
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2012

Learning understandable classifier models. Learning understandable classifier models.

Jan Chorowski
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Chorowski, Jan, "Learning understandable classifier models." (2012). Electronic Theses and Dissertations.
Paper 248.
https://doi.org/10.18297/etd/248

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/248
mailto:thinkir@louisville.edu

LEARNING UNDERSTANDABLE CLASSIFIER MODELS

By

Jan Chorowski
MS, Wroclaw University of Technology, 2009

A Dissertation
Submitted to the Faculty of the

J.B. Speed School of Engineering of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering
University of Louisville

Louisville, Kentucky

December 2012

ii

LEARNING UNDERSTANDABLE CLASSIFIER MODELS

By

Jan Chorowski
MS, Wroclaw Technical University, 2009

A Dissertation Approved On

 November 14, 2012
Date

by the following Dissertation Committee:

Jacek M. Zurada, Dissertation Director

Tamer Inanc

Mehmed Kantardzic

Karla Conn Welch

Olfa Nasraoui

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Jacek M. Zurada, Director of the

Computational Intelligence Laboratory at the University of Louisville, for his

guidance, encouragement, and patience. Dr. Zurada has been more than an academic

advisor to me, often offering guidance and help in many a, whether big or petty,

matter that concerned my life in Louisville. I would also like to thank Dr. Tamer

Inane, Dr. Mehmed Kantardzic, Dr. Karla Conn Welch, and Dr. OHa N asraoui for

agreeing to serve on the dissertation committee. I am grateful for your

encouragement and advice.

I am also deeply indebted to my friends and colleagues Artur and Jordan for

helping me to survive in this new place and to Tomasz, Sera, Chase, and Karina for

rendering my life here colorful and enjoyable. I am grateful to my collaborators Jian,

Tolga, Ehsan, and Qinwei, for many fruitful discussions. I also thank the wonderful

people from the Catholic Campus Ministry for helping me to grow spiritually. My

deepest appreciation is due to Lisa Bell and other administrative assistants at the

University of Louisville for helping me to navigate among formal requirements.

Most importantly I thank my wife, Agata, for her patience and constant

support while this dissertation has slowly been taking its current form. I am grateful

for the encouragement, advice, and support that my parents, Malgorzata and Maciej,

gave me. Equally supportive were my brother Jakub, his wife Urszula, and my sister

Maria, as well as my grand-parents Maria, Janina, Stanislaw, and Bohdan, who did

not live to see the completion of this degree.

Finally, I thank the God the Creator who has been ultimately responsible for

every success in this process.

iii

ABSTRACT

LEARNING UNDERSTANDABLE CLASSIFIER MODELS

Jan Chorowski

November 14, 2012

The topic of this dissertation is the automation of the process of extracting

understandable patterns and rules from data. An unprecedented amount of data is

available to anyone with a computer connected to the Internet. The disciplines of

Data Mining and Machine Learning have emerged over the last two decades to face

this challenge. This has led to the development of many tools and methods. These

tools often produce models that make very accurate predictions about previously

unseen data. However, models built by the most accurate methods are usually hard

to understand or interpret by humans. In consequence, they deliver only decisions,

and are short of any explanations. Hence they do not directly lead to the acquisition

of new knowledge. This dissertation contributes to bridging the gap between the

accurate opaque models and those less accurate but more transparent for humans.

This dissertation first defines the problem of learning from data. It surveys

the state-of-the-art methods for supervised learning of both understandable and

opaque models from data, as well as unsupervised methods that detect features

present in the data. It describes popular methods of rule extraction from

unintelligible models which rewrite them into an understandable form. Limitations of

rule extraction are described. A novel definition of understandability which ties

computational complexity and learning is provided to show that rule extraction is an

NP-hard problem. Next, a discussion whether one can expect that even an accurate

IV

classifier has learned new knowledge. The survey ends with a presentation of two

approaches to building of understandable classifiers. On the one hand,

understandable models must be able to accurately describe relations in the data. On

the other hand, often a description of the output of a system in terms of its input

requires the introduction of intermediate concepts, called features. Therefore it is

crucial to develop methods that describe the data with understandable features and

are able to use those features to present the relation that describes the data.

Novel contributions of this thesis follow the survey. Two families of rule

extraction algorithms are considered. First, a method that can work with any opaque

classifier is introduced. Artificial training patterns are generated in a mathematically

sound way and used to train more accurate understandable models. Subsequently,

two novel algorithms that require that the opaque model is a Neural Network are

presented. They rely on access to the network's weights and biases to induce rules

encoded as Decision Diagrams.

Finally, the topic of feature extraction is considered. The impact on imposing

non-negativity constraints on the weights of a neural network is considered. It is

proved that a three layer network with non-negative weights can shatter any given

set of points and experiments are conducted to asses the accuracy and

interpretability of such networks. Then, a novel path-following algorithm that finds

robust sparse encodings of data is presented.

In summary, this dissertation contributes to improved understandability of

classifiers in several tangible and original ways. It introduces three distinct aspects of

achieving this goal: infusion of additional patterns from the underlying pattern

distribution into rule learners, the derivation of decision diagrams from neural

networks, and achieving sparse coding with neural networks with non-negative

weights.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT
LIST OF TABLES
LIST OF FIGURES

CHAPTER

I INTRODUCTION

II LEARNING UNDERSTANDABLE MODELS

A Fundamentals of Learning From Data.

B Popular Black-box Models

1

2

3

Feedforward Neural Networks

Support Vector Machines .

Ensemble Methods .

C Popular White-box Models.

D Feature Detection Techniques

1

2

Methods Using Linear Encoders

Methods Using Linear Decoders

E Rule Extraction from Black-box Models

1

2

3

Black-box Independent Rule Extraction.

Black-box Dependent Rule Extraction.

Validating Rule Extraction

F Limitations of Rule Extraction .

1

2

Computation Time Considerations.

Concept Representation Considerations

VI

Page

iii
IV

ix
x

1

4

4

9

9

13

16

18

19

21

22

25

25

27

28 .

29

30

33

3 Do Black-box Classifiers Learn Knowledge from Data? . 36

G Two Facets of Learning Rules 41

III IMPROVING THE ACCURACY OF WHITE-BOX MODELS

THROUGH ADDITIONAL SAMPLE GENERATION 43

A Review of Probability Density Estimation Methods 46

1 Kernel Density Estimation 46

2 Projection Pursuit-based Methods

B Experiments....

C Recommendations

D Conclusions

IV INDUCING RODDS FROM NEURAL NETWORKS

A Main Properties of RODDs

1 RODDs in Machine Learning.

2 Basic Definitions

3 Efficient Manipulation of ROBDDs

4 Choosing and Changing the Variable Order.

5 Extensions

52

52

67

72

73

74

75

75

77

78

79

B Extracting Rules from Neural Networks as Decision Diagrams 80

1 Detailed Description of the Proposed Method. 81

2 Experimental Results

3 Conclusions

C Top Down Induction of RODDs

1 Description of the Algorithm

2 Experimental Results

3 Possible Enhancements to Research

V BUILDING DESCRIPTIONS OF DATA - FEATURE DE-

91

98

99

99

101

103

TECTION 105

A Learning Neural Networks with Non-negative Weight Constraints 105

vii

1 Proposed Network Architecture 107

2 Expressive Power of Neural Networks with Non-negative

Weights 109

3 Experimental Results 111

B

4 Conclusions

Robust Sparse Coding by Minimizing an L1-L1 Problem

1 Obtaining Full Regularization Paths .

2 Runtime Complexity Considerations .

3 Robust Sparse Coding for Face Recognition.

4

5

Experimental Results

Conclusions

VI CONCLUSIONS

REFERENCES

CURRICULUM VITAE

Vlll

118

118

121

127

128

130

133

134

136

150

TABLE

1

2

3

LIST OF TABLES

Properties of data sets used in experiments.

Cross-validation classifier accuracies on original data.

Maximum of averages of 10xCV accuracies. For each data set indicated

Page

53

54

are in each column the values that are within 1 % of the maximum. 59

4 Summary of experiments using JRip white-box. 61

5 Summary of experiments using J48 white-box. . 63

6 Truth table used for the merge operation. © 2011 IEEE 89

7 Efficiency of the attribute ordering heuristic. Averaged results for 100

runs. © 2011 IEEE 91

8 Results on the MONK's tests. © 2011 IEEE 92

9 Results on data from the UCI repository. 95

10 Properties of the used datasets. 103

11 Results of experiments 104

12 Values of regularization parameters used in the experiments. 112

13 Running times of the proposed algorithm compared with running times

of Matlab's "linprog" solver. " 132

ix

LIST OF FIGURES

FIGURE

1 The elements of a learning system. After Vapnik [11].

2 Increasing 10xCV accuracy as more data is used for training.

3 Implementing the boolean functions (a) and and (b) or with a neuron.

© 2011 IEEE

4 Solving the NP-hard Dominating Set problem can be reduced to finding

the smallest set of inputs causing the output neuron to fire. © 2011

Page

5

8

31

IEEE " 32

5 Expressive power of different types of expressions used in rules: (a)

oblique rules involving linear inequalities (after [89]), (b) M-of-N tests,

and (c) rules with exceptions (a description without exceptions would

require at least 4 rules for the class black). 33

6 Incomprehensibility of a small Neural Network: (a) architecture of the

network and functions implemented by neurons; (b) logical description

of neurons under a threshold activation assumption. 35

7 Signal propagation through a convolutional network to recognize hand­

written digits. The network architecture is based on LeNet [97]. The

images of networks operation are obtained using a multidimensional

convolutional network implemented for comparison of methods for 3D

action recognition [98]. " 38

8 Making the Learning Machine LM aware of an invariant about data.

Xl and X2 are two inputs for which LM's output should be the same.

The output of the LM is computed twice using the same parameters e.
The difference between the two outputs is computed and e is adjusted

to minimize it " 40

x

9 Results of experiments on the "Balance Scale" data with JRip rules

learned from samples labeled using an SYM. 10xCY is plotted as a

function of the increase of training data set (a) and as a function of

the number of rules (b). Accuracy Gain divided by rule set Size AG/S

as a function of the increase of training data (c). Areas of the marked

regions are reported in Tables 4 and 5 as AG and AG/S. 57

10 Results on the "Wine" data set with J48 trees learned on samples

labeled using an SYM. 10xCY is plotted as a function of the increase

of training data set (a) and as a function of the number of leaves (b). 66

11 Results on the "Wine" data set with J48 trees learned on samples

labeled using a RF. 10xCY is plotted as a function of the increase of

training data set (a) and as a function of the number of leaves (b). 66

12 Results on the "Promoter" data set with .148 with REP trees learned

on samples labeled using a RF. 10xCY is plotted as a function of the

increase of training data set (a) and as a function of the number of

leaves (b). .. 68

13 Results on the "Promoter" data with nominal attributes replaced by

their weight of evidence. J48 with REP trees are learned on samples

labeled using a RF. 10xCY is plotted as a function of the increase of

training data set (a) and as a function of the number of leaves (b). 68

14 Decision diagrams for MONK's problems: (a) realizes v1 = v2 V v5 = 1,

(b) realizes exactly 2 of v 1 ... v6 are 1, (c) realizes (v5 = 3 1\ v4 =

1) V (v5 =J 4 1\ v2 =J 3). Note that some nodes have been merged for

better presentation, this affects only the display and does not change

the internal representation of the diagrams [86]. © 2011 IEEE 76

15 An incomplete decision diagram for the first MONK's problem after

processing a half of the training set. © 2011 IEEE. 90

Xl

16 Decision diagrams for the Monk's [133] problems: (a) test 2 before dia­

gram generalization, (b) erroneously pruned diagram for test 2 (proper

diagram is shown in Figure 14b), (c) test 3 prior to pruning, and (d)

test 3 after pruning (proper diagram is shown in Figure 14c). © 2011

IEEE 93

17 A typical diagram and the rules in DNF form extracted for the pro­

moter domain problem without the use of neighboring samples and

with pruning enabled. © 2011 IEEE 97

18 Induced decision diagram for the mushroom dataset. 102

19 Construction of a network with non-negative weights. 111

20 (a) Exemplary digits from the MNIST dataset. The weights of a network

trained (b) without constraints and (c) with non-negative constraints.

The weights of the classification (output) layer are plotted &'3 a dia­

gram with one row for each output neuron and one column for every

hidden (input) neuron. The area of each square is proportional to the

weight's magnitude; white indicates positive and black negative sign.

Below each column of the diagram, the weights of hidden neurons are

printed as an image. The intensity of each pixel is proportional to the

magnitude of the weight connected to that pixel in the input image

with, the value 0 corresponding to gray in (b) and to black in (c). The

biases are not shown. The hidden neurons have been rearranged for

better presentation. The bar charts at the bottom of the plots show

the activation of hidden neurons for the digits presented in (a). Each

row depicts the activations of each hidden neuron for five color-coded

examples of the same digit.

xii

114

21 The weights of a network trained on the full MNIST dataset without

weight constraints. The weights of the classification (output) layer are

plotted as a diagram with one row for each output neuron and one

column for every hidden (input) neuron. The area of each square is

proportional to the weight's magnitude; white indicates positive and

black negative sign. Below each column of the diagram, the weights of

hidden neurons are printed as an image. The intensity of each pixel is

proportional to the magnitude of the weight connected to that pixel

in the input image with, the value 0 corresponding to gray. The biases

are not shown. The hidden neurons have been rearranged for better

presentation.. .. 115

22 The weights of a network trained on the full MNIST dataset with non­

negativity weight constraints. The weights of the classification (output)

layer are plotted as a diagram with one row for each output neuron

and one column for every hidden (input) neuron. The area of each

square is proportional to the weight's magnitude. Below each column

of the diagram, the weights of hidden neurons are printed as an image.

The intensity of each pixel is proportional to the magnitude of the

weight connected to that pixel in the input image with, the value 0

corresponding to black. The biases are not shown. The hidden neurons

have been rearranged for better presentation. 116

23 Weights of randomly selected 32 out of 150 hidden neurons of uncon­

strained network (a) and network with weigth non-negativity constraints

(b). 32 first principal components (c). 32 filters learned by NMF (d). 117

Xlll

24 Networks trained on the Reuters-21578 data: with unconstrained weights

(a) and with non-negative weight constraints (b). Input neurons are

characterized by listing ten words connected to weights having large

absolute value. The + and - signs indicate the sign of the weight in (a).

Each column of the diagram depicts weights of an output neuron, the

size varies with weight value and black or white filling indicates sign a."l

in Figure 20. The neurons have been rearranged for better presentation. 119

25 Regularization paths for sparse coding coefficients: (a) II error function,

(b) lh error function, (c) l2 error function. We can see that the Huber

loss results are smoother and similar to the II results. The number

of "events" processed in each case is indicated. It coincides with the

theoretical analysis. .. 129

26 Accuracy of sparse-coding based face recognition on the Extended Yale

B database with added noise. The two robust error measures give very

close results, with h being slightly better than lh. 132

XIV

CHAPTER I

INTRODUCTION

Automatic data acquisition, storage, and processing is easier and more

ubiquitous nowadays than ever. An important emerging goal is to automatically

learn new knowledge out of the vast and constantly growing amount of available

data. The disciplines of Data Mining (DM) and Machine Learning (ML) provide

necessary algorithms and tools to detect patterns of interest and relations present in

the data. However, the comprehensive, if not the ultimate, goal of this query is not

to just detect these relations, but to transform them into new knowledge expressed

in a form possibly readily understandable and usable by humans. Ideally, the results

produced by DM and ML methods should not only provide numerical predictions,

but also enable humans to understand patterns and regularities present in the data

whenever possible and applicable.

The notion of understandability is inherently subjective. Moreover, it is

variable even for a single individual. Usually, the understandability increases with

the time spent on the analysis of a problem. This suggests that the derivation of

knowledge from data is a continuous process rather than a one-time application of

one or more generic methods. Successful approaches must allow for cooperation and

synergy between the data analyst and the tools used. Ultimately, the analyst should

be able to inject known facts and relations about the data into the learning process.

This leads to an important problem of how to enhance or extend an existing

body of knowledge. Most often, the problem-at-hand is not entirely unknown. The

most common and generic way is to develop a proper problem description. The data

mining process will be most successful if relevant features are used to represent the

data. Moreover, a judicious choice of features may help circumvent known

1

deficiencies of selected methods. For instance, decision trees and production rules can

partition the input space using only axis-parallel planes. However, some methods

allow for the inclusion of more background information about a problem. Often

information about problem constraints or invariants can be included in the

classifier's design. This topic is continued in Chapter II, Section 3.

There are many cases of successful application of machine learning methods to

obtain new knowledge. A classical one is the derivation of rules predicting soybean

diseases [1]. The rules produced by the AQll program outperformed those written

by an expert. Other examples are poisonous mushroom detection [2] or protein

secondary structure prediction [3].

Despite these examples, the problem of automatically eliciting knowledge from

data is far from being solved. According to a recent study [4], the best supervised

learning methods are Boosted [5] and Bagged [6] Decision Trees, Random Forests [7],

Support Vector Machines [8], and Neural Networks [9]. Each of these methods

produce results which are inherently hard to understand. Ensembles of decision trees

are unintelligible because one has to analyze large amount of trees in entirety.

Equally hard to understand are Neural Networks and Support Vector Machines

because they express their models in the form of complicated mathematical formulas.

As a result, the most accurate methods can only be used as black-boxes: even though

they provide the best results, all the knowledge is hidden. This precludes the usage

of such opaque classifiers in many application domains, which require both

justifications of decisions and understandable conclusions from machines. For

instance, the Equal Credit Opportunity Act requires that an explanation can be

provided for credit refusal. Similarly, a medical diagnosis has to be preferably based

on premises that the physician thoroughly understands.

The following four chapters of this dissertation cover the state-of-the art in

learning from data, describe methods of rewriting opaque models into rules, and

discuss algorithms to find characteristic features of the data. Chapter II begins with

a description of the theoretical foundations of learning from data. It surveys the

state-of-the art methods that produce both opaque and understandable models. It

2

describes methods for unsupervised data description using features. It then surveys

the most important rule extraction methods. It describes limitations of the rule

extraction process and discusses whether one can expect that even an accurate

classifier has learned new knowledge. Chapter II ends with the presentation of two

approaches to building of understandable classifiers. First, the data needs to be

described using meaningful concepts, called features. Then, those features can be

used to describe the relations present in the data.

Chapters III and IV concentrate on improving the accuracy of understandable

models that use the original data description. Chapter III presents mathematically

sound methods of generating additional training patterns on which interpretable

models of increased accuracy can be induced. Chapter IV presents two novel

methods of rewriting Neural Networks into Decision Diagrams, a data structure that

is especially suitable for rule extraction.

Chapter V discusses the problem of extracting meaningful features from data.

A novel method of imposing non-negativity constraints on weights of Artificial

Neural Networks to learn understandable and discriminative features is presented

and discussed. The chapter is concluded with a discussion of the problem of robust

sparse coding. A novel algorithm is presented that computes the changes of the

encoding when sparsity level is varied. The proposed method has running times

favorable to traditional linear programming approaches.

3

CHAPTER II

LEARNING UNDERSTANDABLE MODELS

This chapter begins with a description of the problem of learning classifiers

from data. Then, it describes popular architectures that often learn accurate, but

incomprehensible models. Next, it surveys the state-of-the art methods that directly

learn human-readable models. Popular unsupervised feature detection methods are

described using a common encoder-decoder framework. Then, rule extraction

methods which induce an understandable model by using a given accurate, but

incomprehensible one are presented. Subsequently, limitations of rule extraction are

discussed. A definition of understandability is introduced to prove computational

infeasibility of exact rule extraction. Finally, the question of how much information

can be obtained from a given accurate black-box classifier is discussed.

A Fundamentals of Learning From Data

Supervised learning of understandable classifier models is a subfield of the

more general problem of learning from data. The Statistical Learning Theory is the

leading theory that defines and analyzes the problem of learning form limited

amounts of data. In this section the main assumptions of the Statistical Learning

Theory are presented. Finally, the Probably Approximately Correct theory is

described because its formulation is more intuitive in a rule extraction context.

The Statistical Learning Theory (SLT), also known as the

Vapnik-Chervonenkis (VC) theory is considered to be the best currently available

theory for flexible statistical estimation with finite samples [10]. It formally states

the problem of learning from data and provides a methodology for learning. It

provides bounds on the performance of the learning process when only a finite

4

Figure 1: The elements of a learning system. After Vapnik [11].

amount of samples is available. The SLT's model of learning from labeled examples

contains three elements that are pictured in Figure 1 [11]:

1. The generator of the data (examples), G.

2. The target operator (also called supervisor's operator or supervisor), S.

3. The learning machine, LM.

The generator G samples the vectors x independently and identically

distributed (i.i.d.) according to an unknown, but fixed probability distribution P(x).

The supervisor processes the input vectors x into outputs y by sampling from a

conditional distribution P(yl x) (this includes the case of a deterministic output

function y = f (x)). When the supervisor performs pattern recognition the vector x

contains the attributes of a sample and the output y is a discrete class label. Again,

the distribution P(ylx) is unknown, but fixed. The generator and supervisor thus

generate a training set of pairs sampled independently and identically from

P(y, x) = P(ylx)P(x).

The learning machine LM is capable of implementing a set of functions

f(x, a), a E A. It observes a finite amount of training samples (Yi, Xi), i = 1, ... ,N

(the training set) composed of the system's outputs y and inputs x. It is then tasked

with choosing a function from the given set that will best approximate the

supervisor's output.

The Statistical Learning Theory distinguishes between two goals for the

learning machine [11]:

• To imitate the supervisor's operator by constructing an operator that provides

for a given generator G the best prediction to the supervisor's outputs .

• To identify the supervisor's operator by constructing an operator which is close

5

to the supervisor's operator.

Classical statistical methods first choose a family of probability distributions

that match the problem. Then the parameters of the distribution are optimized to

match the data by maximizing the likelihood. Thus they lean toward system

identification. In contrast to classical parametric statistics, the SLT concentrates on

the task of system imitation, which is easier than identification [11 J.

The remaining question is which mechanism shall the learning machine use to

best approximate the supervisor~s operation using but a limited number of training

samples. First a suitable measure of discrepancy between supervisor's and learning

machine's outputs must be specified. In SLT this discrepancy is measured with a loss

function L(y, f(x, a)). For the pattern recognition problem the loss function may be

an error indicator [11 J:

L(y, f(x, a)) ~ { : if y = f(x, a)
(1)

otherwise.

The learning machine should ideally minimize the expected value of the loss over the

distribution of data. This quantity has been named in SLT the risk functional [12J:

R(a) = J L (y,j(x, a)) dP(y, x). (2)

The risk functional cannot be directly minimized because it depends on the unknown

probability distribution P(y, x). However, an estimate of the loss may be computed

using the training data. Define the empirical risk to be [12J:

1 N
Remp(u) = N L L (Yi, f(xi, a)) (3)

i=l

The SLT proposes to minimize the empirical risk and provides conditions under

which the true risk will also be minimized. This is called the Empirical Risk

Minimization (ERM) principle and consists of approximating the minimum of the

true risk functional (2) by finding the minimum of the empirical risk (3).

One of the main results of SLT is a bound of the true risk expressed as a

function of the empirical risk, number of training samples, and the learning

6

machine's Vapnik-Chervonenkis (VC) dimension. The VC dimension h of a learning

machine LM is defined to be the maximum number of vectors Xl, ... ,Xh which can

be separated in all 2h possible ways (shattered) by the LM. Intuitively, the VC

dimension grows with the amount of concepts or pattern that the LM can discern.

The relation bounding the risk is as follows [12]. Assume that the loss functional is

bounded:

o :s: L(y, f(x, a)) :s: B, a E A.

Then with probability at least 1 - ,/], the inequality

BE (R(a) :s: Remp(a) + 2 1 + 1 4Remp(a))
+ BE

holds true simultaneously for all function of the set (4), where:

h (In 2: + 1) - In '/]
E = 4-'---'-'----'----

N '

where h is the VC dimension. In particular, this bound holds for the function

f(x, aD) which minimizes the empirical risk [12].

(4)

(5)

(6)

The bound (5) is too loose to be practically useful in predicting classifier

performance. However, its main implication is that model complexity has to be

chosen as a function of the number of available samples. This forms the basis of the

Structural Risk Minimization principle. It also suggests, that the accuracy of a

learning machine can be improved by using more training data, which needs to be

sampled form the unknown probability distribution P(y, x).

An illustration of this property is presented in Figure 2. A Random Forest,

C4.5 decision tree and RIPPER production rules were trained using Weka [7,13-16]

on the "Yeast" data from the VCI repository [17]. The figure shows an average of 10

runs of lO-fold stratified cross-validation in which the algorithm is allowed to use only

a fraction of the training data. It can be seen that for all three classifiers the accuracy

improves with the addition of training data. This observation can form the basis of a

simple, yet effective rule extraction scheme that is investigated in Chapter III.

The Probably Approximately Correct (PAC) theory [18] of learning looks at

the problem of learning from a different perspective. It allows the learning machine

7

1)'
ca

10-fold CV accuracy of classifiers trained on increased fractions of training set
on data Yeast

62.---~----~----~--~----~----~----~---'----~

60

58

56

:; 54
u
u

oCt:

---t-- Random Forest

-e- Ripper (Weka JRip)

-B- C4.5 (Weka J48)

48

46L---~-----L----~--~-----L----~----~---~----~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of original training samples used

Figure 2: Increasing lOxCV accuracy as more data is used for training.

to consult an examples function that generates data and an oracle function that

classifies the data. However, the learner must perform only a polynomial amount of

steps. This definition ties the problem of learning from data to the computational

complexity of algorithms. Similarly to the SLT, PAC provides bounds on the

accuracy of a learner with respect to the number of examples queried and size of the

hypothesis space. In fact, PAC learning can be unified with SLT [19].

Just like the SLT, the PAC model relies on the assumption that there is an

unknown, but fixed probability distribution of the data P(y, x). The learning

machine LM has access to two functions: examples{) which generates new i.i.d.

samples from the distribution P(x) and oracle(x) that returns the class of the vector

x. A concept class F is defined to be learnable if there exist an algorithm A that [18]:

1. Runs in time polynomial in an adjustable parameter 1], in the various

parameters that quantify the size of the classifier to be learned, and in the

number of dimensions of x, n.

8

2. For all concepts f E F and all distributions P over data, the algorithm will

deduce with probability at least (1 - 1]-1) a classifier 9 E F that makes errors

with probability at most 1]-1.

The rule extraction problem consists of finding an understandable

representation of a given black-box classifier. If this black-box classifier is treated as

the oracle, then the PAC learning model can provide both an inspiration for rule

extraction methods and a better understanding of rule extraction methods.

B Popular Black-box Models

Many popular classifiers produce models that are difficult to understand. This

section introduces the main classifiers that belong to this category: Feedforward

Neural Networks, Support Vector Machines, and Ensemble Methods. Main

assumptions that underlie their operation are discussed, along with reasons why their

understandability is often very poor.

The description of the black-box methods will rely on the following matrix

notation. Without loss of generality, suppose the problem is described using k

real-valued attributes and that the labels belong to a finite set C. The training set is

composed of N pairs (Xi, Yi), i = 1, ... ,N of input attribute vectors Xi E]Rk and

discrete class labels Yi E C.

1 Feedforward Neural Networks

Feedforward Neural Networks implement a nonlinear function f :]Rk -+ C that

typically maps the input patterns X into the set C of class labels [9]. Let the labels

be consecutive integers: C = {I, 2, ... , m}. The network's function f is parameterized

by matrices of weights and biases. Often the output of the network is a real vector of

size m = ICI that indicates for every class label the probability that the processed

sample belongs to the given class. The network is trained by changing the weights

and biases to minimize a loss function that measures the discrepancy between

network predictions and the known class label.

9

The l-th layer of a Neural Network maps a din dimensional input vector to a

dout dimensional output one. It is parameterized by a matrix of weights

WI E JRdout Xdin and by a bias vector b1 E JRdout. For an input vector x E JRdin the

vector of layer activation values al E JRdout is defined to be:

(7)

The layer's output vector 01 is formed by applying a transfer function to the vector

of neuron activations al.

Often the transfer function is a univariate nonlinear sigmoidal (shaped like the

letter "8") one. Commonly used are the logistic sigmoid a(x) = l+ex~(-x) and the

hyperbolic tangent a(x) = tanh(x) = ::~i:i~::~i=:i. The layers' output is formed by

an element-wise application of the function a(·) to the vector of activations, which is

denoted:

(8)

Another popular transfer function, used mostly for the last layer is the

SoftMax function that transforms a vector of arbitrary real numbers into a vector of

numbers from the range (0,1) that moreover sum to 1 and hence can be interpreted

as probabilities. The j-th element of the output of the 80ftMax function is defined by:

80ftMax(x)[j] = ;xp(x[j]) ,
Li=1 exp(x[i])

(9)

where x[j] denotes the j-th element of x. Unlike the sigmoid functions that operate

on single elements, the 80ftMax function transforms a whole vector of neuron

activations into a vector of outputs.

A multilayer Feedforward Neural Network is obtained by composing L

individual layers:

OI(X) = al (W IX + bl)

OI(X) = al(W101- 1 + bl) for l = 2, ... , L.
(10)

Loss functions are used to measure the discrepancy between 0 L (x), the output

of the network for a sample x, and the desired class label y. A commonly chosen

10

measure is the sum-of-squares loss:

LOSS(OL(X), y) = L (OL(X)[C]- .'I{y = C})2 , (11)
cEC

where .'I{.} denotes the indicator function, which takes the value 1 if the statement

inside of the brackets is true and 0 otherwise.

Alternatively, if the outputs of the network are interpreted as the conditional

probability distribution of the class labels given the attributes, the loss may be

formulated as the negative log-likelihood of observing a given sample (x, y):

LOSS(OL(X), y) = Lc .'I{y = c} log (~~~~[~?) = -log (OL(X)[Y]) . (12)
cE

Network training consists of changing the weights and biases to minimize the

sum of the loss function computed on all training samples and of penalties incurred

by weights and biases. The penalties serve to regularize the network by e.g. preferring

small values of the weights. The total target minimized during network training is:

1 N L

T = N L LOSS(OL(Xi), Yi) + L (Pw(W1) + Pb(b1)) , (13)
1 1=1

where Pw ad Pb denote the penalties imposed on weights and biases. Networks are

often trained by minimizing the target T using a first order gradient minimization.

The new weights W' and biases b' are computed from their old values (W, b) by

performing a single step along the gradient:

W; = WI - r/'VwIT for l = 1, ... , L
(14)

b; = b1 - rJ\1bIT, for l = 1, ... , L,

where rJ is the learning rate that controls the length of the gradient step. The

training is often accelerated by using only a small fraction of training samples is used

to compute the target T in (13) and its gradient for the weights and biases update

(14). In this way training consists of many small updates that use a noisy gradient

estimate. For this reason this training regime is often called stochastic gradient

descent [20].

11

On the other hand, second order methods may be used to speed the

convergence of training. The methods that employ them usually need to process the

whole training set and are often referred to as batch methods. Especially popular are

the Scaled Conjugate Gradient [21] and the Levenberg-Marquardt method [22].

Feedforward Neural Networks are difficult to understand because of the large

number of weights and biases that define them, and because of the inherent

nonlinearity exhibited by their operation. As such, they were the first classifiers for

which special methods were devised to better understand their meaning [23]. On the

one hand, pruning methods that are described next try to increase network

understandability by simplifying its architecture. On the other hand, rule extraction

methods, that are described in Section E, try to rewrite a given network into a set of

comprehensible rules.

Pruning methods were designed to simplify networks by removing spurious

units and connections inside a network [24]. Such methods as OBD [25] and

OBS [26J prune a trained network using second-order derivative information to

estimate the impact of removing a connection. An algorithm that removes hidden

nodes and adjusts remaining weights by solving a system of equations is presented

in [27]. Other pruning methods augment the loss criterion minimized during network

training by adding terms that promote the reduction of the number of connections or

by adding terms that enforce other constraints that simplify the network. Weight

decay is the mechanism traditionally used to reduce the magnitude of network

weights by penalizing the sum of their squares. Enhanced sparsity of weights can be

enforced by penalizing instead the sum of weights' absolute values [28]. This

mechanism is similar to the elastic net feature selection technique used in linear

regression [29J. Often particular values of network weights are required. Soft weight

sharing [30] aims at clustering weight values. A polynomial penalty is used in [2] to

constrain the weights to be zero or ±l. Hyperbolic tangent nonlinearity has been

applied to weights for the same purpose in [31]. Use of those techniques also

facilitates enhanced understanding of the network because the analysis of

interactions between signals incoming to a neuron is greatly simplified if the weights

12

amplifying those signals are similar for all inputs.

2 Support Vector Machines

The Support Vector Machine uses two main ideas. First, kernel functions are

used to transform the problem from the original input space into a highly

dimensional one, called the feature space, where linear separation of training samples

belonging to different classes is possible. Second, to find the best separating

hyperplane, the concept of maximum margin is introduced. Finally, the optimization

problem which defines the SVM is convex and quadratic, and therefore it can be

solved efficiently [8,32-35].

The Support Vector Machine was originally proposed for problems with two

classes only. For ease of notation the two class labels will be ± 1, i.e. C = {-I, I}. It

will be assumed that the function ¢(.) : IRk -+ IRP is given. It maps a given sample

x E IRk into a p-dimensional space, that will be called the feature space. The

function ¢ is usually specified through the use of kernel functions, that are defined

next. The SVM operates by finding a linear boundary that separates samples in the

feature space. The margin of the separating hyperplane is defined to be the smallest

distance from the hyperplane to a training sample. The wider the margin the smaller

is the impact of small perturbations of the decision boundary to classifier

performance. Therefore a wide-margin classifier will have less tendency to over-fit the

data and will yield a better testing accuracy [35]. The SVM will now be formally

defined. The linear decision boundary in the feature space corresponds to:

(15)

where w is a weight vector and b is a bias term (offset form the origin). It can be

shown [35,36] that the margin is inversely proportional to wtw /2. Thus the

separating hyperplane that maximizes the margin is found by solving:

. wTw
mlIl--
w,b 2

subject to: (wT ¢(Xi) + b)Yi ~ 1 for i = 1, ... , N.

13

(16)

The constraints ensure that all training samples are correctly separated by the

hyperplane, while the optimization target maximizes the margin.

Sometimes it is necessary to let the classifier do a few errors on the training

set. If training samples are allowed into the margin region, the margin can be larger.

In this way better performance on the testing set is obtained, at the price of lowering

the performance on the training set. The soft-margin SVM can be defined by the

following optimization problem [8,33-35]:

subject to: (wT ¢(Xi) + b)Yi ~ 1 - Ei for i = 1, ... , N
(17)

Ei ~ 0 for i = 1, ... , N,

where Ei denotes the margin violation of the i-th training sample (which is 0 for

samples outside of the margin region) and the constant C determines the trade-off

between the margin width and the sum of margin violations.

The problem (17) is an instance of the convex quadratic programming

problem and it can be solved by finding points that satisfy the Karush-Kuhn-Tucker

(KKT) optimality conditions [37]. Due to the inequality constraints the solution itself

is a quadratic programming problem [8,33-35]:

1 N N N

m;x - "2 L LYiYjQiQj¢(xdT ¢(Xj) + L Qi

i=l j=l i=l

N

subject to: L YiQi = 0

i=l

o ::; Qi ::; C for i = 1, ... , N,

(18)

where Cl'i are the Lagrange multipliers. This formulation of the SVM problem is

notable for two reasons. First, the samples in the feature space are accessed only

through their inner products, i.e. ¢(xif ¢(Xj). Second, the weights defining the

decision boundary are not present and need to be recovered from the multipliers Qi

as:
N

W = L Cl'i¢(Xi). (19)
i=l

14

Moreover, most of the coefficients 0i are zero [8J. Only the samples with nonzero

multipliers contribute to the decision boundary. For this reason they are called the

Support Vectors.

The SVM depends on inner products between samples only, which makes it

possible to use kernel functions K that define the transformation ¢> implicitly.

Formally, if a function K : IR.k x IR.k -t IR. operates on pairs of samples in the

attribute domain and satisfies Mercer's condition, then there exists a space in which

K defines an inner product operation:

(20)

Thus it is possible to use a kernel function that will transform the training samples

into a highly (possibly infinitely) dimensional space in which a linear separating

boundary can be found, without ever needing to compute the mapping of samples

into the feature space. In practice, the Gaussian kernel, parameterized by the

constant 'Y is frequently used for SVM training:

(21)

The SVM is usually trained by minimizing (18) using the Sequential Minimal

Optimization (SMO) algorithm [38J. The SMO algorithm operates by repeatedly

selecting two multipliers ° and maximizing the target of (18) with respect to those

two multipliers only. This is a simple problem, because the two multipliers are tied

through the equality constraint. Thus at every step, the SMO algorithm minimizes a

univariate quadratic function, for which the analytical solution exists.

New samples in a nonlinear SVM are classified using the relation:

N N

w T ¢>(x) + b = L Oi¢>(Xi)T ¢>(x) + b = L OiK(Xi, x) + b, (22)
i=l i=l

where the equation (19) was used to determine the weights based on multipliers o.

The decision boundary of the SVM is difficult to understand because it involves a

weighted contribution of many support vectors. Also, due to the nonlinear nature of

kernel functions, the exact impact of a support vector on a given sample is often

difficult to assess.

15

3 Ensemble Methods

The ensemble methods aggregate many simple classifiers that are called base

learners into a single one (the ensemble). The main motivation is that if the base

learners make errors independently, then the errors cancel when aggregated, just like

random noise variance diminishes when measurements are averaged. Breiman

suggested that the ensemble's accuracy depends on two traits of base learners: their

average strength and the mean correlation between them [7]:

p(l - S2)
GeneralizationError ~ 2 '

S
(23)

where p is the mean value of correlation between base learners and s is the strength

defined to be the mean value of the margin of the base learners. The margin is

defined to be the mean value of the difference between the probability assigned by

the base learner to the correct class, and the highest probability that the base learner

assigns to an incorrect class. The relation (23) suggests that an ensemble will be

successful when the base learners are at the same time strong and not correlated.

In practice, decision trees are often used as base learners because they are fast

to train and often highly accurate. Moreover, decision trees are unstable, because

they are sensitive to small changes in the learning conditions. Ensemble methods

often vary the data on which individual trees are induced to amplify the instability

of decision trees. In consequence, the correlations between trees are lowered.

In the Bagging method [39], bootstrap samples are used to train the base

learners. A bootstrap sample of the training data is formed by sampling from it

uniformly and with replacement. A bootstrap sample of the same size as the original

training set contains about 2/3 of its unique samples. Different base learners are thus

trained on different training sets. Moreover, the samples that do not enter a given

bootstrap sample may be used to assess the quality of each base learner.

In the Bagging ensemble each base learner is assigned a single vote. To classify

new data each base learner casts its vote according to its prediction. The ensemble

then tallies individual votes to select its own prediction. The ratio of votes cast for

different classes can be used to compute the probabilities assigned by the ensemble

16

to class labels.

Another method of varying the training data consists of describing the

training samples with a random selection of attributes [40]. It has been named the

Random Subspace method, because each base learner is trained on a projection of the

entire training data onto the space spanned by a few randomly selected attributes.

The Bagging and Random Subspace approaches are combined in the Random

Forest (RF) classifier [7]. The RF uses decision trees as the base learners. However,

during tree induction node splits are selected by considering only a few randomly

selected attributes. Moreover, each random tree is trained on a bootstrap sample of

the dataset. The randomization introduced during tree induction slightly weakens

individual trees. However, it also decorrelates them. Overall accuracy of the ensemble

is increased. Moreover, individual tree induction in a Random Forest is fast because

only a fraction of attributes is considered to choose each split.

The Boosting ensemble building method follows a different path [5]. In

contrast to Bagging and Random Forests, base learners must be trained sequentially.

This is because the training set used to induce a new base learner depends on the

accuracy of the base learners that have already been included into the ensemble.

The AdaBoost boosting algorithm adds base learners to the ensemble

one-by-one [5]. Each base learner is induced on a sample of the training set drawn

according to training instance weights, w. After the base learner is constructed its

accuracy is computed on the original, unweighted, training set and used to assign a

coefficient l:Y to the base learner. The training set weights ware then modified to

reflect the errors made by the base learner. Then a new set is drawn to train the next

base learner.

The Boosted ensemble classifies new data by computing a weighted average of

the votes cast by base learners with weights corresponding to their coefficients, l:Y. In

this way inaccurate base learners affect the decision less than the accurate ones.

There are many explanations of the good accuracy of the boosting approach.

Its inventors, Shapire, Freud, et al., demonstrate that boosting operates by

increasing the margin of the ensemble [41]. In similar spirit, Rosset shows how

17

choosing the base learner coefficients Q corresponds to a coordinate descent

optimization of a margin-maximizing function [42]. On the other hand, Breiman, the

inventor of Random Forests, conjunctures that in its final stages AdaBoost

essentially emulates a Random Forest [7].

Ensemble methods produce results that are difficult to understand because

they are often composed of dozens or even hundreds of base learners. The answers of

the base learners are averaged, which precludes their individual analysis. Instead,

combinations of attributes that cause the majority of base learners to act in a

specified way must be sought for, which reduces to analyzing the exponentially many

different combinations of individual base learner outputs.

C Popular White-box Models

Methods that produce directly readable results are usually called white-boxes.

They typically express their models in the form of decision trees or production rules,

however, other formats such as decision tables [43] or decision diagrams with

exceptions [44] have been also proposed.

Production rules are expressions of the form "if conditions then

classification::. Algorithms directly inducing them usually employ the "separate

and conquer" approach in which rules are added one-by-one to an initially empty set.

After a new rule is added to the rule set, training samples covered by it are put aside

(or separated, justifying the name of the methodology) and a new rule maximizing

some criterion on the remaining samples is sought for. A final pruning step can be

used to further simplify and ameliorate the produced rule set. The search for a single

rule can proceed in several different ways:

General-to-specific search starts with an empty conjunction of tests (matching

everything) to which new tests are added until the rule matches samples from

one class only. This approach is used in the CN2 [45], RIPPER [14], PART [46]

methods, and AQ family of methods (which, however, seeds the rules with a

positive example) [1].

Specific-to-general search starts with a rule covering just one training sample.

18

Conditions are dropped (the rule is generalized) until it covers enough samples

while still being pure. This strategy is used by the rule extraction method

described in Chapter IV, Section B.

Other search methods, such as training a perceptron with constrained weights and

rewriting it as rules which is used in the MLP2LN [2] method.

The process of sequential covering of the rule space can be analyzed and visualized

using ROC diagrams [47].

Decision Tree learners, such as C4.5 [13] or CART [48], greedily build a tree

whose nodes contain tests on attributes, directed edges point to test outcomes, and

leaves represent the predicted class. Usually the tests depend on just one attribute,

which is selected to maximize a measure of tree purity. Typically, the tree purity is

measured by entropy of class distribution at a node or the GINI statistic. To increase

their understandability, decision trees can be converted into production rules. In fact,

every path from the root to a leaf forms one rule. However, for better

understandability further simplification and processing steps which reduce the rule

set are required [13]. Decision trees are very popular and many implementations

exist, notably in the publicly available Weka [15] data mining suite.

Most white-box supervised learning methods accept input in the usual tabular

format of data in which every training instance is described using a fixed set of

attributes. A notable exception is the FOIL program, which directly processes logical

relations [49]. It should be noted that decision tree and production rule learners work

by selecting the best test on data from a specified set. They can be extended to

support other descriptions of data by specifying specialized tests. A further

discussion of this topic is presented by Breiman et al. [48].

D Feature Detection Techniques

It is estimated that 60% of the effort spent on the data mining process is

devoted to preparation and understanding of the data [50]. Clearly, it is important to

properly select and define the attributes that will be used to describe the data. The

design of good attributes is also a natural place to introducing prior knowledge and

19

beliefs into the data mining process. The techniques of feature detection are designed

to help in this task. They often produce descriptions of the data and distill the

information present in the data to reduce the burden placed on subsequent analysis

steps.

The feature detection problem is described as follows. Let the training set

contain pairs (Xi, Yi), i = 1, ... ,N of input attribute vectors Xi E IRk and class labels

Yi. The features of the sample (Xi, Yi) are defined to be a vector Vi E IRP which can

be computed using the input alone Vi = fe(xi). The features cannot depend on the

class of a sample, because such dependency would preclude their computation on

unlabeled test samples. Usually the features are detected in an unsupervised manner,

i.e. without using the labels. Therefore features are often designed to preserve most

of the information present in the original data, but in a simpler way. For instance

feature vectors V often have a lower dimensionality than the attribute vectors x.

Many unsupervised learning techniques can be described with a unified

energy-based framework [51-53]. An energy function that assigns energy values to

pairs of attributes Xi and features Vi is defined. Learning of energy-based models

consists of finding configurations of method parameters, attributes, and features that

have low energy values. Inference is executed as a minimization of the energy of a

trained model over either the attributes, or the features. The following discussion of

unsupervised learning algorithms is a simplification of the energy-based approach to

their analysis.

Feature detection methods often depend on linear algebra techniques. For a

matrix M let M:i denote the i-th column of M and let M j : denote the j-th

row.The matrix of data attributes X is formed by horizontal concatenation of

attribute vectors. Every column of X contains the attributes of a data sample

X:i = Xi' Likewise, let V denote the matrix of data features with V:i = Vi'

Usability of a feature set mandates the existence of the encoder function, fe.

The encoder induces a matching decoder function fd that reconstructs the attribute

vector from the features. Decoding a vector of features is the task of finding an

20

attribute vector whose encoding will match the given vector of features:

fd(V) = argmin Ilv - fe(x)ll, (24)
u:

where II . II denotes a suitable measure of discrepancy between v and fe (x). It is

often the Euclidean norm, which results in a least squares minimization problem.

Some feature extraction schemes begin with the definition of the decoder. The

encoding of an input vector x is then specified implicitly in a manner similar to (24),

as the vector of features that, when decoded, provides a good reconstruction of the

input x:

fe(x) = argmin Ilx - fd(v)ll·
v

1 Methods Using Linear Encoders

Many popular feature detection and dimensionality reduction techniques

define the features to be a linear projection of the input data:

(25)

(26)

Using matrix notation the feature matrix is obtained by matrix multiplication of the

attribute matrix: V = M EX. Since the encoder is explicitly specified, a matching

decoder has to be found from (24). Methods with linear encoders often use the

Euclidean norm in the decoder. Then (24) becomes a least squares problem, with

closed-form solution given by the Moore-Penrose pseudo-inverse of ME [54].

Moreover, if the rows of .. l\tf E are orthonormal the pseudo-inverse is just M~:

Mk = M~(MEM~)-l = MEI- 1 = M~.

The Principal Components Analysis (PCA) is obtained when variance of the

features is maximized [35]. It is computed by performing an eigendecomposition of

the data covariance matrix [54]. If cov(X) = QAQT, then the encoding matrix is

M = QT. Moreover, since Q is an unitary matrix the data can be reconstructed

from features by X = QV. For dimensionality reduction only the p eigenvectors that

correspond to the p largest eigenvalues are used to form the encoding matrix.

The Independent Component Analysis (ICA) looks for an encoding matrix

ME such that the features v are statistically independent for a given sample x. In

21

practice, the features are found by maximizing the non-Gaussianity of the projected

data [55].

The Singular Value Decomposition (SVD) can be used to decompose the

attribute matrix X into a product of two unitary matrices and a diagonal matrix of

singular values: X = U:EVT [54]. Let Up, :Ep , V p be the submatrices of U, :E, and

V, respectively, that correspond to the p largest singular values. Then

X p = U p:Ep VJ is a rank p approximation of X with the lowest sum of squares

residual error. Encoding matrix ME is computed as ME = :E;;lUp.

2 Methods Using Linear Decoders

Often the feature vectors v must have some special properties. For example

they must be sparse or non-negative. In those cases it easier to specify how the

attributes are reconstructed from the features. Subsequently, the encoder is defined

with a constrained optimization problem (28). The downside is that most often there

exist no closed-form solutions of (28) that can be used to compute the feature

vectors for the data.

In the most general form, the decoding operation is defined using a decoding

matrix M D :

(27)

Moreover, the feature vectors must belong to the set C of feature vectors that satisfy

the constraints of this particular method.

Finding the encoding of an input vector Xi now requires to solve a constrained

optimization problem:

Vi = fe(Xi) = arg min Ilx - M Dvll
v (28)

subject to: vEe

The matrix M D is often determined from the data in a process called feature

detection. Usually the matrix is chosen to provide the lowest reconstruction error

under a specified set of constraints. It results in a constrained matrix factorization

22

problem:

minllX - MVII
M,V

subject to: V:i E C for all i = 1, ... ,N (29)

M:j E V for all j = 1, ... ,p,

where p is the number of features to be found and V represents the constraints put

on individual features, for instance normalization, sparsity, or non-negativity. The

optimization problem (29) is often difficult to be solved jointly over M and V. Many

methods employ instead a form of coordinate descent which alternates between the

minimization over M and over V.

For example, the popular K-means method represents every data point by a

cluster center [35]. Suppose the coordinates of centers form a matrix M in which

every column contains the coordinates of a centroid. Assume that the sample Xi

belongs to the cluster j. Let Vi be a vector whose only non-zero element is a 1 in the

j-th position. Then:

If Euclidean distances are used to measure the reconstruction error, the

encoding step of K-means is:

Vi = argmin Ilxi - MvI12
v

subject to: V has only one nonzero element with value 1

(30)

(31)

Clearly, the encoding of a given vector Xi is performed by finding the column of M

that is closest to Xi, that is finding the closest center.

The cluster centers are usually found using the Lloyd's algorithm, which

alternates between choosing cluster centers and assigning samples to clusters. It is

thus a coordinate descent approach to solving problem (29).

Another approach of this form, the Non-negative Matrix Factorization (NMF)

finds an approximate factorization of the data matrix X into two lower-rank

23

matrices that have non-negative elements [56,57]:

minllX - MVIIF
M,V

subject to: M ~ 0 (32)

where II . IIF denotes the Frobenius matrix norm and ~ denotes an

element-by-element comparison. Note that the problem defining NMF matches the

general formulation (29). The key premise of NMF is that non-negativity of elements

prevents complex cancellations between columns of M during reconstruction.

Without cancellations only a few terms can enter the sum. Thus sparsity of M is

enhanced which results in better understandability of the detected features.

The Sparse Coding problem has similar goals to NMF [58]. It is based on the

assumption that the data vectors Xi can be reconstructed using just a few base

vectors from a possibly large set which is sometimes referred to as the dictionary.

The decoder performs just a matrix multiplication (27). The sparsity assumption is

captured by the constraints C. Ideally, feature vectors should be constrained to have

few nonzero entries. However, this leads to a hard combinatorial problem. In practice

the £1 norm of the feature vectors in constrained: C = {v : Ilvlll < T}. The features

are found by solving the problem:

minllX - MVI12
AI,V

subject to: IIV:ilh ::; T for all i = 1, ... , N (33)

IIM:jI12 = 1 for all j = 1, ... ,po

The norm constraint on the columns of M is introduced to prevent degenerate

solutions. If large elements of M are allowed, then the elements of V may become

arbitrarily small. This in turn makes the sparsity constraint ineffective [58].

The assumption and use of decompositional methods that result in sparse

descriptions of signal, images, or patterns has led to many important results in vision

research, signal processing, and machine learning. Other works have shown it to be

also important in extracting biologically plausible representations of natural

24

images [58,59]. Furthermore, sparse coding has led to unsupervised induction of

parts-based decompositions of data [60,61].

E Rule Extraction from Black-box Models

Decision trees they are often reformulated into production rules to enhance

their understandability [13]. Similarly, one can try to extract the knowledge stored in

a black-box classifier. In a more general setting, another learning process is required

in which the black-box model serves as an additional information source. This

activity is referenced to as rule extraction and formally defined as [62]:

Given an opaque predictive model and the data on which it was

trained, produce a description of the predictive model's hypothesis that is

understandable yet closely approximates the predictive model's behavior.

Rule extraction has been extensively researched in the domain of neural

networks [63]. A useful taxonomy of rule extraction methods is based on how many

assumptions are made about the black-box classifier. One class of algorithms (called

pedagogical in [23] and independent in [62]) uses the given classifier solely to make

predictions on available and unseen data. This rule extraction scheme makes a direct

connection to the PAC learning model defined in the previous section. The black-box

classifier is used as the oracle function and a probability density estimate of the

training data is formed to generate new samples. In the simplest rule extraction

scheme new samples are generated and classified using the given black-box model.

The additional samples are then used to extend the training set on which a decision

tree or production rule learner is induced. An analysis of kernel density estimators,

the mathematical state-of-the-art methods for density estimation, is presented in

Chapter III.

1 Black-box Independent Rule Extraction

The independent methods do not assume any particular architecture of the

black-box classifier. They usually operate by generating artificial samples on which

25

the black-box is queried. They differ in the way the additional samples are generated.

Uniform sampling over the range spanned by attributes is conceptually the easiest

model of data density. Some authors propose to use it uniquely [64], while others use

it as a baseline in comparisons with more advanced methods [65,66]. Uniform

sampling disregards dependencies between attributes. It is often used when samples

must satisfy some constraints, as in the ITER [67] and Minerva methods [68].

It is often assumed that the attributes are independent and only the marginal

probability distributions are estimated. Just like uniform sampling this approach

disregards dependencies between attributes. It is also commonly used to sample

under constraints, e.g. TREPAN [66] and DecText [69] both use a Kernel Density

Estimator to model the marginal densities. Moreover the TREPAN method sets the

kernel width to 1/ VN where N is the number of samples used for estimation and

may build local models for samples that fall into a node of a decision tree.

Many methods that work with discrete data explore Hamming distance balls

centered over training samples. The OSRE method treats as important the attributes

for which the black-box output changes when the attribute value is changed [70].

The LORE method presented in Chapter IV can be configured to consider samples

lying in a Hamming ball around training points. Another rule extraction method

based on genetic algorithms first selects a training point, then mutates it [71].

Similarly, the ALBA method first picks randomly and uniformly a support vector. It

then adds to every dimension of this support vector a value sampled from a uniform

distribution that depends on the mean distance between samples [65].

Rejection sampling is used by the ANN-DT method [72]. First a point is

sampled uniformly from the attribute space. It is accepted if it is close enough to a

sample in the training set. Hence ANN-DT samples uniformly from the space

occupied by the training samples. This is in contrast to multivariate kernel density

estimates which assign more probability to regions that are densely occupied by

training samples.

Often sampling is intertwined with the white-box learning through the

introduction of constraints on generated samples. Many white-box learners operate

26

by dividing the training set into smaller subsets, until a desired purity level is

achieved. A common problem with those approaches is that not enough data is

available to choose good splitting points/rules as the algorithm progresses. It is thus

sensible to generate new samples when such a decision has to be made. The

TREPAN method builds a decision tree and generates new samples to decide

whether to split a leaf and to possibly choose a split [66]. It uses constraints to only

generate samples belonging to that leaf and may use a local density estimate of data

at that leaf. DecTex is a similar method which adds new split selection criteria that

use the black-box classifier [69J. Similarly the Iter [67J and Minerva [68J method

extract non-overlapping rules and generate samples in vicinity of those covered by a

rule to decide whether it is possible to generalize it.

2 Black-box Dependent Rule Extraction

In contrast to independent methods, the decompositional [23] or dependent [62J

approaches make direct use of the inner structure of a given black-box classifier.

Often this knowledge is used to generate new samples on which the white-box

classifier is trained. Craven [73] proposes a sample generator which produces only

samples from the positive class by randomly starting hill-climbing optimizers.

Khrishnan [74J uses genetic algorithms to generate prototypes, i.e. samples that are

assigned by the black-box to a given class with high confidence. He then estimates

the distribution of all data samples using a kernel density estimator or a Probabilistic

Neural Network [75] and retains only the prototypes that are highly probable given

this estimate. On the other hand, many rule extraction methods generate new points

close to the decision boundary of the black-box classifier. The Hypinv method finds

points on the decision boundary of a Neural Network by a gradient search, however

the authors suggest the use of genetic search for non-differentiable models [76].

Similarly, support vectors have been used as the description of an SVM's boundary.

Barakat [77] proposes to train an understandable classifier using SV s only, while the

aforementioned ALBA method samples points near the SVs [65]. In the case when

the black-box classifier is an ensemble of decision trees Domingos proposes to sample

27

from the distribution given by the leaves of trees that form the ensemble [78].

A few techniques were designed to extract from a black-box classifier

quantities that are relevant to a newly created white-box one. The structure of a

trained neural network is used to select relevant attributes on which a decision tree is

grown in [79]. Similarly, a neural network [80] and an ensemble of decision trees [81]

are used to estimate information gain needed during the induction of a new decision

tree.

Some algorithms for rule extraction, called purely decompositional, analyze

only the given black-box classifier and disregard the training set. For example, in the

case of rule extractions from neural networks those algorithms analyze the network

only by finding subsets of inputs causing each neuron to become active [82]. Most of

these approaches try to attach an interpretation to hidden neurons of the network,

which usually doesn't produce legible results. An exception is the Knowledge Based

Artificial Neural Networks [83] in which the network is initialized with prior

knowledge forcing an interpretation of all its neurons. This interpretation changes

slightly during training and hidden neurons retain their original, meaningful

interpretations.

3 Validating Rule Extraction

Criteria commonly used to assess the usefulness of rule extraction methods

are: accuracy - it measures the ability of the rules to properly classify previously

unseen data (generalization ability), fidelity - it reflects how well the rules mimic the

network, consistency - it describes how the rules differ between different training

sessions, comprehensibility - it states how easy to understand a set of rules is by

measuring the number of rules and their antecedents, and finally computational

complexity - which reflects the needs of the process of rule generation.

So far no rule extraction method has gained wide use and acceptance. In fact,

very few implementations of such methods are available (e.g. the large Weka [15]

suite provides no such method). Likewise, to the best of our knowledge, no major

textbook on Data Mining, Machine Learning, or Neural Networks treats the topic of

28

rule extraction. This may be due to some inherent limitations of the rule extraction

process presented in the following section.

F Limitations of Rule Extraction

Rule extraction, or more generally the process of improving the accuracy of an

understandable model by introducing an auxiliary black-box model during training

usually requires that the black-box classifier consistently outperforms the white-box

on the problem at hand. In other words, the model produced by the black-box

method must be good enough to warrant the added cost of training it. While this

requirement is fairly intuitive, it is often overlooked [65].

Furthermore, the understandability of the white-box classifier must not be

sacrificed. Highly precise decision trees or production rules may be too complicated

to be understandable. It is often necessary to find a compromise between the

complexity of the white-box classifier and its fidelity to the black-box one [84].

Lastly, the rule extraction process must be tractable computationally. For

example an algorithm that creates a large truth-table of a given black-box classifier

by enumerating all points belonging to the domain is usually too inefficient to be

usable [85]. Independent rule extraction algorithms that use the black-box only to

provide classifications of new samples must therefore employ sampling of the

problem space. It may seem that having access to the internals of the black-box

classifier may guarantee lower running times. However, most classifier models are

expressible enough to make the rule extraction problem at least as hard as known

NP-complete problems. A proof that reduces a satisfiability problem to rule

extraction is shown in the forthcoming section.

29

1 Computation Time Considerations 1

Before reasoning about the complexity of deriving rules from a trained neural

network it must be formally defined what it means to be understandable. The

following definition is built on the intuition that when people try to understand a

new concept they look for examples of this concept and concentrate on their key

properties.

Definition 1. A rule set is usable if it is possible to classify in polynomial time a

previously unknown sample. Moreover, it is understandable if, for a given class, a

sample belonging to that class can be show in polynomial time. If, in polynomial time,

the smallest set of features a sample must have to belong to a class can be

determined, it will be said that the rule set is very understandable.

The usable rule sets are all those that can be practically used to classify new

samples. This is the minimum requirement extracted rules (or any other classifier)

must meet to be of any practical use.

The understandable rule sets are those, for which examples belonging to a

particular class can easily be shown. Decision trees surely meet this criterion - one

just has to trace a path from an interesting leaf node to the top of the tree. However,

the Disjunctive Normal Form (DNF) formulas are not understandable, because

showing examples for the 0 (false) class is equivalent to showing the satisfiability of a

Conjunctive Normal Form (CNF) formula (as the negation of a formula expressed in

DNF is a formula expressed in CNF), which is a NP-hard problem.

One can argue that the ability to extract examples from the rules is not

important, because the data set contains many of them. The very understandable

class of rules tries to capture the ability of showing the simplest example for a class

(or equivalently the shortest clause of the D NF form of the rules). This definition was

chosen to resemble some of the actions a person trying to understand an unknown

IThis section is partially based on the appendix of [86], (J. Chorowski and J. M. Zurada, "Ex­

tracting Rules from Neural Networks as Decision Diagrams," Neural Networks, IEEE Transactions

on, vol. 22, no. 12, pp. 2435-46, Dec. 2011, © 2011 IEEE).

30

All inputs belong to {-I, +1} All inputs belong to {-I, +1}

in
+1 -(n - 1)

(a) (b)

Figure 3: Implementing the boolean functions (a) and and (b) or with a neuron.
© 2011 IEEE

object would do, i.e. see how it reacts to a given input, find other inputs causing the

same reaction and finally, try to find the simplest common factor such inputs may

have.

The next two theorems show that in the case of rule extraction from neural

networks a purely decompositional approach, which restricts the analysis to the

network, leads to a computationally forbidding problem.

Theorem 1. Extraction of an understandable rule set exactly describing a given

neural network is NP-hard.

Proof. The NP-complete satisfiability of CNF formulas problem will be reduced to

the problem of rule extraction from a neural network. The variables of the formula

become the inputs. Every hidden layer's neuron implements the logical or function

and represents a single clause. The output neuron implements the logical and

function to provide the conjunction of clauses. In Figure 3 it is shown how to express

both functions as a neuron.

The described reduction has a polynomial time complexity. If the extracted

rules can be used to find in polynomial time an example for which the class is "true",

then the rule extraction has to be harder than the satisfiability problem. D

Theorem 2. It is NP-hard to find a very understandable rule set exactly describing

a given network, even if the network's function satisfiability is assumed.

Proof. A reduction to the dominating-set problem will be demonstrated. As an

example, in Figure 4 a neural network corresponding to a small graph is shown. For

31

All network inputs are +1 or -1. All drawn weights are +1.
All neurons have the signum activation function. A

A }------j

Figure 4: Solving the NP-hard Dominating Set problem can be reduced to finding the
smallest set of inputs causing the output neuron to fire. © 2011 IEEE

every node of the given graph, a boolean input feature and a hidd n layer neuron is

assigned. An input is connected to a hidden layer neuron if and only if there is an

edge between the vertexes represented by this input and the hidden layer neuron or

if they represent the same vertex. Thus every hidden layer neuron implements an or

function. The output neuron is then set to implement an and function.

Clearly, the function is satisfiable, as an input of all ones (meaning that all

vertexes are selected as the dominating set) causes the output neuron to fire.

However, finding the smallest set of inputs causing the output neuron to fire is

equivalent to selecting the smallest dominating set of graph nodes.

These proofs may seem to be too artificial to be practically applicable.

o

Usually one can enumerate many points that belong to a particular class just by

looking at the training dataset. Furthermore, many classifiers can rank inputs by

their significance e.g. [87,88] . The important observation is however, that the

analysis needs to be concentrated on the data itself and points that lie "close" to it.

Another aspect of rule extraction is how easy it is to operate on the data

structure used to store the rules. Many algorithms transform and operate on the set

of rules, for example the C4.5 Rule has a global rule optimization stage [13]. The

expressiveness of the rule language, which is the topic of the next section influences

the complexity of algorithmic manipulation of rules. It may be beneficial to select a

rule format on which it is easy to operate. Reduced Ordered Decision Diagrams,

32

Y

o
o x
if X-Y> 0 and X+Y<1 then white

if X-Y<O and X+Y>1 then white

else black

(a)

Using M-of-N approach: 1

if more_than 3 ouLof

(a, b, c, d, e, f) then . ..

Without M-of-N: Y

if a and band c then .. .

if a and band d then .. .

0~-----------------1

1 0 X 10

if d and e and f then . .. Using exceptions:

(b)

if X E (1,9) and Y E (1,9) then black
unless X E (4,6) and Y E (4,6)
else white

(c)

Figure 5: Expressive power of different types of expressions used in rules: (a) oblique
rules involving linear inequalities (after [89]), (b) M-of-N tests, and (c) rules with
exceptions (a description without exceptions would require at least 4 rules for the
class black).

presented in Chapter IV, Section A, are a data structure that allows to succinctly

express many concepts while allowing their efficient algorithmic manipulation.

2 Concept Representation Considerations

Many black-box models are able to delineate concepts by highly irregular and

complicated decision boundaries. Multilayer neural networks operate by dividing the

space using hyperplanes smoothed out with sigmoidal functions. On the other hand,

Support Vector Machines use kernel functions to project the samples into a highly

dimensional space in which they look for a separating hyperplane. Likewise,

ensembles can express concepts that are impossible to describe with their base

learners.

Rule extraction methods should, on the one hand, have similar abilities to

concisely express complex concepts. On the other hand, the use of highly expressible

constructs can hinder their understandability. For instance, linear inequalities, also

called oblique rules (Figure 5a) have been found very difficult to understand [89] but

at the same time they are not easily expressed using other concepts.

33

Popular approaches that extend the rule language to increase its succinctness

and comprehensiveness, extend the allowed language to support M-of-N tests

(Figure 5b) and exceptions (Figure 5c). The former adds the ability to express

conditions which are true if more than M, less than M, or exactly M conditions are

true out of N given. This is especially effective in the case of rule extraction from

neural networks [83]. The later allows to enrich rules with exceptions to them,

instead of trying to create non-overlapping rules. Attributional Calculus is a rule

language that extends propositional calculus with attribute types, hierarchical

attributes, exceptions, and M-of-N selectors [90].

There are two dangers related to the increase of the expressibility of the rule

language. Firstly, increasing the expressibility of the rule language effectively

increases its Vapnik-Chervonenkis dimension. Thus more training data is needed to

select a good rule set. Secondly, even small sets of rules expressed in a powerful

language may be hard to understand. For instance during rule extraction from a

neural network one may introduce artificial variables that correspond to the state of

hidden neurons. It is then easy to write down DNF rules for the state of hidden

neurons in terms of the inputs and for the output of the network in terms of the

hidden neurons. However, such a rule set may be difficult to comprehend when the

hidden neurons do not represent meaningful concepts.

To illustrate this problem a neural network with three hidden neurons was

trained to recognize 3-bit parity. The hyperbolic tangent transfer function was used.

Furthermore, the inputs and outputs were scaled to ±1. Network architecture and

functions computed by the neurons after training are depicted in Figure 6a.

The logical rules describing the neurons are shown in Figure 6b. They assume

that the neurons' outputs are always ±1, which can be accomplished by replacing

the hyperbolic tangent activation function with a hard threshold one. Investigation

of individual neurons doesn't provide a good understanding of the network's

operation. Moreover, despite symmetry of the problem, the input X2 is singled out

and appears to be more important.

The network is described by four rules containing in total 10 clauses. Even

34

Neuron Weights
O.OXI + 3.2x2 + 0.OX3 - 1.9
3.1xI - 2.3x2 + 3.1x3 - 0.3

-2.8xI - 2.2x2 - 2.9x3 + 0.1
No

(a) Network architecture and functions implemented by neurons.

Neuron Function (DNF) Function (M-of-N)
NI X2 1 of {X2}
N2 (Xl /\ -'X2) V (Xl /\ X3) V (-'X2 /\ X3) at least 2 of {Xl, -'X2, X3}
N3 (XI/\ X2) V (XI/\ X3) V (X2/\ X3) at least 2 of {XI,X2,X3}
No (NI /\ N2) V (NI /\ N3) V (N2 /\ N3) at least 2 of N I, N2, N3

(b) Logical description of individual neurons.

Figure 6: Incomprehensibility of a small Neural Network: (a) architecture of the
network and functions implemented by neurons; (b) logical description of neurons
under a threshold activation assumption.

though the rule set is small, it is not fully understandable. The symbols introduced

for the hidden neurons are not related to the concept of parity. The function of the

network becomes meaningful only after the output is expressed directly in terms of

the inputs:

However, the substitution of the representations of the hidden neurons into the

formula describing the output neuron may require a consideration of all

combinations of hidden neuron states, which often is intractable computationally.

Furthermore, when a smooth activation function is used the hidden neurons must

not be treated as binary variables, further complicating the task. This shows that

while describing a network by concentrating on single neurons may lead to a concise

formulation, the understanding of the network requires a holistic approach that may

be prohibitively time consuming.

This example of opacity of rules extracted from neural networks relies on the

expressiveness of hierarchical models coupled with their opaqueness when the

35

concepts used in the hierarchy are not easily interpretable. However, if interpretable

features could be derived from data, then they should be used for the creation of

understandable hierarchical models. An attempt at enhancing the understandability

of hidden neurons through the introduction of non-negative weight constraints has

been presented in Chapter V, Section A.

3 Do Black-box Classifiers Learn Knowledge from Data?

According to the Statistical Learning Theory, a learning machine is trained to

approximate the outputs of the supervisor. The main goal is to imitate, not identify,

the supervisor's behavior. Does it still imply that the learning machine gains

knowledge about the supervisor's operation? Knowledge is not formally defined and

just like the notion of understandability it is very subjective. For example, the

nearest-neighbor classifiers assumes that the supervisor's output varies little between

similar inputs. The predicted class is just the most popular class of a specified

number of neighbors of a testing point. Does a nearest neighbor classifier learn new

knowledge? Intuitively no, because any analysis of a nearest neighbor classifier is

essentially an analysis of the raw training set.

Neural Networks may seem closer to extracting useful relations out of the

training data. A multilayer feedforward neural network implements a complicated

function of the inputs and weights. It is trained by modifying the weights. Unlike a

nearest neighbor classifier, the size of a neural network is usually fixed and doesn:t

grow with an increase of the number of processed training samples. However, as

demonstrated by the example in the previous section, those characteristics do not

guarantee that the weights of a network are meaningful. In fact, an artificial neural

network may work consistently well even when most of its weights are chosen at

random. This is proposed by the Extreme Learning approach [91].

An Extreme Learning Machine (ELM) is a feedforward neural network with

one hidden and one output layer. However, only the weights and biases in the output

layer are optimized, while the weight and biases of the hidden layer are generated

randomly and kept fixed during training [91]. Thus they bear no relation to the

36

problem and can not capture any knowledge. Neither they possess any meaningful

interpretation. However, it has been verified that the accuracy of an ELM is often

comparable to the state-of-the art classifiers, such as Support Vector Machines [92].

The examples of nearest neighbor classifiers, or of neural networks show that

unless care is taken, even a very accurate classifier may be oblivious to much of the

data structure. The task of learning an understandable classifier may then

necessitate conscious engineering of the classifier to make it "knowledgeful." This can

be accomplished by using known data properties or invariants explicit in the

classifier design.

The Knowledge-Based Artificial Neural Networks (KBANN) methodology was

proposed to fulfill this goal [93]. It describes how to encode rules into a neural

network, tune the network, and finally read the refined rules from the network. At

the beginning each neuron encodes a single rule. Network tuning changes the

neurons' weights slightly, causing the related rules to be refined, but not redefined.

This means that after tuning individual neurons can be analyzed separately and

meaningful rules can be extracted from the network.

In many cases the knowledge of a problem is not limited to input-output pairs

and additional properties are known. Often it is known that the classifier should be

insensitive to some transformations of the data, that will be henceforth referred to as

"invariants". For instance in a system designed for handwriting recognition small

translations or rotations of characters do not change the text being recognized. Other

kinds of information may be known too. The hypothetical handwriting recognizer

might also know the language of the text. How can this additional information be

incorporated into the data mining process?

One way of using the information about a particular problem is a judicious

selection of the training data. Proper description of a problem through a selection of

relevant attributes is crucial. Often the learning itself is not applied to the raw data,

but to a cleaned and hand-curated subset of it. In many domains specialized data

transformations are routinely used. For instance audio processing usually begins with

the computation of the cepstrum of the signal [94]. For computer vision tasks the

37

Convolutions Maximum
Pooling

Convolutions Maximum
Pooling

Fully
Connected

Fully
Connected

Classi fication

Figure 7: Signal propagation through a convolutional network to recognize handwritten
digits. The network architecture is based on LeNet [97J. The images of network's
operation are obtained using a multidimensional convolutional network implemented
for comparison of methods for 3D action recognition [98J.

SIFT features [95J or local binary patterns [96J provide descriptors that are invariant

under many image transformations. Furthermore , the data set can be extended with

artificial samples that are special transformations of the original set. This technique

is often used in the domain of text recognition, where the training set is extended

with geometrical distortions of existing samples [97J.

Once the training data are selected, the learning machine itself can be

designed to reflect some of the known data invariants. Arguably, the largest

possibilities are offered by neural network based approaches, because at its core a

neural network is a nonlinear function with many tunable parameters. Desired

behavior can then be obtained through a reformulation of this function and through

the addition of regularization terms that promote a particular behavior of the

classifier.

A case in point , Convolutional Neural Networks (CNNs) excel at character

recognition [97J. They are based on the idea that weights used to recognize small

features , from which individual characters are composed, are probably the same at

any location of a larger input image. To exploit this observation, a CNN uses

neurons that are filters to be convolved with the input. Such neurons do not produce

a single activation value, but activation maps . The size of those maps is reduced with

38

pooling operators, that aggregate neighboring outputs into a single value. An

architecture of a CNN for handwritten digit recognition is presented in Figure 7. It

shows schematically the convolution and pooling operations, as well as snapshots of

the signal propagated through the network. The CNN begins with a sequence of

convolutional and pooling layers, which is followed by a classical multilayer

percept ron network. In this way properties of text images are incorporated in the

classifier architecture. Convolutions capture the property that detectors for basic

features in an image do not vary with the location, while insensitivity to small

translations of the input is achieved through pooling.

The architecture of Convolutional Neural Networks was inspired by the

discovery of the simple and complex cells in the visual cortex of a cat [99]. In

particular the filters used for convolution correspond to simple cells that detect

single patterns. On the other hand, the pooling operation aggregates filter responses

over neighboring locations and is related to the complex cells. Other studies were

directed at explaining which mechanisms lead the formation of receptive fields of

simple cells in the visual cortex. It has been shown that optimizing sparsity of image

representation produces oriented Gabor-like filters that agree with those found in the

macaque visual cortex [58]. In turn the use of signal sparsity in a neural network

based classifier led to state-of-the art accuracies [60] on handwritten digit recognition.

The introduction of sparsity has important consequences for the

understandability of the learned model. A signal representation is sparse when the

signal is represented by only a few elements from a large set. Especially on vision

tasks this often leads to a hierarchical decomposition of the input into meaningful

parts. A decomposition of digits into pen strokes was presented in [100] and a

decomposition of common objects into parts was demonstrated in [101]. Finding

sparse encodings of signals in terms of a known dictionary is also an important topic.

An efficient algorithm that finds robust and sparse encodings of data is described in

Chapter V, Section B.

Knowledge of other invariants can be included in the learning machine's

design by forcing parts of its output or state to be constant under some data

39

Figure 8: Making the Learning Machine LM aware of an invariant about data. Xl

and X2 are two inputs for which LM's output should be the same. The output of the
LM is computed twice using the same parameters e. The difference between the two
outputs is computed and e is adjusted to minimize it.

transformations. Usually two steps are required, as depicted in Figure 8. First, pairs

of inputs for which the output should be similar are generated. The learner is trained

to minimize the difference between outputs produced from those pairs [102]. In this

way the learner is forced to learn an invariance relation. This approach can also be

used to learn a transformation that reduces the dimensionality of data. The learner's

output maps the data into a space that preserves known invariants [103].

Sometimes constraining the representation used by the learner is enough to

generate a meaningful representation. The Non-negative Matrix Factorization (NMF)

algorithm postulates to represent an input as a non-negative combination of

non-negative basis vectors [57]. This restriction suppresses cancellation between base

vectors, thereby enhancing sparsity. In contexts in which non-negativity is

meaningful, such as in analyzing counts of words in documents or pixel intensities in

images a simple parts based representation can be found. Results of an application of

the non-negativity principle to feed-forward neural networks are presented in

Chapter V, Section A.

Examples presented in this section demonstrate how a classifier can be

designed to match known data characteristics. Those techniques may make the

classifier more understandable, because its design will be in better agreement with
•

knowledge about the problem. However, this brings the task of learning

understandable models further away from a universal approach that does not require

extensive modeling and closer to the parametric statistical approach. Perhaps a fully

40

automatic method does not exist and the user must guide the learning process to

obtain a model that will enhance his subjective understanding of the problem at

hand.

G Two Facets of Learning Rules

Learning machines are trained to approximate an unknown function from a set

of inputs into a set of discrete class labels. Sometimes, this relation can be expressed

in a "shallow" way in which the outputs are simple combinations of the inputs. In

fact, the majority of rule learners build a list of rules which are conjunctions of simple

tests of inputs. The shallow models have obvious limitations on the complexity of

concepts they can represent. On the other hand, they are often easy to interpret.

The hierarchical, or "deep" models employ a sequence (hierarchy) of

transformations of the data. Complex concepts are built out of simpler ones.

However, when the intermediate concepts are not understandable, the whole

hierarchy becomes opaque. Automatic induction of hierarchical models, that do not

guarantee understandability, is easily achievable. One can for instance train a

multilayer feedforward neural network and treat each layer &"l a level of the hierarchy.

However, as the example given above demonstrates, understandability of such a

model is usually very low. Moreover, since there is no definition of understandability

it is not possible to directly optimize a model to be more understandable. A possible

solution of this problem consists of building the hierarchy one level at a time. This

introduces the problem of feature detection. It consists of finding a data

transformation that transform raw input samples into a new form that contains

useful and understandable features.

The two facets of rule extraction are linked to those two different regimes of

operation. On the one hand it is important to construct accurate shallow models.

However, those models may refer to features extracted from the data, and not to the

original attributes used for data description. This dissertation treats both topics.

Chapters III and IV describe methods for efficient extraction of shallow models from

data and black-box classifiers. Chapter V describes how understandable and useful

41

for classification features may be found. It also provides an efficient algorithm for

finding sparse descriptions of the data.

42

CHAPTER III

IMPROVING THE ACCURACY OF WHITE-BOX

MODELS THROUGH ADDITIONAL SAMPLE

GENERATION1

This chapter evaluates a family of very intuitive rule extraction methods in

which a white-box classifier is trained on artificial data sampled from an estimate of

the probability density of the original data. As such the described method can be

used with any black-box classifier and belongs to the family of independent or

pedagogical rule extractors.

The independent methods were originally introduced under the name of rule

extraction as learning [73]. The generic algorithm is pictured in Algorithm 1. The

important question is how to choose a proper method of generating additional

samples in line 2 of the algorithm that would yield maximum increase in the

white-box learner performance, without sacrificing too much of its understandability.

A review of pedagogical rule extraction methods that generate additional samples

was presented in Chapter II, Section E. Many of those methods use very simple, or

ad-hoc methods of density estimation. This chapter describes results obtained when

state-of-the-art mathematical techniques for density estimation are used instead.

Artificial sample generation is often used to increase the accuracy of classifiers.

Text recognizers are often trained on a data extended with geometric

transformations of samples [97]. Similarly, the SMOTE method mutates existing

samples to aid learning in the presence of class imbalance [105]. The rule extraction

IThis chapter is based on [104J (J. Chorowski and J. M. Zurada, "Improving the accuracy of

understandable classifiers through additional sample generation," Submitted to Knowledge and Data

Engineering, IEEE Transactions on, 2012).

43

Algorithm 1: General schema of rule extraction as learning methods.
1: BB +-- a black-box classifier trained on TrainData
2: N ewData +-- Additional samples
3: Classify NewData using BB
4: W B +-- a white-box classifier trained on TrainData U N ewData

as learning approach differs by the assumption that a reliable black-box classifier is

available to label new data. Therefore, since the labels will be set using the

black-box, data transformations used to generate new samples can generate samples

belonging to other classes than their seed samples.

Chapter II argues that classifier accuracy measured on unseen (test) data

increases with an increase of the number of training samples. This motivates the rule

extraction as learning approach whose main idea is to extend the training set with

additional artificial samples.

Another intuitive motivation comes from analysis of the operation of

understandable classifiers. Decision trees are usually built by repeatedly splitting the

training set. Similarly rule learners often employ the separate and conquer approach

which repeatedly finds a rule covering some samples which are then removed

(separated) from the training data. Tree splits and rules are often selected by

maximizing a statistical measure of their performance. As algorithms progress, the

data becomes scarce. Therefore some patterns may be missed by the learner and

other patterns may be selected purely by chance. The generation of additional

training data should therefore help the algorithms to learn a more complete theory

that governs the data at hand.

The remaining question is what distribution should the new data come from.

If a global understanding of the black-box classifier is required, then the white-box

should ideally replicate black-box's responses in the whole space spanned by data

attributes. For small domains it was proposed to generate a full truth table and

simplify it using e.g. Karnaugh maps [85]. For large domains this direct approach

requires prohibitively many computations and uniform sampling may be necessary.

However, trying to replicate the behavior of the black-box classifier over the whole

44

space has several disadvantages.

When the end goal is to obtain better accuracy on unseen testing data, it

makes little sense to model the behavior of the black-box in regions where data are

scarce. Performance measures such as accuracy are defined on a testing set that is

assumed to be drawn randomly and independently from the same distribution as the

training set. Similarly, rule extraction methods are often characterized by their

fidelity to the black-box classifier, which is defined as the percentage of the testing

samples for which the black-box and the white-box gave the same answer [23].

Moreover, both SLT and PAC learning theories require that the training and testing

data come from the same, albeit unknown, probability distribution. This suggests

that new data should be drawn from the original data density.

Furthermore, when new data comes from the distribution of the original data,

the resulting white-box classifier may be simpler because it is not forced to

approximate the decision surface of the black-box classifier in areas not populated by

the data [66]. Moreover, fewer additional data samples may be needed to attain a

certain level of accuracy. It becomes clear that it is beneficial to generate additional

samples from the distribution of the original data itself. The remaining question is

how to do it.

Suppose that the training set contains N pairs (xn, Yn) formed by a vector of

attribute values x E]Rk and a class label y. Assume that the training samples are

drawn Li.d. from a probability distribution PXy :

x, Y f'V PXy . (34)

The probability of observing a data sample (x, y) can be expressed as:

P(Y = y,X = x) = P(Y = ylX = x)P(X = x). (35)

This factorization directly corresponds to the data generator and supervisor assumed

by the statistical learning theory and show in Figure 1 in Chapter II. Classifier

training consists of imitating the supervisor and approximating the conditional

probability P(Y = ylX = x). Rule extraction requires that the black-box classifier

45

has learned a good approximation of it. Experiments reported at the end of this

chapter demonstrate that good accuracy of the black-box is required to achieve

satisfactory results. The remaining issue is to estimate the distribution over the

attributes P(X). This is the main topic of this chapter.

The Algorithm (1) does not apply the formula (35) exactly because labels are

deterministically set based on the black-box predictions, rather than sampled from

the predicted class distribution. This is done for two reasons. First, it biases the

white-box toward learning the decision boundary of the black-box. Second, many

practically used classifiers do not compute class probabilities, only the decision. For

instance the SVM must be extended in nonstandard ways to provide approximate

probabilistic interpretations of its outputs [106,107].

A Review of Probability Density Estimation Methods

The problem of nonparametric density estimation has been well

researched [108,109]. One family of non-parametric density estimators is the kernel

estimators also known as Parzen windows. It uses locally tuned radial basis functions

(i.e. kernels) to interpolate the density function between observed samples. Another

family of methods first finds several 1D projections of the data using projection

pursuit or a similar technique. New samples are generated in this transformed

feature space. The two families have been compared in [110].

1 Kernel Density Estimation

Given a set of N k-dimensional training data {xn' n = 1, ... , N}, a

multivariate fixed-width kernel density estimator (FKDE) with the kernel function K

and a fixed (global) kernel width parameter h, gives the estimated density j(x) for a

multivariate data x E IRk based on [110]:

A 1 N (1)
f(x) = Nhk ~K h(x - x n) , (36)

46

where the kernel function K satisfies [110]:

K(x) ~ 0, and (K(x)dx = l.
ilR.k

A popular choice of K is the Gaussian kernel [110]:

(37)

(38)

which is symmetric with its value smoothly decaying away from the kernel center.

The width of the kernel h is an important parameter of FKDE. If it is too

small, the estimated density will have spikes at data-points and wrongly estimate the

density in the tails of the distributioll. For the width too large, the estimate will

loose some of the structure of the original distribution.

There are simple methods to choose an initial value of the kernel width. A

popular method suitable for univariate data and Gaussian kernels assumes that the

original distribution is normal, compensating for the case when the experimental

inter-quartile range is too small. The kernel width is given by [108]:

A = min(std. dev., inter-quart. range/l.34)

h = l.06AN- 1
/

5
.

(39)

This method can be extended to the multivariate case by first sphering2 the data

using [110]:

z = S-1/2(X - E{x}), (40)

where S is the observed data covariance matrix and E denotes the mathematical

expectation operator:

S = E {(x - E{x})(x - E{x}f} = unuT

S-1/2 = U n-1/ 2uT

The FKDE of sphered data is given by:

2Sphering of data is also known as Zero Component Analysis.

47

(41)

(42)

(43)

After sphering E{z} = a and E{zzt} = I (the identity matrix). Under the

assumption that the sphered data are normally distributed and that the kernel is

multivariate normal the optimum width is [108,110]:

1 (4) k~4 h = AN- k+4 where A =
, 2k + 1 '

(44)

and k is the number of dimensions.

A product of univariate kernels K can also be used for multivariate FKDE.

The FKDE with a product kernel is defined as [109]:

(45)

Furthermore when the kernel K is Gaussian, the widths can be set to [109]:

1

hj = (std. dev. in dimension j) . N- k+4 (46)

More sophisticated methods for choosing and tuning the kernel width have

been proposed [108,111,112]. Often the methods are iterative and optimize the

kernel width by estimating the goodness of fit of the distribution using

cross-validation. Their detailed description is omitted, because the proposed rule

extraction algorithm only uses density estimation as a step toward obtaining a more

understandable and accurate classifier. As such, the end-goal is not a perfect density

estimate, but good accuracy of the white-box cla.'.;sifier. It may be more advantageous

to use (39) as a starting point and fine-tune the width by cross-validating the

white-box classifier accuracy.

Extensions of Kernel Density Estimation

The kernel width can be allowed to vary among samples, making it possible to

adjust the smoothness of the kernel estimate to the amount of available data. The

resulting technique is called Adaptive Kernel Density Estimation. It can be

constructed in two steps, by first selecting a pilot estimate of the data, then using it

to compute the individual kernel widths [108,110].

48

If the data set is large fewer kernels may be used than there are data samples.

It is also possible to relax the requirement that the kernels are placed on data

samples only. In this way kernel density estimation essentially results in a Radial

Basis Function network, or a Gaussian-Mixture Model [36,110].

Handling Discrete Data

Estimation of univariate discrete data is easily accomplished by computing

the observed frequencies of different values. In the case of multivariate k-dimensional

discrete data a distance measure between samples has to be introduced. A suitable

one is the Hamming distance [108]:

k

d(x,y) = LI{x(i) i- y(i)}, (47)
i=l

where I{·} is the indicator function and x(i) denotes the value of the i-th attribute

of sample x. When all attributes are binary, for any A with 1/2 ::; A ::; 1 a kernel KB

is defined as [108]:

(48)

The value kA can intuitively be interpreted as the average number of disagreements

between samples.

In practical scenarios attributes that take more than two values need to be

considered. Furthermore, the original marginal probabilities of attributes should be

preserved by the extended data set. Therefore this study proposes the kernel:

k [()I{X(i)=Y(i)}
K(ylx, A) = g A + (1 - A)Pi(y(i)) .

((1 - A)~(y(i)))I{X(i);fY(i)}] ,
(49)

where Pi(v) is the experimental marginal probability of the i-th attribute taking the

value v and A is a parameter in the range [0,1] that controls the amount of

smoothing. This kernel is more complicated than K B , however it has a simple

interpretation and allows for a very intuitive sampling algorithm shown in Algorithm

49

2. The intuitive meaning is that for every attribute with probability ,,\ the value of

this attribute is selected randomly from the respective marginal distribution.

For both kernel choices the approximate density function is defined by [108]:

1 N
J(x) = N L K(xlxi,,,\)

i=l

There is no simple formula to choose an appropriate value for A, however

cross-validation may be used to choose the ,,* that maximizes the score [108]:

N

,,* = argmax L log J-i(Xi),
A i=l

(50)

(51)

where J-i denotes the estimate obtained from all data points with the exception of

point Xi.

When the data contains both numerical and nominal attributes, an FKDE

can be constructed with the kernel K defined to be the product of a kernel for the

continuous attributes Kc and a kernel for the nominal ones Kn. This approach

requires the specification of two parameters: h for the continuous kernel and ,,\ for

the nominal one.

Another possibility of handling discrete attributes is to transform them into

numerical ones and use a standard FKDE estimator. The Weight of Evidence (WoE)

transformation has been proposed for use in rule extraction in [65]. It is often a good

choice because for problems with two classes it avoids the creation of artificial

variables. In a problem with two classes Cl and C2 the WoE transformation of the

value v of attribute A is defined as follows:

WOE(A = v) = In P(C = cllA = v).
P(C = c21A = v)

(52)

The WOE score is positive when there are more samples of class Cl having value v of

attribute A than there are samples of class C2. In multi-class problems one can

introduce WOE scores for every possible class value:

(53)

50

Algorithm 2: Drawing a sample from a FKDE.
1: Choose i uniformly with replacement from {I, ... , N}
2: if data are continuous then
3: Generate E to have probability density K
4: return Xi + hE

5: else {Sample Xn conditioned on Xi from probability density given
by the kernel (49)}

6: xn r Xi

7: for all a E attributes do
8: if A < U(O, 1) then
9: Xn(a) r random value of attribute a generated according to

its marginal distribution
10: end if
11: end for
12: return xn
13: end if

When the conditional probabilities are estimated form the data it is possible

that no data exists for a particular class and attribute value combination. Direct

computation of the WoE score may thus result in a division by zero error. In

experiments this condition was prevented through the use of Laplace smoothing

(occurrence counts of attribute value and class combinations are increased by 1, thus

ensuring that no count is 0).

Generating Samples From a FKDE

In this application the algorithm uses the density estimate to generate new

data. When FKDE is used it is not needed to explicitly construct the estimate.

Suppose a FKDE estimate j is obtained from samples Xl, ... ,XN. The classical

algorithm designed for continuous attributes [108] is extended to also handle discrete

data. Suppose that a kernel K of width h is used for continuous attributes and that

the kernel (49) with smoothing parameter A is used for the discrete ones. An

algorithm to sample from j is presented in Algorithm 2. The algorithm is easy to

implement when Gaussian kernel is used for numeric attributes. Moreover it is not

required to explicitly evaluate the density estimate.

51

2 Projection Pursuit-based Methods

Projection pursuit looks for "interesting" low dimensional data projections.

Usually, non-gaussianity of the projected data is optimized to find good projections.

After a projection direction is found, the structure of the projection is removed form

the data to make it "less interesting" and enable finding other projections. This

process can be inverted to form a sampling scheme in which the data is sampled in

the reduced space of the projections, then the structure is iteratively added [110].

Independent Component Analysis (leA) of the data, which also searches for

projections that maximize non-gaussianity of the data [55,113] can also be used to

find interesting projection directions. In the leA space independent univariate kernel

estimators can be used to model the density of individual leA features. New samples

are generated from those estimates. Finally, the inverse transformation is performed

to back-project the generated samples into the original attribute space.

B Experiments

This section compares the accuracy and size of white-box classifiers induced

on original and artificial data generated using various density estimation methods.

There is little point in evaluating rule extraction approaches on data sets on which

the white-box methods already excel [65]. Therefore the comparison was executed on

a selection of six data sets from the uel repository [17] for which the white-box

classifiers were consistently less accurate than the black-box ones. The properties of

the selected data sets are given in Table 1. The "Vote" data set has been made more

difficult by the removal of the attribute "physician fee freeze". Samples containing

missing values were discarded because missing values are not handled by the

LibSVM solver [114].

For reference the results of using two popular black-box classifiers to label the

generated samples were compared: The "Fast Random Forest" Java

implementation [16] of the Random Forest (RF) [7] and the LibSVM [114]

implementation of the Support Vector Machine (SVM) [8]. Both classifiers were

52

TABLE 1

Properties of data sets used in experiments.

Data Set Number of
Full Abbr. Inst. Nom. Num. Classes

Name Name Attrs. Attrs.
Balance Scale Bal 625 0 4 3

German Credit Ger 1000 13 7 2
Sonar Sonar 208 0 60 2

Promoter Prom 106 57 0 2
Vote Vote 232 15 0 2
Wine Wine 178 0 13 3

accessed from Matlab. The RF was configured to always build 100 trees with all

other parameters set to their default values. The SVM was configured with a

Gaussian kernel. Moreover the parameters 'Y (SVM kernel width) and C

(regularization) were optimized to yield maximum cross-validation accuracy using

grid search ("(: 2-15 ,2-13 , ... ,23 , C : 2-5,2-3 , ... ,215).

For reference purposes, also two white-box learners, both implemented in the

Weka data mining suite, were used for comparison: the .1Rip implementation of the

RIPPER production rule learner [14] and the .148 implementation of the C4.5

decision tree learner [13] . .1Rip was used with its default settings, while .148 was used

with pruning performed either using the pessimistic confidence interval heuristic (the

default) and using Reduced Error Pruning (REP) in which the tree is grown and

pruned on different parts of the training set. Sometimes enabling REP resulted in

the induction of much smaller trees.

In all experiments 25 runs of 10-fold Cross-Validation (CV) were performed.

That many runs are necessary because the white-box classifiers are unstable - small

variations of the training data lead larger accuracy variations. The results obtained

on the original data are gathered in Table 2 which shows the mean and standard

deviation of CV accuracies obtained by all classifiers. Moreover, for white-box

classifiers the accuracies when the original training labels were replaced with

black-box predictions are also reported. It can be observed that replacing the labels

53

c.n
~

TABLE 2: Cross-validation classifier accuracies on original data.
Means and standard deviations (in parenthesis) of lOxCV accuracies from 25 experiment runs. The white-box accuracies are reported on
the original data set, and on the training data with labels replaced with either of the black-box's predictions. The "+WoE" suffix in data
set name indicates that nominal attributes were processed with the weight-of-evidence filter.

Data SVM RF JRip Acc J48 Acc J48+REP Acc
Name Acc Acc Orig SVM RF Orig SVM RF Orig SVM RF

Bal
99.9% 81.2% 80.8% 80.8% 80.8% 77.9% 77.9% 77.9% 78.2% 78.2% 78.2%
(0.1) (0.6) (0.9) (0.9) (0.9) (0.9) (0.9) (0.9) (1.1) (1.1) (1.1)

Ger+WoE
76.2% 76.5% 73.1% 73.5% 73.2% 72.0% 74.3% 72.0% 72.2% 73.6% 72.2%
(0.3) (0.7) (1.0) (0.8) (0.9) (0.9) (0.9) (0.9) (1.0) (1.0) (0.9)

Ger
75.9% 75.9% 72.2% 72.0% 72.2% 71.1% 73.1% 71.1% 72.0% 73.2% 72.0%
(0.8) (0.7) (1.0) (0.9) (1.0) (0.7) (0.9) (0.7) (1.0) (1.0) (1.0)

Prorn+WoE
98.2% 93.8% 82.0% 82.1% 82.0% 77.0% 77.1% 77.0% 76.8% 76.7% 76.8%
(0.8) (1. 7) (3.2) (3.2) (3.2) (2.4) (2.4) (2.4) (3.3) (3.2) (3.3)

Prom
92.3% 91.3% 80.7% 79.0% 80.7% 79.2% 80.6% 79.2% 75.9% 76.2% 75.9%
(0.9) (1.6) (2.7) (3.1) (2.7) (3.0) (2.2) (3.0) (3.4) (3.6) (3.4)

Sonar
87.7% 84.2% 74.5% 74.5% 74.5% 73.0% 73.0% 73.0% 70.3% 70.3% 70.3%
(1.2) (1.4) (2.7) (2.7) (2.7) (2.7) (2.7) (2.7) (2.5) (2.5) (2.5)

Vote
91.6% 88.8% 88.2% 87.2% 88.2% 89.1% 87.5% 89.1% 87.1% 87.1% 87.0%
(0.8) (0.7) (1.1) (1.6) (1.1) (1.0) (1.5) (0.9) (1.2) (1.5) (1.2)

Vote+WoE
91.6% 88.8% 88.4% 87.3% 88.4% 89.0% 87.5% 89.0% 86.8% 87.0% 86.8%
(0.8) (0.9) (1.4) (1.3) (1.4) (1.0) (1. 7) (1.0) (1.3) (1.3) (1.3)

Wine
98.9% 97.9% 92.3% 91.9% 92.3% 93.1% 92.7% 93.1% 90.0% 90.2% 90.0%
(0.5) (0.4) (1.6) (1. 7) (1.6) (1.2) (1.0) (1.2) (2.4) (2.4) (2.4)

with RF predictions has little effect, mainly because the RF often achieves 100%

training accuracy. Replacing the labels with SVM predictions slightly affects

white-box accuracies, however it does not always lead to improved performance.

It was experimentally compared how the accuracy of the black-box learner

varies when the data set is extended with additional samples generated using the

following methods. The Olle letter abbreviation are used in tables and plot legends.

1. Independent uniform sampling (abbrev. u) over the range of attributes. For

discrete attributes all possible values are sampled with the same probability.

2. Independent sampling of values for different attributes from univariate FKDEs.

Results with no smoothing (kernel width h = 0) (abbrev. d) are compared with

results with the Gaussian kernel of width determined using equation (39)

(abbrev. k). Nominal attributes are sampled independently according to their

empirical marginal distributions.

3. Sampling from a multivariate FKDE. Numerical and nominal attributes are

treated separately. For numerical ones the results when the data are sphered

and the Gaussian kernel width is given by equation (44) (abbrev. f) are

compared with results that use a product of Gaussian kernels of width

determined using equation (46) (abbrev. m). For nominal attributes the kernel

(49) is used with). set using equation (51).

4. Sampling from Weka's "EM" clustering (abbrev. e). Numerical attributes are

modeled as multivariate Gaussians, nominal ones are assumed to be

conditionally independent given the cluster and are specified using their

conditional marginal probabilities.

5. Independent sampling of features in the ICA space (abbrev. i). Independent

components are learned using the FastICA algorithm [113] and independent

univariate FKDEs are used to estimate the density of the data in the

feature-space. This method handles only numerical attributes.

55

6. Multivariate sampling of features in the PCA space (abbrev. p). The density of

the data in the feature space is estimated using FKDE with a product kernel

because PCA features are not correlated. This method handles only numerical

attributes.

7. Sampling using the ALBA method (abbrev. s) [65]. It corresponds to sampling

from an independent univariate KDE of the density of support vectors of an

SVM. This method handles only numerical attributes.

For every data set, black-box, and white-box method combination the CV

accuracy for increased quantities of artificially generated samples was recorded. The

number of artificial samples was limited to 10000 and the size of the extended data is

reported in multiples of the original data size. Thus relative size 1 means that only

the original data is used. To reduce the variability of results all white-box classifiers

were trained on exactly the same augmented data sets, and the same instances of

black-box classifiers were used to label data generated with all evaluated methods.

This implementation of the experiment allowed testing how samples generated by the

SVM-dependent ALBA perform when the RF is used to obtain the labels.

The most informative way to present the results is to graph the accuracy of

white-box learners against the size of the extended training data sets. It is also

informative to analyze how the accuracy varies with the size of the white-box

classifiers. Such plots are shown for the data set "Balance Scale" in Figure 9. In all

accuracy plots the solid horizontal line at the top presents the cross-validation

accuracy of the SVM, while the dashed horizontal line near the bottom depicts the

accuracy of the JRip rule learner on the original data. Accuracies of the rule learner

obtained on extended datasets are plotted between those two reference levels in

function of the relative data set size (the size of the extended dataset divided by the

original size, 1 means that only the original samples were used). Due to the large

number of possible combinations of white-box, black-box, and sampling method a

few of the graphs were selected for further discussion in the text. To summarize the

graphs the results were tabulated using the following measures. Maximums over all

56

Dataset: Balance Scale, White-Box: JRip, Black-Box: SVM Dataset: Balance Scale, White-Box: JRip, Black-Box: SVM

4

>.

" ~
~
> u
x e
'0
a>

~
a>
> ..:

6 8 10 12 14 16

100

98

96

94

92

90

88

SVM --9- 1
.......... JRip -A-- m
-€>- u ---i>-- P -+-d __ I

------*""- k ----+-- S
~e

40 50 60
Relative size 01 the dataset Num RulesrTree Leaves

(a)

Dataset: Balance Scale, White-Box: JRip, Black-Box: SVM
-A-- m
---i>-- p __ i

-0.05
1
L--=-2 -----'4--6-'--.c':8---c

1
"::-0-----'12=---1"::-4-----'16=-­

Relative size 01 the dataset

(c)

(b)

70 80

Figure 9: Results of experiments on the "Balance Scale" data with JRip rules learned
from samples labeled using an SVM. lOxCV is plotted as a function of the increase
of training data set (a) and as a function of the number of rules (b). Accuracy Gain
divided by rule set Size AG IS as a function of the increase of training data (c). Areas
of the marked regions are reported in Tables 4 and 5 as AG and AG/S.

57

training set sizes of the averaged CV accuracies are reported in Table 3. A useful

figure of merit is the Accuracy Gain (AG) defined to be the difference between the

accuracy of the white-box learner on the augmented and original data sets. For

example, the AG when independent sampling from marginal distributions (d) was

used to generate new data is indicated in Figure 9a. In addition, to analyze the

trade-off between white-box accuracy and comprehensibility the accuracy gains were

divided by the size of the white-box model (AG/S), which is the number of rules for

JRip and number of leaves for J48. To capture the variability of AG and AG/S with

the relative size of the data their integrals were computed over the relative data set

sizes. Those are reported in Tables 4 and 5. They correspond to the areas of the

shaded regions in Figure 9a and Figure 9c. Since the accuracy gain depends on the

white-box original performance, the values in Tables 4 and 5 can be compared

between sample generation methods and black-box architectures for a selected data

set and white-box architecture combination. In general, good methods demonstrate

both large AG and large AG/S integrals.

The largest increase of the white-box accuracy is observed on the "Balance

Scale" data set on which independent sampling from non-smoothed marginal

distributions matches the accuracy of the SVM. It has already been shown in Figure

9 how the accuracy of JRip varies with the amount of training data and with the

number of rules. The results on "Balance Scale" must be, however, taken with a

grain of salt because the data is fairly atypical: there are only four numerical

attributes that take only five different values each, which limits the attribute space

to just 625 points. Since the data space is small, the independent generator is able to

enumerate all points. The graphs match the two summary values in Tables 4 and 5.

The un-smoothed independent FKDE generator (d) has demonstrated the largest

gain in accuracy and the best ratio of accuracy gain to the number of rules. Despite

the atypical nature of the "Balance Scale," the results demonstrate an important

property of the non-smoothing FKDE generator. It is robust to data peculiarities,

such as numerical attributes that nevertheless take only a small number of values.

All other density estimation methods lead to lower accuracies because they fail to

58

TABLE 3: Maximum of averages of 10xCV accuracies. For each data set indicated
are in each column the values that are within 1% of the maximum .

.TRip Ace J48 Ace .T48+REP Acc
SVM RF SVM RF SVM RF

u 87.3 82.9 87.8 81.0 87.0 80.7
d 99.9 82.4 99.9 81.2 99.8 81.1
k 87.3 83.4 87.4 81.0 86.9 80.8
e 87.2 83.6 86.3 80.9 86.2 80.7 ..-

cO f 86.7 83.2 86.0 81.0 85.8 80.7 o:l
m 86.7 83.5 86.1 81.0 85.9 80.6
p 86.7 83.5 86.2 81.0 85.9 80.6
i 87.3 83.4 87.2 80.9 86.8 80.8
s 84.5 80.8 82.8 78.0 82.1 78.2
u 74.5 74.4 74.3 72.6 74.0 74.1
d 74.8 75.9 75.1 75.5 74.8 75.4

~
k 74.8 75.8 74.6 75.0 74.5 75.3

~ e 74.4 75.2 74.3 74.0 73.6 74.8

+ f 74.5 75.1 74.6 74.0 74.1 74.8
1-1
Q.) m 74.6 75.3 74.5 74.0 74.1 74.4 0

p 74.7 75.3 74.3 74.1 74.1 74.9
1 74.6 75.0 74.4 73.9 74.1 74.8
s 74.7 73.4 74.3 72.2 74.1 72.5
u 72.0 72.9 73.3 72.9 73.2 72.4

1-1 d 72.6 73.5 73.1 74.2 73.2 73.7 Q.)

0 e 72.5 73.0 73.2 74.0 73.2 73.6
f 73.1 73.7 73.6 74.6 73.6 74.4
u 85.7 87.7 83.4 85.3 81.4 84.8
d 89.1 90.9 84.8 89.7 87.8 90.9

~ k 87.7 90.7 85.0 89.2 86.8 91.5

~ e 86.3 87.4 86.0 87.4 83.5 85.9
+ f 89.9 90.3 88.2 89.6 88.6 91.1 S
0 m 87.4 88.9 84.9 87.6 85.4 88.0 1-1

0..
89.5 91.2 88.5 90.5 89.5 90.8 p

1 89.2 91.0 86.4 89.5 88.8 91.5
s 83.9 83.8 84.2 84.1 83.7 83.6
u 80.7 86.8 80.6 83.2 77.7 83.3

S d 86.6 86.3 83.5 88.1 84.2 88.6 0
1-1 -

0.. e 85.7 88.2 83.4 89.0 84.3 88.6
f 87.0 86.6 83.8 88.4 85.3 88.8

Continued on next page ...

59

TABLE 3 (continued): Maximum of averages of 10xCV accuracies.

JRip Ace J48 Ace J48+REP Acc
SVM RF SVM RF SVM RF

u 75.3 74.5 73.8 75.0 70.8 71.7
d 75.1 76.0 73.4 75.5 71.5 74.1
k 74.5 75.9 74.8 75.2 71.3 74.3

;...,
<:\'l

e 75.3 75.4 74.6 76.0 72.3 74.2
....

f 82.3 79.8 80.1 78.6 80.5 77.8
0

U)

81.7 79.3 80.0 78.0 79.6 76.9 m
p 82.1 79.7 80.5 78.2 79.6 77.0
i 80.3 77.5 77.3 76.7 76.8 75.3
s 77.1 78.1 74.1 74.3 72.3 72.3
u 90.6 89.3 90.3 89.1 90.0 89.3

(J) d 90.8 89.5 90.6 89.3 90.5 89.4,
~ e 90.9 89.3 90.5 89.2 90.5 89.2

f 91.0 89.1 90.9 89.1 90.6 89.2
u 89.7 89.4 88.8 89.0 88.7 89.2
d 90.9 89.4 90.6 89.2 90.5 89.4

~
k 89.9 89.6 90.2 89.0 89.9 89.2

S ::;;: e 89.6 89.4 90.0 89.2 89.8 89.1
+ f 89.8 88.9 89.8 89.0 89.5 88.4
(J),

89.6 88.9 90.0 89.0 89.6 88.7 ~ m
p 89.7 88.8 89.7 89.2 89.7 88.4
1 89.6 89.3 90.2 89.0 89.7 89.2
s 87.9 88.4 88.1 89.0 87.4 87.4
u 94.6 96.8 94.1 96.6 92.9 96.4
d 96.5 97.0 95.2 97.0 94.6 96.5
k 96.1 97.1 95.3 96.8 94.5 96.5

(J) e 95.9 96.2 94.9 95.9 94.4 95.2
~

f 97.2 97.2 96.4 97.4 97.1 96.5
~

m 96.8 97.1 96.3 97.1 95.9 96.9
p 96.9 97.3 96.7 97.3 96.3 96.9
1 96.8 97.1 96.1 97.4 96.1 96.9
s 94.0 95.9 96.4 96.9 96.0 96.3

60

TABLE 4: Summary of experiments using JRip white-box.
JAG is the integral of Accuracy Gain (the difference between the white-box's accuracy on

expanded and original data) over relative set sizes. J AG/S is the integral of the Accuracy

Gain divided by the Size of the classifier (number of rules or tree leaves). For each column

and each dataset indicated are in bold the values that are within 5% of the maximum.

JRip
SVM RF

JAG JAG/S JAG JAG/S
u 79.3 2.595 26.0 0.949
d 237.2 3.135 -0.4 0.032

k 79.2 2.619 28.5 1.071

e 71.6 2.369 32.8 1.209
oj

f 70.8 2.333 31.4 1.136 CO
m 70.6 2.343 32.4 1.182
p 69.7 2.310 31.3 1.134

i 77.9 2.567 29.3 1.102

s 46.0 1.390 -38.3 -1.248
u 10.2 0.516 7.9 0.580
d 13.4 0.744 21.8 1.433

~
k 12.5 0.822 20.2 1.676

,-0 e 8.4 0.541 13.1 1.061
:$
+ f 10.9 0.629 13.6 0.948
~
Q) m 11.1 0.642 13.9 0.973 0

p 11.3 0.664 14.4 1.020

1 10.9 0.622 12.8 0.942

s 12.0 0.539 -8.5 -0.307

u -16.7 -1.199 4.0 0.395
~ d -0.0 -0.105 7.6 0.417 Q)

0 e -0.1 -0.042 3.2 0.200

f 3.8 0.245 7.9 0.530
u 134.6 19.809 243.7 33.611
d 237.5 10.178 354.4 21.818

~ k 180.9 12.312 338.6 32.659

~ e 166.8 18.682 228.1 26.669
+ f 304.1 22.017 353.4 31.129 8
0 m 205.1 14.184 267.9 20.840 ~

0...
278.2 20.347 348.6 30.559 p

i 267.7 18.855 358.4 31.198

s -14.2 -2.436 -4.4 -0.647

Contmued on next page ...

61

TABLE 4 (continued): Summary of experiments using JRip white-box.

JRip
SVM RF

JAG JAGjS JAG JAGjS
u -127.2 -8.836 188.8 12.913

S d 162.1 6.508 168.5 8.457 0
141.5 5.641 228.1 12.037 0.. e

f 154.3 5.498 195.1 9.622

u -90.4 -6.907 -99.7 -16.794
d -19.2 -1.618 45.8 1.965

k -73.3 -4.786 32.2 1.399
..... e
cC

-3.8 -0.643 15.5 1.000
""' f 298.8 13.314 177.3 8.733 >-<
0

r.fl

255.3 10.976 180.3 8.635 m
p 279.5 12.470 189.1 9.213
1 207.8 9.328 93.6 4.549
s 43.5 3.279 79.7 5.303

u 34.9 1.556 12.4 0.812
Q.) d 40.0 1.723 20.1 1.245,
~ e 41.3 2.996 13.5 0.844

f 42.6 2.729 11.8 0.659

u 15.3 1.203 11.3 1.334

d 33.9 1.570 16.3 1.111

~
k 21.7 1.413 15.9 1.751

~ e 16.2 1.268 13.9 1.803
+
Q.)

f 15.1 0.975 -10.3 -0.963
....,

12.7 0.852 6.2 0.692 ~ m
p 14.7 0.994 -4.4 -0.422
1 17.6 1.291 11.1 1.435

s -22.5 -2.065 -97.6 -7.314

u 77.0 2.117 184.8 9.946

d 156.6 4.185 196.3 8.445

k 147.8 4.983 197.8 10.629

Q.) e 121.3 8.742 152.9 12.995
,:::

f 204.9 9.788 204.6 12.907 ~
m 178.9 7.637 204.5 11.594

p 190.7 8.650 207.6 12.666

1 186.6 7.374 203.4 11.755

s 63.8 6.296 152.2 14.193

62

TABLE 5: Summary of experiments using J48 white-box.

JAG is the integral of Accuracy Gain (the difference between the white-box's accuracy on

expanded and original data) over relative set sizes. J AG/S is the integral of the Accuracy

Gain divided by the Size of the classifier (number of rules or tree leaves). For each column

and each dataset indicated are in bold the values that are within 5% of the maximum.

J48 J48+REP
SVM RF SVM RF

JAG JAG/S JAG JAG/S JAG JAG/S JAG JAG/S
u 115.4 0.542 39.2 0.272 106.4 1.168 29.3 0.282
d 304.4 1.997 47.6 0.348 266.1 1.928 38.9 0.315
k 112.8 0.564 39.1 0.266 106.4 1.237 31.1 0.319
e 101.1 0.503 39.1 0.265 96.8 1.105 30.4 0.293

(;j
f 99.0 0.504 36.8 0.251 92.1 1.073 27.8 0.275 o:l

m 98.8 0.505 38.7 0.263 93.8 1.097 28.9 0.284
p 98.9 0.509 38.2 0.260 94.4 1.094 29.1 0.283
1 109.4 0.549 39.3 0.270 104.5 1.223 31.4 0.313
s 69.5 0.198 -43.2 -0.503 53.2 0.348 -99.9 -1.689
u 19.6 0.097 2.2 0.010 15.8 0.211 13.8 0.223
d 25.2 0.167 28.6 0.155 20.4 0.273 26.5 0.321

I=il
k 21.8 0.147 19.7 0.102 19.7 0.321 21.7 0.336

>0 e 18.7 0.118 13.9 0.078 12.5 0.222 18.3 0.368
~
+ f 20.5 0.136 13.2 0.067 16.3 0.269 18.6 0.316
.....
(J) m 20.0 0.132 14.0 0.066 16.1 0.228 15.9 0.201 0

p 19.3 0.125 12.2 0.064 14.8 0.243 19.5 0.338

1 19.6 0.127 13.7 0.076 15.7 0.263 18.1 0.342

s 18.1 0.135 -8.5 -0.028 15.3 0.216 -7.3 -0.044

u 3.5 0.019 13.7 0.060 -11.0 -0.030 1.8 0.005
..... d 11.6 0.043 26.8 0.125 0.9 0.009 14.0 0.082 (J)

0 e 14.1 0.049 24.9 0.113 2.9 0.015 12.4 0.067

f 22.0 0.072 29.5 0.116 11.7 0.046 16.8 0.077

u 224.2 3.119 339.6 5.536 119.3 8.490 295.8 17.094

d 283.0 1.508 540.1 4.386 419.1 7.845 623.1 17.610

I=il k 317.3 2.487 538.2 5.230 360.7 8.399 619.7 22.510

~ e 372.2 8.092 449.7 10.713 274.0 16.895 370.0 22.328
+ f 482.4 6.928 556.6 9.687 496.7 18.416 572.6 24.534 S
0 m 333.5 5.253 441.2 7.140 363.0 13.277 457.8 17.029

0....
476.6 6.547 568.2 9.473 508.2 18.787 603.1 26.157 P

1 410.6 5.309 539.4 8.332 483.9 16.965 620.0 26.966

s 30l.8 29.456 308.3 31.810 279.6 30.755 287.1 31.844
Contmued on next page ...

63

TABLE 5 (continued): Summary of experiments using J48 white-box.

J48 J48+REP
SVM RF SVM RF

JAG JAG/S JAG JAG/S JAG JAG/S JAG JAG/S
u -392.7 -8.801 126.7 1.042 -294.7 -8.792 260.0 5.009

S d 97.4 0.025 328.6 1.394 270.0 2.297 496.6 5.491 0
~

0.. e 68.1 -0.106 350.5 1.612 252.8 2.194 482.8 5.540
f 110.6 0.149 322.9 1.463 298.3 2.594 509.1 5.777
u -87.3 -0.353 -47.7 -0.525 -135.0 -2.682 -65.4 -4.775
d -99.5 -0.304 78.4 0.306 -45.2 -0.399 139.8 2.547
k -85.7 -0.205 65.1 0.283 -63.7 -0.636 152.5 2.707

~ e -36.9 -0.038 108.0 0.670 43.8 0.886 141.0 3.101
,....

f 290.6 1.466 222.9 1.631 409.3 5.714 280.7 5.830 ,...
0

r:f}

271.8 1.184 200.7 1.123 350.0 4.529 248.6 4.225 m
p 284.2 1.418 209.4 1.591 384.4 5.414 272.4 5.669
i 167.3 0.890 141.5 1.088 267.8 4.095 199.4 4.346
s -97.1 -2.010 -103.4 -1.512 -21.9 -0.275 -15.5 -0.084
u 17.4 0.171 -5.2 -0.159 48.1 1.107 36.4 0.993

iJ.) d 22.4 0.212 -2.0 -0.089 57.2 1.201 38.3 1.006 ~

~ e 20.8 0.504 -1.3 -0.123 58.0 2.581 34.9 1.268
f 26.5 0.537 -3.3 -0.158 61.9 2.101 34.7 0.975
u -11.1 -0.232 -9.3 -0.235 26.5 1.016 38.6 1.750
d 24.8 0.250 2.3 -0.003 61.6 1.315 46.0 1.202

~
k 13.5 0.106 -8.1 -0.201 54.4 1.768 38.0 1.559

~ e 11.1 0.103 -13.3 -0.386 45.3 2.114 38.9 2.081
+ f 4.1 -0.030 -24.2 -0.706 40.8 1.743 17.5 1.093
iJ.)
~

9.7 0.048 -20.0 -0.525 44.4 1.842 25.3 1.225 ~ m
p 6.0 -0.033 -22.6 -0.674 41.2 1.702 24.6 1.378
1 13.2 0.107 -12.5 -0.380 45.7 1.892 37.7 2.428
s -32.2 -0.800 -125.8 -3.167 -2.4 -0.046 -102.1 -3.066

u 20.5 0.007 154.0 1.389 110.3 1.508 286.9 6.947

d 60.5 0.110 162.2 1.435 157.8 1.904 288.5 6.826
k 61.1 0.083 159.5 1.400 158.6 1.811 282.4 6.745

iJ.) e 45.4 0.415 81.9 1.651 159.4 6.605 194.0 9.063
>=l

f 133.7 172.8 9.472 1.329 2.501 268.8 6.705 293.8 ~
m 120.7 1.014 167.3 2.085 247.6 5.360 297.1 8.147

p 132.9 1.094 170.0 2.330 265.0 6.115 294.8 9.303

1 114.0 0.790 177.5 2.139 251.8 4.822 302.4 8.797
s 135.4 6.044 155.9 5.532 279.2 17.630 292.1 17.020

64

preserve this characteristic of the data.

The results obtained on the "Wine" data set are more typical and prevail in

most other cases. Similarly to the "Balance Scale" data, Figure 10 presents the

relationships between the accuracy of the J48 classifier and the number of generated

samples and tree size. On this data set, when the SVM is used to provide labels, the

ALBA method (s) generates samples that result in both the smallest and most

accurate trees. Moreover the accuracy versus tree size plot reveals three groups of

curves. Samples generated by the ALBA method quickly lead to concise and

accurate trees. It was found that the ALBA method often leads to small classifiers,

however they are seldom as accurate as in this case. In the second group are methods

that model attribute correlations. Multivariate FKDE (f, m), ICA-based (i), and

PCA-based (p) estimators yield a similarly high accuracy, but the trees are larger.

Finally, the three methods that assume attribute independence - smoothed (k) and

un-smoothed (d) FKDE and uniform sampling (u) lead to the least accurate and

largest trees.

Careful inspection of the results on the "Wine" data set reveals another

important characteristic of the proposed rule extraction method. Even though, as

seen from Table 2, the Random Forest is 1% less accurate than the SVM, decision

trees on additional data labeled by the RF are more accurate. This is visible in

Figure 11. Despite averaging 25 runs of experiments, the curves show a large degree

of variability. Therefore it is better to refer to the accuracy gains from Tables 4 and 5

instead of the top accuracies in Table 3, which has been brought for convenience and

reference only. When the labels are produced with the SVM the best sample

generator is ALBA (s), with the AG integral of 135.4. On the same samples, but

relabeled using the RF, ALBA's AG integral raises to 155.9, without increasing

considerably the tree size. However, it is surpassed by other methods: ICA-based (i)

generator has the maximum AG of 177.5, followed by FKDE (f) generator with

AG=172.8, and PCA-based generator (p) with AG=170.

The "Promoter" data set to illustrates the impact of the two possibilities of

65

Dataset: Wine

99!-___ ~==~~~~~--------------
-- SVM ----'V- f

98

>. 97

~
1l 96
:;l
> c; 95
o

.... J48 ---8- m
-B---- u ___ p

--+- d -_ i
-+t- k -----+-- S

--+-- e

5 10 15 20 25 30 35 40 45 50
Relative size of the dataset

(a)

Dataset: Wino
99~ ________________________________ __

98

100 200

SVM ----'V- f
......... J48 ---8- m
-B---- u ___ p
--+- d ___ i

-----*""-k --*-s
--+-- e

300 400 500
Num RulesfTree Leaves

(b)

600

Figure 10: Results on the "Wine" data set with .148 trees learned on samples labeled
using an SVM. 10xCV is plotted as a function of the increase of training data set (a)
and as a function of the number of leaves (b).

Dataset: Wine Dataset: Wine 98r-________________________________ __ 98r-----____________________________ __

97 97

~
~ 94

I ..
~ 9

92 92

91~~ __ ~ __ L_~ __ _L __ ~ __ ~~L_~ __ _L

1 5 10 15 20 25 30 35 40 45 50
91L---~L-----~-----L----~'~--~~--

5 50 100 150 200 250
Relative size of the dataset Num RulesfTree Leaves

(a) (b)

Figure 11: Results on the "Wine" data set with .148 trees learned on samples labeled
using a RF. 10xCV is plotted as a function of the increase of training data set (a) and
as a function of the number of leaves (b).

66

handling discrete attributes. First, the original data with nominal attributes is used.

The density estimation methods that can be used are uniform sampling (u),

independent sampling of marginal distributions (the smoothed estimator (k) and

un-smoothed estimator (d) are equivalent), multivariate kernel density estimate (the

sphering estimator (f) and the product kernel estimator (m) are equivalent), and a

EM mixture model (e). The results of .148 with reduced error pruning on data

labeled with a RF have been graphed in Figure 12. EM and the two kernel density

estimators yield very comparable accuracy. Uniform sampling is clearly inferior.

Alternatively, nominal attributes can be transformed into numerical ones

using the Weight of Evidence method. It makes it possible to apply all density

estimation techniques. The results are presented in Figure 13. The first observation

is that after the WoE transformation both the black-box and the white-box learners

demonstrate increased accuracies. It may be due to the fact that the task becomes

easier because the WoE transform is applied before to the whole training data before

it is split for cross-validation. Independent marginal density estimators (d, k) and

multivariate estimators (f, p, i) result in similar high accuracy, which agrees with the

results on the original, unprocessed data. However, see that the accuracy produced

on samples generated from the Gaussian Mixture Model (e) has deteriorated. Also,

the accuracy obtained using the multivariate FKDE with a product kernel (m) is

significantly worse than when data sphering is used to select kernel width (f).

C Recommendations

The reported results demonstrate that the simple algorithm presented in

Algorithm 1 consistently improves the accuracy of the understandable learners.

However, the extent of improvement heavily depends on the choice of method used

to estimate the probability density of new data. The experimental results allow to

formulate the following conclusions.

The study shows that efficiency of the rule extraction as learning approach

depends on both the quality of the black-box and the density estimation method. As

described in Chapter II, both SLT and PAC learning theories assume that the

67

92

90

88
>-u
til
~ 86
u
u
til
> 84
u
><
0
~ 82

" " 0>

l! 80

~

7

74
1 10 15

Dataset: Promoter

--RF --+- d

......... J48+REP ~ e

--B-- u ~ f

20 25 30 35 40 45 50
Relative size of the dataset

(a)

88
::I

f

~ ,

t: 86

~
> 84
u
~
~ 82

! I
l! 80

~

Dataset: Promoter

--RF --+- d
......... J48+REP ~ e

--B-- u ~f

74L-~--~--~--~--~--~--~--~--~

7 20 40 60 80 100 120 140 160 180
Num RulesfTree Leaves

(b)

Figure 12: Results on the "Promoter" data set with J48 with REP trees learned on
samples labeled using a RF. lOxCV is plotted as a function of the increase of training
data set (a) and as a function of the number of leaves (b).

94

92

90
>-
U
til

~ 88
u
u
til
> 86
u
><
0
~84

" " 0>

; 82
> «

80

78

76
1 5

Dataset: Promoter WoE Transformed

-----*"- k

......... J48+REP ~ e

--B-- u

... --+- d

~f

---A- m

__ I

-+--s

10 15 20 25 30 35 40 45 50
Relative size of the dataset

(a)

Dataset: Promoter WoE Transformed
94r-----------------------------------

92

78

--II--+----+

--RF ~f

. J48+REP ---A- m

--B-- u ---i>- P

--+- d

--k

~e

__ i

-+--s

76L-~--~----~--~--~L---~--~----

4 10 20 30 40 50 60 70
Num RulesfTree Leaves

(b)

Figure 13: Results on the "Promoter" data with nominal attributes replaced by their
weight of evidence. J48 with REP trees are learned on samples labeled using a RF.
lOxCV is plotted as a function of the increase of training data set (a) and as a function
of the number of leaves (b).

68

training and testing data come from the same probability distribution. Artificial data

is generated according to equation (35). Its consistency with the underlying but

unknown data probability density depends on both the quality of the black-box and

on the density estimator.

The rule extraction process strongly depends on the accuracy of the black-box.

The assumption that the black-box outperforms the white-box, or in other words

that there is an accurate classifier available is crucial to the rule extraction process.

Often, when the black-box generalization ability is worse than that of the white-box,

the final accuracy deteriorates. This can be seen for the combination of J48 and

Random Forest on the "Vote" data where the single decision tree outperforms the

forest and the resulting accuracy gains are negative.

To ensure optimal generalization capability and robustness of the black-box

classifier different architectures should be evaluated. However, the best-performing

black-box may not lead to the best white-box accuracies. The results indicate that

white-boxes trained on data relabeled by Random Forests were smaller and more

accurate than those trained on data relabeled by Support Vector Machines, even

though SVMs had higher accuracy than Random Forests. A possible explanation is

that it is beneficial to match the inductive biases of the white-box and black-box

classifiers.

The theoretical bounds on the generalization error also require that the

attributes are generated from the real, underlying density. Under mild conditions,

that are satisfied for the Gaussian kernel and the width selection rule (39), the

FKDE estimate is asymptotically consistent with the unknown underlying

probability distribution [108J. This means that when the number of available samples

tends to infinity, the discrepancy between the actual and estimated probability

distribution approaches zero. This fact motivates the use of kernel density estimators.

The importance of matching; the distribution of the generated samples to the

underlying data distribution can be justified by a comparison of two naive

estimators: the uniform one and the univariate kernel density estimator. On the

majority of the datasets used in the experiments, the kernel estimators (k,d)

69

outperform the uniform estimator (u). A possible explanation is that the uniform

generator results in lower accuracy, because it does not preserve the changes in the

density of the data, which may lead to class imbalances and over-expression of

regions where the data were scarce.

On the other hand, experiments also shown that even an approximate match

of the estimate to the underlying data distribution can often result in good accuracy.

Often the accuracy obtained under attribute independence assumption and without

it are very similar. This may be justified by the fact, that if the artificial data covers

regions where the original data are improbable, the testing set will not contain

samples that belong to those regions. Thus the accuracy will not be affected.

However, the white-box classifier must have terms that determine its decision

boundary for those spurious regions of the attribute space, its understandability will

thus deteriorate. This justifies the experimentally observed results, in which modeling

of attribute inter-relations resulted mainly in smaller white-boxes that were similarly

accurate to those built under the initial assumption of attribute independence.

If attribute independence is assumed and the correlations are not taken into

the account, then the univariate KDEs have proved to be a good choice. The

un-smoothed estimator with zero-kernel width (d) often yields high accuracy and has

the advantage of not generating artificial attribute values. This characteristic has

been exemplified on the "Balance Scale" data set. The case of a numerical attribute

that takes only discrete values is not uncommon. In fact, such attributes are created

by the WoE transformation. On the other hand, the smoothed estimators (k) often

yielded slightly smaller white-box classifiers.

When a multivariate density estimation is required, then the multivariate

FKDE of sphered data (f) is a good first choice. On all tested data it has resulted in

accuracies comparable to other methods that model attribute inter-dependencies.

Moreover the use of data sphering (d) instead of product kernels (m) has led to

better accuracies on all data sets on which the multivariate estimates resulted in

better accuracies that independent univariate estimates.

The proposed kernel for nominal data (49) performs very well. It induces a

70

sampling algorithm that is very similar to the mutation operator commonly used in

genetic optimization. It is very flexible and for A = 0, it is equivalent to the

independent sampling from attributes' marginal distributions, while when A = 1 only

copies of samples already belonging to the data set will be generated. Currently, the

parameter A is set by maximizing the problem (51). However, the computation of the

objective has a quadratic runtime complexity on the number of training samples.

More efficient methods of estimation of the parameter A are needed.

Biasing the data density estimate toward the black-box decision boundary, in

the spirit of the ALBA method usually yields very concise white-box classifiers.

However, it often yields smaller accuracy gains than the multivariate kernel density

estimation methods. Moreover, in extreme cases it may cause the accuracy of the

white-box classifier to deteriorate (e.g. on the "Sonar" data set with decision tree

learners, or on the \VoE transformed sets "Promoter" and "Vote"). Further research

is needed to verify whether this behavior is due to the attribute independence

assumption made in the ALBA method, or to the closeness of generated samples to

SVM's decision boundary.

Finally, the study points out that it is important to choose a good white-box

learner. The experiments suggest the use of RIPPER rule learner rather than the

C4.5 decision tree algorithm, because the accuracies are often very similar and

RIPPER rule sets tend to be much smaller. This behavior was attributed to the rule

pruning strategy used by RIPPER, which grows and prunes rules on separate data

and enforces a model description length limit for the whole rule set [14]. To evaluate

how a similar pruning strategy affects decision trees, the J48 learner was trained

with reduced error pruning (REP) enabled.

J48 decision trees learned with REP enabled had smaller sizes without

significant changes of their accuracies. This behavior can be motivated as follows.

The original pessimistic confidence interval pruning heuristic was designed to use all

available data to build the tree. As a consequence, the pruning decision is based on a

single statistical test whose assumptions are not fully satisfied [13]. On the other

hand, reduced error pruning divides the training data into a growing and pruning set,

71

which allows it to make more reliable decisions about node pruning. Artificial data

can be generated, therefore it becomes more important to reliably prune the tree,

rather than use all data to build the tree.

D Conclusions

Several methods of probability density estimation were described and

evaluated in the context of improving the accuracy of understandable classifiers. The

proposed method is applicable to any combination of black-box and white-box

classifiers and can handle both numerical and nominal data, which is an important

practical issue. Experimental results allow the formulation of recommendations .

about applying the presented methods in practical situations. It is believed that

similarly to commonly used data preprocessing and filtering techniques, the sample

generation methods outlined and evaluated in this contribution may become essential

building-blocks of bigger data-mining projects.

72

CHAPTER IV

INDUCING RODDS FROM NEURAL NETWORKS

In a practical setup, the rule extraction algorithm must internally encode the

rules it finds into a data structure. On the one hand, this structure should allow easy

manipulation of the rules. If the internal rule representation is not the one used for

rule display and presentation to the user it should also be able to concisely express

all the features of the presentation language. On the other hand, in the context of

rule extraction the internal data structure should make it easy to encode concepts

that are natural for the analyzed black-box classifier. The Reduced Ordered Binary

Decision Diagrams (RO BD Ds) and their extensions presented in this chapter fulfill

many of these requirements.

ROBDDs were proposed by Bryant as an efficient data structure for the

manipulation of boolean functions [115]. They have been extensively used in the

design of digital integrated circuits. Many extensions have been proposed since, to

enhance their capabilities [116-120], and they remain the subject of continuous

research. The discovery and adoption of ROBDDs "have led to dramatic

performance improvements and breakthrough in many CAD projects all over the

world" [121]. They offer the means to represent and process boolean functions

defined over thousands of variables, which open the door to verification, optimization

and implementation of complicated integrated circuit structures. Reduced Ordered

Decision Diagrams (RODDs) are a generalization of ROBDDs for functions taking

attributes defined over finite domains.

73

A Main Properties of RODDs

The RODDs demonstrate excellent algorithmic properties for function

manipulation over finite domains:

• They provide a canonical representation of functions i.e. every function has a

unique representation. This leads to easy testing for equivalence, tautology,

satisfiability, and falsifiability.

• The complexity of performing any boolean operation on two functions given as

RODDs is proportional to the product of their sizes (the number of nodes in

the diagrams).

• Counting the number of satisfying assignments for a function and finding the

next such assignment has a complexity proportional to the size of the function

representation.

• Many practically used functions have small RODD representations, especially

all symmetric functions (e.g. parity, M-of-N conditions, equality, and

inequality).

The downsides of RODDs are that some functions have representations that require

an exponential number of nodes (most notably the function for the middle bits of

multiplier circuits). FUrthermore, a sequence of operations on RODDs may run in an

exponentially growing time, because at each operation the result may grow as the

product of sizes of the operands. RODDs are also highly sensitive to the order of

variables (see Section 2).

Small size of RODD representation of processed functions is crucial, as the

performance of operations depends on it. Therefore, a lot of research in VLSI design

has been targeted to extend the RODD methodology to provide smaller

representations for many classes of functions, at the cost of the increased complexity

of some of listed operations.

74

1 RODDs in Machine Learning

There exist multiple similarities between the goals encountered in ML and

VLSI design [122]. A substantial effort has been made in ML to find classifiers of

minimal complexity because, according to Occam's razor, a simple expression of a

concept will be more general and will better classify unknown samples. Consequently,

ML methods have been used for boolean function minimization [123]. On the other

hand, minimal implementations are vital for efficient design of integrated circuits to

save chip space. To this end minimizing ROBDDs of only partially specified functions

(with don't cares) has been studied [124-127]. Note, that this corresponds to learning

a classifier compatible with the data set, i.e. a function from the input space into

class labels whose value is initially specified only on the data set. A fundamental

difference between the VLSI and ML task is, however, that in VLSI design the

function is undefined on a small part of the attribute space, whereas in a realistic ML

setup it is undefined on most of the attribute space. Only a handful of attempts have

been made to induce RODD structures directly from the data [128,129]. It has also

been proposed to use RODDs for knowledge presentatioll to humans [130].

2 Basic Definitions

This and the following sections are included for completeness of discourse,

notation, and terminology. Many of the concepts that follow were introduced

in [115,131]. The order of presentation follows [121,132].

Decision diagrams are data structures for manipulation of functions over finite

domains. Assume that there is a set of attributes A in which each every attribute a

takes a finite number of values belonging to a set Va. There is a finite set of classes

(or conclusions) C representing the range of the diagrams.

The terms "variable" and "attribute" will be used interchangeably because

the ML community prefers to describe objects by their attributes, whereas the VLSI

community follows the mathematical concept of functions depending on variables. A

classifier is a function using attribute values of a given sample as values of variables

75

(c)

(b)

Figure 14: Decision diagrams for MONK's problems: (a) realizes vI = v2Vv5 = 1, (b)
realizes exactly 2 of vI . .. v6 are 1, (c) realizes (v5 = 3/\ v4 = 1) V (v5 #4/\ v2 #3).
Note that some nodes have been merged for better presentation, this affects only the
display and does not change the internal representation of the diagrams [86]. © 2011
IEEE

in the function expressing it.

Conceptually, a decision diagram is similar to a decision tree: it consists of

nodes in which tests for attribute values are made and of directed connections

between them. An ordering is defined on attributes and every path in the diagram

must traverse the nodes in exactly this order. This facilitates the detection of

common subgraphs which can be merged. Example RODDs presenting solutions for

the MONKS [133] problems are shown in Figure 14.

Definition 2. A Decision Diagram (DD) is a multi-rooted; directed acyclic graph

with:

• terminal nodes having out-degree 0 and belonging to a set of conclusions,

• attribute nodes having the property that each attribute node u has an associated

attribute att(u) and its out-degree is equal to the number of different values

att(u) may take.

76

When all attributes and the class are binary the diagram will be called a Binary

Decision Diagram {BDD}. The succo(u) and SUCCl(U) are then called respectively the

low and high child of u.

A DD is Ordered (ODD) if on all the paths through the graph attributes

respect a given linear order al < a2 < ... < ak.

An ODD is Reduced if:

• (uniqueness) no two distinct nodes u,v are associated with the same attribute a

and for each value of a have the same successor, i. e.,

• (non-redundant tests) no attribute node u has all of its successors equal, i.e.,

\i u3i,j SUCCi (u) =1= SUCCj (u)

The RODDs are a canonical representation of functions, i.e. every function

f : I -+ C has a unique (up to the variable ordering chosen) representation as a

RODD.

3 Efficient Manipulation of ROBDDs

For simplicity, only the case of boolean functions is presented. However, most

algorithms are easily transformed to support n-ary variables. For a boolean function

F : lEn -+ lE the cofactors of F denoted Fx and Fx are the results of applying to F

the substitutions [x\l] and [x\O], respectively. By definition a function depends on

variable x when Fx =1= Fx. Assume that a total order on variables 7r is known. The

topmost variable occurring in some expressions is the minimal, according to 7r,

variable on which at least one of the given expressions depends.

Each node of a ROBDD serves as the entry point to the function represented

by it. Function evaluation consists of following the path determined by attribute

values until a terminal node is reached. If it is assumed that all functions are kept in

the same graph, a shared ROBDD is created. Some form of garbage collection is

needed to keep track of referenced nodes. Usually, reference counting is used, but

more advanced implementations use mark and sweep and generational collectors.

77

According to the Shannon function expansion, a boolean function can be

expressed as an if-then-else (ite) expression, i.e. for any F : ffiln -t ffiI

F = x· Fx + x· Fx = if x then Fx else Fx = ite(x, Fx, Fx)

In ROBDDs the children of a node are the cofactors of the function represented by it.

Consequently, attribute nodes are often called Shannon nodes.

All boolean operations can be expressed in the form of a generalized

if-then-else operator ite(F, T, E) = F . T + P . E, taking three nodes of the shared

ROBDD. The ite computation can be expressed in terms of the cofactors of F, T,

and E with regard to their topmost variable. This leads to an elegant and efficient

recursive implementation.

Two hash tables are used in algorithms manipulating ROBDDs. The first one,

called the unique table, stores triples (variable, highbranch, lowbranch) for all nodes.

It is queried to ensure the uniqueness property. A new node is created unless an

equivalent one is already present in the unique table. This mechanism results in 0(1)

node retrieval (or creation if it didn't exist) time.

The second table caches results of executed operations: (op_code, operand, ...).

It guarantees that the ite operation running time is bounded by O(IFI . ITI' lEI)
where INI denotes the number of nodes reachable from a node N. It is just the total

number of different calls to ite that may result in a particular computation.

4 Choosing and Changing the Variable Order

The efficiency of operations on ROBDDs depends on the number of nodes in

the operands. This is closely tied to the chosen order on the variables. Some

functions (notably the class of symmetric functions) require a similar number of

nodes for any variable order. Many functions require polynomially many nodes (with

regard to the number of attributes) under some orderings, and exponentially many

under different orderings. Some functions (notably those representing middle bits of

a multiplication) always require exponentially many nodes.

The practice of using ROBDDs in the VLSI domain shows that many

78

commonly found functions can be efficiently processed when a good variable order is

chosen. Determining the best ordering is NP-hard [134]' but many good heuristic

methods exist to approximate it. In the case of VLSI circuit design layout analysis

techniques are used to provide an initial guess of the ordering. A heuristic designed

for the case of learning from data is presented in the section B. Furthermore, the

variable ordering used can be modified during program execution. The most popular

methods are the sifting algorithm, which moves variables one-by-one through all

possible positions, and the windowing algorithm which finds the best possible

arrangement for small groups of adjacent variables (called windows) [135].

To enhance the reordering process, interactions between variables can be

detected. A method for efficient grouping of neighboring variables is presented

in [136]. A method for detecting when two variables do not interact and thus require

no action to be swapped in the order is described in [137].

5 Extensions

Classical ROBDDs need exponentially many nodes to represent multiplier

circuits. This deficiency triggered the development of many extensions which could

reduce the size of diagrams for several classes of functions. Investigated were different

meanings of nodes, e.g. the Shannon if-then-else nodes were replaced by moment

decomposition, I = Ix + x . (Ix - Ix) [119]. Other research focused on extending the

range of the diagrams from single bits to words, integer or real values. In the simpler

approach, each distinct value is assigned a terminal node leading to the "so-called"

Algebraic DDs [138]. In the more elaborate approach, functions transforming return

values are added to the edges. For example, complemented edges have a binary flag

indicating that the result of the function represented by the node they point to is to

be negated. A uniform treatment of diagrams containing edges annotated with such

functions is presented in [118]. With additional constraints the diagrams with

edge-functions remain a canonical function representation and can be used for

efficient operation. The most popular approaches are: decision diagrams with

complemented edges; EVDDs for integer functions [116]; Factored EVDDs [117];

79

identical, but introduced independently Affine Algebraic Decision Diagrams [139]

and Normalized Algebraic Diagrams [118].

The addition of edge-values enlarges the class of functions which can be

expressed using polynomially sized decision diagrams. However, this may come at the

cost of an increase in the computational complexity of operations (even

exponentially), because the number of invocations of any algorithm may depend not

only on the number of combinations of nodes, but also on the number of different

edge-value compositions obtained while reaching those nodes.

Attempts to relax the ordering restriction resulted in a concept of types which

generalizes the linear ordering [140,141]. This variant is called Free Decision

Diagrams (FDDs). Decision diagrams are often used in research on Petri Nets, model

checking and constrained problems. A potentially useful for rule processing extension

describes operations on linear constrains of the form x - y < const [142].

B Extracting Rules from Neural Networks as Decision Diagrams 1

In this section a method that induces an RODD from a trained neural

network is presented. The considerations of the computational complexity of the

problem of rule extraction presented in Chapter II has shown that it is

computationally infeasible to provide an exact replica of the network. To reduce the

computational complexity, the method presented in this section limits the analysis to

the parts of the data space close to the training set samples. The rule extraction

problem has been restricted to prov'ide a description of the function realized by the

neural network near the samples from the training set. The rationale for this

restriction was that first, the ultimate goal is to learn from the data, not from the

network. Second, the network itself finds some relations in the training set. The

further away the data are, the more complicated the decision surface of the network

might be and the more unnecessary it becomes to faithfully describe it.

IThis material has been presented in [86], (J. Chorowski and J. M. Zurada, "Extracting Rules

from Neural Networks as Decision Diagrams," Neural Networks, IEEE Transactions on, vol. 22,

no. 12, pp. 2435-46, Dec. 2011, © 2011 IEEE).

80

Algorithm 3: Outline of the method
1: G f- U {start with the empty rule}
2: for all x E Training Set do
3: {Create new partial rule describing just this sample}
4: PR f- derivePR(net,x)
5: G f- merge(G, PR)
6: end for
7: {now G correctly classifies all training samples and needs to be

extended over whole feature space}
8: G f- generalize(G)
9: Pruned f- prune(G) {optionally further simplify}

1 Detailed Description of the Proposed Method

The outline of the algorithm is presented in Algorithm 3. It first captures

network's actions for each training sample and expresses it in the form of a partial

rule. It then proceeds to merge the partial rules into a single classifier using the

RODD methodology. Finally, it applies generalization and pruning operations to

reduce the resulting diagram size.

To simplify the description of the proposed method this discussion is limited

to the case of two classes (denoted by T and F) computed by a network having only

discrete inputs and only one hidden layer. The algorithms are easily extended to

handle multi-class problems, as well as more complicated network structures.

However, no continuous attributes are supported.

The notation is as follows: let the network have k input attributes and let A

denote the i-th attribute, taking ni different values. When there is no confusion Ai

will also be used to denote the set of values taken by the i-th attribute. The space of

network inputs, or the attribute space, is thus I = Al X A2 X ... X Ak . For every

attribute Ai, the network has ni inputs that use the l-of-N encoding. All network

inputs take either the value 0 or 1.2 For an attribute A and a vector x, let XA denote

the part of x associated to that attribute (the input values of encoded attributes A,

the weights connecting such inputs, etc.). Let K = L7=l ni be the total number of

2For training purposes more suitable values would be ±l. The weights can be linearly scaled to

accommodate a different input encoding after training.

81

inputs. The network realizes a numerical function! : IRK ----+ IR. However, the only

valid (meaningful) inputs are binary vectors of length K in which for every attribute

there is exactly one input having value 1 and all the others have value O.

Consequently, an input is by definition invalid when it is not valid (i.e. for at least

one attribute all the inputs are zeroed, or more than one input is active). x is to

denote a real vector which is a valid network input corresponding to an input sample

x E I. For those valid vectors the logical function f : I ----+ {F, T} is defined in the

usual way as:

{

F if J(x) < 0,
f(x) =

T if J(x) 2: O.
(54)

During the execution of the algorithm partial rules are deduced. They are

functions assigning to samples either the class label, or the special value U

(unknown) denoting that the sample isn't classified by the rule.

Definition 3. A partial rule P R is a function P R : I ----+ {F, T, U} from the

attribute space into the set of classes augmented with the special value unknown,

denoted as U . Moreover the domain of a partial rule is defined to be the the subspace

of valid inputs for which the partial rule's value is known:

Dom(PR) = {x E I I PR(x) =I U}

Hence while a rule can be applied to all samples, only those belonging to that

rule's domain will be classified.

Two rules will be said to agree (denoted by ~) if they identically classify

samples belonging to the intersection of their domains:

Definition 4. Two partial rules Rl and R2 agree with each other if and only if:

VXEIX E Dom(Rl) 1\ a; E Dom(R2) =} Rl(x) = R2(x)

Two partial rules that agree can be merged into a new one whose value will be

known on the union of their domains and agreeing with both of them.

82

Definition 5. A partial rule R is the result of merging two partial rules that agree,

Rl and R2, if and only if:

Rl ~ R2

Dom(R) = Dom(Rl) U Dom(R2)

R ~ Rl and R ~ R2

Obviously, the network function f as given in (54) is a partial rule whose

domain covers the entire attribute space. The constant function U(X) = U has an

empty domain and is not useful for classification, but it agrees with every other

partial rule.

The algorithm presented in Algorithm 3 starts with a partial rule G = U.

Then in a loop over each training sample the domain of G is extended to cover the

processed sample and a part of its neighborhood. It can be proved that G agrees at

every step with the network function and that its domain contains all the processed

training samples. This means that whenever the value of G at x is not U, it is equal

to the network function value, i.e. G(x) -=1= U ==} G(x) = f(x). However, if

G(x) = U, then the rule G doesn't provide any information about the class of x.

Upon the completion of the loop over the training set, G holds a partial rule

which classifies every training sample and generalizes over some part of the input

space in a similar way to the network. Next, to extend G's domain to the full input

space, a generalization procedure can be applied. Please note that this step breaks

compatibility with the network and the generalization G' of G does no longer agree

with f, the network function (the rule set and network may disagree on previously

unseen samples). Generalization can be followed by an optional simplification

(pruning) step, which furthermore may break the agreement with the network on the

training set.

Estimating Minimal and Maximal Network Excitation.

A partial rule is derived from each training sample s by determining a subset

of attributes that are sufficient to classify this sample. These attributes are called the

83

important attributes of s. They are found through estimation of network's output

when the value of some attributes is not set and greedy removal of attributes whose

elimination does not change the network's classification. The new partial rule used to

classify a previously unseen sample x derived from a training sample s is then:

{

ClaSS(S)
PRs(x) =

U

if \:j AElmportant(s)SA = XA
(55)

otherwise.

Meaning that if a sample x and a known training sample s have exactly the same

value of all important attributes of s, then x is classified in the same way as s.

Otherwise, the class of x is unknown to the rule and U is returned.

Before delving into the case of a whole network, a single neuron will be

analyzed. Len N be a neuron having activation function:

k

N(x) = O"(x· W - b) = O"(LXA· WA - b)
A=l

(56)

where 0"(.) is a sigmoidal transfer function, x E {O, l}K is a valid input vector, W is

the weight vector and b is the bias, and XA denotes the part of x describing the

attribute A.

Let A be a selected attribute. Consider the neuron N' with weights W' and

bias b' obtained from N by subtracting from weights associated with the attribute A

and the bias the minimum weight for that attribute, i.e.

for i = A
(57a)

for i =F A

b' = b - min(WA). (57b)

It will be shown that for all valid inputs (those having the property that for every

attribute exactly one of its associated inputs is 1, while the others are 0) the

excitation of N ' is equal to that of N, hence the two neurons are equivalent.

However, N' can be used to calculate the minimum excitation of N if the value of a

attribute A is not specified by calculating the neuron's excitation for an input vector

x' with all inputs associated with the attribute A zeroed.

84

Theorem 3. For any valid inp'ut x, the neuron N' obtained from a neuron N using

the transformation (57) has exactly the same activation value. Furthermore for an

input vector x' obtained from x by zeroing inputs associated with the attribute A, i. e.

x~ = 0, x~ = Xi for i =1= A the neuron N' returns the minimum activation of N for

all possible values of A.

Proof. Without loss of generality the attributes can be reordered, so that the

attribute A is the first attribute. If the input vector x is valid, then exactly one

input associated with the attribute is set to 1, while the others are zeroed, i.e. Xl has

exactly one 1 on the J-th position. Thus exactly one of WI, weights associated with

the first attribute, is included in the summation. Then

nl k k

X . W - b = L xl,j WI,j - b + LXi' Wi = WI,J - b + LXi' Wi =
j=l i=2 i=2

k

= (WI,J - rnin(WI)) - (b - rnin(WI)) + LXi' Wi =

k

= LXi' w; - b' = X' . W - b' ,
i=l

since the only nonzero element in Xl is XI,J = 1.

To prove the second part observe that:

i=2

minN(x) = min a (Xl' WI + t Xi' Wi - b)
Xl Xl

i=2

= a (min(W,) + t, Xi . Wi - b) =

= a (t,x..vV; - (b - mill (WI))) = N'(x')

(58)

(59)

o

By repeatedly applying the transformation (57) to all attributes, a neuron

returning equal excitation values for all valid inputs and the minimum excitation for

an input vector with some attributes zeroed is obtained. To estimate the maximum

excitation if some attributes are omitted the maximum is subtracted instead of the

85

minimum in equation (57). The resulting transformation of a neuron N with weights

Wand bias b into neurons Nmin and Nmax estimating the minimum and maximum

excitations, respectively is:

W~in = \j AE1...k W~inA = WA - min(WA)
k

b'min = b - L min(WA).
A=I

W~ax = \j AE1...k W~axA = W A - max(WA)

k

b'max = b - L max(MfA).
A=I

(60a)

(60b)

Using the neuron transformations (60) it becomes easy to test if the neuron's

output is independent of some attributes. It suffices to zero the inputs associated

with the supposedly unimportant attributes, and check that the maximum and

minimum neuron excitations have the same sign.

To calculate the minimum excitation of a multilayer network having just one

hidden layer the transformation (60) is first applied to all neurons in the hidden

layer. The computation is then performed for the output neuron ON by calculating:

• the minimum excitation of neurons that are connected to ON with positive

weights,

• the maximum excitation of neurons that are connected to ON with negative

weights.

In the case of a more complicated network architecture the above procedure can be

repeated recursively. Please note that the transformation (60) gives an exact value

for the minimum/maximum excitation of a single neuron. For a multilayer network it

gives an upper bound for the minimum excitation and a lower bound for the

maxImum.

Deriving Partial Rules from Input Samples

The procedure shown in Algorithm 4 is used to obtain a partial rule

classifying a given sample. The main part of the algorithm searches for a small set of

important attributes. First, an ordering of attributes has to be selected. Best results

86

Algorithm 4: Extract a partial rule for a given sample.

1: fun derivePR(net, x)
2: AttributeList ~ Ordered attributes
3: I mportant ~ Empty
4: X' ~ X

5: for all A E AttributeList do
6: x~ ~ 0 {zero the inputs associated with attribute}
7: if max(net, x') . min(net, x') < 0 then
8: {Network's output is unstable}
9: add A to Important

10: x~ = X A {restore the inputs for attribute A}
11: end if
12: end for
13: if Exists A E Important such that class doesn't change for all values

of A
then

14: remove A from Important
15: end if
16: P R ~ new partial rule given by equation (55)
17: return P R

have been obtained when the attributes were considered for removal starting with

the bottom most attributes of the decision diagram ordering. Then, according to

that ordering, the algorithm tries to greedily remove attributes from the rule's

antecedents. It then tries to eliminate one last attribute by checking if the network

assigns the same class for all its possible values.

Choosing an Attribute Ordering

Choosing a good attribute ordering is very important. First, the better the

ordering, the smaller the resulting diagram will be. Second, the extracted diagram

might generalize better, as partial rule derivation, pruning, and generalization

procedures work bottom-up and rarely change connections near the top of the

diagram. A heuristic procedure can be developed using two assumptions. First,

attributes which often belong to the same rules should be close in the ordering.

Second, the most important attributes should be placed near the top of the diagram.

To determine the saliency of attributes, the following measures were analyzed:

87

Algorithm 5: The default attribute saliency estimation.
1: fun saliency(net, x)
2: Ret [] +- zeros (# of attributes)
3: for all A E Attributes do
4: for all v E values(A) do
5: if v = XA then
6: skip
7: end if
8: x' +- x; x~ +- v
9: Ret [A] +- Inet(x) - net(x')1

10: end for
11: Ret[A] ~- Ret[A]/(# of values of A - 1)
12: end for
13: return Ret[]

Algorithm 6: Heuristic to determine the variable ordering.
1: fun attributeOrderingO
2: Ordering +- 0
3: local fun processCluster(c)
Ii: if c has only one element then
6: append c to Ordering
7: else
8: cs +- sub-cluster of c having Strongest (c)
9: co +- the other sub-cluster of c

10: processCluster(cs)
11: processCluster(co)
12: end if
13: end fun
14: SumDist[] +- 0
15: SumSaliency[] +- 0
16: for all x E Training Set do
17: Saliencies[] +- saliency(net, x)
18: SumSaliency[] +- SumSaliency + Saliencies
19: SumDist[] +- SumDist + distances(Saliencies)
20: end for
21: Clusters +- hierarchicalCluster(SumDist)
22: for all c E Clusters do
23: Strongest[c] +- most salient attribute in c
24: end for
25: processCluster(top-level cluster from Clusters)
26: return Ordering

88

TABLE 6

Truth table used for the merge operation. © 2011 IEEE

A B merge(A, B)
U X X
X U X
X X X
X Y X~Y ===?- error

the perturbation method [87], and the maximum, minimum and average difference

between the neuron's output for all of an attribute possible values. The best option

proved to be the average difference of network output for all values of a attribute (as

shown in Algorithm 5) and that has been selected as default.

The developed heuristic performs three main steps. First, for every sample

belonging to the training set attribute saliencies are determined. Distances between

these are calculated and added together. Next, a hierarchical clustering algorithm is

run on the cumulative distances to find which attributes are often present together.

In each cluster, the most salient attribute is determined. Finally, the ordering can be

derived. The most salient attribute is chosen first. Then, if there are more attributes

in its cluster, the most salient one is selected. Otherwise, the most salient attribute

from the next cluster is taken. Details are shown in Algorithm 6.

Merge Operation

The merge operation has been implemented as a binary operation following

the apply(.) function pseudo code taken from [132]. The truth table used is shown in

Table 6. Note that the merge operation should only be run on agreeing diagrams,

otherwise the result will be undefined (the merge of disagreeing partial rules results

in an error).

Generalization

If enough training set samples are available and all partial rules have been

merged the resulting diagram should cover the whole input space. However, often

89

Figure 15: An incomplete decision diagram for the first MONK's problem after pro­
cessing a half of the training set . © 2011 IEEE

Algorithm 7: Diagram generalization by rerouting paths leading to the U
node

1: fun generalize(Node)
2: Chldn f-- children of Node
3: FC f-- most frequently followed child =f. U
4: for all c E Chld do
5: if Chld[c] points to U then
6: C hld[c] f-- C hld[FC]
7: end if
8: end for
9: for all c E C hld do {recursively generalize children}

10: Chld[c] f-- generalize(Chld[c])
11: end for
12: return Mk(Var(Node), Chld)

several nodes point to the U terminal node (compare Figure 14a with Figure 15),

indicating that for some inputs we don 't know the answer. There can be several

strategies to solve this problem. A solution is to perform some form of heuristic

redirecting of paths leading to the U node. A suitable algorithm based on the

simplify(.,.) procedure from [132] is presented in Algorithm 7. It assumes that path

usage counts have been recorded on the training set prior to its execution. It then

proceeds in a top-down manner starting from the root of the diagram. Whenever a

child pointer leads to the U node, it is redirected to its most frequently used sibling.

The mk(.) function, described in detail in [132] creates a new node ensuring that the

diagram is reduced, i.e. it detects isomorphic subtrees and eliminates nodes whose all

children are identical. For example, in Figure 15, the path

v2 = 1 1\ vI = 1 1\ v5 =f. 1 -+ U would be changed to

90

TABLE 7

Efficiency of the attribute ordering heuristic. Averaged results for 100 runs. © 2011
IEEE

Min Max A vg. Standard Heuristic
SIze sIze sIze deviation size
8.47 14.58 10.89 1.45 9.28

v2 = 1/\ vI = 1/\ v5 = any ~ T, which in turn would be simplified by mk(.) to

v2 = 1 /\ vI = 1 ~ T. In this case the heuristic would make the right choice.

Pruning

In many cases, the generated decision diagrams classify all samples, but they

are overly complex. The pruning procedure is used to reduce the size of the diagram,

while preserving its output on all training samples, or a majority of them. The main

idea is simple: first, count how often a path was selected for all the elements in

training set. Second, change the seldom (according to a selected threshold) or never

used edges to point to the U node. Third, run the generalization procedure. In the

current implementation, pruning is repeated as long as it reduces the size of the

diagram.

Various Enhancements

Several simple heuristics have been applied during the development of the

software to improve its performance. The most important one controls how much

information is extracted from a single sample. By setting an option partial rules are

also derived for all neighbors (in the Hamming distance sense) of the currently

considered sample.

2 Experimental Results

The method was first tested on 100 randomly generated, simple logical

formulas. Each formula had six attributes and was expressed in a DNF form having 8

clauses, each containing on the average 3.5 literals. For each formula, the best

91

TABLE 8

Results on the MONK's tests. © 2011 IEEE

Test Network LORE rules unpruned LORE rules pruned
ID errors time [sJ HL size errors size time [sJ errors size time [sJ
1 0 3 4 0 7 0.4 0 7 0.6
2 0 3.2 4 7.1% 39 0.44 18.5% 19 0.93
23 0 3.2 4 0 16 0.4.5 0 16 0.67
3 4.6% 1.4 1 4.6% 9 0.5 2.8% 4 0.9
34 2.8% 0.74 1 2.8% 4 0.38 2.8% 4 0.6

ordering had been found by testing all the possibilities and the smallest diagram size

was compared to the one obtained with the heuristic for attribute ordering. Results

have been shown in Table 7. On the average, the attribute ordering heuristic

produced graphs having 9.28 nodes, while the average size of the diagrams for a

random ordering is 10.58 with a standard deviation 1.45. Hence the attribute

ordering selected by the heuristics produced on the average diagrams one standard

deviation smaller than those using a random ordering. For 58 out of 100 cases, the

heuristic procedure resulted in diagrams having the minimum size. Furthermore, it

never led to a diagram having the maximum possible size.

As a second test, the ubiquitous MONK's [133] problems have been used. The

three tests use the same data, consisting of six categorical attributes, vI . .. v6, and

only the relation used to classify samples is changed. In the first test it is

vI = v2 V v5 = 1, in the second it is exactly 2 attributes are 1, and in the third

(v5 = 3 1\ v4 = 1) V (v5 =1= 4 1\ v2 =1= 3). Moreover, in the third test five percent of

training samples have incorrect labels. In all the tests neural networks were trained

using weight decay. Also, the diagram was pruned by removing paths used less than

three times. The results are shown in the Table 8. Good decision diagrams are shown

in Figure 14. While there is enough training set samples to generate a diagram that

covers the whole input space in the first and third tests, in the second test the

diagram is incomplete - even though the network has learned without errors, the

decision diagram has a high error-rate. In this case, adding information about the

neighborhood of a sample solves the issue. Compare Figure 14b showing a good

92

(a)

(c) (d)

Figure 16: Decision diagrams for the Monk's [133] problems: (a) test 2 before diagram
generalization, (b) erroneously pruned diagram for test 2 (proper diagram is shown in
Figure 14b), (c) test 3 prior to pruning, and (d) test 3 after pruning (proper diagram
is shown in Figure 14c). © 2011 IEEE

93

diagram with Figure 16a showing a diagram before generalization and Figure 16b

depicting the results of pruning. In the third test, the training set is intentionally

corrupted with noise. Note that prior to pruning, the diagram exactly mimics the

network (the error rate is the same). The learned relation is more complicated than

the expression used to generate the data. Retraining the network with a more

aggressive weight decay or pruning the diagram both lead to a diagram which

generalizes better, but only one clause out of two is properly detected. Compare

Figure 16c showing an unpruned diagram with the pruned one in Figure 16d. Please

note that the network and subsequently the diagram learns only half of the desired

relation. The good diagram is shown in Figure 14c.

The next four tests used data from the VCI repository [17]: the mushroom

data set, the congressional voting records data set, the chess king-rook vs. king-pawn

data set (further named krkpa7) and the molecular biology promoter gene sequence

data set. Since the method doesn't support missing values, samples from the voting

records data set containing missing values were rejected. In the mushroom set, the

missing values were left as a new attribute value "?". For all the sets, unless noted

otherwise, five runs of full five-fold cross validation were executed and the results

have been averaged. Also, pruning has been set up to preserve 100% accuracy on the

training set. To compare the effectiveness of rule extraction, the C4.5 algorithm was

run using Weka's J48 implementation [15]. Its parameters were -U -Ml for runs

without pruning and -CO.25 -M2 for runs with pruning. The results have been

presented in Table 95 . Diagram and tree sizes were used to compare the

understandability of extracted rules.

The mushroom and voting sets were used as simple benchmark tests. On the

mushroom data all classifiers obtain a 100% accuracy. The experiments on the voting

data show the importance of good network training. When 10 hidden neurons are

used the network overfits and yields a lower accuracy than the decision trees. In

5The results presented in Table 9 differ from those presented in [86]. They were recomputed

because the original results mistakenly reported the sum of training and testing errors. Moreover,

error counts were converted to accuracy for easier comparison with other methods.

94

CD
CJl

TABLE 9: Results on data from the UCl repository.

Test Network LORE rules unpruned
name ace [%] HL size time [s] ace [%]

Mushroomsa 100.0 10 10.8 100.0
Votinga 94.0 10 0.8 93.5
Voting a 95.9 1 0.5 96.3
Krkpa7b 99.5 35 82.7 96.1

PromoterC 90.6 1 0.8 89.4
Promotercd 90.8 1 1.0 87.5
PromoterCe 94.3 1 2.6 97.5
Promotercde 94.3 1 1.0 98.1

aNetwork trained using standard backpropagation.
bNetwork trained with weight decay, ratio=O.9
CNetwork trained with weight decay, ratio=O.3

size
421.0
75.0
37.0

3838.9
332.3
808.8
405.7
389.3

dMerging in rules from training set samples neighborhood
eTested using the leave-one-out methodology

time [s]
81.4
0.5
0.4
18.0
2.2
2.5
2.7
2.7

LORE rules pruned J48 unpruned
ace [%] size time [s] ace [%] SIze
100.0 11.9 81.9 100.0 28.5
94.7 20.2 1.0 94.2 23.6
96.8 7.0 0.9 95.3 24.2
95.9 494.8 18.5 99.5 88.6
81.1 15.0 2.8 74.3 35.9
85.1 172.6 3.3 73.4 37.8
90.6 209.1 3.3 77.4 44.5
86.8 16.8 3.3 77.4 44.5

J48 pruned avg.
ace [%] size time [s]
100.0 28.5 0.17
96.6 4.5 0.01
96.4 4.5 0.01
99.3 51.7 0.09
77.2 20.4 0.01
77.4 20.8 0.01
81.1 24.7 0.00
81.1 24.7 0.00

consequence the extracted diagrams are also not as accurate as the trees. Smaller

networks (with only one hidden neuron) have better cross-validation accuracy and

the diagrams have accuracies and sizes comparable to the trees. Pruning is necessary

on both datasets and it significantly reduces the size of the diagrams while preserving

or improving their accuracy. It is worth noting that in both cases rule extraction

running times are comparable to that of network training. The decision tree, however,

is induced an order of magnitude faster than network training and rule extraction.

The results on the krkpa7 set are disappointing. The generated diagrams are

not only big and hard to understand, but also their performance is worse than that

of the network or of the decision trees. However, the issues may stem from some

incompatibility between this data set and neural networks. The data set requires a

network of a larger size (networks with few hidden neurons do not learn the relation

well), with long training times (mainly due to the weight decay mechanism used),

only to achieve a performance comparable to that of an unpruned decision tree. The

results from this data set are included, however, to show that the method execution

time is acceptable even for moderately large networks.

The promoter data set was first introduced to test the effectiveness of the

KBANN method. Results published in [143] for a leave-one-test state that the ID3

method makes 19 errors in 106 runs, which corresponds to 82% accuracy, neural

networks under standard hackpropagation makes 8 errors (92.4% accuracy) and the

KBANN method achieves the lowest rate of 4 errors (96.2% accuracy). For the

purpose of this comparison, the LORE method was tested under the same conditions.

However, since a single neuron with weight decay performs better than the described

network, it was chosen as the base for rule extraction. It can be observed that the

proposed method under the default settings extracts diagrams that have slightly

worse accuracy than the network (prior to pruning). However, when the information

from neighhoring samples is included, the diagrams hefore pruning show the highest

accuracy of 98.1 %. The unpruned diagrams are too big to be considered

understandable. Pruned diagrams can be considered to be legible, they are however

less accurate. The experiments demonstrate that the idea of using a network to

96

Extracted rules for class T:

p - 36 = t 1\ P - 35 = t, c 1\ P - 34 = t

P - 36 = 9 1\ P - 34 = 9 1\ P - 12 =I 9

p - 36 = t 1\ P - 35 = a 1\ p - 34 = t 1\ P - 33 = a

p - 36 = t 1\ P - 35 = t 1\ P - 34 = 9 1\ P - 12 =I 9

p - 45 = a 1\ p - 36 = t 1\ P - 35 = t 1\ P - 34 = 9

p - 36 = t 1\ P - 35 =I t 1\ P - 34 = 9 1\ P - 12 =I 9

p - 36 = t 1\ P - 35 =I a 1\ p - 34 = c 1\ P - 12 =I t

P - 36 = t 1\ P - 35 =I a 1\ p - 34 = c 1\ P - 33 = a

p - 36 = t 1\ P - 35 = a 1\ p - 34 = c 1\ P - 12 =I c

p - 36 = t 1\ P - 35 = a 1\ p - 34 = c 1\ P - 33 = a

p - 36 = a, C 1\ P - 35 = t 1\ P - 34 = 9 1\ P - 12 =I 9

Figure 17: A typical diagram and the rules in DNF form extracted for the promoter
domain problem without the use of neighboring samples and with pruning enabled.
© 2011 IEEE

97

discover rules in close proximity to training set samples is useful, however better

pruning and diagram generalization algorithms are needed. A sample diagram and

accompanying rules extracted during the leave-one-test without the use of

neighboring samples and after pruning is shown in Figure 17.

3 Conclusions

The LORE method of rule extraction from neural networks uses many novel

ideas. First, the proposed approach focuses on retaining high network fidelity on the

training set, while allowing the rule set to diverge from the network in the remaining

feature space, making it possible to reconcile the dilemma whether one seeks good

network fidelity or accuracy.

Another achievement is the adaptation of the reduced, ordered decision

diagram data structure to support the merge and generalization algorithms. This, in

its own merit, might prove to be a valuable tool in other rule induction schemes.

A mathematically sound method of presenting the domain of a generated rule

set has been introduced. Adaptations of this technique to other rule extraction

methods might help to distinguish between errors in the rules (which result in false

positive cla.'3sifications) and incompleteness of the rules (which result in false negative

classifications). In the case of the LORE method, this technique was a key step in

the design of algorithms that simplify the rule set without loss of training accuracy.

Future work will first be directed towards the development of better pruning

algorithms. The minimum description length principle (already investigated in the

context of decision diagrams in [129]) might become a valuable tool for increasing

the generalization abilities of decision diagrams, while at the same time reducing

their size.

Improved rule presentation is another important topic worth continued

studying. The presented transformation of RODDs into DNF format rules shows that

the ROD Ds might be used as intermediate representation purely for their

algorithmic properties and the final rules presented to the user may be expressed in a

more understandable form of decision trees, decision tables or rules.

98

C Top Down Induction of RODDs6

The rule extraction method described in the previous section searched for

rules in a general-to-specific manner, because each training sample seeded a rule

from which tests were dropped. Moreover the best results were obtained when the

tests were considered for dropping starting with attributes situated at the bottom of

the chosen ordering. This procedure can be replaced by a general-to-specific building

of the diagram in a top-down manner. Similarly to decision tree induction, the search

space can be limited by the size of the dataset - empty nodes are marked with the U

label and are not further divided.

Under another interpretation, just as the TREPAN [73] method builds a

decision tree using the given classifier for guidance, it is possible to build a RODD

using a described elsewhere procedure [145], but also using the black-box classifier

for stopping criteria and detection of similar regions in the search space.

An important attribute of the method described in this chapter is the

detection of similar regions of the attribute space and the merging of corresponding

RODD nodes prior to their expansion.

1 Description of the Algorithm

To reduce noise in the training set, prior to algorithm execution training

samples may be reclassified. The algorithm then induces a decision diagram in a

top-down manner, as shown in Algorithm 8. In every iteration of the loop a layer of

the diagram is built. First, the splitting attribute is determined based on information

gain with gain ratio correction. An attribute is selected once for each layer in the

diagram as described in [13,145]. Second, a new layer is created according to the

split found. However, pure nodes are not splits. Third, nodes are merged based on

similarity of input neurons activations. The algorithm then proceeds to build the

next layer.

6This section is based on [144], (J. Chorowski and J. Zurada, "Top-down induction of reduced

ordered decision diagrams from neural networks," Lecture Notes 'in Computer' SC'ience, Art'ijicial

Neural Networks and Machine Learning- JCANN 2011, vol. 6729, pp. 309-316, 2011).

99

Algorithm 8: Top down induction of RODDs
Require: A dataset data with k attributes and N instances
Ensure: A decision diagram classifying data

1: currentLayer ~ {rootNode(data)}
2: while some attributes remain untested and there are impure nodes

do
3: splitAttribute ~ best unused attribute
4: new Layer ~ {}
5: for all node E currentLayer do
6: new Layer ~ new layer U {split(node, splitAttribute)}
7: end for
8: for all node E newlayer do
9: check termination conditions for node, remove node if met

10: end for
11: for all n1, n2 E new Layer, n1 -# n2 do
12: compute distance(n1,n2)
13: end for
14: while n1, n2 = argmin distance(n1, n2) and distance(n1, n2) <

nl,n2

maxdistance do
15: merge n1 with n2, recompute distances
16: end while
17: currentLayer ~ new Layer
18: end while

Two stopping criteria are used. First, 100% pure node are not split. Nodes

which do contain few (according to a set threshold7) or no training instances (which

makes them trivially pure) are marked with an unknown class flag. Second, splitting

is stopped when the network output is determined, i.e. upper and lower bounds of

the network output computed using the values for already tested attributes have the

same sign. The computation of the estimates follows Section B.l.l.

Two nodes are treated as suitable for merging if the root mean square of the

difference of input neurons' partial activation is below a set threshold. The

justification of node clustering is as follows. Let the contribution of a fragment of a

path through the decision diagram towards neuron activation be

pathActivation(path) = (61)
AEattributes tested on path

7 All experiments used the value 2.

100

where WA are the weights used for attribute A. A partial activation of a neuron for a

node is then

partActivation(node) = pathActivation(diagram root -+ node). (62)

Recall, that if values of all attributes are known a neuron's activation is

activation(leaf node) = L XA . WeightA + bias =
AEattributes

V nodepathActivation(diagram root -+ node) (63)

+pathActivation(node -+ leaf node) + bias.

Grace to the ordering restriction, all nodes in a single layer have known values for

the same set of attributes. Hence if two nodes n1 and n2 have a similar partial

activation the subdiagrams sl, s2 rooted at n1 and n2, respectively should be

isomorphic. Thus n1 can be merged with n2. The new node contains the union of

training samples reaching both n1 and n2, which helps to reduce fragmentation of

the training set. After a merge operation the partial activations of all the nodes in a

cluster are averaged.

During diagram construction, some leaf nodes may be marked with an

unknown class label. Similarly to the method described in the previous chapter same

diagram generalization and pruning procedures can be used.

To estimate the required number of operations observe first that the maximum

width of the diagram (the number of nodes at a single level) is limited by the number

of training samples because empty nodes are not split. It is thus bounded by

O(N 'l), where N is the number of training samples and 1 is the maximal number of

values a attribute may take. Assume that 1 is small, then the width of the diagram

becomes O(N). For every diagram level node clustering takes O(width2) time and

selection of the next attribute to split takes O(k . N) time, where k is the number of

attributes. The total complexity is thus O(k(k· N + N 2)) or O(k . N 2) if k « N.

2 Experimental Results

The proposed method has been tested on datasets from the UCI

repository [17]. Used were the MONKS tests [133], the Voting, the German Credit,

101

r . u

n

stalk - sur J ace - below - rin9

Figure 18: Induced decision diagram for the mushroom dataset.

the Mushroom dataset , and the Letter dataset. The proposed method currently

supports only problems having nominal attributes. Therefore continuous attributes

have been discretized using the Weka's [15] implementation of [146] with default

parameters. Furthermore attributes taking more than 2 values were presented to the

network using a l-of-N encoding. Since binary classes are currently assumed, in the

letter dataset the two classes were created by merging letters 1-13 (A-M) and 14-26

(N-Z). Low variance attributes were removed. Missing values are currently not

supported. Consequently, the attribute 11 from the Mushroom dataset has been

removed. Samples containing unknown attributes were removed form the Voting

data. Moreover , to make the Voting problem harder highly informative attributes I ,

2, 4, 13, 16 were also removed (after [66]). Properties of the used datasets (after

processing) are given in Table 10.

An exemplary RODD for the Mushroom dataset is shown in Figure 18.

Results are presented in Table 11 . The first columns show the number of neurons in

the input layer and weight penalty ratio used during neural network training using

102

TABLE 10

Properties of the used datasets.

Dataset train test attributes values
SIze SIze nom. & cont. total number

Monkl 124 432 6 15
Monk2 169 432 6 15
Monk3 169 432 6 15
Voting 324 10-CV 11 11

German 1000 10-CV 15 56
Mushroom 8124 10-CV 20 115

Letter 20000 10-CV 15 165

the Neural Network toolbox in Matlab. These parameters were tuned for a low

cross-validation error. Next, results obtained using Weka's implementation of C4.5

(nicknamed J48) are presented along with accuracies for RODD reported in [145].

The rule extraction algorithm was then run with three different values for the node

merging threshold - 0.2, 0.4, and 0.6. The best distance threshold found is indicated

along with the resulting RODD accuracy, size, and the count of node merges

performed. Since the used implementation of top-down RODD induction is currently

much simpler than the one described in [145], for comparison its accuracy is reported

also when NN information is absent.

The results show that especially for simple networks, node merging increases

the accuracy of induced RODDs. However, for larger networks the gain in accuracy is

small. Moreover, more aggressive node merging has been found to quickly worsen the

accuracy. The diagrams are usually smaller than decision trees, however, their

internal structure makes them harder to follow.

3 Possible Enhancements to Research

The presented approach is limited to the case of rule extraction form neural

networks. Investigating other methods of detecting similar regions in the input space

might enable its use to extract rules form other kinds of opaque classifiers.

103

f-'
o
,j::>.

TABLE 11: Results of experiments

Network (NN) J48 RODD RODD from NN
Dataset HL wght. acc. acc. size acc. dist. acc. size merge

SIze pen. [145] thr. count
Monkl 5 0.8 1.0 0.76 18 1.0 0.4 1.0 7 2
Monk2 5 0.8 1.0 0.65 31 0.68 0.4 0.98 16 14
Monk3 2 0.3 0.97 0.97 12 0.97 0.4 0.97 4 1
Voting 1 0.8 0.93 0.89 13.6 - 0.4 0.9 18.6 6.5
German 1 0.2 0.77 0.72 82.5 0.71 a 0.2 0.76 51.5 73.1

Mushroom 5 0.8 1.0 1.0 30 1.0 0.2 1.0 8 0
Letter 40 0.6 0.94 0.87 3660 - 0.4 0.88 956 628

aresults reported on non-discretized data

RODD
without
NN acc.

0.81
0.65
0.97
0.87
0.72
1.0

0.87

CHAPTER V

BUILDING DESCRIPTIONS OF DATA - FEATURE

DETECTION

This chapter presents two methods related to feature detection and data

encoding. In the first section the impact of non-negative weight constraints on the

understandability of a neural network is considered. Then, a novel algorithm for

finding robust sparse encodings of data is presented.

A Learning Neural Networks with Non-negative Weight Constraints1

Feature detection methods described in Chapter II found a transformation of

the attributes into features that preserved the information content of the data. In the

case of PCA the projection had to preserve as much as possible of variance of the

samples, ICA concentrated on finding projections that retain interesting

(non-gaussian) projections, and K-means, SVD, NMF, and sparse coding found

constrained features that must provide an accurate reconstruction of the data. Thus

all those methods work under an important assumption that useful features will

describe the data and a direct relationship to class labels is not needed. It is a valid

assumption when the original attributes used to describe the data are well chosen for

the problem at hand. However, one may wish to develop other, new and special

features that have good discriminative properties. The method presented in this

section tries to accomplish just that.

Several authors have extended unsupervised feature detection algorithms with

1 This section is based on [147] (J. Chorowski and J. M. Zurada, "Learning understandable neural

networks with non-negative weight constraints," Submitted to Neural Networks and Learning Systems,

IEEE Transactions on, 2012).

105

discriminative terms. Columns from a predetermined dictionary are selected to

maximize both the Fisher discrimination coefficient and reconstruction capability

in [148]. Per-class dictionaries are learned in [149], with a soft-max like penalty used

to restrict the dictionaries to provide good reconstructions for the related class only.

New samples are classified by choosing the label associated with the dictionary that

yields the lowest reconstruction error. This idea is extended in [150] where a common

dictionary is learned for all classes, however, additional penalty terms are added to

promote discriminative capabilities. Since no explicit encoder is specified, encoding is

performed simultaneously with classification by selecting the class that results in the

lowest joint reconstruction and classification penalty.

Auto-encoding neural networks can be seen as feature detectors that are

trained to minimize the reconstruction error and provide explicit formulas for both

an encoder (that computes hidden neuron activations from the inputs) and a decoder

(that computes the output from the hidden activations) [151]. Note that such

definition of the encoder and decoder disagrees with the matching encoder or decoder

specified using equations (24) or (25). Adding a traditional classification layer yields

a semi-supervised neural network. A hierarchical model of text documents that

greedily learns a stack of encoders is analyzed in [152]. The encoders assume that the

data have a Poisson distribution and are a special case of auto-encoding neural

networks. They are trained to minimize the sum of a reconstruction and

classification error.

The architecture presented in this Section differs in two ways from the

aforementioned extensions of feature detection. It is an extension of a traditional

neural network and is trained for discrimination only. Moreover, the emphasis is

placed on the understandability of the network's structure through the adoption of

non-negative constraints on weights of the network.

Multilayer feed-forward neural networks naturally build hierarchical models of

data [9]. The data samples are propagated through network layers and the neuron

activations in each layer can be thought to form a layer of features. However, such

features are usually difficult to interpret [23,43] (also see the discussion of

106

hierarchical models in Chapter II, Section F.2). On the other hand the

non-negativity constraints have been shown to enhance the understandability of

matrix factorizations [57]. Inspired by NMF, the network's weights are constrained to

be non-negative. This eliminates cancellations of incoming neuron signals inside the

network and allows for easier interpretation. Hidden (input) neurons are active when

their inputs correlate strongly with their weights. The bias controls the threshold of

this correlation. Classification (output) layer neurons combine the hidden layer

activation values in direct proportion to their weights, and the neuron with the

highest sum determines the class of the input.

1 Proposed Network Architecture

Neural networks designed for classification and trained in a discriminative

manner are considered. Assume that the input data has non-negative values. This

condition is often satisfied in practice. For example text documents in bag-of-words

format or pixel intensities in images are naturally non-negative. Categorical data

encoded using the 1-hot or thermometer-scale encoding is also non-negative and can

be used. The desired output for each sample must be a unique class label.

The networks will have two layers. Each layer is determined by a matrix of

weights and a vector of bias values, denoted by WH and BH for the hidden layer and

by We and Be for the classification (output) layer. For an input vector X the signal

is propagated through the network according to the following relations. The hidden

layer activations are LH(X) = O"(,\(WH· X + BH)), where O"(x) denotes an

element-wise application of the logistic sigmoid, O"(x) = 1/(1 + exp(-x)) and.\ is a

parameter denoting the neuron's gain. The classification layer activations are

Le(x) = SoftMax(We · LH(X) + Bc), where the SoftMax(v) function transforms a

vector v into a vector of values according to

SoftMax(V)i = exp(Vi) / (~J=l exp(Vj)). The network assigns new data to the class

represented by the output neuron with the highest activation value.

The optimization criterion used to train the network contains the

log-likelihood and regularization terms. The output Le of the softmax transfer

107

function sums to 1 and can be treated as the a-posteriori probabilities of class labels

given the input. According to this interpretation the network is trained by

minimizing the negative log-likelihood of observing the given data set. Furthermore,

the weights are regularized by minimizing their absolute values eel norm) and their

squares (£2 norm) [28,29]' which is a penalty-based weight pruning mechanism. The

combined action of the £1 and £2 penalties both selects important connections and

limits their magnitude. Sparse activations of the hidden layer can additionally be

enforced by minimizing the sum of the hidden neuron activations. This further

enhances readability - proper classification of a sample must depend on only a few

hidden neurons becoming active. The complete optimization target is:

1 N

Loss = - N L log (Lc(x8)yJ
8=1

i,j j,k

N

+ ~ LLH(Xs)j
8=1

where N is the number of samples, (X8' yJ are individual data samples and PHl, PH2,

PCl, PC2, Ps are regularization constants. The weight matrices WH and Wc are

constrained to contain only non-negative elements. The bias values are unconstrained

and often negative.

Error backpropagation training with gradient descent of a network with the

logistic sigmoid transfer function, that is used to keep all the signals non-negative, is

numerically difficult [20]. Since the addition of weight constraints makes the

optimization problem even harder, the L-BFGS-B second-order minimization

algorithm [153] was chosen to train the network. When the training set was too large

to be processed as a single batch, it has been divided into smaller subsets used for

each epoch. The network was in those cases trained by executing a prescribed

number of iterations during which the data were first randomly divided into batches

of a few thousand samples, then a small number of steps of the L-BFGS-B algorithm

was made on each batch to minimize (64). Stratified sampling was used to divide the

data into batches to ensure that class label proportions are retained.

108

2 Expressive Power of Neural Networks with Non-negative Weights

It may seem that constraining the sign of weights of a neural network renders

it too limited to be of any practical use. For instance, a neuron with positive weights

and a logistic sigmoid activation function cannot logically invert its input. This

section demonstrates by construction that a three layer network that uses the logistic

sigmoid activation for hidden layers with the softmax activation function used for the

output layer can shatter any given set of points.

The use of the softmax activation function is important for two reasons. First,

it is the generalization of the cross-entropy error function to multiple classes and is

more suited for a classification task. It can be derived from an assumption that the

class labels are discrete and mutually exclusive. Then the outputs of the network

using the softmax transfer function represent the a-posteriori class probabilities for a

given sample. Second, the softmax function allows a degree of ambiguity for its

inputs. A constant can be added to all inputs of a softmax function and the output

will not be changed. This property is exploited in the proof that the networks with

non-negative weights can learn any given labeling of data points. The key insight is

that the network's decision is based on the maximally active output neuron. While it

is not possible to lower the output of a neuron associated with a wrong class by

setting its weight to be negative, it is possible instead increase the outputs of

neurons for all other classes. Due to the ambiguity present in the softmax function,

subtracting a number from a neuron's activation is mathematically equivalent to

adding the same number to all other activations.

This property is also important for the understandability of the network. The

softmax function necessitates that to lower the probability of a class all other

outputs must be increased. This potentially produces large weight values. However,

weight regularization terms penalize large values of weights and counteract the

increase induced by the softmax activation. These two counterbalancing processes

cause the output layer to become sparse, while hidden neurons learn concepts which

relate to parts of characteristics that define an output class.

109

It will be shown that a three layer network can shatter every combination of

points. First, note that adding a constant to all output weights does not change the

value of the softmax function. Let the output layer compute the function:

Lc = SoftMax(W· LH + B), (65)

where Lc is the vector of classification (output) layer activations, W is the weight

matrix, LH is the vector of hidden layer activations, and B is the vector of bias

values. Let 1 denote matrix whose all elements are 1 and let a be a constant. Then:

SoftMax ((al + W)LH + B) =

SoftMax(al . LH + W . LH + B).
(66)

For simplicity, substitute C = W· LH + B. The product 1· LH is a vector whose all

elements are equal to the sum of L H . It follows that:

exp (~LH) exp(C)
SoftMax(alLH + C)i = ~n (~L) (C.) j=lexp H exp J (67)

= SoftMax(C)i

Hence it is possible to transform any network with negative weights in the output

layer into one with only non-negative weights by adding a large enough constant.

It is possible to construct a three layer (two hidden layers with sigmoid

activation function followed by a classification layer with softmax activation) that

will shatter a given set of N points described by their position in a k-dimensional

space. Let X E jRkxN be the data matrix. A network that computes any labeling of

those points will be constructed. :For simplicity assume that the gains in the logistic

sigmoid transfer functions are infinite and the hidden neurons activations are always

o or 1.

There are O(kN) neurons in the first hidden layer. For every input dimension

all data points are first projected onto this dimension. Then at most N threshold

values between the projections are selected. Hidden neurons are added with a single

nonzero weight equal to 1 corresponding to this dimension and bias equal to the

threshold. Unless two columns of X are the same (i.e. two points are at exactly the

same position), the activations HI of the first hidden layer are unique binary vectors.

110

N3 N4
-7 Pi P2 P3 P4 PS

Pi+ +P3
N2

Ni 1 0 1 0 1

P3 N2 1 0 0 0 1

+ Ni
N3 0 0 1 1 1

P2+ +P4
N4 0 0 0 1 1

Figure 19: Construction of a network with non-negative weights.

There are N neurons in the second hidden layer, one for each point. Their

weights are equal, the weight Wi,j connecting the j-th neuron in the first hidden

layer to the i-th neuron in the second one equals to 2j. Thus if the first hidden layer

activations are treated as binary numbers, the products W· HI are their decimal

values. To every point corresponds one such number and the points can be ordered

according to them. If the second hidden layer bias values are set to values in-between

those numbers, the activations of the second hidden layer create a full-rank binary

matrix (if the points are reordered, then for the n-th point the n first neurons are

active, while the N - n remaining ones are zero. Hence the activation matrix is

triangular.) Thus output weights can be computed for every possible labeling of data

points. In the last step a constant is added to output weights to ensure that all are

non-negative.

3 Experimental Results

The proposed approach needs the specification of five parameters, four of

which control the regularization and the last parameter, A, sets the steepness of the

sigmoid. The parameter A was in all cases gradually increased to force the hidden

neurons to operate in saturation. To determine the value of other parameters, the

network was first trained without regularization. A regularization parameters were

then selected by evaluating a few values that gave a similar value of the

log-likelihood and regularization terms in (64). The Table 12 gives the values used

111

TABLE 12

Values of regularization parameters used in the experiments.

I Red. MNIST I Full MNIST I Reuters

No. hidden 10 10 150 150 15 15
No. output 3 3 10 10 10 10
Non-neg? F T F T F T

A Annealed exponentially from 1.0 to 2.0

PHI le-4 3e-4 0 le-5 le-4 le-4

PH2 0 0 0 0 0 0

PCl 0 0 0 le-4 3e-4 3e-4

PC2 le-4 le-4 le-4 3e-6 3e-4 3e-4

Ps 0 0 0 le-3 0 0

for the experiments.

In the first experiment networks constructed with and without non-negativity

weight constraints were compared on a subset of the MNIST handwritten digit data

limited to digits 1, 2, and 6. The full MNIST data set contains 60000 training and

10000 testing grayscale images of handwritten digits which were scaled and centred

inside a 28x28 pixel box. It can be obtained along with a summary of classifiers'

accuracies from http://yann.lecun . com/ exdb/mnist/index. html. Figure 20

presents a selection of test patterns and the weights of the two networks. An

immediate consequence of the non-negativity constraints is sparsification of weights

in the classification layer. Furthermore, the patterns learned by the hidden neurons

allow easy interpretation. They are localized and tend to look like parts of digits (e.g.

neurons 2-4 look like the rounded bottom of digit 6). In contrast, the hidden neurons

of the unconstrained network are less localized. They contain both positive and

negative weights covering most of the input image, which makes it harder to

visualize to what patterns they respond. The bar charts indicate the activations of

hidden neurons for the sample input patterns. It can be seen that neurons in both

networks discriminate between digits and tend to work in the nonlinear parts of their

activation functions, resembling threshold gates. The unconstrained network is more

accurate and achieves 1% error rate, compared with 1.5% for the constrained one. In

general, the trend was observed that more understandable networks show lower

112

accuracy. However, in certain situations a better insight into the data outweighs the

benefits of an accurate but opaque classifier.

In the next large-scale experiment, we used the full MNIST data to build a

constrained and unconstrained neural network with 150 hidden neurons and 10

outputs. We compare in Figure 23 the depictions of weights of 32 randomly selected

hidden neurons with 32 features obtained with PCA and with 32 obtained with

NMF. Full networks are shown in the Figure 21 and 22. The unconstrained network

shows a much lower error rate of 2.4%, compared with 4.9% for the constrained one.

To put those numbers into perspective, state-of-the-art 1998 error rate on the

MNIST for a two layer neural network was 4.7%. Once again, the non-negativity

constraints result in the emergence of sparser and more localized weight distributions

of the hidden neurons, which often filter distinctive parts of digits. In contrast, the

hidden neurons of the unconstrained network react to whole pictures, thus it is

difficult to estimate intuitively their influence on the classifier's output. Similarly, the

patterns learned by PCA are holistic, non-localized ones. But for the first few, it is

hard to describe their contents. It is also difficult to see how they relate to the

shapes of different digits. Further, the NMF has learned sparse, localized, and

interpretable features. However, only a few patterns resemble parts of digits, like the

vertical bar. Most of the features seem to down-sample input images on a

non-uniform grid and do not provide cues for classification. This is caused by two

factors. First, unlike the neural network with non-negative constraints on weights,

the NMF model does not aim at class discrimination. Second, NMF imposes no

limits on the number of features activated by a sample. Increasing the rank of

factorization (the total number of features) only worsens the issue, as in the limit

each NMF feature will be a single pixel and the NMF-transformed data will contain

no new information. On the other hand, decreasing the rank leads the NMF features

to look like blurred shapes of the simplest digits. The addition of a constraint on the

number of coactive features, while allowing a large total number of features, has been

shown to promote the learning of a parts-based decomposition [58,60,154]. This is

because, in contrast to a limited-rank decomposition, a large dictionary of features is

113

1

BfllI- 2

rllIlI
01111
••• •• 11

(a)

2

6

6

1

2

6

(b)

(c)

Figure 20: (a) Exemplary digits from the MNIST dataset . The weights of a network
trained (b) without constraints and (c) with non-llegative constraints. The weights of
the classification (output) layer are plotted as a diagram with one row for each output
neuron and one column for every hidden (input) neuron. The area of each square is
proportional to the weight's magnitude; white indicates positive and black negative
sign. Below each column of the diagram, the weights of hidden neurons are printed as
an image. The intensity of each pixel is proportional to the magnitude of the weight
connected to that pixel in the input image with, the value 0 corresponding to gray
in (b) and to black in (c). The biases are not shown. The hidden neurons have been
rearranged for better presentation. The bar charts at the bottom of the plots show
the activation of hidden neurons for the digits presented in (a) . Each row depicts the
activations of each hidden neuron for five color-coded examples of the same digit.

114

0
1
2
3
4
5
6
7
8
9

Figure 21: The weights of a network trained on the full MNIST dataset V{ithout weight
constraints. The weights of the classification (output) layer are plotted as a diagram
with one row for each output neuron and one column for every hidden (input) neuron.
The area of each square is proportional to the weight's magnitude; white indicates
positive and black negative sign. Below each column of the diagram, the weights of
hidden neurons are printed as an image. The intensity of each pixel is proportional
to the magnitude of the weight connected to that pixel in the input image with, the
value 0 corresponding to gray. The biases are not shown. The hidden neurons have
been rearranged for better presentation.

115

0
1
2
3
4
5
6
7
8
9

Figure 22: The weights of a network trained on the full MNIST dataset with non­
negativity weight coristraints. The weights of the classification (output) layer are
plotted as a diagram with one row for ' each output neuron and one column for ev­
ery hidden (input) neuroll. The area of each square is proportional to the weight 's
magnitude. Below each column of the diagram, the weights of hidden neurons are
printed as an image. The intensity of each pixel is proportional to the magnitude of
the weight connected to that pixel in the input image with, the value 0 corresponding
to black. The biases are not shown. The hidden neurons have b een rearranged for
better presentation.

116

(a) (b) (c) (d)

Figure 23: Weights of randomly selected 32 out of 150 hidden neurons of unconstrained
network (a) and network with weigth non-negativity constraints (b). 32 first principal
components (c). 32 filters learned by NMF (d).

created. The features, in turn, must be complex enough to provide adequate input

reconstruction from just the few active ones.

In the last experiment networks were compared on the Reuters-21578 text

categorization collection. It is composed of documents that appeared in the Reuters

newswire in 1987. The ModApte split limited to ten most frequent categories was

used. The processed (stemming, stop-word removal) version in bag-of-words format

obtained from http://people.kyb.tuebingen . mpg. de/pgehler /rap/ was used.

This dataset is challenging because the borders between topics are fuzzy and

documents may belong to many categories simultaneously. During training such

documents were used with all possible labels. For testing a document was counted as

correctly classified when the network assigned it to one of the classes to which it

belonged. The networks had 15 hidden and 10 output neurons (one for each

category) . The unconstrained network is slightly more accurate and achieves an error

rate of 12.4%, compared with 12.8% for the constrained one. The weights of the two

networks are portrayed in Figure 24. An interpretation of the hidden neurons is

provided by listing words associated with the strongest weights. The word "blah" has

117

no meaning and is artificially added noise. The non-negative network has been

observed to be more sensitive to it, as many hidden neurons react to it. The neurons

in the unconstrained network seem to convey meaning by being both active and

inactive, because the words associated with positive and negative weights fall into

distinct categories. Furthermore, the matrix of output weights is dense and difficult

to interpret. On the other hand, the output weights of the non-negative network are

sparse and allow for an interpretation of relations between topics. The closeness of

topics "corn", "grain", and "wheat" is detected as the weights for those categories

form a cluster. The topic "trade" is linked to categories describing goods that can be

traded. The words listed for hidden neurons corroborate those interpretations, e.g.

the neuron reacting to words "trade", "rate", "fed", "dollar" is linked to topics

"money-fx" (foreign exchange), "interest", and "trade".

4 Conclusions

It was demonstrated how constraining the weights of a neural network to be

non-negative improves network understandability and leads to intuitively

understandable hidden neurons. To the best of our knowledge, this is the first

attempt at discriminative training of understandable neural networks on large,

nontrivial datasets.

Deriving understandable descriptions of observations is the hallmark of human

intelligence. The presented approach is but a single step on the road towards pattern

recognition tools that help not only to make predictions about data, but also

empower their user with new insights and concepts derived from that data.

B Robust Sparse Coding by Minimizing an LI-Ll Problem2

The sparse coding problem consists of finding a vector of feature coefficients

v E ffi.P that express an input vector x E ffi.k as a linear combination of basis vectors

2This section is based on [155] (J. Chorowski and J. Zurada, "Obtaining full regularization

paths for robust sparse coding with applications to face recognition." in Accepted to International

Conference on Machine Learing and Applications - ICMLA, 2012).

118

-tonn, -wheat, +trade, -gra in, +dividend, +split, -com, +profit, -sell , -acquir
+oil , -wheat, + compani, +share, +corp, -rate , -corn, -dollar, + stake, -fed

-wheat, -trade, +share, +bank, +stake, -export, -crude, +acquisit, -oil, -grain
+stake, -wheat, -oil, -ship, +acquisit , -crude, +merger, +acquir, -export, -tonn

+ profit, +dollar, -wheat, +currenc, +oil, -tonn, -grain, +net, +dividend, +ct
+profit, -wheat, +dividend, -tonn, +split, +ct, +net, +eam, -sh ip, -acquir
+dividend, +split, +eam, +shr, -sell, +profit, -bui, -tonn, -wheat, -acquir

+profit, +dividend, +earn, +split, +ct, -sell, +shr, -wheat, -tonn, -bui
+profit, +net, -wheat, +ct, +Ioss, +shr, +eam, +dividend, -tonn, -trade

-oil, +net, +ct, +dividend, +profit, +shr, +split, -wheat, +earn, -tonn
+d ividend, +shr, +profit, +split, +net, + earn. +ct, -tonn, -oil, -wheat

+profit, -wheat, -ship, -dollar, +share, -trade, -tonn, -currenc, +shr. +stake
+profit, -wheat, +share, +net, -ship, -rate, -tonn, +shr, +ct, +Ioss

+profit, -oil , -wheat, -sh ip, +net, -tonn, +shr, -crude, -rate, +Ioss
-oil , +profit, -wheat, -ship, -crude, +net. -rate, -tonn , +shr, -trade

(a)

acquir, acquisit , merger, stake, undisclos, sell, t akeov, bui, blah , buyout
merger, acqu ir, stake, bui , undisclos, disclos, freight, blah , termin, coastal

tonn, wheat, corn, grain, ship, port, crop, vessel , maiz, rice
wheat, oil, crude, sh ip, bbl, port, barrel, vessel, sea, blah

wheat, monei, dollar, currenc, grain, blah, fed, dealer, corn, repurchas
rate, monei, fed, blah, treasuri, dollar, bank, barrel , bundesbank, repurchas

oil, dollar, crude, currenc, deficit, barrel, bbl, blah, minist, refineri
dividend, qtr, split, trade, shr, profit, diY, blah, loss, net

trade, rate, fed, dollar, deficit, blah, monei, prime, japan, currenc
com, trade, grain, wheat, export, blah, deficit, surplu , ec, agricultur

corn, maiz, blah, oil, deficit, crude, bushel, surplu, french, field
ship, prime, port, vessel , blah, freight, cargo, london, tanker, gulf

ct, dividend, oil, spl it, crude, shr, energi , blah., profit, barrel
split, profit, dividend, net, earn, loss, shr, d iv, result, qtr

share, ct, compani, profit, shr, corp, dividend, split, blah, earn

(b)

Figure 24: Networks t rained on the Reuters-21578 dat a: wit h unconstrained weights
(a) and with non-negative weight constraints (b) . Input neurons are characterized by
listing ten words connected to weights having large absolute value. The + and - signs
indicat e the sign of the weight in (a). Each column of the diagram depicts weights of
an output neuron, the size varies with weight value and black or white filling indicates
sign as in Figure 20. The neurons have been rearranged for better presentation.

that form a fixed dictionary D E IRkxP . The vector of reconstruction coefficients v is

required to be sparse, i. e. to contain few non-zero elements. Since the minimization

of the number of nonzero elements in v is a difficult combinatorial problem, practical

implementations resolve to minimize the £1 norm of v instead:

min Ilvl iI subject to: x = Dv. (68)
v

119

However, a perfect reconstruction is often impossible to obtain and the problem is

relaxed to allow approximations to x:

minllvlll subject to: Ilx - Dvl12 ~ E. (69)
v

Alternatively, the following unconstrained problem may be solved with the parameter

A balancing the reconstruction error and sparsity of coefficients v:

minO.51lx - Dvll~ + Allvlh· (70)
v

This formulation of sparse coding is equivalent to LASSO regression [156]. Recently,

the LARS algorithm has been proposed for efficient computation of the path traced

by coefficients v when the regularization parameter A is varied [157,158]. The LARS

algorithm has been extended to piecewise-quadratic error measures in [159]. The key

aspect utilized by those methods is that the values of coefficients v are

piecewise-linear with regard to the regularization constant A. Many other

optimization problems that incorporate sparsity constraints can be solved by tracing

the path of the reconstruction coefficients. An approximate algorithm that is

applicable to training generalized linear models is presented in [160].

In the robust sparse coding problem the £1 norm is used both to measure the

reconstruction error and to regularize the coefficients:

min IIDv - xiiI subject to: Ilvlll ~ T (71)
v

The more frequently used £2 norm is sensitive to outliers because a large error in a

single component dominates the norm. In contrast, the £1 norm is more robust

because large errors are not magnified by taking their squares. Under a Bayesian

view, the £2 norm assumes that errors are normally distributed, while the £1 norm

assumes a doubly exponential (Laplace) distribution. It has heavier tails than the

Gaussian, which lessens outliers influence on the location of the mean. Many

practical applications, such as occluded face recognition, require the robustness to

outliers and solve the problem (71) [161-163].

Robust sparse coding (71) can readily be solved for a fixed value of Tusing

linear programming techniques. In this contribution an algorithm is developed that

120

efficiently computes the path traced by coefficients v(T) when the regularization

constant T is varied. It has been shown in [164] that when £1 regularization is applied

to weights of a Support Vector Machine, the path traced by the weights the weights

is piecewise-linear with respect to the sum of weights! absolute values. Moreover, it

has been stated in [159] that solutions of a more general class of loss functions, which

includes the £1 norm, paired with the £1 coefficient regulari".;ation also yield

piecewise-linear regularization paths. While the proposed algorithm is inspired by

the L1-SVM method, the discussion of KKT optimality conditions is novel and

provides important computation time savings. Furthermore, subgradient calculus is

used to simplify the derivation.

1 Obtaining Full Regularization Paths

The problem of obtaining regularization paths for the general problems will be

analyzed:
k

min L1(Rj) subject to: Ilvlll:::; T,

j=l

and to its equivalent formulation:

k

min L l(Rj) + "llvlll,
j=l

(72)

(73)

where Rj = Dj:v - x is the j-th reconstruction residual and D j : indicates the j-th

row of D. The problems (72) and (73) are equivalent because they share the same

Lagrangian. Three cases of the penalty function l can be considered: the £2 norm

based penalty l2(R) = 0.5R2, the £1 norm based penalty h(R) = IRI, and the

modified Huber penalty lH(R) = R2/(26) for IRI :::; 6, (IRI- 6/2) otherwise. The

Huber penalty can be interpreted as a differentiable approximation to hpenalty with

the parameter 6 controlling the radius of the quadratic region around R = 0, the

singularity of IRI. The 12 and lH penalties are presented based on [159] for the

completeness of discourse. The in-depth analysis of the case of the h penalty is the

main result of this contribution.

121

Subgradient Primer

The problems analyzed in this contribution are non-differentiable. They can

be essentially dealt with in two ways: by defining artificial constrained variables to

transform the problems into smooth, but much larger ones or by using subgradient

methods. The later solution greatly simplifies the analysis of the case of h penalty

function and necessary theorems and definitions are introduced here after [165-167].

Let f be a convex function. A vector 9 is called a subgradient of f at point

Xo E dom f if for any x E dom f it holds that: f(x) 2: f(xo) + gT . (x - xo). The set

of all subgradients of f at xo, 8f(xo) is called the subdifferential of function f at

point Xo. In example, for f(x) = lxi, the sub differential at x =1= 0 is sgn(x), and at

x = 0 it is the whole segment [-1, 1]. There are two important theorems about

subgradients that will allow reasoning about optimality of solutions:

1. Unconstrained optimality condition: f(x*) = minxEdomff(x) if and only if

o E 8f(x*) [165,167].

2. KKT constrained optimality conditions. Consider:

min fo(x) subject to: fi(X) ::; 0, i = 1, ... ,m. (74)

If for i = 0,1, ... ,m fi are convex and defined on]Rn and the problem is

strictly feasible, then x* is optimal if and only if: 0 E 8fo(x*) + L::l)";8fi(X*) ,

and for all i = 1, ... ,m fi(X*) ::; 0,)..; 2: 0,)..; fi(X*) = 0 [166,167].

Differentiable Penalty Functions

Similarly to [159] the optimality conditions of (73) will be analyzed.

Unlike [159] subgradients will be used to simplify the arguments. Let L = I.::=ll(Rj)

be the total loss. At points where L is differentiable the following conditions hold:

8L .
0= -8 +)... sgn(Vi) If Vi =1= 0

Vi

8L o E -8 +)... [-1,1] if Vi = O.
v· ~

122

(75a)

(75b)

Let A be the set of indexes of nonzero coefficients v called the active set

A = {i: Vi =I- O}. Note that for i E A it is necessary that I%~ 1= A. It follows that

i tt A ==} I %~ I ::; A. When the loss L is twice differentiable and the penalty l is

right differentiable one can differentiate (75a) to obtain [159]:

(76)

where \72 LA is the Hessian matrix of the loss with regard to the active coefficients

and VA is the vector of active coefficients only. In the case of l2 and lH 8;t is

piecewise constant [159]. The LARS algorithm uses this property and iterates over

"events" :

• variable Vi = 0 enters the active set when: 1%~(Vi(A))1 = A;

• variable Vi =I- 0 leaves the active set when Vi(A) = 0;

• a knot of l is crossed, for the Huber loss these occur when Rj(A) = ±8.

In this way the whole solution path with regard to A is obtained.

N on-differentiable Penalty Function

In the case of the h penalty function the solution is not piecewise linear with

regard to the lambda parameter, but with regard to T = IlvIII. Furthermore, a

different strategy is needed to determining the gradient ~~. The solution is based on

the L1-SVM algorithm [164]. Consider the minimization problem (71). Let

Rj = Dj:v - Xj be the j-th residue and let L = IIRIII be the total loss. The

Lagrangian is

£(V, A) = L + A(I/VI/I - T) = I/Dv - xiiI + A(llvliI - T). (77)

123

Optimal points need to satisfy the conditions:

0= A(llvlll - T)

otherwise.

(7Sa)

(7Sb)

(7Sc)

(7Sd)

where a~~~1 E [-1,1] and a~~:1 E [-1,1] are values of subdifferentials for which the

optimality condition holds.

It is now shown how to determine the gradient ~. Suppose that for a f

known are the optimum coefficients v which yield residues k Define {3i = ~~i to be

the right derivative of the coefficients v with regard to the regularization parameter

T. The vector {3 must ensure that the point v = v + s{3 is the optimum for T = f + s.
When the step s is sufficiently small, the nonzero residues and nonzero coefficients

will not become zero or change sign. Hence {3 can be determined as the solution of

another minimization problem:

mjn IIDv - xiiI subject to: IlvliI :S T. (79)

Substitute the known signs of nonzero residues and coefficients:

subject to: (SO)

The problem is simplified by subtracting constant terms from the objective

function, subtracting f from the constraint and by dividing both the objective and

124

Algorithm 9: Obtaining full solution path of problem (71).

1: Start with TO = 0, VO = 0, RO = -x.

2: Solve (81) to get (30.
3: while The target of (71) decreases do
4: Make step 8m in direction (3m choosing the smallest step at which

a coefficient Vi becomes 0, or a residue Rj becomes 0.
5: Solve (81) to get {3m+l.
6: end while

constraint by 8 to obtain:

mJn L sgn(Rj)Dj :{3 + L IDj :{31
j:Rri'O j:Rj=O

subject to: (81)

Note that {3 are piecewise-constant with respect to T. Hence the coefficients V are

piecewise-linear with respect to To The coefficients v are not unique for a value of A,

which is piecewise constant with discontinuities at points where a coefficient or

residue becomes zero or changes sign.

It is now possible to formulate the Algorithm 9 that traces a full solution path

of problem (71). The crucial question is how to solve (81) efficiently in line 5 of the

algorithm loop. The KKT conditions for optimality will again be analyzed. To

simplify the conditions first observe that R j = Rj + D j :{3 = D j :{3 if Rj = 0. From

the KKT optimality conditions it is that:

(82a)

A ~ 0, (82e)

125

where ~~~I E [-1,1] and 8~il E [-1,1]. A is the Lagrange multiplier.

Two comments are necessary. First, A was used to denote the Lagrange

multiplier in (82d) because its value is the same as the value of the Lagrange

multiplier of problem (71). It is so because the target and constrains were scaled by

the same nonnegative factor, i.e. by s. Second, multiplying (82b) and (82c) by the

respective elements of {3 and summing yields:

~ (~ ~ 8IDj :{31
A = - ~ sgn Rj)Dj :{3 + ~ 8D

j
:{3 D j :{3

j:Rrlo j:Rj=O
(83)

= - L sgn(Rj)Dj :{3 + L IDj :{3I,

which means that the optimal value of (81) is equal to -A.

Denote the set of indexes of active coefficients at f by A = {i : Vi =1= O}, the

set of indexes of satisfied residues S = {j : Rj = O}, and the set of not satisfied

residues by N = SC When progress is possible, (82a) is active and A is nonzero.

Furthermore, the active V yield a system of IAllinear equations with lSI + 1

unknowns which are the dual variable A and the values of the sub differentials 8~~jl. If
J

it is assumed that the system has a unique solution, it can obtained either when the

number of equations is increased or when the number of variables is decreased. The

first corresponds to the inclusion of an inactive coefficient into the active set. The

second corresponds to the assumption that a satisfied residual will become nonzero.

Furthermore, it is possible to verify the optimality of any solution of (81) by

asserting that A > 0, 8~~~1 E [-1,1]' and 8~il E [-1,1]. To obtain the values of {3 the

equation (82a) is used along with equations Rj = 0 ~ Dj :{3 = 0 for residues that

will stay satisfied.

It is now possible to provide the full algorithm for solving (81) under the

assumption that it has a unique solution:

1. Try to solve (81) by removing a residual from the satisfied set. Check all cases

by solving for all n E S:

(84)

126

where 0lsl-1 is a vector of IAI - 1 zeros. The optimality of the solution can be

verified by solving:

= [DT sgn v]. 8R(S\{n})
[

8 IR(S\{n})I]

(S\{n})A A A . (85)

Note that the two systems of equations are closely related because they are

defined by the same matrix (up to transposition).

2. Try to add a new variable to the active set by solving for all r ~ A:

(86)

where OA is a vector of IAI zeros. The optimality of the solution can be verified

by solving:

[-D~ASgn~N] = [D~ sgnvA]. [8~~~1].
-DNrsgnRN DSr sgnf3r A

(87)

Again the two systems of equations are defined by essentially the same matrix.

3. The optimum solution can be selected either by verifying the optimality

conditions for each considered case, or by computing target values and picking

the point yielding the lowest target value.

2 Runtime Complexity Considerations

The running time of described algorithms depends on the product of two

factors: how many events occur along the path and how expensive it is to process a

single event. k will be used to denote the dimensionality of a single sample x and p

to denote the number of basis (columns) in D. In other words, D is an k x p matrix.

In the case of the l2 or the lH loss functions, during a single event the gradient

~t needs to be computed in O(kp) operations. Choosing the step length also requires

O(kp) operations. Then, the new direction ~~ must be computed using (76). It can

be performed in O(IAI2) steps if for example a QR decomposition of the Hessian

127

matrix is maintained and updated at each step [159]. Since IAI ::; p and typically

k ~ p, a single event commands O(kp) operations.

In the case of the h loss function a single event commands the computation of

the derivative ~~ which pessimistically requires the verification of all possibilities of

systems (84) and (86). Again, if a QR decomposition of the matrix defining those

systems of equations is updated at each stage, this requires O(pIAI2) operations.

Next, the calculation of ~~ which is needed to compute the step size commands

O(kp) operations, while the selection of the step size requires O(k + p) operations. In

total, a single event requires O(kp + p3) operations because IAI ::; p. The majority of

events processed are residues R crossing O. In consequence, verification of optimality

conditions speeds up the algorithm, since usually a solution of (84) is the global

optimum and there is no need to check (86).

The coefficients v and residues R may cross zero multiple times making an

exact derivation of the number of events processed over a path difficult. When the l2

loss is used, the only events stem from changes of the active set. When lH is used one

needs also to account for residues crossing knots of the loss function located at ±6.

Finally, h requires the tracking of every zero-crossing of the residues. This makes it

the slowest of the proposed loss functions.

3 Robust Sparse Coding for Face Recognition

To demonstrate the use of robust sparse coding for face recognition (FR)

consider a training set of aligned, normalized, and labeled images of faces. Let D be

a matrix in which every column D:i contains the pixels of a training face image. Let

x be a vector containing the pixels of an unknown face. The recently proposed

Sparse Representation-based Classification (SRC) [161] methods first represents x as

a sparse linear combination of training faces by solving the problem

v = argmin IlvliI subject to: Ilx - Dvlb ::; E. (88)
v

128

I, loss, 7100 events
Ih loss, 4300 events

15

10

-5

-1 (}----'---'----'---'----'-----'---'------'----'
o 10 20 30 40 50 60 70 ao 90

lIull,
-100'---1c':-0---::'-20:-----,3:'c-O ---:':40,----:5'-c.

0
-.:":60---=70c---

a
:'c-
0

-----='90

IJaIl,

(a)

121055, 100 events

~0~-'-10-~20:---3~O---::'-40:----:5~O-~60-~7'-c.o-~aO-~90
IJaIl,

(c)

(b)

Figure 25: Regularization paths for sparse coding coefficients: (a) h error function,
(b) lh error function, (c) l2 error function. We can see that the Huber loss results are
smoother and similar to the h results. The number of "events" processed in each case
is indicated. It coincides with the theoretical analysis.

Then per-person residuals ri of the approximation are computed for every person i in

the training dat a:

(89)

where the function lSi (x) :]RP ~]RP returns a vector whose only nonzero components

are the entries of x associated with the person i. The unknown face x is recognized

as the person whose residual was the lowest: identity(x) = arg mini ri (x). The

authors of SRC have also proposed an extension for robust recognition [161]. The

129

dictionary of training faces D is extended with an identity matrix serving as a

dictionary of noise patterns to form DE = [D, I] 3. Then the unknown face x is

represented in terms of the training faces and noise jointly:

x = [D,I] [v]
VE

where v E are the noise coefficients. Since this system of equations is always

under-determined, it is necessary to solve equation (91) to recover the sparsest

solution:

V,VE

subject to: Dv + IVE = x.

The noise present in the test image x is captured in the coefficients v E. Hence

(90)

(91)

Dv = x - I v E is the reconstructed denoised image. The residuals are redefined to

reflect the reconstruction error of de noised images:

The problem (91) is equivalent to minimizing the £1 norm of the

approximation error with the parameter A equal to 1:

min Ilx - Dvl11 + Allvlh·

(92)

(93)

This can easily be seen by interpreting v E as reconstruction residuals. The

parameter A is implicitly present in (91) as the ratio of magnitudes of elements of D

and x. In fact the results presented in [161] require that only the training faces are

normalized, while test faces are not. The inclusion of the regularization parameter A

in (70) and (93), or the parameter E in (88) makes this dependence explicit.

4 Experimental Results

In all the experiments the Extended Yale B face recognition database was

used [168]. Selected were the 719 face images taken with capture angle and elevation

31f the noise is known to have a sparse structure with respect to another basis, [161] proposes to

use this basis instead of the identity matrix.

130

lower than 25° as the training set and 373 face images with capture angle and

elevation between 25° and 50° as the test set. Similarly to [161J the training faces

were normalized to have unit length, while the test faces were unnormalized and

corrupted by replacing 30% pixels with random values drawn uniformly from the

range of pixel intensity values in the testing set. In all experiments the parameter £5

of the Huber loss function was set to 1/10 of the standard deviation of intensity

values of test images, which was 0.028.

First compared are the coefficients obtained using the h, l2, and lh error

measures for a single test image. The results are presented in Figure 25. The path

obtained during minimization of the l2 error function has the smallest number of

segments (the algorithm processed the fewest events), however it differs greatly from

the paths obtained for hand lh error functions. The path obtained with lh is

smoother than the one obtained for ll.

Table 13 compares execution times required to solve the problem (71) using

the proposed algorithm and Matlab's "linprog" function. All algorithms converged to

approximately the same vector of optimal coefficients v which validates the

correctness of the proposed algorithm. To assess the speedup due to early

termination of search for possible solutions of (81) by checking optimality conditions

the time required when optimality checks were disabled is also reported. The results

indicate that for large values of A when the solutions are sparse, the proposed

approach is competitive with directly solving (71) using linear programming because

the experimental running times are comparable and the full regularization path is

obtained instead of a single solution. However, as the solution becomes less sparse it

is more beneficial to repeatedly use linear programming techniques for several values

of the regularization parameter. The checks of optimality conditions result in a

considerable speedup, however the relative gap becomes smaller for less sparse

solutions because there are more satisfied (equal to zero) residuals which always Heed

to be considered and less inactive (equal to zero) coefficients.

Finally, the accuracy of face recognition was calculated for a range of

regularization parameter values and plotted in Figure 26. For every testing image the

131

TABLE 13

Running times of the proposed algorithm compared with running times of Matlab's
"linprog" solver.

A
1.0 0.1 0.02 0.01

linprog time [s] 89 126 170 266
with opt. checks [s] 21 200 5050 14700
without opt. checks [s] 370 2100 19400 -
processed events 3900 8000 14400 17600

Relative differences between different algorithm's solutions were :::; 10-5 .

100

90

80

70

~
60

H lJ
>-
" ~
" " :il

10 20 40 50 60

Figure 26: Accuracy of sparse-coding based face recognition on the Extended Yale
B database with added noise. The two robust error measures give very close results,
with h being slightly better than lh.

values of Ilvlll were determined at which the proper label was beginning or ending to

be selected and those values were added to compute how many faces are correctly

recognized for every value of IlvliI. The error function l2 is affected by the added

noisy pixels and yields the lowest accuracy. The Huber and l\-norm based error

functions are more robust and yield nearly identical results, with the h loss function

being slightly better. The obtained results are comparable with the ones reported

in [161].

132

5 Conclusions

A novel algorithm for obtaining the full regularization path of the robust

sparse coding problem was presented. Optimality conditions were derived through

the use of subgradient calculus. The conditions were successfully incorporated into

the algorithm obtaining yielding important running time savings. A reasoning similar

to the one presented in this paper can also be used to speed up the L1-SVM [164J

method. The proposed algorithm was benchmarked on real-life face recognition data

demonstrating its validity and usefulness. It is concluded that when the solution of

the robust sparse coding problem is assumed to be very sparse, the proposed

approach is competitive with linear programming solvers.

133

CHAPTER VI

CONCLUSIONS

The task of learning understandable concepts and relations from data is a

complex and multifaceted one. The notion of understandability is subjective and can

only be measured indirectly, usually by the expressiveness and size of representations

that describe concepts and patterns. Therefore, there is no unique way of enforcing

the understandability of results of a given method. However, then main conclusions

that arise from the body of research reported upon in this dissertation is that

understandability requires both that the induced descriptions be interpretable and

relevant to the problem at hand.

The importance of concentrating on the relevant characteristics of the

problem is demonstrated in Chapter III, in which it was observed that methods

which generated additional data in the regions relevant to the problem have led to

the smallest and most accurate sets of rules. This suggests that for rule extraction it

is neither useful nor correct to attempt to describe all the details of the black-box's

operation. Instead, only the patterns relevant to the problem should be analyzed.

Two rule extraction methods proposed in Chapter IV are specialized

algorithms that closely rely on properties of both the black-box classifier they

attempt to understand - an Artificial Neural Network, and the properties of the

understandable data structure they derive - a Reduced Ordered Decision Diagram.

However, they incorporate the principle of extracting only the relevant patterns as

they both limit the search space to the proximity of the training data.

Finally, the neural network with non-negative weights proposed in Chapter V

was designed to detect patterns that are both understandable and relevant to the

classification task defined by the target labeling. This is in sharp contrast to

134

traditional feature detection methods that try to faithfully describe the data and

disregard the ultimate task of classification.

Methods described in this dissertation encompass several key stages of data

analysis process: understandable feature discovery, efficient data encoding using

known features, and finally induction of understandable models. It is hoped that the

presented algorithms will extend the toolkit of data analysts and enable the

extraction of useful knowledge out of data. The original contributions of the author

of this dissertation include:

• The introduction of a definition of understandability that can be used in formal

proofs of the computational complexity of rule learning.

• The extension of kernel density estimation methods to support nominal

multivalued attributes which is needed in practical applications.

• The introduction of two novel algorithms that use the ability to estimate the

activation of a Neural Network in the presence of unknown inputs to induce

Reduced Ordered Decision Diagrams.

• The introduction of the non-negative weight constraints in Neural Networks to

enhance their understandability and a proof of the ability of a sufficiently large

network with non-negative weight constraints to shatter a given set of points.

• The introduction of a novel path-following algorithm for the robust sparse

coding problem.

135

REFERENCES

[1] R. Michalski and R. Chilausky, "Knowledge acquisition by encoding expert
rules versus computer induction from examples: a case study involving soybean
pathology," Int. J. of Man-Machine Studies, vol. 12, pp. 63-87, 1980.

[2] W. Duch, R. Setiono, and J. Zurada, "Computational intelligence methods for
rule-based data understanding," Proceedings of the IEEE, vol. 92, no. 5, pp.
771-805, May 2004.

[3] M. Nguyen, J. Zurada, and J. Rajapakse, "Toward Better Understanding of
Protein Secondary Structure: Extracting Prediction Rules," Computational
Biology and Bioinformatics, IEEE/ ACM Transactions on, vol. 8, no. 3, pp.

858--864, Jun. 2011.

[4] R. Caruana and A. Niculescu-Mizil, "An empirical comparison of supervised
learning algorithms," in Proc. 23rd Int. Conf. on Mach. Learning, ser. ICML
'06. New York, NY, USA: ACM, 2006, pp. 161-168.

[5] Y. Freund and R. Schapire, "Experiments with a new boosting algorithm," in
Proc. 13th Int. Conf. Mach. Learning, 1996.

[6] L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, pp. 123-140, 1996.

[7] --, "Random forests," Mach. Learn., vol. 45, pp. 5-32, 200l.

[8] C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20,

no. 3, pp. 273-297, 1995.

[9] J. M. Zurada, Introduction to artificial neural systems. West Publishing

Company, 1992.

[10] V. Cherkas sky and F. Mulier, Learning from data: concepts, theory, and
methods. Wiley-IEEE Press, 2007.

[11] V. Vapnik, Statistical learning theory. Wiley, New York, 1998.

[12] V. N. Vapnik, "An overview of statistical learning theory." Neural Networks,

IEEE Transactions on, vol. 10, no. 5, pp. 988-99, Jan. 1999.

[13] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

136

[14] W. W. Cohen, "Fast effective rule induction," in Proc. 12th Int. Conf. Mach.

Learning, A. Prieditis and S. Russell, Eds., vol. 3. Morgan Kaufmann, 1995,

pp. 115-123.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten,
"The WEKA data mining software: An update," ACM SIGKDD Explorations
Newsletter, vol. 11, no. 1, pp. 10-18, 2009.

[16] F. Supek. (2009, March) Fast random forest v. 0.98. Accessed 9/14/2012.

[Online]. Available: http://code.google.com/p/fast-random-forest /

[17] A. Frank and A. Asuncion, "UCI machine learning repository," 2012. [Online].
Available: http://archive.ics. uci.edu/ml

[18] L. Valiant, "A theory of the learnable," Communications of the ACM, vol. 27,

no. 11, pp. 1134-1142, 1984.

[19] A. Blumer and A. Ehrenfeucht, "Learnability and the Vapnik-Chervonenkis
dimension," Journal of the ACM, vol. 36, no. 4, pp. 929-965, 1989.

[20] Y. LeCun, L. Bottou, G. Orr, and K. Miiller, "Efficient backprop," Neural

networks: Tricks of the trade, vol. 1524, no. 3, 1998.

[21] M. Mo 11er, "A scaled conjugate gradient algorithm for fast supervised
learning," Neural networks, vol. 6, no. 4, pp. 525-533, 1993.

[22] M. Hagan and M. Menhaj, "Training feedforward networks with the
Marquardt algorithm," Neural Networks, IEEE Transactions on, vol. 5, no. 6,
pp. 989-993, 1994.

[23] R. Andrews, J. Diederich, and A. B. Tickle, "Survey and critique of techniques
for extracting rules from trained artificial neural networks," Knowledge-Based

Systems, vol. 8, no. 6, pp. 373-389, Dec. 1995.

[24] R. Reed, "Pruning algorithms-a survey," Neural Networks, IEEE Transactions

on, vol. 4, no. 5, pp. 740-747, 1993.

[25] Y. Le Cun, J. Denker, S. Solla, R. Howard, and L. Jackel, (:Optimal brain
damage," Advances in neural information processing systems, vol. 2, 1990.

[26] B. Hassibi, D. Stork, and G. Wolff, "Optimal brain surgeon and general
network pruning," in Neural Networks, 1993., IEEE International Conference

on. IEEE, 1993, pp. 293-299.

137

[27] G. Castellano, A. Fanelli, and M. Pelillo, "An iterative pruning algorithm for

feedforward neural networks," Neural Networks, IEEE Transactions on, vol. 8,
no. 3, pp. 519-31, Jan. 1997.

[28] M. Ishikawa, "Structural learning with forgetting," Neural Networks, vol. 9,

no. 3, pp. 509-521, Apr. 1996.

[29] H. Zou and T. Hastie, "Regularization and variable selection via the elastic
net," Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301-320, Apr. 2005.

[30] S. Nowlan and G. Hinton, "Simplifying neural networks by soft weight-sharing,"
Neural computation, vol. 4, no. 4, pp. 473-493, 1992.

[31] R. Setiono, "Extracting M-of-N rules from trained neural networks," Neural

Networks, IEEE Transactions on, vol. 11, no. 2, pp. 512-519, 2000.

[32] B. Boser, I. Guyon, and V. Vapnik, "A training algorithm for optimal margin

classifiers," in Proceedings of the fifth annual workshop on Computational

learning theory, 1992, pp. 144-152.

[33] C. Burges, "A tutorial on support vector machines for pattern recognition,"
Data mining and knowledge discovery, vol. 2, no. 2, pp. 121-167, 1998.

[34] N. Cristianini and J. Shawe-Taylor, An introduction to support Vector

Machines: and other kernel-based learning methods. Cambridge Univ Pr, 2000.

[35] P. Tan, M. Steinbach, V. Kumar et al., Introduction to data mining. Pearson
Addison Wesley Boston, 2006.

[36] C. Bishop, Pattern recognition and machine learning. springer New York,
2006.

[37] J. Nocedal and S. Wright, Numerical optimization. Springer verlag, 1999.

[38] J. Platt, "Fast Training of Support Vector Machines using Sequential Minimal

Optimization," in Advances in kernel methods, B. Scholkopf, C. J. C. Burges,

and A. J. Smola, Eds. MIT Press, 1998, pp. 185-208.

[39] 1. Breiman, "Bagging predictors," Mach. Learn., vol. 140, pp. 123-140, 1996.

[40] T. K. Ho, "The random subspace method for constructing decision forests,"
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20,
no. 8, pp. 832-844, 1998.

138

[41] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, "Boosting the margin: a
new explanation for the effectiveness of voting methods," The Annals of
Statistics, vol. 26, no. 5, pp. 1651-1686, Oct. 1998.

[42] S. Rosset, "Boosting as a Regularized Path to a Maximum Margin Classifier,"
The Journal of Machine Learning Research, vol. 5, pp. 941-973, 2004.

[43] B. Baesens, R. Setiono, C. Mues, and J. Vanthienen, "Using Neural Network
Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management

Science, vol. 49, no. 3, pp. 312-329, Mar. 2003.

[44] B. Gaines, "Transforming rules and trees into comprehensible knowledge
structures," in Advances in Knowledge Discovery and Data Mining. MIT
Press, 1996, pp. 205-226.

[45] P. Clark and T. Niblett, "The cn2 induction algorithm," Mach. Learn., vol. 3,
pp. 261-283, Mar. 1989.

[46] E. Frank and 1. Witten, "Generating accurate rule sets without global
optimization," in Proc.of the 15th Int. Conf. on Mach. Learn., 1998, pp.
144-151.

[47] J. Furnkranz and P. Flach, "Roc 'n' rule learning-towards a better
understanding of covering algorithms," Mach. Learning, vol. 58, pp. 39-77,
2005.

[48] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and
Regression Trees, 1st ed. Chapman & Hall/CRC, Jan. 1984.

[49] J. R. Quinlan, "Learning logical definitions from relations," Machine Learning,

vol. 5, pp. 239-266, 1990.

[50] M. Kantardzic, Data Mining: Concepts, Models, Methods and Algorithms.
New York, NY, USA: John Wiley & Sons, Inc., 2002.

[51] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F.-J. Huang, "A tutorial on
energy-based learning," in Predicting Structured Data, G. Bakir, T. Hofman,
B. Schi::ilkopf, A. Smola, and B. Taskar, Eds. MIT Press, 2006.

[52] M. A. Ranzato, Y.-L. Boureau, S. Chopra, and Y. LeCun, "A unified
energy-based framework for unsupervised learning," in AISTATS, 2007.

[53] M. Ranzato, "Unsupervised Learning of Feature Hierarchies," Ph.D.
dissertation, New York University, 2009.

139

[54] G. Golub and C. Van Loan, Matrix computations. Johns Hopkins University
Press, 1996, vol. 3.

[55] A. Hyviirinen and E. Oja, "Independent component analysis: algorithms and
applications." Neural Networks, vol. 13, no. 4-5, pp. 411-30, 2000.

[56] P. Paatero, "Least squares formulation of robust non-negative factor analysis,"
Chemometrics and Intelligent Laboratory Systems, vol. 37, no. 1, pp. 23-35,
May 1997.

[57] D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative
matrix factorization." Nature, vol. 401, no. 6755, pp. 788-91, Oct. 1999.

[58] B. Olshausen and D. Field, "Sparse coding with an overcomplete basis set: A
strategy employed by V17" Vision research, vol. 37, no. 23, pp. 3311-3325,
1997.

[59] H. Lee, C. Ekanadham, and A. Ng, "Sparse deep belief net model for visual

area V2," in Advances in neural information processing systems, 2007, pp.
873-880.

[60] M. Y. Ranzato, 1. Boureau, and Y. LeCun, "Sparse feature learning for deep
belief networks," in Advances in neural information processing systems, 2007,
pp. 1185-1192.

[61] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations," in
Proceedings of the 26th Annual International Conference on Machine Learning
- ICML '09, 2009, pp. 609-616.

[62] J. Huysmans, B. Baesens, and J. Vanthienen, "Using Rule Extraction to
Improve the Comprehensibility of Predictive Models," K.U. Leuven, Tech.
Rep., 2006. [Online]. Available: http://www.ssrn.com/abstract=961358

[63] I. Cloete and J. Zurada, Eds., Knowledge-based neurocomputing. Cambridge,
MA, USA: MIT Press, 2000.

[64] Z.-H. Zhou and Y. Jiang, "Medical Diagnosis with C4. 5 Rule Preceded by
Artificial Neural Network Ensemble," Information Technology in Biomedicine,
IEEE Transactions on, vol. 7, no. 1, pp. 37-42, Mar. 2003.

[65] D. Martens, B. Baesens, and T. Van Gestel, "Decompositional Rule Extraction
from Support Vector Machines by Active Learning," Knowledge and Data
Engineering, IEEE Transactions on, vol. 21, no. 2, pp. 178-191, Feb. 2009.

140

[66] M. Craven and J. Shavlik, "Extracting Thee-Structured Representations of
Thained Networks," Advances in Neural Information Processing Systems, vol. 8,
1996.

[67] J. Huysmans, Johan and Baesens, Bart and Vanthienen, "ITER: an algorithm
for predictive regression rule extraction," in Data Warehousing and Knowledge
Discovery, vol. 4081, 2006, pp. 270-279.

[68] J. Huysmans, R. Setiono, B. Baesens, and J. Vanthienen, "Minerva: sequential
covering for rule extraction." Systems, Man, and Cybernetics Part B, IEEE
Transactions on, vol. 38, no. 2, pp. 299-309, Apr. 2008.

[69] O. Boz, "Extracting decision trees from trained neural networks," in Proc. of

the 8th ACM SIGKDD Int. Conf. New York, New York, USA: ACM Press,
2002, pp. 456-461.

[70] T. Etchells and P. Lisboa, "Orthogonal search-based rule extraction (OSRE)
for trained neural networks: a practical and efficient approach," Neural

Networks, IEEE Transactions on, vol. 17, no. 2, pp. 374-384, 2006.

[71] J. R. Rabuiial, J. Dorado, A. Pazos, J. Pereira, and D. Rivero, "A New
Approach to the Extraction of ANN Rules and to Their Generalization
Capacity Through GP," Neural computation, vol. 16, pp. 1483-523, Jul. 2004.

[72] G . .I. Schmitz, C. Aldrich, and F. S. Gouws, "ANN-DT: An Algorithm for

Extraction of Decision Thees from Artificial Neural Networks," Neural

Networks, IEEE Transactions on, vol. 10, no. 6, pp. 1392-401, Jan. 1999.

[73] M. Craven and J. Shavlik, "Using sampling and queries to extract rules from
trained neural networks," in Proc. 11th Int. Conf. Mach. Learning, 1994.

[74] R. Krishnan, G. Sivakumar, and P. Bhattacharya, "Extracting decision trees
from trained neural networks," Pattern Recognition, vol. 32, no. 12, pp.
1999-2009, Dec. 1999.

[75] D. Specht, "Probabilistic Neural Networks," Neural networks, vol. 3, 1990.

[76] E. Saad and D. Wunsch, "Neural network explanation using inversion," Neural

Networks, vol. 20, no. 1, pp. 78-93, Jan. 2007.

[77] N. Barakat and J. Diederich, "Eclectic Rule-Extraction from Support Vector
Machines,:: International Journal of Computational Intelligence, vol. 2, no. 1,

pp. 59-62, 2005.

[78] P. Domingos, "Knowledge Acquisition from Examples via Multiple Models," in
Proc. 14th Int. Conf. Mach. Learning, 1997, pp. 98-106.

141

[79] R. Setiono, B. Baesens, and C. Mues, "Recursive neural network rule
extraction for data with mixed attrihutes," Neural Networks, IEEE
Transactions on, vol. 19, no. 2, pp. 299 -307, Feh. 2008.

[80] R. Setiono and W. Leow, "Fernn: An algorithm for fast extraction of rules
from neural networks," Applied Intelligence, vol. 12, pp. 15-25, 2000.

[81] A. Van Assche and H. Blockeel, "Seeing the forest through the trees: Learning
a comprehensible model from an ensemble," in Machine Learning: ECML 2007,
ser. Lecture Notes in Computer Science, J. Kok, J. Koronacki, R. Mantaras,
S. Matwin, D. Mladenic, and A. Skowron, Eds. Springer Berlin / Heidelberg,
2007, vol. 4701, pp. 418-429.

[82] L. Fu, "Rule generation from neural networks," Systems, Man and Cybernetics,
IEEE Transactions on, vol. 24, no. 8, pp. 1114 -1124, Aug. 1994.

[83] G. Towell and J. Shavlik, "Extracting refined rules from knowledge-based
neural networks," Machine Learning, vol. 13, pp. 71-101, 1993.

[84] M. Craven and J. Shavlik, "Rule extraction: Where do we go from here,"
University of Wisconsin Machine Learning Research Group, Tech. Rep., 1999.

[85] 1. Taha and J. Ghosh, "Symbolic Interpretation of Artificial Neural Networks,"
Knowledge and Data Engineering, IEEE Transactions on, vol. 11, no. 3, pp.
448-463, 1999.

[86] J. Chorowski and J. M. Zurada, "Extracting Rules from Neural Networks as
Decision Diagrams," Neural Networks, IEEE Transactions on, vol. 22, no. 12,

pp. 2435-46, Dec. 2011.

[87] J. Zurada, A. Malinowski, and S. Usui, "Perturbation method for deleting
redundant inputs of perceptron networks," Neurocomputing, vol. 14, no. 96, pp.
177-193, 1997.

[88] L. Breiman and A. Cutler, "Random forest - classification description," jun

2004, accessed 9/25/2012. [Online]. Available:
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

[89] J. Vanthienen, "Using Rule Extraction in Data Mining Models: Some New
Measures," in Proceedings of the XV international conference Knowledge
Acquisition and Management, Wroclaw, Poland, 2007.

[90] R. S. Michalski, "Attributional Calculus A logic and Representation Language
for Natural Induction," Reports of tthe Machine Learning and Inference
Laboratory, George Mason University, Tech. Rep., 2004.

142

[91] G. Huang, Q. Zhu, and C. Siew, "Extreme learning machine: theory and
applications," Neurocomputing, vol. 70, no. 1, pp. 489-501, 2006.

[92] J. Wang, J. Chorowski, and J. M. Zurada, "Review and performance
comparison of svm- and elm- based classifiers," submitted to Neurocomputing,

2012.

[93] G. Towell and J. Shavlik, "Extracting refined rules from knowledge-based
neural networks," Machine learning, vol. 13, pp. 71-101, 1993.

[94] J. Proakis and D. Manolakis, Digital Signal Processing, 4th ed. Prentice Hall,
2006.

[95] D. Lowe, "Object recognition from local scale-invariant features," in ICCV.

Published by the IEEE Computer Society, 1999, p. 1150.

[96] T. Ojala, M. Pietikiiinen, and D. Harwood, "A comparative study of texture
measures with classification based on featured distributions," Pattern
recognition, vol. 29, no. 1, pp. 51-59, 1996.

[97] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning
applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp.
2278-2324, 1998.

[98] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, "Robust 3D Action
Recognition with Random Occupancy Patterns," in ECCV 2012, 2012, pp.
872-885.

[99] D. Hubel and T. Wiesel, "Receptive fields, binocular interaction and functional
architecture in the cat's visual cortex," The Journal of physiology, vol. 160,
no. 1, p. 106, 1962.

[100] M. Y. Ranzato, P. Christopher, C. Sumit, and Y. LeCun, "Efficient learning of
sparse representations with an energy-based model," Advances in Neural

Information Processing Systems, 2006.

[101] H. Lee, R. Grosse, R. Ranganath, and A. Ng, "Unsupervised learning of
hierarchical representations with convolutional deep belief networks,"
Communications of the ACM, vol. 54, no. 10, pp. 95-103, 2011.

[102] Y. S. Abu-Mostafa, "Learning from hints in neural networks," Journal of

Complexity, vol. 6, no. 2, pp. 192-198, Jun. 1990.

[103] R. Hadsell, S. Chopra, and Y. LeCun, "Dimensionality Reduction by Learning
an Invariant Mapping," 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition - Volume 2 (CVPR'06), pp. 1735-1742,2006.

143

[104] J. Chorowski and J. M. Zurada, "Improving the accuracy of understandable
classifiers through additional sample generation,)) Submitted to Knowledge and

Data Engineering, IEEE Transactions on, 2012.

[105] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, "SMOTE: synthetic
minority over-sampling technique," Journal of Artificial Intelligence Research,
vol. 16, pp. 321-357, 2002.

[106] J. C. Platt, "Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods," in Advances in large margin

classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, Eds. MIT
Press, 1999.

[107] P. Sollich, "Probabilistic methods for support vector machines," Advances in

neural information processing systems, pp. 349-355, 2000.

[108] B. Silverman, Density estimation for statistics and data analysis. Chapman
and Hall, 1986.

[109] D. Scott, Multivariate density estimation. John Wiley and Sons, 1992, vol.
139.

[110] J. Hwang, S. Lay, and A. Lippman, "Nonparametric multivariate density
estimation: a comparative study," Signal Processing, IEEE Transactions on,

vol. 42, no. 10, pp. 2795-2810, 1994.

[111] B. Park and B. Turlach, "Practical performance of several data driven
bandwidth selectors," Computational Statistics, vol. 7, pp. 251-285, 1992.

[112] M. Jones, J. Marron, and S. Sheather, "A brief survey of bandwidth selection
for density estimation," Journal of the American Statistical Association,

vol. 91, no. 433, pp. 401-407, 1996.

[113] A. Hyviirinen, "Fast and Robust Fixed-Point Algorithms for Independent
Component Analysis." Neural Networks, IEEE Transactions on, vol. 10, no. 3,
pp. 626-34, Jan. 1999.

[114] C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines,')
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp.
27:1-27:27, 2011, software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[115] R. Bryant, "Graph-based algorithms for boolean function manipulation,))

Computers, IEEE Transactions on, vol. C-35, no. 8, pp. 677 -691, Aug. 1986.

144

[116] Y-T. Lai and S. Sastry, "Edge-valued binary decision diagrams for multi-level
hierarchical verification," in Proceedings of the 29th ACM/IEEE Design
Automation Conference, ser. DAC '92. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1992, pp. 608-613.

[117] P. Tafertshofer and M. Pedram, "Factored edge-valued binary decision
diagrams," Formal Methods in System Design, vol. 10, pp. 243-270, 1997.

[118] J. Ossowski and C. Baier, "A uniform framework for weighted decision
diagrams and its implementation," International Journal on Software Tools for

Technology Transfer (STTT), vol. 10, pp. 425-441, 2008.

[119] R. Bryant and Y-A. Chen, "Verification of arithmetic circuits using binary
moment diagrams," International Journal on Software Tools for Technology
Transfer (STTT), vol. 3, pp. 137-155, 2001.

[120] R. Bryant, "Binary decision diagrams and beyond: enabling technologies for
formal verification," in Computer-Aided Design, 1995. ICCAD-95. Digest of
Technical Papers., 1995 IEEE/ACM International Conference on, Nov. 1995,
pp. 236 -243.

[121] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI Design,

1st ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1998.

[122] C. Files and M. Perkowski, "Multi-valued functional decomposition as a
machine learning method," in Multiple- Valued Logic, 1998. Proceedings. 1998

28th IEEE International Symposium on, May 1998, pp. 173 -178.

[123] A. Oliveira and A. Sangiovanni-Vincentelli, "Learning complex boolean
functions: Algorithms and applications," in In Advances in Neural Information
Processing Systems 6. Morgan Kaufmann, 1993, pp. 911-918.

[124] M. Sauerhoff and 1. Wegener, "On the complexity of minimizing the obdd size
for incompletely specified functions," Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 15, no. 11, pp. 1435 -1437,
Nov. 1996.

[125] T. Shiple, R. Hojati, A. Sangiovanni-Vincentelli, and R. Brayton, "Heuristic
minimization of bdds using don't cares," in Proceedings of the 31st annual

Design Automation Conference, ser. DAC '94. New York, NY, USA: ACM,
1994, pp. 225-231.

[126] Y Hong, P. Beerel, J. Burch, and K. McMillan, "Safe bdd minimization using
don't cares," in Proceedings of the 34th annual Design Automation Conference,
ser. DAC '97. New York, NY, USA: ACM, 1997, pp. 208-213.

145

[127] A. Oliveira, L. Carloni, T. Villa, and A. Sangiovanni-Vincentelli, "Exact
minimization of binary decision diagrams using implicit techniques,"
Computers, IEEE Transactions on, vol. 47, no. 11, pp. 1282 -1296, Nov. 1998.

[128] R. Kohavi, "Bottom-up induction of oblivious read-once decision graphs:
strengths and limitations," in Proceedings of the 12th national conference on
Artificial intelligence (vol. 1), ser. AAAI '94. Menlo Park, CA, USA:
American Association for Artificial Intelligence, 1994, pp. 613-618.

[129] A. Oliveira and A. Sangiovanni-Vincentelli, "Using the minimum description
length principle to infer reduced ordered decision graphs," Machine Learning,
vol. 25, pp. 23-50, 1996.

[130] C. Mues, B. Baesens, C. Files, and J. Vanthienen, "Decision diagrams in
machine learning: an empirical study on real-life credit-risk data," Expert

Systems with Applications, vol. 27, no. 2, pp. 257 - 264, 2004.

[131] K. Brace, R. Rudell, and R. Bryant, "Efficient implementation of a bdd
package," in Design Automation Conference, 1990. Proceedings., 27th
ACM/IEEE, Jun. 1990, pp. 40 -45.

[132] H. Andersen, "An introduction to binary decision diagrams," IT University of
Copenhagen, Lect. Not., 1999. [Online]. Available:
http://www.itu.dk/people/hra/notes-index.html

[133] S. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. D. Jong,
S. Dzeroski, R. Hamann, K. Kaufman, S. Keller, I. Kononenko, J. Kreuziger,
R. Michalski, T. Mitchell, P. Pachowicz, B. Roger, H. Vafaie, W. V. de Velde,
W. Wenzel, J. Wnek, and J. Zhang, "The MONK's problems: A performance
comparison of different learning algorithms," Carnegie Mellon University,
Computer Science Department, Pittsburgh, PA, Tech. Rep. CMU-CS-91-197,
1991.

[134] S. Tani, K. Hamaguchi, and S. Yajima, "The complexity of the optimal
variable ordering problems of shared binary decision diagrams," in Algorithms

and Computation, ser. Lecture Notes in Computer Science, K. Ng,
P. Raghavan, N. Balasubramanian, and F. Chin, Eds. Springer Berlin /
Heidelberg, 1993, vol. 762, pp. 389-398.

[135] R. Rudell, "Dynamic variable ordering for ordered binary decision diagrams,"
in Proceedings of the 1993 IEEE/ACM international conference on
Computer-aided design, ser. ICCAD '93. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1993, pp. 42-47.

146

[136] S. Panda, F. Somenzi, and B. Plessier, "Symmetry detection and dynamic
variable ordering of decision diagrams," in Proceedings of the 1994 IEEE/ACM
international conference on Computer-aided design, ser. ICCAD '94. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1994, pp. 628-631.

[137] F. Somenzi, "Efficient manipulation of decision diagrams," International

Journal on Software Tools for Technology Transfer (STTT), vol. 3, pp.
171-181,2001.

[138] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and
F. Somenzi, "Algebraic decision diagrams and their applications," Formal

Methods in System Design, vol. 10, pp. 171-206, 1997.

[139] S. Sanner and D. McAllester, "Affine algebraic decision diagrams (aadds) and
their application to structured probabilistic inference," in Proceedings of the
19th international joint conference on Artificial intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2005, pp. 1384-1390.

[140] J. Bern, J. Gergov, C. Meinel, and A. Slobodova, "Boolean manipulation with
free bdd's. first experimental results," in European Design and Test Conference,

1994. EDAC, The European Conference on Design Automation. ETC European

Test Conference. EUROASIC, The European Event in ASIC Design,

Proceedings., 1994, pp. 200 -207.

[141] J. Bern, C. Meinel, and A. Slobodova, "Some heuristics for generating tree-like
fbdd types," Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 15, no. 1, pp. 127 -130, Jan. 1996.

[142] J. M(2lller, J. Lichtenberg, H. Andersen, and H. Hulgaard, "Difference decision
diagrams," in Proceedings of the 13th International Workshop and 8th Annual

Conference of the EACSL on Computer Science Logic, ser. CSL '99. London,
UK: Springer-Verlag, 1999, pp. 111-125.

[143] G. Towell, J. Shavlik, and M. Noordewier, "Refinement of approximate domain
theories by knowledge-based neural networks," in Proceedings of the Eighth

National Conference on Artificial Intelligence. Citeseer, 1990, pp. 861-866.

[144] J. Chorowski and J. Zurada, "Top-down induction of reduced ordered decision
diagrams from neural networks," Lecture Notes in Computer Science, Artificial

Neural Networks and Machine Learning ICANN 2011, vol. 6729, pp. 309-316,

2011.

[145] R. Kohavi and C. H. Li, "Oblivious decision trees graphs and top down
pruning," in Proceedings of the 14th international joint conference on Artificial

147

intelligence- Volume 2. Morgan Kaufmann Publishers Inc., 1995, pp.
1071-1077.

[146] U. Fayyad and K. Irani, "Multi-interval discretization of continuous-valued
attributes for classification learning," in Proceedings of the International Joint
Conference on Uncertainty in AI, 1993, pp. 1022-1027.

[147] J. Chorowski and J. M. Zurada, "Learning understandable neural networks
with non-negative weight constraints," Submitted to Neural Networks and

Learning Systems, IEEE Transactions on, 2012.

[148] K. Huang and S. Aviyente, "Sparse Representation for Signal Classification,"
in Advances in Neural Information Processing Systems 19, 2007, pp. 609-616.

[149] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "Discriminative

learned dictionaries for local image analysis," in IEEE Conference on

Computer Vision and Pattern Recognition, 2008. CVPR 2008, Jun. 2008.

[150] J. Mairal, F. Bach, A. Zisserman, G. Sapiro, J. Ponce, G. Sapiro, and

A. Zisserman, "Supervised dictionary learning," in Advances in Neural

Information Processing Systems 21, 2009, pp. 1033-1040.

[151] Y. Bengio, "Learning Deep Architectures for AI," Foundations and Trends in

Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[152] M. Y. Ranzato and M. Szummer, "Semi-supervised learning of compact
document representations with deep networks," in International Conferenece

on Machine Learning, IMCL 25, 2008.

[153] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, "Algorithm 778: L-BFGS-B:

Fortran subroutines for large-scale bound-constrained optimization," ACM

Transactions on Mathematical Software, vol. 23, no. 4, pp. 550-560, Dec. 1997.

[154] P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints,"

Journal of Machine Learning Research, vol. 5, pp. 1457-1469, Aug. 2004.

[155] J. Chorowski and J. Zurada, "Obtaining full regularization paths for robust
sparse coding with applications to face recognition." in Accepted to

International Conference on Machine Learing and Applications - ICMLA,

2012.

[156] R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of

the Royal Statistical Society. Series B, vol. 58, no. 1, pp. 267-288, 1996.

148

[157] M. R. Osborne, B. Presnell, and B. A. Thrlach, "On the lasso and its dual,"
Journal of Computational and Graphical Statistics, vol. 9, no. 2, pp. 319-337,
2000.

[158] B. Efron, T. Hastie, 1. Johnstone, and R. Tibshirani, "Least angle regression,"
The Annals of statistics, vol. 32, no. 2, pp. 407-499, 2004.

[159] S. Rosset and J. Zhu, "Piecewise linear regularized solution paths," The
Annals of Statistics, vol. 35, no. 3, pp. 1012-1030, Jul. 2007.

[160] M. Park and T. Hastie, "Llregularization path algorithm for generalized linear
models," Journal of the Royal Statistical Society:, vol. 69, no. 4, pp. 659-677,
2007.

[161] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, "Robust face
recognition via sparse representation." Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 31, no. 2, pp. 210-227, 2009.

[162] L. Qiao, S. Chen, and X. Tan, "Sparsity preserving projections with
applications to face recognition," Pattern Recognition, vol. 43, no. 1, pp.
331-341, Jan. 2010.

[163] J. Gui, Z. Sun, W. Jia, R. Hu, Y. Lei, and S . .Ii, "Discriminant sparse
neighborhood preserving embedding for face recognition," Pattern Recognition,
vol. 45, no. 8, pp. 2884-2893, 2012.

[164] J. Zhu, S. Rosset, and T. Hastie, "I-norm support vector machines," in
Advances in Neural Information Processing Systems, 2004, pp. 49-56.

[165] Y. Nesterov, Introductory Lectures On Convex Optimization: A Basic Course.
Kluwer Academic Publishers, 2004.

[166] S. Boyd, "EE3642: Lecture Slides and Notes," 2011. [Online]. Available:
http://www.stanford.edu/class/ee364b/lectures.html

[167] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.

[168] K.-C. Lee, J. Ho, and D. J. Kriegman, "Acquiring linear subspaces for face
recognition under variable lighting." Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 27, no. 5, pp. 684-98, May 2005.

149

NAME:

ADDRESS:

EDUCATION
& TRAINING:

TEACHING:

AWARDS:

PROFESSIONAL
SOCIETIES:

CURRICULUM VITAE

Jan Chorowski

316 W. Lee St., Apt. 3
Louisville, KY 40208

M.Eng., Microsystem Electronics and Photonics
Wroclaw University of Technology
2004 - 2009

Mathematics and Computer Science
University of Wroclaw
2005 - 2009

Ph.D., Electrical and Computer Engineering
University of Louisville
2009 - 2012

Microsoft Research Summer Internship
Microsoft Research Redmond
2011 (12 weeks)

Electronics I Lab- GTA
Communication Systems Lab - GTA
Control Systems Principles Lab - GTA

Electrical Engineering Outstanding Graduate Student
Award, University of Louisville, 2011

Best Graduate Student Award
Wroclaw University of Technology, 2009

Institute of Electrical and Electronic Engineers

150

PUBLICATIONS

REFEREED JOURNALS

J. Chorowski and J. M. Zurada, "Improving the accuracy of understandable
classifiers through additional sample generation," In Preparation for Knowledge and
Data Engineering, IEEE Transactions on.

J. Chorowski and J. M. Zurada, "Learning understandable neural networks with
non-negative weight constraints," Submitted to Neural Networks and Learning
Systems, IEEE Transactions on, 2012.

J. Wang, J. Chorowski, and J. M. Zurada, "Review and performance comparison of
svm- and elm- based classifiers," submitted to Neurocomputing, 2012.

J. Chorowski and J. M. Zurada, "Extracting Rules from Neural Networks as Decision
Diagrams," Neural Networks, IEEE Transactions on, vol. 22, no. 12, pp. 2435-46,
Dec. 2011.

CONFERENCES

J. Chorowski and J. Zurada, "Obtaining full regularization paths for robust sparse
coding with applications to face recognition." Accepted to International Conference
on Machine Learing and Applications - ICMLA 2012.

T. Ensari, J. Chorowski, J.M. Zurada, "Occluded Face Recognition Using
Correntropy-based Nonnegative Matrix Factorization", Accepted to International
Conference on Machine Learning and Applications - ICMLA 2012.

J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, "Robust 3D Action Recognition
with Random Occupancy Patterns," in Computer Vision - ECCV 2012, pp. 872-885.

T. Ensari, J. Chorowski, J.M. Zurada, "Correntropy-based Document Clustering via
Nonnegative Matrix Factorization", in Lecture Notes in Computer Science, Proc. of
the 22nd International Conference on Artificial Neural Networks - ICANN 2012, vol.
7553, pp. 347-354.

J. Chorowski and J. Zurada, "Top-down induction of reduced ordered decision
diagrams from neural networks," Lecture Notes in Computer Science, Artificial
Neural Networks and Machine Learning - ICANN 2011, vol. 6729, pp. 309-316, 2011.

J. Chorowski, T. Wisniowski, M. Czok, D. Jurk6w, K. Malecha,
K. Chmiel-Kurowska, L. Golonka, "LTCC module for the investigation of thermal
properties of nanofluids" , in Proc. of the XXXIII International Conference of IMAPS
- CPMT IEEE Poland, Pszczyna, September 21-24th 2009, pp. 31.

151

	Learning understandable classifier models.
	Recommended Citation

	tmp.1423685735.pdf.lNMa7

