ACJ,K)=O. 
BeJ.K)=O. 



c 
C UPDATE THE EIGENVECTOR MATRIX AFTER EACH ROTATION 
C 

260 00 200 I=l,~ 
~61 XJ=X(I.J) 
~62 XK=XeI.K) 
263 X(I.J>=XJ+CG*XK 
164 200 X(I,K)=XK+CA*XJ 
~65 210 CO~TINUE 

C 
C UPDATE THE EIGENVALUES AFTER EACH SWEEP 
C 

266 DO 220 I=l,N 
~67 IF (A(I.!).GT.O •• A~D. S(I.I).GT.O.) GO TO 220 
~68 WRITECIOUT,2020) 
269 STO~ 

~70 220 EIGVe!)=ACI,I)/BCI.I) 
~71 IFeIFPP'.[Q.O)G0 TO 230 
272 WRITE(IOUT.2010) CEIGV(I),I=l.N) 

'273 
":274 
'1 275 
276 

"'277 

C· 
C 
C 

CHECK FOR CONVERG~~CE 

230 DO 240 I=l,N 
TIJL=RTCL*O(!) 
DIF=DA8S(E!GV(I)-O(I» 
IF(OIF.GT.TOL)GO TO 280 

240 CONTDIUE 

94 

C 
C 
C 
C 

CHtCK ALL CFF-DIAGCNAL ELE~ENTS TO SEE IF ANCTYER S~EE~ I 
REQUIRED 

278 EPS=RTCL**2 
"279 DO 250 J=l "NR 
~280 JJ=J+l 
281 DO 2~0 K=JJ.N 
~2~2 EPSA=(A(J,K)*A(J,~»/(A(J.J)*ACK,K» 

~a3 EPSB=(B(J,K)*8(J,~»/e8(J.J>*B(K,~» 

284 IFCCEPSA.LT.EPS).AND.(EPSB.LT.EPS»GO TO 250 
.... 28~ GO TO 280 
·286 250 CO~T!NUE 

""287 
~2e8 

289 
"'290 
'.291 
292 

"29 :3 
'·294 

c 
C 
C 
C 

C 
C 
C 

FILL OUT 8CTTOM TRIANGLE OF RESULTANT MATRICES 
AND SCALE EIGENVECTORS 

255 DO 260 I=l,~ 

DO 260 J=l,N 
A eJ.I )=A (I ,J) 

260 BeJ.I)=8CI,J) 
DO 270 J=l .. N 
8B=DSQRTC P (J.J» 
DO 270 K=l,N 

270 XCK,J)=X(K,J)/B8 

UPDATE ~ATRIX AND START NEW SYEEP,IF ALLOWED 

295 ~RITE e6,2010) eEIGVeIL>.IL=1,N) 
296 WRIT[e6,19g0) 

-297 DO l~ql LI=l,N 
29P. 1991 WRIT::Cf,,2010) (XCLI,LJ),LJ=l,N) 
299 1990 FORMAT (//,lOX.'EIGENVALU[S'./) 
300 1990 ~ORMAT(/10X,·EIGENV~CTORS·./) 



301 
302 
303 
304 
305 

'306 
307 
308 

309 
C 
C 
C 

, 
310 

.311 
~312 

1
313 
~314 

.315 
316 

l317 
l318 
~19 .' 
320 
~321 
~322 
b23 
~324 
" ,325 
~326 
! 327 
~ 
328 

• 
• 329 
L 

l 
• , 
b 

, 
b 

!o., 

~ 
b , 

'" 
L 
1 
!-

~ 

RETUR~ 
260 DO 290 1=1,N 
290 D(!)=r.IGV(T) 

IF(~SWE[P.LT.~S~AX)GO TO 40 
GO TO 255 

lOGO FOR~AT(/,27~OSW~E~ NU~8ER IN *JACOBI* = ,14) 
2010 FOR~AT(1~0,6~14.~/) 
2020 FORMAT (25~O.** ERROR SOLUTION STOP I 

1 30H MATRICES NOT POSITVE DEFINITE) 
END 
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DETERMI~ATION OF DAMPING ~ATRIX FROM MODAL DAMPING RAT!~S 

SUBROUTINE DAMP (NL.X.S~.SC,EIGEN) 

IMPLICIT REAL*8CA-H,C-Z) 
D!ME~S!CN X(3C,30),TC30,30).SMC30,30),SC(30,30),EIGEN(30),XIS(30) 
READ (5.110) (YIS(L),L=1,NL) 
DO 10 I=1,NL 
EIGENCI)=OSQRT([IGEN(I» 
DC 10 J=l.~L 

10 SC(I.J) =0.0 
DO 20 II=1,NL 
DA = 2.*X!S(!I)*EIGENCII) 
DO 20 !=1"NL 
0020 J=l,NL 

20 SC(I.J)=SC(I.J)+X(T,II)*X(J.II)*DA 
DO 30 I=l.NL 
DO 30 J=l.NL 
TC!,J)=O.O 
DO 30 K = 1,NL , 

30 T(I,J) = TCI,J)+SM(I.K)*SC(K.J) 
DO 40 I=I,NL ' 
DO 40 J=l.~~L 

.,.1 



[I... 

·330 
331 
332 
333 
334 
335 
336 
331 
338 
339 
340 

SC(J,J)=O.O 
DO 40 K=l.,NL 

40 SC(I.J) = SC(I.J)+T(I.K)*SM(~.J) 
\JRITf(6,170) 

170 FORf1ATUI.5X.'THE OAMPPJG MATRIX 
DO 50 I=l.NL 

50 URITE(6,120) (SC(!.J),J=l,NL) 
110 FO~MAT(3FIO.2) 
120 FOq~AT (601 4 .4) 

R ~TURN 
END 

$ENTRY 
1.40 0.05 30000000. 386. 

1000000. 
1DOOOOO. 

~91.2C 180.00 136.00 
212.60 120.00 66.00 

EIGENVALUES 

~~IWEE? NUMBER IN *JACCB!* = 1 
~. 0.139900 U3 0.105250 C4 
~ .. 
• ,WEEP NUMBER IN 
~ 0.139900 03 

~ 

~ ... 
f-

J.-

, . 

0.139900 03 

*JACOBI* = 
O.1082~0 04 
0.105250 04 

EIGENVECTORS 

0.643700-01 -0.566520-01 
0.813230-01 0.924020-01 

THE DAMPING MATRIX IS 

.0.00000 00 
0.00000 co 

0.00 

0.00000 00 
0.00000 00 

0.28 1.00 

2 

0.28 
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