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ABSTRACT

The objective of this thesis is to develop computer programs for
tﬁe dynamic analysis of structures. For a shear building two computer
programs were developed: (1) Dynamic Analysis of a Shear Building
within the Elastic Range and (2) the Dynamic Analysis of a Shear
Building with Elasto-Plastic Behavior.

Parallel to this computer work a study was performed to investi-
gate the error due to static condensation applied to dynamic problems.
In the development of computer programs the stiffness method and the

consistent mass matrix were used; and viscous damping was assumed.
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NOMENCLATURE

Roman Alphabet

Pi(t) the normal force at function of time acting on ith level

Ximax the maximum response from the spectrum at ith

X3 the displacement at ith

ii the veloéity at ith

ii the acceleration at ith

g the constant of gravity

Ci the damping at ith

Ky the stiffness in column i in the Tower floor level

Fi(t) the forcing function at ith in function of time

my mass concentrated at level i

[C] the damping matrix

[K3 the stiffness matrix

{F} the forcing vector

{X} the displacement vector

X} the velocity vector

{i} the acce]efation vector

aq amplitude of motion of ith coordinate

ajj amplitude of the mode shape at coordinate i mode n
(before normalization)

[11 unit matrix

Zi(t) factor which will uncouple a set of coupled equations

[T] : transformation matrix

{Xp} | the vector corresponding to the p degrees of freedom to

be reduced
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{Xq} the vector corresponding to the remaining q independent
degrees of freedom ,

[KJ the reduced stiffness matrix

M1 the reduced mass matrix

(¢l the reduced damping matrix

v potential energy

K.E. | kinetic energy

Fr(t) inertial force at nonlinear systems

Fp(t) damping force at nonlinear systems

Fs(t) spring force

F(t) excitation force, funétion of time

Greek Alphabet

w natural frequency

g the i~th natural frequency

$in amplitude of mode shape at coordinate i mode n (after
normalization)

[2] square modal matrix

T participation factor

£ damping factor

A increment

9 Wilson constant equal to 1.38 taken as 1.4

T the product of Wilson and the time increment

A increment associated with extended time step
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I. INTRODUCTION

Almost any type of structure may be subjected to dynamic loading
in one form or another during its existence. From the analytical point
of view, it is convenient to divide the dynamic loading condition into
two basic categories; periodic and nonperiodic. Periodic loadings are
repetitive loads which exhibit the same time variation successively for
a large number of cycles. A typical case for periodic motion is rotating
machinary in a building. On the other hand nonperiodic loadings may be
either short-duration, impulsive loadings or long duration, general forms
of Toads. A typical nonperiodic motion is a nuclear blast or an earth-
quake excitation.

In recent years considerable emphasis has been given to the
problems of blast and earthquakes. The earthquake problem is rather
old, but most of the knowledge on this subject was developed in the last
two decades. The blast problem is rather new and information is made
available mostly through publications of the Army Corps of Engineers,
Department of Defense Agency, and other federal agencies. It is very
important to mention the fact that in the last decade the rapid expan-
sion in number and size of nuclear power plants in regions close to large
populated centers requires very careful structural consideration.

As an effort toward developing better techniques in the field
of structural dynamics, the main objective of this thesis is to develop
computer programs for structures modeled as a shear building subjé;ted
to dynamic loading conditions and the investigation of error, due to.

static condensation.



IT. FREE VIBRATION OF A SHEAR BUILDING

A. Concept of a Shear Building. A shear building may be de-

fined as a structure in which there is no rotation of a horizontal sec-
tion at the level of the floors. In this respect; the deflected building
will have many of the features of a cantilever beam that is deflected by
shear forces only; hence, the name shear building. To accomplish such
deflection in a building, it must be assumed that (1) the total mass of
the structure is concentrated at the levels of the floors; (2) the |
girders on the floors are infinitely rigid as compared to the columns;
and (3) the deformation of the structure is independent of the axial
forces present in the columns. |

B. Free Vibration. When free vibration is under consideration,

the structure is not subjected to any external excitation (force or
support motion) and its motion is governed only by the initial conditions.
There are occasionally circumstances for which it is nécessary to deter-
mine the motion of the structure under conditions of free vibration, but
this is seldom the case. Nevertheless, the analysis of the structure
in free motion provides the most important dynamic properties of the
structure which are the natural frequencies and the corresponding normal
modes.

Figure 1(a) shows the possible displacements of a two-story

shear building and figure 1(b) shows the two possible modes of vibration.
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FIGURE 1(a) - Possible Displacements of a Two Story-Shear Building

FIGURE 1(b) - First and Second Mode of Vibration

Any displacement x; of member C-C' is resiéted by the restoring forces

of the columns. If K; is the stiffness of the first étory then the

force on C-C' will be -Kyx3. If Ky is the stiffness of the second story
. then the forces on C-C' and D-D' are -Kp(x3-x2) and Ko{(x2-x1) respective-
ly. The equations of motion are then obtained from the corresponding

free body diagram as is shown in Figure 2,

.D —~————— D'
-‘-—‘—— /772 xl. "
! /
/ kl (xl - x' ) /
’ {
!
—————

FIGURE 2 - Free Body Diagram of a Two-Story Shear Building
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Hence, equating to zero the sum of forces in x direction for bodies C-C'

and D-D' results in

mX; + Kixp - Ko(xp-x1) = 0 (1)

mziz + Ko(xp-x1) = 0 ‘ (2)
and rearranging these equations gives

mlil + (K1+K2)X1 - Koxp = 0 (3)

moXp + Koxp - Kpxp = 0 (4)

where X; , Xo are the accelerations-and x7 , xp represent the displace-

ments. Equations (3) and (4) may be written as

my O X : K1+K2 -Ko 'Xi 0
! BE -] (5)
0 m2 X2 -Kz Kz X2 0
or in a condensed form as

[M1 (X} + [K] {x} = {0} . (6)

in which
[M] is the mass matrix,
[K] 1sAthe stiffness matrix,
{X} is the acceleration vector, and

{x} is the vector displacement.
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The system of équation (5) is linear and homogeneous, and its solution

can be expressed as

al eiwt

vaz eiwt

X1
X2

(7)

where ay and ap are constants, and w is a parameter to be determined.

Substituting (7) into (5) results in

{-mjw?a; + (Ky+Kplag - K2a2}e1‘*’t =0

. (8)
{-mpw?a, + Koap - Kjaplelut =0
which upon simplification gives
{(K1+K2) - wzml}al - Koap = 0 )
9
-Koap + (Kz-wzmz)az =0
or in matrix form
(Kq4+K, ) -w2m -K a 0
17™2 .1 2 1} _ (10)
-Ko Kz—wzmz ap 0

and in condensed notation

{[K] - »2[M1} {a} = {0} (11)
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Equation (9) is satisfied for the trivial solution, that is, aj=ap=0;
however this solution would indicate no motion of the structure and
therefore will not satisfy the initial conditions of the problem.
In order to find the nontrivial solution for this homogeneous
system of equations, the determinant of the coefficient matrix has to

be equal to zero, that is

(Ki+Ko)-mqw2 =K
1Ko )-my 2 | ., (12)
-Ko Kg-mow? |

The expansion of the determinant results in a quadratic equation in w2,

namely
mlmzw“ - [(K1+K2)m2 + m1K2]w2 + KiKo = 0 13)

After the roots of (13), wy and w (natural frequencies) are determined
and substituting back into equation (11) the relative amplitudes of
motion (normal modes) can be found.

C. Orthogonality Property of the Normal Modes. This property

constitutes the basis of one of the most attractive methods for solving
dynamic problems of multi-degree-of-freedom systems. For a system of

two-degree-of-freedom equations (11) may be written as

(K1+K2)a1 - Koap = m1w2a1 (14)
- 2
—Kzal + K2a2 = m2w a2
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The normal modes may then be considered as the static deflections re-
sulting from the forces on the right of (14) for any of the two modes.

For the following two systems of loading and corresponding displacement

System I:
Forces: mf aj; My o, w% apy My
Displacements: a2 a2
System II:
Forces: w% ajp My w% apy Mo
Displacements: a1 a1

The application of Betti's theorem yiers:
wimajjage + wim2621622 - wpmajgaly + waMpagpap] (15)
or
(wi-wé) (mjajjagp + mpagjagp) = 0 ‘ (16)

If the natural frequences are different (w; # wp), it follows from (16)
that

mjajjalz + mazjazp = 0 (17)
Equation (17) is the orthogonality relation between the normal modes of

a two-degree-of-freedom system. The modes are conveniently normalized

to satisfy the following relation:



myedy + maefy = 1

1
-

R |
myéyp * Moy =

where

POPI . ¢ '¢12 - a2

mjayy + maz) Mmyajy + majy (18)
4p1 = az] 429 = 322

ymjafp t moazy yijajp + mpagy

D. Numerical Example. To illustrate the steps of the procedure

for the determination of the natural frequencies and normal modes, con-
sider the two-degrees-of-freedom system shown in Figure 3, in which the

initial conditions are the following: xp1=0 , xg2=1.0 in , Xg1=0 ,

X =0
02 "z = zim/ﬂ.

———

X2
K2 = 10,0004,
m,= s %3

—

X,

K; = 20000 4

m,

rrrr rror

FIGURE 3 - Examp]e'of a Two Story Shear Building

Substituting numerical values in (3) and (4) gives

1 ¥p + 30,000 x; - 10,000 xp =

1
o

2 Xp - 10,000 xj + 10,000 xp =

{
o



or in matrix notation
1 0 21 30,000 -10,000{ [xg
. + = O
0 2] [x7 -10,000 10,000] [xo
assuming solution given by (7) results in
30,000-w% -10,000 aj 0
-10,000 10,000-2w2 ap 0
Then, the characteristic equation is

30,000-w? -10,000

~10,000 10,000-242

and in expanded form

1t
o

(w?)2 - 35,0000% + (100x106)

which. has the following roots

wp = 31,861.4

3,138.6

Then, the natural frequencies for this structure are
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wy 178.49 rad/sec

w 56.02 rad/sec

Consider the first equation of (10) and substituting the first natural

frequency, wy = 178.49 rad/sec résu]ts in
-1861.4 aj1 - 10,000 ap; = O

A second subindex was introduced in a; and ap to indicate that
the value aj has been used in this equation. Since in this case there
are two unknowns and only one independent equation it is possible to
solve for the relative value of ap; and ajj. This relative value is
known as the normal mode or modal shape corresponding to the first

frequency. For this example, the first normal mode is

a
221 . 0.18614

a1

It is customary to describe the normal modes by assigning a unit
value to one of the amplitudes; thus, for the first mode setting aqj

equal to unity

all = 1,00

I 7414
a21 =_1+-263
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Similarly, substituting the second natural frequency,
wp=56.02 rad/sec into (10), gives the second normal mode as

ajp = 1.00

2.6861

az2

The normal modes are conveniently arranged in the column of the modal

matrix as

The general solution to the equations of motion for free vibration in
terms of constant of integration A; , Ay , A3 and Aj takes the following
form:

x1(t)=aj1A; sin wit+agiAy cos wyttasiAg sin wpttajphy cos wyt

x2(t)=ap1A; sin wit+tagjAp cos wit+appAz sin wpttagohgq cos wpt
which upon numerical substitution yields

xl(t)=A1 sin wyt+A; cos w1t+A3 sin wyt+hy cos wpt

Xp(t)=-0.18614 A} sin w;t-0.18614 Ay cos wit+2.086 Az sin wyt
+2.686 Ay cos wpt
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Evaluation of the constants of integration is performed by using the

‘initial conditions which for this example are

Performing all the necessary algebra and solving for the constants of

integration, gives

A=0  Ap=-0.34817
A= A4= 0.34817

Then, the general solution may be expressed as

x1 = -0,34817 cos 178.5t + 0.34817 cos 56.02t

0.0648 cos 178.5t + 0.9353 cos 56.02t

X2

and finally the normalized vectors are calculated by using equation (18)

as

411 = — = 0.9670
VI{T)Z + 2(-0.18614)7

¢12 = 1 = 0.2545
YI(1)Z + 2(2.6861)2

b91 = -0.18614 = -0.18

JI(1)Z + 2(-0.8614)2

Similarly for
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¢22 = 0.6838 »

In matrix form, the normal modes can be represented as

0.9670 - 0.2545
9 =
-0.180 0.6838

On free vibration of a shear building the eigenproblem was
solved to determine the natural frequencies and normal modes of vibra-
tion. For a system of many degrees of freedom, the algebraic and
numerical work required for the solution of an eigenproblem became a
tedious task. For the purpose of solving an eigenproblem, the Jacobi
Méthod was selected among several numerical methods,

E. Subroutine Jacobi. This subroutine program-developed by

Professor Wilson is used throughout this thesis to solve the eigen-
problem. The description of the symbols utilized in this program are

listed as follows:

Variables Symbol in Thesis Description
A(L,I) K1 Stiffness matrix
B(I,I) M1 Mass matrix
X(1,I) [&] Modal matrix
EIGV(I) wi Eigenvalues
D(I) Working Vector
N : Order of matrices A and B
RTOL Converge Tolerance (Set to
10,712)
NSMAX Maximum number of sweeps
(Set to 15)
ISPR : ' . Index for printing during itera-

tion 1=Print;O=Do not Print
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And the input data is subjected to the following formats

Formats v Variables
2110 N , IFPR
8F10.4 A(I,3) (read by rows)

8F10.4 B(I,J) (read by rows)



IIT. FORCED ViBRATION OF SHEAR BUILDINGS

In the preceding chapter, it was shown that the free motion of
a dynamic system may be expressed in terms of the normal modes in free
vibration. The objective of this chapter is to show that the normal
modes may also be used to transform the system of coupled differential
equations into a set of uncoupled differential equations in which each
equation contains only one dependent variable. Thus, the modal super-
position method reduces the problem of finding the response of a muiti-
degree-of-freedom system to the determination of the response of a single
degree-of-freedom systems.

A. Modal Superposition Method

Considering the equation of motion for a two story building sub-

jected to forced vibration.

mXq + (Ky+K5)xq = Koxo = Fy(t)
171 1""2/71 272 1 (19)
m222 - K2X1 + K2X2 = Fz(t)

In seeking the transformation from a coupled system into an un-
coupled system of equations in which each equation contains only one un-
known, it is necessary to express the solution in terms of the normal
modes multiplied by some factors determining the contribution of each

mode. Hence, the solution of (19) is assumed to be of the form:

Xl(t) = allzl(t) + alziz(t)
'Xz(t)

(20)

a2121(t) + a2,(t)

15
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Substituting (éO)'into (19) gives

miajy2y + (KytKplagyzg - Kpapyzg + mpagpiy + (Ky#Kplagpzp - Kpaggzp =
Fy(t) (21)

mpap1Z] - Kpajjzy + Kpapyzy + mpappzy - Kpajpzp + Koappzp = Fa(t)

To determine the appropriate factors z;(t) and z,(t) which will uncouple
(21) it is advantageous to make use of the orthogonality relations to
separate the modes. This is accomplished by multiplying the first of
the equations (21) by aj; and the second by a,q. The addition of these
equations after all the necessary algebra is performed, equation (21)

yields:
(mjafitmpagy )7y + wi(miaditmpad;)zy = ag Fy(t) + appFp(t) (22)a

Similarly, multiplying the first of (21) by ajp and the second by app,

yields
(mjafptmpadn)iy + wi(mpaiytmady)zy = agpFy(t) + agpFa(t) (22)b

Therefore, equations (22)a.and (22)b correspond to a single degree-of-

freedom system which may be written as

Mlil + K].Z]. Pl(t)

Po(t)

(23)
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in which, M1=m1a%1+m2a§2 and M2=m1aig+m2a§2 are the modal masses;
K1=w%M1 and Kp=w3Mp, the modal spring constants and Pp(t)=ajjFy(t)+
ag1Fa(t) and Py(t)=ajpF (t)+apyFa(t) are the modé] forces. When the

modal shapes are normalized, equation (23) can be written as

Iy + w7y = Py(t)
n (24)
Ly + wiZz = Pz(t)
in which, Py and P are given by
Py = ¢11F (t) + ¢,.F (t)
1 1V® 21'2 (25)

n

Py = ¢12F1(t) + o22F,(t)
The solution of the uncoupled equation (23) or (24) can be found by the
application of Duhamel's integral as will be shown in a numerical example.

B. Numerical Example

Consider the structure of the numerical example of chapter one
shown in Figure 3 with the only difference that, this time the first and
the second story are subjected to constant loading applied suddenly at

t=0; as is shown in Figure 4.

— [ =2000 ¥

— F“:_ ]‘OOO o

\
N

>

FIGURE 4 -}Bui1ding Subjected to Constant Loading
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The values of natural frequencies, and the modes are known by
solving the building as free vibration. This was shown in a numerical

example in the preceding chapter. These values are:.

!
1]

w) = 178.5 rad/sec  ¢1;.= 0.9670 ¢, = -0.18

0.2545  dpp.

1

“2 0.6838

56.02 rad/sec ¢qp

To determine the appropriate functions Z1(t) and Z2(t), which will enable

to uncouple equation (21), it is necessary to use equation (23), by sub-
stituting into (25) the numerical values found in the preceding chapter,

gives

P - 0.967(1000) + (-0.18)(2,000) = 607
P> = 0.254(1000) + (0.6838)(2,000) = 1,621.6

Performing the numerical substitution in equation (23) yields,

Z, + (178.5)%7; = 607
7, + (56.02)°Z = 1,621.6

Since it was assumed that Fl(t) and F,(t) are constant loading applied

suddenly at time equal zero the solution of the above equations is given

by
Z.(t) = P1 (1l-cos wqt) = 607 (1-cos 178.5t)
1 ai_. 1 31,862.25
Zo(t) = Py (l-cos wypt) = 1,621.6 (1-cos 56.02t)

N
=N

w, 3,138,
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and the maximum displacement by

Zymay = (2)P1(t) = (2)__607 = 0.038
Imax oy 31,862,725

Zomay = (2)Po(t) = (2) 1,621.6 = 1,032
mex &y 3,138.28

A method which is widely accepted and which gives a good estima-
tion of the maximum response from the spectrum values is the square root
of the sum of the squares of the modal contributions. This calculation

is given by

Ximax = "C1121max?” ¥ @12Zopax)”

) (26)
Xomax = "(912Z1max)” t ($22Z9max)° '

which upon substitution gives,

v(0.9670x0.038)~ + (0.2545x1.032)< = 0,2652

leax

0.7057

Xomax = Y(-0.180x0.038)% + (0.6838x1.032)%

C. Response of a Shear-Building to Ground Motion

The response of a shear building to the base or foundation motion
is conveniently obtained in terms of relative displacements with respect
to the base motion.

For a two-story shear building shown in Figure 5a which has its
mathematical model shown in Figure 5b, the equations of motion are ob-

tained by applying Newton's second law to Figure 5b as follows,
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»,y

FIGURE 5(a) - Shear Building Subjected to Ground Motion

r A
i kl Kz,
e s | il
x .
—] l‘_s K, (x‘—xs)___ m % r ’."z
Kz (% "‘l)~

FIGURE 5(b) - Mathematical Model and its Free Body Diagram

myXy + Kl(xl-xs) - K2(xp-x1) = 0 (27)
mzsiz + K2(x2—xl) =0

where xg=xg(t) is the displacement imposed to the base of the structure.

Expressing the displacements in terms of relative displacements,

Uqs = Xq=X
1 1 %s (28)
Up = Xp=Xg

and derivading (28) twice with respect to time yields,

Xy = lg*¥g

= Uty

(29)

>
[aN]
I
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By substituting (28) and (29) into (27) gives,

myty + (Ky+Kplug - Kpup = -miXg

} . (30)
Moty = Koup + Koup = -oxg

For a base motion of shear building equations (29) may be written as,

2

Z; + wjZ; = -mjaj] + mpagy X (t)
1 111 mlafl + mzaﬁ >
(31)
Iy + w%ZZ = -mya1o + Moa Ys(t)
maiz * m2az
in a compact form gives,
Z]. + N%Zl = Fl X‘S(t) (
32)
2 _ .. -
where Ty and T, are called the participation factors which are repre-
sented by
Py = -magy +mpagy 4 Tp = -_majp + mapy (33)

mpajy * mpaz) mjajp * mpaz;
The relation between the modal displacement Zl » Ly and the relative dis-

placement uj , up is given in equation (20) as

up = az1ly * applp (34)

Up = apyZy + agyly
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The change of variable to make the second member of equation (32) equal

Xs(t), take the form of

Z:P g
; 1°1 (35)
L= T 9

substituting (35) into (32) gives

. (36)
ke (t) -

gy + “%92

Finally, solving for gl(t) and gz(t) the uncoupled equation (36) and sub-

stituting this solution into (34) and (35) gives

n

up(t) = Tya319)(t) + Tpajp95(t)

up(t)

(37)

Fjap191(t) + Tpappgp(t)

Whenever the maximum modal response gjnay and gonay are obtained from
spectral charts, the maximum values of uy,.. and Upmax CaN be obtained

by using (26) in the following form:

— Z
Uimax = /(Tlallglmai) + (FZaZIQ‘Qmax)Z

‘ (38)
U2max = /(F1a1291max)z * {T22229max)* '

D. Subroutine Modal
This modal is utilized to obtain the response of multiple degree

.of freedom system by using the superposition methoc. The theory and the
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manipulation was shown throughout this chapter, The symbols for this

subroutine are shown below.

Description

Variables Symbols in Thesis

ND N Number of degrees of freedom

GR g Excitation index: For support excita-
tion, g-acceleration of gravity. For
forced excitation, g=0.

EIGEN(I) m% Square of natural frequencies (eigen-

. values)

X(1,J) |o| Modal matrix (eigen-vectors)

DT Time step of integration

TMAX Maximum time of integration

NQ(L) Number of points defining the excita-
tion at coordinate L

M(1,J) Mass matrix

T(I1) oty Time at point i

P(1) P(t;) Force or acceleration at time t;

XIS(1) g4

Damping ratios

The input data are subjected to the following formats.

Format Variables

(110,F10.0) ND, GR

(8F10.4) M(1,J) (read by rows)

(8F10.4) EIGEN(I1),(I = 1, ND)

(8F10.4) X(I,J) (read by rows)

(2F10.4,1215) DT, TMAX, NQ(L) (L=1....NG), where NG=ND when forces
are at coordinates or NG=1 when-acceleration is at
support

(8F10.2) T(I), P(I) (I=1,NQ(L)) (one card per forcing func-

tion)

(8F10.3) 2SI(I), (I=1,ND)




IV. DAMPED MOTION OF SHEAR BUILDING

In the previous chapter the analysis of a shear building was
based upon undamped system of motion; the techniques to determine the
response of the shear building were‘discussed, giving special emphasis
on the tranformation from coupled systems to uncoupled systems, by means
of a transformation of coordinates which incorporate the property known
as orthogonality of the modal shapes.

In the consideration of damping forces in the dynamic analysis
of shear building presented in this chapter, the system of equations of
motion became more complicated, not only because the system will con-
tain one more forcing factor, but the procedure to uncouple the system
will also become difficult. Cne way to avoid this difficulty is by intro-
ducing some restrictions or conditions on the functional expression for
the coefficients of damping.

For practical purposes, damping.is neglected for the calculation
of natural frequencies and modal shapes of the system. Consequently for
the solution of the Eigenvalue problem the system is reduced to an un-

damped and free vibration system.
F3(¢) : %y

r{ K
Fz (&) | Cy

K
Fi(t) | [Cz ‘

1K
. t
mﬁ‘ﬂL—{ Cl becerd

FIGURE 6(a) - Shear Building Subjected to Damped Motion

24



25

2 X Kz Ke

s g
s m, rpes my o ma Fs
Pd
; ) Ca G

FIGURE 6(b) - Mathematical Model of Shear Building

=

Equation of Motion for Damped System

For a viscously damped three-story shear building shown in Figure
6(a) the equation of motion can be obtained by applying Newton's second

law to the free body diagram of the mathematical model shown in Figure

6(b); these equations are,

mXy + Ry + Kyxp = cp(%p-%1) - Kplxp-xq) = Fy(t)
mziz + CZ(QZ'il) + KZ(XZ‘Xl) - C3(i3’i2) - K3(X3-X2) = Fz(t) (39)

m3§3 + C3(i3-22) + K3(X3-X2) = F3(t)
in matrix form
[MI{X} + [cI{r} + [KI{x} = {F(t)} (40)

where the only new factor introduced is the damping matrix [c] which is

~ given by
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C1#C; -C2 0
[C] = -C2 C2+C3 -C3
0 -C3 C3

Since, equation (40) is obviously a coupled system of equations, then it
is convenient to uncouple by introducing the following transformation of

coordinates:
{x} = [¢1{Z} (41)

where [¢] is the modal matrix obtained by solving the system as undamped

free vibration, substituting (41) into (40) gives,
[nife{Z} [clfel{2} [KILe{Z} {F(t)} (42)
Premultiplying (42) by the transpose of the nth modal vector {Q}l yields
{o}[IMILeI(Z} + (o} LCICe1(L} + el KIEOI(Z) = {o}L{F(t)}  (43)

‘It 1s noticed that the orthogonality property of the modal shapes, is

given by

e}l tMI{e)y = 0

(44)
{e}[KI{e} =0 , m#n

Causing all components except the nth mode in the first two terms of

(43) to vanish. A similar reduction is assumed to apply to the damping
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term in (43) that is
{e}f[C1{e} =0 n#m | (45)

then the coefficient of the damping term in (43) will reduce to

{Q}I[C]{Q}n; therefore (43) gives

Mn 2n + Cy in + Ky Zy = Fy(t)
or (46)

Z,+ Z, Wy, Z, + wrz‘ Z, FMn(t)
n

in which

My = {o}iIMI{e},

Ky = (0}[KI{0} = wlM -
47

Cn = {o}}[CI{e}, = 28w M,

Fo(t) = {e} {F(t)}
The normalization that was presented previously

e} [MI{e}, = 1 (48)

will give M=1 , so that (46) will reduce to
Iy *+ 2y 1+ w? 7y = Fy(t) | (49)

which is a set of uncoupled differential equations.
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B. Conditions to Uncoupled Equations in Damped Systems

The derivation of equation (49) was based upon the assumption
that damping can also be uncoupled by using the normal coordinate trans-
formation utilized to uncouple the inertial and elastic forces.

It is crucial, at this point to explain the condition under
which this uncoup]iﬁg will occur, that is, the form of the damping matrix
[C] to which (45) applies.

Rayleigh showed that in damping matrix of the form
[C] = a [M] + a;[K] (50)

in which ay and aj are proportionality factors, the orthogonality condi-
tion will be satisfied, that is,’premultiplying both sides of (50) by
the transpose of nth mode {¢}; and postmultiplying by the modal matrix
[&] gives equation (51) as follows:

(e3][CILeT = agle}lIMILe] + ajle}][KIle] (51)
with the orthogonality condition (44) equation (51) reduces to

folCIre] = agle} IMILe] + ajle})IKILe]

or by (47) equation (51) takes the following form

T - 2
{6},[CI[2] = a, M, + a7 My, w
n o'n 1 %n ®n (52)

n

{e}lrcirel = (ag + ay w3) M,
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which shows thét,'when the damping matrix [C] is of the form (50), the
damping is coupled with equation (41). It can‘also be shown that [M]
and [K] satisfy the orthogonality condition. In general, it takes the

form

[C] = (M1 % ai ((M171[K1)T (53)
i
in which as many terms méy be included as desired.
Rayleigh damping equation (50) obviously is contained in
equation (53); however, by including additional terms in this equation |
it is possible to obtain a greater degree of control over the modal
damping ratios resulting from damping matrix. With this type of damping
matrix it is possible to compute the damping influence coefficients
necessary to provide a decouple system having any desired damping ratios
in any specified number of modes. For each mode n, the generalized

damping is given by equation (54) of the fo]]owing form
Cy = {e}[CIe}, = 22, w, My (54)

But if [C] as given by equation (53) is substituted in the expression

for C,, the series of generalized damping is

C, = (e}MI; = a3 (IMI-1CKIT{a},) (55)

Now, by using the equation of motion as free vibration [K1{a}=w?[M1{a}

after nonnaTized K{Q}n=w2M{®}n and performing the necessary algebra it
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is possible to show that the damping coefficient associated with any
mode n may be written as

Cp =2 ay wdl My =28, w My (56)

1

from which the damping ratio can be given as

£ = 1 taj w2 (57)
an
Equation (57) may be used to determine the constants aj for any desired
values of modal damping ratios corresponding to any specified numbers of
modes. For instance, to evaluate the first four damping ratios 15 Eo»

g3, and g, in this case (57) gives the following equation

€] by o of of] [ag]

52 wo wS wg w% a2

53 =1/2 w3 w% wg w% ag . (58)
£4J wg wi wi wZ a4J

L ' L 4 L

In general (58) may be expressed symbolically and in condensed form as

follows

{g} = 1/2 [Q1"}a} (59)

from which it is possible to get the constant {a} as

{a} = 2[Q1"1{¢&} (60)
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Finally, the damping matrix 15 obtained after the substitution of
equation (60) into (53).

It is interesting to observe from equation (57) that in the
special case when the damping matrix is proportional to the mass
{Ct=ag [M] when i=0, the damping ratios are inversely proportional to
the natural frequencies; thus the higher modes of the structure will be
given very little damping.

There is yet a second method for evaluating the damping matrix
corresponding to any set of specified modal damping ratio. This method

is presented starting with the following relationship

'ZglwlMl 0 0 1
0 28owoMo » 0
[A] = [e]'[CICe] = (61)

Qoocc.nococtc..c.o...nnnlJ

It is evident that the damping matrix [C] may be evaluated by pre- and
post-multiplying (61) by the inverse of the modal matrix and its inverse

transpose, such that
[C1 = [e1"T[AI[2]"} (62)

Therefore, for any specified set of modal damping ratios {&}, matrix [Al
can be evaluated from (61) and damping matrix [C] from (62). However,
in practice, the inversion of modal matrix is a tedious task. But
taking advantage of orthogonality properties of the mode shapes, the

following expression can be deduced.




— e = A

32

2enup (0} (03]} M (63)
1M, |

[C] = [M] (
n

il =

The damping matrix [C1 obtained from (63) will satisfy the property of
orthogonality and therefore, the damping term in equation (40) will be
uncoupled with the same transformation (41) which serves to uncouple the

inertial and elastic forces.

C. Subroutine Damp

This subroutine developed by Professor Paz calculates the system
damping [C] using (63) from specified modal damping ratios. The main
program gives the values of [¢] and [M] to the subroutine, but, the .é

damping ratio should be given, with the following input format. E

Variable _Symbol1 in Text Format Description
x(I) £ 8F10.2 Damping ratio for
(I=1,NL) . - modes 1 to NL

The past experience indicates that values for the modal damping

ratios in structures are generally in the range of 2% to 10%, probably

no more than 20%. Therefore for all practical purposes in a design of

a dynamic structure the engineer takes 10% as a typical figure.

i

D. Seismic Response of an Elastic Shear Building

The computer program that is presented in this section, calcu-
lates the dynamic response of a shear building, within-the linear-
elastic range and subjected to excitation at its foundation. The modal
superpositidn method of analysis is utilized to uncouple the system of

differential equations. Subroutine Jacobi, developed by Professor Wilson,
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is called to solve the eigenproblem resulting in eigenvalues (w%) and
the eigenvectors which form the modal matrix [¢]. Subroutine Modal,
which is called next, solves the resulting modal equations using
Duhamel's integral described by Professor Paz in Chapter 4 of Structural
Dynamics. Finally at each step, the solution of the modal equations
are combined in equétion (41) to obtain the response in terms of the
original coordinates of the shear building.

The variables and input formats used in this program are shown

in tabular form below.

Variable Symbol in Thesis A Description :
DT At Time increment I%
E- E Modules of elasticity %
GR g Accé]eration of gravity §
TMAX Maximum time response .
NEQ Number of points of the excitation
function

ND Number of degrees of freedom
IFPR Index for intermediate printing in

: Jacobi; 1=Print, O=do not print
SI : I Moment of inertia of story i
SL L Height of story i
SM(I,1) M5 Mass at floor level i
TC(I) t; Time at point i
P(I) VS Support acceleration at time tj ‘ a

These variables are subjected to the following input formats. 1
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Formats Variables
(4F10.2, 255) DT, E, GR, TMAX, NEQ, ND
(3F10.2) SI, SL, SM(I,I) (one card for each story)

(8F10.2) TC(1), P(1), TC(2), P(2)-*-TC(NEQ), P(NEQ)




1 -
, E. Computer Program #1 35
{ LJCR CPACES=B ¢ TTME S LINES=40D
| o
C SEISPIC RESFOMNSE CLAGSTIC SHEAR dUILDING
-
1 IMPLIC: RECLL =% (A-=4C~2)
2 DIMENSZCN S CIC a33) M (20430) ¢SC(20a3C)eF (2C)aX(30430) o
1 1 DUACZD) ¢ DT ) gUVIZC) M2 C20) o TCL20) «F(30)aSCI0)$EICENCZIN)
‘ C .
c RZAD INPUT DATA AMT INITIALZIZE
o)
13 RFAD(“;IDC) T-CTh e TaT g FReTMLYJREQeND S IFPR
- 4 WRITE(CQ1CO)TrIT A« Tot ol ‘*qi“L)n‘.ruqv.L}c.FPQ
195 100 FORVAT(2T10.242%10¢09515.24315)
6 NX=TVAY/DT+2
7 DO 1 I=14MX
& 1 F(I1)=C.¢
3 DC T=1.+M0C
{ic D0 2 Jz14N0
i1 SM(IT4J)=C.EC
12 SC(Tad)=C.n"
13 XCIeJ)=C0o¥l
il4 2 SK(lediz=g.C
{18 ND1IzND 4+
16 TU=THRTT2+CT
117 £1=3./7U
18 A2=6./7U
18 ' A3=TU/2.
20 A4=A2/TU
21 O 7 Iz=1e'D
22 READ(S¢4113) STaSLeSM(I T
23 WRITE (‘-1.513)5393‘_15"'(:91
24 110 FORMAT{ZF1C0.247F1040)
25 S(I)= lh.O-r'SI/SL?*S
2€ SC(1eI)=8"(1eI
27 ub¢Id=¢.0
28 7 UVCIX=0.0
' C
C ASSEMRLE STIFFMNESS M2ATRIX
C
S(ND+1)=C.
L2 13 I=l¢\9
IF(IE241)Y GO TO 15
QK(AQI'l)-'((T)
SK(I=141I)==-5(7)
1¢ SK(.;.)-;(')+5(I*1)
C
o DETTRYINE NMATYUSAL FPEQUENCICS ANMD MIDE SHARES
¢
CALL JAGCOPI(SKeSCaXyEIGEN«TCaND4IFPR)
C
c - PETERMIMNE DAMPING MATR I X
C
catt D’VP(NLsXqQNoSCc'InCN)
C
o INTERPALATTON SETWIEN DATA POINTS
C .

READ(S 4120 (TC(L)$FLL)Y4L=14MNEQ)
WRITF (G 120) CTCCL) 4P (L) oL =14 0NE0)
120 FORMAT(4F1C42)
DO 4 I=14FC
4 PUIITFUT) » R




42
43
44
l4s
46
47
45
49
50
51
52
53
54
55
56

57
58

69
70
71
72
73
74
75
76
77
78
79
e
51

Q9

o

53

s Xs) 2 Xe Xa)

oNeNe]

[ e/

NT=TC(“EQ)Y /DT
IF (5TeGToTMAX/DTY NT=TMAX/DT
NT1=NT+1
FCL)=P (1)
ant=0.9
Ti=1
D2 10 I=24+MT1
Al=i-1
T=AI+PT
IF(TGTLTC(NERY)Y T T 16
IF(TLZ.TC(II+1Y)Y G2 T2 S
CANNE=-TC (I +1)T-07
I1=171+1

S ANNZANNHDT
FCIYoPULITIY+(PUTI+1)=PITI)*ANN/CTC(ITI+1)-TC(II))
WRITE(Fa110) TeF D)

10 CONTInUE

16 CONTINUE

CALCULATE INITIAL ACCEZLEIRATION

NT=T¥AX/CT
L& 22 I=1..C
X{T¢NT1)==5(1)*S¥(TaT)
L3 22 J=1«40

22 X{I4Jd=SN({IeJ)
DC 301 LI=14NE

301 WRITE(EZ421°7) (X(LT4gLJralJ=14ND1)
CALL SILVE(NTqyX)
WRITE(S4217) (Y(LIANC1YaLI=14hD)
DC 23 I=1¢n0

23 UA(I)I=X(Ie*D

36

1)
251 FORNMET (1r1efYatTIME g SN e tDISHFL P4 SXNg*VELTCat411Xgt2CCe?/)

WRITE(64221)
STEP 3Y STEZP L2CP TC CALCULATE RESFONSE

DO 30 L=1.47
AL = L
T=DT»2L
DI 20 I=1«4D .
IF(I.C.1) ¢ TC 2¢C
SK{IZIeI=-1) = =5 (1)
SK((I=-1)41)=~S (1)

20 SK(T41)=8 (I1)+S (I+1)
DO 25 1=1450
CO 28 J=1,4C

25 XCIeld)oSKCT o) +AG+SN¥(T4J)+A1+SC(T4J)
B2 3% I=z1.~NC

XCTeMDI) = (S lL+ 1) +{F(L+2)=-F(L+ D))« (THETA=140)=F(L))*+(-SM(I4]1))

02 3C Jz=1,."0
30 XCIGADI) =X LTI 4NDI)+(SMUT o) *A2+0C(T4d) ¢ 2e0)+UVIL)
1 +(SM(Iad) *Z.0+A3»CLT9d) ) x1A (L)
38 CONTINUT
LT 702 LTIz14t0
302 WRITEC(LS210) (x(LT4LU)4gLJ=14M01)
CALL SILVT(NDex)
WRITEC(As21CY (x(LIaND1)aLI=140D)
BC 3¢ I=14nl
DUACT) = 6wy (TgN21) =20+ UVCT) =7 0o UL(T) -
DULCT) =DULCT)/THET

.
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I9
00
01
02
%03

m7

106, -

109
10

.
4+

12
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
12¢%
129
13¢
131

132
133
134

1135

(@]

o

oMo

(€]
M

€0
2590
S0

[&]]

o

202

byl
Vi

DUV DT'UA(L)* T«DLECIN/7a0

ustiy= (’)+“T’UV(T)+PT*“T*U5(T)/ fC+NTAPT+DUYA(IY /6.0

uvc') bV(')*D'V

CONTINUS

DD 50 I=1e'C
YOIaADIIZF(L+T) % (=3M(T41))
DO 45 Jz1a.%02
¥CIa%D1YTX{T4A31)=SC(T9J) #UV(UI -SK(Tad2+UD ()
XCTaU)= oM Tad)

CONTINUE

D0 30T LIz14NC

WRITE(£4210) (X(LTaLU)eLJ=14NT1)

CALL SCLVT (ADaX)

WRITE(E4216) (A(LIaNC1) 4LIZ14MD)

DO 6C I=1e%D

UACTII=X(I4%01)

WRITE(£425%6) TaUNCIdaUV(T) gUL (1)
FORMAT(FIDL.343F1544)

CONTINUE

SToP

END

SUPRCUTINE SCLVT (Net)
IMPLICIT REEL = & (2-Hg¢0=7)
DIMENSICN A(20430)
M=1

EPST1.5E-10

NPLUSNMZV+K

NET=1.G

DC G X=14"

DIT=CZT+4 (X «K)

IF(DASS(A( X eK) )Y LGTLEFPS)Y GO TO 5
WRITZ(#42072 :

GC Trcce

KPlzK+1

CO & J=KF1la. N2LUZM
A(KqUJITE(KadI /2 (Ke¥)

AlKqeK)I=1.
DD 9 IT:=-1la"
IF (1efleVNEA{T4K)EGe0ad GT TO S
0 & J=KPla«NPLUSM
A(TeU) AL T eJ)~A(Ie¥)*i({Ked)
BT 4K)=CL,D0C
TNTINLE
FCAMAT(ATHISMALL PIVDT =MATRIX MAY 8E SIMGULER )
RETURN
END
SURICUTTINT JACCRT (A«BE4XeEIGVY 4Dabie IFPR)
IMPLTICTIT QLS (L="e0=7)
DINMERSION A(32930) e (20430) ¢ A (20430)9FIGVEIT)4L(I0)

INTYIALTZ2E EIGENVALUD AND EICENVECTCR MATRPICES
NSMAY = 1%

RTZL = 14012

ICuT=4 '

00 1C T=10

IFCACTI 1) CTela o2NDa B(I41)eGT0)GC T2 4
uilTF(ICUTscbcﬁ)

sT0D

37



142
143
144
145
146
147
4k

142
150
151
152

153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
l6 &
169
170
171

172

173
174
175
176
|77
172

179
180
131
162
143
184
125
126
187
138
159
190

OO0

OO0

g Ne]

20
Y

40

5C

&0

70

S0
100

110

DCIN=L(Ial)/BCTaT)
FIGVCINI=0(CD)

DO 30 I-ls™

DO 20 J=1.W
X(Isd)-‘-(".
X(I’I):lt
IF(N.EG.1) RETURY

INITIALTIZE SWIFP CJURTER &AND EEZCGIM ITERATICN

NSWEE?=(

NR=N-1

NSWETZP=NSWFEIF+1 ' .

IFCIFPF ELLI)VURITECIZUT$2000) hEWEESR

CHECK IF PRISTNT TFF-CIAGONAL TLEMENT IS LERGE

EPS=(ellaxNSHWERF) =2

DC 216 J=1.KR

Jd=dJd+1

L2 2103 s=Jdd+™
EPTOLAZ(ACUsr I *ACJKI Y/ (A(JgJI P A (KeK) )
EPTOLZ=(C (UK )EF(Jek))/(PLUgd)I*E(KaK]))
IFCCErTOLLAW LT IPS) e AND @ (EPTOLECLTSEPS)IIGE TH21E

IF ZERGING TS REGUTRED.CALCULATE THE RCTATICN MAT

AKKZA(R¢K) =S (JaK)~T(KaK) A (JgK)

AJUZACUad) *5(UsKY=S(Jed)=A0Jax]
ABRZA(Usd) *B(KeK)=L{KeK)*EBEC(JgJ)
CAHECK= (22 v 2R+ 4~ AKK A JJ) /L,
IF(CHECK IR RO ED
WRITE(CIZUT«2020)

sTr>

SQCH=LCSGRT(CHECK)
D1=LE/2.+S0CH

L2z=Ag/2.-8C2CH

DEN=D1
IF(DA3S(DZ)«CT.0A2S(R1))IDEN=D 2
IFCDEN)IEGeTlon 0

CA=0.

CG=-A(UsKI/L(K4¥)

CG=-Afuar) /4(KaK)

GC T0 =¢

CA=AKK/DE™

CG==AJJ/LEI"

GENERALTIZED RCTATITIN T2 ZFRC THE PRESENT CFF~CTAGCNAL ELENMENT

IF(N=2)1C041%0e100
JF1=Jd+1

JMl=zu-1

KP1=K+1

KMl =K-1

IF(UM1I=1) 120+11Ce11C
RN 120 T=14uV1
Ad=4(7 «)
BJ=B(144J)
A=A (7 o)
BK=B (I ok)
ACIeJ)ZLJ+C0wAK

R

o

38



191
192
193
134
195
156
157
13&
143
20¢C
201
262
203

1 204
j 205

2056
2C7
208
209
210
211
212

213

214
215
216
217
218
21s
220
221

222
223
224
225
224
227

228
225
230
231
232
233
234
235

236
237
23
233
240

ol e Ne)

oMo Ne]

OO0

o

120
136
140

1510
leC
173

200
210

210

240

39

BlTWJ)TSJ+"reFi
ACT %) =AK+CArAY"
B (Il yK)ZRK+CA*3Y
IF (KP1-%1)1604140e15C
Co 180 I=kPlM
AJ=2(Jel)
DU—EJ(\JC;)
ALz2(K¢T)
BX=B(KaeT)
ACUgT)=AU+Ch*AK
BlJeI)TEU+C+FW
A(K g T)ZAK+CL*AY
B(KeI)ZZK+CAsE L
IF(JP1-KM1)175«17041°C
DO 150 I=J™1leKkM1
AJ=L(Jy D)
Pd 2(Jsel)

A(T’y)
s<=5(- “)
ACJg IV AJU+CG-AK
BCJe I} =BU+CG*EX
A(I 4¥)TEK+CA-AY.
B(I¢K)TIK+CA+TY
AKZA (K oK) i .,
BK=B(K<K)
ACKeKIZLK+2 ok C2+ (g KI+CL+CAxAC)gd)
BUKgK)ZOK+2 o xCLxS{JaK)+CA«TA*S(Jad)
ACJUsU) ZA(Uel)+20%CC+alJeK)I+CECB»AK
BlUgUDIZF (U u)+2 o *CGE+E2(UgK)+CE+CB~EX
ACJeKY=D
B{JyK)=CoW

o

—4

UPDATY THT EIGEMYECTOR MATRIX AFTER EECH RCTAT

DS 200 T=1 4
XJ=X (T J)
XK=X (1 eK)
XCIqJ)=XJd+0G6+¥K
XCIg¥I=¥¥+Lixy
CONTINUE

UPDATE ThHE EIGTANVLLUIS AFTER EACH SWEER

-

AR A

IF (A(:Q; -GT..’O o‘.‘f‘JDc E(I’I)-GT.C.) G T'ﬁ 2?0
WPTTECITUT2023) '
SToP
TIGVIdISAC(T T ) /B (
IFCIFPY.ECCIGT T7
HRITEC(CICUT 42079
WRITF(ITUTZ2010) (STGV(T)alz=14M)

Do 220 1I=
.

Ty 4t

fQ*—‘
(o~

0

CHZCK =op COMVIPGENCE

DR 260 Tzt
TOL=RTCLD(T)
DIFZDARS(EIGVCIN=N(T))
IF(DIF.GTTCLISC TC 2%
COMTINUS

f

[
(%]

FHE K ALL (FF-DTAGYNAL FLEMENTS  T06 SEF IF AMNCTHER SLEE®



141
o2
043
64
45
46
7
0% 8
45

50
51
405 2
53
254
¢055
296
857

155
0
61
262
%3
264
Jo65
26

67
268

269
270
271
272
273
274
215
276
277
273
272
260
a1
282
283
284
285
286
287
205
289
250

3

4158

OO0 M

OO o0

27¢

20C0
201¢C
2020

2L30

1C

20

30

REGUIKED

EPS=KRTCL*.2
DO 280 U=14N\P
Ju=d+]
oo 284
EPSAZ=(A
EPSR=(2(JeK) = (Jed)) /(T

KEduel

~ oo

G0 T 2%
CONVTINLE

FILL TUT RBOTTLCNM TRIANGLE OF RESULTANT
AND SCELLE FISENVECTCRS

DT 260 Iz=1ehk

D2 260 J=1aN

ACJdeI) =i )

PlUel)I=R(T J)

C2 27n J=1.\

EB=0SGRTID(Jed) )

DG 270 K=1 N

X{Kqu)zX{KeJ)/BD

UPDATE MATRIX AND STALRT NFE

WRITE(£.2C010)

RETURN

DS 2%0 I=14%

DCI)=EIGVLD)

TF(NSHEEP (LT JMSMAXYGO TN 40

GC TC 2855

FCPYMAT(/427HTSHWEEP NUMBIR IN =JACTRI* =

FORMAT (IR T 4B6E25.12)

FORMAT (25=0++r=x SIROR  SOLUYTICN STCP
0= MATRICIS NCT PLSITVE

FOAMAT(26-2CURRINT TIGONVALUES IN

£ND

suaeou*:wz DAME (ML aYXeS™9SCeE IGEN)

IMPLICIT RTLLAS(A=m,yT=7)

D,~'~s:f3 X(20e20) aT(3C430) 4S4(30430

READ (541310) (XIS(LYeL=14NL)

WRITECZ24110) TS(LY gLz gNL)

DC 15 I=14°L ' :

EIGENMCTIZPSLRT(EIGENCI))

DC 10 J=le\L

SC(Ied) =5.C

DD 20 IIz1e%L

DA = 2.+XTSCIIYFIGENCIT)

prac 1= ‘L

o
Q
~
Lon ]
[
it
—
»

r.

SC(IQJ):SC(l1d)+y(TQII)*X(J9.:)*DA
pe 2o =1 %L

O 30 J=letL

TCI4J)20.C

(2]

D0 30 < = 1o "L

TOIedY = TUTed)+TMUT4K)«SC(KaJ)
O 40 I=T1a4'L

DC 40 J=1 N

SClleud=zC.n

(JaX) 3L (JeK D))/ (UaJ)* E(KaKI)
(Jed) #C (K 4K))
IFCUEP Al TelF3) e i "DalEPSELLTERPSIICT

FW SKEEPGIF

40

-
(@]
n)
[R]
o

MATRICES

ALLCWAED

(CXCLIaLd)elUml M) ol I=1en)

¢14)

/

DEFINITE)
xJACTEI+ARE /)

)9SC(20¢20)gEIGENCIE) o XIS(2E0)



|

| 291 DN 40 w=1leML

t po2 60 SCCIsd) = SCCIaJI+TUT
293 DO 56 I=14ML

{294 S0 WRITEC(EG125) (S0(Tqd)adoloN

jass 110 FCPMATUAFIN.Z

{ 296 120 FORMAT (6114 44)

| 257 RETURY

f 252 TND

1 SENTRY

; 1e4C 0.C1 3(00C0CCa 38€.

¢ 497420 160.00 126400

212460 12C.0C £6.00

IN «JACCBI« = 1
I

FEP NUMSER
WRRENT fIcCEhVALUZS I

¢ 01398332812350 0.10%253274714D 04

03

VEEP NUMSEZR IN +JACOHRIx = 2
URRENT ESIFENVALUTS IN +UACCEI*ARE,
0135855521 2330 02 0.10£82822747140 0
543460-01 -0.5565202736620-C
Go
0.060060 00 d.00500 €0
g6.000C0 Q¢ C.00CCD €O
CeGC Be2F 1060 028

]
i
jo 643075': : Z;
j 0.060 Cs
/
|
i

1K) #SMUK 9 J)

0.71323C024006°-C1

0.5

41




¢
|
|

|
I

{t-010
14010
1a02C
165620
64630
.830
1‘0.04[&
14040
0058
#e050
5.060
De060
0,070
1.67¢0
p.gga
(.0RC
180090
1838
ﬁ.loo
0160
h.lza
'}00110
0a12¢
04225
04138
‘('00133
0e160
0e14C
04150
0,153
0168
‘0.1‘,8
10.175
0.17C
0e1%0
0s1%C
0,155
04151
0,200
0,200

|

‘

N TN

TIME

DISFL.

-0.0C54
~. 0004
-.:.CZ?IS
-0 00217
-0.0472
~Qe00=5
‘500:3:':
-6.C0266 "
“J-lz‘?l
-0.1351

~10772
147827
-101“45
"1 .‘.‘"5&
~1.2LED

-1.2231

~1.0762
~1.0%45
~212%F
-2+16¢€0
~3.1353
~2.267%1
"“QCTF.‘"
-4.321%%
445329
~5.373%
-5 ‘6:"04
~6e3%ET
-£ <3514
-7.371°%
625782
-5 .277%
-7.3372
-‘:?.Oqﬂc
~7 6571
_9.7&65
~7.2334
~10.3407
-¥,0212
-10.7317
. —8«0561
=10e%425
-9 QGSQQ
~10.7513
"'7.Q6[4’T

=10,7737

~76432¢
~7e363032
-% . 23656
“:01?‘1‘5
-6 4754
~£4,2634
~S 7644
~T.122%

ACC.

=107 2574
=10RGLTF
-103.7CC7
-102 .30¢<>

=37 .%81%

-107.c307

-90.,333%

-10€.€702

-81.307¢

-1C4.411C

-71.140°

-160.5104

-60.3210

~C4.EREL

=4S .,24%1

~£6.8207
~38.2644
-7€.31¢02
~27.62%4
-63.2574
-17 .304¢
~47.26417
-7.5510
-3C.58F 2
1.0654
~11.7523
©.653%
7.9227
17.571¢
27.707%
26.1365
4€ 6507
34.4503
64 .632%
42.366%
80,4218
51.66%2
91.764°¢
60.4352
104.3233

42



N

Me9oeg e o

10
il1
12
13
14
15

18
19
20

21
22
23
' 24
25
26

it it M

34
39
36
37

16.

OO S

OO0

o

OO o

[eNeNe!

F. Computer Program #2

D
-1y

i0¢

WPBLTSZS G TIME =54 LINT S400
SEISMIC REZPCONSE ZLASTIC SHIAR SUILDING

IMPLICIT REAL-7(A--qC=7)
DIMENSICN SKUAl 4 Lr)sc‘(“01“0)QSC(bfyﬁC)sk(GCqﬂG)y
1 CULCA0)Y qUTCG0) UV IE0) qURLLAL0) ¢S(GC YT IGEN(40)

READ TMFUT DATA AND INTTIALIZE

RZAD (541C3) T eGReaMNDeFPR
WRITE (Ae100) 4624 D9IFPR
FORMLAT (2F1C. 092#5)

DC 2 TzieMN0

X{Ii4dd=0C

SK(Ied)z0.0

NO1=ND 1

DG 7 I=1.40

READ(S«11C)Y STeSLeaSM(T41)
WRITE(Ee110)SIaSLeSM(IGT)
FCRMAT(Z2F1G.24F1lC.0)
S(IN=1Z0+E+SI/SL+»3
SCCIald)=SY(IeI}

Ud(Id=CaW0

“UVIII=0.0

ASSEMBLE STIFFNESS MATRIX
SI(ND+1)=0.C

DC 19 1—11 Vu

IF(l.f01) G T2 19
SKCIeI1-1)=-5(I)
SKCI-141)=-5S(1)
SK(IeI)=SCI}+5(1+1)

DETERMINE MATURAL FREGUENCIES AND MLTE SHAPES
CALL JACTEI (SKeSCe¥¢Z IGENSSe Mo IFPR)

RESPONSE USIMG MODAL SUPERPCSITION
CALL MOCDAL(MDZTIGTNeXaSCyBRySM)

SToP
END

SHALVE TIGEHNFROSLEM USIMG JACCRT METHOD

SUBRCUTIMNT JECIE] (AsHaXeFIGVDeNgIFPR)
IMPLICIT WEAL*2Z(A-t40=-27)

DIMENSION A(40443)Ya5 (40 40)1‘(“0 40).C GV(40)-C(40)

INITIALIZE CSTCEMYLELUT AND FIC?NVECTCR MATRICES

HSMLAY = 15
RTCL = 1.D-12
i0UT=v

DO 10 T=14N

43



38
39
40
41
42
43
44
45
46
47

ag
49
50

51

52
53

54

55
56
57
58

59
60
61
62
63
64
65
66
67
68

(<}
7

.70
71
72
73
T4
75
76
77

78
15
e
51
a2
83
54
8

-

(aNeNel

OO0

OO0

O o0

20
30

4cC

[$4]
o

70

20

a
(=)
o

110

44

IFCACT@T) T o0 ohMDe R(ET41I)CTW0.3G0O TC &
WRITE(IOUT2020) :

STNpP

DCIY=L(T4)/5C0Ts 2

FIGVINITN()

DN 30 T=1a%

0% 20 U=1er

X(I4J)=3.

X(I?I):lo

IF(N.FCes1) RETURY

INITISLIZT SWIEP CJUNTER AND EEGIM ITERATICH

NSWEE® =0

\R~~-1
NSWETE=NSWILF +1
IF(’FPP EQ1IYRITECICUT+2000) NSLEER

CHECK IF PRISEIMT CFF-DIAGTNAL ECLEMENT IS L2ARGE

(‘\

EPS= (.01 +*x\SWIEP )4 »2

DO 210 J=14MK

Jd=u+l

Do 210 kz=Jddel

EPFTCLAZ (A (Uek ) *O(Ja K‘)/(ﬁ(dqd)*"(KgK))
EPTOLI(RCUeKI 2 {JeK))/(BCJadl*Z (K eK))
IFCCEDTOLA WL TEPS) W ANDWCEPTOLELLTLEPS)IGE TCO 210

IF ZEROING IS REQUIREDGCALCULATE THEZ RCTATICN MATRIX TLEMENT (CL24C6

AKKSA(K¢K)*E(JeK)I=E(KeK)IXA{Jg K)
AJUZACUJ) *EC0JaKI-E0Jad) *x2 (JaK)
AECA(Ja Ul * 2 (K W) =A(KaKI*BE(Jgd)
CHECKZ(LE+ 88 +4 .+ AXKK*AUJ) /4,
IF(CRECK IO N 4Ll a2
WRITE(ICUTs2C20)
STNF
SGCH=CSCRTA(LHELKY

TAR/2 . +SNCH
D2=LB/2.-52CH
DEN=D2
IF(CARS(D2) G .Fhf<(51))Df\:
IFCOENYIS 070420
CA=C,
CG=~A(UaK)/A(KekK)
CO==A(JeK)/E(KgK)
GC TC =¢
CAzZ LKL /DEL
CG==-AJU/TT ™

GEN

m

RALIZED RCTATTTN TC ZERN THE PRESENT OFF-CIAGCOMAL ELEMENT

IS (N=2)100+19041100
Jrl=ded

JMI1=zy-1

KP1=K+1

KM1=K-1
ITEq(UM1=-1)130, 1]09110
DM 120 I=1,4uM]
AU=AC(]4J)

N v s w




W7
1
59
{0
71
52
53
94
95
96
137

59
0o
01
402
103
104
105
106
107
105
105

111
12
113
114
115
116
117
118
11¢
126

121
122
123
124
125
126

127
128
125
130
131
132
133
134

135
136
137
13%

110

2 NeNe)

oNeaRel

OO

120

130
140

158
160
176

18¢

13¢C

200
21¢C

20

AK=A(TI 4¥)

EK=0(1 ,4K)

ACl ¢ J)=AU+TG v AN

ECI¢J)=BU+CO+TN

A(l o) )zhr+C LAY

3(leK)I=EK+CARY

IF (KP1-%)14(041404160

PO 15C T=KP1leMN

AJzA(JeT)

BJU=f{(Jei)

AK=ZA (K el)

EK=B(Ke¢1)

AUUsI)=ZAU+CCEr LK

P(Jsl)=Dy+lrenK

A{KeI)zZpAK+CA~LY

BIKeI)=BK+CA=EJ

I7CUP1-%«V 13170170150

DC 1A0 T=JP1l.KM1

BJU=A(Jds D)

BJ=2(JaI)

AVZA(Ie¥)

BK=R (T a¥)

ACJeId =2 J+LGHAK

BCJe 1) 22U+ CG*3K

A(l 4K)=2K+ThRY

B(I4K)=EK+CaxEJ

AR=L{K 4X)

B2 (X «K)
A(K;K)’AK+(-*’A*”(qu)+CA*CA*L(d J)
E(KeKITEX + 24 *x L *B(JqKY+CA+XCA+E(Jgd)
A(Jed) Sl (U ed)+2 e+ DB UUJaKI*CRACGREK
B(dsd)-n(\cd)*c—*CG*r(qu)+C’*CG*=K
A(J’K)—-u.

BC(JaKI=0.

UPDATE THT TIGIMVECTCR MATRIY AFTER EACH RCTATICON

DO 200 TI=1.N
XJ=X(I4d)
XK=X{(I W)
¥(Ied) =X J+CG+xYr
X{I K)o+ CARXY
covTIvyg

UPCATZE ThHT ZISENVELUCLS AFTER EACH SWEEP

BT 220 =

IF (ACi¢I2eGTale 28Dy E(141).6T«0.) GC TC 229
WRITECICUT«2020)

sTCP

EIGVIII=A(Ta13/R(T6])

IFCIFPRLENLQYGT TO 230

MRITECICGUT «2350)

RITECTIPUT$2010G) (ZIGV(I)gI=14M)

1

D]

CHECK FIR CONVFRCENCE

on ')(*3 7"1.’@
TOL=RTCLADAD)
DIF=DARCS(TICGVIT)-DL(T))
IF(PIC..CT.TCLY AT 17 2RO

45



135

140
141
142
143
144
145
146
147
145

149
150
151
152
153
154
155

157
158
159
1€0
161
e
163
164
165
16€
167
168

162
170

171
172
173
174

175
176
177
178

156

245 CIMNTINUE

46

IS

TAUYY /T WST

C
c CHECK 2ALL 72FF=-OTAGONAL FLEMINTS TO STE IF ANCTHER SWIE>
C REQUIRED.
C
EFS=RTCL«v«
DC 250 J=1 .NF
Jd=J+1
D0 28C K=uUde N
EPSAZ(A(JeR)*+L(JaK))/CAGUeJ) *L(KaK))
EPSEZ(?(JQK)*F(qu))/(F(dod)'c(Vq“))
IF((EPQA.LT-EF?).ANCQ(EDSB- T.EPS))C TC 2t¢
G2 T2 22¢
280 CCNTINUEZ
c
c FILL TUT RCOTTOV TRIANGLF CF RESULTENT MATRICFES
c AND SCALE EICEZNVECTCRS
c
2595 DT 260 I=1aN
DO 260 J=1 4N
ACJeId=2 (T ou)
2640 5(J11)‘~(79J)
DO 27C J=1aN
BE=CSGRT(T (Jad)}
DG 27C K=1aN
270 X(Ked)z=X(KeJ)/ZBE
c
C UPDATE MATRIX AND START NEW SWEEPIF ALLONWED
C
WRITE(£41230)
DC 1991 LIzl
1931 WARITE{(L£420210) (X(LIaLJdsbLdzlel)
1SS0 FOURMAT(/1CXxy *EIGEMNVECTCRSYs/)
RETURM
2280 DC 260 I1I=3 «N
250 D(I)=Z IGV(D)
TF(NSWEZ? L LT.NSYMAX)IGD TO 40
60 TQ c&=
200G ””F“‘T(/q"’H”SMEr“ NUMBER TN +JACCPIx = 474)
2C1C FOCRMAT(IKC ¢5F s/)
2020 FORMAT (25HITx+» FDP R SCOLUTZ (N S7C /
1 30K MATRICEZS NGT PtS.lTVr DEFINITED
20306 FORMAT(3IEHTCURRENT EI ENVALUES IN *JACCEI+ARZ /)
£ND
C
C RESPCASE USING MODAL SUFPIRPCSITICN METHOED
C
SUGRCUTINE MADAL(NDSEIGTINgXoF «GReSH)
IMPLICIT RFAL*S(P=rqg(C=27)
REALSIANTL T NT e TNTIaTMTE ¢K gV
DIMENSICN TIGERLA0) «X(40a80) 4 X SC40)eF(40¢40)¢F(G0)eTCLL) eY(404480)
1 +UCC(40) 97 F (4GC) e NQ(40) ¢ SMN(60440)
C
€ STEMENT FUKRCTTOAS
C .
INTI(TAUY TP XP (X T+ TAUY S (X T D+DCOS WD »TAU)Y + WD «3SIN(WD *TAUI ) /D KS
INTOC(TAU =PEXPONTWEATAUI MY I W CADSTN(WOD*TAUY = WD »0C2S (KD #
INT3(T5“)'TAL"T'Tq(TfU)-XT\'F‘z'T°(TAlJ Y/TWOR+ e L4 INTI(TALY/D kuu
INTG(TAW) =TAU~: \Tl(iAU)-X'WD‘J\Tl(T&U)/WH'C-nD INT2(TALY/ZD W
C



READ FrRCIMG TUNTITMS AMD INTERPCLATE _ 47

c
c
176 BG=ND
180 Ir<SR..\E00.) ‘\1(~=1
191 NG Ten
152 READ(S4119) NT4TMAYS(MNG(L)eL=1NG)
(83 WRITEC(Se 110N TaTYAX (M5 (L) oLz 14NG)
|84 110 FORMATI(O2F10.4¢1215)
185 DO 76 Iz=1e%NN
176 FFCIXI=T40
187 DS 76 JzT1e%AY
188 76 F(l4J)=040
1586 & 77 IG=1.MG
190 NEQ=MNG (ID)
151 IF(NEC.EG.0) 60 TC 77
92 READ(S412C) (TCL)eP(LY ¢L=14NES)
193 . WRITZ(Ga120)C TUL)eF (L) 4Lz1aNED)
154 120 FORMAT(4F1042)
155 NT= T(NEQ)Y /DT
196 o IF (NT . GT,TYAX/CTY MNT=TMAX/DT
137 NT1=AT+1
138 FF(1)=P (1)
199 ANNZO LD
200 11=1
201" DG 1S I=24%T712 X .
202 AIZ=I-1
203 TA=A1+CT
204 IF(TL.GT.T (NTG)) GO T2 160
265 IF(TALE LT ¢I1I+1)) GO T2 =
206 ANt -T(II+1)+TE-DT7
267 11=11+1
208 © ANNZANN4DT
209 FFOID=PUITI+(S(II+1)=P(ITII*ANN/C TCIT+1)= TCII )
210 FCIDsZI)=FFELT) .
211 12 CONTINLE
212 16C CCNTINUE
213 77 CCOATINUE
o
c DETZR¥INT TIME AND SQUIVALEMT FORCES
c _
214 NT=TMEX /DT
215 DN 17 L=1+M0A
21¢ AL=L-1
217 TCL)T TC1)+aL#DT
218 IF(GR.EGeC.) CF T 17
213 0O 13 1D=1 8D
220 19 FOIDGLSI==FF(L)*CM(TC41D)
221 17 CoONTINUT
C.
c READ JAMPING RATICS AND SET THITIAL VALUES
c _
222 RELD(S41C0) (XI3C(L)eL=14ND)
223 WRITECO9 10 (RTSILY gL =1 4™
224 100 FORMAT(AF10e3)
c
¢ WRITE HFEAZINGS
| .
225 WRITF (£a700)
226 700 FLRMAT (1M1 4G4 'SETSYIC RESPONST GF ELASTIC SHEAR BUILDING®+//

16X g " TIFE 06X 4 "CISPLACEMENTS 9 /)
| 227 NT1zhTl




128

29

.30
231
232
232
234
235
236
237
238
239
240
241
242
243
24 4
245

246 .
247"

242

249
25¢
251
252
253
254
255
256

257

253
253
260
261
262
263
264
265
266
267
268
26
270
271
272
273
274
275
276
277

278
279

260

OO0

190

o
L0 e

D0 50 ID=1.N0
CC 10 IT7=1448T1
P(IT}=C0.0

00 10 I=1.nC

PUITITE(ITI+F(ILIT) *X{THID)

K=EIGTN(ID)
XT=XISCIl)
FImi=2 (I}
TIMI=T (L)
ATI=C.C

Bri=C-.¢C

CAT=0.0

DEeT=0.%
Y(IDQ:‘L):OO'}
IMIGLA=CSGRT(K/N)
CRIT=2~DSTRT(K«M)
CzXI*CRIT

WDSIMERASDSEET(1am (XTI ne2))
XIWD=XI-0NTGR
DWSGT XTI WD+ a2 +LD +%2

LOnP OVER TIME AND SALVE FOR KODEL

NM1=NT -1

DG 1 I=zi8M1

FI=P(I+1)

TI=T(I+1)

DFTI=Fi-FIN1
DTI=T:-T1IY1
FT=DFTI/CT:

G=F IM1I-TI™1*FT
AI=INTIC(TIN-INTIA(TINVMDG
BIZINT2(TIY-IMNT2A(TIMIY
VS=IAT3(TT)=INTI(TINVNIY
VC=INTS(TI)=-T8T4(TIND)
AlzAi=i:

AT=AT4FTwV(

ATI=ATI+AT

3I1=R1~-GC

BIz=3I+0T+VS

BYI=R7I+B:

Y(IDeI+1) =DEXP(-XTH
TiM1=TI
SESEL
CONTIALE
CONT INUE
DC 53 IT=1eNT
DO B2 12140
un(Ir=c.e

DL 52 Uml.4Mn

UDCIITUDCII+X(Tadd*Y (usIT)
WRITE(Se303) TCIT)Ya (UD LYl =1 4ND)
FARIUAT(F10eX9cF14,4)

RETURY

END

DISPLACEMENTS

48

DeTT) (AT I*DSINCWD*TII=-BTI*DCCS(RC*TI))/ (M *WE)




V. ERROR INVESTIGATION DUE TO STATIC CONDENSATION

Due to different loading conditions, and changes in geometry; it
is sometimes necessary to divide .the structure into a large number of
elements. When the elements of the entire structure are assembled, the
number of unknown displacements, or in dynamical terms, the number of
degrees-of-freedom become very large. Therefore, the stiffness, the
mass and the damping matrices become very large.

In such cases the solution of the eigenproblem to determine
natural frequencies and mode shapes will be difficult and tedious. For
this reason it is convenient to reduce the size of matrices in order to

make the solution easier and manageable.

A. Static Condensation

A practical ﬁethod of accomplishing the reduction of these
matrices is to identify those degrees-of-freedom to be.reduced as de-
pendent coordinates and to express them in terms of the remaining in-
dependent degrees-of-freedom. The relation between the dependent and
independent degrees-of-freedom is found by establishing the static rela-
tion between them, hence, the name static condensation method. This
relation provides the means to reduce the stiffness matrix.

In order to reduce the mass and the damping matrices, it is
assumed that the same static relation between dependent and independent
degrees-of-freedom remains valid in the dynamic problem., Hence the same
transformation based on static condensation for the reduction of the

stiffness matrix is also used in reducing the mass and damping matrices.

49
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In general this method of reducing the dynamic problem is not exact and
introduces errors in the results. The magnitude of these errors depends
on the relative numbers of degrees-of-freedom reduced as well as on the
specific selection of these degrees-of-freedom for a given structure. No
error is introduced in reducing massless degrees-of-freedom, that is,
degrees-of-freedom for which there is no mass allocated. The procedure
of static condensation also is used in static problems to eliminate un-
wanted degrees-of-freedom such as the internal degrees-of-freedom of an
element used with the finite element method of analysis. Initially the

stiffness matrix is represented by a partition matrix as follows:

Kpp * Kpq| [{Xp} {0}
R - (61)
Kap ' Kqq) [{Xq} {Fq}

which can be reduced ‘or condensed by using the gauss elimination for the
first p unknown displacement. At this stage of the elimination process,
the stiffness equation for the structure may be arranged in partition

matrices as follows:

[0 -[ml {Xp} {0}
_ = (62)
0 LK1} [{Xg} {Fq}
where {Xp} is the vector corresponding to the p degrees-of-freedom to
be reduced and {Xp} the vector corresponding to the remaining q indepen-
dent degreeé of freedom. It should be noted that in (62) it was assumed

that the external forces were zero at the dependent degree-of-freedom

{xp}. Equation (62) is equivalent to the following relations:
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xp} = [T1 {xq} , | (63)

[K] {xq} = [Fq] . (64)

Equation (63) which expresses the static relation between coordinates

{xp} and {xq}'may also be written as

or

where

{xp} [T}
| = {xq} (65)
{xql] [[1 |
{x} = [T1 {xq} (66)
{xp} [T]
{x} = » [T1-= (67)
- Lixg? [T

Equation (64) which establishes the relation between coordinates {xq}

and forces {Fq} is the reduced stiffness equation and [K] the reduced

stiffness matrix of the system, which may also be expressed as a trans-

formation of the system stiffness matrix [K] as

(K1 = [TI'[KILT] (68)
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B. Static Condensation Applied to Dynamic Problems

In a previous section a case was coqsidered in which the dis-
cretization of the mass has left a number of massless degrees-of-
freedom. For this case it is only necessary to condense the stiffness
matrix and delete from the mass matrix the rows and columns correspond-
ing to the mass1ess'degrees—of—freedom. In this case the methods used
do not alter the original problem, thus the results are equivalent
eigenproblems.

In cases when the discretization process has allocated mass to
the system, the procedure commonly used is to apply the transformation
shown in equation (68) not only to the stiffness matrix, but also to the

mgss and to the damping matrix of the system, analytically that is:

(M1 = [TJT[MJ[TJ . (69)
and the reduced damping matrix is

1 - [T37rcam (70)

where the transformation matrix [T] is defined in (67). The justifica-

tion of the mass and damping matrices reduction is shown as follows:
V = 1/2 {x}T[K1{x} (71)
K.E. = 1/2 (X} [MI{X} (72)

where V is the potential energy and the kinetic energy is represented
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by K.E. in equations (71) and (72) respectively.
Analogously, the work Wy done by the damping forces Fd=tC]{§}

corresponding to displacements {éx} may be expressed as:
suy = {6x7LCIHX) (73)

By using the transformation (67) in equations (71), (72) and

(73) gives the following results

V= 1/2 xgH (T3 [KILTIX o) (74)
K.E. = 1/2 Tig} [T IMICTI g} (75)
swg = {6xq LTI [CICTIEX} (76)

The respective substitution of [K], [M] and [C] from (68), (69) and (70)
for the product of the three matrices in (74), (75) and (76) yields:

V= 1/2 {xq}T[KJ{xq} (77)
K.E. = 1/2 {iq}T[Mj{iq} (78)
swg = {exg}TlHxq} (79)

These last three expressions represent the potential, the kinetic energy
and the virtual work of the damping forces in terms of independent

coordinates {Xp}°
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C. Numerical Example

To illustrate the theory, consider a three degree-of-freedom

shear building shown in Figure 7, and find the natural frequencies and
s = 25 Bsedy,

" Xa

Ks = 10000 84,
. s = g0 85ei)

g Xa

Kz = 10,0008
M= 100 & & '&

K= 30,000 4,
777> Ty

FIGURE 7.~ Shear Building of Numerical Example

modal shapes; also condense one degree-of-freedom and compare the re-

sulting values obtained for natural frequencies and mode shapes.

The equation of motion is given as free vibration in the fol-
Towing form:

[MI{x} + [K1{x} = [0]

Substituting the corresponding numerical values in this equation
yields

10 0 0] [k, 40 -10 0] 4] o
0 50 0f [xp| +103|-10° 20 -10{ |xp| = |0
0 0 25/ [x, 0 -10 10] kg o

assuming a solution x y=aj sin wt, and substituting into the equation of
motion yields,
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40,000-100u2 -10,000 0 [n] o

~10,000 20,000-5002 10,000 * | [ap| = [0 (a)
0 10,000 10,000-2502] |ag| |0

from which the characteristic determinant of the system can easily be

deducted, such as

40,000-100w? -10,000 0

-10,000 20,000-5002 10,000 =0 (b)

0 10,000  10,000-2542
expanding the determinant and solving gives

wi = 84.64 rad/sec

w2 = 400
w = 536

The natural frequencies are calculated by f=w/2m, so that

fl_
fz = 3.183
f3 = 3,685

The modal shapes are determined by substituting each value of natural
frequencies into equation (a) deleting one of the equations and solving

the remaining two equations for two of the unknowns in terms of the
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third unknown, setting the unknown equal to one. Performing the opera-

tion gives,
a11=1.00 a12= 1,00 a13= 1.00
a21=3.18 apo= 0 ap3=-2.88
a31=4.00 a32=-1.00 az3= 4,00

Since the stiffness for this structure is

40,000 -10,000 0
-10,000 20,000 -10,000
0 -10,000 10,000

By the use of gauss elimination of the first unknown gives
1 -0.25 0
0 17,500 -10,000 (c)

0 -10,000 10,000

Comparing (c) with (62) indicates that

[T1= [0.25 0]
_ 17,500 -10,000
[K] = (d)

-10,000 10,000

also from (67)



57

0.25 0

[T1=11 ol (e)
0 1

The condensed mass matrix is calculated by substituting matrix L[T] and

its transpose from (e) into equation (69).

1 0

100 0o 0] [0.25 O
M] =

1 0 50 0

0 0 25J 0 1

0.25 1 0
0 01

which results in

56.25 0
M1 =
0 25

Substituting the reduced stiffness and reducing mass into the equation

of motion gives
56.25 0] [X, 17,500 -10,000] [x,] [0
(1] + =
0 25] |x3 ~10,000  10,000| |x, lo

The natural frequencies and mode shapes are then determined by solving

the eigenvalue problem.

17,500-56.2502 ~-10,000 ag| {0 (F)
-10,000 10,000-2542 )
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equating the characteristic determinant to zero yields

17,500-56.25w2 -10,000

-10,000 10,000-25w?

expanding the determinant and solving for the natural frequencies gives

9.2304 rad/sec

“1
wy = 25.018
Then
fl = 9,2304 = 1,47 (S
2m
fy = 25,018 = 3,98
27

The corresponding mode shapes are obtained by substituting the frequencies

into equation (f) gives,

621 = 1. 622 =1
1.27 a3é = 1.77

a3

For this system of only three degrees-of-freedom, the reduction of one
coordinate gives results that compare weil only for the first mode. Ex-
periencing with different numbers of degrees-of-freedom, it is clear

that the condensation process results in an eigenproblem, which provides
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only about half of its natural frequencies and modal shapes within

acceptable approximate values.

D. Computer Program For Investigation of Error

This program to investigate the error due to static condensation,
eliminates rows or degrees-of-freedom by using a subroutine program called
CONDE, This subroutine calculates the reduced stiffness matrix [K1, the
reduced mass matrix [M1, and the transformation matrix [T]; with these re-
duced values, the program proceeds to solve for the natural frequencies
and modal shapes, giving enough values to compare with the results of a
non reduced system.

The subroutine CONDE, in-order to perform the condensation of

degrees-of-freedom uses the following variables,

Variable Symbol in Thesis Description

ND N Total number of degrees-of-
freedom

NCR P Number of dependent modal
coordinates

NL ND-NCR Number of degrees-of-freedom
minus number of dependent coordi-
nates

SM(I,4) [M] Mass matrix

SK(I,Jd) [K] Stiffness matrix

T(I,J) [T1 Transformation matrix

The elimination of degrees-of-freedom can be done in an organized
fashion. For this purpose this thesis introduces the subroutine ORDER.
Therefore the programer has the freedom to choose the desired row to

eliminate this and proceed to solve for the remaining degrees-of-freedom.
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After experimenting with this program, it is obvious that the
static condensation approach provides only about half of its eigen-

values and eigenvectors within acceptable approximate values.

E. Computer Program #3
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35
36
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38
39
40
41
42
43
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45
46
47
48
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o N eNe]

EVALUATION OF ERROR FOR MULTI - DEGREE OF FREECOM STRUCTURE 61

IMPLICIT REAL*2(A=-Hy0~2) .
DIMENSICN SM(SBvSO)9SK(50150)qSC(SOvSO)qT(SUvSU)9TT(50)9EIGV(50)

READ INPUT DATA AMD INITIALIZE

READ(5¢108) NDsIF?R -~
WRITE(6s10CINDSIFPR

100 FCRMAT(2I10)

NL=ND

LOC=1
NM1=ND-1

DO 2 I=1¢ND
DO 2 J=1eND
SM(14J)=0.0
SM(1e1)=1.0
SC(IeJ)=0,0
SC(I¢1)=1.0

2 SK(I4J)=0.0

DG 12 I=1.ND

IF (J.EQel) GO TO 19
SK(IeI-1)=~12
SK(I~19I)==12s.

13 SK(I4I)=24e

SK{NDsNDI=12.

Do 30 IC=1¢ND

IFC(IC.ELRe1) GO TO 20

NL=ND=-IC+1 :

NCR=ND=-NL

CALL CGCNDE (MDoNCRoLOC9SKeSMeSCoeT) !

80 CALL JACOBT(SKeSCeTsEIGVeTTeNLyIFPR)
S3 CCONTINUE

STOP
END :
STATIC CONDENSATION OF STIFFMNESS AND MASS MATRICES

SURROUTINE CONDE (NDeNCRsLOCeSKaSMsSCoeT)
IMPLICIT REAL*S(A-HeC=2)
DIMENSICON SK(5C0¢50) eSM(50950) 9 T(5C950) sTT(S0)+SCL50456)

CALCULATE THE REDUCEC STIFFNESS MATRIX AND THE TRANSFCRMATION MATR

NL=ND-NCR

DO § K=14NCR

IF (DABS(SK(KeK))eGTe1leD=10) GO TO 5
WRITE (64202) K

202 FGRMAT (° PIVOT TOO SMALL'SI10)

G2 T0 99
5 KP1 = K+1
DC 6 J=KP1ND
6 SK(Kgd) = SK(KeJ)/SK(KeK)
SK(KeK) =1
DO 3 T = 1eND
IF (JeEGeKeORe SK(I4K) EQ.0) GO TO 9
DN 8 JZKP1leND :
8 SK(IsJ) SK(Ied) = SK(IgK)* SK(Ked)
SK(IeK) 0.0
9 CONTINUE

|
|
|
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51
52
53
54
55
56
57
58
59
60
61
62
673
64
65
66
67
68
69
70
71
72
73

74

75

76 -

77
78
79
2o
81
82

83

84
ES

86
87
gs
89
90
91
g2
93
9S4
25
96
S7
38
S9
100

(s NeNe!

e NN g

30

50

40

20
166G

80

170

81
190

100

12
99

DO 30 1

= 14NCR-
DO 30 J = 1¢NL
JJ = J+NCR )
T(Ied) = =SK(I4Jd)

DO 40 I=1sNL
IT = 1 + NCR

DO S50 J = 1yNL
TCIIed) = 0.0
TCITIH1) = 1.0
CCNTINUE

DC 20 1= 1eNL
D0 20 J = 14NL

~I1 = 1 + NCR

JJ = J+NCR
SK(I4J) = SK(II,4JJ)
WRITE (64169)

FORMAT(1H195Xe* THE REDUCED STIFFNESS MATRIX ISt*/)

DT B0 I=1aML

WRITE (ARelS0) (SK(Iod)vJ-lvNL)

WRITE(64170)

FCRMAT(/6X s *THE TRANSFORMATION MATRIX IS*/)
DO &1 I = 14ND

WRITE(64130) (T(Ied)ed = 1eKNL)

FORMAT (6E1444)

IFC(LOC+EQ.B) GZ TO 99

CALCULATE THE REDUCED MASS MATRIX

READ(54100) KEY L e
FCRMAT(IR) S
IF(KEY.EQ.08) GO TO 12

CAlLL ORDER(NDeSKeSC)

CALL CRDER(ND9SMeSC)

CONTINUE

RETURN

END

SUBROUTINE ORDER (NgAeB)

IMPLICIT REAL +B(A-H40-2)
DIMINSICN A(S580450) 4B (50450)4M(50)

READ INPUT DATA AND INITIALIZE

" READ(5+100) (M{L)eL=1¢N)

100

30

490
95

HRITE(S41CC) (M(L)eL=1eN)
FORMAT(161I5)

0O 30 II=1¢N
ITI=N-11+1
I=M(IID)

DC 30 JJ=14N
JJJ=EN=-JJ+1
J=MGJJJ)
BCITIWJUIZA(TI 4D
DO 40 I=14N

DO 40 J=14eN

L(] eJ)=B(Ted)
RETURN

END

SOLVE EIGENPROELEM USING JACCBI METHOD
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SU3ROUTINE JACCBI CA9B sX osEIGVDsN9IFPR) ) 63
IMPLICIT REAL*A{A~-Hy0-2)
DIMENSICN A(50050)qP(50QSO)QX(SUQSU)QEIGV(SU)QD(SO)

INITIALIZE EIGENVALUE AND EIGENVECTOR MATRICES

NSMAX = 15
RTCL = 1.D-12
10UT=6

D7 10 I=1eN _
IFCA(I31)eGTo0. «AND. BCI14I)eGTe0.)GO TO 4
WRITE(ICUT+2020)

sTOP

DCIVN=A(Is1)/B(IeI)

EIGV(II=D(I)

DO 30 I=14M

DO 20 J=1aN

X(IleJ)=0e

X(IeId=1o

IF(N.EGel) RETURN

INITIALIZE SWEEP COUNTER AND EEGIN ITERATION

NSWEEP=0

NR=N~1

NSWEEP=NSWEEP+1
IF(IFPR.EQ-I)HRITE(IOUToZUOO)NSUEEP

CHECK IF PRESENT OFF~DIAGCNAL ELEMENT IS LARGE

EPS=(e01** NSWEEP) *# %2

DO 210 J=1¢NR

Jd=Jd+1

DO 210 K=JJeN :
EPTOLA:(A(J,K)*A(J,K))/(A(d,d)*A(KgK))
EPTOLBZ(B(qu)*B(qu))/(B‘J?d)*B(K?K))
IF((EPTOLA.LT.EPS).AND.(EPTOLB.LT.EPS))GO TO0 210

IF ZERCING IS REQUIREDsCALCULATE THE ROTATION MATRIX ELEMENT CAeCi

AKK=A(K9K)*B(qu)-E(K;K)*A(qu)
AJJ=A(J9J)*B(J9K)-E(d9d)*A(d9K)
AB=A(J9J)*9(K9K)-A(K,K)*B(dqd)
CHECK=(AB*AB+4o*AKK*Add)/4.
IS(CHECK)SC 960060

WRITECICUT +2020)

STCP

SGCH=DSGRT(CHECK)

D1=AB/2.+SGCH

D2=AB/2.-SGCH

DEN=D1
IF(3A3S(D2)oGT-DABS(Dl))DEN=DZ
IF(DEN)S0470+80

CA=0.

CG=~A(JeK)/A(KeK)
CG=~A(JQK)/A(K9K)

60 T0 %0

CA=AKK/DEN

CGz=-AJJ/DEN

GEMERALIZED ROTATION TO ZERO THE PRESENT'ﬁFF'DIAGONAL ELEMENT




148
149
150
151
152

153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171

172
173
174
175
176
177
178

180

181

182
183
184
185
186
187
188
199
190

151
192
193
154
195
196

197
138
199
200
201

~

(e NeNe]

90 IF(N-2)100¢130+100
100 JP1=JU+1 ' 64
JM1=y-1 ' ' '
KP1=K+1
KM1=K=-1
IF(JUM1-171304+1104110
110 DO 120 I=14JMl .
AJ=A(T 4 J) .
BJ=B(IsJ)
AK=A (I ¢K)
BK=B(I4¢K)
ACI gJISAJ+CG *AK
B(I+J)=BJ+CG*BK
ACTIyKI=AK+CAxAJ
120 B(I4K)=RK+CA*BJ
130 IF (KP1-N)14041404160 -
140 DO 150 I=KP1lyN
AJSA(Ja])
BJ=B(JyI)
AK=A(KeI)
BK=B(KsI)
A(JyI)=AJ+CG*AK
B(JsI)=BJ+CG*BK
AC(KsI)=AK+CAxAJ
150 B(KsI1)=RK+CA+BJ
160 IF(JP1-KM1)1704+1704+190
170 DO 180 I=JPlyKM1
AJ=A(J 1)
BJ=B(JeI)
AK=ACI ¢K)
BK=B (I ¢K)
ACJs 1) =AJ+CG*AK
B(Je1)=RU+CG*BK
ACT oK)=EK+CA*A Y
180 B(I4K)=BK+CA*BJ
130 AK=A(K oK)
BK=B(KeK)
ACK ¢K)SAK+2 o #CAXA(JoK) +CA*CAXA(JydJ)
B(KoeK)ZRK+2exCA*B(JaK)+CA*CA*B(JoJ)
ACUoJ)=ACUed)+2 axCO*A(JsKI+CG*CE*AK
BlUeJ)ZB(Joed)+2a*"G*BCJeK)+CG*CG*BK
ACJeKI=0o
B(JoeK)=0oe

UPDATE THE EIGENVECTCR MATRIX AFTER EACH ROTATION

DO 200 I=1eN

XJ=X(14J)

XK=X (I ¢K)

XCIed)=XJ+CG*XK
200 X(IoK)=XK+CAxXJ
210 CONTINUE

UPDATE THE EIGENVALUES AFTER EACH SWEEP

DO 220 I=14N .
IF (A(IQI).GT.U. .AND‘ B(I’I).GT.O.) GO TO 220
WRITE(ICUT-2020) '
STOP
220 EIGV(II=A(TISIN/B(IW])
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202 IF(IFPR.EQ.0)GO TO 230
203 WRITE(IOUT+2030) _
204 WRITECICUT£2010) (EIGV(I)eI=14N)
c :
c CHECK FCR CONVERGENCE _
C
205 230 DO 240 I=14N
206 TOL=RTCL*D(I)
207 DIF=CABS(EIGVIII-D(I))
208 IF(DTIF«GT.TOL)GC TO 280
209 240 CONTINUE
c
c CHECK ALL OFF-DIAGONAL ELEMENTS TO SEE IF ANCTHER SWEEP IS
c REQUIRED : . ' -
c
210 EPS=RTCL**2
211 DO 250 J=14NR
212 Jd=dJd+1
213 D0 250 K=JJsN
214 EPSA=C(ACU9KI*A(JKII/(A(U9U) *A(KyK))
215 , EPSB=(B(JgKI*B(JsKII/(E(JgJ)*B(K4K))
216 IFC(EPSACLTAEPS)ANDS(EPSBILTLEPS))IGO TO 250
217 GO 70 28¢
218 250 CONTINUE
: c
c FILL OUT BOTTOM TRIANGLE OF RESULTANT MATRICES
o AND SCALE EIGENVECTORS
c
219 255 D0 260 I=14N
220 B0 260 J=1,4N
221 ACJeINI=A(TI4J)
222 260 B(JoeIN)=B(Isd)
223 DO 270 J=1,4N
224 BB=DSART(B(JsJ))
225 DO 270 K=1.4N
226 270 X(Ked)=X(KeJ)/BB
C
c UPDATE MATRIX AND START NEW SWEEP¢IF ALLOWED
. C
227 WRITEC(E92010) C(UXCLTIgLJU)9LJ=19N) 9L TI=14N)
228 RETURN :
229 280 DO 290 I=14N
230 290 DCIX=EIGV(I)
231 . IF(NSWEEPLT.NSMAX)GO TO 40
232 G0 TO 255
233 2000 FORMAT(/427THOSWEEP NUMBER IN «JACOEBI* = 414)
234 2010 FCRMAT(1HCs3E20e12/)
235 2020 FORMAT (25HCw++» ERROR SCOLUTION STOP /
1 30H MATRICES NOT POSITVE DJEFINITE)
236 2030 FORMAT(I6HOCURRENT EIGENVALUES IN *JACCBI*AREs/)
237 END :
Q (Cb
Y SENTRY N
3 1
WEEP NUMBER IN *JACO8I+« = 1

URRENT EIGENVALUES IN *JACOBI*ARE,

0366969384567D 02 O0.188498382%050 02 0.2453223252830 01
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v
3
e

SWEE> NUMBER IN *JACOBI* = 2
CURRENT EIGENVALUES IN *JACCBI*AREy

0.389637526057D 02 0.186595002238nN
SWEE® NUMBZR IN #JACOBI=* = 3
CURRENT EIGENVALUES IN *JACOBI*ARE,
0.385637552446D 02 041965949758500D
SWEEP NUMBER IN *JACOBI* = 4
CURRENT EIGENVALUES IN *JACOBI*ARE,
" 0e383637552446D 02 0.186534975850D
SWEEP NUMBER IN *JACORI* = 5
CURRENT EIGENVALUES IN *JACCRI*ARFE,
0359637552446D 02 0.126594975850D
0591609046506D 00 047369762231000D
~0.736376229100D G0 04327985277606D

0327385277606D0 00 -045%10050485060

02

g2

02

8o

1R1]

00

0.237674717049D

0.237674717034D

C.23767467170340

Ce237674717034D
0.3273985277606D
0.591002048506D

0736976229100D

01

c1

01

o1

ge

80

GO
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T4F RZDUCED STIFFNESS MATRIX IS

/
0.5472D 02 ~0.2867D-36
~0.2367D-36 0.45040 01

THE TRANSFCRMATIGN MATRIX IS

|
l 0.16670-14  G.13£2D-23

. 0.10000 01 0.00000 0O
~ £.00000 00 0.1000D 01
32 1

[ 3 2 1

o o -
SWEE® NUMEER IN *JACOBI+ = 1

CURRENT CIGENVALUES IN *JACOBI*ARE,

0.647157982544D 02 0.4504103058150 01 '
0.10000C000000D C1 0.0000000000600D 00 0.000000000000D 0O

0.100000000000D 01

THE RIDUCED STIFFMESS MATRIX IS

F
6.4504D 01
THE TRANSFORMATICON MATRIX IS
0.30630-25
0.63650=37
0.1000D0 01




VI. ANALYSIS OF NONLINEAR STRUCTURAL RESPONSE

In the analysis of linear structures subjected to any arbitrary
dynamic loadings, the Duhamel integral provides the most convenient
approach for the sofution ofvthe systems. However, it must be emphasized
that the Princip]e of Superposition that was employed in the derivation
of Duhamel integral, can only be used with linear systems, that is,
systems for which the properties remain constant during the response.

There are however, physical situations for which this linear |
model does not represent adequately the dynamic characteristics of the
structure, such as the response of a building to an earthquake motion
severe'enough to cause structura]'damages. Consequently, it is neces-
sary to develop another method of analysis suitable to use with non-

- linear systems.

A. Incremental Equation of Equilibrium

4— v(x)

—= P

FIGURE 8(a) - Mathematical Model for Nonlinear Structural Response

Fo Ct)
—-— Fr (¢

Fa (x)

FIGURE 8(b) - Free Body Diagram
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The structure to be considered in this section is a single degree-
of-freedom shown in Figure 8(a). The dynamic equilibrium in the system
is established by equating to zero the forces acting on the mass of the
system indicated in Figure 8(b). This summation at-any instant of time

t in equilibrium of forces acting on the mass m requires
Fr(t) + Fp(t) + Fg(t) = F(t) (80)a
or
mk(t{) + Ci x(t{) + Ky x(tq) = F(tq) (80)b
In equation (80)b the coefficient C; and K; are calculated for values
of velocity and displacement at time t;.
For an increment At later the equation (80)a takes the following
form:
Fi(t+at) + Fp(t+at) + Fg(t+at) = F(t+at) (81)a
and equation (80)b takes the form of

mx(ti+at) + Cj x(ti*at) + Ki x(ty+at) = F(ti+at) (81)b

Subtracting (81)b from (80)b gives the following convenient form of dif-

ferential equation in terms of increments, namely

AFp(t) + aFp(t) + aFg(t) = aF(t) (82)a
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or
maXj + CiAX{ + Kjdx; = AF; | (82)b

where the incremental forces in (82)a may be expressed as follows:

AFp(t) = Fp(t+at) - Fr(t) (a)
Fp(t) = Fp(t+at) - Fp(t b
AFp(t) D( +At) D( ) (b) (83)
AFg(t) = Fglt+at) - Fg(t)  (c)
AF (t) = F (t+at).- F () (d)

and from equation (82)b the incremental displacement, velocity, accelera-

tion and force are

axq = x(titat) - x(ti) (a)
M = X(ty+at) - x(t;) (b)
- . (84)
AXy = 5(.(t.i+At) - X(t-l) (c)
AF; = F(tj+at) - AF; (d)

The general nonlinear characteristics of spring and damping forces are

shown in Figure (9)a,b.

ACRY .
/
/2
r/

at

F+ay
Ay
X(6) % (¢ vat) TR ()

FIGURE 9(a) - Nonlinear Characteristic of Spring
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FIGURE 9(b) - Nonlinear Characteristic of Damping Force

In practice, the secant slope indicated could be evaluated only
by iteration because the velocity and displacement at the end of the
time increment depends on the damping and stiffness properties, cor-
responding to the velocity and displacement existing during the time
interval. For this reason the tangent slope defined at the beginning of

the time intervals are used instead.

C(t) =dFp ,  K(t) = dFg (85)
ax dx

Among the methods available for the solution of equation (82)b, the most
effective is the step by step integration method. In this method, the
response is calculated at successive increments of time, usually takén

at equal time intervals. At the beginning of each interval, the condi-
tion of dynamic equilibrium is estabiished° Then the response of a time
increment At is evaluated approximately on the basis that the coefficients
K(x) and C(x) remain constant during the interval at., The nonlinear
characteristic of these coefficients are found at the beginning of each
time increment. The response is then obtained using the displacement

and velocity calculated at the end of the time interval as the initial

condition for the next time step.
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There are several procedures available for performing the step

by step integration of (82)b. Two of the most common used are the con-
stant acceleration method. As may be expected the linear acceleration

method will be presented here in detail.

B. Step By Step Integration (Linear Acceleration Method)

In this method, it is assumed that the acceleration may be ex-
pressed by a linear function of time during the time interval .At. When
the acceleration is assumed to be linear function of time the interval

of time t; to ty4+ = ty+at, then the acceleration should be expressed as

x(t) = X; +.8%5 (t-t3) (86)
At

where aXi = X(tj+at) - X(t;) as shown before; integrating (86) twice

between the limits t; and t yields

2(t) = 25 + x(t-tq) + 1/2 AX (t-t;)2 (87)
At
and
x(t) = xq + Xj(t-t;) + 1/2 xj(t-t{)2 + 1/6 a¥j (t-t4)3 (88)
at

The evaluation of (87) and (88) at time t=t;+at gives

AX s

;= X5 At + 1/2 X5 at (89)



73

and

AXs

;= R At + 1/2 X; At2 + 1/6 A%y at? (90)

j
where ax; and ax; are defined in'(84).

Now it will be convenient to use the incremental displacement
as the basic variable of the analysis. (89) is solved for the incre-

mental acceleration AXj, and is substituted into equation (90) to

obtain:
AX; = 6 AX; - 6 Xi = 3 Xs (91)
Vo D ow ! !
and
AXj = 3 Mx{ - 3% - At Xj (92)
At 2

Substituting (90) and (91) into equation (82)b leads to the following

form of equation of motion:

m, 6 AX; = 6 X - 3x4, + Ci (3 AX{ = 3%y - AL Xy + Kjaxs = aF; (93)
&= ' o } 3t 2 J !

Finally transferring all terms associated with containing the unknown

incremental displacement Ax; to the left side gives,

K: ax; = AF; (94)
1 1
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in which
Ki = K; + 6m_+ 3C{ | (95)
VY mT om
and
E}=Mi+mijifﬂH+C{ﬁi+gji/ (96)
it Tty

It should be noted that (94) is equivalent to the static incre-
mental-equilibrium equation, and may be solved for the incremental dis-
placement by simply dividing the equivalent incremental load AFj by the

equivalent spring constant Kj, that is,

xj = & (7]
Ki

To obtain the displacement at time tj;1=tj+at, this value of axj is sub-

stituted into (84)a yielding

Xi'*‘]. = Xs + AX (98)

Then the incremental velocity Ax; is obtained from (92) and the velocity

;
ti41=ti*at from (84)b as

41 T R Ty ' (99)

e
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Finally, the acceleration Xj4; at the end of the time step {s obtained
directly from the differential equation of motion (80)b where the equa-

tion is written for time tj4;=ti+at.. Hence from (80)b it follows that
Xi41 = %{F(tiﬂ) - Ci41 Xi+1 = Ki+1 Xi+1} (100)

After the displacement, velocity and acceleration have been
determined at time t;,;=tj+at, the outlined procedure is repeated to
calculate these quantities at the following time step ti42=t 4 tat and
the process is continued to any desired final value of time.

This numerical procedure involves two significant approximations:
1) the acceleration is assumed to vary linearly during the time incre-
ment Aty and 2) the damping and stiffness properties of the system are
evaluated at the initiation of each time increment and assumed to re-
main constant during -the time interval.

This concludes the background analysis of a single degree-of-
freedom system using step by step linear acceleration. It was neces-
sary to include this analysis in this chapter to present a modification
of the extension of this method known as the Wilson-6 method, for the
solution of the structures with elasto-plastic beha?ior.

The modification introduced by Wilson is utilized to assure the
numerical stability of the solution process regardless of the magnitude
selected for the time step; for this reason, such a method is said to be

unconditionally stable.
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C. Incremental Equation of Motion

The basic assumption of the Wilson-g method is that the accel-
eration varies linearly over the time interval from t to f+eAt where
6>1.0. The value of the factor 6 is determined to obtain optimum
stability of the numerical process and accuracy of the solution. It
has been shown by Wilson that, for 6>1.38, the method becomes uncondi-
tionally stable.

The equations exhressing the incremental equilibrium conditions
for a multidegree-of-freedom system can be derived as the matrix equiya-
lent of the incremental equation of motion of the single degree-of-
freedom system (82)b. Thus taking the difference between dynamic
equilibrium conditions defined at times ti and tj;., where t=eAt; then

the following incremental equations are obtained.
MaX; + C(x)axq + K(x)axi = aF; (101)

in which the symbol over 4 indicates that the increments are associated

with the extended time step v=eat. Thus

By = X(ty+e) - x(t) »  (a)
i = x(tyve) - X(t5) . (b) (102)
Ry = K(ty+) - K(t) » (<)

and

B = Elty)

F(ty) - (103)
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In writing (101), it was assumed that the stiffness and damping
are obtained for each time step as the initial values of tangent of the
corresponding curves, as shown in Figure 8, rather than the slope of the
secant line which requires iteration. Hence the stiffness coefficient

is defined as

Kij = dFsi (104)
dxj
and the damping coefficient as
C]J = dFpj (105)
dXJ'

in which Fgi and Fp; are respectively the elastic and damping forces
at modal coordinate 1; X and ij are respectively the displacement and

velocity at modal coordinate j.

D. The Wilson-6 Method

At this point it is necessary to consider the detailed perfor-
mance and efficiency of this unconditionally stable method of time inte-
gration, as it has already been mentioned, on the assumption that accel-
eration may be represented by a linear function during the time step

t=0At as 1s shown in Figure 10,
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FIGURE 10 - Linear Acceleration; Normal and Extended Time Steps

From this figure can be written the linear expression for the accelera-

tion during the extended time step as

X(t) = X5 + 85 (t-tq). (106)
- !
in which Kgi is given by (102)c. Integrating (106) twice yields
R(t) = X; + x5 (t-t{) + 1/2 8X; (t-t;)2 (107)
T
and
X(t) = xq + (t-t;) + 1/2 X(t-t{)2 + 1/6 Bxq (t-t{)?3 (108)

T

Evaluation of (107) and (108) at the end of the extended interval
t=titt gives

Bi=xq 1+ 1/2 B4t (109)
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and
BXs v +1/2 %5 <2 + 1/6 8% 2 (110)

in which 2% and A%; are defined.by (84)b,c respectively., Then (110) is

solved for incremental acceleration Kgi and substituted in (109) yields

att
AXs

6 Axi - 6 Xj - 3%y (111)
~1 -T—Z- -~ ~

and

A% = 3 Rxq - 3% = T X (112)

T
~i X
T T 2

Finally, substituting (111) and (112) into the incremental equation of
motion (82)b results in an equation for incremental displacement 4%;

which may be conveniently written as

(113)

L7y
—
>>
T
I
[»os4
-

in which

Ki = Kj +6_M+3C4 (114)
T R

and

BEy = BE; + M(EX{+3x5) + C(2hi+axq) (115)
T
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Equation (113) has the same form as the static incremental equilibrium
equation and may be solved for the incrementa1'disp1acement K§i by
solving a system of linear equations.

To obtain the incremental acceleration Z%i for the extended time
interval, the value of 3&i obtained from the solution of (113) 1is sub-
stituted into (111). The incremental acceleration Kgi for thé normal
time interval At is then obtained by a simple linear interpolation.

Hence

(116)

%
1l

To calculate the incremental velocity A%i and incremental displacement
A&i and incremental displacement Axj corresponding to the normal inter-
val At, use is made of (109) and (110) with the extended time interval

parameter t substituted for aAt, that is

Xy = gi At + 1/2 Agi At (117)
and
By o= Xq At + 1/2 X4 a2 + 1/6 &y at? (118)

Finally, the displacement X471 and velocity %i+1 at the end of the normal

time interval are calculated by

Xis1 = %4 * X | (119)
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and

- Ld

Xigp = %i * 8y (120)

As mentioned in the section dealing with single degree-of-freedom, the
initial acceleration for the next step should be calculated from the
condition of dynamic equilibrium at time t+at; thus

Xi41 = ME541-Cinl Xi41-Kja) %413 (121)
in which the products Ci+1 X471 and Ky41 Xj+1 represent respectively
the damping force and the stiffness force vectors evaluated at the end
of the time step tj41=ti+at. Once the displacement, velocity and
acceleration vectors at time tj;1=tj4at> then the outline procedure is
repeated to calculate these quantities at the next step t; ,=tj;;+at
and the process is continued until the desired final time.

E. Algorithm for Step-by-Step Solution of a Linear System, Using the
Wilson-6 Integration Method

Initiation of Values:

1. Assemble system stiffness matrix K, mass matrix M, and damping
matrix C.

2. Set initial values for displacement X,, velocity io and forces [,

3. Calculate initial acceleration %o from

Mxy = Fy - €= Kxy
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4, Select time step at, the factor 6 (for all practical purposes taken
as 1.4) and calculate the constants, T, aj, ap, a3z and ag for the
following relation

1=0At ; a;=3 , a»=6 , az=1 , az=6
T T ’ 3 Tz
5,

From the effective stiffness matrix E} namely

For Time Intervals (one at the time):

1, Calculate by linear interpolation the incremental load KEi for the
time interval t; to tij+r, from the relation
BEj = Eyu1 + (Eqep-Fy4p) (0-1) - Fy
2. 3

Calculate the effective incremental load KFi for the time interval

ti to ti4;, from the relation

By = By + (ag3C) xq * (Mragl) x;

Solve for incremental displacement A ; from

K & x4 = AF;
. Calculate the incremental acceleration for the. extended time inter-

val 1, from the relation



5. Calculate the

6. Calculate the incremental velocity A%i and the incremental displace-

ment AX{ from time ti to tj+at from the following relations

AXj = X4 At + 1/2 AX4y At

MXs = %. At + 1/2 %1 Atz + 1/6 Agi At

-1

i

7. Calculate the displacement and velocity at time ti+l=ti+At using

Bisp = %t 8

BXi41 = i * K

8. Calculate the acceleration £i+l at time t1+1=ti+At directly from

the equilibrium equation of motion, namely

M Xi+1 = Ei41 = C Xi+1 - K X441
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Fo Subroutine‘Step

This is used for a type of dynamic loading of irregular behavior
such as an earthquake. This subroutine will find the resbonse for each
modal coordinate at each increment of time up to the maximum specified
by programer., The 1ist of operational variables are shown in a tabular

form, below.

Variable Symbol in Thesis Description

SK(I,J) K3 System stiffness matrix

SM(1,d) M1 System mass matrix

SC(1,J) [cl System damping matrix

ND N Number of degrees-of-freedom

THETA ] Wilson-o factor

DT At Time step of integration

TMAX Maximum time of integration

NEQ(L) Number of data points for
excitation at modal coordinates
(L-1,ND)

TC(I1),P(I) ti,Fi(t) Time-force values

G. Program 4 - Seismic Response of Shear Buildings

A computer pfogram.for the analysis of a multidegree-of-freedom
shear building with elastoplastic behavior, linear viscous damping, sub-
jected to an arbitrary acceleration at the foundation, is presented in
this section. This program may be conceived as a combination of three
computer programs already presented: (1) the e]astop]agtic single
degree-of-freedom system; (2) the seismic response of elastic shear

buildings using modal superposition method; and (3) the subroutine
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STEP using the Wilson-6 integfation method for linear systems in this
chapter,

The listing of Program 4 is given on page 89, The program calls
subroutine JACOBI to solve the eigenproblem of the system in the linear
range and then calls subroutine DAMP to determine from specified modal
damping ratios, the damping matrix of the system. A listing of the
principal variables used in‘the program are given below. Input data
cards and corresponding formats are indicated following the list of

variables.
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Symbols in Thesis

Variables Description

SK (1,9) [K3 Stiffness matrix

M (I,d) M] Mass matrix

sc (I,J) [cl Damping matrix

THETA 9 . Wilson-6 factor

DT At Time step

E E Modules of elasticity

GR g Acceleration of gravity

TMAX Maximum time of calculation

NEQ NT ~ Number of data points for the
excitation

ND N Number of degrees-of-freedom

IFPR Printing index of subroutine
JACOBI: 1=Print eigenvalues
during iteration; 0=Do not
print

SI I Moment of inertia of story
columns

SL L Height of story

SM (I,1) M Mass at floor level

PM MP Plastic moment of story

TC(I1),P(I) tisFy Time-Acceleration values
(acceleration in g's)

XIS (1) 3 Modal damping ratios

Formats Variables
(2F10.2,3F10,0,315) THETA DT E GR TMAX NEQ ND IFPR
(8F10.0) SI  SL  SM(I,I) PM ({(one card per degree of
freedom)
(8F10.2) TC(L) P(L) (L=1,NEQ)
(8F10.3) XIS(L) (L=1,ND)
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H. Illustrative Example

Use Program 4 to detemmine the response of the'two-story shear-
building of the example subjected to a constant acceleration of 0.28 g
applied suddenly at the foundation. The plastic moment for the columns
on the first or second story ig Mp = 15,000 1b-in,

The 1isting of the input data followed by the computer results

are shown on the following page,
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I. Program Listing v . 89
sPAGES=54TIME=54LINES=400

SEISMIC RESPCNSE ELASTOPLASTIC SHEAR BUILDING

IMPLICIT REAL*R(A=He0=-2)

DIMENSICN SK(30130)98M(¢0930)9SC(30930)qF(SO)qY(SUvSG)9DD(’G)9
1 DUACI0)sUDC30)oUVI(30) qUA(IC)TC(IC)9P(30)¢SKP(3G)¢RT(20),
1 R(30)+YT(30)eYC(30)eS(30)9SP(30)eKEY(30)WEICGEN{30)

READ INPUT DATA AND INITIALIZE

READ(54100) THETA«DT4F ¢GReTMAXeNEQeNDoIFPR
WRITE(E9100) THETAGDTeEsGReyTMAX9NEGeNDy IFPR
FORMAT(2F1Cw2¢3F1004315)
NX=TMAX/DT+2

DO 1 I=14NX

FCI)=0.0

DO 2 I=14ND

DO 2 J=1eND

SM(I4J)=0.0

SC(IeJ)=CeD

X(IeJ)=0.0

SK(I4J)=04.0

ND1=ND+1

TU=STHETA*DT

Al=3./TU

A2=6./TU

A3=TU/2.

A4=A2/TU

DO 7 I=14ND ‘ :
READ(5911C) SIeSLeSM(IeI)4PM
WRITE(Ee11C0)SToSLeSM(I4I)ePM
FORMAT(3F10e2eF10e0)
S(I)=1240*xE*«ST/SL**3
SP(I)Y=S(I) :
RT(I)=2+PM/SL
SC(IeI)=SM(I41)

UD(I)=0.0

uv(liy=g0.0

YTCID)=RT(IN/S(I)
YCCI)==RTCII/S(I)

KEY(I)=0

SP(I)=S(I)

ASSEMBLE STIFFNESS MATRIX
S(ND+1)=040

DO 12 I=1¢\D

IF(I.£G@-1) GO TO 19

SK(I141-1)=-S(I)

SK(I=-141)==S(1)

SK(I41)=S(I)+S(I+1)

DETERMIME NATUPAL FREQUENCIES AND MODE SHAPES
CALL JACOBI(SKsSCsXeEIGENsTCoyND9IFPR)
DETERMINE DAMPING MATRIX

CALL DAMP(ND3XeSMySCWEIGEN)
REFANES a120) (CTCA(! YaP(! Yal =1NMNFND)Y



,44 WRITE(E4212CYCTC(L) WP (L) oL=14NFQ) i 90
|45 120 FORMAT(4F10a2) :

46 DO 4 I=14NEQ
l47 4 PCI)=P(I)4GR
C
! c INTERPOLATION PETWEEN DATA POINTS
c
|48 NT=TC(NEQ) /DT
49 NT1=NT+1
50 F(1)=P(1)
51 ANN=0.0
52 11=1
53 D0 10 I=24NT1,
54 Al=1-1
55 T=AI#DT
56 IF(T«GT«TC(NEQ)) GO TN 16
57 IFCTLELTCC(II+1)) GO TO 9
58 ANN=-TC(II+1)+T=-DT
59 11=11+1 :
60 S ANN=ANN+DT
61 : FOI)=P(IT)+(P(II+1)=PC(II))I*ANN/CTCCII+1)=TC(II))
62 10 CONTINUE
63 16 CONTINUE
c
c INITIALIZE AND DETERMINE INITIAL ACCELERATION
Lo C
64 NT=TMAX/DT
65 DN 22 I=14MD
66 XCIeND1)==F(1)*SM(I41)
67 DC 22 J=14ND
68 22 X(I4J)=SM(TI4J)
69 CALL SOLVE(ND#X)
70 DO 23 I=14ND
71 23 UACII=X(I4ND1)
72 SP(ND+1)=0.0
73 RI(ND+1)=0.0
c _
c LOOP OVER TIME CALCULATING RESPONSE
c
74 _ WRITE (64170)
75 DD S8 L=14NT
76 AL = L
77 T=DT*AL
78 DO 20 I=14N\D
79 IF(I.EQe1) GO TO 20
80 SK(IeI=1) = =SP(I)
81 SK((I-1)41)==SP(I)
82 20 SK(I4I)=SP(I)+SP(I+1)
83 DO 25 I=14AD
84 DO 25 JU=1eAD
85 T 25 X(IgU)=SK(IgJ)+A6xSM(TeJ)+A81+SC(IqU)
86 DC 35 I=14ND
87 XCIgNDID) Z(F(L+1)+(F(L+2)=F(L+1)) *(THETA=1.0)-F (L)) *(-SM(I41))
28 DO 30 J=1aN
89 30 XCIoMDL)SX(IaND1) +(SMCTaJ)*A2+4SC(TaU) ¥340)2UV(J)
1 +(SMCT4J) *3.0+AZ*SCCI4U))*UA(Y)
90 35 CONTINUE
91 CALL SOLVE(NDeX)
32 DO 38 I=14ND ,
33 DUACIIZA4+X (T 4NI1) =A2+UV(I)=-3.0+UA(T) .

94 DUACI)=DUACTI)/THETA
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95 DUV=DT*UACT)I+DT+«DUA(T) /2.0
96 THhISSE UD(I)+DT-UV(I)+0T*DT*UA(I)/2 0+DT*DT*DUA(I)/6 ]
97 38 UV(I)=UuVv(1)+DUV
198 DDC1Y=UD(1)
199 DO 39 I=24ND
?oo 39 DD(IN=UD(I)I=-UD(I-1)
101 DO 40 I=14ND
102 IF(KEY(I)) 11412413 o
103 12 ROII=RT(I)=C(YT(I)=DOC(TI))I*S¢LY "
104 SPCI)=SCI)
105 IF (DD(I)eGTeYC(I)aANDLDD(I)LTLYT(I)) GO TO 40
“106 IF(DDCI)alLTeYC(I)) GO TO 15
107 KEY(I)=1 :
108 SP(I)=0eC
109 R(II=RT(I)
110 - 60°TO 40
111 -~ 13 IF(UV(I)eGT.04) GC TO 40
‘112 KEY(I)=0
113 SP(I)=S(I)
114 YT(I)=DD(I)
115 YC(I)=DD(I)=2.0*RT(II/S(I)
116 RCIV=RT(IDI=-(YT(I)-DDCINI*S(I)
17 GO TO 4C
118 . 11 IFCUV(I)eLT.0) GO TO 40
119 - KEY(I)=0
A20 SP(I)=S(I)
121 YC(I)=DD(I>
122 YTCII=DD(I)+24*RTCIN/S(T)
123 RCIV=RTCII=CYTCIX-DD(IN)I*SCI)
124 G0 TO 4G
425 15 KEY(I)=-1
126 R(I)=~RT(I)
127 SP(I)=0.0
€423 40 CCNTIMUE
129 DO 56 I=14ND
120 XCIoND1)=F(L+1)%(=SM(I413)~R(II+RC(I+1)
131 DO 4% J=14ND
132 XCIeND1I=X(IoeND1)=-SC(Ied)*xUVI(Y)
yss 65 X(TgJ)=SM{I4d)
134 50 CONTINUE A e e
135 " CALL SOLVE (NDeX) R
136 DO 60 I=1¢AND
137 UACII=X(T«ND1)
Lsa 60 WRITECE«250) ToeTeUDCI)oUVIIIgUACT)
139 90 CONTINUE
qu 1780 FORMAT(IquSXq'THE RESPONSE TS%9/e5Xe*CORDeT96X 9 *TIME® 39Xy
, 1 *DISPLe'4CX9'WELCCa®9411Xe?ACCa"/)
41 250 FORMAT(T10, F10 343F1544)
<442 STCP
a3 . END
§
paa SUBROUTINE SOLVE (NyA)
945 IMPLICIT REAL * 8 (A-H40-2)
yas DIMENSION AC304320)
147 M=1
ﬁaa EPS=1.0E-10
N>LUSH=N+M
DET=1.0
DC 9 K=14N

DET=DET*A (KsK)
IFC(DABS(A(KeK) ) eGTEPS) GO TO S




154
155
156
157
158
159
160
161
162
163
164
T165
166
167
168

169
170
171

172
173

374

175
176
~177
178
79
180
_181
" 182
183
184
185
186

.187
188
©189
190

191
192
.193
194
195
196
197

198
199
200
201

(s Nel

OO0

202
39

20
30

40

59

WRITE(Re202)

GO0 T0995

KP1=K+1

D0 6 U=KP1le NPLUSM
A(KeJIZA(KGJI/A(KeK)

A(K’K):lo

DO 9 I=1aN

IF (IoEQoKrOR.A(IQK’.EOOOO) GO 709

DO 8 J=KP1eNPLUSM

A(T o JITA(T s J)=A(TgKI*A(Kod)
ACI+K)=0000

CONTINUE '
FORMAT(Z7HOSMALL PIVOT ~MATRIX MAY BE SINGULAR )
RETURN : '
END

SUBRCUTINE JACOBI (A4BeXeEIGVeCeNsIFPR)

IMPLICIT REAL*2(A-he0-2)

DIMENSION A(30430)¢B(30¢30)eX(30430)¢EIGVL30)4D(30)
INITIALIZE ZTIGENVALUE AND EIGENVECTOR MATRICES

WRITE (£41980)

NSMAX = 15
RTCL = 1.0-12
IOUT=6

DC 10 I=1sN :
IFCACT 9I)eGTe06 oeANDe B(T9I)eGTe062G0 TO 4
WRITE(ICUT.202C)

STCP

DCIX=A(II)/B(1641)
EIGV(IN=D(I) )

00 30 I=1sN

DO 20 J=1aN

X(Ted)=8a

X(I’I):la

IF(NeEQ.1) RETURN

INITIALIZE SWEEP COUNTER AND EEGIN ITERATICN

NSWEE==8

NR=N-1

NSHEEP=NSWFEEP+1 )
IFCIFPREGIINRITE(CIOUT42000)NSWEEP

CAECK IF PRESENT OFF-DIAGONAL ELEMENT IS LARGE

EPS= (01 x*NSWEEP)*+2

DO 210 J=14NR

Ju=dJ+1

DC 210 K=JJN
EPTOLA=(ACUsKI*ACISsKII/CACJ9JI *A(K4K))

CEPTOLB=(BUJK)I *E(JaK) )/ (BUJaJI*B(KgK))

IFCCEPTOLACLTLEPS) «ANDW(EPTOLBLLTLEPS))IGO TO 210

—uom

IF ZEROING IS RZIQUIREDsCALCULATE THE ROTATION MATRIX ELEMENT CAQtG

AKKZA(KgK)IXR(JgK)=B(KyKI*A(JyK)
AJUZACJ g J) *B(JeKI=B(Jed) *A(JyK)
ABTACJG U *P(K4KI=A(KsK) 2R (JeJ)

CHECK=(AB* AR +4 o *AKK*AJJ) /44




202
203
204
205
206
207
208
203
210
211
212
213
214
215
216

217
218
219
220
221
222
223

224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

OO0

50

60

70

80

S0
100

110

12¢

130
140

150
150
170

180
190

IFCCHECK)S5 096060 : : 93
WRITE(ICUT2020)

STOP

SGCH=NDSQRT(CHECK)
D1=AB/2++5QCH.

D2=AB/24-50QCH

DEN=D1

IF(DARS(D2) aGT«DABS(D1))DEN=D2
IF(DEN)BRO 470480

CAz=0.

CG==A(JsK)/A(K4K)
CO=-ACJ9KI/A(K4K)

G0 TO S0

CA=AKK /DEN

C6==-AJJ/DEN

GENERALIZED ROTATICN TO ZERO THE PRESENT OFF-DIAGONAL ELEMENT

IF(N=2)10041904100 °

JP1l=J+1

JMl=y-1

KP1=K+1

KM1=K-1

IF(UM1-1313041104110

DC 120 I=1.JdM1

A=A (] ¢J)

BJ=B(Ie¢dJ)

AK=A(IgK)

BK=B(IeK)

ACl ¢J)=AJ+CG*AK

BC(Ie¢J)=BU+CG*BK

ACT oK)=AK+ChL*xAY

BCIeK)=BK+CA*BJ

IF (KP1=N)14041404160

DC 150 I=KP1,4N

AJ=A(JeI)

BJ=B(JsI)

AK=A(KsI)

BK=B(KeI)

ACJUael)=AJU+CG*AK

B(JeI)=PJU+CG*BK

A(KeI)=AK+CAXLY

B(KsI)=BK+CA*BUJ
IF(JUP1-KM1)17041704130

DO 180 I=JP1leKMI

AJ=AC(Js 1)

BJ=B(JoI)

AK=A (I 4K)

BK=B (I ¢K)

A(JeI)zZAJ+CG*AK

B(JeI)=BU+CG*EK

ACTI ¢K)=AK+CAXxAY

B(I+K)=BK+CA*EBJ

AK=A(K+K)

BK=B (X 4K)
A(KeKIZTAK+2 o *#CA*A(UgK)+CA*CA*A(Jod)
BIKsK)IZBK+2a#CA*B(JeK)+CAXCA*B(JqgJ)
AlJaJ)TA(UGJ) +2 0+ G+ A(JaK)+CG+CGrAK
BlUeJI=BCJaJI+2a*CO*B(JaK)+CGHCGHBK
ACJsyK)=Z0 W '
B(JUsKI=0o



260
261
262
263
264
265

266
267
268
269
2780
271
272

273
274

275 .

276
277

278
~279
-28 0
281
=282
283
284
289
-286

287
=288

289
290
291

292
293
294

295
296
297
298
299
300

OO0

s NeNeXn

a0 0

OO0

200
210

220

OO0

230

240

250

255

260

27¢

1391

1880
1990

94
UPDATE THE EIGENVECTOR MATRIX AFTER EACH ROTATION

DN 200 I=1aN
XJ=XA(T4J?
XK=X(1e¢K)
XCIed)=XJ+CGrXK
X(IeK)=XK+CAXXY
COMTINUE

UPDATE THE EIGENVALUES AFTER EACH SWEEP

D0 220 TI=14N

IF CACIoI)eGTelse oANDe B(IsI1)eGTe0e) GO TG 220
WRITECIOUT 42020)

STOP

EIGV(II=A(I«I)/B(I41)

IF(IFPRLEQ.CIGD TC 230

WRITECICUT2010) (EIGV(I)eI=14N)

CHECK FCR CONVERGINCE

DO 240 I=14N
TOL=RTCL*D(I)
DIF=DABS(EIGV(II-DI(I))
IF(DIF«GTSTCLIGO TO 280
CONTINUE

CHECK ALL CFF-DIAGCNAL ELEMENTS TO SEE IF ANCTHER SWEE™ 1
REQUIRED :

EPS=RTCL*x*2

DO 250 J=1 ¢NR

Jd=J+1

DO 250 K=JJeN
EPSAS(A(J4KI*A(JeKI)I/(A(JgJ)*A(KeK))
EPSBo(8(JeK)I*BlJeXKIY/(B(JsJ)I*B(KeK))
IFC(EPSA L TAEPS) e AND(EPSBSLTLEPS))GO TC 250
GC TO 280

CONTINUE

FILL OUT BCTTOM TRIANGLE OF RESULTANT MATRICES
AND SCALE EIGENVECTORS

DN 260 I=1.N
DO 260 J=14eN
A(JeI)ZA(T o)
BCJeaI)Y=EB(I4J)
DO 270 J=1aN
RB=DSQART (R (Jed))
DO 270 K=14N
X(KeJ)=X(KeJ)/EB

UPDATE MATRIX AND START MEW SWEEPIF ALLOWED

WRITE (6420810) (EIGV(IL)4IL=14N)
WRITE(6417990)

DO 1991 LI=14N

WRITZE(642010) (X(LIoLU)sLJ=14N)
FORMAT (//410XeYEIGENVALUES®s/)
FORMAT(/10X4*EIGENVECTORSYy/)



301
302
303
304
305
‘306
307
308

:309

311
312
plS
1314
;315
(316
317

260
290

20GC0
2010
2020

1¢

20

30

95

RETURN

DO 290 I=14N

DCIN=RIGV(T)

IF(NSWEEP «LTNSMAX)GO TO 40

G0 TO 2t5 :
FORMAT(/42740SHIE? NUMBER IN *»JACOBI* = o14)
FORMAT(14046Z14.5/)

FORMAT (25H0++«x ERROR SOLUTION STOP /

1 30H MATRICES NOT POSITVE DEFINITE)
END

"DETERMINATION OF DAMPING MATRIX FROM MODAL DAMPING RATIJS-

SUBROUTINE DAMP (NLeXeSMeSCeEIGEN)
IMPLICIT REAL*8(CA-Hqe0~2)

DIMENSION X(3¢C 900)qT(’Oqu)qSM(SOqBO)qSC(SOySO),VIGEN(SOJ9XI>(30)

READ (5¢110) (Y¥ISCL)4sL=14NL)
DO 10 I=14ML
EIGENCI)=DSQRT(EIGENCI))

DC 10 J=14NL

SC(I4J) =040

D0 20 TI=14NL

DA = 24*XISCII)*EIGENCII)

DO 20 I=1,.NL

D020 J=14NL

SC(I4d)= SC(I.J>+X<I, I)*X(JolI)*DA
DO 30 I=1leNL

DO 30 J=14NL

T(Ie4d) =040

DO 30 K = 14NL

TCIed) = T(IeJ)+SM(IsKI*SC(Ked)
DO 40 I=1e¢NL '

DO 40 J=1eNL

.o



- 330 SC(I4J)=0.0

331 DO 40 K=1eNL
332 40 SClIgu) = SCUIgUI+T(IgK)*SM(KeyJ)
333 WRITF (64170)
334 170 FORMAT(// +5Xe *THE DAMPING MATRIX IS%¢/)
335 DO S0 I=1eNL
336 50 WRITE(69120) (SC(Ied)eJd=14NL)
337 110 FOIMAT(3F10.2)
338 120 FORMAT (6D16,64)

~ 339 RETURN

.. 340 END

= SENTRY :

- 1440 005 30000000 386 1. 2

i 497.20 180.00 136.00 1000000,

= 212460 120.00 66.00 1000000

. ,

“

' EIGENVALUES

[ .

&, _

SAUEEP NUMBER IN *JACOBIwx =

&: 0139900 03 0.105250 C4

i\ .

WEEP NUMBER IN ~JACPBI+ =

§. 0.13990D 03 0.10825D Q4

© 8e13950D 03  0.10525D 04

?» EIGENVECTORS

b~ 0.64370D-01 -0.56652D-01

F- 0.81323D-01 0.524020-01

,~  THE DAMPING MATRIX IS

{

> 0400000 00 0.00000 00

- 0.,0000D CO 0.030CD 00

L 0.00 0.28 1.00 0.28

N

-

96



THE RIZISPONSE IS
CORDo»

N = D) F N =t NY R N =t PO b N 4 N ed N = NI N D = DD N2 N d N N TNt N

TIME

0.050
0050
0.100
0.100
0150
0e15C
04200
0.200
04250
04250
0.300
0.300
0350
0350
0400
04400
0450
0450
0500
0500
0.550
0.550
0.600
04600
0650
0650
0.7060
0700
0.750
0.75C
0.800
0.800
0.850
C.850
0.200
0.900
0.550
0550

DISPLe

-0.1224
'001309

-0e8362

-0.4990
‘008773
~10216
‘104830
-146151
"2.2483
~2+28R6
'301272
-361372
-4,103%1
‘4.1951
-542166
53785
-545039
-heb126
-7 3335
‘7.9504
-9.4735
«~9,4942
-11.1095
=1142372
-12.9011
-13.068¢4
‘14.8698
‘14.9437
-16+5694
-1649564
~19.1560
-19.2030
-2144573
-21.6202
-23.9323

"=24,0886

~2645665
-26.5985

VELOC.

‘406336

'501437

-Te4704

-9.,1664
~10.3531
-1144072
-13.7833
~1245077
-16.59291%
~14.8989
~1%8,.,537°2
-13.0848%
°200725a
-22.7584
-23.9396
243163
~274372%
-25.422¢

~2948347

-2%.5310
=31e6142

-33.0450
=34 40913
-3641220 -
=37.6070

~-37.0584
-40 48782
-38+4985
-42454%1

~4244125 -

-44,7157
-46 49534
=47 +,5955
-4942005
~51.3127
-49,.,7218
-534E20
-51.0615

ACCe.

~8346079
=102.7505
~-46.8782
-67.0241
-73.7455
~11.65610
-69 2076

- ~=1%.7756
=39 8756

~81.4%515
-30.0255
-101.7425
-S6e7322
-46.7187
“7904874
801706
~62e1527
-354,4875
-30«3152
101.1532
'33.5414
=94 ,5050
-68.3586
-2247403
-81.24644
37311
~50.8250
-58.E8705
-2301836
-115.8%423
42,0736
-7649121
-79.8093
0«R34C
=77 «65%3
~3.6(85
=37.1571
8665729

- 97
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