University of Louisville

ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2013

MARIT : the design, implementation and trajectory generation with
NTG for small UAVs.

Yinan Cui
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation

Cui, Yinan, "MARIT : the design, implementation and trajectory generation with NTG for small UAVs."
(2013). Electronic Theses and Dissertations. Paper 296.

https://doi.org/10.18297/etd/296

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/296
mailto:thinkir@louisville.edu

MARIT: THE DESIGN, IMPLEMENTATION AND TRAJECTORY GENERATON
WITH NTG FOR SMALL UAVS

By

Yinan Cui
B.S., Zhejiang University, Hangzhou, China, 2005, EE
M.S., Royal Institute of Technology (KTH), Stockholm, Sveed 2007, EMIS

A Dissertation
Submitted to the Faculty of the
J.B. Speed School of Engineering of the University of Loiliisv
in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

May 2013

MARIT: THE DESIGN, IMPLEMENTATION AND TRAJECTORY GENERATON
WITH NTG FOR SMALL UAVS

Submitted by

Yinan Cui

A Dissertation Approved on

18 April 2013

by the Following Reading and Examination Committee:

Tamer Inanc, Ph.D., Thesis Director

Jacek Zurada, Ph.D.

Cindy Harnett, Ph.D.

Ibrahim Imam, Ph.D.

Robert Powers, Ph.D.

ABSTRACT

MARIT: THE DESIGN, IMPLEMENTATION AND TRAJECTORY GENERATON
WITH NTG FOR SMALL UAVS
Yinan Cui

2013-04-18

This dissertation is about building a Multiple Air Robotibedoor Testbed (MARIT)
for the purpose of developing and validating new methode®{pr collaboration and
cooperation between heterogeneous Unmanned Air Vehidi®gy) as well as expand-
able to air-and-ground vehicle teams. It introduces a nmagitieal model for simulation
and control of quadrotor Small UAVs (SUAVS). The model is seduently applied to
design an autonomous quadrotor control and tracking system

The dynamics model of quadrotor SUAV is used in several cbdesigns. Each
control design is simulated and compared. Based on the atsopathe superior con-
trol design is use for experimental flights. Two methods aeuo evaluate the control
and collect real-time data.

The Nonlinear Trajectory Generation (NTG) software paekiagised to provide
optimal trajectories for the SUAVs in MARIT. The dynamics d&b of the quadrotor is
programmed in NTG and various obstacle avoidance scereneasnodeled to establish
a platform for optimal trajectory generation for SUAVs. Taatlenge the capability of
NTG for real-time trajectory generation, random obstaeled disturbances are simu-

lated. Various flight simulations validate this trajecttrgcking approach.

Key words: UAV, Testbed, Quadrotor, Dynamic Modeling, Optimal Control,

Trajectory Generation, Trajectory Tracking.

ACKNOWLEDGMENTS

I would like to thank a number of individuals for their invalble support in com-
pleting this dissertation. My advisor, Dr. Tamer Inanc, wasy helpful in providing
guidance and encouragement during this process. | am gr&diis insightful advice
throughout these years. | also want to thank Dr. Jacek M.daufar his helpful instruc-
tions. | have enjoyed and learned a lot from the joint sensitlaat he and Dr. Inanc
organized. In addition | would like to thank Dr. Ibrahim Imam@r. Cindy Harnett,
and Dr. Robert Powers for serving in my dissertation coneaitDr. Imam’s valuable
advices during my proposal defense were really helpful. Harnett is always nice and
a pleasure to talk to. When | was taking the geometry coursePBwers was always
ready to help and give excellent suggestions. My gratitusie goes to Ms. Lisa Bell
from the ECE department who has been really patient andulelpér these years.

| thank my parents for always believing in me, and for the haodk and sacri-
fices they have selflessly made to give me support. | must thgn#étear wife Yan for
her support and encouragement, and | am sorry for lettingvh&tfor so long.

Finally I give my thanks to my friends and colleagues. Dr. Bgimg chen, Dr.
Weizhong Zhang, Dr. Sara Shafaei, Elom Akabua, Dr. Yushem Ba Jian Zhao, Dr.
Yongchang Wang, Dr. Lijun Zhang, Dr. Gang Zhao, Dr. Hui Wa8fengpeng Jin,
Qinwei Fan, Guanying Ru, Bin Li, Xiaohui Zhang, Ryan Fraiaed many more made

my life here richer. | am grateful to all of them and cherish fsiendship.

TABLE OF CONTENTS

CHAPTER
1. INTRODUCTION e 1
1.1 UAV:ABriefHistory. 3
1.2 Previousand ParallelWork 9
1.3 Overview and Statement of Contributions 11
2. SYSTEMDESIGN 13
2.1 SystemModeling 13
2.1.1 QuadrotorDynamics 13
2.2 ControllerDesign. 17
2.3 Testbed Structure 22
2.3.1 Hardware Components 22
2.3.2 Software System Structure 28
3. SYSTEMCONTROL i 34
3.1 Controlusing LyapunovTheory 37
3.1.1 Design 37
3.1.2 Simulation 38
3.2 ControlusingLQR Controllers. 40
3.21 Design 41
3.2.2 Simulation 43
3.3 Controlusing PID Technique 45
3.3.1 Design 46

Vi

3.3.2 Simulation 46

3.4 Comparison of Different Controllers 49
3.5 ExperimentwithPIDDesign. 51
3.6 Conclusion 59
4. TRAJECTORY GENERATION 60
4.1 Nonlinear Trajectory Generation 61
4.2 Trajectory Generationin MARIT 65
42.1 ParingNTGwithMARIT 67
4.2.2 Trajectory Generation 69
4.2.3 Trajectory Tracking 87
4.3 Disturbance Rejection Lo 95
44 SUMMAIY o o e e e e e e e 98
5. FutureWork 100
REFERENCES e 102
CURRICULUM VITAE e 105

Vil

LIST OF FIGURES

FIGURE 1.1. Examples of Micro UAVS (MAVS). 2
FIGURE 1.2. An overview of the structure of MARIT. A closeaep UAV con-

trol system is build with Vicon Motion Capture systems [1Bia-

ganflyer quadrotors [20], controller and trajectory getiegaunits,

and the data hostingserver. 3
FIGURE 1.3. Bombing by Balloon, 1848. An creative weapon Austrians

used against the Italian city of Venice. Unmanned ballo@mnsy/e

ing explosives caused backfires due to undesirable winds. .. . 4
FIGURE 1.4. Larynxunmanned aircraft, the prototype of tten8ard E-1 drone,

was used as a guided anti-shipweapon... 5
FIGURE 1.5. N2C-2, first US remotely piloted aircraft (193BeImer Fahrney

Collection 6
FIGURE 1.6. McDonnell ADM-20C-40-MC "Quail” could be caed by Boe-

ing B-52 bombersandusedasdecoys. 7
FIGURE 1.7. The Predator RQ-1L UAV (General Atomics) is dapaf staying

foras much as 40 hoursintheair. 8

FIGURE 1.8. Several modern MAVS. 9

viii

FIGURE 2.1.

FIGURE 2.2.

FIGURE 2.3.

FIGURE 2.4.

FIGURE 2.5.

FIGURE 2.6.
FIGURE 2.7.
FIGURE 2.8.

FIGURE 2.9.

Body frame and earth frame of a quadrotor. The [pbates in-
stalled on each corner are the rotors. The opposite pairaoles!
rotate in the same direction, and the neighboring paireataop-
posite direction. The small dots on the body frame are marker
installed for orientation. 14
MARIT control loop. This closed-loop controlstsgm consists of
high speed cameras, a hosting server, a local network aiamits
andthequadrotors. 17
The RC transmitter channels. Channels 1 to 4 @tepitch,
height, and yaw controls respectively. The fact that theeeoaly
four inputs to control a 6DOF vehicle makes the system under-
actuated. Fortunately due to the symmetry of the quadrtier,
controls could be decoupled. 18
General system controller diagram. Altitudsifht and yaw con-
trol are decoupled from the rest. Longitude and latitude) &ne
controlled inanested structure. 21
A Vicon M2 Camera with a maximum frame rate of 1@6.fThe
camera emits infrared to the field and receives reflectiofectie
and capturetheobjects. L. 23
The Vicon V8 Datastation is the Frame Data CatbedUnit . . . 24
The Workstation Server PC (with yellow tag) and tontroller PCs 25
Live View Window of Vicon iQ. 6 cameras are usediétect the
motions of quadrotors. The two square boxes are the quadroto
models built in Vicon iQ. The live view is reconstructed bycbh
iQautomatically., 26
SC-8000SP (front) Connects RC Transmitterl(ptcController
ClientPC 27

FIGURE 2.10.Draganflyer V Ti PRO Quadrotors 28

FIGURE 2.11.Vicon iQ and RTE Running on Workstation/server. 30
FIGURE 2.12. A Local Network is Established to Connect SetweClients . . . 31
FIGURE 2.13. The Prototype Design of Control ClientGUI 32
FIGURE 2.14. A 3D reconstruction of the Draganflyer in thewtiGUI 33

FIGURE 3.1. Lyapunov attitude controller simulator. Thaenloop uses con-

trollers based on Lyapunov stability theory to maintairtadie an-

gles. The outer loop uses PID controllers. 39
FIGURE 3.2. Quadrotor trajectory tracking using Lyapuntitide controller . 40
FIGURE 3.3. LQR controller block diagram. This general fdothows the state

space model givenin (3.13). The LQR design feeds the statds b

and apply a parameter matri to generate the control law. 42
FIGURE 3.4. LQR attitude controller simulator. The inneopothat controls

the attitude angles adopts LQR technique. The yaw anglesds al

included in the inner loop because of the convenience irgdesi

although it is decoupled from the other variables.44
FIGURE 3.5. Quadrotor trajectory tracking using LQR ati#wcontroller 45
FIGURE 3.6. PID attitude controller simulator 48
FIGURE 3.7. Quadrotor trajectory tracking using PID attéwcontroller 49

FIGURE 3.8. The controller used for each variable in différdesigns. The

inner loop controllers differ from each design, most of thieeos

adoptPID controller.o 50
FIGURE 3.9. Step responses of thecontrollers. bl
FIGURE 3.10. Early stage experiment diagram. The dotteddreepresents the

work station PC (server). In this method, both the servegianm

(Vicon iQ) and the controllers are installed on the same nm&ch

to provided fast debuggingandtesting. 52

FIGURE 3.11. Server-client mode experiment diagram. b3

FIGURE 3.12.PID attitude controllers trying to maintaie tfotation angles at O,

controlled from the server (method 1). Control loop runszag8Hz. 55

FIGURE 3.13.The X, Y positions maintained by nested PID wul&rs atz =
0,y = 0, controlled from the server (method 1). Control loop runs
at12.8Hz.

FIGURE 3.14.The rotation angles when nested PID contr@l€eioing position
control, controlled from the server(method 1). Controldoans
at12.8Hz.

FIGURE 3.15. The rotation angles maintained by PID attitadetrollers, con-
trolled from the client through local network (method 2). fol
looprunsat30Hz.

FIGURE 3.16.The X, Y positions maintained by nested PID wul&rs atz =
0,y = 0, controlled from the client through local network (method
2). Controllooprunsat30Hz..

FIGURE 4.1. Two degree of freedom controller structure. rhgctory gener-
ator provided/,, the feedforward nominal input for tracking, and
Xq4, the reference trajectory. The controller computes thererr
from X, and the system feedback and generates control com-

mandU,. The actual input/ is generated by combining, and

FIGURE 4.2. Inthis hypothetical problem, the B-spline @inas six intervald (
= 6), fourth order § = 4), and isC? at the breakpoints (or smooth-
nesss = 3). The constraint on the B-spline curve (to be larger than
the constraint in this example) will be enforced at the 21ccol

cation points. The nine control points are the decisionadeis

Xi

57

61

FIGURE 4.3.

FIGURE 4.4.

FIGURE 4.5.
FIGURE 4.6.

FIGURE 4.7.

FIGURE 4.8.

One degree of freedom design for MARKT. is the provided ref-
erence,X is the real-time states feedbaekis the error, and/ is

the input generated from the controller. The system is tined
asisshownin(2.14). 66
Two degree of freedom design for MARIT. The tcégey gener-

ator calculates and provides the feasible trajectoyy including

the desired 3D trajectory and yaw angle, and the nominatitipu

which is a feedforward term. The controller takes the esicalcu-

lated by subtracting real-time feedba&kfrom X,; and generates

input U.. The final input to the system is generated by adding up
UgandU,. e e 67
Incorporating NTG in MARIT controldesign. 69
Objective of obstacle avoidance in MARIT. TheMUA supposed

to fly from the initial location to the destination in a 3D spac
During the flight, two waypoints are set to be visited. In tHiss-

tration, four obstacles depicted as spheres are to be alkaoide. . 71
NTG starts by defining the constants and outpe¢sied by ev-

ery loop. In entering the main loop, the obstacles locatems
dimensions are updated, and corresponding constrainsetaad
updated. The trajectory is generated according to the @nst

and data is saved for each loop before going into the next loop
Looping time T is fixed and can be set by the operator. 78
Mode 1 scenario, no obstacle lies on the path.gEnerated tra-

jectory minimizes displacement during the flight. Since beta-

cle avoidance is performed, the trajectory between eaclpaiais

is close toastraightline. 79

Xil

FIGURE 4.9. Mode 2 scenario, one obstacle (the blue sphe®)ntoved to
block the path, locating close to the initial location. NT&etted
the existence of the obstacle and generates trajectoaesbid
the obstacle. Cost function is to minimize the displacendening
the flight. After avoiding the blue sphere, the rest of thgttories
are close to straightlines. 80
FIGURE 4.10. Mode 3 scenario has two obstacles blockingdltie INTG is able
to avoid both obstacles and reach the first waypoint evengtinou
it is located on the surface of the second obstacle. Afteidavy
the yellow sphere, the trajectory continues and passesaghrthe
second waypoint and finally arrives at the destination. 81
FIGURE 4.11. Mode 4 scenario features three obstacles,ditiad to the two
appeared in Mode 3, a third obstacle (the red sphere) is moved
between waypoint 1 and waypoint 2. NTG reacts to the existenc
of the red sphere and makes adjustments in planning thetivaje
by flying the UAV under the red sphere. 82
FIGURE 4.12. Mode 5 adds one more obstacle between the se@ymbint and
the final location. NTG reacts to the fourth obstacle by doddgo
the right side of the obstacle. Cost function is still miremg the
displacement during the flight. 83
FIGURE 4.13. Real-time obstacle avoidance trajectoriemje€tory 1 does not
avoid any obstacle, simply pass through the waypoints amear
at the destination. Trajectory 2 avoids the first obstadle ¢fray
sphere) and ignores the other two obstacles. TrajectornoRisv
both the first and second obstacle (gray and the blue sphete) b

ignores the third obstacle. Trajectory 4 avoids all 3 obetam-

cludingtheredsphere. 84

Xiii

FIGURE 4.14. Another presentation of NTG generating remaéttrajectories. . . 85
FIGURE 4.15. A different perspective of NTG generating {tdale trajectories. . 85
FIGURE 4.16. New work flow to ensure avoidance of obstaclesaittime. . . . 86
FIGURE 4.17.The program detects and avoid obstacles irtirmal Scanning

for obstacles at the end of each control loop, the UAV is set to

hovering if new obstacle is found and wait for NTG to re-gater

new trajectories. The default reference is red and newct@jgis

blue. 87
FIGURE 4.18. The controllers load the reference trajeetoand nominal inputs

from NTG and tracks the trajectories. Each “loading” comsai

reference data for time duration“T”. 88

FIGURE 4.19. The reference contains the outpamd its derivatives, the nominal

inputcontainsthesterms. 89
FIGURE 4.20. Tracking trajectories generated by NTG. 90
FIGURE 4.21. Trajectory tracking as seen from another metsge. 91
FIGURE 4.22. Trajectory tracking as seen fromthetop. 92
FIGURE 4.23.Close-up at the firstwaypoint. 93

FIGURE 4.24.The reference and tracking trajectories. Taeking time is 8.4

secondsz,, y, andz, are the reference trajectories, and andz

are the tracking trajectories. L 94
FIGURE 4.25.The errors of,, r, andr, from their respective references. 95
FIGURE 4.26. The original tracking without any disturbance 96

FIGURE 4.27.Small disturbance occurslat < r, < 1.6. A wind blows from
r, to —r,, exerting a force of 1 Newton on the mass center of the
guadrotor. The controller is able to track the trajectorg arrive

atwaypoint2asplanned. 97

Xiv

FIGURE 4.28. Large disturbance occurslat < r, < 1.6. A wind blows from
r, to —r,, exerting a force of 3 Newton on the mass center of the
quadrotor. The tracking is seen to drift more to the, direction
and away from the second waypoint, but the general shapeof th

tracking still follows the reference. 89

XV

CHAPTER 1
INTRODUCTION

Unmanned aerial vehicles (UAVS), also known as drones,motely piloted ve-
hicles (RPVs) have become one of the fastest growing seictaero-space industry. A
UAV is capable of completing controlled, sustained levejtti while reducing the risk
of human life and lowering operational costs. Accordinghe éstimation of a recent
report [7], the UAVs market will double in the next 10 yearsrfr current worldwide
UAV R&D and procurement expenditures of $5.9 billion to $iLbillion. The dynamic
growth results from the great potential of UAVs in vast ardaghis section, a general
background of UAVSs, including a brief history of UAVs and serof their successful
applications in various industries will be presented. A MitJAV (MAV) is a special
type of UAV with small size and light weight. The research i makes another
growing field in the UAV industry. The MAVs can be carried byrhans or any vehicle

and operate in various situations. Figure 1.1 shows seli&¥dlproducts.

FIGURE 1.1: Examples of Micro UAVs (MAVS).

Controlling Micro-unmanned Air Vehicles (MAVs) in a confiheenvironment
provides a convenient platform for the study of developind @alidating new technolo-
gies for collaboration and cooperation between heteragen&nmanned Air Vehicles
(UAVS). Because of its low cost, simple components and indapability, the MAVS
have become the research subjects of more and more ir@tgutVhile MAVs usually
come with simpler sub-systems and components, controllimegyis not a trivial task.
Even flying a hobby RC plane requires training and practics.desired to have a plat-
form in which multiple MAVs can be controlled easily with niimum risk of damage.

This research is devoted to constructing a Multiple Air Ratsolndoor Testbed
(MARIT) and the development of control algorithms and tcégey generation for MAVS.
An indoor testbed was chosen as opposed to an outdoor onadedite latter is subject
to change due to weather, temperature and many other facwrshe other hand, an
indoor testbed, once established, is always availabledo Moreover, flying vehicles

outdoors brings dangers to both human operators and thelegkhhemselves; an indoor

testbed makes it easier to build protection mechanismsrsagia could be reduced.
With the testbed constructed, multiple MAVs will be conteol automatically to
fly within an enclosed area. The control signals are sent fR&2ncontrollers that are
connected to PCs where the control commands are generadiededtbed is equipped
with overhead high speed Cameras so that the fast movemktiie #AVs can be
captured. Captured data is sent to the controller unitsrta foclosed-loop system, so
the MAVs can be controlled automatically. Users of the tedtban develop their own
controller programs and evaluate the performance. Thesgjregs of freedom (DOF) of
a MAV provides the experiments with various features ingigdgharp turns, high speed
obstacle avoidance and optimal trajectory tracking. Fedue illustrates the feedback

mechanism of the testbed.

6DOF data frame data

» Server

UAV#L ps controllers gglneeit;g <

Cameras

trajectory
6 Vicon M2 UAV#2] £ | controllers generator [

? controllers rajectory | |

individual generator
positions commands

FIGURE 1.2: An overview of the structure of MARIT. A closedelp UAV control
system is build with Vicon Motion Capture systems [18], Daaflyer quadrotors [20],

controller and trajectory generating units, and the datihg server.

1.1 UAV: A Brief History

MAVs originate from the UAV family. The research and devetemt of UAVs

can find its way back to as early as 1848. The Austrians use@uned battle balloons
to attack the Italian city of Venice [1]. A large group of gHless Austrian balloons

loaded with explosives were launched towards Venice, sparé&il.3.

YEPTE RN K'b CT. BOIAYKONAABAHIE.

Yeprid.

FIGURE 1.3: Bombing by Balloon, 1848. An creative weapon #ustrians used
against the Italian city of Venice. Unmanned balloons dagexplosives caused back-

fires due to undesirable winds.

With the help of favorable winds and timed explosive fusesys of the bombs
exploded as planned. This action, though these balloonstdyualify as modern UAVS,

might be the first instance of its type. Similar ideas wergetgs many other occasions.

For example in the American Civil War, the North and Southtzhed balloons carrying
explosives that would drop into the other side’s ammunitiepot and make damage.
These early examples took the advantage of favorable highdd winds, which is
a highly uncertain factor. While these ideas proved to bediffeictive and causing
backfires, the exploration in the UAV area never stopped.

The development in radio control (RC) in the early 20th cgntunade remote
control of a UAV possible. Several traditional aircraftsresenodified and converted
into RC UAVs. Examples are Standard E-1 drone, a modificaban early American
Army fighter aircraft [8], the Larynx (Figure 1.4), a Britishmanned aircraft used as
a guided anti-ship weapon, and the Fairey Queen RC targeaijra model based on
the British reconnaissance biplane model Fairey lll. Tressdy experiments generated

promising results, which brought the development of UAMs i new era.

FIGURE 1.4: Larynx unmanned aircraft, the prototype of tken8ard E-1 drone, was

used as a guided anti-ship weapon.

In the 1930s, the US Navy developed an RC aircraft that coalietinotely con-
trolled from another aircraft, and named it “N2C-2” (Figur&). Soon after the inven-
tion of N2C-2, the U.S. Army Air Force (USAAF) adopted the cept and performed

many successful experiments, including delivering togoatiack remotely, and crash-

ing into moving objects. In World War 1l the US utilized RC @iafts in the combat
against Japan in the Russel Islands and Solomon Islandtatk alapanese merchant

ships, and most were effective [9].

FIGURE 1.5: N2C-2, first US remotely piloted aircraft (193BgIlmer Fahrney Collec-

tion

The research in UAVs continued after World War Il. More mamwtifirers pro-
duced UAVs in their own areas. The “OQ-2" UAV drone by Rada@ were modified
and used as basic training target. The “ADM-20 Quail” by Mabell Douglas, shown
in Figure 1.6, could be carried by Boeing B-52 Stratofosreembers and used as de-
coys. Several UAVs even contributed to nuclear tests. TA& Blying Fortress by Boe-
ing and Grumman F6F Hellcat were both sent to fly over nucleards directly above
the explosion to collect data. Reconnaissance is also arttseUAVs are widely used,
examples are the Boeing “Compass Copes” and the Lockhe&l"DThe US used

thousands of Ryan reconnaissance drones in the Viethaml\War [

FIGURE 1.6: McDonnell ADM-20C-40-MC "Quiail” could be caed by Boeing B-52

bombers and used as decoys.

In the modern era, more and more UAVs equipped with advareethblogy
are being applied in vast fields. As a modern battlefield UA®, tPredator”, shown in
Figure 1.7, by General Atomics, which is able to stay in théai40 hours, was the first
deployed UAV to the Balkans in 1995, and to Iraq in 1996. ModdAVs are not lim-
ited to military uses. Many UAVs have already been succégsdpplied in agricultural
industry, weather research, mineral exploration, costleds well as robotics explo-

ration of remote planets and moons by next generation awotics (aerobots) rovers

[3].

FIGURE 1.7: The Predator RQ-1L UAV (General Atomics) is dalpaf staying for as

much as 40 hours in the air.

The advanced technologies nowadays makes the productsonadfsized UAVs
(SUAVSs) possible. MAVs are those SUAVs that can be carriedhbbyans because of
their small size and light weight. In 1997, the Defense AdeahResearch Projects
Agency (DARPA) began a multi-year development program teeltgp MAVS. The
goal was to develop very small UAVs that would perform taskshsas carrying night
imager with high endurance. Figure 1.8 displays severalamoiMAVs being produced
today. Most of them have vertical take-off and landing (VT)@esign. The MAV being
controlled in this research is a similar model called Drdlyan quadrotor [20], which

will be described in Chapter 2.

MName Size Weight Manufacturer

DelFly Micro 10 cm 3.07 g MavLab
Skyphotix Coax 34cm 280 ¢g Skybotix
Aeryon Scout B0cm 1400 kg Aeryon Labhs
S50Q-4 RECON 24 cm 188 g BCB International

AIRROBOT 100 cm 900 g Westminster

International

ZALA 421-21 22 cm 1500 g Zala Aero

FIGURE 1.8: Several modern MAVS.

1.2 Previous and Parallel Work

In recent years, a lot of work has been done in MAV researche Ghkneral
Robotics, Automation, Sensing and Perception (GRASP) taboy at University of

Pennsylvania has been doing research in quadrotor comtrahbre than ten years

[4, 5]. In 2002, E. Altug et al. from GRASP lab used a ground eerto estimate
the 6 DOF pose (position and orientation) of a quadrotor, tested controllers such
as backstepping-like control law with simulations. The sagroup later improved the
pose estimation by using dual camera visual feedback, intwdm onboard camera was
added to the quadrotor. With this improvement, the groupevadte to apply their pro-
posed pose estimation algorithm and nonlinear controhigcies to a tethered quadro-
tor. During recent years, the GRASP lab upgraded their Vimeaback sensors and
developed high accuracy control algorithms. Vicon Moticap@ire system with high
frame rate cameras were introduced to capture the 6 DOF tidtanomingbird quadro-
tors [11]. The new quadrotors are equipped with onboardarstiip which can im-
plement fast looping attitude control. With these improeamthe GRASP lab is able
to display complicated maneuvers of autonomous flights mtitiple quadrotors. The
Hummingbird quadrotors were able to carry out tasks sucluigdithg simple structures
with light weight blocks, doing 720 degree somersault whiteiding crashing.

The RAVEN (Real-time indoor Autonomous Vehicle test ENwineent) project
in Aerospace Controls Laboratory at Massachusetts Itstifulechnology uses a multi-
vehicle platform to provide a facility for testing low-leveontrol algorithms [12, 13].
Raven also used Vicon system to capture movements with highef rate, but intro-
duced a different type of quadrotor called “Draganflyer”][2@Bince January 2006,
more than 2500 vehicle experiments have been performedWERAINcluding approx-
imately 60 flight demonstrations during a 16-h period at tbeiBg Technology Exposi-
tion at Hanscom Air Force Base near Lexington, Massaclaigedt. The RAVEN team
also solved the battery duration problem of the quadrotontiyding charging stations
to the arena. After each task was completed, the quadrotmutdvautonomously fly
back and dock onto the charging stations.

The Flying Machine Arena at ETH Zurich features a large-sideor workspace

to enable impressive aerobatics research [14]. The rdsezam performed some inter-

10

esting tasks with quadrotors such as playing piano withck stiancing to the rhythms
of music, and controlling the quadrotors with human handuges [15].

The Stanford Testbed of Autonomous Rotorcraft for MultielggControl (STAR-
MAC) project uses an outdoor platform to investigate magjent control of quadrotors
in real-world scenarios [16]. The Vanderbilt Embedded Cotimg Platform for Au-
tonomous Vehicle (VECPAV) project at Vanderbilt Univeysituilt an autonomous in-

telligent control system that replaces human operators [17

1.3 Overview and Statement of Contributions

A brief summary and thesis contributions by chapter:

e Chapter 2 The designing process is presented in this chapter. Thieemeitical
model of the control subject is built, a simulator of the dymes model is devel-
oped to evaluate the responses to inputs. The general designtrollers based
on the model is described, and finally the components of #tbed are explained

in details.

e Chapter 3 This chapter focuses on the development of controllere@MARIT
guadrotors. Several controllers are designed base on tiiniematical model built
in Chapter 2, and for each of the controllers, a simulatoeigetbped to evaluate
the controller’s performance. Moreover, a comparison rfgomed to discuss the
different controllers. Finally, based on the comparisath@xperiments performed

on the actual testbed, the proposed controller is introdluce

e Chapter 4 In this chapter, the Nonlinear Trajectory Generationwafte package
(NTG) by Milam et al. [34] is incorporated into MARIT for optial trajectory
generation. The mathematical background of NTG is predemted MARIT is

modeled and programmed in NTG. Various simulations areldgedo evaluate

11

the co-operation of NTG and the system model. Finally, therctier developed

in Chapter 3 are used for trajectory tracking.

12

CHAPTER 2
SYSTEM DESIGN

2.1 System Modeling

Controlling highly compact electronic devices has potdndiangers. This is
especially true when working with delicate devices like Eiraganflyers. An important
approach to lower the possibility of damage is acquiring @egaate dynamic model.
This section describes the modeling of the dynamics of tle&mpior and the design of

controllers and experiments.

2.1.1 Quadrotor Dynamics

A quadrotor has a square body frame and a rotor blade indtafieeach corner.
The opposite pair of blades rotate in the same directionlevthe neighboring pair ro-
tate in opposite directions. This configuration removesrided of a tail rotor, which
makes the quadrotor different from a typical helicopter. fRost quadrotors, all blades
are fixed-pitched and parallel, with their air-flow pointidgwn to get the lift force
pointing up. The quadrotor has 6 DOF, namely (defined in efaatime) moving for-
ward/backward, left/right, up/down, and (defined in bodanie) rotating around three
perpendicular axes (roll, pitch and yaw). As the coordisgttems shown in Figure 2.1,

the earth frame is denoted &yand the body frame by3.

13

Body Frame

Earth Frame

ZE

XE YE

FIGURE 2.1: Body frame and earth frame of a quadrotor. The jbates installed on
each corner are the rotors. The opposite pair of bladesrotahe same direction, and
the neighboring pair rotate in opposite direction. The $uhals on the body frame are

markers installed for orientation.

Since the actuators (blade propellers) operate indHeame, it is necessary to
establish a mapping from the-frame toE-frame. Following theZ —Y — X convention,
to go from £’ to B, one needs to first rotate aroudg, by angley (yaw), then rotate
aroundYy by angleé (pitch), and at last rotate aroundz by angle¢ (roll). The
Z —Y — X rotation matrix that maps from® back toF is given by € SO3, as shown

in equation (2.1), in whick denotessin() andc denotesos().

cpcl cpslsp — sipegp sso + cpsbco
R=| sypch sipsfst+ cpcp sihsbcd — cipsg (2.1)
—s0 csp clco

14

TABLE 2.1

m mass of quadrotor

F; force on blade propeller
Q; rotor speed

b thrust factor

d drag factor

[lever length

g gravitational acceleration
T torque on frame body

w body angular speed

L diagonal length of the quadrotor
1 body inertia

Liwyy.-- | I @aroundx, y, and z axis
¢,0,1 | roll, pitch, yaw angles
D,q,r angular velocity inB-frame

The symbols that will be used in the modeling are listed indgabl. The New-

ton equations in thé’-frame are obtained from thig matrix as:

m | gp | = 0 + R 0 (2.2)
ZE —mg > Fin

where

> Fip = b(QF + Q5 + Q5 + Q)

15

Expanding (2.2) yields the motion equations in fiidérame as:

Tp = (ss¢ + cpshcd) (it AU AR

m

i = (sysfcp — waw (2.3)
ip = cé)cqsw —yg

Due to the symmetry of the quadrotor’'s frame body, the bodytia of the

guadrotor could be expressed as:

L. 0 0
I'={o0 1, O (2.4)
0 0 L.

The Euler equations i-frame is given by
Iw+wx (Iw) =

inserting B-frame angular variables, one obtains

p p p bl(QF — Q3)
Il g |+ qg|xI|q|=]|0b(2R2-0 (2.5)
7 r r M

where M = d(—3 + Q2 — Q% + Q3). From equation (2.4) and (2.5), The quadrotor

equations of motion ilB-frame is given by :

p= Iyy Izzqr i bl(Qlﬁ;Qg)
. —02
G = L= Izsz+ bL(©23 2 1) (2.6)
vy
Too—1Iyy d(—Q24+02-02+02)

~ L. P4+t T.-

16

2.2 Controller Design

To construct a closed-loop system, MARIT uses Vicon Moti@ptre System
[18] with 6 high frequency overhead cameras to capture th©& Data of the quadro-
tors. A server hosts the frames of all the vehicles and Higtes the data to each quadro-
tor’'s controller PC through a local network. The controdemmands are generated on
the controller PCs in real-time and sent to the Optic 6 tratisrs by Hitec RC trans-
mitter [21]. The RC transmitter operates on 72.79 Hz. Cdietraommands are sent
through the transmitter’s four channels to control the gotmis. Figure 2.2 illustrates

the structure of MARIT.

Server

Processed Frames Data

6DOF data

Controller Unit Transmitter

Local NL‘tWOl-k/ i_sh‘_é
o
—_— ...

@

FIGURE 2.2: MARIT control loop. This closed-loop controlssgm consists of high

Flight Zone

speed cameras, a hosting server, a local network, contitslamd the quadrotors.

The inputs to the system are the 4 RC channels on each traesrkitgure 2.3
illustrates the layout of these channels. The four inpuggdanoted a8, uy, uz, anduy

respectively as in (2.7).

17

b(—Q3% + 02)
b(QF — Q3)
(€2

T+ Q2+ 02+ 03

2.7)

b

d(—0F + Q5 — O3 4+ Q)

Channel 3 Channel 2

Channel 4 Channel 1

FIGURE 2.3: The RC transmitter channels. Channels 1 to 4 atepitch, height,
and yaw controls respectively. The fact that there are ooly fnputs to control a
6DOF vehicle makes the system under-actuated. Forturduelyo the symmetry of the

quadrotor, the controls could be decoupled.

Following the Z-Y-X convention, the body angular speed andr are related

to the derivatives of the angles of rotation, i.e. ral),(pitch ¢) and yaw {)) as follows:

_ p 1 [1 0 -] o -
qg| =10 cop sopch 9 (2.8)
r 0 —s¢p coch ¥

When the quadrotor is in a nominal hovering statandé are small, the follow-

18

ing can be assumed:
P~ 0~0,1 (2.9)

Then the transition matrix in (2.8) approximates a unity natThe system is
modeled under this circumstance and the controllers angris with the following
assumption:

¢~ p
)~ g (2.10)
=T

The objective of the control is to maintain and track the 6 D@kies of each
guadrotor as desired. With the system inputgo u4, one can build the state-space

model of the system by choosing:

X=[tgiayzd0do0y]" (2.11)
T

U= |:U1 Us U3 u4} (212)

Y=[z y z ¢ 0 ¢ (2.13)

X is the states vectot] is the input vector and is the output vector. When yaw|

is controlled to maintain a referengg ~ 0, with the assumption of (2.10), from (2.3),

19

(2.6) and (2.7) one can linearize the model to the form:

T =1 = g0 =grn
Ty =y =—g¢ = —gz1o
Pg=2=> F/m—g=u3/m—g
Tis=2=m
Ts =Y = T2
e (2.14)
Tr=¢~p~u L/l
Ty =0 ~ qg~usL/1,,
Tg =~ T A uyg/ 1.
Tio = ¢ = 27
2 =0 = xg
Tie = 1 = T
Following the above linear model, the system can be desigmed controlled

by a nested controller. The general form of the control diagis shown in Figure 2.4.

20

—
"
=4
* @
=
z
[=]
[}
o
k]
=
=
[=]
[}
=
£ |E
g |2
c
=
=
[
F
Ew
B}
- ==
c =
-l
F 3 i
=
£
T 1= i =
5 |3 E |, £ s |E
£ = |E 2
£ E £
£ £ g
[} 5 £
& o 4
- a o
5 £ E:
= |& E |~ = =
F Y F 3
K]
= £
& 5
-
r=
£
— e —
£ TE £
= k] “ = o
Iz s
= == =z
£ T 2
= — = =
8 -] =
2 K] = E
ey
5 2]
E 3 =
E E E
F Y =
3 |k
Z
&
50
[
Dq— =)
ry _ 18 ry
£
F 3
L

Feference

FIGURE 2.4: General system controller diagram. Altitudeiftht and yaw control are
decoupled from the rest. Longitude and latitude (XY) aretied in a nested struc-

ture.

21

Reference values are provided to the controller to gendhatecontrol com-
mands. The reference consists of three components, thbthefgrence (2), the yaw
reference), and the XY position reference. The height and yaw conueks similar
structure and are separated from the others. The XY positatrol is implemented in
a nested structure. From the linear model 2.14 one can a&cthiecontrol of X with the
control of pitch @), and control Y with the control of rollf). The XY position errors
are calculated in real-time and go through an outer coetrédl generate the desired
pitch/roll angle values. The desired angles are then fuked as the reference to the
inner (attitude) controller. The outer controller in the X¥ntrol structure is PID all
through this research, but different controllers will bsidaed for the inner controller.
When the desired angles are reached, according to the sggteamics from (2.6), the
trajectory is tracked. In the following chapter differetdse-loop inner controllers will

be designed and simulated.

2.3 Testbed Structure

To implement the above design, the hardware components dRIWiAre con-
structed with a series of electronic devices to establishsthucture illustrated in Fig-
ure 2.2. The software system of MARIT includes the drivergoamn for each hardware,
the control algorithms, and the data transmission. This@ets devoted to describing

the hardware and software system of MARIT.

2.3.1 Hardware Components

The general mechanism of this setup shows that while the MaReéslying in
the testbed area, their movements are captured and the di@aare sent to a worksta-
tion/server PC where the individual data of each MAV is dieelcto its own controller

PC. This data feedback pipeline closes the control loop theidMAVs are effectively

22

controlled to follow a desired trajectory. The details ofe@omponent is covered as
follows:

The Vicon Motion Capture System[18] provides accurate motion capturing
and was successfully applied in several testbeds [11, 13MARIT is equipped with
6 Vicon M2 high speed cameras with a superior frame rate 0dUdR0 fps as shown in
Figure 2.5. The cameras are aligned such that any objedsthtttched with reflective
markers can be captured and tracked in real-time. Withiretttdosed area, the Vicon

cameras offer robust motion capture.

FIGURE 2.5: A Vicon M2 Camera with a maximum frame rate of 1@6.fThe camera

emits infrared to the field and receives reflections to loeatkcapture the objects.

Once the frame data is captured, it is sent to Vicon V8 dat#ostéor further
processing and transferring. The Vicon V8 data stationwshia Figure 2.6, is capable

of collecting data from 24 Vicon cameras simultaneously.

23

FIGURE 2.6: The Vicon V8 Datastation is the Frame Data CtibecUnit

The frame data is sent to the workstation PC (Figure 2.7utincan ether-net
connection from the Vicon V8. To retrieve the frame data of ahjects in the field,
the users could write their own programs on the server or erctimtroller PCs using
Vicon RealTime Software Development Kit (SDK). Figure 20®ws the motion capture

window of Vicon iQ running on workstation PC (server).

24

FIGURE 2.7: The Workstation Server PC (with yellow tag) awd tontroller PCs

25

FIGURE 2.8: Live View Window of Vicon iQ. 6 cameras are usedébect the motions
of quadrotors. The two square boxes are the quadrotor mbdatsn Vicon iQ. The

live view is reconstructed by Vicon iQ automatically.

A Server-Client Local Network is established to transfer the frame data from
the workstation server to the controller clients. On thelteare level, all the PCs are
connected to a wired network router. On the software levalp¥V RealTime Engine
(RTE) runs on the server and open socket service to the laetalonk. With the help
of the client sample codes Vicon RTE supplies and knowledgecket programming,
an experienced C/C++ programmer should be able to devetmpamns that share data
within this framework.

The Controller Client PCs run the controller programs and are connected to
the RC transmitters. Frame data is transfered to the clienite used in the control
algorithms. The controller clients generate control comdsafrom the algorithms and
send them to the RC transmitters. All controller clientsoarLinux-kerneled operating

systems (currently Fedora 16).

26

The control commands generated by the controller cliergssant to the RC
transmitters through PC to RC unit. As shown in Figure 2.9, the SC-8000 connec-
tor [19] is used to connect the RC transmitter to the client ®8ce connected, the
connector appears as a serial device in the PC’s hardwarénlisrder to send desired
commands to the connector (and further to the RC transiyitter user needs to initial-

ize the device to proper settings and normalize the valube sent.

FIGURE 2.9: SC-8000SP (front) Connects RC Transmitterkpe Controller Client
PC

For an indoor testbed with constrained space like MARIT £8® x2.7 n?),
qguadrotors offer advantages over fixed-wing UAVs in that dedrotors are able to
hover and maintain their positions. While building a quadrdrom scratch costs time

and is out of the scope of this research, we chose to use thgabiiger V Ti PRO

Iwith the help from the ACL lab at MIT, the SC-8000 driver pragrs on Linux was developed.

27

RC Gyro Stabilized Electric Helicopter from Draganfly Inations Inc., as shown in
Figure 2.10. This quadrotor is 76cm in diameter, weighs 528d offers flight time of
12 - 15 minutes [20]. Each Draganflyer comes with an RC tratemiHowever, the
original transmitter is not compatible with the SC-8000 mector well, so the Optic 6
transmitters by Hitec [21], seen in Figure 2.9, were purebaand used instead. The
Optic 6 transmitter provides 6 FM radio control channels$,dnly 4 of them are used in
the research, namely roll, pitch, yaw and throttle conffble transmitters are connected

to the controller PC through SC-8000 connector interfacedeive and send commands

automatically.

FIGURE 2.10: Draganflyer V Ti PRO Quadrotors

2.3.2 Software System Structure

The testbed consists of several hardware units, with eathrurming its own
software programs simultaneously. This section is devtdetescribing the software

systems that keep the data flow. The data transfer diagrafmedytstem is given by

28

Figure 2.12.

The data flow is first captured by the Vicon Motion Capture 8ystind then
transferred to the data station where it is relayed on to tbekstation/server. This
process is realized by running programs developed with theriRealTime SDK on
the server. At early stage, a socket server program is deselmdependently to achieve
better flexibility (for better data manipulation). Howeykater testings proved that this
program brought in large time delay. As a result, the origifi@on RealTime Engine
(RTE) is used instead, since the RTE comes with a socketrsémead to do the same
thing.

Server. The software programs running on the server include Vi€arthe Vi-
con RTE and control clients (in the initial work). The Vico@ is provided by Vicon
Inc. and must be run in order to initialize the camera systénas a graphical in-
terface in which the operator could manage camera settengs,updating frequency
and threshold values, set up data station connection (IRessléétc.) and many other
powerful features. Since most of the features that Viconn@¥ipes do not apply to this
research, no more details will be discussed here. Figudeshaws Vicon iQ and RTE
running on the workstation/server. The Vicon RTE is alsovjated by Vicon Inc. and
is triggered automatically once the Vicon iQ main prograrstgsted. The RTE runs on
background and starts a socket server to share the live fdatae This socket server
is the crucial component that makes server/client comnatiioic happen. Vicon RTE
listens to the port 800 and sends frame data to correspoctiémgs over network once

a request is submitted.

29

ep -0 ContestHelp -

s o
£ g
= s

2
2 5
= g
z o

g
- d

-
I
EE R R R R R RO RU T R RS RO RE RURTRUSURERURT] |

Follow Seleclion /
" =ralies | [oT ¢ we are now online
TH : Checking if Fully connested to Tarsus...

TH : Yes, Fully connected to Tarsus

T Calculate Vol | D ataStation Realime
| D3 el W

0 ViewOplions Help._+

®
@

it | (1

EREREREERARGERAERRARGRA
A mYaeAE AR RRLRELRR YD
L R I R B B 0 B 0, B 0, R T T B 0 B T R 0 R
B N A A Y
B N N N N N N MY
B N S N N N MY
R R e e e e
PPN IS ®
00 00 00 00 00 D AD G A0 G A0 10 A0 K0 0D B D @ D BB D 0 @

FIGURE 2.11: Vicon iQ and RTE Running on Workstation/server

Clients: For each control clients in the testbed, the corresponstifigvare pro-
grams contain a socket client, the control algorithms angplgcal user interface. The
socket client is developed independently using Vicon ReaTSDK and its function is
to get live data frame by frame in real time. In order to realieal time data transfer,
both the socket client (on the control client units) and thekst server (on the worksta-
tion/server) must be run simultaneously as shown in Figut.2Testings proved the
socket client program is able to update data with adequetgiéncy (50Hz) and brings
negligible time delay.

A graphical user interface is designed and developed focdhgenience of the
operator. Operating the testbed on the client side reqswete routines such as ini-
tializing PC-RC connectors and setting up IP address. Wingpihe trivial tasks and

display the real time information in a graphical interfaogroves the operating effi-

30

ciency. Figure 2.13 shows the initial design of the GUI. Tperator is able to modify
the server’s IP and socket port number on the GUI and clickdbenect” button to start
a new connection. This would be more complex to do with a conthisme console.
Furthermore, one can achieve basic hovering of an indiVitlle/ by simply click-
ing the “TestHover” button. The reserved display area cd@dised to feedback the
frame data, or as a live video displayer if the clients areafaay from the test ground.
Reconstructing the MAVs from the live frame data enablesctient operator to view
the flight in real time. The client GUI is developed on Fedonaulx mainly using Qt
framework and written in C++. More functionalities and opizations will be made for

better operating experience.

server

router >

=

>

FIGURE 2.12: A Local Network is Established to Connect SetueClients

31

MARIT ClientGUI

reserved for display

connect to server

\&i [Connect
Server name: (192168 15.100

Qurt

p A (= o
P K

server port hover command

server 1P

FIGURE 2.13: The Prototype Design of Control Client GUI

32

MARIT ClientGUI

| Connect |
Server name: |192.16815.100 |
Quit
Server port: |BOO | [|
- : TestHover

FIGURE 2.14: A 3D reconstruction of the Draganflyer in theotiGUI

33

CHAPTER 3
SYSTEM CONTROL

To control a dynamics system, the first step is to build theherattical model.
In the previous chapter, the linearized dynamics model efaghhadrotor in MARIT is
established as (2.14). From the states variables givenl1i)Yand by substitutings

with 43 = uz + mg in the input vector given by (2.12), the linearized model ban

expressed in state space as:

X = AX + BU
(3.1)

Y =CX + DU

34

The matrix4 is 12 x 12 as below:

o o O
o o o O

—_
o o o o O

(3.2)

o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o O o o o o «
o o o o o o o
o o o o o o o

o o o o o o o o
o]
o]
o]
o]
o]
(e
]
]
e
]
]

The matrixBis12 x 4 :

]
aw]
o O
aw]

o o o o o

(3.3)

o O o o o o 3=

o o o o o {+
o

35

The C matrix iss x 12 :

C = (3.4)

The Matrix D is6 x 4 and is all zeros:

(3.5)

o o o o o o
o o o o o o
o o o o o o
o o o o o o

To check controllability of the system, the controllalyilihatrix has the form:

M. =|B AB A2B ... AYB (3.6)

M., has the rank of 12, thus the system with the model of (3.1)msrobable.

To check observability of the system, the observabilityrrdtas the form:

C
CA
Mobsv - CA2 (3 7)

CAll

M5, has the rank of 12, thus the system with the model of (3.1) $&ntable.

As mentioned in Chapter 2, the general controller designfesdback con-

trollers to maintain and track altitude/heigh) @nd yaw (/) angle. In the following

36

sections, these two variables are controlled by two sepd&d feedback controllers.
Thex andy are controlled by a nested structured controller as showigare 2.4. The
nested controller consists of an inner loop to maintaintimtéattitude angles¢ and
), and an outer loop to control the positions. This desighmgdlize position control
when the system is close to the state of linearity as destiib@.14). In the following
controller designs, PID controllers will be used for outasp control in all designs. The

inner loop that controls the rotation/attitude angles difler from each other.

3.1 Control using Lyapunov Theory

In this section the Lyapunov controller is used to maintaim desired attitude
angles due to its performance observed in [28]. Other rekees applied backstepping
technique based on Lyapunov stability theory to desigrr tngadrotor control systems

[29], [30].

3.1.1 Design

The positive-definite Lyapunov function (3.8) is deternairiey combining the

states from (2.11).
1) . .
V; = 5[(3)10 — 1’10)2 —+ .T% + (.TH — 1’11)2 —+ .Tg -+ (.Tlg — 1’12)2 -+ .Tg] (38)
It's derivative can be expressed as
V, = (210 — d10)7 + Tr—ui+

]$$

(x11 — &11)2s + $81—U2+

vy

. L
(1’12 — 1’12)1’9 -+ $91—U4 (39)

37

The control law is determined by choosing

Iyy

Uy = _T(xlo - x'lo) — ki

Ug = —%(xn - x'n) - kﬂs (3-10)
IZZ .

Uy = —T(xu - $12) - k4$9

Whenk, ks, k4 are positive, the following stands:

: L L 1
‘/:c = —k/‘l—l’? — k’g—l’é — k‘4—

2 A1
I I, I x5 <0 (3.11)

3.1.2 Simulation

By Lyapunov theorem, the simple stability for equilibriusmnow ensured. The
simulator is shown in Figure 3.1. Since only the inner loops andy adopt Lyapunov
controllers, the height and yaw controller are identicah®one described in Figure 2.4
and are not shown here. The reference values containingetfieedxy position are
compared with the respective real values to calculate ttwrser Then the errors pass
through an outer controller (PID) to generated desirechpaitd roll values. The inner
controller uses Lyapunov theory to achieve the control bf ptch angles. The system
dynamics model is defined according to (2.14). The trajgct@cking simulation is

shown in Figure 3.2.

38

To File

o]
e #
—17y,|E b
2 —l | E
=] e
>
]
= 2
s
A
= D =
& I
E T
l g
£ g & 5
3 T =}
) = 3,
=
d £
=
< 5[§ ¥ E
o | ; OED ¥
Tlela =4 o | B D
b vz —1"a |z 3
= = = i
= = |3 =
= Y
= e
£~ 1 a
= = - o
=
o o 1
] B = =
= o)
£ w T
—_ bl = "
= >_| = &
i £
= =

FIGURE 3.1: Lyapunov attitude controller simulator. Thaeén loop uses controllers

based on Lyapunov stability theory to maintain attitudel@snglhe outer loop uses PID

controllers.

39

Real .
— — — Reference{ .-

70

=

Z position|Meters)
8

Y position|Meters)

X position|Meters)

FIGURE 3.2: Quadrotor trajectory tracking using Lyapuntiit@de controller

3.2 Control using LQR Controllers

The LQR is chosen because of its reliable performance obd@mf13], in which
the authors state the controllers optimizes the vehiclmbilities in hover, while en-
suring the vehicle can respond quickly to position errors.another research [27], by

using LQR technique to minimize the running cost which iggamdional to the velocity,

40

the authors are able to send the air vehicle down to a mineshaf

3.2.1 Design

Since only the attitude controller (inner loop) is concekbe states in (3.1) can

be reselected as:

X = [0 09 ¢ 0 ¢]"
Ut = [Ul Uz U4]T (3-12)
Yatt = [Cb 0 @D]T

a linear model in state space is built:

Xatt = A X + Batt{jatt (3.13)
Yorr = Core Xatt + DareUqst
The matricesA,, Buit, Cotr and D, are acquired from the linear model givenin (2.14),

and their values are shown in (3.14).

o o O
e
o]
o]
e
o]

Aare = (3.14)

- -
= 0 0
0 IL 0
0o 0 £

Batt == # (315)
0 0 0
0 0 0
0 0 0

41

000100

Catr=10 000 1 0 (3.16)
000001
000
D= 10 0 0 (3.17)
000

The structure of the LQR controller is shown in Figure 3.3.e@ontroller is

designed in Simulink and the matrix is tuned as given in (3.18).

0 Ll

D rnadrix Cutput

N

Reference Integratar C matriz

1is

& rnatriz

e

Hl‘-

E rradriz

FIGURE 3.3: LQR controller block diagram. This general fdotlows the state space
model given in (3.13). The LQR design feeds the states badkapply a parameter

matrix & to generate the control law.

0.2544 0 0 100
K = 0 02544 0 010 (3.18)
0 0 02544 0 0 1

42

3.2.2 Simulation

Similar to the case of Lyapunov controller, the LQR congplk simulated in
Simulink, and the simulation model is shown in Figure 3.4.e Tieight controller is
identical to the one described in Figure 2.4, thus is omittexet. The reference values
containing the desired XY position and yaw angle are contpaith the respective real
values to calculate the errors. Then the errors pass thrangluter controller (PID) to
generated desired angle values. The inner controller U&sth achieve the control of
roll, pitch, and yaw angles. The system dynamics model isddfaccording to (2.14).

The performance of tracking the same reference trajecssiiown in Figure 3.5.

43

Tor File

Integratar

To File3

FIGURE 3.4: LQR attitude controller simulator. The innespathat controls the attitude
angles adopts LQR technique. The yaw angle is also includ#teiinner loop because

of the convenience in design, although it is decoupled frloendther variables.

44

Real
— — — Heference|

70

&

Z position(Meters)
g

¥ position{Meters)

X position(Meters)

FIGURE 3.5: Quadrotor trajectory tracking using LQR attgcontroller

3.3 Control using PID Technique

The PID controller is designed to maintain the desireduatétangles. It is cho-
sen because of its robustness as observed in [24] and [28prdiag to [24], the au-
thors applied PD controllers to maintain positions, andealdzh accumulator for height

control due to battery power loss. Others combined bacgstiggechnique with PID

45

controllers to achieve aggressive maneuvers [11]. Ourigmewvork also shows the
PID controller is able to maintain the angles and restrietetrors within 0.1rad [6].

PID controller takes the errors in real-time and multiplgrihwith tuned parameters.

3.3.1 Design

PID controller uses feedback errors to generate controsmprhe error of each
variable is processed and multiplied by the PID control peaters. The control law is
given by equation (3.19), in which,, k;, andk, represent proportional, integral, and

derivative parameters respectively.

Ulatt = Kpp€y + Kdgdy + Kip€is
Uoatt = Kpo€o + Kapean + Kigei (3.19)
Usart = Kppey + Kayedy + Kiyiyp

e denotes the errog, is the derivative of error, ang is the integral of error. Each error

is calculated as:
€p = (bref - Qbreal

€dp = Copcurrent — Egprevious (320)

Cip = D 4.
3.3.2 Simulation

A simulator is created as in Figure 3.6 to simulate the ttajgdracking. Con-
troller parameters are tuned with tools in Simulink. Thegheicontroller is omitted
since itis identical to the one described in Figure 2.4. Aiered in the previous sec-
tion, thexy position controller takes a nested form. The outer cordralses PID and
a constant/g) to obtain the desired roll and pitch angles. In this speciintroller,
the inner control also uses PID to maintain the angles asadesihe parameter values

used in both inner controller and outer controller are diielow.

46

Parameter Inner | Outer

k, |511 |6.67

ki 245 | 0.46

kq 122.16| 9.07

The tuned system is able to track trajectories as shown ar€&ig.7, in which
the dashed line being the reference trajectory, the sol@the simulated tracking tra-

jectory. Detailed comparison of different controllersivaé covered next.

a7

e
=4
Fe

£ad o)

[
feayd
Lejau} <- gn el A
[tay] Ry e aid ppd ald
A - ppd |6 prages .
W | o | mowe |, T =A|AA|AA‘QEE (=3a1d
[T PV i
2
rea ey
O AL <-gh i R el dld Bil PR ald
- 4)
2 zn sap Al SapTPPR
e P P - =A|AA|AA‘EQE (=11
2 w ol il

A

FIGURE 3.6: PID attitude controller simulator

48

— Real
— — — Reference|

70

60

50

g
=

Z position{Meters)

Y position|Meters)

X position|Meters)

FIGURE 3.7: Quadrotor trajectory tracking using PID atl@icontroller

3.4 Comparison of Different Controllers

In the above sections three controller designs are dewveldpee following Fig-

ure 3.8 specifies the control technique used for each varialthe three designs.

49

Outer Loop Inner Loop Altitude Yaw
Design

X y phi theta F4 psi

Lyapunov PID Lyapunov PID PID
LQR PID LQR PID LQR
PID PID PID PID PID

FIGURE 3.8: The controller used for each variable in différgesigns. The inner loop

controllers differ from each design, most of the others a&p controller.

The performance of the above controllers are calculateccangbared. By eval-
uating the step response of each controller, comparisoadkeras regard to factors such
as rise time, settling time, percent overshoot and stetatg-srror (SSE).

To evaluate the quality of the trajectory tracking, a tregegtracking error func-
tion is calculated for each controller. It sums up the sqoétke difference between the

reference and real trajectory as follows:

n

Etrack = Z[(xrefi — xreali>2 + (yrefi — yreali>2 + (Zrefi — Zreali>2] (321)
i=1

The step responses of the controllers are plotted in Fig@reThe readings are
acquired from simulations and listed in Table 3.1. The PIBtamler excels in rise time,
settling time and trajectory tracking error. The LQR coliénchas smallest percent over-
shoot, but gives longer settling time. The Lyapunov colérdias the longest settling
time (more than 15 seconds), similar “lagging” is also obsérin [29]. However, the

Lyapunov controller provides slightly better SSE than LQR.

50

X Position(Meters)

TABLE 3.1

20

unit PID LQR Lyapunov
Rise Time sec 0.135 1.759 1.985
Settling Time sec 1.89 405 >15.00
Overshoot percent 0.108 0.099 0.147
SSE meter(m) 0.0004 0.0232 0.0200
Eirack m? 853 4752 15070
12 T T T T T T T T T
1 | T T T T T T v e e e e R S
0.8} .
0.6} | .
!
P PID
0.4 f . — — —LOR R
x ' Lyapunov
0.2 ,’ 1
N
o
o—"" .
0 2 ;1 é é 1|o 1|2 1|4 1I6 1I8
Time(Sec)

FIGURE 3.9: Step responses of the controllers.

3.5 Experiment with PID Design

51

From the comparison in the previous section, the PID desigalg in rise time,
settling time, and trajectory tracking error. Thus PID cohers are proposed to be ap-
plied in the experiment of hovering. Two different kinds aperiments are performed
using different sets of hardwares. In the first method, hiagerontrol is done by con-
necting the RC transmitters to the server. The server ngtreckive and host the frame
data of the UAV, but also runs the control algorithms andwéelihe control commands.
This compact arrangement allows fast debugging for progranal equipment because

fewer hardwares and communication pipes are involved. Traetsre is illustrated in

Figure 3.10.
Work station Realtine
' positions
Vicon iQ g Controller
A
| control
commands
draganflyers

FIGURE 3.10: Early stage experiment diagram. The dotteddraepresents the work
station PC (server). In this method, both the server progiéoon iQ) and the con-

trollers are installed on the same machine to provided fastigging and testing.

The second method used adopts the server-client strudiukiple controller
PCs are connected to the server via a local network. Dataaisedhamong various
units within the network. Each quadrotor is controlled byirgke controller PC. The
workstation (server) only runs the hosting program andidiste the frame data of each
guadrotor to the local network. The transmission protogdiCP/IP and POSIX socket

interface is used for sending and receiving the data. Thees@rogram is provided

52

by Vicon software package and has multi-thread feature ablerthe data of different
guadrotors to be sent simultaneously. The “NTG” unit stafoddlon-linear Trajectory
Generation, which is a software package for optimal trajgctieneration and will be
covered in the next chapter. NTG generates trajectoriesdoh quadrotor and sends
reference data to the controller units for control commaradisulation. Once calculated,
the commands will be sent to the quadrotors using R/C tratessiwhich are connected

to the controller units. This method is illustrated in Figd.11.

Work station

real-time : i
positions Position
—> Vicon iQ E;’tﬁa""’? ol
v
Communication
— Controller NTG unit |
T A— ;
- Controller = Reference
I trajectory
Control i i
commands Controller |«

Control unit

FIGURE 3.11: Server-client mode experiment diagram.

To analyze the results and evaluate the performance ofgbems, data needs
to be collected accurately. Data generated from the exeetsnwere collected in real
time.

Reference trajectories namelyz,.s, Yres, Zref, Gref, brey @and,.r, are deter-
mined arbitrarily (e.g. for hovering) or generated autaoadlly (e.g. for trajectory

tracking). For basic hovering, the reference trajectorg group of constant values.

53

Thus collecting them is trivial.

Real time 6 DOF data setsnamelyz, ., Yreals Zreats Preats Orear @NAY,cq are
measured using the Vicon M2 cameras in every cycle. Acquittie data is done by pro-
gramming with the Vicon RealTime Engine (RTE) Software Depenent Kit (SDK).
The real time data is directed to a file on the local disk drivlis method produces
a bottle neck in code execution time and slows down the algos when the looping
frequency is high. However, it does not seem to affect theehing when the program
is looping at 20Hz.

Control commands are generated from the control algorithms and sent to the
actuators during each loop. These values are updated ariefsequency as the real
time data, and are collected in the same way.

The following graphs show the data collected from tethesgubaments (string
attached) on the Draganflyer quadrotor in MARIT. The tetles&ing prevents the
guadrotor from flying away or drop to the ground unexpectedly

Figure 3.12 shows the initial performance of the attitudetadlers trying to
maintain Euler angles at zero. In general the controllezsadte to keep the outputs
within the error range of-0.1 rad. The red horizontal dotted lines in each plot represe
the mean value of the outputs. The mean value of the roll atuth gingles shifted
from zero by a small offset. This offset was caused by the mansgtrical shape of the
qguadrotor (mainly because of the placement of the battdily¢. yaw angle has a large

initial error and the responding time is slower than roll @itdh controllers.

54

channel 1 (Roll input)
T T T

Roll output
T

15

20 25
time (seconds)

20
fime (seconds)

channel 2 (Pitch input)
T T T

Pitch output
T

I I
15 25
time (seconds)

channel 4 (Yaw input)

time (seconds)

Yaw output

-0.05
01
=015

@
-0.25

-035

I I I
15 25 15
time (seconds)

FIGURE 3.12: PID attitude controllers trying to maintair ttotation angles at 0, con-

trolled from the server (method 1). Control loop runs at Hz.8

I I I
25 30 35
time (seconds)

40

Figure 3.13 shows the performance of the nested PID coetsathaintaining X

and Y positions in the earth frame at€ 0,y = 0).

55

me

FIGURE 3.13: The X, Y positions maintained by nested PID waldrs atz = 0,y = 0,

controlled from the server (method 1). Control loop runszag8Hz.

Although maintaining the position at givery values does not control the rota-
tion angles to be strictly zero, a hovering state should Isavall rotation angles. Fig-
ure 3.14 shows the values of rotation angles when the nesedddtroller maintains

the position at the above given point.

56

Roll output

FIGURE 3.14: The rotation angles when nested PID contr@léoing position control,

controlled from the server(method 1). Control loop runsza8Hz.

With the completion of the server/client framework, databe to be shared and
controllers are installed on the client computers. Theesérlrent structure lessens the
burdens on the server but inevitably brings larger timeydekigure 3.15 shows the
performance of the same attitude controllers running froendients. The delay in the
control of yaw caused the yaw data to be out of range withirfiteeseveral seconds.

The offsets of roll and pitch angles mentioned earlier wedkiced by tuning the PID

parameters.

57

Roll output

rad

time (second)

Pitch output

rad
-
g
g
T
|

time (second)

Yaw output

rad

time (second)

FIGURE 3.15: The rotation angles maintained by PID attitadetrollers, controlled

from the client through local network (method 2). Contrapauns at 30Hz.

58

me

FIGURE 3.16: The X, Y positions maintained by nested PID waldrs atz = 0,y = 0,

controlled from the client through local network (method@pntrol loop runs at 30Hz..

3.6 Conclusion

In this chapter, three quadrotor controllers are desigoeithé Draganflyer quadro-
tor in MARIT. For each of the design, the controller is simathin Simulink and a test
is done to perform a simple trajectory tracking. Then the garison is done to evaluate
the controllers’ performance according to several catefihe PID design is chosen for
the experiment due to its superior performance. Two metloelsised in the experi-
ments and data is collected from the tethered flights intrersd: Results are plotted to

show the controller’s performance.

59

CHAPTER 4
TRAJECTORY GENERATION

In the industrial world and military field, a large group obptems involve plan-
ning and following trajectories. Examples are usually eys with noise and uncer-
tainty and requires accurate control, such as autonomdusl&s maneuvering in city
streets, mobile robots performing tasks on factor oors ffeergplanets), manufacturing
systems that regulate the ow of parts and materials throptanaor factory, and supply
chain management systems that balance orders and ine@grioss an enterprise [33].

In linear systems, a standard technique is to separate titier into a feedfor-
ward compensator and a feedback compensator. This steyethich provides nominal
input used to track the reference trajectories with thefta®grd compensator, and cor-
rects errors between the reference and real trajectoribsthe feedback compensator,
is referred to aswo degree of freedowontroller [33].

In nonlinear systems, the two degree of freedom design gesuhe trajec-
tory generation and asymptotic tracking problems. To tithte this controller design,

from (2.14) the following state space model is constructed:

T = f(z,u), reR" ueR™
(z,u) (4.1)
y="h(z,u), yeRr
x,u andy are the system’s states, input and output, respectivelyndke the
system track the reference trajectory givenajy a two degree of freedom controller

shown by Figure 4.1 could be applied. This controller is auried with a trajectory

60

generator to generate both the reference trajeatppnd the nominal inpui,.

Xd

e

FIGURE 4.1: Two degree of freedom controller structure. ¥hgctory generator pro-
videsU,, the feedforward nominal input for tracking, aid, the reference trajectory.
The controller computes the error froXy and the system feedback and generates

control command/... The actual input/ is generated by combining,; andU..

In the following sections, the above controller design isdufor the purpose of
linearized quadrotor model control. The controllers useddescribed in the previous
chapter, and the trajectory generator is N@nlinear Trajectory Generatiosoftware

package, which will be covered next.

4.1 Nonlinear Trajectory Generation

Nonlinear Trajectory Generation (NTG), developed at Chltey Mark Milam
[34], is a tool to solve optimal control problems. NTG genesaoptimal trajectories
in real-time for nonlinear systems. Successful applicatiof NTG include navigating
under-water gliders guided by non-neglectable ocean g {85], flight path optimiza-

tion in the presence of wind or multiple radars [36].

61

Consider the system described by (44(),) represents the state of the system,
andu(t) is the control input fot € [to, tf]. In the realm of real-analytic, it is desired to

find a trajectoryr, to minimize the cost:

J=m@@muw»+@mwmu%»+/fummu®Mt (4.2)

to

subject to
lby < bo(x(to), ulto)) < ub,
Iy < wy(a(ty), ulty)) < uby, (4.3)
by < S(z,u) < uby,

respectively. The cost functiosh can be break down to three components:
represents the final condition; is the initial condition, and. is an integral cost over
the trajectory. The above equations represent a standéndabgontrol problem. With
complicated constraints and dynamics, this kind of prolsi&ecome too difficult to be
solved analytically. Fortunately, with the availabilitylarge number solvers in nonlin-
ear programming (NLP), the above problem could be solveddnstorming them into
NLP problems, which is the method that NTG employs.

The NTG approach consists of three main steps [34]. The §irstapping the
system (4.1) to a lower dimensional output space. This mdateymining a set of
output so the cost function (4.2) and constraints (4.3) @ambpped to a lower output
space. The second step is to parameterize the outputs is tdrBrspline curves. Fi-
nally, nonlinear programming is used to solve the B-sploaedficients in output space,
which will minimize the cost subject to the constraints.

Mapping outputs
The purpose of this step is to find an outputdf system described by (4.1) in the form

of:

z=a(z,u, vV, .. . u") (4.4)

62

whereu is theith derivative ofu with respect to time. The system needs to be
differentially flatin order to be further investigated. A system of the form a@lid) is

said to be differentially flat [33] ifz, u) can be completely recovered from:

r=p0(z21, ..., 2) (4.5)
u="(z,zV, ...)
wherez " is theith derivative ofz with respect to time. A necessary condition
for the existence of such an output can be found in [38], cabes a flat output cannot
be determined are discussed in [39]. For a differentialtysyestem, all of the feasible
trajectories for the system can be written as functions @ftafitput: and its derivatives
[33].

Parameterization with B-Splines

The second step of NTG is to represent the outputs in termsSylBe curves
[39]. The reason for this step is that the system model (hd}lae constraints (4.3) are
usually so complicated that to minimize the cost functioiz4déecomes very difficult.
One approach to solving optimal control problems, which Nei@loys, is to transform
them into NLP problems using B-spline functions, and sadheegroblem numerically.

In this step, the outputs found in the previous step are petenmed with a finite-
dimensional approximation. B-splines are desirable asslodigunctions to parameter-
ize the outputs because of their compact (local) suppose efenforcing continuity
at breakpoints, and numerical stability. This process rfopmed as for each output,
with orderk;, continuityC*® or smoothness;, and knot breakpoints = ¢, .. ., tx, will
be selected in consideration of the maximum derivativedhatrs in the output and the
number of desired decision variables [41]. The detailedp&terization is done as fol-

lows, and a sample spline trajectory is depicted in Figuze 4.

63

q1
2 = 3" Bix, (t)C} for the knot breakpoint sequeneg
i=1

q2

2 = >~ Bi,(t)C? for the knot breakpoint sequeneg
i=1
qn

Zn = > B, (t)CP for the knot breakpoint sequencg
i=1

whereq; = [;(k; — s;) + s; andl; is the number of knot intervals for thigh
output. B; x,(t) is the B-spline basis function. With the outputs parameeetias above,

the coefficients”’ will be found using nonlinear programming.

T T
Control Polygon
O Control Points (Coefficients)
—— B-spline Curve
o O Knot Points il
\ —— Constraint
A Collocation Points

1.5

14

X (m)

0.5

-0.5

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Time (s)

FIGURE 4.2: In this hypothetical problem, the B-spline @ihas six intervald (= 6),
fourth order ¢ = 4), and isC? at the breakpoints (or smoothness 3). The constraint
on the B-spline curve (to be larger than the constraint is ¢iiample) will be enforced

at the 21 collocation points. The nine control points aredid@sion variables [41].

64

Transformation into Nonlinear Programming Problem

The final stepin NTG is to solve the B-spline coefficient usaguential quadratic
programming packages such as CFSQP and NPSOL [39] [40].cSeg.2) and (4.3)
are evaluated discretely between time inteffyglt,,|, they can be translated into the

following NLP problem inC; [40]:

mnF(C), CeRrr (4.6)

subject to

L<G(C)<U (4.7)

WhereF(Z*)) is the transformed cost function (4.2), ad = [Cy...C)T .
G(ﬁ) is the transformed constraints (4.3). Now the only thing ¢oigl solving the
transformed problem with any nonlinear programming tami éxample, NPSOL.

In this section the trajectory generator that MARIT reploes NTG, is intro-
duced. In the next section, several trajectory trackingplems in MARIT will be mod-

eled and programmed with NTG.

4.2 Trajectory Generation in MARIT

MARIT controls multiple UAVs in a closed-loop. According tbe dynamics
analysis done in previous chapters, the quadrotor congsiem is considered as lin-
ear when the angles of rotation are small, as is shown in 2.Td maintain such a
linear system at hovering, linear control techniques, a&hQR and simple feedback
controllers are theoretically sufficient. This approacfrégjuently referred to as@ne
degree of freedordesign. The one degree of freedom design for MARIT is shown in

Figure 4.3, it is also the approach that the previous chdplemwed to designing and

65

testing the controllers.

Xr S~ € U
T T q T 1
X

FIGURE 4.3: One degree of freedom design for MARKI. is the provided reference,
X is the real-time states feedbaekis the error, and’ is the input generated from the

controller. The system is linearized as is shown in (2.14).

However, when optimization is taken into consideratiomeesally optimizing
with nonlinear constraints must be performed, the one @egiéeedom design gener-
ally does not work well since the system is likely trackingtarg equilibrium configu-
ration, which is an infeasible trajectory of the system [3dhe two degree of freedom
design as is described in the previous section is a possiéian. Consisting of a
trajectory generator and a feedback controller, the twoekegf freedom design pro-
vides both feasible feedforward reference and feedbadklig&tion. This more com-
plex structure enables the system to track feasible t@jgethile maintaining stability.

Figure 4.4 illustrates the two degree of freedom design fAIRNT.

66

Xd "
Uc +~N\ U MARIT
+ f \ '
) .) : \ (linear system)
X

FIGURE 4.4: Two degree of freedom design for MARIT. The tctpey generator cal-
culates and provides the feasible trajectary including the desired 3D trajectory and
yaw angle, and the nominal inplt,, which is a feedforward term. The controller takes
the errore calculated by subtracting real-time feedbackrom X,; and generates input

U.. The final input to the system is generated by addingupndU...

It is to be noted that, while the MARIT system itself is treht&s linear, the
trajectory generator might be nonlinear. This is why NTGassidered for generating

feasible trajectories for the MARIT testbed.

4.2.1 Paring NTG with MARIT

Figure 4.5 illustrates how NTG functions in the MARIT envirment. NTG
takes in constraints from the operator and generates toayeior MARIT. These con-
straints include the initial, trajectory and final congttaj and cost functions to mini-
mize. Details will be covered in the next section.

Generally the controls of the quadrotors in MARIT are gralijpgo two sections

because of their similarity in design. One is the latitudeé lmgitude (, i) control, the

67

other is the altitudez) and yaw (/) control. The design of the controllers are described
in the last chapter, and this section will focus on the trtajgcgeneration.

The goal of control is to track trajectories given in 3D. Cdesing the dynam-
ics of the quadrotor, it is impossible to control the positie, y directly, so the nested
controller structure was designed as described in the kagtter. This brings up an
underlying constraint that the angles of rotation must ba kenall during the whole
trajectory tracking, because only when the angles are sthallsystem can be consid-
ered linear. These constraints are specified in the nexbsect

In the upper half of Figure 4.5, the NTG component providesitde reference
for altitude ¢) and yaw angley(), and also the nominal inputs for both. In the lower
half NTG does the same thing to theandy positions, but provides two sets of nominal
inputs,Usq, Uyq andUyperaa, Upnia. This is because the linear relationships between the

positionsr, y and angle$, ¢ as described in (2.14) result in a nested controller stractu

68

=
Ew
g8
= B T
55 J
+ +4ALE | =
[7]
o5 |85
=&
. o =
N O - 'z
35 3
.\}(—
N B
§ B
1= e - .
] —
[fi:TJr\

Xd
Yd
e
(e
X
¥

Contraints

FIGURE 4.5: Incorporating NTG in MARIT control design.

4.2.2 Trajectory Generation

Typical applications of trajectory generation include taloke avoidance by a

robotic vehicle, minimum time missile interception of anlagarget, formation flight

69

of micro satellites with coverage constraints, and a rapahge of attitude for an un-
manned flight vehicle to evade a dynamic threat [41]. In theRWAtestbed envi-
ronment, a series of simulations were designed and cordibgteombining obstacle
avoidance with other constraints to evaluate the perfoomarf NTG. The dynamics
system is modeled as shown by (2.14), and the feedback dentrare nested PID
control designed as described in the previous chapter.

The general goal of these simulations are stated below:
e Moving from the initial location to the destination in 3D sjga
e Avoiding multiple (randomly appearing) obstacles durihg flight
e Visiting several fixed waypoints
e Minimize trajectory length and/or kinetic energy during fight
e Guarantee precision of initial and final location
e Maintain the angles of rotation as needed to ensure therlmedel is valid
e Limiting the speed and accelerations alang andz
e Limiting the speed and accelerations of angles of rotatighand as needed

Figure 4.6 shows a possible scenario of obstacle avoidan®@ARIT. The
guadrotor will start from the initial location (the greentdd bottom left) and fly to the
destination (the green dot at upper right). There are foatamtes (colored big spheres)
located in the way to prevent the quadrotor from flying disettd the destination. Keep-
ing a safe distance from the obstacles is required. Two waigp(green dots) are to be
visited during the flight. To make the trajectory harder tagmate and track, one of the
waypoints (waypoint#1) is located very close one of theatiets (on the surface). The
above mentioned constraints are used to regulate thetvajeyeneration, and the flight

time is fixed between neighboring waypoints.

70

P L X
L *
destinat T
estination Ve
12 — ° 4 \\
/ \ oa

\ ¥
\ \ B 0.4
initial locatlon ‘\ ¥
° | ry J;
A T
~
\

waypomt#l wavpomt#Z /X

¢(-0.5, 0.5)

e ¢{0,3)

¢(-0.1,1.2)

FIGURE 4.6: Objective of obstacle avoidance in MARIT. TheMWUA supposed to
fly from the initial location to the destination in a 3D spadeuring the flight, two

waypoints are set to be visited. In this illustration, fobstacles depicted as spheres are

to be avoided.

71

As described in the previous section, NTG follows three stepgenerate the
optimal trajectory. The first one is to map the outputs to aglodimension. In order
to do this, the system needs to be differentially flat. In otdeprove the differential
flathess of the MARIT quadrotor model, the states of the systee listed below, with
rz,r, andr, denoting the distance alongy andz axis, andg, § and denoting the

angles of rotation:

_ . - _T:B_
Ty Ty
T3 Ty
Ty Ty
Ts Ty
Tg Ty
T Tz
Ts T2
= |7 = " (4.8)
T10 ¢
T11 ¢
T12 ¢
13 0
14 0
15 0
L16 (U
L7 ?/)
| L18 | _?L |

and the inputs to the system is:

72

Uy Cb
U9 6

u = = (4.9)
Uz Tz

By choosing the output as:

21 Ty
V4 T

2= ? - ’ (4.10)
Z3 Tz
24 _Q/}_

According to the linearization of (2.14y, is in linear relationship witty, and
7, IS in linear relationship withp, it is obvious by observation thatandw is able to be
written as the functions of and its finite number of derivatives. Thus the rule stated by
(4.5) is satisfied. Now it is shown that the MARIT quadrotondgnics model defined
above by (4.8) and (4.9) with linearization (2.14) is diéfetially flat.

With the outputs mapped, the constraints are ready to béfigukio terms of flat
outputs. In the scenario illustrated by Figure 4.6, the tairgs and cost function are
defined as in Table 4.1. Each of the constraints and costitumist listed below, where

(G is the gravitation acceleration, determined to be 9.81.:

73

TABLE 4.1

Item Name Abbreviation| count
Linear Initial Constraints LIC 16
Linear Trajectory Constraints LTC 12
Linear Final Constraints LFC 6
Nonlinear Initial Constraints NLIC 0
Nonlinear Trajectory Constraints NLTC 4
Nonlinear Final Constraints NLFC 0
Cost Function N/A lor2
LIC

N
o]
(e
Il
<
<
—~
(e
N
Il
|
)
<--
—~~
Nt

(4.11)

217(0) = (0)

The linear trajectory constraints are shown in (4.12). €hmmstraints are the

74

ones that the UAV needs to satisfy during the flight. Each wutpfalls into a close
range between a minimum and a maximum value. The, andr, are limited within
an area to prevent the UAV from flying out of the MARIT indoorveonment. The
angles of rotation are restricted within a small range taemnghe model to be linear.

The speed and accelerations are constrained to make sonuiaalizable.

LTC
20(t) = 12(t) € [romins Tomaal;
z5(t) = 1y(t) € [Pypmin: Tyma)
210(t) = 7:(t) € [Pemins "2maal;
z21(t) = &(t) € [Fomin, Tomas),
25(t) = §(t) € [Fymin Pymaal,
210(t) = 2(t) € [Fomins Tomaz), (4.12)
2o(t) = GO(t) € [GOnmin, GOrmaz),
z(t) = —Go(t) € [=GPmaz, —Gdmin),
215(t) = ¥(t) € [Ymins Ymaal,
2(t) = G(t) € [Bmin, Gmaal,
2(t) = 0(t) € [Omin, Oma)
217(t) = O(t) € [Wnin, Yrmaa),

The linear final constraints are listed in (4.13). The finatest of the 6DOF are
provided by the operator. The values of these final statesldti® checked to insure

the feasibility of the trajectory. For example, a locatiorangle too far or too large will

75

be infeasible to achieve with other constraints satisfied.
LFC
20(f) = ra(f),
% (f) = ry(f),
z10(f) = r:(f), (4.13)
2(t) = GO(f),
z(t) = =Go(/f),
215(t) = ¢(f)7
In this scenario no nonlinear initial constraints and nogdir final constraints are
present. The nonlinear trajectory constraints are list€d.iLl4). Ther,,, y,, andz,, are

the location of the obstacles,,;, andd,,., are the distance bounds to keep from the

obstacles.
NLTC
V(e — 2o1)? + (ry — You1)? + (2 — Zop1)?) € [dmin, dinaa),
Ve — 2op2)? + (ry — yon2)? + (12 — 2012)?) € [dimins diaz) (4.14)
V(e — To3)? + (ry — Youz)? + (2 — 203)2) € [dmins dinaz]s
\/(Tz — Zopa)? + (1y — Yoba)2 + (72 — 2Zopa)?) € [dimin, dimaa);

According to the purpose of the operation, it is up to the afmerto decide which
cost function to use. Two different cost functions have bested. One is to minimize
the kinetic energy during the flight, the other is to minimize total displacement during
the flight. These are shown in (4.15) and (4.16) below, whedenotes the mass of the

UAv, I,., I, andl,, denote the moment of inertia around three body frame axes.

%m(m)z + %m(m)Q + %m(m2 + %Im(a'ﬂz + %Iyy(éf + %Izz(zz})? (4.15)
T
/ [\/ (F2)? + ()2 + ()2 | dt (4.16)
0

76

TABLE 4.2

Parameter Notation| Value
intervals I 4
order k 5
smoothness S 3
number of coefficients I(k-s)+s
breakpoints nbps 45

With all the constraints and cost functions defined, the sé&tep in NTG is
to parameterize the outputs with B-splines as the form@) = >, B;,,(t)C;. To
do this, the following parameters need to be determined &y ferator, the values are
chosen through trial and error to achieve good performamtesi MARIT model.

After the outputs are parameterized, the problem is readheteolved by NTG
using nonlinear programming tool. NTG uses NPSOL [42] tvsdhe nonlinear pro-
gramming problems that are converted from the originalogticontrol problems. NTG
is programmed to solve the trajectory generation task forRVIAIn a “discretized”
method. The process flow is shown in Figure 4.7. NTG runs inrdrothed looping
to generate trajectories. Obstacles information will béaipd in each loop, constraints

are adjusted accordingly, and new trajectories are gegtktatfulfill the updated con-

straints.

77

FIGURE 4.7: NTG starts by defining the constants and outpegsied by every loop.
In entering the main loop, the obstacles locations and démes are updated, and cor-
responding constraints are set and updated. The trajastggnerated according to the
constraints and data is saved for each loop before goingtietoext loop. Looping time

T is fixed and can be set by the operator.

To evaluate NTG’s ability of real-time trajectory genemngtiin MARIT envi-
ronment, two sets of designs are carried out in the simulat®oth are for obstacle
avoidance. The first one scan for obstacle at preset waygpanat generates optimal ref-
erence trajectories. The second one scan for obstaclesgitex frequency and updates

reference trajectories once new obstacle is detected.

78

“Mode 1” scenario has no obstacle blocking the path, NTG gere optimal
trajectory without obstacle avoidance. The generateédtajy starts from the initial
location and passes through two waypoints, and arrive atiéiséination. Figure 4.8

illustrates the trajectories generated for mode 1 from &hifierent perspectives.

FIGURE 4.8: Mode 1 scenario, no obstacle lies on the path. gémerated trajectory
minimizes displacement during the flight. Since no obstaetedance is performed, the

trajectory between each waypoints is close to a straigét lin

In “Mode 2” there are 1 obstacle located on the path betweemihal location
and the first waypoint (the small green dot) near the inicabtion. NTG is able to rec-
ognize the obstacle and plan trajectory that avoids it atigfgiang the other constraints.
Trajectories are generated to minimize the displacememtglthe flight. Figure 4.9

shows the trajectory and obstacles in 4 different perspeti

79

FIGURE 4.9: Mode 2 scenario, one obstacle (the blue sphasejrfoved to block the
path, locating close to the initial location. NTG detectbd existence of the obstacle
and generates trajectories that avoid the obstacle. Costidun is to minimize the dis-
placement during the flight. After avoiding the blue sphdhne, rest of the trajectories

are close to straight lines.

“Mode 3" has two obstacles located on the path (the blue gphed yellow
sphere). One is in between the initial location and the firgypoint, the second is
located between the first and the second waypoint. Figueilustrates the trajectories
generated for scenario 3. NTG reacts to the existence ofda@ysphere by flying the

UAV to the left and passes the yellow sphere closely from ¢ffteside.

80

FIGURE 4.10: Mode 3 scenario has two obstacles blocking #te.pNTG is able to
avoid both obstacles and reach the first waypoint even thitigjlocated on the surface
of the second obstacle. After avoiding the yellow sphere ttajectory continues and

passes through the second waypoint and finally arrives atdstnation.

Figure 4.10 shows mode 4 trajectory generation. Three destappear on the
path and NTG is able to avoid all of them and generate the @ptirajectory while

minimizing the whole displacement during the flight.

81

FIGURE 4.11: Mode 4 scenario features three obstaclesgditianl to the two appeared
in Mode 3, a third obstacle (the red sphere) is moved to betwesg/point 1 and way-
point 2. NTG reacts to the existence of the red sphere andswaafastments in planning

the trajectory by flying the UAV under the red sphere.

“Mode 5” places four obstacles on the path, in addition to 3hebstacles in
Mode 4, a fourth obstacle (the cyan sphere) is placed bettteesecond waypoint and

the destination location. Figure 4.12 shows the differemspectives of the trajectory.

82

FIGURE 4.12: Mode 5 adds one more obstacle between the segypubint and the
final location. NTG reacts to the fourth obstacle by dodgimdhte right side of the

obstacle. Cost function is still minimizing the displacerhduring the flight.

Up to this point, NTG is able to complete obstacle avoidamcefi 5 obstacle
placement scenarios. With the configuration determinedainlel4.2 and constraints
provided, NTG proves to be competent for optimal trajecigpeperation for different
obstacle situations in the MARIT simulation environment.

Figure 4.13 shows the several different trajectories NT@lpces. The goal is
identical to the previous settings, which is to go from thi#ahlocation (upper right
green dot in this graph), pass through 2 waypoints, andeaatithe destination (lower
left green dot). While minimizing the displacement durihg flight, NTG ensures the

trajectory satisfies the various linear and nonlinear ¢aimds provided previously.

83

FIGURE 4.13: Real-time obstacle avoidance trajectoriggjettory 1 does not avoid
any obstacle, simply pass through the waypoints and arawvtse destination. Trajec-
tory 2 avoids the first obstacle (the gray sphere) and ignive®ther two obstacles.
Trajectory 3 avoids both the first and second obstacle (gnalytle blue sphere) but

ignores the third obstacle. Trajectory 4 avoids all 3 obstaincluding the red sphere.

To reflect the real-time calculation with less distractioasimpler scenario is
shown in Figure 4.14. Obstacles may appear between the wagpbut only one ob-
stacle will be present. When the UAV reaches the first wayir{the green dot at bottom
right), if the smaller obstacle is present, NTG generatesed (lower) trajectory for the
UAV to avoid it. If the bigger one is present instead, NTG gaites the black trajectory
to go over the obstacle. These two different piece of trajgainerge from and into the

same trajectories at the first and second waypoint.

84

FIGURE 4.14: Another presentation of NTG generating remkttrajectories.

Figure 4.15 shows the view from nearby the second waypolm.tivo different

trajectories merge into the same trajectory when arrivirth@asecond waypoint.

FIGURE 4.15: A different perspective of NTG generating +&ale trajectories.

85

The above control work flow scans obstacles at each waypoetu¢ling the ini-
tial point). However, the fact that the location of the olbta are updated at these points
has potential problems. First, if the UAV is on its way fromeomaypoint to another,
it does not scan for new obstacles, which may lead to crushizug obstacle appears
during this period. Second, NTG may take some time for geimgraew trajectories at
each waypoint, then the UAV has no reference until new ttajexs are generated. To

solve these potential problems, shown in Figure 4.16, a nexk flow is designed.

No obstacle

!

Load Trajectory =g (1111()| =3 ook for obstacle
A

Hover &
Re-generate ¢
Trajectory obstacle detected

FIGURE 4.16: New work flow to ensure avoidance of obstaclesahtime.

This new work flow begins with loading the default trajectaryd use it as the
reference in its operations. It scans for obstacles at tdeéaach control loop, which
usually runs at high frequency for air vehicles control. dfabstacle is found, the pro-
gram goes back to loading reference trajectories and agatime loop; if obstacles are
detected, the program sets the UAV to hovering, and re-gémeew reference trajecto-
ries. Following this new design, the program is able to dedad avoid new obstacles
whenever it appears, not just at the waypoints. A simulaticthis design is illustrated

in Figure 4.17.

86

1.2

0.8

0.6

FIGURE 4.17: The program detects and avoid obstacles intireal Scanning for
obstacles at the end of each control loop, the UAV is set teetiong if new obstacle is
found and wait for NTG to re-generate new trajectories. Téfault reference is red and

new trajectory is blue.

From the examples above, NTG proves to be able to generdtgémeaobsta-
cle avoiding optimal trajectories for the MARIT quadrotoodel. In the next section,
controllers designed in the previous chapter will be apjtidrack the trajectories gen-

erated by NTG in this section.

4.2.3 Trajectory Tracking

The previous sections shows how NTG generates optimattoajes for MARIT

in various situations. The section will describe how thetodters designed in the pre-

87

vious chapters works with NTG to track the reference trajees. Figure 4.5 displays
the incorporated structure of nested controllers workiit) WTG to track trajectories.
The tracking adopts the two degree of freedom design as shrowigure 4.4. NTG
provides the controllers with not only the reference trimjges, but also the nominal
inputs to produce the reference trajectories. The referénagectories are used to com-
bine with the feedback to generate the controller input,taechominal input is used as
feedforward term to add to the controller input. The finaluhip the system is the sum
of controller input and the feedforward nominal input. Th&wde and yaw control are

performed separately from the latitude and longitude @bntr

FIGURE 4.18: The controllers load the reference trajeetoand nominal inputs from
NTG and tracks the trajectories. Each “loading” contairisrence data for time dura-

tion “T".

88

Figure 4.18 illustrates the tracking in the framework ojectory generation. The
controllers load the reference data and nominal inputs neigee the final inputs to the
system. The reference data include the outputs defined in (4.10) and its derivatives.
The nominal inputs that are used in the feedforward conthiesalues corresponding
to the system inputs as defined in (4.9). Figure 4.19 shows the data that is loaded f

NTG and used to generate the inputs to the system.

ey Byps Py Pz Pip Bay Ty s T +
6,00, 6,0,90, 6,6, T + inputs
reference "‘_j v

T feedback

FIGURE 4.19: The reference contains the outpand its derivatives, the nominal input

contains the; terms.

The obstacle avoidance “mode 5” scenario is chosen to denatathe tracking
because it has more obstacles than other modes. Figurerb2@ ghe result. As is in
mode 5, the reference starts from the initial location argbpa through two waypoints
before arrives at the destination at the upper right corfighegraph. Four obstacles
with the shape of spheres are on the path to block the UAV. Thehbstart point of the
UAV is different from the initial location of the referencedis located on the ground
(r. = 0). This designed on purpose to examine how fast the contsatken react to the
large difference. The reference is displayed by the blakgsbf dots, and the tracking

trajectory is in dark green.

89

FIGURE 4.20: Tracking trajectories generated by NTG.

In Figure 4.21, the difference between the initial locatadrthe reference and
the start point of the actual UAV is shown more closely. Thetodler is able to “catch
up” with the reference quickly. From the graph the trackimagectory reaches the initial
location of the reference (the green dot close to the viewéhin ten iterations, each

iteration is designed to be 0.0056 second. Thus the coeatrislfast enough to even out
the initial difference.

90

FIGURE 4.21: Trajectory tracking as seen from another atsyge.

The top view as Figure 4.22 shows gives yet another perspeaditthe trajectory

tracking.

91

FIGURE 4.22: Trajectory tracking as seen from the top.

A close-up around the first waypoint is shown by Figure 4.28e ©an observe
that although there exists a steady state error betweewthedjectories, they are close
enough to pass through the waypoint dot, which is a smallrephéh the radius of 2
centimeters.

The reference and tracking trajectoriesronr, andr, of the above tracking are
plotted in Figure 4.24. The running time of this trial is 8&cends. Distance on each

axis is measured in meters.

92

FIGURE 4.23: Close-up at the first waypoint.

93

Trajectory Tracking on x
251 — -

- — —Xr

distance (meters)
A\

0.5F N

0 | I I I I I I I
0 1 2 3 4 5 6 7 8

time (seconds)

Trajectory Tracking on 'y

distance (meters)

time (seconds)

Trajectory Tracking on z
T T T

distance (meters)

time (seconds)

FIGURE 4.24: The reference and tracking trajectories. Tdking time is 8.4 seconds.

x,,y, andz, are the reference trajectories, and andz are the tracking trajectories.

The errors during the tracking are plotted in Figure 4.25e Pplot is generated

94

from 1500 sample values for each variable, and the errorsassured in meters. The
initial large error ofr, reflects the difference at the initial location mentioned\ah

The rest of the plot generally limits the error within2 cm.

0.20
|

— xerror
y error
------ z srror

error value (meters)

0.05
1

sample number

FIGURE 4.25: The errors of,, r, andr, from their respective references.

4.3 Disturbance Rejection

The previous section proves the controllers are capableoking the optimal
reference trajectories NTG generated. In this sectiomdiances will be modeled and
add to the system for the purpose of evaluating the contsbllebustness.

Taking the “Mode 5” obstacle avoidance that is being trackethe previous

section for example. Possible disturbance during the itngakight be a sudden gust of

95

wind at certain locations. The force exerted on the UAV weBult in a certain amount
of acceleration. The following simulation introduce a sedcceleration to the UAV
along the—r, direction when the UAV is passing through the area whee< r, < 1.6.

Figure 4.26 - Figure 4.28 show how the controller is reactindifferent magnitudes of

“winds”.

\\
\ \
\\ \ \
\ \ \
\ 1\
\ \\ \.‘
\ \ \ ;
\ \ /-
\ \ \ P
Y A \ S
\ A\ \ A
\ \ _V
\ \ g
\ \ 25
\ X -
\ . i i
\ Ve 2
\ P
e =
\ P 4 15
P -
\ /'/ 25 1
#E z
N 05
0

FIGURE 4.26: The original tracking without any disturbance

96

25

FIGURE 4.27: Small disturbance occurslat < r, < 1.6. A wind blows fromr, to

—r,, exerting a force of 1 Newton on the mass center of the quadrthe controller is

able to track the trajectory and arrive at waypoint 2 as ann

97

-

FIGURE 4.28: Large disturbance occurslat < r, < 1.6. A wind blows fromr, to
—r,, exerting a force of 3 Newton on the mass center of the quadrdthe tracking
is seen to drift more to ther, direction and away from the second waypoint, but the

general shape of the tracking still follows the reference.

4.4 Summary

In this chapter, NTG is introduced to generate the referdrajectories for
MARIT quadrotor model for trajectory tracking. First the tih@amatical foundation of
NTG is provided. NTG is a set of software tool to solve optirahtrol problems by
transforming the problems into nonlinear programming fEois. B-splines parameter-
ization is the method for transforming, and NPSOL is the 886G adopts to solve the
transformed nonlinear problems. Secondly the MARIT quemrobstacle avoidance
problems are interpreted into NTG programs to be solved nigally. The system is
shown to be differentially flat so that NTG is able to map th&tegn states and inputs to

a lower dimension. The various constraints are categoapednterpreted in terms of

98

NTG constraints, e.g. linear initial constraints (LIChdar trajectory constraints (LTC)
and nonlinear trajectory constraints (NLTC). Thirdly NT&examined to generate op-
timal reference trajectories for various situations,uidhg multiple obstacle avoidance
and real-time obstacle avoidance. Then the controlleligded in the previous chapter
are constructed to work with NTG to track the reference ttajées. Results show that
these two components are able to collaborate with each tatipeoduce close trajectory
tracking. Lastly different magnitudes of disturbancesraosleled and introduced to the
tracking system and results prove the controller is capafiykesisting small disturbances

like “gentle winds”, and resume tracking accuracy afterdisturbance disappears.

99

CHAPTER 5
Future Work

Fully autonomous flights The current experiments are conducted in a tethered
method. The quadrotors are attached to a fixed object (gedinground) by strings
for safety reasons. Due to the broken parts of the Draganilyadrotor the motors are
not running smoothly and react to constant valued commarittsrandom accelera-
tions. The motors sometimes start running with max speedowttany input, causing
injuries and frustration. The current PC/RC connector eatsithe R/C transmitter to
the PC using usb interface, which is treated as a serial eéyithe computer. Find an
R/C transmitter that can be connected directly to the coerpman ensure better signal
transmission. Upgrading hardwares could solve this probew dynamics modeling
might be needed after the hardware upgrading, but sinceuhdrgtor dynamics are
identical in nature, the remodeling will be easy.

More completed software interfaceThe current software interface on the con-
troller units is written in Qt framework with C++. It providébasic functionalities such
as connecting to server, starting test flight, and closintspé more advanced interface
may include a 3D reconstructed model of the testbed. Thikldmiused for delivering
commands graphically, e.g by clicking on a desired positidhe 3D model, the user is
able to send the SUAV to that position. This could be realimedany ways, such as by
employing the VTK toolkit to draw 3D animation in real-timay, the using traditional
OpenGL technology in the Qt framework.

Adding ground vehiclesMARIT is able to detect any modeled objects’ motions

100

in real-time. This provides the potential of introducinggnd vehicles into the testbed.
Algorithms could be developed to command the collaboratfair vehicles and ground

vehicles.

101

REFERENCES

[1] “Remote Piloted Aerial Vehicles : An Anthology,”
[2] Source: U.S. Government publication 'The Evolutionloé iCruise Missile’.

[3] NASA-JPL Aerobot project,
http://www-robotics.jpl.nasa.gov/systems/system23ystem=7.

[4] E. Altug, J. Ostrowski, R. Mahony, “Control of a Quadrotdelicopter Using
Visual Feedback”]EEE International Conference on Robotics and Automation
Washington DC, 2002.

[5] E. Altug, J. Ostrowski, C.J. Talyor, “Quadrotor Contkééing Dual Camera Visual
Feedback” |EEE International Conference on Robotics and Automatitaipei,
Taiwan, 2003.

[6] Y. Cui, T. Inanc, “Multiple Air Robotics TestbedlEEE Chinese Control and De-
cision ConferenceTaiyuan China, 2012.

[7] TEAL Group, “World Unmanned Aerial Vehicle Systems 20IHdition”
http://www.ctie.monash.edu/hargrave

[8] Donald, David, ed. Encyclopedia of World Aircraft (Eicbke, Ontario: Prospero
Books, 1997), p.854, "Standard aircraft”

[9] Fahrney, Delmar S., RADM USN "The Birth of Guided MissleUnited States
Naval Institute Proceedings December 1980 pp.5460

[10] Wagner, William: Lightning Bugs, and other Reconnarsse Drones. 1982, pub-
lished by Armed Forces Journal International in cooperatith Aero Publishers,
Inc.

[11] N. Michael, D. Mellinger, Q. Lindsey, V. Kumar, The GRRSMultiple Micro-
UAV Testbed,Robotics & Automation MagazinéEEE Volume: 17 , Issue: 3, 56
- 65, 2010.

[12] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron,dtor Multi-Vehicle Flight
Testbed for Fault. Detection, Isolation, and Recove®yAA Guidance, Naviga-
tion, Control Conf. ExhibitKeystone, CO, Aug. 2006, AIAA-2006-6200.

102

[13] J.P. How, B. Bethke, A. Frank, D. Dale, J. Vian, “Reaé indoor autonomous
vehicle test environmentControl SystemdEEE Volume: 28 , Issue: 2, 51 - 64,
2008.

[14] M. Gerig, "Modeling, guidance, and control of aerobataneuvers of an au-
tonomous helicopter,” Ph.D. dissertation, ETH Zurich, 200

[15] Flying Machine Arena, http://www.idsc.ethz.ch/Raggh'DAndrea/FMA

[16] Stanford Testbed of Autonomous Rotorcraft for Muliii@nt Control,
http://hybrid.eecs.berkeley.edu/starmac/

[17] Vanderbilt Embedded Computing Platform for AutonoraouVehicles
http://www.vuse.vanderbilt.edu/ kootj/Projects/VEGIPA

[18] Vicon, "Vicon MX Systems,” June 2006 [Online]. Availbb
http://www.vicon.com/products

[19] “Tom’s RC”, http://www.tti-us.com/rc/sc8000.htm
[20] “Draganfly Innovations Inc.”, http://www.draganflypm
[21] Hitec, http://www.hitecrcd.com/

[22] B.L. Stevens and F.L. Lewis, “Aircraft Control and Sitation,” 2nd ed. Hoboken,
NJ:Wiley, 2003.

[23] J. How, "Lecture Notes: Aircraft Stability and Contr@6.333): Lectures 3 and
4" Sept. 2004 [Online]. Available: http://ocw.mit.edué/eb/Aeronautics-and-
Astronautics/16-333Fall-2..4/LectureNotes/index.htm

[24] D. Gurdan, J. Strumpf, M. Achtelik, K. Doth, G. Hirzingand D. Rus, “Energy
efficient Autonomous Four rotor Flying Robot Controlled &Hz,” IEEE Inter-
national Conference on Robotics and Automati®oma Italy, 2007.

[25] S. Bouabdallah, A. Noth and R. Siegwart, “PID vs LQ Cohtechniques Applied
to an Indoor Micro Quadrotor,” Autonomous Systems Labasatwiss Federal
Institute of Technology.

[26] Y. Cui, T. Inanc, “Multiple Air Robotics TestbedEEE Chinese Control and De-
cision ConferenceTaiyuan China, 2012.

[27] lan D. Cowling James F., and Alastair K. Cooke. “Optimétajectory
Planning and LQR Control for a Quadrotor UAV.” [Online]. Alable:
http://ukacc.group.shef.ac.uk/proceedings/conti@b2@apers/f125.pdf

[28] S. Bouabdallah, Ph.D. thesis, “Design and control cidjotors with application
to autonomous flying”, 2007.

103

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Mian, A.A.; Wang Daobo, “Nonlinear Flight Control Stegyy for an Underac-
tuated Quadrotor Aerial Robot”. IEEE International Coefeze on Networking,
Sensing and Control, 2008. Page(s): 938 - 942.

Madani, T.; Benallegue, A. “Control of a Quadrotor Midelicopter via Full State
Backstepping Technique”. Decision and Control, 2006 4&tBH Conference on
Robotics and Control Systems, page(s): 1515 - 1520.

G. Hoffmann, S. Waslander, and C. Tomlin, "Quadrotdrdopter trajectory track-
ing control,” AAIA Guidance, Navigation and Control Conf. and Exhilbipn-
olulu, Hawaii, 2008.

E. Altug, J. Ostrowski, and C. Taylor, "Control of quatior helicopter using dual
camera visual feedbackThe Int. Journal of Robotics Researeo]. 24, no. 5, pp.
329-341, May 2005.

R. Murray “Optimization-Based Control”, DRAFT v2.1Bebruary 15, 2010.

M. B. Milam, K. Mushambi, and R. M. Murray. “A New Computanal Approach
to Real-Time Trajectory Generation for Constrained MeatarSystems,” Con-
ference on Decision and Control, 2000.

T.Inanc, S. C. Shadden, and J. E. Marsden. “Optimad¢tayy generation in ocean
flows,” Proceedings of the American Control ConferenceeR#10 2005, pp. 674
-679.

T. Inanc, K. Misovec, and R. M. Murray. “Nonlinear trajery generation for un-
manned air vehicles with multiple radars,” Proceedingsef43th IEEE Confer-
ence on Decision and Control, Dec. 14 -17 2004, pp. 3817 -.3822

W. Zhang, and T. Inanc. “Opportunistic 3D Trajectoryr@eation for the JPL Aer-
obot with Nonlinear Trajectory Generation Methodologyb&eedings of 11th Int.
Conf. Control, Automation, Robotics and Vision, Singap@@10.

M. Fliess, J. Levine, P. Martin, and P. Rouchon. “Flathand defect of non-linear
systems: introductory theory and examplésiternational Journal of Contrgl
61(6):1327-1360, 1995.

M. B. Milam, K. Mushambi, and R. M. Murray. “A New Computanal Approach
to Real-Time Trajectory Generation for Constrained MeatarSystems, Con-
ference on Decision and Contr@000.

M. K. Muezzinoglu and T. Inanc. “Trajectory GenerationGuided Spaces using
NTG Algorithm and Artificial Neural Networks,American Control Conference
2006.

M. B. Milam, Ph.D. thesis, “Real-Time Optimal TrajecyoGeneration for Con-
strained Dynamical Systems”, 2003.

“NPSOL”, http://www.sbsi-sol-optimize.com

104

CURRICULUM VITAE

YINAN CUI
Email: yinan.c@gmail.com

Phone: 502-852-0409

Education

Ph.D. in Electrical and Computer Engineering, Universitizouisville, 2007-2013.
M.Sc. in Engineering and Management of Information Systdtogal Institute of Tech-
nology (KTH), 2005-2007.

BEnNg. in Electrical Engineering, Zhejiang University, 200005.

Publications

e Y. Cui, and T. InancMultiple Air Robotics Indoor Testbe@4th Chinese Control
and Decision Conference (CCDC), 2012, pp 3487-3492.

e Y. Cui, and T. InancController Design for Small Air Vehicles: An Overview and
ComparisonThe IEEE International Conference on Unmanned Aircraft&ms,

2013.

e Y. Cui, and T. InancSUAV Control with Multiple Air Robotics Indoor Testhed

submitted to the Journal of Applied Mathematics and Contpria2013.

105

Y. Cui, and T. InancOptimal Trajectory Generation and Tracking for MARIT
SUAVs with NTGsubmitted to the Asian Journal of Control, 2013.

Awards

University Fellowship Stipend, University of Louisvill2007-2009.
Teaching Assistant Scholarship, University of Louisyi@09-2012.

Doctoral Dissertation Completion Award, University of Lisulle, 2012-2013.

Activities

Visiting student, Aerospace Controls Laboratory (ACLE Massachusetts Insti-

tute of Technology, 2009.4.

Vice chair of the robotics and controls session, 24th Clar@antrol and Decision

Conference (CCDC).

Invited presentation: Y. CuMultiple Air Robotics Indoor Testbe@4th Chinese
Control and Decision Conference (CCDC), Taiyuan, China2201

Invited presentation: Y. CuiMultiple Air Robotics Indoor Testbed Prototype
Kentucky’s National Science Foundation Experimental Paogto Stimulate Com-

petitive Research (KYNSFEPSCoR), Galt House, Louisville2010.

106

	MARIT : the design, implementation and trajectory generation with NTG for small UAVs.
	Recommended Citation

	yinan_final.dvi

