
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2013

MARIT : the design, implementation and trajectory generation with MARIT : the design, implementation and trajectory generation with

NTG for small UAVs. NTG for small UAVs.

Yinan Cui
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Cui, Yinan, "MARIT : the design, implementation and trajectory generation with NTG for small UAVs."
(2013). Electronic Theses and Dissertations. Paper 296.
https://doi.org/10.18297/etd/296

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/296
mailto:thinkir@louisville.edu

MARIT: THE DESIGN, IMPLEMENTATION AND TRAJECTORY GENERATION
WITH NTG FOR SMALL UAVS

By

Yinan Cui
B.S., Zhejiang University, Hangzhou, China, 2005, EE

M.S., Royal Institute of Technology (KTH), Stockholm, Sweden, 2007, EMIS

A Dissertation
Submitted to the Faculty of the

J.B. Speed School of Engineering of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

May 2013

MARIT: THE DESIGN, IMPLEMENTATION AND TRAJECTORY GENERATION
WITH NTG FOR SMALL UAVS

Submitted by

Yinan Cui

A Dissertation Approved on

18 April 2013

by the Following Reading and Examination Committee:

Tamer Inanc, Ph.D., Thesis Director

Jacek Zurada, Ph.D.

Cindy Harnett, Ph.D.

Ibrahim Imam, Ph.D.

Robert Powers, Ph.D.

ii

ABSTRACT

MARIT: THE DESIGN, IMPLEMENTATION AND TRAJECTORY GENERATION

WITH NTG FOR SMALL UAVS

Yinan Cui

2013-04-18

This dissertation is about building a Multiple Air RoboticsIndoor Testbed (MARIT)

for the purpose of developing and validating new methodologies for collaboration and

cooperation between heterogeneous Unmanned Air Vehicles (UAVs) as well as expand-

able to air-and-ground vehicle teams. It introduces a mathematical model for simulation

and control of quadrotor Small UAVs (SUAVs). The model is subsequently applied to

design an autonomous quadrotor control and tracking system.

The dynamics model of quadrotor SUAV is used in several control designs. Each

control design is simulated and compared. Based on the comparison, the superior con-

trol design is use for experimental flights. Two methods are used to evaluate the control

and collect real-time data.

The Nonlinear Trajectory Generation (NTG) software package is used to provide

optimal trajectories for the SUAVs in MARIT. The dynamics model of the quadrotor is

programmed in NTG and various obstacle avoidance scenariosare modeled to establish

a platform for optimal trajectory generation for SUAVs. To challenge the capability of

NTG for real-time trajectory generation, random obstaclesand disturbances are simu-

lated. Various flight simulations validate this trajectorytracking approach.

Key words: UAV, Testbed, Quadrotor, Dynamic Modeling, Optimal Control,

iii

Trajectory Generation, Trajectory Tracking.

iv

ACKNOWLEDGMENTS

I would like to thank a number of individuals for their invaluable support in com-

pleting this dissertation. My advisor, Dr. Tamer Inanc, wasvery helpful in providing

guidance and encouragement during this process. I am grateful to his insightful advice

throughout these years. I also want to thank Dr. Jacek M. Zurada for his helpful instruc-

tions. I have enjoyed and learned a lot from the joint seminars that he and Dr. Inanc

organized. In addition I would like to thank Dr. Ibrahim Imam, Dr. Cindy Harnett,

and Dr. Robert Powers for serving in my dissertation committee. Dr. Imam’s valuable

advices during my proposal defense were really helpful. Dr.Harnett is always nice and

a pleasure to talk to. When I was taking the geometry course, Dr. Powers was always

ready to help and give excellent suggestions. My gratitude also goes to Ms. Lisa Bell

from the ECE department who has been really patient and helpful over these years.

I thank my parents for always believing in me, and for the hardwork and sacri-

fices they have selflessly made to give me support. I must thankmy dear wife Yan for

her support and encouragement, and I am sorry for letting herwait for so long.

Finally I give my thanks to my friends and colleagues. Dr. Dongqing chen, Dr.

Weizhong Zhang, Dr. Sara Shafaei, Elom Akabua, Dr. Yushen Han, Dr. Jian Zhao, Dr.

Yongchang Wang, Dr. Lijun Zhang, Dr. Gang Zhao, Dr. Hui Wang,Shengpeng Jin,

Qinwei Fan, Guanying Ru, Bin Li, Xiaohui Zhang, Ryan Fraizerand many more made

my life here richer. I am grateful to all of them and cherish our friendship.

v

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION . 1

1.1 UAV: A Brief History . 3

1.2 Previous and Parallel Work . 9

1.3 Overview and Statement of Contributions 11

2. SYSTEM DESIGN . 13

2.1 System Modeling . 13

2.1.1 Quadrotor Dynamics . 13

2.2 Controller Design . 17

2.3 Testbed Structure . 22

2.3.1 Hardware Components 22

2.3.2 Software System Structure 28

3. SYSTEM CONTROL . 34

3.1 Control using Lyapunov Theory 37

3.1.1 Design . 37

3.1.2 Simulation . 38

3.2 Control using LQR Controllers . 40

3.2.1 Design . 41

3.2.2 Simulation . 43

3.3 Control using PID Technique . 45

3.3.1 Design . 46

vi

3.3.2 Simulation . 46

3.4 Comparison of Different Controllers 49

3.5 Experiment with PID Design . 51

3.6 Conclusion . 59

4. TRAJECTORY GENERATION . 60

4.1 Nonlinear Trajectory Generation61

4.2 Trajectory Generation in MARIT 65

4.2.1 Paring NTG with MARIT 67

4.2.2 Trajectory Generation 69

4.2.3 Trajectory Tracking . 87

4.3 Disturbance Rejection . 95

4.4 Summary . 98

5. Future Work . 100

REFERENCES . 102

CURRICULUM VITAE . 105

vii

LIST OF FIGURES

FIGURE 1.1. Examples of Micro UAVs (MAVs). 2

FIGURE 1.2. An overview of the structure of MARIT. A closed-loop UAV con-

trol system is build with Vicon Motion Capture systems [18],Dra-

ganflyer quadrotors [20], controller and trajectory generating units,

and the data hosting server. 3

FIGURE 1.3. Bombing by Balloon, 1848. An creative weapon theAustrians

used against the Italian city of Venice. Unmanned balloons carry-

ing explosives caused backfires due to undesirable winds. 4

FIGURE 1.4. Larynx unmanned aircraft, the prototype of the Standard E-1 drone,

was used as a guided anti-ship weapon. 5

FIGURE 1.5. N2C-2, first US remotely piloted aircraft (1936), Delmer Fahrney

Collection . 6

FIGURE 1.6. McDonnell ADM-20C-40-MC ”Quail” could be carried by Boe-

ing B-52 bombers and used as decoys. 7

FIGURE 1.7. The Predator RQ-1L UAV (General Atomics) is capable of staying

for as much as 40 hours in the air. 8

FIGURE 1.8. Several modern MAVs. .9

viii

FIGURE 2.1. Body frame and earth frame of a quadrotor. The four plates in-

stalled on each corner are the rotors. The opposite pair of blades

rotate in the same direction, and the neighboring pair rotate in op-

posite direction. The small dots on the body frame are markers

installed for orientation. 14

FIGURE 2.2. MARIT control loop. This closed-loop control system consists of

high speed cameras, a hosting server, a local network, control units

and the quadrotors. 17

FIGURE 2.3. The RC transmitter channels. Channels 1 to 4 are roll, pitch,

height, and yaw controls respectively. The fact that there are only

four inputs to control a 6DOF vehicle makes the system under-

actuated. Fortunately due to the symmetry of the quadrotor,the

controls could be decoupled. 18

FIGURE 2.4. General system controller diagram. Altitude/Height and yaw con-

trol are decoupled from the rest. Longitude and latitude (XY) are

controlled in a nested structure. 21

FIGURE 2.5. A Vicon M2 Camera with a maximum frame rate of 120 fps. The

camera emits infrared to the field and receives reflections tolocate

and capture the objects. 23

FIGURE 2.6. The Vicon V8 Datastation is the Frame Data Collection Unit . . . 24

FIGURE 2.7. The Workstation Server PC (with yellow tag) and two controller PCs 25

FIGURE 2.8. Live View Window of Vicon iQ. 6 cameras are used todetect the

motions of quadrotors. The two square boxes are the quadrotor

models built in Vicon iQ. The live view is reconstructed by Vicon

iQ automatically. 26

FIGURE 2.9. SC-8000SP (front) Connects RC Transmitter (back) to Controller

Client PC . 27

ix

FIGURE 2.10.Draganflyer V Ti PRO Quadrotors 28

FIGURE 2.11.Vicon iQ and RTE Running on Workstation/server. 30

FIGURE 2.12.A Local Network is Established to Connect Server to Clients . . . 31

FIGURE 2.13.The Prototype Design of Control Client GUI 32

FIGURE 2.14.A 3D reconstruction of the Draganflyer in the client GUI 33

FIGURE 3.1. Lyapunov attitude controller simulator. The inner loop uses con-

trollers based on Lyapunov stability theory to maintain attitude an-

gles. The outer loop uses PID controllers. 39

FIGURE 3.2. Quadrotor trajectory tracking using Lyapunov attitude controller . 40

FIGURE 3.3. LQR controller block diagram. This general formfollows the state

space model given in (3.13). The LQR design feeds the states back

and apply a parameter matrixK to generate the control law. 42

FIGURE 3.4. LQR attitude controller simulator. The inner loop that controls

the attitude angles adopts LQR technique. The yaw angle is also

included in the inner loop because of the convenience in design,

although it is decoupled from the other variables. 44

FIGURE 3.5. Quadrotor trajectory tracking using LQR attitude controller 45

FIGURE 3.6. PID attitude controller simulator 48

FIGURE 3.7. Quadrotor trajectory tracking using PID attitude controller 49

FIGURE 3.8. The controller used for each variable in different designs. The

inner loop controllers differ from each design, most of the others

adopt PID controller. 50

FIGURE 3.9. Step responses of the controllers. 51

FIGURE 3.10.Early stage experiment diagram. The dotted frame represents the

work station PC (server). In this method, both the server program

(Vicon iQ) and the controllers are installed on the same machine

to provided fast debugging and testing. 52

x

FIGURE 3.11.Server-client mode experiment diagram. 53

FIGURE 3.12.PID attitude controllers trying to maintain the rotation angles at 0,

controlled from the server (method 1). Control loop runs at 12.8Hz. 55

FIGURE 3.13.The X, Y positions maintained by nested PID controllers atx =

0, y = 0, controlled from the server (method 1). Control loop runs

at 12.8Hz. 56

FIGURE 3.14.The rotation angles when nested PID controlleris doing position

control, controlled from the server(method 1). Control loop runs

at 12.8Hz. 57

FIGURE 3.15.The rotation angles maintained by PID attitudecontrollers, con-

trolled from the client through local network (method 2). Control

loop runs at 30Hz. 58

FIGURE 3.16.The X, Y positions maintained by nested PID controllers atx =

0, y = 0, controlled from the client through local network (method

2). Control loop runs at 30Hz.. 59

FIGURE 4.1. Two degree of freedom controller structure. Thetrajectory gener-

ator providesUd, the feedforward nominal input for tracking, and

Xd, the reference trajectory. The controller computes the error

from Xd and the system feedbackX and generates control com-

mandUc. The actual inputU is generated by combiningUd and

Uc. 61

FIGURE 4.2. In this hypothetical problem, the B-spline curve has six intervals (l

= 6), fourth order (k = 4), and isC3 at the breakpoints (or smooth-

nesss = 3). The constraint on the B-spline curve (to be larger than

the constraint in this example) will be enforced at the 21 collo-

cation points. The nine control points are the decision variables

[41]. 64

xi

FIGURE 4.3. One degree of freedom design for MARIT.Xr is the provided ref-

erence,X is the real-time states feedback,e is the error, andU is

the input generated from the controller. The system is linearized

as is shown in (2.14). 66

FIGURE 4.4. Two degree of freedom design for MARIT. The trajectory gener-

ator calculates and provides the feasible trajectoryXd, including

the desired 3D trajectory and yaw angle, and the nominal inputUD,

which is a feedforward term. The controller takes the errore calcu-

lated by subtracting real-time feedbackX fromXd and generates

inputUc. The final input to the system is generated by adding up

Ud andUc. 67

FIGURE 4.5. Incorporating NTG in MARIT control design. 69

FIGURE 4.6. Objective of obstacle avoidance in MARIT. The UAV is supposed

to fly from the initial location to the destination in a 3D space.

During the flight, two waypoints are set to be visited. In thisillus-

tration, four obstacles depicted as spheres are to be avoided. 71

FIGURE 4.7. NTG starts by defining the constants and outputs needed by ev-

ery loop. In entering the main loop, the obstacles locationsand

dimensions are updated, and corresponding constraints areset and

updated. The trajectory is generated according to the constraints

and data is saved for each loop before going into the next loop.

Looping time T is fixed and can be set by the operator. 78

FIGURE 4.8. Mode 1 scenario, no obstacle lies on the path. Thegenerated tra-

jectory minimizes displacement during the flight. Since no obsta-

cle avoidance is performed, the trajectory between each waypoints

is close to a straight line. 79

xii

FIGURE 4.9. Mode 2 scenario, one obstacle (the blue sphere) has moved to

block the path, locating close to the initial location. NTG detected

the existence of the obstacle and generates trajectories that avoid

the obstacle. Cost function is to minimize the displacementduring

the flight. After avoiding the blue sphere, the rest of the trajectories

are close to straight lines. 80

FIGURE 4.10.Mode 3 scenario has two obstacles blocking the path. NTG is able

to avoid both obstacles and reach the first waypoint even though

it is located on the surface of the second obstacle. After avoiding

the yellow sphere, the trajectory continues and passes through the

second waypoint and finally arrives at the destination. 81

FIGURE 4.11.Mode 4 scenario features three obstacles, in addition to the two

appeared in Mode 3, a third obstacle (the red sphere) is movedto

between waypoint 1 and waypoint 2. NTG reacts to the existence

of the red sphere and makes adjustments in planning the trajectory

by flying the UAV under the red sphere. 82

FIGURE 4.12.Mode 5 adds one more obstacle between the secondwaypoint and

the final location. NTG reacts to the fourth obstacle by dodging to

the right side of the obstacle. Cost function is still minimizing the

displacement during the flight. 83

FIGURE 4.13.Real-time obstacle avoidance trajectories. Trajectory 1 does not

avoid any obstacle, simply pass through the waypoints and arrives

at the destination. Trajectory 2 avoids the first obstacle (the gray

sphere) and ignores the other two obstacles. Trajectory 3 avoids

both the first and second obstacle (gray and the blue sphere) but

ignores the third obstacle. Trajectory 4 avoids all 3 obstacles in-

cluding the red sphere. 84

xiii

FIGURE 4.14.Another presentation of NTG generating real-time trajectories. . . 85

FIGURE 4.15.A different perspective of NTG generating real-time trajectories. . 85

FIGURE 4.16.New work flow to ensure avoidance of obstacles inreal-time. . . . 86

FIGURE 4.17.The program detects and avoid obstacles in real-time. Scanning

for obstacles at the end of each control loop, the UAV is set to

hovering if new obstacle is found and wait for NTG to re-generate

new trajectories. The default reference is red and new trajectory is

blue. 87

FIGURE 4.18.The controllers load the reference trajectories and nominal inputs

from NTG and tracks the trajectories. Each “loading” contains

reference data for time duration “T”. 88

FIGURE 4.19.The reference contains the outputz and its derivatives, the nominal

input contains theu terms. 89

FIGURE 4.20.Tracking trajectories generated by NTG. 90

FIGURE 4.21.Trajectory tracking as seen from another perspective. 91

FIGURE 4.22.Trajectory tracking as seen from the top. 92

FIGURE 4.23.Close-up at the first waypoint. 93

FIGURE 4.24.The reference and tracking trajectories. The tracking time is 8.4

seconds.xr, yr andzr are the reference trajectories, andx, y andz

are the tracking trajectories. 94

FIGURE 4.25.The errors ofrx, ry andrz from their respective references. 95

FIGURE 4.26.The original tracking without any disturbance. 96

FIGURE 4.27.Small disturbance occurs at1.3 < rx < 1.6. A wind blows from

ry to −ry, exerting a force of 1 Newton on the mass center of the

quadrotor. The controller is able to track the trajectory and arrive

at waypoint 2 as planned. 97

xiv

FIGURE 4.28.Large disturbance occurs at1.3 < rx < 1.6. A wind blows from

ry to −ry, exerting a force of 3 Newton on the mass center of the

quadrotor. The tracking is seen to drift more to the−ry direction

and away from the second waypoint, but the general shape of the

tracking still follows the reference. 98

xv

CHAPTER 1

INTRODUCTION

Unmanned aerial vehicles (UAVs), also known as drones, or remotely piloted ve-

hicles (RPVs) have become one of the fastest growing sectorsin aero-space industry. A

UAV is capable of completing controlled, sustained level flight, while reducing the risk

of human life and lowering operational costs. According to the estimation of a recent

report [7], the UAVs market will double in the next 10 years from current worldwide

UAV R&D and procurement expenditures of $5.9 billion to $15.1 billion. The dynamic

growth results from the great potential of UAVs in vast areas. In this section, a general

background of UAVs, including a brief history of UAVs and some of their successful

applications in various industries will be presented. A Micro UAV (MAV) is a special

type of UAV with small size and light weight. The research in MAVs makes another

growing field in the UAV industry. The MAVs can be carried by humans or any vehicle

and operate in various situations. Figure 1.1 shows severalMAV products.

1

FIGURE 1.1: Examples of Micro UAVs (MAVs).

Controlling Micro-unmanned Air Vehicles (MAVs) in a confined environment

provides a convenient platform for the study of developing and validating new technolo-

gies for collaboration and cooperation between heterogeneous Unmanned Air Vehicles

(UAVs). Because of its low cost, simple components and indoor capability, the MAVs

have become the research subjects of more and more institutions. While MAVs usually

come with simpler sub-systems and components, controllingone is not a trivial task.

Even flying a hobby RC plane requires training and practice. It is desired to have a plat-

form in which multiple MAVs can be controlled easily with minimum risk of damage.

This research is devoted to constructing a Multiple Air Robotics Indoor Testbed

(MARIT) and the development of control algorithms and trajectory generation for MAVs.

An indoor testbed was chosen as opposed to an outdoor one because the latter is subject

to change due to weather, temperature and many other factors. On the other hand, an

indoor testbed, once established, is always available to use. Moreover, flying vehicles

outdoors brings dangers to both human operators and the vehicles themselves; an indoor

2

testbed makes it easier to build protection mechanisms so damage could be reduced.

With the testbed constructed, multiple MAVs will be controlled automatically to

fly within an enclosed area. The control signals are sent fromRC controllers that are

connected to PCs where the control commands are generated. The testbed is equipped

with overhead high speed Cameras so that the fast movements of the MAVs can be

captured. Captured data is sent to the controller units to form a closed-loop system, so

the MAVs can be controlled automatically. Users of the testbed can develop their own

controller programs and evaluate the performance. The six degrees of freedom (DOF) of

a MAV provides the experiments with various features including sharp turns, high speed

obstacle avoidance and optimal trajectory tracking. Figure 1.2 illustrates the feedback

mechanism of the testbed.

FIGURE 1.2: An overview of the structure of MARIT. A closed-loop UAV control

system is build with Vicon Motion Capture systems [18], Draganflyer quadrotors [20],

controller and trajectory generating units, and the data hosting server.

1.1 UAV: A Brief History

MAVs originate from the UAV family. The research and development of UAVs

3

can find its way back to as early as 1848. The Austrians used unmanned battle balloons

to attack the Italian city of Venice [1]. A large group of pilot-less Austrian balloons

loaded with explosives were launched towards Venice, see Figure 1.3.

FIGURE 1.3: Bombing by Balloon, 1848. An creative weapon theAustrians used

against the Italian city of Venice. Unmanned balloons carrying explosives caused back-

fires due to undesirable winds.

With the help of favorable winds and timed explosive fuses, some of the bombs

exploded as planned. This action, though these balloons do not qualify as modern UAVs,

might be the first instance of its type. Similar ideas were tested in many other occasions.

4

For example in the American Civil War, the North and South launched balloons carrying

explosives that would drop into the other side’s ammunitiondepot and make damage.

These early examples took the advantage of favorable high altitude winds, which is

a highly uncertain factor. While these ideas proved to be noteffective and causing

backfires, the exploration in the UAV area never stopped.

The development in radio control (RC) in the early 20th century made remote

control of a UAV possible. Several traditional aircrafts were modified and converted

into RC UAVs. Examples are Standard E-1 drone, a modificationto an early American

Army fighter aircraft [8], the Larynx (Figure 1.4), a Britishunmanned aircraft used as

a guided anti-ship weapon, and the Fairey Queen RC target aircraft, a model based on

the British reconnaissance biplane model Fairey III. Theseearly experiments generated

promising results, which brought the development of UAVs into a new era.

FIGURE 1.4: Larynx unmanned aircraft, the prototype of the Standard E-1 drone, was

used as a guided anti-ship weapon.

In the 1930s, the US Navy developed an RC aircraft that could be remotely con-

trolled from another aircraft, and named it “N2C-2” (Figure1.5). Soon after the inven-

tion of N2C-2, the U.S. Army Air Force (USAAF) adopted the concept and performed

many successful experiments, including delivering torpedo attack remotely, and crash-

5

ing into moving objects. In World War II the US utilized RC aircrafts in the combat

against Japan in the Russel Islands and Solomon Islands to attack Japanese merchant

ships, and most were effective [9].

FIGURE 1.5: N2C-2, first US remotely piloted aircraft (1936), Delmer Fahrney Collec-

tion

The research in UAVs continued after World War II. More manufacturers pro-

duced UAVs in their own areas. The “OQ-2” UAV drone by Radioplane were modified

and used as basic training target. The “ADM-20 Quail” by McDonnell Douglas, shown

in Figure 1.6, could be carried by Boeing B-52 Stratofortress bombers and used as de-

coys. Several UAVs even contributed to nuclear tests. The B-17 Flying Fortress by Boe-

ing and Grumman F6F Hellcat were both sent to fly over nuclear clouds directly above

the explosion to collect data. Reconnaissance is also an area that UAVs are widely used,

examples are the Boeing “Compass Copes” and the Lockheed “D-21”. The US used

thousands of Ryan reconnaissance drones in the Vietnam War [10].

6

FIGURE 1.6: McDonnell ADM-20C-40-MC ”Quail” could be carried by Boeing B-52

bombers and used as decoys.

In the modern era, more and more UAVs equipped with advanced technology

are being applied in vast fields. As a modern battlefield UAV, the “Predator”, shown in

Figure 1.7, by General Atomics, which is able to stay in the air for 40 hours, was the first

deployed UAV to the Balkans in 1995, and to Iraq in 1996. Modern UAVs are not lim-

ited to military uses. Many UAVs have already been successfully applied in agricultural

industry, weather research, mineral exploration, cost watch, as well as robotics explo-

ration of remote planets and moons by next generation air robotics (aerobots) rovers

[3].

7

FIGURE 1.7: The Predator RQ-1L UAV (General Atomics) is capable of staying for as

much as 40 hours in the air.

The advanced technologies nowadays makes the production ofsmall sized UAVs

(SUAVs) possible. MAVs are those SUAVs that can be carried byhumans because of

their small size and light weight. In 1997, the Defense Advanced Research Projects

Agency (DARPA) began a multi-year development program to develop MAVs. The

goal was to develop very small UAVs that would perform tasks such as carrying night

imager with high endurance. Figure 1.8 displays several modern MAVs being produced

today. Most of them have vertical take-off and landing (VTOL) design. The MAV being

controlled in this research is a similar model called Draganflyer quadrotor [20], which

will be described in Chapter 2.

8

FIGURE 1.8: Several modern MAVs.

1.2 Previous and Parallel Work

In recent years, a lot of work has been done in MAV research. The General

Robotics, Automation, Sensing and Perception (GRASP) Laboratory at University of

Pennsylvania has been doing research in quadrotor control for more than ten years

9

[4, 5]. In 2002, E. Altug et al. from GRASP lab used a ground camera to estimate

the 6 DOF pose (position and orientation) of a quadrotor, andtested controllers such

as backstepping-like control law with simulations. The same group later improved the

pose estimation by using dual camera visual feedback, in which an onboard camera was

added to the quadrotor. With this improvement, the group were able to apply their pro-

posed pose estimation algorithm and nonlinear control techniques to a tethered quadro-

tor. During recent years, the GRASP lab upgraded their visual feedback sensors and

developed high accuracy control algorithms. Vicon Motion Capture system with high

frame rate cameras were introduced to capture the 6 DOF data of Hummingbird quadro-

tors [11]. The new quadrotors are equipped with onboard micro chip which can im-

plement fast looping attitude control. With these improvement, the GRASP lab is able

to display complicated maneuvers of autonomous flights withmultiple quadrotors. The

Hummingbird quadrotors were able to carry out tasks such as building simple structures

with light weight blocks, doing 720 degree somersault whileavoiding crashing.

The RAVEN (Real-time indoor Autonomous Vehicle test ENvironment) project

in Aerospace Controls Laboratory at Massachusetts Institute of Technology uses a multi-

vehicle platform to provide a facility for testing low-level control algorithms [12, 13].

Raven also used Vicon system to capture movements with high frame rate, but intro-

duced a different type of quadrotor called “Draganflyer” [20]. Since January 2006,

more than 2500 vehicle experiments have been performed in RAVEN, including approx-

imately 60 flight demonstrations during a 16-h period at the Boeing Technology Exposi-

tion at Hanscom Air Force Base near Lexington, Massachusetts [13]. The RAVEN team

also solved the battery duration problem of the quadrotor byincluding charging stations

to the arena. After each task was completed, the quadrotors would autonomously fly

back and dock onto the charging stations.

The Flying Machine Arena at ETH Zurich features a large-sizeindoor workspace

to enable impressive aerobatics research [14]. The research team performed some inter-

10

esting tasks with quadrotors such as playing piano with a stick, dancing to the rhythms

of music, and controlling the quadrotors with human hand gestures [15].

The Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STAR-

MAC) project uses an outdoor platform to investigate multi-agent control of quadrotors

in real-world scenarios [16]. The Vanderbilt Embedded Computing Platform for Au-

tonomous Vehicle (VECPAV) project at Vanderbilt University built an autonomous in-

telligent control system that replaces human operators [17].

1.3 Overview and Statement of Contributions

A brief summary and thesis contributions by chapter:

• Chapter 2: The designing process is presented in this chapter. The mathematical

model of the control subject is built, a simulator of the dynamics model is devel-

oped to evaluate the responses to inputs. The general designof controllers based

on the model is described, and finally the components of the testbed are explained

in details.

• Chapter 3: This chapter focuses on the development of controllers of the MARIT

quadrotors. Several controllers are designed base on the mathematical model built

in Chapter 2, and for each of the controllers, a simulator is developed to evaluate

the controller’s performance. Moreover, a comparison is performed to discuss the

different controllers. Finally, based on the comparison and experiments performed

on the actual testbed, the proposed controller is introduced.

• Chapter 4: In this chapter, the Nonlinear Trajectory Generation software package

(NTG) by Milam et al. [34] is incorporated into MARIT for optimal trajectory

generation. The mathematical background of NTG is presented, and MARIT is

modeled and programmed in NTG. Various simulations are executed to evaluate

11

the co-operation of NTG and the system model. Finally, the controller developed

in Chapter 3 are used for trajectory tracking.

12

CHAPTER 2

SYSTEM DESIGN

2.1 System Modeling

Controlling highly compact electronic devices has potential dangers. This is

especially true when working with delicate devices like theDraganflyers. An important

approach to lower the possibility of damage is acquiring an adequate dynamic model.

This section describes the modeling of the dynamics of the quadrotor and the design of

controllers and experiments.

2.1.1 Quadrotor Dynamics

A quadrotor has a square body frame and a rotor blade installed on each corner.

The opposite pair of blades rotate in the same direction, while the neighboring pair ro-

tate in opposite directions. This configuration removes theneed of a tail rotor, which

makes the quadrotor different from a typical helicopter. For most quadrotors, all blades

are fixed-pitched and parallel, with their air-flow pointingdown to get the lift force

pointing up. The quadrotor has 6 DOF, namely (defined in earthframe) moving for-

ward/backward, left/right, up/down, and (defined in body frame) rotating around three

perpendicular axes (roll, pitch and yaw). As the coordinatesystems shown in Figure 2.1,

the earth frame is denoted byE and the body frame byB.

13

FIGURE 2.1: Body frame and earth frame of a quadrotor. The four plates installed on

each corner are the rotors. The opposite pair of blades rotate in the same direction, and

the neighboring pair rotate in opposite direction. The small dots on the body frame are

markers installed for orientation.

Since the actuators (blade propellers) operate in theB-frame, it is necessary to

establish a mapping from theB-frame toE-frame. Following theZ−Y −X convention,

to go fromE to B, one needs to first rotate aroundZE by angleψ (yaw), then rotate

aroundYE by angleθ (pitch), and at last rotate aroundXE by angleφ (roll). The

Z−Y −X rotation matrix that maps fromB back toE is given byR ∈ SO3, as shown

in equation (2.1), in whichs denotessin() andc denotescos().

R =













cψcθ cψsθsφ− sψcφ sψsφ+ cψsθcφ

sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ

−sθ cθsφ cθcφ













(2.1)

14

TABLE 2.1

m mass of quadrotor

Fi force on blade propeller

Ωi rotor speed

b thrust factor

d drag factor

l lever length

g gravitational acceleration

τ torque on frame body

ω body angular speed

L diagonal length of the quadrotor

I body inertia

Ixx,yy,zz I around x, y, and z axis

φ, θ, ψ roll, pitch, yaw angles

p, q, r angular velocity inB-frame

The symbols that will be used in the modeling are listed in Table 2.1. The New-

ton equations in theE-frame are obtained from theR matrix as:

m













ẍE

ÿE

z̈E













=













0

0

−mg













+R













0

0

∑

FiB













(2.2)

where

∑

FiB = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

15

Expanding (2.2) yields the motion equations in theE-frame as:

ẍE = (sψsφ+ cψsθcφ)
(Ω2

1
+Ω2

2
+Ω2

3
+Ω2

4
)b

m

ÿE = (sψsθcφ− cψsφ)
(Ω2

1
+Ω2

2
+Ω2

3
+Ω2

4
)b

m

z̈E = cθcφ
(Ω2

1
+Ω2

2
+Ω2

3
+Ω2

4
)b

m
− g

(2.3)

Due to the symmetry of the quadrotor’s frame body, the body inertia of the

quadrotor could be expressed as:

I =













Ixx 0 0

0 Iyy 0

0 0 Izz













(2.4)

The Euler equations inB-frame is given by

Iω̇ + ω × (Iω) = τ

insertingB-frame angular variables, one obtains

I













ṗ

q̇

ṙ













+













p

q

r













× I













p

q

r













=













bl(Ω2
4 − Ω2

2)

bl(Ω2
3 − Ω2

1)

M













(2.5)

whereM = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4). From equation (2.4) and (2.5), The quadrotor

equations of motion inB-frame is given by :

ṗ = Iyy−Izz

Ixx
qr +

bl(Ω2

4
−Ω2

2
)

Ixx

q̇ = Izz−Ixx

Iyy
pr +

bl(Ω2

3
−Ω2

1
)

Iyy

ṙ = Ixx−Iyy

Izz
pq +

d(−Ω2

1
+Ω2

2
−Ω2

3
+Ω2

4
)

Izz

(2.6)

16

2.2 Controller Design

To construct a closed-loop system, MARIT uses Vicon Motion Capture System

[18] with 6 high frequency overhead cameras to capture the 6 DOF data of the quadro-

tors. A server hosts the frames of all the vehicles and distributes the data to each quadro-

tor’s controller PC through a local network. The controllercommands are generated on

the controller PCs in real-time and sent to the Optic 6 transmitters by Hitec RC trans-

mitter [21]. The RC transmitter operates on 72.79 Hz. Controller commands are sent

through the transmitter’s four channels to control the quadrotors. Figure 2.2 illustrates

the structure of MARIT.

FIGURE 2.2: MARIT control loop. This closed-loop control system consists of high

speed cameras, a hosting server, a local network, control units and the quadrotors.

The inputs to the system are the 4 RC channels on each transmitter. Figure 2.3

illustrates the layout of these channels. The four inputs are denoted asu1, u2, u3, andu4

respectively as in (2.7).

17

u1 = b(−Ω2
2 + Ω2

4)

u2 = b(Ω2
1 − Ω2

3)

u3 = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

u4 = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(2.7)

FIGURE 2.3: The RC transmitter channels. Channels 1 to 4 are roll, pitch, height,

and yaw controls respectively. The fact that there are only four inputs to control a

6DOF vehicle makes the system under-actuated. Fortunatelydue to the symmetry of the

quadrotor, the controls could be decoupled.

Following the Z-Y-X convention, the body angular speedp, q andr are related

to the derivatives of the angles of rotation, i.e. roll (φ), pitch (θ) and yaw (ψ) as follows:












p

q

r













=













1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ

























φ̇

θ̇

ψ̇













(2.8)

When the quadrotor is in a nominal hovering state,φ andθ are small, the follow-

18

ing can be assumed:

φ ≈ θ ≈ 0, ψ ≈ ψ0 (2.9)

Then the transition matrix in (2.8) approximates a unity matrix. The system is

modeled under this circumstance and the controllers are designed with the following

assumption:

φ̇ ≈ p

θ̇ ≈ q

ψ̇ ≈ r

(2.10)

The objective of the control is to maintain and track the 6 DOFvalues of each

quadrotor as desired. With the system inputsu1 to u4, one can build the state-space

model of the system by choosing:

X = [ẋ ẏ ż x y z φ̇ θ̇ ψ̇ φ θ ψ]⊤ (2.11)

U =

[

u1 u2 u3 u4

]⊤

(2.12)

Y = [x y z φ θ ψ]⊤ (2.13)

X is the states vector,U is the input vector andY is the output vector. When yaw (ψ)

is controlled to maintain a referenceψ0 ≈ 0, with the assumption of (2.10), from (2.3),

19

(2.6) and (2.7) one can linearize the model to the form:

ẋ1 = ẍ = gθ = gx11

ẋ2 = ÿ = −gφ = −gx10

ẋ3 = z̈ =
∑

F/m− g = u3/m− g

ẋ4 = ẋ = x1

ẋ5 = ẏ = x2

ẋ6 = ż = x3

ẋ7 = φ̈ ≈ ṗ ≈ u1L/Ixx

ẋ8 = θ̈ ≈ q̇ ≈ u2L/Iyy

ẋ9 = ψ̈ ≈ ṙ ≈ u4/Izz

˙x10 = φ̇ = x7

˙x11 = θ̇ = x8

˙x12 = ψ̇ = x9

(2.14)

Following the above linear model, the system can be designedto be controlled

by a nested controller. The general form of the control diagram is shown in Figure 2.4.

20

FIGURE 2.4: General system controller diagram. Altitude/Height and yaw control are

decoupled from the rest. Longitude and latitude (XY) are controlled in a nested struc-

ture.

21

Reference values are provided to the controller to generatethe control com-

mands. The reference consists of three components, the height reference (Z), the yaw

reference (ψ), and the XY position reference. The height and yaw controlsuse similar

structure and are separated from the others. The XY positioncontrol is implemented in

a nested structure. From the linear model 2.14 one can achieve the control of X with the

control of pitch (θ), and control Y with the control of roll (φ). The XY position errors

are calculated in real-time and go through an outer controller to generate the desired

pitch/roll angle values. The desired angles are then further used as the reference to the

inner (attitude) controller. The outer controller in the XYcontrol structure is PID all

through this research, but different controllers will be designed for the inner controller.

When the desired angles are reached, according to the systemdynamics from (2.6), the

trajectory is tracked. In the following chapter different close-loop inner controllers will

be designed and simulated.

2.3 Testbed Structure

To implement the above design, the hardware components of MARIT are con-

structed with a series of electronic devices to establish the structure illustrated in Fig-

ure 2.2. The software system of MARIT includes the driver program for each hardware,

the control algorithms, and the data transmission. This section is devoted to describing

the hardware and software system of MARIT.

2.3.1 Hardware Components

The general mechanism of this setup shows that while the MAVsare flying in

the testbed area, their movements are captured and the framedata are sent to a worksta-

tion/server PC where the individual data of each MAV is directed to its own controller

PC. This data feedback pipeline closes the control loop thusthe MAVs are effectively

22

controlled to follow a desired trajectory. The details of each component is covered as

follows:

The Vicon Motion Capture System [18] provides accurate motion capturing

and was successfully applied in several testbeds [11, 13, 14]. MARIT is equipped with

6 Vicon M2 high speed cameras with a superior frame rate of up to 120 fps as shown in

Figure 2.5. The cameras are aligned such that any object thatis attached with reflective

markers can be captured and tracked in real-time. Within theenclosed area, the Vicon

cameras offer robust motion capture.

FIGURE 2.5: A Vicon M2 Camera with a maximum frame rate of 120 fps. The camera

emits infrared to the field and receives reflections to locateand capture the objects.

Once the frame data is captured, it is sent to Vicon V8 data station for further

processing and transferring. The Vicon V8 data station, shown in Figure 2.6, is capable

of collecting data from 24 Vicon cameras simultaneously.

23

FIGURE 2.6: The Vicon V8 Datastation is the Frame Data Collection Unit

The frame data is sent to the workstation PC (Figure 2.7) through an ether-net

connection from the Vicon V8. To retrieve the frame data of any objects in the field,

the users could write their own programs on the server or on the controller PCs using

Vicon RealTime Software Development Kit (SDK). Figure 2.8 shows the motion capture

window of Vicon iQ running on workstation PC (server).

24

FIGURE 2.7: The Workstation Server PC (with yellow tag) and two controller PCs

25

FIGURE 2.8: Live View Window of Vicon iQ. 6 cameras are used todetect the motions

of quadrotors. The two square boxes are the quadrotor modelsbuilt in Vicon iQ. The

live view is reconstructed by Vicon iQ automatically.

A Server-Client Local Network is established to transfer the frame data from

the workstation server to the controller clients. On the hardware level, all the PCs are

connected to a wired network router. On the software level, Vicon RealTime Engine

(RTE) runs on the server and open socket service to the local network. With the help

of the client sample codes Vicon RTE supplies and knowledge of socket programming,

an experienced C/C++ programmer should be able to develop programs that share data

within this framework.

The Controller Client PCs run the controller programs and are connected to

the RC transmitters. Frame data is transfered to the clientsto be used in the control

algorithms. The controller clients generate control commands from the algorithms and

send them to the RC transmitters. All controller clients runon Linux-kerneled operating

systems (currently Fedora 16).

26

The control commands generated by the controller clients are sent to the RC

transmitters througha PC to RC unit. As shown in Figure 2.9, the SC-8000 connec-

tor [19] is used to connect the RC transmitter to the client PC. Once connected, the

connector appears as a serial device in the PC’s hardware list. In order to send desired

commands to the connector (and further to the RC transmitter), the user needs to initial-

ize the device to proper settings and normalize the values tobe sent.1

FIGURE 2.9: SC-8000SP (front) Connects RC Transmitter (back) to Controller Client

PC

For an indoor testbed with constrained space like MARIT (3.6×3.0×2.7 m3),

quadrotors offer advantages over fixed-wing UAVs in that thequadrotors are able to

hover and maintain their positions. While building a quadrotor from scratch costs time

and is out of the scope of this research, we chose to use the Draganflyer V Ti PRO

1With the help from the ACL lab at MIT, the SC-8000 driver programs on Linux was developed.

27

RC Gyro Stabilized Electric Helicopter from Draganfly Innovations Inc., as shown in

Figure 2.10. This quadrotor is 76cm in diameter, weighs 525g, and offers flight time of

12 - 15 minutes [20]. Each Draganflyer comes with an RC transmitter. However, the

original transmitter is not compatible with the SC-8000 connector well, so the Optic 6

transmitters by Hitec [21], seen in Figure 2.9, were purchased and used instead. The

Optic 6 transmitter provides 6 FM radio control channels, but only 4 of them are used in

the research, namely roll, pitch, yaw and throttle control.The transmitters are connected

to the controller PC through SC-8000 connector interface toreceive and send commands

automatically.

FIGURE 2.10: Draganflyer V Ti PRO Quadrotors

2.3.2 Software System Structure

The testbed consists of several hardware units, with each unit running its own

software programs simultaneously. This section is devotedto describing the software

systems that keep the data flow. The data transfer diagram of the system is given by

28

Figure 2.12.

The data flow is first captured by the Vicon Motion Capture System and then

transferred to the data station where it is relayed on to the workstation/server. This

process is realized by running programs developed with the Vicon RealTime SDK on

the server. At early stage, a socket server program is developed independently to achieve

better flexibility (for better data manipulation). However, later testings proved that this

program brought in large time delay. As a result, the original Vicon RealTime Engine

(RTE) is used instead, since the RTE comes with a socket server thread to do the same

thing.

Server: The software programs running on the server include Vicon iQ, the Vi-

con RTE and control clients (in the initial work). The Vicon iQ is provided by Vicon

Inc. and must be run in order to initialize the camera system.It has a graphical in-

terface in which the operator could manage camera settings,e.g. updating frequency

and threshold values, set up data station connection (IP address etc.) and many other

powerful features. Since most of the features that Vicon iQ provides do not apply to this

research, no more details will be discussed here. Figure 2.11 shows Vicon iQ and RTE

running on the workstation/server. The Vicon RTE is also provided by Vicon Inc. and

is triggered automatically once the Vicon iQ main program isstarted. The RTE runs on

background and starts a socket server to share the live framedata. This socket server

is the crucial component that makes server/client communication happen. Vicon RTE

listens to the port 800 and sends frame data to correspondingclients over network once

a request is submitted.

29

FIGURE 2.11: Vicon iQ and RTE Running on Workstation/server

Clients: For each control clients in the testbed, the correspondingsoftware pro-

grams contain a socket client, the control algorithms and a graphical user interface. The

socket client is developed independently using Vicon RealTime SDK and its function is

to get live data frame by frame in real time. In order to realize real time data transfer,

both the socket client (on the control client units) and the socket server (on the worksta-

tion/server) must be run simultaneously as shown in Figure 2.12. Testings proved the

socket client program is able to update data with adequate frequency (50Hz) and brings

negligible time delay.

A graphical user interface is designed and developed for theconvenience of the

operator. Operating the testbed on the client side requiressome routines such as ini-

tializing PC-RC connectors and setting up IP address. Wrapping the trivial tasks and

display the real time information in a graphical interface improves the operating effi-

30

ciency. Figure 2.13 shows the initial design of the GUI. The operator is able to modify

the server’s IP and socket port number on the GUI and click the“connect” button to start

a new connection. This would be more complex to do with a command line console.

Furthermore, one can achieve basic hovering of an individual MAV by simply click-

ing the “TestHover” button. The reserved display area couldbe used to feedback the

frame data, or as a live video displayer if the clients are faraway from the test ground.

Reconstructing the MAVs from the live frame data enables theclient operator to view

the flight in real time. The client GUI is developed on Fedora Linux mainly using Qt

framework and written in C++. More functionalities and optimizations will be made for

better operating experience.

FIGURE 2.12: A Local Network is Established to Connect Server to Clients

31

FIGURE 2.13: The Prototype Design of Control Client GUI

32

FIGURE 2.14: A 3D reconstruction of the Draganflyer in the client GUI

33

CHAPTER 3

SYSTEM CONTROL

To control a dynamics system, the first step is to build the mathematical model.

In the previous chapter, the linearized dynamics model of the quadrotor in MARIT is

established as (2.14). From the states variables given in (2.11) and by substitutingu3

with û3 = u3 + mg in the input vector given by (2.12), the linearized model canbe

expressed in state space as:

Ẋ = AX +BÛ

Y = CX +DÛ
(3.1)

34

The matrixA is 12 × 12 as below:

A =









































































0 0 0 0 0 0 0 0 0 g 0 0

0 0 0 0 0 0 0 0 −g 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0









































































(3.2)

The matrixB is 12 × 4 :

B =









































































0 0 0 0

0 0 0 0

0 0 1
m

0

0 0 0 0

0 0 0 0

0 0 0 0

L
Ixx

0 0 0

0 L
Iyy

0 0

0 0 0 L
Izz

0 0 0 0

0 0 0 0

0 0 0 0









































































(3.3)

35

The C matrix is6 × 12 :

C =

































0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

































(3.4)

The MatrixD is 6 × 4 and is all zeros:

D =

































0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

































(3.5)

To check controllability of the system, the controllability matrix has the form:

Mctrl =

[

B AB A2B . . . A11B

]

(3.6)

Mctrl has the rank of 12, thus the system with the model of (3.1) is controllable.

To check observability of the system, the observability matrix has the form:

Mobsv =



























C

CA

CA2

. . .

CA11



























(3.7)

Mobsv has the rank of 12, thus the system with the model of (3.1) is observable.

As mentioned in Chapter 2, the general controller design usefeedback con-

trollers to maintain and track altitude/height (z) and yaw (ψ) angle. In the following

36

sections, these two variables are controlled by two separate PID feedback controllers.

Thex andy are controlled by a nested structured controller as shown inFigure 2.4. The

nested controller consists of an inner loop to maintain rotation/attitude angles (φ and

θ), and an outer loop to control the positions. This design will realize position control

when the system is close to the state of linearity as described in (2.14). In the following

controller designs, PID controllers will be used for outer loop control in all designs. The

inner loop that controls the rotation/attitude angles willdiffer from each other.

3.1 Control using Lyapunov Theory

In this section the Lyapunov controller is used to maintain the desired attitude

angles due to its performance observed in [28]. Other researchers applied backstepping

technique based on Lyapunov stability theory to design their quadrotor control systems

[29], [30].

3.1.1 Design

The positive-definite Lyapunov function (3.8) is determined by combining the

states from (2.11).

Vx =
1

2
[(x10 − ẋ10)

2 + x2
7 + (x11 − ẋ11)

2 + x2
8 + (x12 − ẋ12)

2 + x2
9] (3.8)

It’s derivative can be expressed as

V̇x = (x10 − ẋ10)x7 + x7
L

Ixx
u1+

(x11 − ẋ11)x8 + x8
L

Iyy
u2+

(x12 − ẋ12)x9 + x9
L

Izz
u4 (3.9)

37

The control law is determined by choosing

u1 = −
Iyy
L

(x10 − ẋ10) − k1x7

u2 = −
Ixx
L

(x11 − ẋ11) − k2x8

u4 = −
Izz
1

(x12 − ẋ12) − k4x9

(3.10)

Whenk1, k2, k4 are positive, the following stands:

V̇x = −k1
L

Ixx
x2

7 − k2
L

Iyy
x2

8 − k4
1

Izz
x2

9 < 0 (3.11)

3.1.2 Simulation

By Lyapunov theorem, the simple stability for equilibrium is now ensured. The

simulator is shown in Figure 3.1. Since only the inner loops of x andy adopt Lyapunov

controllers, the height and yaw controller are identical tothe one described in Figure 2.4

and are not shown here. The reference values containing the desiredxy position are

compared with the respective real values to calculate the errors. Then the errors pass

through an outer controller (PID) to generated desired pitch and roll values. The inner

controller uses Lyapunov theory to achieve the control of roll, pitch angles. The system

dynamics model is defined according to (2.14). The trajectory tracking simulation is

shown in Figure 3.2.

38

FIGURE 3.1: Lyapunov attitude controller simulator. The inner loop uses controllers

based on Lyapunov stability theory to maintain attitude angles. The outer loop uses PID

controllers.

39

FIGURE 3.2: Quadrotor trajectory tracking using Lyapunov attitude controller

3.2 Control using LQR Controllers

The LQR is chosen because of its reliable performance observed in [13], in which

the authors state the controllers optimizes the vehicle’s capabilities in hover, while en-

suring the vehicle can respond quickly to position errors..In another research [27], by

using LQR technique to minimize the running cost which is proportional to the velocity,

40

the authors are able to send the air vehicle down to a mineshaft.

3.2.1 Design

Since only the attitude controller (inner loop) is concerned, the states in (3.1) can

be reselected as:

Xatt = [φ̇ θ̇ ψ̇ φ θ ψ]T

Uatt = [u1 u2 u4]
T

Yatt = [φ θ ψ]T

(3.12)

a linear model in state space is built:

Ẋatt = AattXatt +BattÛatt

Yatt = CattXatt +DattÛatt

(3.13)

The matricesAatt, Batt, Catt andDatt are acquired from the linear model given in (2.14),

and their values are shown in (3.14).

Aatt =

































0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

































(3.14)

Batt =

































L
Ixx

0 0

0 L
Iyy

0

0 0 L
Izz

0 0 0

0 0 0

0 0 0

































(3.15)

41

Catt =













0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1













(3.16)

Datt =













0 0 0

0 0 0

0 0 0













(3.17)

The structure of the LQR controller is shown in Figure 3.3. The controller is

designed in Simulink and the matrixK is tuned as given in (3.18).

FIGURE 3.3: LQR controller block diagram. This general formfollows the state space

model given in (3.13). The LQR design feeds the states back and apply a parameter

matrixK to generate the control law.

K =













0.2544 0 0 1 0 0

0 0.2544 0 0 1 0

0 0 0.2544 0 0 1













(3.18)

42

3.2.2 Simulation

Similar to the case of Lyapunov controller, the LQR controller is simulated in

Simulink, and the simulation model is shown in Figure 3.4. The height controller is

identical to the one described in Figure 2.4, thus is omittedhere. The reference values

containing the desired XY position and yaw angle are compared with the respective real

values to calculate the errors. Then the errors pass throughan outer controller (PID) to

generated desired angle values. The inner controller uses LQR to achieve the control of

roll, pitch, and yaw angles. The system dynamics model is defined according to (2.14).

The performance of tracking the same reference trajectory is shown in Figure 3.5.

43

FIGURE 3.4: LQR attitude controller simulator. The inner loop that controls the attitude

angles adopts LQR technique. The yaw angle is also included in the inner loop because

of the convenience in design, although it is decoupled from the other variables.

44

FIGURE 3.5: Quadrotor trajectory tracking using LQR attitude controller

3.3 Control using PID Technique

The PID controller is designed to maintain the desired attitude angles. It is cho-

sen because of its robustness as observed in [24] and [25]. According to [24], the au-

thors applied PD controllers to maintain positions, and added an accumulator for height

control due to battery power loss. Others combined backstepping technique with PID

45

controllers to achieve aggressive maneuvers [11]. Our previous work also shows the

PID controller is able to maintain the angles and restrict the errors within 0.1rad [6].

PID controller takes the errors in real-time and multiply them with tuned parameters.

3.3.1 Design

PID controller uses feedback errors to generate control inputs. The error of each

variable is processed and multiplied by the PID control parameters. The control law is

given by equation (3.19), in whichkp, ki, andkd represent proportional, integral, and

derivative parameters respectively.

u1att = kpφeφ + kdφedφ + kiφeiφ

u2att = kpθeθ + kdθedθ + kiθeiθ

u4att = kpψeψ + kdψedψ + kiψeiψ

(3.19)

e denotes the error,ed is the derivative of error, andei is the integral of error. Each error

is calculated as:

eφ = φref − φreal

edφ = eφcurrent − eφprevious

eiφ =
∑

eφ.

(3.20)

3.3.2 Simulation

A simulator is created as in Figure 3.6 to simulate the trajectory tracking. Con-

troller parameters are tuned with tools in Simulink. The height controller is omitted

since it is identical to the one described in Figure 2.4. As iscovered in the previous sec-

tion, thexy position controller takes a nested form. The outer controller uses PID and

a constant (1/g) to obtain the desired roll and pitch angles. In this specificcontroller,

the inner control also uses PID to maintain the angles as desired. The parameter values

used in both inner controller and outer controller are listed below.

46

Parameter Inner Outer

kp 5.11 6.67

ki 2.45 0.46

kd 122.16 9.07

The tuned system is able to track trajectories as shown in Figure 3.7, in which

the dashed line being the reference trajectory, the solid line the simulated tracking tra-

jectory. Detailed comparison of different controllers will be covered next.

47

FIGURE 3.6: PID attitude controller simulator

48

FIGURE 3.7: Quadrotor trajectory tracking using PID attitude controller

3.4 Comparison of Different Controllers

In the above sections three controller designs are developed. The following Fig-

ure 3.8 specifies the control technique used for each variable in the three designs.

49

FIGURE 3.8: The controller used for each variable in different designs. The inner loop

controllers differ from each design, most of the others adopt PID controller.

The performance of the above controllers are calculated andcompared. By eval-

uating the step response of each controller, comparison is made as regard to factors such

as rise time, settling time, percent overshoot and steady-state error (SSE).

To evaluate the quality of the trajectory tracking, a trajectory tracking error func-

tion is calculated for each controller. It sums up the squareof the difference between the

reference and real trajectory as follows:

Etrack =
n

∑

i=1

[(xrefi
− xreali)

2 + (yrefi
− yreali)

2 + (zrefi
− zreali)

2] (3.21)

The step responses of the controllers are plotted in Figure 3.9. The readings are

acquired from simulations and listed in Table 3.1. The PID controller excels in rise time,

settling time and trajectory tracking error. The LQR controller has smallest percent over-

shoot, but gives longer settling time. The Lyapunov controller has the longest settling

time (more than 15 seconds), similar “lagging” is also observed in [29]. However, the

Lyapunov controller provides slightly better SSE than LQR.

50

TABLE 3.1

unit PID LQR Lyapunov

Rise Time sec 0.135 1.759 1.985

Settling Time sec 1.89 4.05 >15.00

Overshoot percent 0.108 0.099 0.147

SSE meter(m) 0.0004 0.0232 0.0200

Etrack m2 853 4752 15070

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

1.2

Time(Sec)

X
 P

os
iti

on
(M

et
er

s)

PID

LQR

Lyapunov

FIGURE 3.9: Step responses of the controllers.

3.5 Experiment with PID Design

51

From the comparison in the previous section, the PID design excels in rise time,

settling time, and trajectory tracking error. Thus PID controllers are proposed to be ap-

plied in the experiment of hovering. Two different kinds of experiments are performed

using different sets of hardwares. In the first method, hovering control is done by con-

necting the RC transmitters to the server. The server not only receive and host the frame

data of the UAV, but also runs the control algorithms and deliver the control commands.

This compact arrangement allows fast debugging for programs and equipment because

fewer hardwares and communication pipes are involved. The structure is illustrated in

Figure 3.10.

FIGURE 3.10: Early stage experiment diagram. The dotted frame represents the work

station PC (server). In this method, both the server program(Vicon iQ) and the con-

trollers are installed on the same machine to provided fast debugging and testing.

The second method used adopts the server-client structure.Multiple controller

PCs are connected to the server via a local network. Data is shared among various

units within the network. Each quadrotor is controlled by a single controller PC. The

workstation (server) only runs the hosting program and distribute the frame data of each

quadrotor to the local network. The transmission protocol is TCP/IP and POSIX socket

interface is used for sending and receiving the data. The server program is provided

52

by Vicon software package and has multi-thread feature to enable the data of different

quadrotors to be sent simultaneously. The “NTG” unit standsfor Non-linear Trajectory

Generation, which is a software package for optimal trajectory generation and will be

covered in the next chapter. NTG generates trajectories foreach quadrotor and sends

reference data to the controller units for control commandscalculation. Once calculated,

the commands will be sent to the quadrotors using R/C transmitters, which are connected

to the controller units. This method is illustrated in Figure 3.11.

FIGURE 3.11: Server-client mode experiment diagram.

To analyze the results and evaluate the performance of the algorithms, data needs

to be collected accurately. Data generated from the experiments were collected in real

time.

Reference trajectories, namelyxref , yref , zref , φref , θref andψref , are deter-

mined arbitrarily (e.g. for hovering) or generated automatically (e.g. for trajectory

tracking). For basic hovering, the reference trajectory isa group of constant values.

53

Thus collecting them is trivial.

Real time 6 DOF data sets, namelyxreal, yreal, zreal, φreal, θreal andψreal are

measured using the Vicon M2 cameras in every cycle. Acquiring the data is done by pro-

gramming with the Vicon RealTime Engine (RTE) Software Development Kit (SDK).

The real time data is directed to a file on the local disk drive.This method produces

a bottle neck in code execution time and slows down the algorithms when the looping

frequency is high. However, it does not seem to affect the hovering when the program

is looping at 20Hz.

Control commands are generated from the control algorithms and sent to the

actuators during each loop. These values are updated at the same frequency as the real

time data, and are collected in the same way.

The following graphs show the data collected from tethered experiments (string

attached) on the Draganflyer quadrotor in MARIT. The tethered string prevents the

quadrotor from flying away or drop to the ground unexpectedly.

Figure 3.12 shows the initial performance of the attitude controllers trying to

maintain Euler angles at zero. In general the controllers are able to keep the outputs

within the error range of±0.1 rad. The red horizontal dotted lines in each plot represent

the mean value of the outputs. The mean value of the roll and pitch angles shifted

from zero by a small offset. This offset was caused by the unsymmetrical shape of the

quadrotor (mainly because of the placement of the battery).The yaw angle has a large

initial error and the responding time is slower than roll andpitch controllers.

54

FIGURE 3.12: PID attitude controllers trying to maintain the rotation angles at 0, con-

trolled from the server (method 1). Control loop runs at 12.8Hz.

Figure 3.13 shows the performance of the nested PID controllers maintaining X

and Y positions in the earth frame at (x = 0, y = 0).

55

1 2 3 4 5 6 7 8 9 10 11 12

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (seconds)

m
et

er
s

X position

1 2 3 4 5 6 7 8 9 10 11 12
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time (seconds)

m
et

er
s

Y position

FIGURE 3.13: The X, Y positions maintained by nested PID controllers atx = 0, y = 0,

controlled from the server (method 1). Control loop runs at 12.8Hz.

Although maintaining the position at givenxy values does not control the rota-

tion angles to be strictly zero, a hovering state should havesmall rotation angles. Fig-

ure 3.14 shows the values of rotation angles when the nested PID controller maintains

the position at the above given point.

56

0 2 4 6 8 10 12
−0.2

−0.15

−0.1

−0.05

0

0.05

time (seconds)
ra

d

Roll output

0 2 4 6 8 10 12
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

time (seconds)

ra
d

Pitch output

0 2 4 6 8 10 12
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time (seconds)

ra
d

Yaw output

FIGURE 3.14: The rotation angles when nested PID controlleris doing position control,

controlled from the server(method 1). Control loop runs at 12.8Hz.

With the completion of the server/client framework, data isable to be shared and

controllers are installed on the client computers. The server/client structure lessens the

burdens on the server but inevitably brings larger time delay. Figure 3.15 shows the

performance of the same attitude controllers running from the clients. The delay in the

control of yaw caused the yaw data to be out of range within thefirst several seconds.

The offsets of roll and pitch angles mentioned earlier were reduced by tuning the PID

parameters.

57

0 5 10 15 20 25

−0.1

−0.05

0

0.05

0.1
Roll output

ra
d

time (second)

0 5 10 15 20 25
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04
Pitch output

ra
d

time (second)

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Yaw output

ra
d

time (second)

FIGURE 3.15: The rotation angles maintained by PID attitudecontrollers, controlled

from the client through local network (method 2). Control loop runs at 30Hz.

58

0 1 2 3 4 5 6 7
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03
X position errors

m
et

er
s

time (second)

0 1 2 3 4 5 6 7
−0.03

−0.02

−0.01

0

0.01

0.02

0.03
Y position errors

m
et

er
s

time (second)

FIGURE 3.16: The X, Y positions maintained by nested PID controllers atx = 0, y = 0,

controlled from the client through local network (method 2). Control loop runs at 30Hz..

3.6 Conclusion

In this chapter, three quadrotor controllers are designed for the Draganflyer quadro-

tor in MARIT. For each of the design, the controller is simulated in Simulink and a test

is done to perform a simple trajectory tracking. Then the comparison is done to evaluate

the controllers’ performance according to several criteria. The PID design is chosen for

the experiment due to its superior performance. Two methodsare used in the experi-

ments and data is collected from the tethered flights in real-time. Results are plotted to

show the controller’s performance.

59

CHAPTER 4

TRAJECTORY GENERATION

In the industrial world and military field, a large group of problems involve plan-

ning and following trajectories. Examples are usually systems with noise and uncer-

tainty and requires accurate control, such as autonomous vehicles maneuvering in city

streets, mobile robots performing tasks on factor oors (or other planets), manufacturing

systems that regulate the ow of parts and materials through aplant or factory, and supply

chain management systems that balance orders and inventories across an enterprise [33].

In linear systems, a standard technique is to separate the controller into a feedfor-

ward compensator and a feedback compensator. This structure, which provides nominal

input used to track the reference trajectories with the feedforward compensator, and cor-

rects errors between the reference and real trajectories with the feedback compensator,

is referred to astwo degree of freedomcontroller [33].

In nonlinear systems, the two degree of freedom design decouples the trajec-

tory generation and asymptotic tracking problems. To illustrate this controller design,

from (2.14) the following state space model is constructed:

ẋ = f(x, u), x ∈ R
n, u ∈ R

m

y = h(x, u), y ∈ R
p

(4.1)

x, u andy are the system’s states, input and output, respectively. Tomake the

system track the reference trajectory given byxd, a two degree of freedom controller

shown by Figure 4.1 could be applied. This controller is configured with a trajectory

60

generator to generate both the reference trajectoryxd and the nominal inputud.

FIGURE 4.1: Two degree of freedom controller structure. Thetrajectory generator pro-

videsUd, the feedforward nominal input for tracking, andXd, the reference trajectory.

The controller computes the error fromXd and the system feedbackX and generates

control commandUc. The actual inputU is generated by combiningUd andUc.

In the following sections, the above controller design is used for the purpose of

linearized quadrotor model control. The controllers used are described in the previous

chapter, and the trajectory generator is theNonlinear Trajectory Generationsoftware

package, which will be covered next.

4.1 Nonlinear Trajectory Generation

Nonlinear Trajectory Generation (NTG), developed at Caltech by Mark Milam

[34], is a tool to solve optimal control problems. NTG generates optimal trajectories

in real-time for nonlinear systems. Successful applications of NTG include navigating

under-water gliders guided by non-neglectable ocean currents [35], flight path optimiza-

tion in the presence of wind or multiple radars [36].

61

Consider the system described by (4.1),x(t) represents the state of the system,

andu(t) is the control input fort ∈ [t0, tf]. In the realm of real-analytic, it is desired to

find a trajectoryxd to minimize the cost:

J = φf(x(tf), u(tf)) + φ0(x(t0), u(t0)) +

∫ tf

t0

L(x(t), u(t))dt (4.2)

subject to

lb0 ≤ ψ0(x(t0), u(t0)) ≤ ub0,

lbf ≤ ψf (x(tf), u(tf)) ≤ ubf ,

lbt ≤ S(x, u) ≤ ubt,

(4.3)

respectively. The cost functionJ can be break down to three components:φf

represents the final condition;φ0 is the initial condition, andL is an integral cost over

the trajectory. The above equations represent a standard optimal control problem. With

complicated constraints and dynamics, this kind of problems become too difficult to be

solved analytically. Fortunately, with the availability of large number solvers in nonlin-

ear programming (NLP), the above problem could be solved by transforming them into

NLP problems, which is the method that NTG employs.

The NTG approach consists of three main steps [34]. The first is mapping the

system (4.1) to a lower dimensional output space. This meansdetermining a set of

output so the cost function (4.2) and constraints (4.3) can be mapped to a lower output

space. The second step is to parameterize the outputs in terms of B-spline curves. Fi-

nally, nonlinear programming is used to solve the B-splinescoefficients in output space,

which will minimize the cost subject to the constraints.

Mapping outputs

The purpose of this step is to find an outputz of system described by (4.1) in the form

of:

z = α(x, u, u(1), . . . , u(r)) (4.4)

62

whereu(i) is theith derivative ofu with respect to time. The system needs to be

differentially flat in order to be further investigated. A system of the form as in(4.1) is

said to be differentially flat [33] if(x, u) can be completely recovered from:

x = β(z, z(1), . . . , z(s))

u = γ(z, z(1), . . . , z(s))
(4.5)

wherez(i) is theith derivative ofz with respect to time. A necessary condition

for the existence of such an output can be found in [38], caseswhen a flat output cannot

be determined are discussed in [39]. For a differentially flat system, all of the feasible

trajectories for the system can be written as functions of a flat outputz and its derivatives

[33].

Parameterization with B-Splines

The second step of NTG is to represent the outputs in terms of B-Spline curves

[39]. The reason for this step is that the system model (4.1) and the constraints (4.3) are

usually so complicated that to minimize the cost function (4.2) becomes very difficult.

One approach to solving optimal control problems, which NTGemploys, is to transform

them into NLP problems using B-spline functions, and solve the problem numerically.

In this step, the outputs found in the previous step are parameterized with a finite-

dimensional approximation. B-splines are desirable as basis of functions to parameter-

ize the outputs because of their compact (local) support, ease of enforcing continuity

at breakpoints, and numerical stability. This process is performed as for each outputzi,

with orderki, continuityCs or smoothnesssi, and knot breakpointsτi = t0, . . . , tKi
will

be selected in consideration of the maximum derivative thatoccurs in the output and the

number of desired decision variables [41]. The detailed parameterization is done as fol-

lows, and a sample spline trajectory is depicted in Figure 4.2.

63

z1 =
q1
∑

i=1

Bi,k1(t)C
1
i for the knot breakpoint sequenceτ1

z2 =
q2
∑

i=1

Bi,k2(t)C
2
i for the knot breakpoint sequenceτ2

...

zn =
qn
∑

i=1

Bi,kn
(t)Cn

i for the knot breakpoint sequenceτn

whereqi = li(ki − si) + si and li is the number of knot intervals for theith

output.Bi,ki
(t) is the B-spline basis function. With the outputs parameterized as above,

the coefficientsC will be found using nonlinear programming.

FIGURE 4.2: In this hypothetical problem, the B-spline curve has six intervals (l = 6),

fourth order (k = 4), and isC3 at the breakpoints (or smoothnesss = 3). The constraint

on the B-spline curve (to be larger than the constraint in this example) will be enforced

at the 21 collocation points. The nine control points are thedecision variables [41].

64

Transformation into Nonlinear Programming Problem

The final step in NTG is to solve the B-spline coefficient usingsequential quadratic

programming packages such as CFSQP and NPSOL [39] [40]. Suppose (4.2) and (4.3)

are evaluated discretely between time interval[t0, tn], they can be translated into the

following NLP problem inCj [40]:

minF (
−→
C),

−→
C ∈ R

p (4.6)

subject to

L ≤ G(
−→
C) ≤ U (4.7)

whereF (
−→
C) is the transformed cost function (4.2), and

−→
C = [C1 . . . Cp]

T .

G(
−→
C) is the transformed constraints (4.3). Now the only thing to do is solving the

transformed problem with any nonlinear programming tool, for example, NPSOL.

In this section the trajectory generator that MARIT replieson, NTG, is intro-

duced. In the next section, several trajectory tracking problems in MARIT will be mod-

eled and programmed with NTG.

4.2 Trajectory Generation in MARIT

MARIT controls multiple UAVs in a closed-loop. According tothe dynamics

analysis done in previous chapters, the quadrotor control system is considered as lin-

ear when the angles of rotation are small, as is shown in (2.14). To maintain such a

linear system at hovering, linear control techniques, suchas LQR and simple feedback

controllers are theoretically sufficient. This approach isfrequently referred to as aone

degree of freedomdesign. The one degree of freedom design for MARIT is shown in

Figure 4.3, it is also the approach that the previous chapterfollowed to designing and

65

testing the controllers.

FIGURE 4.3: One degree of freedom design for MARIT.Xr is the provided reference,

X is the real-time states feedback,e is the error, andU is the input generated from the

controller. The system is linearized as is shown in (2.14).

However, when optimization is taken into consideration, especially optimizing

with nonlinear constraints must be performed, the one degree of freedom design gener-

ally does not work well since the system is likely tracking drifting equilibrium configu-

ration, which is an infeasible trajectory of the system [34]. The two degree of freedom

design as is described in the previous section is a possible solution. Consisting of a

trajectory generator and a feedback controller, the two degree of freedom design pro-

vides both feasible feedforward reference and feedback stabilization. This more com-

plex structure enables the system to track feasible trajectory while maintaining stability.

Figure 4.4 illustrates the two degree of freedom design for MARIT.

66

FIGURE 4.4: Two degree of freedom design for MARIT. The trajectory generator cal-

culates and provides the feasible trajectoryXd, including the desired 3D trajectory and

yaw angle, and the nominal inputUD, which is a feedforward term. The controller takes

the errore calculated by subtracting real-time feedbackX fromXd and generates input

Uc. The final input to the system is generated by adding upUd andUc.

It is to be noted that, while the MARIT system itself is treated as linear, the

trajectory generator might be nonlinear. This is why NTG is considered for generating

feasible trajectories for the MARIT testbed.

4.2.1 Paring NTG with MARIT

Figure 4.5 illustrates how NTG functions in the MARIT environment. NTG

takes in constraints from the operator and generates trajectory for MARIT. These con-

straints include the initial, trajectory and final constraints, and cost functions to mini-

mize. Details will be covered in the next section.

Generally the controls of the quadrotors in MARIT are grouped into two sections

because of their similarity in design. One is the latitude and longitude (x, y) control, the

67

other is the altitude (z) and yaw (ψ) control. The design of the controllers are described

in the last chapter, and this section will focus on the trajectory generation.

The goal of control is to track trajectories given in 3D. Considering the dynam-

ics of the quadrotor, it is impossible to control the positionsx, y directly, so the nested

controller structure was designed as described in the last chapter. This brings up an

underlying constraint that the angles of rotation must be kept small during the whole

trajectory tracking, because only when the angles are small, the system can be consid-

ered linear. These constraints are specified in the next section.

In the upper half of Figure 4.5, the NTG component provides feasible reference

for altitude (z) and yaw angle (ψ), and also the nominal inputs for both. In the lower

half NTG does the same thing to thex andy positions, but provides two sets of nominal

inputs,Uxd, Uyd andUthetad, Uphid. This is because the linear relationships between the

positionsx, y and anglesθ, φ as described in (2.14) result in a nested controller structure.

68

FIGURE 4.5: Incorporating NTG in MARIT control design.

4.2.2 Trajectory Generation

Typical applications of trajectory generation include obstacle avoidance by a

robotic vehicle, minimum time missile interception of an agile target, formation flight

69

of micro satellites with coverage constraints, and a rapid change of attitude for an un-

manned flight vehicle to evade a dynamic threat [41]. In the MARIT testbed envi-

ronment, a series of simulations were designed and conducted by combining obstacle

avoidance with other constraints to evaluate the performance of NTG. The dynamics

system is modeled as shown by (2.14), and the feedback controllers are nested PID

control designed as described in the previous chapter.

The general goal of these simulations are stated below:

• Moving from the initial location to the destination in 3D space

• Avoiding multiple (randomly appearing) obstacles during the flight

• Visiting several fixed waypoints

• Minimize trajectory length and/or kinetic energy during the flight

• Guarantee precision of initial and final location

• Maintain the angles of rotation as needed to ensure the linear model is valid

• Limiting the speed and accelerations alongx, y andz

• Limiting the speed and accelerations of angles of rotationφ, θ andψ as needed

Figure 4.6 shows a possible scenario of obstacle avoidance in MARIT. The

quadrotor will start from the initial location (the green dot at bottom left) and fly to the

destination (the green dot at upper right). There are four obstacles (colored big spheres)

located in the way to prevent the quadrotor from flying directly to the destination. Keep-

ing a safe distance from the obstacles is required. Two waypoints (green dots) are to be

visited during the flight. To make the trajectory harder to generate and track, one of the

waypoints (waypoint#1) is located very close one of the obstacles (on the surface). The

above mentioned constraints are used to regulate the trajectory generation, and the flight

time is fixed between neighboring waypoints.

70

FIGURE 4.6: Objective of obstacle avoidance in MARIT. The UAV is supposed to

fly from the initial location to the destination in a 3D space.During the flight, two

waypoints are set to be visited. In this illustration, four obstacles depicted as spheres are

to be avoided.

71

As described in the previous section, NTG follows three steps to generate the

optimal trajectory. The first one is to map the outputs to a lower dimension. In order

to do this, the system needs to be differentially flat. In order to prove the differential

flatness of the MARIT quadrotor model, the states of the system are listed below, with

rx, ry andrz denoting the distance alongx, y andz axis, andφ, θ andψ denoting the

angles of rotation:

x =

















































































































x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

















































































































=

















































































































rx

ṙx

r̈x

ry

ṙy

r̈y

rz

ṙz

r̈z

φ

φ̇

φ̈

θ

θ̇

θ̈

ψ

ψ̇

ψ̈

















































































































(4.8)

and the inputs to the system is:

72

u =



















u1

u2

u3

u4



















=



















φ̈

θ̈

r̈z

ψ̈



















(4.9)

By choosing the outputz as:

z =



















z1

z2

z3

z4



















=



















rx

ry

rz

ψ



















(4.10)

According to the linearization of (2.14),̈rx is in linear relationship withθ, and

r̈y is in linear relationship withφ, it is obvious by observation thatx andu is able to be

written as the functions ofz and its finite number of derivatives. Thus the rule stated by

(4.5) is satisfied. Now it is shown that the MARIT quadrotor dynamics model defined

above by (4.8) and (4.9) with linearization (2.14) is differentially flat.

With the outputs mapped, the constraints are ready to be specified in terms of flat

outputs. In the scenario illustrated by Figure 4.6, the constraints and cost function are

defined as in Table 4.1. Each of the constraints and cost function is listed below, where

G is the gravitation acceleration, determined to be 9.81:

73

TABLE 4.1

Item Name Abbreviation count

Linear Initial Constraints LIC 16

Linear Trajectory Constraints LTC 12

Linear Final Constraints LFC 6

Nonlinear Initial Constraints NLIC 0

Nonlinear Trajectory Constraints NLTC 4

Nonlinear Final Constraints NLFC 0

Cost Function N/A 1 or 2

LIC

z0(0) = rx(0), z1(0) = ṙx(0),

z2(0) = r̈x(0) = Gθ(0), z3(0) =
...
r x(0) = Gθ̇(0),

z4(0) =
....
r x(0) = Gθ̈(0), z5(0) = ry(0),

z6(0) = ṙy(0),

z7(0) = r̈y(0) = −Gφ(0),

z8(0) =
...
r y(0) = −Gφ̇(0),

z9(0) =
....
r y(0) = −Gφ̈(0),

z10(0) = rz(0),

z11(0) = ṙz(0),

z12(0) = r̈z(0),

z15(0) = ψ(0),

z16(0) = ψ̇(0),

z17(0) = ψ̈(0)

(4.11)

The linear trajectory constraints are shown in (4.12). These constraints are the

74

ones that the UAV needs to satisfy during the flight. Each output z falls into a close

range between a minimum and a maximum value. Therx, ry andrz are limited within

an area to prevent the UAV from flying out of the MARIT indoor environment. The

angles of rotation are restricted within a small range to ensure the model to be linear.

The speed and accelerations are constrained to make simulation realizable.

LTC

z0(t) = rx(t) ∈ [rxmin, rxmax],

z5(t) = ry(t) ∈ [rymin, rymax],

z10(t) = rz(t) ∈ [rzmin, rzmax],

z1(t) = ẋ(t) ∈ [ṙxmin, ṙxmax],

z5(t) = ẏ(t) ∈ [ṙymin, ṙymax],

z10(t) = ż(t) ∈ [ṙzmin, ṙzmax],

z2(t) = Gθ(t) ∈ [Gθmin, Gθmax],

z7(t) = −Gφ(t) ∈ [−Gφmax,−Gφmin],

z15(t) = ψ(t) ∈ [ψmin, ψmax],

z9(t) = φ̈(t) ∈ [φ̈min, φ̈max],

z4(t) = θ̈(t) ∈ [θ̈min, θ̈max],

z17(t) = ψ̈(t) ∈ [ψ̈min, ψ̈max],

(4.12)

The linear final constraints are listed in (4.13). The final states of the 6DOF are

provided by the operator. The values of these final states should be checked to insure

the feasibility of the trajectory. For example, a location or angle too far or too large will

75

be infeasible to achieve with other constraints satisfied.

LFC

z0(f) = rx(f),

z5(f) = ry(f),

z10(f) = rz(f),

z2(t) = Gθ(f),

z7(t) = −Gφ(f),

z15(t) = ψ(f),

(4.13)

In this scenario no nonlinear initial constraints and nonlinear final constraints are

present. The nonlinear trajectory constraints are listed in (4.14). Thexob, yob andzob are

the location of the obstacles,dmin anddmax are the distance bounds to keep from the

obstacles.

NLTC
√

(rx − xob1)2 + (ry − yob1)2 + (rz − zob1)2) ∈ [dmin, dmax],
√

(rx − xob2)2 + (ry − yob2)2 + (rz − zob2)2) ∈ [dmin, dmax],
√

(rx − xob3)2 + (ry − yob3)2 + (rz − zob3)2) ∈ [dmin, dmax],
√

(rx − xob4)2 + (ry − yob4)2 + (rz − zob4)2) ∈ [dmin, dmax],

(4.14)

According to the purpose of the operation, it is up to the operator to decide which

cost function to use. Two different cost functions have beentested. One is to minimize

the kinetic energy during the flight, the other is to minimizethe total displacement during

the flight. These are shown in (4.15) and (4.16) below, wherem denotes the mass of the

UAV, Ixx, Iyy andIzz denote the moment of inertia around three body frame axes.

1

2
m(ṙx)

2 +
1

2
m(ṙy)

2 +
1

2
m(ṙz)

2 +
1

2
Ixx(φ̇)2 +

1

2
Iyy(θ̇)

2 +
1

2
Izz(ψ̇)2 (4.15)

T
∫

0

[

√

(ṙx)2 + (ṙy)2 + (ṙz)2

]

dt (4.16)

76

TABLE 4.2

Parameter Notation Value

intervals l 4

order k 5

smoothness s 3

number of coefficients q l(k - s) + s

breakpoints nbps 45

With all the constraints and cost functions defined, the second step in NTG is

to parameterize the outputs with B-splines as the form ofzi(t) =
∑qi

j=1Bj,ri(t)C
i
j. To

do this, the following parameters need to be determined by the operator, the values are

chosen through trial and error to achieve good performance in the MARIT model.

After the outputs are parameterized, the problem is ready tobe solved by NTG

using nonlinear programming tool. NTG uses NPSOL [42] to solve the nonlinear pro-

gramming problems that are converted from the original optimal control problems. NTG

is programmed to solve the trajectory generation task for MARIT in a “discretized”

method. The process flow is shown in Figure 4.7. NTG runs in a controlled looping

to generate trajectories. Obstacles information will be updated in each loop, constraints

are adjusted accordingly, and new trajectories are generated to fulfill the updated con-

straints.

77

FIGURE 4.7: NTG starts by defining the constants and outputs needed by every loop.

In entering the main loop, the obstacles locations and dimensions are updated, and cor-

responding constraints are set and updated. The trajectoryis generated according to the

constraints and data is saved for each loop before going intothe next loop. Looping time

T is fixed and can be set by the operator.

To evaluate NTG’s ability of real-time trajectory generating in MARIT envi-

ronment, two sets of designs are carried out in the simulation. Both are for obstacle

avoidance. The first one scan for obstacle at preset waypoints and generates optimal ref-

erence trajectories. The second one scan for obstacles at a higher frequency and updates

reference trajectories once new obstacle is detected.

78

“Mode 1” scenario has no obstacle blocking the path, NTG generates optimal

trajectory without obstacle avoidance. The generated trajectory starts from the initial

location and passes through two waypoints, and arrive at thedestination. Figure 4.8

illustrates the trajectories generated for mode 1 from fourdifferent perspectives.

FIGURE 4.8: Mode 1 scenario, no obstacle lies on the path. Thegenerated trajectory

minimizes displacement during the flight. Since no obstacleavoidance is performed, the

trajectory between each waypoints is close to a straight line.

In “Mode 2” there are 1 obstacle located on the path between the initial location

and the first waypoint (the small green dot) near the initial location. NTG is able to rec-

ognize the obstacle and plan trajectory that avoids it and satisfying the other constraints.

Trajectories are generated to minimize the displacement during the flight. Figure 4.9

shows the trajectory and obstacles in 4 different perspectives.

79

FIGURE 4.9: Mode 2 scenario, one obstacle (the blue sphere) has moved to block the

path, locating close to the initial location. NTG detected the existence of the obstacle

and generates trajectories that avoid the obstacle. Cost function is to minimize the dis-

placement during the flight. After avoiding the blue sphere,the rest of the trajectories

are close to straight lines.

“Mode 3” has two obstacles located on the path (the blue sphere and yellow

sphere). One is in between the initial location and the first waypoint, the second is

located between the first and the second waypoint. Figure 4.10 illustrates the trajectories

generated for scenario 3. NTG reacts to the existence of the yellow sphere by flying the

UAV to the left and passes the yellow sphere closely from the left side.

80

FIGURE 4.10: Mode 3 scenario has two obstacles blocking the path. NTG is able to

avoid both obstacles and reach the first waypoint even thoughit is located on the surface

of the second obstacle. After avoiding the yellow sphere, the trajectory continues and

passes through the second waypoint and finally arrives at thedestination.

Figure 4.10 shows mode 4 trajectory generation. Three obstacles appear on the

path and NTG is able to avoid all of them and generate the optimal trajectory while

minimizing the whole displacement during the flight.

81

FIGURE 4.11: Mode 4 scenario features three obstacles, in addition to the two appeared

in Mode 3, a third obstacle (the red sphere) is moved to between waypoint 1 and way-

point 2. NTG reacts to the existence of the red sphere and makes adjustments in planning

the trajectory by flying the UAV under the red sphere.

“Mode 5” places four obstacles on the path, in addition to the3 obstacles in

Mode 4, a fourth obstacle (the cyan sphere) is placed betweenthe second waypoint and

the destination location. Figure 4.12 shows the different perspectives of the trajectory.

82

FIGURE 4.12: Mode 5 adds one more obstacle between the secondwaypoint and the

final location. NTG reacts to the fourth obstacle by dodging to the right side of the

obstacle. Cost function is still minimizing the displacement during the flight.

Up to this point, NTG is able to complete obstacle avoidance for all 5 obstacle

placement scenarios. With the configuration determined in Table 4.2 and constraints

provided, NTG proves to be competent for optimal trajectorygeneration for different

obstacle situations in the MARIT simulation environment.

Figure 4.13 shows the several different trajectories NTG produces. The goal is

identical to the previous settings, which is to go from the initial location (upper right

green dot in this graph), pass through 2 waypoints, and arrive at the destination (lower

left green dot). While minimizing the displacement during the flight, NTG ensures the

trajectory satisfies the various linear and nonlinear constraints provided previously.

83

FIGURE 4.13: Real-time obstacle avoidance trajectories. Trajectory 1 does not avoid

any obstacle, simply pass through the waypoints and arrivesat the destination. Trajec-

tory 2 avoids the first obstacle (the gray sphere) and ignoresthe other two obstacles.

Trajectory 3 avoids both the first and second obstacle (gray and the blue sphere) but

ignores the third obstacle. Trajectory 4 avoids all 3 obstacles including the red sphere.

To reflect the real-time calculation with less distractions, a simpler scenario is

shown in Figure 4.14. Obstacles may appear between the waypoints, but only one ob-

stacle will be present. When the UAV reaches the first waypoint (the green dot at bottom

right), if the smaller obstacle is present, NTG generates the red (lower) trajectory for the

UAV to avoid it. If the bigger one is present instead, NTG generates the black trajectory

to go over the obstacle. These two different piece of trajectory merge from and into the

same trajectories at the first and second waypoint.

84

FIGURE 4.14: Another presentation of NTG generating real-time trajectories.

Figure 4.15 shows the view from nearby the second waypoint. The two different

trajectories merge into the same trajectory when arriving at the second waypoint.

FIGURE 4.15: A different perspective of NTG generating real-time trajectories.

85

The above control work flow scans obstacles at each waypoint (including the ini-

tial point). However, the fact that the location of the obstacles are updated at these points

has potential problems. First, if the UAV is on its way from one waypoint to another,

it does not scan for new obstacles, which may lead to crushingif an obstacle appears

during this period. Second, NTG may take some time for generating new trajectories at

each waypoint, then the UAV has no reference until new trajectories are generated. To

solve these potential problems, shown in Figure 4.16, a new work flow is designed.

FIGURE 4.16: New work flow to ensure avoidance of obstacles inreal-time.

This new work flow begins with loading the default trajectoryand use it as the

reference in its operations. It scans for obstacles at the end of each control loop, which

usually runs at high frequency for air vehicles control. If no obstacle is found, the pro-

gram goes back to loading reference trajectories and continue the loop; if obstacles are

detected, the program sets the UAV to hovering, and re-generate new reference trajecto-

ries. Following this new design, the program is able to detect and avoid new obstacles

whenever it appears, not just at the waypoints. A simulationof this design is illustrated

in Figure 4.17.

86

FIGURE 4.17: The program detects and avoid obstacles in real-time. Scanning for

obstacles at the end of each control loop, the UAV is set to hovering if new obstacle is

found and wait for NTG to re-generate new trajectories. The default reference is red and

new trajectory is blue.

From the examples above, NTG proves to be able to generate real-time obsta-

cle avoiding optimal trajectories for the MARIT quadrotor model. In the next section,

controllers designed in the previous chapter will be applied to track the trajectories gen-

erated by NTG in this section.

4.2.3 Trajectory Tracking

The previous sections shows how NTG generates optimal trajectories for MARIT

in various situations. The section will describe how the controllers designed in the pre-

87

vious chapters works with NTG to track the reference trajectories. Figure 4.5 displays

the incorporated structure of nested controllers working with NTG to track trajectories.

The tracking adopts the two degree of freedom design as shownin Figure 4.4. NTG

provides the controllers with not only the reference trajectories, but also the nominal

inputs to produce the reference trajectories. The reference trajectories are used to com-

bine with the feedback to generate the controller input, andthe nominal input is used as

feedforward term to add to the controller input. The final input to the system is the sum

of controller input and the feedforward nominal input. The altitude and yaw control are

performed separately from the latitude and longitude control.

FIGURE 4.18: The controllers load the reference trajectories and nominal inputs from

NTG and tracks the trajectories. Each “loading” contains reference data for time dura-

tion “T”.

88

Figure 4.18 illustrates the tracking in the framework of trajectory generation. The

controllers load the reference data and nominal inputs to generate the final inputs to the

system. The reference data include the outputsz as defined in (4.10) and its derivatives.

The nominal inputs that are used in the feedforward containsthe values corresponding

to the system inputsu as defined in (4.9). Figure 4.19 shows the data that is loaded from

NTG and used to generate the inputs to the system.

FIGURE 4.19: The reference contains the outputz and its derivatives, the nominal input

contains theu terms.

The obstacle avoidance “mode 5” scenario is chosen to demonstrate the tracking

because it has more obstacles than other modes. Figure 4.20 shows the result. As is in

mode 5, the reference starts from the initial location and passes through two waypoints

before arrives at the destination at the upper right corner of the graph. Four obstacles

with the shape of spheres are on the path to block the UAV. The actual start point of the

UAV is different from the initial location of the reference and is located on the ground

(rz = 0). This designed on purpose to examine how fast the controllers can react to the

large difference. The reference is displayed by the black string of dots, and the tracking

trajectory is in dark green.

89

FIGURE 4.20: Tracking trajectories generated by NTG.

In Figure 4.21, the difference between the initial locationof the reference and

the start point of the actual UAV is shown more closely. The controller is able to “catch

up” with the reference quickly. From the graph the tracking trajectory reaches the initial

location of the reference (the green dot close to the viewer)within ten iterations, each

iteration is designed to be 0.0056 second. Thus the controller is fast enough to even out

the initial difference.

90

FIGURE 4.21: Trajectory tracking as seen from another perspective.

The top view as Figure 4.22 shows gives yet another perspective of the trajectory

tracking.

91

FIGURE 4.22: Trajectory tracking as seen from the top.

A close-up around the first waypoint is shown by Figure 4.23. One can observe

that although there exists a steady state error between the two trajectories, they are close

enough to pass through the waypoint dot, which is a small sphere with the radius of 2

centimeters.

The reference and tracking trajectories onrx, ry andrz of the above tracking are

plotted in Figure 4.24. The running time of this trial is 8.4 seconds. Distance on each

axis is measured in meters.

92

FIGURE 4.23: Close-up at the first waypoint.

93

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Trajectory Tracking on x

time (seconds)

di
st

an
ce

 (
m

et
er

s)

xr
x

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

0.8

Trajectory Tracking on y

time (seconds)

di
st

an
ce

 (
m

et
er

s)

yr
y

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Trajectory Tracking on z

time (seconds)

di
st

an
ce

 (
m

et
er

s)

zr
z

FIGURE 4.24: The reference and tracking trajectories. The tracking time is 8.4 seconds.

xr, yr andzr are the reference trajectories, andx, y andz are the tracking trajectories.

The errors during the tracking are plotted in Figure 4.25. The plot is generated

94

from 1500 sample values for each variable, and the errors aremeasured in meters. The

initial large error ofrz reflects the difference at the initial location mentioned above.

The rest of the plot generally limits the error within± 2 cm.

FIGURE 4.25: The errors ofrx, ry andrz from their respective references.

4.3 Disturbance Rejection

The previous section proves the controllers are capable of tracking the optimal

reference trajectories NTG generated. In this section disturbances will be modeled and

add to the system for the purpose of evaluating the controllers’ robustness.

Taking the “Mode 5” obstacle avoidance that is being trackedin the previous

section for example. Possible disturbance during the tracking might be a sudden gust of

95

wind at certain locations. The force exerted on the UAV will result in a certain amount

of acceleration. The following simulation introduce a sudden acceleration to the UAV

along the−ry direction when the UAV is passing through the area where1.3 < rx < 1.6.

Figure 4.26 - Figure 4.28 show how the controller is reactingto different magnitudes of

“winds”.

FIGURE 4.26: The original tracking without any disturbance.

96

FIGURE 4.27: Small disturbance occurs at1.3 < rx < 1.6. A wind blows fromry to

−ry, exerting a force of 1 Newton on the mass center of the quadrotor. The controller is

able to track the trajectory and arrive at waypoint 2 as planned.

97

FIGURE 4.28: Large disturbance occurs at1.3 < rx < 1.6. A wind blows fromry to

−ry, exerting a force of 3 Newton on the mass center of the quadrotor. The tracking

is seen to drift more to the−ry direction and away from the second waypoint, but the

general shape of the tracking still follows the reference.

4.4 Summary

In this chapter, NTG is introduced to generate the referencetrajectories for

MARIT quadrotor model for trajectory tracking. First the mathematical foundation of

NTG is provided. NTG is a set of software tool to solve optimalcontrol problems by

transforming the problems into nonlinear programming problems. B-splines parameter-

ization is the method for transforming, and NPSOL is the toolNTG adopts to solve the

transformed nonlinear problems. Secondly the MARIT quadrotor obstacle avoidance

problems are interpreted into NTG programs to be solved numerically. The system is

shown to be differentially flat so that NTG is able to map the system states and inputs to

a lower dimension. The various constraints are categorizedand interpreted in terms of

98

NTG constraints, e.g. linear initial constraints (LIC), linear trajectory constraints (LTC)

and nonlinear trajectory constraints (NLTC). Thirdly NTG is examined to generate op-

timal reference trajectories for various situations, including multiple obstacle avoidance

and real-time obstacle avoidance. Then the controllers designed in the previous chapter

are constructed to work with NTG to track the reference trajectories. Results show that

these two components are able to collaborate with each otherto produce close trajectory

tracking. Lastly different magnitudes of disturbances aremodeled and introduced to the

tracking system and results prove the controller is capableof resisting small disturbances

like “gentle winds”, and resume tracking accuracy after thedisturbance disappears.

99

CHAPTER 5

Future Work

Fully autonomous flightsThe current experiments are conducted in a tethered

method. The quadrotors are attached to a fixed object (ceiling or ground) by strings

for safety reasons. Due to the broken parts of the Draganflyerquadrotor the motors are

not running smoothly and react to constant valued commands with random accelera-

tions. The motors sometimes start running with max speed without any input, causing

injuries and frustration. The current PC/RC connector connects the R/C transmitter to

the PC using usb interface, which is treated as a serial device by the computer. Find an

R/C transmitter that can be connected directly to the computer can ensure better signal

transmission. Upgrading hardwares could solve this problem. New dynamics modeling

might be needed after the hardware upgrading, but since the quadrotor dynamics are

identical in nature, the remodeling will be easy.

More completed software interfaceThe current software interface on the con-

troller units is written in Qt framework with C++. It provides basic functionalities such

as connecting to server, starting test flight, and closing ports. A more advanced interface

may include a 3D reconstructed model of the testbed. This could be used for delivering

commands graphically, e.g by clicking on a desired positionin the 3D model, the user is

able to send the SUAV to that position. This could be realizedin many ways, such as by

employing the VTK toolkit to draw 3D animation in real-time,or the using traditional

OpenGL technology in the Qt framework.

Adding ground vehiclesMARIT is able to detect any modeled objects’ motions

100

in real-time. This provides the potential of introducing ground vehicles into the testbed.

Algorithms could be developed to command the collaborationof air vehicles and ground

vehicles.

101

REFERENCES

[1] “Remote Piloted Aerial Vehicles : An Anthology,”

[2] Source: U.S. Government publication ’The Evolution of the Cruise Missile’.

[3] NASA-JPL Aerobot project,
http://www-robotics.jpl.nasa.gov/systems/system.cfm?System=7.

[4] E. Altug, J. Ostrowski, R. Mahony, “Control of a Quadrotor Helicopter Using
Visual Feedback”,IEEE International Conference on Robotics and Automation,
Washington DC, 2002.

[5] E. Altug, J. Ostrowski, C.J. Talyor, “Quadrotor ControlUsing Dual Camera Visual
Feedback”,IEEE International Conference on Robotics and Automation, Taipei,
Taiwan, 2003.

[6] Y. Cui, T. Inanc, “Multiple Air Robotics Testbed”IEEE Chinese Control and De-
cision Conference, Taiyuan China, 2012.

[7] TEAL Group, “World Unmanned Aerial Vehicle Systems 2011Edition”
http://www.ctie.monash.edu/hargrave

[8] Donald, David, ed. Encyclopedia of World Aircraft (Etobicoke, Ontario: Prospero
Books, 1997), p.854, ”Standard aircraft”

[9] Fahrney, Delmar S., RADM USN ”The Birth of Guided Missiles” United States
Naval Institute Proceedings December 1980 pp.5460

[10] Wagner, William: Lightning Bugs, and other Reconnaissance Drones. 1982, pub-
lished by Armed Forces Journal International in cooperation with Aero Publishers,
Inc.

[11] N. Michael, D. Mellinger, Q. Lindsey, V. Kumar, The GRASP Multiple Micro-
UAV Testbed,Robotics & Automation Magazine, IEEE Volume: 17 , Issue: 3, 56
- 65, 2010.

[12] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron, ”Indoor Multi-Vehicle Flight
Testbed for Fault. Detection, Isolation, and Recovery,”AIAA Guidance, Naviga-
tion, Control Conf. Exhibit,Keystone, CO, Aug. 2006, AIAA-2006-6200.

102

[13] J.P. How, B. Bethke, A. Frank, D. Dale, J. Vian, “Real-time indoor autonomous
vehicle test environment,”Control Systems,IEEE Volume: 28 , Issue: 2, 51 - 64,
2008.

[14] M. Gerig, ”Modeling, guidance, and control of aerobatic maneuvers of an au-
tonomous helicopter,” Ph.D. dissertation, ETH Zurich, 2008.

[15] Flying Machine Arena, http://www.idsc.ethz.ch/Research‘DAndrea/FMA

[16] Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control,
http://hybrid.eecs.berkeley.edu/starmac/

[17] Vanderbilt Embedded Computing Platform for Autonomous Vehicles
http://www.vuse.vanderbilt.edu/ kootj/Projects/VECPAV/

[18] Vicon, ”Vicon MX Systems,” June 2006 [Online]. Available:
http://www.vicon.com/products

[19] “Tom’s RC”, http://www.tti-us.com/rc/sc8000.htm

[20] “Draganfly Innovations Inc.”, http://www.draganfly.com

[21] Hitec, http://www.hitecrcd.com/

[22] B.L. Stevens and F.L. Lewis, “Aircraft Control and Simulation,” 2nd ed. Hoboken,
NJ:Wiley, 2003.

[23] J. How, ”Lecture Notes: Aircraft Stability and Control(16.333): Lectures 3 and
4” Sept. 2004 [Online]. Available: http://ocw.mit.edu/OcwWeb/Aeronautics-and-
Astronautics/16-333Fall-2..4/LectureNotes/index.htm

[24] D. Gurdan, J. Strumpf, M. Achtelik, K. Doth, G. Hirzinger and D. Rus, “Energy
efficient Autonomous Four rotor Flying Robot Controlled at 1KHz,” IEEE Inter-
national Conference on Robotics and Automation, Roma Italy, 2007.

[25] S. Bouabdallah, A. Noth and R. Siegwart, “PID vs LQ Control techniques Applied
to an Indoor Micro Quadrotor,” Autonomous Systems Laboratory Swiss Federal
Institute of Technology.

[26] Y. Cui, T. Inanc, “Multiple Air Robotics Testbed”IEEE Chinese Control and De-
cision Conference, Taiyuan China, 2012.

[27] Ian D. Cowling James F., and Alastair K. Cooke. “OptimalTrajectory
Planning and LQR Control for a Quadrotor UAV.” [Online]. Available:
http://ukacc.group.shef.ac.uk/proceedings/control2006/papers/f125.pdf

[28] S. Bouabdallah, Ph.D. thesis, “Design and control of quadrotors with application
to autonomous flying”, 2007.

103

[29] Mian, A.A.; Wang Daobo, “Nonlinear Flight Control Strategy for an Underac-
tuated Quadrotor Aerial Robot”. IEEE International Conference on Networking,
Sensing and Control, 2008. Page(s): 938 - 942.

[30] Madani, T.; Benallegue, A. “Control of a Quadrotor Mini-Helicopter via Full State
Backstepping Technique”. Decision and Control, 2006 45th IEEE Conference on
Robotics and Control Systems, page(s): 1515 - 1520.

[31] G. Hoffmann, S. Waslander, and C. Tomlin, ”Quadrotor helicopter trajectory track-
ing control,” AAIA Guidance, Navigation and Control Conf. and Exhibit,Hon-
olulu, Hawaii, 2008.

[32] E. Altug, J. Ostrowski, and C. Taylor, ”Control of quadrotor helicopter using dual
camera visual feedback,”The Int. Journal of Robotics Research,vol. 24, no. 5, pp.
329-341, May 2005.

[33] R. Murray “Optimization-Based Control”, DRAFT v2.1a,February 15, 2010.

[34] M. B. Milam, K. Mushambi, and R. M. Murray. “A New Computational Approach
to Real-Time Trajectory Generation for Constrained Mechanical Systems,” Con-
ference on Decision and Control, 2000.

[35] T. Inanc, S. C. Shadden, and J. E. Marsden. “Optimal trajectory generation in ocean
flows,” Proceedings of the American Control Conference, June 8-10 2005, pp. 674
- 679.

[36] T. Inanc, K. Misovec, and R. M. Murray. “Nonlinear trajectory generation for un-
manned air vehicles with multiple radars,” Proceedings of the 43th IEEE Confer-
ence on Decision and Control, Dec. 14 -17 2004, pp. 3817 - 3822.

[37] W. Zhang, and T. Inanc. “Opportunistic 3D Trajectory Generation for the JPL Aer-
obot with Nonlinear Trajectory Generation Methodology” Proceedings of 11th Int.
Conf. Control, Automation, Robotics and Vision, Singapore, 2010.

[38] M. Fliess, J. Levine, P. Martin, and P. Rouchon. “Flatness and defect of non-linear
systems: introductory theory and examples,”International Journal of Control,
61(6):1327-1360, 1995.

[39] M. B. Milam, K. Mushambi, and R. M. Murray. “A New Computational Approach
to Real-Time Trajectory Generation for Constrained Mechanical Systems,”Con-
ference on Decision and Control, 2000.

[40] M. K. Muezzinoglu and T. Inanc. “Trajectory Generationin Guided Spaces using
NTG Algorithm and Artificial Neural Networks,”American Control Conference,
2006.

[41] M. B. Milam, Ph.D. thesis, “Real-Time Optimal Trajectory Generation for Con-
strained Dynamical Systems”, 2003.

[42] “NPSOL”, http://www.sbsi-sol-optimize.com

104

CURRICULUM VITAE

YINAN CUI

Email: yinan.c@gmail.com

Phone: 502-852-0409

Education

Ph.D. in Electrical and Computer Engineering, University of Louisville, 2007-2013.

M.Sc. in Engineering and Management of Information Systems, Royal Institute of Tech-

nology (KTH), 2005-2007.

BEng. in Electrical Engineering, Zhejiang University, 2001-2005.

Publications

• Y. Cui , and T. Inanc,Multiple Air Robotics Indoor Testbed, 24th Chinese Control

and Decision Conference (CCDC), 2012, pp 3487-3492.

• Y. Cui , and T. Inanc,Controller Design for Small Air Vehicles: An Overview and

Comparison, The IEEE International Conference on Unmanned Aircraft Systems,

2013.

• Y. Cui , and T. Inanc,SUAV Control with Multiple Air Robotics Indoor Testbed,

submitted to the Journal of Applied Mathematics and Computation, 2013.

105

• Y. Cui , and T. Inanc,Optimal Trajectory Generation and Tracking for MARIT

SUAVs with NTG, submitted to the Asian Journal of Control, 2013.

Awards

• University Fellowship Stipend, University of Louisville,2007-2009.

• Teaching Assistant Scholarship, University of Louisville, 2009-2012.

• Doctoral Dissertation Completion Award, University of Louisville, 2012-2013.

Activities

• Visiting student, Aerospace Controls Laboratory (ACL), the Massachusetts Insti-

tute of Technology, 2009.4.

• Vice chair of the robotics and controls session, 24th Chinese Control and Decision

Conference (CCDC).

• Invited presentation: Y. Cui,Multiple Air Robotics Indoor Testbed, 24th Chinese

Control and Decision Conference (CCDC), Taiyuan, China 2012.

• Invited presentation: Y. Cui,Multiple Air Robotics Indoor Testbed Prototype,

Kentucky’s National Science Foundation Experimental Program to Stimulate Com-

petitive Research (KYNSFEPSCoR), Galt House, Louisville KY 2010.

106

	MARIT : the design, implementation and trajectory generation with NTG for small UAVs.
	Recommended Citation

	yinan_final.dvi

