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ABSTRACT 

Iron oxide, Fe2O3, is a promising material for water splitting reaction using solar 

energy due to its stability and optimal bandgap of 2 eV. Even the recent efforts, however, 

using Fe2O3 thin film materials reported low efficiencies due to poor carrier transport 

within these films.  

A novel plasma oxidation method was used to synthesize arrays of α-Fe2O3 which 

are single crystal and have highly ordered oxygen vacancy planes. As one-dimensional 

nanostructures, these nanowires offer many other benefits to photoelectrochemical 

electrolysis, including high surface area, reduced charge carrier diffusion distance, and a 

preferential direction for charge diffusion. Furthermore, due to the ordered-oxygen 

vacancy planes in these nanowires, the high resistivity that has plagued this material may 

become a non-issue.  

The photoelectrochemical performance of these samples was compared to that of 

nanowire (and nanobelt) arrays grown by thermal oxidation of iron foils.  Hematite 

samples grown by plasma oxidation were found to have considerably greater 

photoactivity than by thermal oxidation.  This was attributed to the presence of a large 

(7.5 µm) mixed-phase interfacial layer in the latter, wherein the charge carriers are lost to 

recombination.  Due to the fast growth process in plasma oxidation, the interfacial layer 

is much thinner (1 µm) and may in fact contain only hematite, rather than a mixed phase.  

Studies are currently underway to determine the interfacial layer composition. 

It is concluded that further studies of hematite for photoelectrochemical 

electrolysis should be performed using nanowire arrays grown by direct plasma 

oxidation.  
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I. INTRODUCTION AND MOTIVATION 

Energy is one of the most fundamental societal necessities.  Currently, we are 

facing a global problem with regard to sources of energy.  The global energy demand is 

13+ TW (as of 2001), and is ever increasing.  That is approximately equivalent to the 

energy output of an astounding 13000 nuclear power plants.  A large majority of our 

current energy supply and consumption is dominated by fossil fuels (oil, coal, natural 

gas)[1, 2].  These resources are nearing their limits, poisoning the environment, hurting 

our health, and contributing to international conflicts.  Energy is tied to every aspect of 

society.  For example, scarcity causes cost spikes which contribute to slowing economic 

growth, begetting social upheaval.  Energy should be cheap, clean, and globally 

available: cheap because it is the foundation for all other development, clean to avoid 

health problems and associated costs and to minimize impact on the environment, and 

globally available so that a few nations never hold the world’s energy supply for ransom.   

Several alternative energy sources are available, including solar-derived, wind, 

geothermal, biomass, hydro, wave, nuclear and hydrogen.  Geothermal, hydro, and wave 

are very clean but site-specific resources that may benefit a local region but cannot begin 

to address the global energy demand.  Biomass, though promising, should not compete 

with the global agriculture, agriculture-dependent industries, such as feedstock and 

fertilizer, or put pressure on utilization of protected lands.  There may also be issues 

regarding harmful emissions from burning biofuels as well as whether the energy output 

is greater than the energy input.  Satisfying the global energy needs with nuclear 

technology would require an astonishing number of nuclear plants, together producing a 

large quantity of nuclear waste endangering the safety and health of local populations for 
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many generations.  Another issue is that global uranium resources are limited.  Solar and 

wind are capable of meeting significant energy demands.  Solar alone can fulfill our 

energy requirements.  The amount of energy falling on our planet is roughly equivalent to 

1.2 x 105 TW, enough to meet our global energy demand many times over for many years 

to come.  The vast portion of that energy is wasted, such as on heating parking lots, 

however.  Solar and wind collecting devices are capable of supplying energy for 

immediate use, but must be coupled with an energy storage device to provide energy 

during the times when there is no sunlight or wind.  Batteries are an expensive solution 

which has a number of technical and practical obstacles.  Hydrogen is chemically stored 

energy.  When converted to electricity in a fuel cell, coupling hydrogen derived from the 

electrochemical splitting of water with a renewable energy source is the cleanest possible 

fuel.  

The byproducts of electrochemical splitting of water are hydrogen and oxygen 

gases.  These may be recombined in a fuel cell to produce water and electricity.  It is in 

essence a closed loop fuel cycle, except that energy must be put in and out.  If that energy 

input is solar radiation, then the result is a clean and possibly inexhaustible energy 

supply.  One method of obtaining hydrogen electrochemically involves an electrolyzer—

powered by solar panels, for example.  Commercial electrolyzers typically use platinum, 

an expensive and precious metal.  This two-part operation would add significantly to the 

capital involved in collecting hydrogen.  Instead, there is significant interest in 

semiconductor-based devices that can harness solar radiation to drive the electrochemical 

water splitting reaction on the semiconductor surface.  In fact, direct 
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photoelectrochemical (PEC) water splitting using sunlight is described as the “Holy 

Grail” of electrochemistry[3, 4].  
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II. THEORY 

Photoelectrolysis 

The following net reaction describes the electrolysis of water: 

2𝐻𝐻2𝑂𝑂(𝑙𝑙) ↔ 2𝐻𝐻2(𝑔𝑔) + 𝑂𝑂2(𝑔𝑔)   ΔEº = -1.23 eV   (1) 

It is composed of two half-reactions.  Hydrogen gas is produced at the cathode by the 

reduction half-reaction, which is defined as 0V on the electrochemical scale when it 

occurs in pH = 0: 

2𝐻𝐻+(𝑎𝑎𝑎𝑎) + 2𝑒𝑒− ↔ 𝐻𝐻2(𝑔𝑔)    Eº = 0.00 eV    (2) 

This electrochemical reference point is defined as the Normal Hydrogen Electrode (NHE) 

potential.  Oxygen gas is evolved on the anode during the oxidation half-reaction: 

2𝐻𝐻2𝑂𝑂(𝑙𝑙) ↔ 𝑂𝑂2(𝑔𝑔) + 4𝐻𝐻+(𝑎𝑎𝑎𝑎) + 4𝑒𝑒−  Eº = -1.23 eV    (3) 

These reactions occur at the two respective electrodes.  Thus, simple physical separation 

may allow the gases to be collected and stored separately. 

 This electrolysis is a non-spontaneous reaction, which means that it requires 

energy input.  As shown in Equation (1), the minimal energy requirement is 1.23 eV.  

Using the following relation: 

𝜆𝜆 = ℎ𝑐𝑐
𝑒𝑒𝑒𝑒

,ℎ = 6.625 ∙ 10−34𝐽𝐽 ∙ 𝑠𝑠, 𝑐𝑐 = 2.998 ∙ 1017 𝑛𝑛𝑛𝑛
𝑠𝑠

, 𝑒𝑒 = 1.60 ∙ 10−19𝐶𝐶   (4) 
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 (where λ is wavelength in nanometers, h is Planck’s constant, c is the speed of light in 

vacuum, e is the electronic charge magnitude, and E is the energy of the photon in eV), 

the energy requirement to split water corresponds to radiation with a wavelength of 1010 

nm.  Photons with energy greater than 1.23 eV (or wavelength less than 1010 nm), which 

encompass the visible light spectrum, can drive the electrolysis reaction.  The integrated 

solar irradiance is Earth’s atmosphere filters portions of the solar spectrum and the 

radiation intensity decreases as distance light travels through the atmosphere increases (in 

adherence to the Beer-Lambert Law).  The “AMX” (air mass) standard was developed to 

reflect this effect, where “X” is the air mass coefficient: 

𝑋𝑋 = 𝐼𝐼
𝐼𝐼0

= 𝐼𝐼0
𝐼𝐼0𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐

= 1
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐

         (5) 

where I0 is the light intensity before entering the atmosphere, I is the intensity after light 

travels a particular distance through the atmosphere, and θ is the solar zenith angle—

measured between the straight path of light to a point and the normal.  The following are 

the air mass conventions and their meanings: AM0 for the solar flux in space, AM1 for 

the terrestrial solar flux normal to the surface, and AM1.5 for the terrestrial solar flux at a 

zenith angle of 48.2º.  AM1.5 is the accepted standard for solar cell analysis and reflects 

the day-average solar radiation, with the irradiance rounded to 1000 W/m2.  The AM0 

and AM1.5 solar spectra are shown in Figure 1. 
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Figure 1. Solar spectra corresponding to AM0 and AM1.5 standards[5]. 

 Semiconductor materials are capable of absorbing light energy to drive an 

electrochemical reaction.  Semiconductors may also be used to perform photolysis, the 

decomposition of a chemical compound using a photoactive catalyst, for a number of 

applications including decomposition of hazardous waste.  A significant amount of 

research in this area is devoted to solar fuels, particularly photoelectrochemical 

electrolysis for hydrogen generation. 

The fundamental components of a PEC cell are the cathode and anode, both or 

either of which may be a semiconductor.  If the anode is a photoactive semiconductor 

material, then it is called a photo-anode.  N-type semiconductors are photo-anodes 

because they drive the water oxidation reaction; p-type semiconductors are photo-
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cathodes because they drive the reduction reaction (detailed explanation may be found 

later in the text).  If only one electrode is a semiconductor, it is considered the working 

electrode (WE) and a noble metal is typically chosen to serve as the counter electrode 

(CE).  A third electrode, the reference electrode (RE), is also commonly when testing 

PEC performance of a semiconductor.  In a two-electrode cell, the potentiostat applies a 

bias between the WE and CE, but one does not know how the bias is distributed between 

the two electrodes.  In a three electrode measurement, the desired bias is applied to the 

WE with respect to the RE.  Thus, in the latter case, potential on the WE is known.  The 

bias on the CE, however, varies according to the flow of charges.  Three electrode 

measurements do not indicate the bias between the WE and the CE.  That has to be 

determined by connecting a multimeter.  Essentially, a three electrode measurement 

focuses on the behavior of the WE and does not report what is happening at the CE.  A 

common reference electrode is Ag/AgCl.  Figure 2 illustrates a typical three-electrode 

PEC cell involving a photo-anode WE, platinum CE, and a reference electrode (RE).  

Upon illumination by sunlight, the generated electrons flow from the bulk of the photo-

anode to the cathode, whereupon they participate in the evolution of hydrogen. The 

positively charged holes oxidize water at the surface of the photo-anode to produce 

oxygen and positive ions.   
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Semiconductor Principles: 

 The conductivity type of a semiconductor (n-type or p-type) is determined by its 

Fermi level position.  A characteristic property of semiconductors is the band gap (Eg), an 

energy minimum representing the separation between the valence and conduction bands, 

as illustrated in Figure 3.  The promotion of an electron from the valence band—also 

called the highest occupied molecular orbital (HOMO)—to the conduction band—or, 

lowest unoccupied molecular orbital (LUMO)—occurs and the electron is free to move 

within the lattice.  Consequently, the free-electron leaves behind a hole—a positive 

charge signifying the absence of an electron—in the valence band.  The hole is also free 

to move within the lattice, through the propagation of a free electron, in the opposite 

direction.  In the case of a direct band gap semiconductor, energy input equal to or greater 

e- e- 

Ph
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od
e 

Ca
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od
e 

H+ 

2H+ + 2e- → H2 H2O + 2h+ → 2H+ + ½O2 

Electrolyte 
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 E
le

ct
ro

de
 

 Sun  
hν 

Figure 2. An illustration of a three-electrode photoelectrochemical water 
splitting system in which the photo-anode is the semiconductor nanowire array.  
“h+” represents an electron-hole and “e-“ represents an electron.   
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than Eg will allow an electron to conduct through the lattice.  Some materials exhibit an 

indirect band gap, however.  Although the band gap is still the minimum separation 

between the valence band maximum and the conduction band minimum, these points are 

offset by a finite momentum, p.  Mathematically, the bands are represented by a parabolic 

relationship between energy, E, and crystal momentum, k: 

𝑒𝑒 − 𝑒𝑒𝑐𝑐   𝑐𝑐𝑜𝑜   𝑒𝑒𝐸𝐸 − 𝑒𝑒 = 𝑝𝑝2

2𝑛𝑛
= ℏ2𝑘𝑘2

2𝑛𝑛
        (6) 

where m is the effective mass of the particle (𝑛𝑛𝑒𝑒
∗  for electron in Ec and 𝑛𝑛ℎ

∗  for hole in 

Ev), and ℏ is the reduced Planck’s constant (ℏ= ℎ
2𝜋𝜋

).  Equation (6), represents a free 

particle, but the relationship becomes complex in an actual crystal because of particle 

interaction with the atoms and due to crystal structure and direction.  Figure 4 shows an E 

versus k band diagram for a hypothetical semiconductor material with a direct band gap 

(a) and an indirect band gap (b).  As before, the upper line is the conduction band and the 

lower line is the valence band.  In 5a, the conduction band minimum lines up with the 

valence band maximum along k=0.  This is the case for direct band gap materials, such as 

GaAs, and it is an important feature for applications in optical devices including light 

emitting diodes.  In 5b, the conduction band minimum occurs along the [100] crystal 

direction, rather than at k=0.  In this case, an interaction with the crystal is necessary for 

an electron to transition from Ev to Ec.  The measure of this interaction is a phonon, a 

quantized measure of a crystal lattice vibration.  Therefore, the crystal must absorb a 

photon with an energy Eg and a phonon, or heat.  An indirect band gap material can also 

experience a direct transition if the absorbed energy is equivalent to the gap at k=0.  

Silicon is an example of an indirect band gap material, which has nonetheless found wide 
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acceptance for photovoltaics out of commercial practicality.  Light can penetrate farther 

into an indirect band gap material without exciting an electron across the band gap 

because absorption of a photon and phonon must happen simultaneously.  This is why 

silicon solar cells are typically hundreds of microns thick. 

 

 

 

 

 

  

e- hυ (photon) 

Conduction band 

Valence band 

Ec 

Ev 

Eg 

Figure 3. Schematic showing the excitation of an electron from the valence band 
to the conduction band. 
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The conduction and valence bands are simply two states which charges may occupy, but 

there exists a density of states above and below, respectively, which may be occupied.  

The probability of these states being occupied is represented by the Fermi-Dirac 

distribution function: 

𝑁𝑁(𝑒𝑒)
𝑔𝑔(𝑒𝑒)

= 𝑓𝑓𝐹𝐹(𝑒𝑒) = 1

1+exp �𝑒𝑒−𝑒𝑒𝐹𝐹𝑘𝑘𝑘𝑘 �
        (7) 

Where N(E) is the number of particle (electrons) per unit volume per unit energy, g(E) is 

the density of quantum states (number per unit volume) per unit energy, k is the 

Boltmann constant, and T is temperature in Kelvin.  When E=EF,  the Fermi energy, the 

Figure 4. A schematic of the energy versus momentum (k) diagram for direct (a) and 
indirect (b) band gap semiconductors. 
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Fermi-Dirac distribution is equal to ½, or 50%.  The Fermi energy is not an occupiable 

state, but it does represent an energy level has a 50% probability of being occupied.  In 

electrochemistry, the Fermi level is the electrochemical potential (µ) of electrons in the 

semiconductor solid.  For a simple redox couple, the Fermi level is given by: 

𝑒𝑒𝐹𝐹,𝑜𝑜𝑒𝑒𝑟𝑟𝑐𝑐𝑟𝑟 = �̅�𝜇𝑒𝑒 ,𝑜𝑜𝑒𝑒𝑟𝑟𝑐𝑐𝑟𝑟 = 𝜇𝜇𝑜𝑜𝑒𝑒𝑟𝑟𝑐𝑐𝑟𝑟° + 𝑘𝑘𝑘𝑘𝑙𝑙𝑛𝑛 � 𝑐𝑐𝑐𝑐𝑟𝑟
𝑐𝑐𝑜𝑜𝑒𝑒𝑟𝑟

�       (8) 

where cox and cred are the concentrations of oxidized and reduced species.  For a simple 

visual interpretation one can imagine that the Fermi level would nearer the band edge 

where with the highest concentration of electrons (in the case of Ec) or holes (in the case 

of Ev). 

 Introducing donor or acceptor states can shift the Fermi level and so define the 

conductivity type of a semiconductor (n- or p-type).  In an intrinsic semiconductor, such 

as undoped silicon, the Fermi level is at midgap between the conduction and valence 

bands.  “Impurity” atoms introduced into a crystal lattice can donate electrons or holes.  

For example, doping silicon with phosphorous atoms creates n-type silicon.  Whereas 

silicon has four valence electrons, phosphorous has five, thus it is capable of donating an 

electron to the crystal—like water poured from the top of a hill jutting out of the ocean.  

For p-type, the dopant atom has fewer valence electrons than the atoms surrounding it 

and thus acts as an acceptor of electrons from the crystal.  For doping, the concentration 

of impurity atoms in the crystal is typically on the order of 1015 to 1019 cm-3.  The 

presence of dopants influences the distribution of charge carriers below and above the 

band gap.  For n-type semiconductors, the density of occupied states above the 

conduction band is increased, and consequently the Fermi level rises nearer to the 
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conduction band.  For p-type, the Fermi level is nearer the valence band.  This is 

schematically shown in Figure 5.  Reference [6] pertains to the above discussion. 

 

 

 

 

 

 

In the presence of an electrolyte, the semiconductor Fermi level equilibrates with 

that of the electrolyte[7, 8].  The energy levels for a photoanode and metal cathode before 

contact, in dark, and under illuminations are shown in Figure 6.  These schematics plot 

voltage on an electrochemical scale (up = negative, 0 = NHE) versus a single space 

dimension.  Thus, when referring to the band diagram, a rise corresponds to a negative 

potential shift, and vice versa.  The electrolyte Fermi level is somewhere between the 

O2/H2 redox couple—depending on the concentration—and is a function of the Gaussian 

type distribution of redox states, which is detailed further in a number of review 

articles[7, 9-11].  In the case of an n-type, the electrochemical potential is greater within 

the semiconductor than in the electrolyte.  As a result, electrons diffuse from the solid 

surface into the solution.  This leaves the semiconductor surface positively ionized, 

creating a space charge region.  Consequently, oppositely charged ions congregate on the 
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Figure 5. A schematic of the Fermi level position in n-type (a) and p-type (b) semiconductors. 
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electrolyte side of the interface, creating a charge double layer called the Helmholtz 

layer.  On the band diagram, this effect is represented by the bending of the conduction 

and valence bands.  The band edge positions at the interface are pinned and do not 

change throughout the interaction because they are a function of the Helmholtz layer 

parameters, which depend on the specific material-electrolyte interaction.  The bulk of 

the semiconductor does not “see” the Helmholtz layer, however, and may experience a 

redistribution of electrochemical potential.  This is manifested by the shifting of the 

Fermi level, which is a bulk material property.  The energy gaps between the band edges 

and the Fermi level are functions of the material and remain constant, forcing the bands 

to move in congress with the Fermi level.  The space charge region where the bands are 

bent contains an electric field, the direction of which is determined by the relative 

position of the Fermi level to the electrolyte redox potential.  In an n-type semiconductor, 

the bands shift downward (more positive) in order to reach equilibrium, thus creating a 

field that drives electrons, the majority carrier, away from the interface.  Consequently, 

holes are driven into the solution to perform oxidation.  In a p-type semiconductor, the 

bands shift upward (more negative) to raise the Fermi level, creating a field that drives 

electrons into the solution.  At the photocatalyst, photoelectrolysis is therefore a minority 

carrier driven process.  On the counter electrode side, the metal has a much larger carrier 

density and is able to match the semiconductor Fermi level as it shifts.  Upon 

illumination, the photogenerated charges counteract the electric field in the space charge 

layer, thereby flattening the bands to a degree dependant on the illumination intensity.  

With enough illumination, the semiconductor Fermi level will be at the flat band 
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potential, Ufb, which is the maximum (minimum in case of n-type) Fermi level possible 

without an external bias. 

The n-type semiconductor Figure 6 a-d cannot split water without an external bias 

because the flat band potential of the semiconductor is below the hydrogen evolution 

potential.  In (a), the metal Fermi level is aligned with that of the solution, but the 

semiconductor has not made contact with the electrolyte yet.  In (b), the two electrodes 

are connected by a junction and both are in the electrolyte.  The Fermi level of the 

semiconductor lines up with the electrolyte Fermi level.  Due to band edge pinning, this 

causes the bulk bands to bend downward.  In (c), the semiconductor is illuminated, 

creating photogenerated carriers that counteract the field in the space charge region, thus 

reducing band bending.  Electrons that move through bulk to the metal still do not have 

enough energy for hydrogen evolution.  Therefore, in (d), an external positive bias, Eb, is 

applied.  As discussed before, the bias the distributed between both electrodes, thus lower 

the semiconductor Fermi level and raising the metal Fermi level.  With enough bias, the 

electrons may reduce water.  For a p-type semiconductor with Ufb too high, a negative 

bias is applied which raises the semiconductor Fermi level and lowers that for the metal.  

The ideal situation for a photoanode capable of self-driven water splitting is shown in (e).   
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Figure 6. Energy level diagrams for n- and p-type semiconductors in 
electrolyte during photoelectrolysis.  Figures (a) – (d) show the energy 
levels for an n-type semiconductor before contact with electrolyte or 
cathode, in equilibrium with the electrolyte and cathode in dark, with high 
intensity illumination, and with illumination and positive bias, respectively.  
In the latter figures, the semiconductor requires bias to perform 
photoelectrolysis, whereas the hypothetical n-type semiconductor in (e) 
does not need bias because its bands straddle the water splitting redox 
potentials.  Figure (f) represents a p-type semiconductor at equilibrium in 
dark—correlating to (b).  
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PEC Material Requirements: 

There are a number of challenges associated with searching for a suitable and 

stable material for performing photolysis. The criteria are[12]: 

1) Band gap energy between 1.7 eV and 2.2 eV (roughly). 

2) Appreciable reaction kinetics and charge carrier conductivity 

3) The energies of the highest unoccupied and lowest occupied molecular orbitals 

“straddle” the redox potentials for water decomposition. 

4) Stability in aqueous environments. 

5) Earth-abundant, inexpensive, mass-producible 

The minimum band gap requirement is dictated by the minimum energy needed to split 

water (1.23 eV), thermodynamic losses, and overpotentials needed to increase the 

reaction kinetics. The upper band gap requirement ensures that the semiconductor 

absorbs a significant portion of the terrestrial solar spectrum. It is not enough that the 

semiconductor absorb the photons, however, because it also must be able to separate and 

conduct the electrons and holes. As for stability, the semiconductor electrode may 

undergo corrosion. The third requirement refers to the relative energy band positions of 

the semiconductor. Essentially, the energy of the valence band should be greater than the 

water oxidation potential (1.23 eV vs. Normal Hydrogen Electrode) and the energy of the 

conduction band should be less than the water reduction potential (0 eV vs. NHE).  The 

kinetics of charge transfer from the surface to the electrolyte must be faster than the 

decomposition reaction.  For example, TiO2 has excellent stability in a wide range of pH 



18 

levels whereas the corrosion of ZnO by oxidation is preferred over oxidation of water by 

the holes[13].  ZnO is stable as a photo-cathode (p-type), however, because the water 

reduction potential is greater than the reduction corrosion potential.  Finally, the material 

cannot be composed of precious elements or else its application would be limited from 

the beginning due to economical impracticality.  An expensive high-performance PEC 

system simply cannot be the solution.  Similarly, there should exist, or be developed, a 

method for inexpensive mass-production in order to commercially feasible. 

Efficiency 

To date, the highest measured photoconversion efficiency for a 

photoelectrochemical cell is 12.4%, which was achieved at NREL using a GaInP2/GaAs 

monolithic tandem cell[14].  That cell exhibited significant degradation, however. The 

photoconversion efficiency (STH)—also called solar to hydrogen conversion 

efficiency—is calculated using Equation (9)[15], 

t

P

P
I229.1

=ε
         (9) 

where, the constant 1.229 is expressed in volts, Ip is photocurrent in A/m2, and Pt is the 

input power (or light irradiance) in W/m2.  The constant comes from dividing the 

standard Gibbs energy for hydrogen evolution at 25 ºC and 1 bar (237.2 kJ/mol) by 

number of moles of electrons used to generate 1 mol of H2 [4], and by the Faraday 

constant (96485 C).  The numerator and denominator are both in terms of power units, 

and therefore efficiency is the ratio of power output to power input.  This method 

assumes standard temperature and pressure conditions and that all the carriers are utilized 
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for evolving hydrogen and oxygen.  The latter assumption is contradicted if the power 

output comes from photoelectrode corrosion.  In order to use Eq. (9) to calculate 

efficiency, the photocurrent (current difference between dark and light conditions) must 

be generated without an external bias. 

Although it is desirable for a photoelectrode to split water spontaneously upon 

illumination, some externally applied bias is most often necessary to encourage 

photocurrent.  In such a case, Equation (9) must be modified as the following [15]: 

t

Pbias

P
IV )229.1( −

=ε
        (10) 

where, Vbias is the externally applied potential.  Vbias is the potential difference between 

the working electrode (photoelectrode) and the counter electrode.  It is preferred to 

determine efficiency from two-electrode measurements.  For three electrode 

measurements, Vbias is not measured by the potentiostat and must be determined with an 

external voltmeter. 

Types of PEC Cells/Materials and Background Literature 

 The criteria for solar-driven PEC electrolysis are so selective that few 

semiconductors meet even the most basic requirements—band gap, band edge positions, 

and stability—though many semiconductors have been examined.  There are different 

routes by which an ideal material may be found, such as by synthesizing a new 

semiconductor or by modifying those already studied.  The possibilities for the 

composition of new semiconductors are practically unlimited when considering multi-

elemental materials.  Likewise, there are many options by which weaknesses of known 
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materials may be decreased or the strengths augmented.  As such, this has been an active 

pursuit for many years and will continue to be so.   

 The most significant material types or strategies studied for solar-driven PEC may 

be classified according to three categories: 

• Metal-oxide 

• Group IV and III-V 

• Other 

There may also be some overlap among these categories both in terms of new materials 

and modifications.  New materials are also being discovered—particularly those that are 

higher order than ternary combinations, but these will not be discussed because the 

reports are scarce. 

 Metal Oxide: The possibility of solar hydrogen production by solar-driven PEC 

electrolysis was first discovered with TiO2 (titania) in 1972[16], and it has been studied 

continuously since then[17-29].  Titania is an attractive material for PEC because of its 

superb stability in aqueous environments with a wide range of pH levels.  Furthermore, 

its band edges straddle the water reduction/oxidation potentials.  As most oxides, it is a 

natural photoanode (n-type).  The major issue with titania, however, is its large band gap 

(Eg ≈ 3 eV), which limits the amount of solar energy it is capable of absorbing, 

significantly limiting the potential solar-to-hydrogen conversion efficiency.  A large 

portion of the research has been directed toward reducing the band gap or maneuvering 

around the limitation.  Attempts to decrease the band gap usually result in creating new 

problems, such as increased degradation.  In fact, the natural stability of titania has been 
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attributed its large band gap, an indicator of the chemical bond strength[30].  Several 

other metal oxides have also shared much of the spotlight but failed to impress due to 

wide band gap.  These include ZnO[31-33], WO3[34-38], SrTiO3 [39-42], KTaO3, Ta2O5, 

ZrO2 [11], and SnO2 [43].  Some researchers have chosen an indirect route to enhancing 

the PEC behavior of some metal oxides by instead augmenting other properties, such as 

surface area.  One method involves using one-dimensional morphologies, which will be 

discussed later in this chapter.  

 Iron oxide is an interesting and promising material for solar water splitting.  There 

are three main types of iron oxides—FeO, Fe2O4 (magnetite), and Fe2O3 (hematite)—but 

it is hematite (α-Fe2O3) which exhibits the desired properties[44-85].  It is an n-type 

semiconductor with an ideal (though indirect) band gap of ≈ 2.2 eV, which means it can 

absorb a large portion of the terrestrial solar spectrum.  Hematite has also been shown to 

exhibit good stability over a wide pH range (pH > 3).  It is particularly appealing because 

it is cheap, relatively easy to synthesize, environmentally benign, and composed of two of 

the most abundant elements on Earth.  Hematite has had limited success as a PEC 

material for several reasons, however.  As a pure-phase material, it is a known Mott-

insulator, which means that, though charge separation occurs, charge transport properties 

are poor[68, 75, 81]; typically synthesized as low quality polycrystalline films, it exhibits 

high recombination rates due to crystal grain boundaries and unordered oxygen 

vacancies[86]; it exhibits anisotropic conductivity, wherein conductivity along the (001) 

plane is four orders of magnitude higher than in the [001] direction[45, 55, 81], which is 

again an issue for polycrystalline films; and the conduction band edge is typically ~0.2 

eV too positive for unbiased hydrogen evolution[87].  It has been suggested that these 
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issues may be solved by inexpensive means of modifying the material.  Several studies 

have shown significant improvements through doping/alloying—Ti[49, 51, 79], Si[47, 

49, 56, 60], Pt[50], Ge[60], Mg[52, 72, 88], Zn[54, 65, 89, 90], Ta[91], Nb[87, 92], Cr, 

Mo[64], Cu[53], and Al-Ti[93]—and surface modification—Co[56], and Fluorine[51].  

Of the studies, the most significant improvements have been attained by introducing Ti 

and Si, which increase the conductivity due to increased donor concentrations and, in the 

case of Si, improves crystallinity, reduces crystal size, and influences orientation of the 

(001) basal plane.  As for surface modification, cobalt improves water oxidation catalysis 

and fluorine is claimed to lower the energy of the conduction band edge.  Manipulating 

structural characteristics such as morphology and improving crystallinity may also reduce 

or eliminate the limitations, which is the focus of this study.  Some positive results have 

already been shown with the use of nanorod structures, which are discussed in more 

detail later. 

 Several different methods have been developed for synthesizing hematite 

samples: single crystal synthesis[94, 95], ceramic processing[91], sol-gel[96-100], 

physical vapor deposition[101], chemical vapor deposition (CVD) [28, 56, 68, 71, 102], 

direct plasma oxidation[103-105], aqueous self-assembly[44, 106], electrochemical 

deposition[50, 64, 107-109], direct thermal oxidation [110-112], and spray pyrolysis[52, 

53, 66, 89, 93].  The later is probably is most popular method among 

photoelectrochemical studies because it allows for easy introduction of precursors 

containing foreign impurities.  Most of these methods produce polycrystalline films 

which have their own set inadvertent disadvantages, as discussed before, while some 

others are impractical for large scale synthesis.  Both thermal oxidation and plasma-
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assisted have been shown to reproducibly grow high quality nanostructures of hematite.  

Direct plasma oxidation, however, is quicker and may have other advantages, which this 

study attempts to show. 

Group IV and III-V: There are many possible binary, ternary, and quaternary 

combinations of group III-V and IV elements that yield semiconductors with interesting 

properties.  The advantage of these materials is that they are typically synthesized as high 

purity single crystal films using metal organic CVD, yielding high efficiencies.  For PEC 

applications, the fatal flaw of these materials is poor stability and band edge mismatch.  

All binary III-V materials are aligned to drive the hydrogen evolution reaction, but only 

GaN is capable of evolving oxygen[113, 114].  GaN has a too wide band gap (3.4 eV), 

however.  SiC, a binary group IV semiconductor, shares a similar fate.  It is well aligned 

for water splitting and is stable against corrosion, but it too has an unacceptably wide 

band gap (3 eV)[115].  Furthermore, the high purity of these materials requires 

exuberantly expensive equipment and processing.   

 Elements from groups III and V may be combined in ternary, quaternary 

materials, and even higher order materials to yield interesting properties.  Often, the 

intent is to find a happy medium between the properties of two or more semiconductors.  

For example, combining InN (0.7 eV) with GaN yields a InGaN with varying 

compositions and likewise varying band gaps (between those of InN and GaN)[116-119].  

Other such materials studied for PEC applications include GaInP2 [120-122], GaAsPN, 

GaPN, and GaInPN[123, 124].  GaAsPN exhibited high corrosion while GaP0.98N0.02 was 

found to have a band gap of 2 eV, but the introduction of N caused lattice mismatches 

between the underlying GaP layer and significantly reduced the efficiency.  At the same 
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time, minute nitrogen concentrations were shown to reduce vulnerability of the material 

to corrosion.  By using indium in Ga.962In.038P.976N.024 and Ga.95In.05P.975N.025, lattice 

mismatching was solved and these materials also had a direct band gap of 2 eV, but still 

exhibited low efficiencies.   

 A tandem cell is a combination of two or more semiconductor materials 

connected by ohmic contacts.  These are stacked such that wider band gap materials are 

nearer to the illumination source, allowing the lower energy light to pass through to the 

next material.  This way, more photons may be absorbed and higher efficiencies may be 

attained.  Tandem cells may overcome the energetic mismatch of the III-V matrials.  The 

highest solar-to-hydrogen efficiency PEC cell is a tandem cell using p-GaInP2 on a p/n 

GaAs junction, which is the 12.4 % cell mentioned in the previous section[14].  The 

excited electron from the top p-GaInP2 layer reduces hydrogen while its hole combined 

with an excited electron from the GaAs layer.  The hole left in the GaAs then proceeds to 

the metal cathode to drive the oxidation process.  Of course, the problem of stability and 

cost still remains. 

Other: Many other materials and strategies have been employed for PEC applications.  

Metal sulfides (e.g. MoS2), particle suspensions, protective coatings, and hybrid 

architectures, just to name a few.  None have thus far come close to addressing even a 

majority of the requirements for successful water splitting application, although each are 

significant pursuits.  For more thorough discussions of these and other developments, the 

reader is referred to the following review articles: [11, 12, 23, 26, 125, 126]. 
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Nanowires for PEC 

One example of a modification to an existing material to improve PEC 

performance is morphology.  In this regard, the use of nanowires can be advantageous. 

Nanowires offer a high surface-to-volume ratio, which means that using nanowires rather 

than a flat surface increases the reaction surface area leading to greater current. 

Nanowires can have fewer (or no) grain boundaries[44, 103, 104], which are a serious 

problem in polycrystalline films because they act as electron-hole trap sites[46]. 

Furthermore, nanowires are an excellent platform for doping and alloying studies. One 

way to increase the STH efficiency of hematite, for example, is to minimize the distance 

through which the minority carriers must diffuse, thus reducing the probability of 

recombination losses[67]. The geometry of nanorods/nanowires achieves just this, and in 

addition the perpendicular orientation better facilitates charge transport to the back 

contact without loss due to random pathways such as in nanoparticle systems. Reducing 

the feature size, to sub 5 nm dimensions may lead to quantum confinement[127], which 

may actually be beneficial if it leads to a decrease (upward shift) in the conduction band 

energy without a significant increase in the total band gap. 1-D nanostructures are 

relatively new in this field, but several studies have already demonstrated that they 

perform better than particles or thin-films. 

Several groups synthesized TiO2 nanowires and nanotubes and demonstrated 

improved performance compared to films or particles[22, 24, 25]. One study in particular 

found that the nanowires achieve a two-fold increase in photoconversion efficiency over 

a single-layer film[22], and another study demonstrated a twenty-fold increase in 

photocurrent over a nanoparticulate film[24]. These studies have attributed the increased 
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activity to increased surface area and reduced grain boundaries. These observations are 

not limited to TiO2, however.  Other materials, such as hematite—as discussed above—

and ZnO have been shown to benefit from 1-D geometries for photoelectrochemical 

water-splitting.  An array of ZnO nanorods exhibited a photocurrent twice that of a ZnO 

thin film in the same study[33].  

Synthesis of hematite nanowire or nanorod architectures has been demonstrated 

using different methods[102-104, 110, 111, 127-132]. Using pure oxygen RF plasma, 

nanowire arrays of several oxides were synthesized in a matter of seconds[103]. 

Subsequent studies of showed that the hematite nanowires were single-crystalline and 

exhibited a superstructure of repeating oxygen vacancy planes parallel to the growth 

direction along the (001) basal plane[104, 105].  As mentioned earlier, hematite exhibits 

higher conductivity along the (001) plane, which means that these nanowires may exhibit 

excellent charge carrier conductivity to the back contact.  Oxygen vacancies in hematite 

are traditionally responsible for significant losses in charge carrier conductivity, so the 

potential advantage of these nanowires for PEC electrolysis is that the carriers may 

conduct to back contact without encountering vacancy trap sites. Discoveries such as 

these continuously demonstrate the benefits of nanowire architectures for PEC 

electrolysis. 

 

Purpose and Intent of this Study 

This study reports different methods for synthesizing hematite nanostructures, 

with a focus on nanowires, and their respective performance for PEC water splitting.  
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Primarily, this compares PEC performance of hematite electrodes produced by direct 

thermal oxidation and plasma oxidation methods, two of more promising and scalable 

methods. 
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II. INSTRUMENTATION AND EQUIPMENT: 

 The section includes descriptions of the tools, equipment, and methods used in the 

study.  Experimental conditions and parameters will be described in section III.  

For synthesis: 

• Atmospheric microwave plasma (AMWP) jet reactor 

• Ambient furnace oven 

For characterization and analysis: 

• Photoelectrochemistry (PEC) setup 

• Scanning electron microscope (SEM) 

• Electron diffraction spectroscopy (EDS) 

• Raman and photoluminescence (PL) 

• Transmission electron microscope (TEM) 

• Ultra high vacuum (UHV) system equipped with ultraviolet photoelectron 

spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS) 

• UV-Vis 

• X-Ray diffraction (XRD) 

Atmospheric Microwave Plasma Jet Reactor 

 Plasma oxidation was performed using an in-house designed and assembled 

microwave plasma reactor fitted with a vertical 1.5” diameter quartz tube[133].  A 

delivery chuck at the top allowed for gases to be introduced in a concentric fashion to 
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serve both as a cooling sheath for the tube to keep the reacting powder in the center.  The 

reactor can operate at a pressure range of a few torr and powers of 300 W to 3 kW.  The 

sustained plasma jet ranged was 12 to 15 in.  The schematic is shown in Figure 7.   

 

Figure 7. Microwave plasma reactor designed to create a plasma jet at atmospheric 
conditions.  Metal powders fed from the top form metal oxide nanowires collected at the 
bottom[133]. 

Ambient Furnace Oven 

 Thermal oxidation synthesis was performed in a Barnstead Thermolyne 1400 

FurnaceIt is capable of operating at temperature ranging from room to 1000 °C.  

Photoelectrochemistry Setup 

 The PEC test instrumentation include: 
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• Princeton Applied Research Model 273A Potentiostat/Galvanostat 

• Three-electrode cell glass cell with a quartz front window. 

• Oriel 300W Xe lamp solar simulator from Newport Instruments 

• Newport model 77330 monochromator 

• Thorlabs D10MM power meter with model PM100 readout 

• Computer with PowerSuite electrochemistry software 

• Glass cell with a quartz window and two compartments separated by a porous 

glass frit 

• Platinum mesh counter electrode 

• Several different reference electrodes were used 

o Ag/AgCl, MF-2052 from Bioanalytical Systems, Corp 

o Standard Calomel Electrode (SCE), Accument 13-620-51 

• Ultra High Purity N2 line for sparging 

The glass cell has two compartments to isolate the WE and CE so that the evolved O2 

and H2 may be collected separately.  In this study, only the electrochemical data was 

analyzed for performance evaluation.  Therefore, all three electrodes (WE, CE, RE) were 

placed in a single compartment to eliminate any contribution to resistance to ion flow by 

the glass frit.  A typical setup is shown in Figure 8.  
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Scanning Electron Microscope 

 An SEM is a surface analysis technique particularly useful for topographical and 

morphological assessment.  An FEI Nova 600 NanoLab SEM was used to analyze the 

synthesized samples.  It uses a field emission gun to generate an electron beam which is 

focused with electromagnetic lenses and apertures onto the sample.  Scanning coils then 

raster the beam across the sample.  Interaction of the beam with the sample emits Auger 

electrons, X-rays, backscattered electrons, cathodoluminescence, and secondary 

electrons.  Backscattered electrons are the result of elastic interaction, in which case 

energy is conserved, while the other emissions are inelastic interactions.  Secondary 

Figure 8. Photograph of a PEC cell with a three-electrode setup in front of a light source.   
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electrons, which are emitted after the primary electron (incident beam) are absorbed, are 

typically used for surface topography imaging.  An “In-Lens Detector” was used to 

collect only the secondary electrons.   

EDS 

 Electron diffraction spectroscopy (EDS) is used to analyze elemental 

composition.  A detector collects the X-ray emission resulting from the electron beam 

and sample interaction in an SEM.  Each element has a unique core shell structure, which 

results in unique X-ray signals.  A commercial system from EDAX was used for the 

EDS.  The instrument was setup in a JEOL 5310 SEM with Li thermionic emission 

source.   

Raman and Photoluminescence 

 Raman is a technique primarily used to evaluate the phase of materials, as well to 

confirm the composition.  A focused monochromated infrared laser interacts with the 

sample, resulting in inelastic scattering which is collected by a detector.  There is a 

material phase-specific change in the energy of the scattered photons from the source 

laser, which is known as the Raman shift.  Photoluminescence is a similar technique 

performed in the same instrument, but it uses a high energy UV laser to determine the 

energy band structure of a material.  The band gap and defect states within it may be 

detected.  A Renishaw Invia Micro Raman system was used.  It has He-Cd (325 nm) and 

Nd-YaG (633 mn) lasers for the PL and Raman analysis, respectively.  The resolution of 

the Raman spectroscopy in this setup is 1 micron.  
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UPS 

 Ultra violet photoelectron spectroscopy (UPS) is a surface study techniques.  It 

involves exposing a sample to UV light, which causes excitation of valence electrons.  It 

is used to analyze the valence band structure, and particularly the Fermi level energy, 

conductivity type, of a semiconductor, and work function.  This technique is highly 

sensitive to the top few nanometers, making it an excellent technique for study a material 

surface, adsorbates, and functional groups.  The analysis is performed under highly 

controlled ultra-high vacuum conditions.  A VG Scientific / RHK 62 Technology multi 

chamber UHV surface science system was used, with a 150 mm radius CLAM 4 

hemispherical analyzer.  A differentially pumped He-discharge lamp was used to 

generate UV radiation. 

UV-Vis 

 UV-Vis spectroscopy is a versatile tool for studying optical properties of 

materials.  Absorbance, transmission, or reflectance data are collected, from which one 

can determine the band gap value and type (in/direct) of semiconductors, among other 

valuable information.  For solutions, this technique can also be used to determine the 

concentration of solutes.  Light impinging on a sample is absorbed, transmitted, or 

reflected.  The degree to which each of these happens depends on the particular material 

of interest.  Performing calculations and analysis will be discussed in the Results section. 

 A UV-Vis spectrometer uses multiple light sources (tungsten filament for visible 

region and deuterium lamp for ultraviolet region), a grating to monochromate the light, 

and a photodiode or CCD detector.  For solutions, the monochromated beam is split into 
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two by a half-mirror after which one beam goes through the reference solution (usually 

pure solvent) and another goes through the sample.  The transmitted light is then 

collected by the detector and the software calculates the absorbance/transmittance values.  

Diffuse reflectance measurements are performed for opaque solid samples using a diffuse 

reflectance integrating sphere.  The sphere has ports for the incident beam, the sample, 

and the detector.  A plug is positioned at an appropriate angle to absorb the specular 

reflectance—only diffuse reflectance should be collected for the measurement.  The 

shape of the sphere channels the diffuse reflectance to the detector port.  A highly 

reflective standard (typically Ba2SO4 or PTFE) is used as a backing for a sample so that 

any transmitted light is reflected back.  A Perkin Elmer Lambda 950 UV-Vis 

spectrometer was used in this study. 
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III. PROCEDURE/EXPERIMENTAL METHODS 

RF Plasma Oxidation 

 Commercial iron sheets (98%) 3mm thick were exposed to an O-rich RF glow 

discharge plasma at low pressure (100 Pa) for 90 seconds.  The process is described in 

detail in several publications[103, 104, 128, 134]. 

Atmospheric MW Plasma 

Iron sheets (99.5 %, from Advent Research Materials) 2 mm thick were cut into 

one square centimeter pieces.  The pieces were then sanded down (220 grit) to remove 

any native oxide or surface contamination, cleaned with ethanol, and promptly dried with 

Kim Wipes.  An atmospheric plasma jet reactor, described elsewhere[133], was used to 

generate a plasma consisting of air, argon, and oxygen.  The setup was modified for this 

synthesis method such that the plasma flame was directed upwards.  The flow rates 

varied but were usually about 15 lpm, 2 lpm, and 500 sccm, respectively.  The iron pieces 

were then exposed in the plasma jet.  The iron pieces were held in the plasma flame with 

tweezers about 3” from the base.  Exposure time varied from a couple to twenty minutes. 

Ambient Oven Oxidation 

 Iron sheets (same as above) were spaced out on aluminum foil, pressed down to 

ensure good contact, and placed in a furnace oven pre-heated at 500 °C.  Although 5 

hours was enough to grow a layer of nanowires, ribbons, flakes, and belts, the samples 

were held in the oven for 12 hours. 
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Atmospheric Plasma Torch Powder 

 The atmospheric plasma jet reactor shown in Figure 7 was used with a (≈ 10”) 

plasma consisting of 12.45 lpm of air, 2 lpm of Ar, 300 sccm of H2, and 500 sccm of O2.  

A pump was used to draw the gas (and plasma) downward.  Iron powder (<10 µm, Sigma 

Aldrich) was slowly poured from the top.  The powder reacted as it fell through the 

plasma by gravity.  Products were collected in a cup placed directly below and from a 

filter (1 µm) placed in the way of the exhaust. 

Electrodeposition of Fe Thin Films and Pt Surface Catalyst 

 Electrodeposition on Fe onto conducting substrates (e.g., glass slides coated with 

fluorine doped tin oxide, or FTO) was performed using the same electrochemistry 

instrumentation as for the PEC setup described in the previous chapter.  Using references 

[135, 136] as examples, an electrolyte solution was prepared containing: 0.075 M H2SO4, 

0.9 M FeSO4∙7H2O, and 0.15 M FeCl3∙4H2O.  Before any set of experiments, the solution 

was sparged with high purity N2 for approximately 10 minutes.  The electrodes were then 

submerged in the solution, with the WE lead connected to the substrate (FTO), the CE 

lead connected to an Fe foil (99.5%, 0.025 mm, Alfa Aesar), and the RE shorted with the 

CE.  The solution was constantly agitated during deposition using a magnetic stir rod.  

The PowerSuite software was used to setup a Galvanic Square Wave experiment wherein 

the appropriate current was pulsed for one second and then zero current for one second, 

repeated.  The current pulse was calculated based on the substrate area, desired film 

thickness, and desired time of experiment.  For example, with an immersed FTO area of 

9.1 cm2 and a desired film thickness of 1∙10-4 cm (1 µm), the total volume of Fe is 9.1∙10-

4 cm3, corresponding to 1.3∙10-4 moles (ρ = 7.874 g/cm3, MW = 55.845 g/mol), or 12.4 C 



37 

(F = 96485.34 C/mol).  For a twenty minute experiment (total time), the current pulse 

needed to be 20.6 mA (12.4 C / 600 sec). 

 In some cases, minute amounts of platinum were electroplated onto the 

semiconductor electrodes to enhance catalysis of the oxidation reaction.  As above, a two 

electrode setup was used.  The electrolyte was Platinum AP RTU solution from Technic 

Inc.  A galvanic square wave function was used, wherein current was applied for 0.25 

seconds and zero current was applied for 2 seconds.  The cycle was repeated until 10 

mC/cm2 was achieved. 

Electrode Preparation 

 For PEC characterization, it necessary to have only the semiconductor surface 

exposed to the electrolyte and to have a low-resistance ohmic contact.  The following 

procedures were applied for Fe2O3 films on 1 cm2 iron substrates: 1) the oxide on one 

side was sanded down until only the metallic shine of iron was exposed; 2) a copper wire 

was coiled at one end to an approximate diameter of 1 cm2, and then one side of the coil 

was sanded down to remove native oxide; 3) after spreading silver epoxy (CircuitWorks 

two-part conductive epoxy) on the sanded side of the copper coil and on the sanded side 

of the sample, the sample was pressed onto the copper; 4) the assembly was then held in 

an oven heated to 80 – 120 °C for about 20 minutes to cure the epoxy; 5) the assembly 

was then inserted into glass tubing (copper tail first), such that some of the copper wire 

sticks out at the end and the other side of the glass tubing is touching the coil/sample; 6) a 

thick layer of Hysol 9462 epoxy was spread onto the sample area of the assembly such 

that everything except the Fe2O3 surface was insulated; 7) this assembly was put into the 

oven at 80 C for approximately 2 hours, or until the epoxy was hard; 8) a thin layer of 
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Hysol E-120HP was then spread over the previous epoxy layer; 9) this assembly was then 

put into the oven at 80 C, or until the epoxy was cured; 10) before performing any tests, 

the tail end of the copper wire was sanded down to remove any oxide that developed 

while in the oven.  Figure 9 shows the electrode at different points in the above 

procedures.  Hysol 9462 may be used alone, but Hysol E-120HP was added for extra 

protection against corrosion.  

 

Figure 9. A picture showing the different steps of making a typical electrode. 
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 Some samples in this study required slight modifications to the above procedures.  

For samples on FTO (Hartford Glass, TEC 8) glass, the oxide film was only in the center 

and the outer edges were covered with conducting silver epoxy.  Then, copper wire was 

placed in good contact with the silver epoxy and the assembly was cured, following by 

coating with the insulating epoxies.  Figure 10 shows a typical FTO electrode before and 

after coating with insulating epoxy. 
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Figure 10. FTO electrodes showing how conducting contact was made.  The bottom 
image was taken after coating the electrode shown at the top with insulating epoxies. 

 The final procedure was to calculate the geometric surface area of the 

semiconductor surface area.  Using a copy machine, the electrodes were copied with 

printed, oxide side down, with 200% magnification.  The image colors were inverted 

such that the oxide part of the image printed out as solid white while the rest was dark.  

Then, grid paper was also copied with 200% magnification.  A square was cut out of the 

FTO 

Fe2O3 

Copper 

Silver epoxy 
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copied grid paper corresponding to 1 cm2 on the original, and weighed.  Then, the 

semiconductor area of the copied samples was cut out and also weighed.  The surface 

area was then determined using the following Equation (11): 

𝑠𝑠𝑎𝑎𝑛𝑛𝑝𝑝𝑙𝑙𝑒𝑒  𝑐𝑐𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐  𝑛𝑛𝑎𝑎𝑠𝑠𝑠𝑠
1 𝑐𝑐𝑛𝑛 2 𝑔𝑔𝑜𝑜𝑔𝑔𝑟𝑟  𝑛𝑛𝑎𝑎𝑠𝑠𝑠𝑠

𝑟𝑟1𝑐𝑐𝑛𝑛2 = 𝑠𝑠𝑎𝑎𝑛𝑛𝑝𝑝𝑙𝑙𝑒𝑒 𝑎𝑎𝑜𝑜𝑒𝑒𝑎𝑎       11 

Photoelectrochemistry 

Open Circuit Potential (OCP): As discussed in the theory section, the bands within a 

semiconductor will flatten out upon illumination.  Bending occurs in opposite direction 

for n-type and p-type semiconductors.  Measuring the potential of a semiconductor in an 

open circuit before and after illumination will therefore reveal its conductivity type.  This 

test is called OCP.  A positive potential shift upon illumination indicates p-type 

conductivity.  OCP measurements were performed using a three-electrode setup in 1 M 

KOH solution with AM 1.5 (100 mW/cm2) illumination.  Acidic solution proved to be 

corrosive for the samples.  In order for the potential readings to reach equilibrium, OCP 

was typically performed for a duration of about 180 seconds, with light being turned on at 

90 seconds.   

Current Density-Voltage (J-V): J-V tests may be performed in a two or three electrode 

setup.  Potential is applied to the sample at a specified scan rate within a specified 

potential window, and the current is measured.  In this study, the scan rate was 25 mV/s 

and the solution was 1 M KOH.  These tests may reveal a myriad of information about 

the material and its behavior under PEC conditions.  Two electrode tests are run to 

determine the STH and three-electrode measurements are used to characterize energetics 

and kinetics at the semiconductor.  J-V scans are run in dark and subsequently in light, 
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and the photocurrent is determined by the absolute value of the difference.  Samples are 

normally biased in the positive direction for n-type samples and in the negative direction 

for p-type samples.  A typical dark/light J-V scan for an n-type semiconductor may look 

as shown in Figure 11.  Inversion occurs when enough bias applied to band the bends 

such that the Fermi level is in the valence band at the surface, in which case the surface is 

flooded with holes and the semiconductor exhibits metallic conductivity.  Operating in 

this region may lead to corrosion of the material.  The dark current onset potential 

corresponds to the onset of inversion.  The photocurrent onset correlates to the potential 

at which the band edges the charge carriers are energetic enough to drive the redox 

reactions.  Refer to Figure 6 for band energetics diagrams. 

 

Figure 11. A typical dark and light J-V scan for an n-type semiconductor. 

UPS 

 Gold was sputtered on about a third of the surface of each sample for reference 

and calibration.  The instrument has a work function of 4.5, which cause the low kinetic 
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energy (KE) peaks of the samples to be hidden.  Therefore, a battery was used to apply a 

bias greater than 4.5 V to the sample.  The tests reported used three different bias values, 

5.68, 5.81, and 7.40 V. 
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IV. RESULTS AND DISCUSSION 

 This study involved synthesis, structural characterization, and PEC properties and 

performance analysis of each sample.  Also, different types of samples were synthesized 

and tested.  This section will therefore present and discuss findings in the above order.   

Synthesis 

 Figure 12 presents SEM images of the results of direct plasma oxidation of iron 

substrates by RF oxygen plasma and of NPs grown by plasma oxidation of iron powder.  

The NWs (a) are approximately 100-200 nm at the base and are one to three microns 

long, and cover the most of the iron substrate surface.  The NPs aggregated into large 

clumps, but individually vary in size from 10 to 100 nm. 

 

 

 

 

 

 

 

 

a b 

d c 

Figure 12. SEM images of hematite (a) NWs grown by 
direct plasma oxidation of iron and (c,d) NPs also grown 
by plasma oxidation. 
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 Thermal oxidation of Fe sheets was performed at three different temperatures: 

500 °C, 600 °C, and 800 °C.  These temperatures were chosen to encompass and exceed 

the Fe-O transition temperature for α-Fe2O3 (570-580 °C) [MIT database] and because 

previous studies suggested that this is an appropriate range[111].  At 500 °C, three types 

of morphologies were observed: nanowires, nanoflakes, and larger wave-like 

nanoribbons.  The nanowires were visible when looking at a curved surface or when 

tilting the sample.  The nanowires occurred in dense arrays and were on the order of 5 

µm in length and tapered—from 100 nm to 10 nm, roughly.  The nanoflakes uniformly 

covered the entire surface.  Their dimensions were roughly 1 µm at the widest point and 

tens of nanometers thick, though that was difficult to measure from SEM images.  The 

nanoribbons—typically a few µm tall, tens of nanometers thick, and extending out for 

several µm—sometimes occurred in small or large batches but usually they were uniform 

throughout.  All three morphologies existed in the same locations, densely packed 

together.  The results for 600 °C were less consistent, yielding either only nanowire 

arrays or a combination of nanowires and nanoflakes, but never nanoribbons.  Figure 13 

shows SEM images of the thermal oxidation results, except for samples oxidized at 800 

ºC.  In the latter case, the samples lacked the distinct rust color of hematite and SEM 

images revealed an amorphous top layer.  This indicates that a molten layer existed which 

then solidified without forming nuclei for nanowire (or other morphology) growth.  All 

subsequently tested on thermally oxidized samples were grown at 500 C. 
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a b 

d c 

e f 

Figure 13. SEM images of thermally oxidized Fe sheets at (a-b, e) 500 °C 
and (c-d, f) 600 °C.  Flakes and wires grew in all experiments, but larger 
ribbons were observed only at 500 C.  Oxidation at 800 C (not shown) 
resulted in an amorphous surface layer. 
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Characterization 

Raman 

 Raman was performed on NWs grown by O2 plasma treatment.  The Raman 

peaks, shown in Figure 14, agree well with those reported earlier[104, 111, 137], 

confirming the α-Fe2O3 phase.  Most of the peaks for thermally oxidized samples are 

slightly shifted positive from those of the plasma oxidized.  This may be due to laser 

heating, however, because a higher intensity was used. 

 

 

 

 

 

Figure 14. Raman on NWs grown by O2 plasma oxidation. 
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Photoluminescence 

 Low temperature visible-range photoluminescence performed on O2 plasma 

synthesized NWs (Figure 15) shows two distinct energy levels at 2.05 and 2.15 eV.   

 

UV-Vis 

 UV-Vis spectroscopy was performed to characterize the band gap of the α-Fe2O3 

NWs.  It was necessary to use diffuse reflectance scans because the samples were opaque.  

The diffuse reflectance data was converted to absorbance using Equation (12): 

𝐴𝐴 = 𝑅𝑅𝑛𝑛𝑎𝑎𝑟𝑟 − 𝑅𝑅          (12) 

where Rmax is the maximum R value beyond the dip in diffuse reflectance.  With this 

formula, the maximum absorbance is set to zero where the curve representing the band 

Figure 15. Cold photoluminescence on α-Fe2O3 synthesized by O2 
plasma oxidation. 



49 

gap dips.  The band gap is then determined by extrapolating the straight portion of the 

curve.  This method is discussed further in reference [138].  Figure 16a shows the 

converted absorbance plot with the long wavelength edge extrapolated to Eg = 2.1 eV, 

which is in agreements with previously reported estimates[59, 139].  Another method for 

determining the band gap is based on the absorption coefficient, α: 

𝛼𝛼𝑒𝑒ℎ𝐸𝐸 = 𝐴𝐴(𝑒𝑒ℎ𝐸𝐸 − 𝑒𝑒𝑔𝑔)𝑛𝑛          (13) 

∴ (𝛼𝛼𝑒𝑒ℎ𝐸𝐸)
1
𝑛𝑛 ∝ (𝑒𝑒ℎ𝐸𝐸 − 𝑒𝑒𝑔𝑔)         (14) 

where A is a constant, Ehv is the energy (eV) of an impinging photon, Eg is the band gap, 

and m is a constant depending on the type of transition (½ for direct and 2 for indirect).  

The absorption coefficient is determined by normalizing A to material thickness.  It is 

unclear, in this case, whether the material thickness would correspond to the dimensions 

of the NWs, or if it would include the underlying oxide or metallic layers.  The 

normalization would contribute a constant to relation (14), keeping the proportionality 

true.  Tauc plots for both direct and indirect transitions for the same wavelength were 

calculated and are shown in Figure 16b (inset = indirect).  Normally, the plot that is more 

accurately extrapolated with a straight line represents the band gap, but the difference in 

this case is minimal.  The band gap nature of Fe2O3 has been debated in many 

publications and it is generally agreed that it has an indirect transition at around 2.1 eV 

due to the spin-forbidden Fe3+ 3d→3d excitation[48].  It is thus safe to say that these 

samples also exhibit an indirect band gap of 2.1 eV. 

 Similarly, an absorbance plot was calculated from the diffuse reflectance data for 

thermal oxidation.  Two significant dips in absorption were observed correlating to 2.09 
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eV and 1.63 eV.  The first is the expected indirect band gap for hematite, but the lower 

energy transition is unexpected.  One possible explanation is the presence of mixed 

phases due to partial oxidation. 

 

 

Conductivity Type: Open Circuit Potential 

 Open circuit potential (OCP) measurements were conducted in order to determine 

the conductivity type of the electrodes (n- or p-type).  When going from darkness to 

illumination, if the potential of the working electrode decreases (more negative), then it is 

an n-type semiconductor.   

a) b) 

c) 

Figure 16. UV-Vis plots estimating band gap of Fe2O3 samples: absorbance plots for 
(a) plasma oxidized and (c) thermally oxidized samples, and Tauc plots (b) for plasma 
oxidized samples (large graph is for direct and inset is for indirect transition).  
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 The first half of the OCP curves occurred under dark conditions and the transition 

represents when the light was turned on.  These are presented in Figure 17.  The solution 

was 1M KOH in all the tests.  The samples synthesized by O2 plasma (a) showed an n-

type behavior, repeatedly.  The absolute value of the potentials shifted positively with 

each successive OCP trial.  This could be due to slow equilibration of the Helmholtz 

layer and/or slow kinetics for charge transfer across the surface.  Samples synthesized by 

thermal oxidation (b) in air, however, seemed to exhibit p-type behavior.  This was a 

peculiar finding because no doping had been done.  Suspecting a surface impurity effect, 

the samples which were used for UPS—which thus spent much time under ultra high 

vacuum—were tested for OCP.  Consecutive OCP measurements revealed that a 

transition from n-type behavior to p-type behavior occurred during the scans, as can be 

seen in (c).  After p-type behavior was observed, the sample was then placed in a vacuum 

chamber (~0.1 torr) overnight.  The very next OCP scan (d) again showed n-type 

behavior, which diminished with further consecutive runs. 

 N-to-p-type (and p-to-n) transitions have been reported for metallic oxides in the 

past, attributed to a variety of surface chemistry reactions[140-145].  It is known that 

metal oxides are capable of chemisorptions of gaseous species at the surface due to 

oxygen vacancies and surface states[146].  This is likewise true for liquid medium.  In 

solution, the material surface is functionlized with OH groups[147].  The n-to-p-type 

transition of α-Fe2O3 has been explained by the adsorption of oxygen groups on the 

surface, which increases band bending to the point that the Fermi level is nearer the 

valence band than the conduction band at the surface—a condition that exists for p-type 

semiconductors.  Although this explanation is offered, it cannot be readily accepted.  It 
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has been argued that surface chemisorption on semiconductors in liquid medium changes 

the energies of the surface and has the effect of unpinning the band edges.  Furthermore, 

the potential shift observed in OCP is due to the flattening of bands upon illumination.  

The direction of the flattening is opposite to that of the bending which occurs when the 

Fermi levels equilibriate.  In other words, even if the bands bend so much that the Fermi 

level approaches nearer to the minority band edge, the shift observed in OCP upon 

illumination should still be in the opposite direction of bending.  This phenomenon needs 

to be studied further.   
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UPS 

 Another test that may determine conductivity type is UPS.  In the high kinetic 

energy (KE), the onset of data corresponds to the Fermi level position in a material.  An 

offset between the gold onset and that of the material of interest correlates to the energy 

gap between the valence band maximum and the Fermi level.  A Helium 1 scan for gold 

and a thermally oxidized sample are shown in Figure 18. UPS measurement scans on 

gold and hematite using He 1 excitation..  The 1.6 eV offset confirms that the thermally 

oxidized iron oxide samples are n-type. 

a 
b 

d c 

Figure 17. (a) O2, progressive OCP. Consecutive shifts positive. (b) thermal, OCP, p-
type. (c) consecutive, thermal, n to p. (d) consecutive (after vacuum after c), n to p. 
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J-V 

As discussed before, reverse bias (positive for n-type) is applied to 

semiconductors to induce water splitting if the bands do not straddle the redox potentials 

of hydrogen and oxygen evolution.  A forward bias shifts the Fermi level into the 

majority carrier band (conduction for n-type), which leads to an accumulation of majority 

carriers at the surface.  At this point, the material exhibits metallic conductivity and no 

photoactivity.  As another test of whether the thermally oxidized samples may have p-

type conductivity, J-V scans were conducted in the forward bias direction (negative), 

with the results shown in Figure 19.  The dark and light curves are nearly identical and 

crisscross each other several times, indicating a lack of photoactivity.   Furthermore, the 

two humps between at -0.55 and -0.82 V may be due to the corrosion of iron oxide by 

reduction.  This is supported by the fact that when the samples were removed from 

solution, new oxidation was seen throughout the electrode surface, and subsequent J-V 

Figure 18. UPS measurement scans on gold 
and hematite using He 1 excitation. 
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tests in the reverse direction produced no photoactivity at all.  This did not occur for the 

samples which were instead reverse biased (discussed below).  Therefore, it was 

concluded that the thermally oxidized electrodes are n-type.  The phenomenon observed 

in OCP measurements deserves further study, however. 

 

 

 

 

 

 

 

 

 

 

 

 

J-V measurements comparing the photoactivity of plasma and thermally oxidized 

electrodes are shown in Figure 20.  The curves for the plasma oxidized samples were 

performed versus SCE (+0.241 V vs. NHE), and the other curves were performed using 

Ag/AgCl reference electrode (+0.207 V vs. NHE).  In Figure 20, all the data was adjusted 

to match the scale of the plasma oxidized samples (vs. SCE).  Dark and light scans are 

shown for each type.  Consistently, the photocurrent onset in all cases is-0.3 V vs. SCE, 

which indicates that the flat band potential is the same for all three types of samples.  The 

plasma oxidized sample produced much greater photocurrent, however, than the 

Figure 19. J-V dark and light curves for forward bias of thermally oxidized hematite.  
Shape of curves indicates photocorrosion and no photoactivity. 
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thermally oxidized samples or the NPs.  At +0.3 V vs. SCE, the photocurrent was 255, 

2.6, 11.2 µA/cm2 for the plasma, thermal, and NP samples, respectively.  In all cases, the 

dark current onset was between +0.4 and 0.5 V vs. SCE.  For the NW samples (plasma 

and thermal), the light current was considerably greater than the dark current even past 

this point, indicating considerable photoactivity.  The dark onset normally corresponds to 

inversion due to external bias, however, and therefore is not an interesting region for 

operation in practical applications.  The light and dark curves were nearly identical past 

the dark onset for the NP samples.   
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 These results suggest that the plasma oxidation method is better for producing 

hematite electrodes capable of photoelectrochemical water splitting than thermal 

oxidation.  In order to understand the drastic difference between the two types of 

Figure 20. J-V dark and light curves for three types of samples: plasma 
oxidized, thermally oxidized, and NPs on FTO.  The two parts are 
identical except in the current range plotted.  Plasma oxidized samples 
showed the greatest photocurrent. 
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samples, the interface between the nanowire layer and the iron substrate was analyzed.  

This was done by scratching the samples and then checking the exposed layers with EDS 

for presence oxide.  This is shown in Figure 21, where part (a) is for the plasma samples 

and part (b) is for the thermal samples.  Scratching reveals the presence of several layers: 

a top layer upon which the nanostructure grow, a middle layer, and a bottom layer.  For 

the plasma samples, EDS scans show that the presence of oxidized iron in the top layer 

and at the top of the middle layer, but not below.  This suggests that only the full top 

layer is oxidized iron, while the middle and below layers are pure iron.  For the thermal 

samples, however, the middle layer also shows a strong presence of oxygen, suggesting 

that the whole region is oxide.  From the SEM images—(c) for plasma and (d) for 

thermal—the thickness of the total oxide layer layers is determined to be about 1 µm and 

7.5 µm for the plasma and thermal samples, respectively.   

 The interfacial layer is detrimental to PEC performance.  Other studies have also 

reported the presence of an interfacial layer between the iron substrate and the hematite 

surface when grown by direct oxidation[111, 148].  It was shown to be an amorphous 

layer comprised of Fe3O4 (magnetite) and FeO (wüstite)[149-151].  Due to the mixed 

phase and poor quality of this layer, charge carriers generated in the surface hematite 

nanostructures are lost to recombination.  Therefore, the advantages offered by the 

nanowire morphology are negated in the interfacial layer.  The large thickness of the 

interfacial layer in the thermally oxidized samples may thus be an explanation for the 

poor photoactivity, despite the presence of hematite nanowires on the surface, making it 

even less photoactive than the NP samples.  
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 The interfacial layer resulting from plasma oxidation may be different than from 

the well studied thermal oxidation process.  Growth of a hematite layer by thermal 

oxidation is a slow process taking several hours, at the minimum.  Hematite can be grown 

very quickly—in a matter of minutes or seconds—by plasma oxidation, however.  

Typically that fast processing may lead to metastable phases whereas slow processing 

leads to equilibrium conditions.  A well known example is behavior of iron and carbon 

during the making of steel.  Hot iron is quenched quickly in order to capture more carbon 

in the iron lattice, to produce tougher steel.  In the mechanism proposed for plasma 

oxidation, initial expose to plasma causes spontaneous iron oxide nucleation at the 

immediately at the iron-plasma interface.  The nanowires were grown when the 

temperature was near that of the Fe-O phase-transition for hematite, but below 780C, in 

which case the limited mobility of the iron atoms allows for growth to occur only at the 

nuclei-metal interface.  The original nuclei form the tip of the growing nanowires.  There 

is minimal oxide layer below the body of the continuously growing nanowires and the 

metal substrate.  During shutdown, however, the conditions for growth are lost and 

during the cooling process an oxide interface may form because of the trapped immobile 

O-atoms.  All this occurs in a matter of seconds.  Plasma oxidation does not follow the 

same growth process as the slower thermal oxidation, in which growth of Fe2O3 is 

preceded by the development of Fe3O4, which is preceded by an FeO layer.  The long 

duration of thermal oxidation experiments gives more time for the diffusion of O-species 

farther below the surface of the iron substrate.  Further analysis of the interfacial layer is 

currently underway to establish which oxide phases are present in the interface layer of 

plasma oxidized samples. 
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Figure 21. A study of the interfacial iron oxide interfacial layer for plasma (a, c) and 
thermally (b, d) oxidized samples.  The interfacial layer is 1 µm and 7.5 µm for the 
plasma and thermal samples, respectively. 
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These data show that plasma oxidation may be the best route for producing 

hematite samples for solar hydrogen applications.  The material may still benefit from the 

findings of previous studies, such as by the surface treatment with fluorine to raise the 

shift the conduction band negatively.  These studies should be performed on hematite 

synthesized by plasma oxidation, however. 
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V. CONCLUSIONS 

• Hematite is an excellent material for photoelectrochemical electrolysis because of 

its 2 eV band gap, wide abundance, and low cost.  Nanowire morphologies offer 

further benefits, including high crystallinity, high surface area, ordered oxygen 

vacancies parallel to the growth direction, and an excellent substrate for doping 

studies. 

• Hematite (α-Fe2O3) nanowire arrays were grown on Fe sheets by direct plasma 

oxidation and by direct thermal oxidation.  The plasma oxidation method takes 

seconds, whereas thermal oxidation requires several hours.   

• UV-Vis measurements confirmed a 2.1 eV band gap for both types of samples.  

Thermally oxidized samples also showed a transition at 1.63 eV, which may be 

due to the presence of mixed phases. 

• Open circuit potential tests confirmed that the plasma oxidized samples were n-

type.  OCP measurements show a transition from n-type to p-type behavior over 

time for thermally oxidized samples.  N-type conductivity was confirmed by 

ultraviolet spectroscopy and by current-voltage measurements, however.  The 

phenomenon observed in the OCP measurements is not yet understood. 

• The nanowire arrays grown by plasma oxidation showed far superior 

photoactivity than those grown by thermal oxidation.  This is attributed to the 

presence of a thick mixed-phase interfacial layer where charge carriers are lost 

due to recombination.  The plasma oxidized samples had a much smaller 

interfacial layer.  The composition of the interfacial layer in plasma oxidized 

samples is currently being analyzed. 
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• It is concluded that plasma oxidation should be used to produce hematite samples 

for studying photoelectrochemical performance. 
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VI. RECOMMENDATIONS 

• The phenomenon responsible for the n-to-p-type behavior in OCP measurements 

may be interesting and beneficial to analyze and explain. 

• The interfacial layer in plasma oxidized hematite should be characterized because 

the different growth mechanism may mean that this layer is far different than that 

observed in thermally grown samples. 
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