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ABSTRACT 
 

Nanoscience is not about products becoming smaller and smaller, but about new material 

properties being exploited for new and enhanced product applications.  Liquid crystalline 

materials are one branch of “nanomaterials” that has promise of highly useful products.  

Liquid crystalline materials are soft materials that can respond to external stimuli and 

form ordered structures.  Liquid crystals have applications as templates for more complex 

nanostructures as well as sensing devices.  The purpose of this study was to investigate, 

using atomic force microscopy, the characteristics of a liquid crystalline, nanoparticle, 

composite material to determine whether or not it was indeed forming ordered, 

hydrophilic channels lined with gold nanoparticles.  Atomic force microscopy showed 

that these channels were indeed forming, but further investigation will be necessary 

before the structures could be controlled and exploited. 

 
 

 

 

 

 

 

 

 

 

 

 

 v



TABLE OF CONTENTS 

 
 

                                                                                                                                     Page 
APPROVAL PAGE......................................................................................................... iii  
ACKNOWLEDGMENTS................................................................................................ iv  
ABSTRACT..................................................................................................................... v  
LIST OF FIGURES.......................................................................................................... vii 

I.   INTRODUCTION.......................................................................................... 1  
A.   Background: Soft materials……………........................................... 1  
B.   Development of composite polymer…………….............................. 3  
C.   Equipment: Atomic Force Microscope…………….......................... 6  
D.   Objectives………………….…………………………………….… 8 

II. CHARACTERISTICS OF COMPOSITE SAMPLES.................................... 9  
III. DEVELOPMENT OF SAMPLES FOR AFM............................................... 12  
IV. MATERIALS AND METHODS……….………………………………….. 15 
V. TEM SAMPLES.............................................................................................. 17  
VI. NON-IMMERSED SAMPLES...................................................................... 23  
VII. IMMERSED SAMPLES............................................................................... 31  
VIII. CONCLUSIONS......................................................................................... 52  
IX. RECOMMENDATIONS FOR FURTHER WORK...................................... 55 

REFERENCES CITED.................................................................................................... 58  
APPENDIX I. ADDITIONAL AFM IMAGES............................................................... 59 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 vi



LIST OF FIGURES 

 

Figure 1- Schematic of a 3D bicontinuous structure………………………………...……4  
Figure 2 - Side view of gold-laced polymer (no ethanol applied) ………………..………9 
Figure 3 - Cross-Section of Gold-laced polymer (no ethanol applied) …...…..…………11 
Figure 4 - Cross section of striated sample………………………………………………13 
Figure 5 - Image of TEM sample taken during AFM scanning……………….…………18 
Figure 6 - 25 µm AFM image of TEM sample………………..…………………………19 
Figure 7 - 25 µm AFM image of TEM sample………………..…………………………19 
Figure 8 - 25 µm AFM image of TEM sample…………………..………………………20 
Figure 9 - 45 µm AFM image of TEM sample……………………..……………………20 
Figure 10 - 10 µm AFM image of TEM sample…………………………………………21 
Figure 11 – 45 µm AFM image of TEM sample ……………………………..…………22 
Figure 12 – 20 µm image non-immersed, edge, no particle region ……………..………24 
Figure 13 – 20 µm image non-processed, edge, no particle region ......…………………25 
Figure 14 – 20 µm image non-processed, central region, particle density unknown ...…25 
Figure 15 – 10 µm edge of sample in purple region………………………………….…27 
Figure 16 - 20 um, purple side of long polymer (not cross-section) ……………………29 
Figure 17 - 6.07 um, purple side of long polymer (not cross-section) ……….…………29 
Figure 18 – Schematic of drying immersed sample …….………………………………32 
Figure 19 - Cross section of immersed sample………………….………………………33 
Figure 20 – 20 µm image of immersed sample 1……………..…………………………34 
Figure 21 – 15 µm image of immersed sample 1…………………..……………………34 
Figure 22 – 4.71 µm image of immersed sample 1……………….……………………..35 
Figure 22 – 10 µm image of immersed sample 2…………………..……………………35 
Figure 23 - 20 um, edge of immersed sample 3…………………………………………36 
Figure 24 - 7.5 µm image of immersed sample 3…….………………….…....…………37 
Figure 25 – 20 µm image of immersed polymer edge……………………..…….………38 
Figure 26 - 6.13 µm image of immersed polymer edge………………….………………39 
Figure 27 – 10 µm image of immersed polymer edge……………...……………………39 
Figure 28 – 10 µm image central region of immersed polymer…………………………40 
Figure 29 – 10 µm image of central region of immersed polymer………………………41 
Figure 30 – 20 µm image of non-immersed edge………..………………………………42 
Figure 31 - 9.87 µm image of right hand side of Figure 29 …..…………………………43 
Figure 32- 13.96 µm image of left hand side of Figure 29………………………………43 
Figure 33 – 20 µm image of immersed sample ridge regions ..…………………………44 
Figure 34 - 4.86 µm site from Figure 33…………………………………………………45 
Figure 35 – 20 µm site from immersed sample ridge ..…….……………………………46 
Figure 36 - 5.43 µm site from immersed sample ridge…..………………………………46 
Figure 37 - Diagram of location of channels……….……………………………………48 
Figure 38 – 20 µm image immersed side…………..……………………………………49 
Figure 40 – (left) 25 µm image of immersed side. (right) 6.07 µm image of non-
immersed side……………………………………………………………………………50 
Figure 41 – 20 µm image of immersed polymer edge ………….………………………59 
Figure 42 - 7.93 µm image from an area of Figure 40………..…………………………59 
Figure 43 - 2.93 µm image – a closer look at Figure 41…………………………………60 

 vii



 
 
 
 
 
 
 
 
 

I. INTRODUCTION 
 
 With the growth of nanoscience in the 21st century and electronic devices 

becoming smaller and smaller, the development of new materials, which address the 

needs of the new technologies, will become ever more necessary.  The development of 

“soft materials” or liquid crystals is a major contribution to the increasing demand for 

nanoscale building blocks for new technologies.  There is a focused drive towards the 

development of self assembling materials that can be externally controlled with an eye to 

the production of sensing devices, nanostructure building blocks, and other optical, 

thermal or electrical property based applications. Self assembling materials are materials 

that can change chemical or physical properties as a result of external stimuli.  Ionic 

liquids (ILs) are one particular type of self assembling material in which the ionic 

properties of particular materials are used to develop stable, self-assembled structures that 

can be used for various applications.  In this particular investigation, an ionic liquid 

polymerization reaction was conducted with a nanoparticle precursor and atomic force 

microscopy was used to determine the presence of ordered hydrophilic channels within 

the material.   

A. Background: Soft Materials 
 
 The focus of nanoscience is on the development of materials that exhibit unique 

qualities that can be exploited for various applications.  These chemical and electrical 
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properties are the result of high surface area to volume ratios and the confinement of 

electronic states of nanomaterials (Shenhar 2005).  Liquid crystals, soft materials that can 

self-assemble into ordered structures, offer a wide range of opportunities for the 

development of advanced nanostructures (Kato 2006).  The field of liquid crystal 

development is a relatively new and large field with many sub-divisions.  However, the 

development of nanostructures within these liquid crystals is relatively new and has only 

been investigated by a few researchers (Hoshino 2003, Yoshizawa 2005).  These 

nanoparticle-composite soft materials carry a number of exceptional properties that 

ensure their place in the ever growing nano-industry (Kato 2006).  The composite used in 

this study is a great example. The specific ionic liquid crystal composite used was a 1-

decyl-3-methylimidazolium chloride [C10mim+][Cl-] laced with gold nanoparticles.  

During polymerization, the polymer assembles to form liquid crystalline mesophases 

which can be tuned from a 1D lamellae to 2D hexagonal or 3D bicontinuous structures 

(Batra 2007).  These structures can serve as templates for the generation of 

nanostructures within the polymer, in this case - linear channels lined with gold.  The 

polymer swells on contact with ethanol causing the linear chains of gold particles to lose 

their ordered arrangement and enter into a non-ordered arrangement.  This particular 

phenomenon could lead to applications for sensing equipment where the environment in 

which a material is placed can affect the conduction of electricity through the metal 

particles and function as a switch.  

 In addition to sensing applications, one very novel aspect of the development of 

this material is its simplicity.  The entire development of the material takes place in a 

tube in which the ionic liquid, a polymerization initiator, a gold precursor, and water are 

 2



mixed and irradiated with UV light to form the nanoparticle-polymer composite.  This 

method of development is much simpler than other methods used to develop soft material 

based nanostructures.  Researchers have attempted development of composite 

nanostructures on solid surfaces (Adachi 2000), bimolecular and polymer scaffolds 

(Zehner 1998, Warner 2003, McMillan 2002, Shenhar 2005, Peceros 2005, Lee 2006), 

and at solution interfaces (Lin 2003).  One author has written: 

“These approaches have yielded nanoparticle ensembles that possess novel 
physical properties with potential application in sensing, optical information processing, 
and magnetic data storage.  While periodic order is widely regarded as the ultimate goal 
in producing self-assembled films, these films actually possess order only on a local 
level.  Furthermore, they are often difficult to fabricate reproducibly and frequently lack 
adequate durability for practical utilization.” (Batra 2007) 
 
Because of the simplicity of production of the material and its dynamic, but controllable 

nature, the gold nanoparticle-polymer composite, and materials similar to it could turn 

out to be building blocks for more complex nanostructures or the major “manipulated 

variable” in sensing and control devices. 

B. Development of the composite polymer 
 
 Previous work by Argonne researchers showed that N-alkylmethylimidazolium 

based ionic liquids (ILs) self assemble to form liquid crystalline mesophases (Batra 

2007).  These mesophases are the result of electrostatic forces in the headgroup of the 

polymer and weak van der Waals forces in the tail.  The Argonne study also showed that 

the addition of water to 1-decyl-3-methylimidazolium chloride [C10mim+][Cl-] can 

enhance the self-organization of the polymer and initiate gelation.  One very valuable 

aspect of these materials is that their structures can be chemically modified from 1D 

lamellae to 2D hexagonal or 3D bicontinuous structures with perforated lamellae and 
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hydrophilic channels.   Figure 1 illustrates a bicontinuous structure with perforated 

lamellae and hydrophilic channels. 

 

Figure 1- Schematic of a 3D bicontinuous structure  

These structures can be used as templates for promoting the nucleation and growth of 

anisotropic gold nanoparticles. The materials used in this investigation were 

slightly modified to enhance the capacity of the material to form gold nanostructures.  

Regarding these modifications, Argonne researchers wrote:  

“The polymer used in this experiment was enhanced by introducing strong 
covalent interactions through polymerization at the cation headgroup by replacing 
the methyl group with a vinyl moiety.  This does not interfere with the weak 
noncovalent interactions that promote the self assembly into well ordered 
structures.  These modifications were made so as to retain the ability to spatially 
localize gold nanoparticles within defined hydrophilic compartments in the 
anisotropic matrix, while adding the property of programmed responsiveness 
(Batra 2007).”   

 
There have been very few reports of polymerization reactions that have resulted in 

nanostructured components within the reaction itself (Hoshino 2003, Yoshizawa 2005). 

 The reaction of the polymer-particle composite begins with a mixture of 1-decyl-

3-vinylimidazolium chloride [C10Vim+][Cl-] monomer and an aqueous solution of 
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HAuCl4.  Before the reaction takes place, the material is a homogenous, yellow, viscous 

liquid.  The introduction of water initiates self-assembly into a liquid crystalline phase.  

The polymer-particle composite is photopolymerized under 400 Watts of UV irradiation 

for 1.5 to 2 hours, which converts the yellow liquid to a reddish-brown solid.  This is 

consistent with the reduction of AuCl4
- to Au0 (Batra 2007).   

 The [C10VIm+][Cl-] polymeric gel exhibits reversible swelling in aqueous and 

organic solvents, such as ethanol.  When the polymeric sample is immersed in ethanol, 

the material swells, reaching a maximum swell size in about 3 hours at room temperature.    

When the polymer, under ambient conditions, is allowed to dry, it takes approximately 2 

hours for the polymer to return to its initial pre-swollen size.    

 The change in mesostructure of the polymer was studied (Batra 2007) using small 

angle x-ray scattering (SAXS).  The SAXS data showed that in the swollen state, the 

polymeric structure was disordered.  As drying time increased, the polymer became more 

organized.  The SAXS data revealed diffraction patterns consistent with a hexagonal 

mesostructure after approximately 2 hours of drying.  TEM and energy-dispersive X-ray 

spectroscopy conducted on the polymer sample particles revealed that their size ranged 

from 10 to 40 nm and that their primary component is gold.  Vis-Near Infrared (NIR) 

Spectroscopy  was conducted to gather information about the morphology and packing 

arrangement of the ethanol swollen and dried samples.  NIR spectroscopy revealed that as 

the polymer continued to collapse from drying the particles were assembling themselves 

in chain like structures within the polymer.  

“It is possible that such a nanoparticle organization may be driven by structural 
rearrangements in the polymer that occur during the loss of ethanol and 
contraction, that is, as the polymer structure evolves towards a more well-ordered, 
hexagonally perforated lamellae (de-swollen state), the nanoparticles may be 
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driven to occupy the ordered columns of the hydrophyillic regions.  Such an 
arrangement may drive the organization of the gold particles to pack into 1D 
chainlike configurations thereby enhancing interparticle coupling (Batra 2007).” 

 
The purpose of the ensuing investigation is to find evidence for and confirm that gold 

nanoparticles are indeed forming chains in the hydrophilic regions of the hexagonally 

packed nanoparticle-composite polymer. 

C. Equipment: Atomic Force Microscope 
 
 In order to determine whether or not the gold nanoparticles are forming chains 

through the hydrophilic regions of the hexagonally packed composite polymer, atomic 

force microscopy (AFM) was utilized to image the surface of the polymer.  AFM has the 

advantage of obtaining a “real” image of the polymer as opposed to relying on x-ray and 

infrared beam diffraction angles, which only provide “projected images” of the particles 

in the polymer. 

 Atomic force microscopy is a method of developing images of a surface that 

utilizes a micron-scale cantilever, in this case a 125 µm long cantilever, which is 

sensitive to the atomic scale surface interaction forces, to scan over the contours of a 

surface and create an image.  In AFM, the cantilever is brought to within a few hundred 

nanometers of a surface where it can detect the surface forces.  The cantilever then swept 

back and forth across the surface in a linear path which develops a straight line contour of 

the surface. Once one contour line is drawn, the AFM will start a new contour line 

parallel to the previous one, a small distance away.  This process continues until the 

desired area of scanning is completed.  The contour lines are not drawn directly by the 

cantilever.  A laser beam that is deflected off the back of the cantilever is received by a 

photodiode, which measures the deflection of the cantilever relative to an origin point on 
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the diode.  For example, if a relatively flat surface has a 200 nm hill on it, the cantilever 

will pass along the flat surface and over the hill. The cantilever, when it passes over the 

hill, will deflect the laser in proportion to the height of the hill, and the photodiode will 

process the deviation in signal and plot the entire deflection along the hill with respect to 

position of the cantilever in its sweep.  The summation of each “infinitesimal” deflection, 

including the flat surface preceding and proceeding the hill will be plotted as the contour 

line.  With each incremental change of the cantilever in the x, y, or z direction an “image” 

of the surface is generated. 

 The advantage of AFM, in the context of this experiment, is that one can get an 

actual image of how the gold nanoparticles arrange themselves throughout the polymer, 

as opposed to making predictions based upon mathematical models and the diffraction of 

x-ray and infrared beams.  However, there are a few drawbacks to using atomic force 

microscopy.  First, AFM can only develop an image of a surface.  Where x-ray and IR 

methods can actually make predictions about the structure of the polymer throughout an 

entire sample, AFM can only show the arrangement of particles and the structure of the 

polymer if certain features happen to be present in the area scanned.  Another drawback 

to the use of AFM is that it relies heavily on chance.  While one could predict where the 

particles will be on the polymer based upon the dark purple coloration at different regions 

of a sample, it is more difficult to tell whether one will see the end of a channel or a cross 

section of a channel when choosing a region to scan.  If indeed the particles are arranging 

in the hydrophilic region of a hexagonally packed polymer, some areas scanned may be 

merely showing the tip of a channel, where one would only see a few particles, and other 

areas may show a cross-section of the longitudinal axis of a channel may be seen.   
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D. Objectives 

The purpose of this investigation is to examine whether or not the nanoparticles 

are forming organized, controllable structures within the polymer.  It is anticipated from 

previous work that the polymer composite is forming hydrophilic channels that are lined 

with gold nanoparticles.  In this investigation, AFM was used to image these channels 

under various conditions in order to understand the conditions under which these 

structures are created.  If the presence of these nanostructures is confirmed, it will have 

significant ramifications for the development of nanomaterials that can be used for 

sensing devices and other nano-product developments 
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II. CHARACTERISTICS OF COMPOSITE SAMPLES 
 
 The polymer composites were provided in microtomed, ethanol immersed 

samples, polymerized samples that were not yet immersed in ethanol, and ethanol 

immersed and dried samples cut for AFM imaging with a razor blade.  Microtoming is a 

process of thinly slicing a material for applications like TEM imaging. Figure 2 shows 

the cylindrical composite just after polymerization prior to immersion in ethanol.  It is in 

a cylindrical shape as a result of being polymerized in small capillary tubes.  This 

particular tube sample is approximately 0.5 cm long and 0.08 cm in diameter.   Careful 

inspection of the polymer in Figure 2 shows two differently colored regions extending 

down the length sample.  From the angle at which the picture was taken, one can see a 

dark purple region and a beige colored region.   

 

Beige side 

Purple Side 
 

Figure 2 - Side view of gold-laced polymer  
 

The reduction of the gold precursors to gold nanoparticles takes place during the 

polymerization reaction and turns the material to a dark purple shade in areas where these 
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particles are present.  Therefore, the dark purple regions of the polymer represent regions 

where gold nanoparticles are present.  The beige regions are simply polymer that is 

devoid of nanoparticles.   

The angle of this particular image is somewhat deceptive, as the purpose of the 

image was to show nanoparticle regions.  In actuality, the dark purple, gold nanoparticle 

laden region is actually a stripe that extends along the outer region of the polymer.  The 

majority of the volume of the polymer is completely devoid of nanoparticles.  As will be 

seen from the various cross-sections taken of the polymer, the gold nanoparticles are 

present along the outer ridge of the polymer, with no particles present towards the 

middle.  This suggests that the nucleation of the particles tends to take place along the 

higher energy glass surface of the tube or that the UV light is not penetrating deeply into 

the sample.   

 Figure 3 is a digital camera image of the cross section of the composite as it 

would appear previous to ethanol immersion and just after polymerization. This image 

reveals a more accurate depiction of the distribution of the gold nanoparticles throughout 

the sample.  On the left hand side of the cross section, one can see a dark purple region, 

which signifies the presence of gold nanoparticles.  Away from the left hand ridge, 

through the center and all the way to the right hand side of the cross section, the 

predominant color is beige.  The beige color is a region of the polymer that is devoid of 

nanoparticles.  This picture clearly shows that the majority of the polymer is devoid of 

particles.  Upon further AFM imaging, it was discovered that even some of the purple 

regions were deceptive in terms of the presence of particles.  It was not until images were 

taken of the very edge regions of these particles that any significant concentration of 
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particles was shown.  The highest concentration of particles were found, not along the 

interior ridges of the cross section, but along the “shell” or sides of the longer samples.  

This, once again, illustrates the idea that gold nanoparticle nucleation is either severely 

reliant on the presence of the high energy, bent, glass tube surface or that the UV 

radiation is only reaching one edge of the sample. 

 
 

Figure 3 - Cross-Section of Gold-laced polymer (no ethanol applied) 
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III. DEVELOPMENT OF SAMPLES FOR AFM 
 

To determine what sort of nanoparticle and polymeric structures were present in 

the polymer before and after ethanol immersion, careful consideration was taken in terms 

of the development of samples for AFM imaging.  Multiple polymer composite samples 

were prepared by Argonne researchers and provided for AFM imaging.  The 

ultramicrotomed TEM samples from a previous study (Batra 2007) were the first samples 

scanned.  Samples previously soaked in ethanol and sliced with an ultrafine razor blade 

were also provided.  The polymer composites examined in Figures 2 and 3 were also 

provided by Argonne and were initially a few centimeters long.  These samples, as 

mentioned before, were not soaked in ethanol to enable comparisons between immersed 

and non-immersed samples.  However, cross-sections were cut from the “non-immersed” 

samples and immersed in ethanol and dried to develop new “immersed” samples for 

examining the polymeric structures.   

In order to scan these samples, the cylinders had to be sliced down to sizes that 

were appropriate for AFM imaging.  It was imperative that the surfaces scanned be 

representative of the “untouched” cross section of the polymer.  The purpose of this 

project is to examine the structures created by the polymer during self-assembly.  

Therefore, any modifications made to the surface after ethanol was dried from the surface 

would not be representative of these self-assembled structures.  For instance any debris or 
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striations from slicing the polymer could affect the overall morphology of the surface, 

thereby creating an image that did not represent the actual structure constructed after 

ethanol drying. 

 A good example of how preparation of the polymer can detrimentally affect the 

AFM images produced is the sample in Figure 4, which was cut by common razor blades.  

Figure 4 is a cross section of the cylindrical polymer composite sample after being cut by 

a razor blade.  The striations across the sample are obvious.  Because of the nature of 

AFM imaging, it would be difficult to differentiate between channels formed by striations 

from a razor blade and channels formed as a result of polymeric self-assembly. The razor 

blades also tended to leave particulate debris within the striations they created.  Once 

again, the nature of AFM imaging did not lend itself to differentiating between particle 

like debris formed as a result of razor blade cuts and nanoparticles formed during the 

reduction of the gold precursors.   

 

 

Figure 4 – Cross section of striated sample 
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After it was determined that a common razor blade produced too many striations 

on the polymer to do an effective analysis of the material (Figure 4), other methods of 

developing samples from the non-immersed polymers were attempted.    Freezing the 

polymer with liquid nitrogen and then snapping it in an attempt to produce a uniform 

surface for examining did not produce very useful results.  Interestingly enough, the 

polymer, in an expanded ethanol absorbed phase, thawed very fast after being frozen. The 

thaw occurred fast enough that upon attempting to break the gel, it simply fell apart in the 

tweezers in which it was being held.  Simply snapping the expanded, ethanol absorbed 

polymer was also attempted.  This had similar results as the nitrogen attempt in that the 

gel tended to fall apart very easily.  The most effective method, and most simple, was to 

snap the dry non-immersed polymeric cylinders using tweezers.  Although the surfaces 

created were not uniformly flat in this method, there were enough flat regions in the 

developed cross section to enable AFM imaging.  Some of the snapped samples were 

used for imaging directly and others were soaked with ethanol and dried, to further 

examine structural changes.  Since the TEM, razor blade, and snapped samples were the 

only ones that yielded worthy images, the images generated from those samples will be 

used in discussing the results of the experiment.  It is important to note here that each 

sample type was used to generate multiple samples.  Therefore, the results described 

below are not unique to only one specific sample used in the AFM scans but are instead 

reproducible. 
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IV. METHODS AND MATERIALS 
 

The samples examined in the rest of the thesis were of three kinds: ethanol 

immersed and dried microtomed TEM samples, dry non-immersed samples that were 

mechanically snapped to form cross sections, and ethanol immersed and dried samples 

cut with a very fine razor blade to form a cross section.  The procedure for producing the 

TEM samples, which were used in SAXS analysis was described in a previous work 

(Batra 2007).  

The dry, non-immersed, mechanically snapped samples were created from the 

composite material provided by Argonne National Laboratory.  The composite material 

arrived in cylindrical pieces (a result of the capillary tubes in which they were 

polymerized) a few centimeters long.  These samples were not processed at all after 

polymerization.  To create cross sections for AFM imaging, the samples were simply 

held between two tweezers and mechanically bent to a breaking point to develop a cross-

section for imaging.  Because the material is very flexible, it was important to keep the 

tweezers holding the polymer very close together to ensure a clean break.  Holding the 

tweezers at each end of the cylindrical polymer would allow too much bending and 

deformation of the polymer in trying to break it. 

The dry, ethanol-immersed samples were created at Argonne.  After 

polymerization, these samples were immersed in ethanol for approximately three hours 
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and then allowed to dry for another three hours to ensure that the polymer was fully 

swollen and fully contracted upon drying.  Once the samples were dried, they were cut 

with a very fine razor blade that did not leave striations along the cross-section of the 

surface. 

The atomic force microscope used in imaging these samples was a PSIA XE-100 

instrument.  The cantilevers used in scanning the surfaces were Applied Nanostructures 

(ACTA-10) aluminum coated, non-contact silicon cantilevers.  The tips of these 

cantilevers ranged from 12-16 µm in height and had a radius of less than 10 nm. 

The size ranges for all the images ranged from between 0.5 to 40 µm (ex. 40 µm x 

40 µm) at 256 X 256 pixels.  The scan rate, the speed at which the cantilever sweeps back 

and forth, was typically held between 0.2 and 0.4 Hz depending upon the area scanned.  

The cantilever was operated in non-contact mode at distances from the surface ranging 

between 20 and 150 nm. 
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V. TEM SAMPLES 
 
 The first AFM samples scanned were the microtomed samples used for TEM by 

Argonne Laboratories in a previous study on the polymer composites.  When viewed 

under a microscope, the microtomed samples were a thin, transparent sheets.  The TEM 

samples have the advantage of providing an extremely thin, mostly flat surface that is 

very conducive to AFM imaging.  It was anticipated that particles present in the polymer 

at the surface of the TEM sheets could provide insight into the packing arrangement of 

the polymer and particles in the larger samples.  Figure 5 is a screen shot of the cantilever 

scanning over the TEM sample.  The copper grid structure in Figure 5 is the base upon 

which the microtomed sample was placed.  The entire grid was fixed in a circular space 

approximately 0.5 cm in diameter.  In Figure 5, the transparent microtomed sample can 

be seen as slight ripples due to diffracted light from the microscope and the AFM laser 

bouncing off the cantilever.  The thin microtomed samples were conducive to AFM 

imaging because of the relatively smooth surface and relatively smooth contours.  This is 

in severe contrast to the other samples which had very irregular contours and features that 

changed the height at which the cantilever scanned by orders of magnitude, making it 

difficult at times to find places to scan on the sample. 
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Figure 5 – Image of TEM sample taken during AFM scanning 
 
Figures 6 through 11 were taken from multiple microtomed samples.  The dark box in 

Figure 6 highlights a linear arrangement of particles on the polymeric surface.  Figure 6 

shows not only orderly arrangements of particles, but also very organized folds in the 

polymer itself.  The lines seen running parallel to the particles are most likely the result 

of striations generated from microtoming the sample.  The precise linearity of these lines 

suggests that they are the product of striations from mechanically cutting the sample 

rather than self-assembly from a polymer, which is likely to be much less linear.  This 

concept will be further evidenced by images of actual channels taken from ethanol 

immersed sample cross sections. 
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Figure 6 – 25 µm AFM image of TEM sample 

Figures 7 through 10 reveal very intricate folds in the polymer.  In many of these 

figures, particles can be seen in channels running perpendicularly to the folds.  It is truly 

difficult to ascertain to what degree the folds and the particle ordering in this image are 

the result of preparation of the TEM samples and to what degree they are a result of the 

self-assembling of the ionic liquid material. 

 

Intricate folds may be evidence 
perforated lamellar structure. 

Figure 7 – 25 µm AFM image of TEM sample 
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Figure 8 – 25 µm AFM image of TEM sample 

 

Figure 9 - 45 µm AFM image of TEM sample 
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Perforated 
lamellae 

Hydrophilic 
channel 

Particles 
aligned in 
channel 

Figure 11 – 10 µm AFM image of TEM sample with Figure 1 for contrast 

 The overall structure of the polymer in Figures 7 through 10 reflect the self-

assembled structure anticipated from previous works.  In Figure 1, a schematic of a 

perforated lamellar structure was depicted.  Figure 10 shows what could potentially be 

the physical form of this structure.  The images suggest that there is a stacking of lamellar 

sheets along one axis, in a series of linear folds.  The sizes of the nanoparticles in the 

previous images range from 200 to 750 nm.  These sizes are actually larger than the sizes 

anticipated from previous works, which implies that they may not be the intended gold 

nanoparticles, but debris from microtoming (Batra 2007). 

 Because of the very fine and intricate linearity of these folds and particles, it is 

possible that the perceived order is the product of sample preparations.  Figure 11 shows 

one intersection of the base grid, upon which the TEM sample rests.  In the area scanned, 

there is a large tear in the sample, which may likely be the result of a sweep by the AFM 

cantilever.  In this image, the very edge of the TEM sample can be seen.  Creases at the 

very edge of the sample follow along the same axis as the folds and particles.  It is 

possible that these creases and the parallel folds could all be the result of the preparation 
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of the sample and the TEM imaging process.  Further investigation of other polymeric 

samples was necessary in order to draw conclusions about the self-assembling and 

ordering of the composite structure. 

 

Edge of TEM 
sample 

Figure 11 – 45 µm AFM image of TEM sample 

A few conclusions may be drawn from figures 6 through 11. While the particles 

may arrange themselves into linear channels, it is highly unlikely that they reach the 

degree of linearity seen in the TEM sample images.  The folds and particles in the figures 

above are too uniform and linear to be created solely from a self-assembling polymer.  

The expected 3D bicontinuous structures and 2D hexagonal packed lamellar structures 

would occur in near random blocks throughout the polymer and not in order parallel lines 

across a given sample.  Additionally, the particles sizes from these images are not 

representative of the particle size and packing structure anticipated from the x-ray and IR 

tests.  The TEM samples do not provide enough information to conclude whether or not 

hydrophilic channels are forming in the polymer. 
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VI. NON-IMMERSED SAMPLES 
 

 The first order of business in investigating the polymeric composites was 

to determine the distribution and placement of particles within the polymer.  This was 

important simply for the purpose of finding the particles and knowing where to look 

when searching for self-assembled polymeric structures.  As mentioned before, the 

particles were not evenly distributed throughout the polymeric sample.  Therefore, AFM 

images of the non-immersed samples were taken from one edge of the polymer, where it 

was obvious that no particles would exist, through the center, to another edge of the 

sample where particles were very likely.  The following images illustrate the progression 

of these images across the sample.  

In Figure 12, jagged contours combined with other wise smooth surfaces can be 

observed in the scanned regions.  This image and the following images were scanned 

from the cross section of a non-immersed sample which was developed by simply 

snapping the polymeric cylinder to expose a face to scan (actual sample shown in Figure 

2).  The jagged contours are likely the result of the tearing necessary to create the 

polymer sample.  These rigid contours are most likely caused by breaking of ordered 

polymeric structures.  Figure 12 was taken near the edge of the non-immersed sample in a 
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beige colored region where it was highly unlikely that particles were present.  Clearly, 

particles are not present in the area scanned.  Besides the jagged features, the surface is 

relatively smooth.  Since no ethanol immersion or drying has occurred, no self-assembly 

has taken place.    

 

Figure 12 - 20 µm image of beige edge region of non-immersed polymer 

 It is important to note here that one of the difficulties with imaging a polymeric 

cross section such as the ones illustrated in the previous and ensuing images is finding an 

area to scan.  Polymeric-gel surfaces typically have very irregular contours.  Damage can 

be incurred to the sweeping cantilever if a particular region has severe regularities in 

height.  If an area is being scanned, and there is a steep increase in height of the sample in 

a point or area, the cantilever may become bent, stuck, or break as a result of running into 

the protrusion.  Specifically for gels and polymeric type materials, it is possible for the 

material to get stuck to the AFM cantilever.  This causes an increase in tip diameter 

which affects the accuracy of the captured contours.  For Figure 12 and the following 

figures of sample cross sections, determining what areas would be scanned on the 
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polymeric-gel was often a function of what regions were possible to scan rather than 

picking specific regions independently of texture. 

 

Figure 13 - 20 µm image of beige central-edge region of non-immersed polymer 

 

Figure 14 - 20 µm image of central region of non-immersed polymer 

Figure 13 and 14 were taken from more central regions of the polymer.  The only major 

changes in terms of structure are that the jagged contours are even more apparent.  Again, 

this sample forms the face of one region torn from the dry, non-immersed gel provided by 

Argonne.  The rigid contours are likely the result of internal, block like structures that 

break apart during the tearing of the polymer.  Once again, these images also possess no 
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particle or particle-like structures.  If particles were present in this region of the sample, 

they would show up in within the rigid contours of the sample and be widely distributed.  

Tearing of the polymer did not appear to have an effect on the presence of particles, since 

the particles are present in the next few images of the same sample.  If the particles 

existed in the central region of the polymer, they would, indeed, show up in the AFM 

image. 

Finally, the dark purple opposite edge of the polymer was examined.  Figure 15 

illustrates, not only that particles are present in the very edge regions of the composite’s 

cross section, but also that the particles are highly concentrated in this region.  This 

implies either that the particles are not well distributed for some reason during the 

polymerization reaction, or that the high energy curved surface of the glass tube plays a 

significant role in the nucleation of the gold nanoparticles.  Also, it cannot be said that 

these are simply dust particles or dirt that has reached the sample.  The sample was 

enclosed during the entire time in which Figures 12 through 15 were taken.  Any dirt or 

dust seen on this edge of the sample should have been evenly distributed over the entirety 

of the sample and seen in previous images.  Additionally, this image was taken after the 

more jagged images were taken.  So it cannot be said that the cantilever was not 

functioning properly during the image shown in Figure 15, while Figures 12 through 14 

were the products of a damaged tip.   
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Figure 15 - 10 µm edge of sample in purple region 

The particle sizes for the regions scanned in Figure 15 ranged from 100 to 350 

nm, which is larger than particles sizes anticipated from previous work.  This could 

however, point to particle agglomeration during nucleation.  Also, the particles could be 

encapsulated in the polymer itself, which would make the particles appear wider due to a 

polymeric coating.  Furthermore, operating the AFM in non-contact mode could add 

another layer of “thickness” to the particles because the AFM is sensing atomic forces 

about 100 nm from the physical surface of the sample.  These added dimensions may 

make the particles seem wider than they actually are, which explains the discrepancy 

between SAXS images from previous works and the current AFM images.  Due to the 

absence of any other particle-like structures anywhere else on this sample, it is unlikely 

that these particles are anything but agglomerated gold nanoparticles.  The distribution of 

the particles follows expectations.  The particles are in high concentrations and in no 

particular order.  This sample has not been immersed in ethanol and allowed to dry.  

Therefore, the arrangement of the particles seen in Figure 15 is the arrangement of the 
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particles post-nucleation.  After polymerization and nucleation, one would not expect to 

have organized channels because the environment of the reaction is not conducive to 

rearrangement of the particles.  The ethanol immersion and subsequent drying are what 

allow the polymer to expand and to self-assemble into a more ordered stable structure 

that reflects the anticipated order expected of the gold nanoparticles and polymer 

composite.  Ethanol immersion enables the gold nanoparticles to have some mobility 

within the polymer for arrangement. 

Another interesting observation to note is the lack of jagged contours.  The fact 

that there are not really any jagged contours in this region may imply that the 

nanoparticles are effecting the overall structuring of the polymer during polymerization.  

Where the polymer seemed to be forming block like rigid structures where no particles 

were present, it seems that the presence of the nanoparticles cause more globular-

spherical structures and contours to form.  It is very likely that the gold nanoparticles 

impede the formation of the rigid polymeric structures seen toward the center of the 

sample. 

Since it was determined that the highest concentrations of particles was exhibited 

on the very edge of the polymeric sample, images of the side of the polymer, 

perpendicular to the cross section were investigated.  If the glass tube surface in which 

the material was polymerized was actually nucleating the particles, then the highest 

concentrations of particles would be seen on the very sides of the polymer in areas where 

the UV light struck the sample.  Figures 16 and 17 show that this was, indeed, the case. 
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Figure 16 - 20 µm image of purple side of long polymer (not cross-section) 
 

 
 

Figure 17 - 6.07 um image of purple side of long polymer (not cross-section) 
 
 Clearly, the highest concentration of particles occurs along the sides of the 

polymeric cylinders.  This strongly suggests that the nucleation of the polymer is 

significantly focused at the surface of the glass tube, or else, once again, the particles are 

not uniformly distributed in the initial fluid previous to polymerization.   The particles are 

indeed gold as they reflect the expected size of the gold, assuming some agglomeration 

and inaccuracies due to the nature of AFM imaging.  The size of the particles in Figure 

17 ranged from 50 to 350 nm.  Also, this sample was stored and imaged under the same 
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conditions as the cross sectional images taken in Figures 12 through 15 above, therefore 

it cannot be said that the particles present in these images are simply high concentrations 

of dust or dirt.  If this were the case, at least similar concentrations of dust and dirt would 

appear in all regions of the cross sectional images, but that was not the case. Additionally, 

dust would also be much larger than the particles.  Clearly, these are gold nanoparticles. 
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VII. IMMERSED SAMPLES 
 

The observations recorded for the non-immersed polymeric samples form an 

excellent basis from which to contrast the samples which were immersed in ethanol and 

subsequently dried.  The particle size, structure of the polymer, and nanoparticle 

arrangement change dramatically in contrast to the non-immersed polymeric sample.  

Where the structure of the non-immersed samples, with the exception of the particle 

regions, was homogeneous and continuous, the structure of the immersed particles will 

show porous regions, channel development, particle encapsulation and other important 

features. 

The non-immersed samples that were examined were predominantly those 

provided by Argonne.  These immersed samples were polymerized, immersed in ethanol 

for three hours, dried for roughly two hours, and then sliced by a fine razor blade, which 

did not leave any striations.  Given that the samples were expanded by ethanol and then 

dried, the hexagonal packing structures and gold nanoparticles lining the hydrophilic 

channels of the polymer were expected to develop.  A large number of AFM images were 

created using these particular samples to determine the structure of the polymer resulting 

from ethanol expansion and drying contraction.  Despite the assembly processes induced 

by ethanol absorption, gold nanoparticles continued to occupy the very edge regions of 

the polymer.  One would expect that the ethanol and subsequent expansion of the 
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polymer would enable mobility of the nanoparticles, but one would not expect this to 

imply that the particles would expand to uniform distribution throughout the polymer.  

Mobility of the particles is increased, but the polymer does not become fluid.   

Unlike the surface of the non-immersed samples, it was difficult to take AFM 

images across the diameter of the samples.  This is a result of the shape taken by the 

sample upon drying.  Figure 18 is a schematic of the shape of the dry polymer. 

 

Figure 18 – Schematic of drying immersed sample 

During drying, the cylindrical walls of the composite polymer pulled in upon itself.  This 

entailed the walls contracting, and the top face of the sample shrinking in towards the 

base.  The bottom face of the sample, being stuck to Petri dish paper, simply remained 

stuck while the rest of the sample contracted.  The resulting shape of the sample was a 

bowl-like morphology.  The center of the sample was the lowest part of this bowl.  

Moving away from the center towards the outer boundary, the height of the surface 

increased parabolically.  At the top, outer ridge of the bowl, there were some flat regions, 

which had enough surface area to perform AFM imaging.  Although the sample tended 

towards a bowl like structure, it was not completely uniform.  Much of the time, the 

higher ridge regions interfered with the cantilever when attempts to take images of the 
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lower central regions were made. However, there were low ridges where the cantilever 

could be inserted to take images of the center of the sample.  In contrast to the non-

immersed sample, where it was relatively simple to take AFM images across the diameter 

of the sample, more precision was required to image across the immersed samples. 

A cursory glance at the immersed polymer composite samples clearly showed that 

the particles, once again, were located predominantly along the ridge regions of the 

cylinder.  Figure 19 shows that the dark purple regions, which mark the presence of gold 

nanoparticles, were fixed around the outer edge.  

 

 

Figure 19 – Cross section of immersed sample 

Figure 19 shows the cross sections of the polymeric samples with very dark boundary 

regions contrasted by more pale central regions.  These pale central regions are the result 

of expansion produced by ethanol.  During the expansion the color of the material goes 

from the beige color, seen in the non-immersed samples, to a pale purple color – except 

in regions highly concentrated with nanoparticles.  Figure 19 seems to show a potential 

concentration gradient of gold nanoparticles from the purple, center edge of the sample 

going towards the paler purple center. This may be the case, however, the shape of the 
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bowl like shape of the surface created during drying made imaging of regions on the 

slope of the bowl difficult to determine a gradient. 

Based on many AFM images generated over the entire surface of these samples, it 

was found that only the very edge regions of the polymer had any concentration of 

particles at all.  Figures 20 through 23 were taken in the central regions of the polymer 

and illustrate the fact that the center of the composites are devoid of gold nanoparticles. 

 
 

Figure 20 - 20 µm image of the central region of immersed sample 1 
 

 

Figure 22 

 
Figure 21 - 15 µm image of the central region of immersed sample 1 
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Figure 22 - 4.71 µm image of immersed sample 1 
 
 
 

 
 

Figure 23 - 10 µm image of immersed sample 2 
 
Figures 20 through 23 reveal features that contrast sharply with the features of the central 

regions of the non-immersed samples.  These immersed sample images depict dendrite 

like networks and deep pits permeating the composite.  These pits and networks are the 

result of ethanol expansion followed by contraction from ethanol drying.  Ethanol is 

absorbed by the composite polymer upon immersion and expands until the material is 

fully saturated with ethanol.  The provided samples took approximately 3 hours to 
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become completely swelled with ethanol.  Upon contraction from drying ethanol, the 

hydrophilic bonds between the ethanol and polymer are broken causing the deep pores 

and dendrite-like networks to form throughout the polymer.  In addition to the pores and 

networks, which form as a result of drying ethanol and contraction of the polymer, other 

more organized and uniform structures are also formed.  This self-assembly is the result 

of the polymers attempts at creating more favorable stable states.  The following images 

show examples of structural development within the polymer.   

Since the regions imaged were completely devoid of particles, gold particles 

lining channels were not observed. However, empty channels are observable, which gives 

credence to the idea that the polymer is indeed undergoing structural rearrangements 

during the drying process and, at times, “organized” structural development. 

 

Figure 25

 
Figure 24 - 20 um, edge of immersed sample 3 

 
 

 36



 

Arrows show ordered pores.  
Boxes show repeating channels 

 
Figure 25 - 7.5 µm image of immersed sample 3 

 

Figures 24 and 25 show, not only pore and network structures, but also more organized, 

less random characteristics.  The top right corner and bottom left corner of Figure 24 

show what seem to be layered folds in the polymer.  These folds are the packing 

structures anticipated of the polymer in previous work.  Slightly to the right of center in 

Figure 24 is a cross-like structure, which is more closely imaged in the top right corner of 

Figure 25.  This structure is a more elaborate example of polymeric self-assembly in 

ionic liquids.  Clearly, this structure shows a more intricate order than the simple folds 

observed around in different regions of these images.  Additionally, it is apparent from 

this image that the assembly of the polymer into different structures at various regions 

occurs along differing “axes”.  These multidimensional formations reflect anticipated 

random ordering of bicontinuous block structures.  These structures were anticipated to 

occur in random blocks, like pockets of order, throughout the polymer as opposed to the 

entire polymer taking on a uniform order.  

 It was not until the boundary regions of the immersed composite samples were 

imaged that the gold nanoparticles began to show up.  In contrast to the more internal 
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regions of the sample, the contours of the boundary region were more diverse in terms of 

the structure of the polymer.  Where the central region seemed to have dendrite type 

structures and pits, the boundary regions showed smooth surfaces, globular structures, 

folds lined with particles, scattered particles, and rigid block-like formations.  It is very 

likely that the gold nanoparticles contributed significantly to the formation of these 

structures, but it is also likely that the crystal wall of the test tube in which the polymer 

was created may have acted as a foundation for more rigid structures in the boundary 

regions.  Away from the “foundation” of the wall, the polymer may have been more free 

to assemble itself into the neural-like networks and channels observed in the central 

region of the sample.  The following figures illustrate the varying arrays of actual 

dimensions in the boundary regions of the polymers. 

 

Figure 27 Figure 28 

Figure 26 - 20 µm image of immersed polymer edge 

 

Figure 26 is a good example of the diverse array of textures and contours that can be seen 

in the upper ridge regions of the composite.  The central to right hand region of the 20 

µm image seems to have a relatively smooth surface with multiple sharp and block like 
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projections extending through the surface, and some debris looking materials laying on 

the surface.  On the left hand side of Figure 26, more globular and particle-like structures 

can be observed, in addition to the some of the block like projections largely observed on 

the right hand side.  Closer images of this area are provided in the following figures. 

 

 

Figure 27 - 6.13 µm image of immersed polymer edge 

 

 

Figure 28 – 10 µm image of immersed polymer edge 
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Figure 27 is a closer image of the left hand, central region of Figure 26.  Not only are 

there globular, particle like structures in this particular area, but there are also rod and 

block like projections as well. Figure 28 is a 10 µm image of the central-right hand side 

of Figure 26.  Large plate and block structures are observable, as well as very rigid 

protrusions extending through the surface.  Upon closer examination, more particulate 

like characteristics are also revealed.  Figures 26 through 28 severely contrast with the 

relatively smooth and dendrite-like structures of the interior regions of the polymer.  One 

might argue that the irregularities seen here are the result of debris on the sample.  While 

this is a possibility, the following two images were taken from the same sample, with the 

same tip, in the same session as the images above, yet reveal no debris and a relatively 

smooth surface.  These two images were taken from the central region of the sample.  If 

there were any debris on the sample, one would think that the debris would show up at 

least somewhat uniformly over the whole sample.  Overall, the central region imaged in 

Figure 29 and 30 is shown to be relatively smooth and free of debris. 

 

 

Figure 29 - 10 µm image central region of immersed polymer 
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Figure 30 - 10 µm image of central region of immersed polymer 

 The very sharp projections, the strong rigid surface, and the globular particle 

structures seen on the ridge regions severely  contrast with the smooth, dendrite-like, 

almost fluid type formations seen in the central regions.  It is possible that the gold 

nanoparticles aid in the rigidity of the structure as well as many of the different 

formations observed on the polymer in particle populated regions.  It is also possible that 

the rigidity of the polymer in these regions may be a function of how close these regions 

were to the glass tube wall in which polymerization occurred.  The glass tube may have 

formed a sort of “foundation” for more rigid qualities along the walls of the polymer.  

The combination of particles and glass wall may completely explain the more rigid 

structure observed along the ridges of the polymer, which seem to completely lack the 

more fluid aspects found in the central regions of the polymer.  Most likely, the 

multidimensional drying of the polymer causes the ridge regions to be more densely 

packed with material than the central regions.  For this reason, the contours of the edges 

of the polymer are more rigid and compact.   
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 The dark purple colored ridge regions of the polymer exhibited a diverse array of 

textures and characteristics.  The composite also showed that relatively organized 

structures, each with different features, existed along different axis of the polymer.  This 

lends evidence to the idea of 2D hexagonal and 3D bicontinuous structures being formed 

throughout the volume of the polymer along differing axis.   

 

Figure 33 

Figure 32

Figure 31 - 20 µm image of non-immersed edge 

 Figure 31 shows a diverse array of features extending in different directions 

throughout the entire imaged region.  In the lower left hand side, just below the large 

block-like features, parallel folds are observed extending back into the image.  In the 

central and upper right hand side, up to the top of the image, small, stacked rectangular 

prism-shaped structures are seen oriented towards a different axis.  The large-block like 

features observed in the upper central region of the image are the result of the AFM 

cantilever sweeping over a region where the cantilever tip may not reach to, resulting in a 

large block like structure.  If the AFM cantilever could have been turned to a different 

angle, these blocks may have showed more detailed features.  However, these block type 

features also give credence to the idea that the polymer, upon drying, is creating 
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relatively ordered features along different axis.  The figures below provide some up close 

detail of Figure 31, to illustrate the ordered nature of the observed features. 

 

Figure 32 - 9.87 µm image of right hand side of FIGURE 29 

  

 

Channels going 
“along” image 

Channels going 
“into” image

Figure 33- 13.96 µm image of left hand side of FIGURE 29 

 Figure 32 is an image of the small, seemingly stacked, rectangular prism-shaped 

structures arranged along a vertical axis and parallel to each adjacent stack.  Figure 33 is 

a 13.96 µm image of the bottom left hand side of Figure 31.  In this image, globular, 

particle features are seen lining parallel rows across the area scanned.  It is difficult to 
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ascertain whether or not these particles are lining any sort of channels in the polymer, or 

whether or not they are in any sort of packing arrangement.  However, this image does 

illustrate, again, that the polymer and the gold nanoparticles have assembled themselves, 

upon drying, into a more stable, relatively ordered arrangement in some regions of the 

polymer. 

 While some of these images reflect, to some degree, the polymer reorganizing 

itself during drying, it seems that much of the nanoparticles are sporadically dispersed 

and highly concentrated throughout the edge regions of the polymer.  This could be due 

to the fact that the nanoparticles are probably nucleating on the wall of the glass test tubes 

and not capable of moving much further from the wall in order to self-assemble into 

channel-like structures. 

 Despite the diversity of surface features, which seem relatively ordered, but not 

highly ordered, there is evidence that the gold nanoparticles are self-assembling into 

hydrophilic channels of 2D hexagonally structured regions of the polymer.  Figures 34 

through 35 depict this evidence. 

 

 

Figure 35

 
Figure 34 - 20 µm image of immersed sample ridge regions 
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Figure 34 shows a large quantity of polymeric folds extending in different directions 

along the axis scanned.  Close examination of these folds reveals that many of them are 

lined with particles in parallel along each channel.   

 
 

Figure 35 -  4.86 µm site from FIGURE 32 
 

 Figure 33, above, is a closer examination of one line of folds from Figure 32.  

This image shows the polymeric folds in parallel channels across the area scanned.  The 

polymeric channels have gold nanoparticles along the inside of these channels.  The 

particles in Figure 35 range from 100 to 200 nm.  This is larger than the sizes anticipated 

from the SAXS data, but the explanation of this issue in Section VI applies in this 

situation as well. 
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Figure 37 

 
Figure 36 - 20 µm site from immersed sample ridge 

 Figure 36 is depicts even more ordered hydrophilic channels.  Once again, 

polymeric folds, with aligned particle like structures can be observed in some regions of 

the scanned area.  Another feature of this image is that globular-like structures seen at the 

base and on the right side of the region scanned in no particular order and along different 

axis.  It is the left hand side, flat folded region that shows an apparent ordering of 

particles.   

 

 

Figure 37 - 5.43 µm site from immersed sample ridge 
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Figure 37 shows a close up of this region.  In contrast to Figure 35, where 

particles are found in the polymeric folds, but more sporadically, Figure 37 shows a very 

organized alignment of the particles within parallel channel like regions of the area.  The 

particles in Figure 37 are on the same size range as the particles in Figure 35, however 

most of the particles tend to be closer to 200 nm in size.  The particles observed in this 

figure take on a more oval shape as well.  This is probably the result of more 

comprehensive encapsulation of the particles by the polymer.  The 100 nm to 200 nm size 

range of particles in Figure 35 correlates to the minor axis of the oval particles.  

However, when the major axis of the ovular particles is measured the range extends from 

100 to 500 nm.  Additionally, the arrangement of the particles within these channels is 

less sporadic and random, in contrast to the particles in Figure 35.  In the above image, 

the particles seem to take on a very ordered stagger stacked arrangement down the length 

of the polymeric folds.  In both Figure 35 and 37, the particles are larger than the 

anticipated size, but this is a function of AFM imaging and explained in Section VI  

 The arrangement of particles in these images is not due to high concentrations of 

particles in certain regions, nor are these merely debris.  If the particles were debris, they 

would not form as organized an arrangement as they do in the two previous figures.  

Debris would be spread over the area scanned on top of folds or within folds.  Clearly, in 

these images the particles are in high concentrations within the folds.  While, indeed, 

there are some particles spaced sporadically around the area, the highest concentrations 

are found in the folds.  This is evidence for self-assembling nanostructures.  If there were 

no self-assembly the nanoparticles would be in high concentrations but sporadically 

spaced through the scanned area, independent of fold location.  The images assembled 
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within this work are some of the best examples of polymeric self-assembly.  However, 

because the purpose of the work was to find evidence for these structures specifically, 

many images were taken of examples of these structures from various samples.  The 

APPENDIX of this work exhibits further examples of these ordered nanoparticle chains 

within the polymeric channels. 

 Of high importance in these findings is where these particles are found.  As seen 

before, the polymer exhibits a diverse array of features and structures along different axes 

of the sample.  Images of the nanoparticle laden channels in Figures 34 through 37 can be 

difficult to obtain because of the guess work involved in choosing sites from which to 

gather images.  Almost all of the gold nanoparticle laden channels found in this work 

were discovered along the side of the polymer in uniquely angled positions that provide 

images of the polymer which are not readily available in some regions of the cross-

sectional face, nor along the flat side of the polymer.  Figure 38 is a drawing of where 

these channel like features are typically found in the polymer samples. 

 

Figure 38 – Diagram of location of channels 
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 The channel-like, particle laden features of the polymer were typically found at 

the top of regions where the cylindrical sample remained stuck to the Petri dish paper as 

the rest of the material contracted upon itself.  Because of the angle and features created 

in these regions, sections of the polymer that may not be otherwise observable were 

brought to light and imaged.  Whether or not the features observed in these regions are a 

product of the unique drying arrangement in these areas, or predominantly the result of 

polymeric self-assembly is one aspect of this study that could be examined further.  

Because folds similar to those depicted in Figures 31 and 33 were present in the cross 

sectional face of the polymer, and because aligned globules and particle-like features are 

observed elsewhere in the polymer, it is likely that Figures 35 through 37 represent clear 

examples of hydrophilic gold laden nanoparticle channels and not simply a remnant of 

the drying process.  Because the side regions are more highly concentrated with 

nanoparticles, it is more likely that the folds created from self-assembly in these regions 

will be more thoroughly lined with particles then the folds observed in the more 

“interior” edge regions of the cross sectional face images. 

 

Figure 39 - 20 µm image immersed side 
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Figure 40  – (left) 25 µm image of immersed side. (right) 6.07 µm image of non-
immersed side 
 

In the same way that the cross sectional face features of the immersed polymer 

severely contrasted with the cross sectional face features of the non-immersed composite, 

the side regions of the immersed polymer revealed contraction features which contrasted 

with the non-immersed features.  Figure 39 and 40 are images of the side of the immersed 

polymer samples.  The contrast between the immersed and non-immersed samples in 

terms of side features is striking.  Clearly, there is a high degree of rearrangement taking 

place as ethanol leaves the sample.  The images of the non-immersed polymer showed a 

relatively smooth surface with gold nanoparticles, highly concentrated, and sporadically 

projecting from the surface of the polymer.  In contrast, the immersed sample shows large 

scale folds and bends in the overall surface of the sample – a result of self-assembly 

during ethanol drying.  The immersed samples also reveal nanoparticles that are more 

globular and larger in size.  In actuality, the larger sized particles are the result of 

agglomeration and encapsulation by the composite material.  The globules seen in 

Figures 39 and 40 are probably agglomerated gold nanoparticles or thick layering of the 

polymer around each particle.  One may also observe that the distribution of particles 
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tends towards more even spacing.  The large nanoparticles seem to maintain an average 

uniform distance in spacing for the immersed samples, where as the non-immersed 

samples were highly populated and tightly packed at the side of the non-immersed 

composite.  It is likely that the very high concentrations of particles in the polymer at the 

edge regions impedes the ability to assess the overall packing arrangement of the 

particles along the sides.  More work may be needed to see if lower concentrations of 

particles make finding ordered arrangements simpler.  However, it is evident that the 

polymer is indeed assembling the nanoparticles to a more uniform, energetically 

preferred state.  The order of the state may be a 2D hexagonal structure, but it is difficult 

to ascertain because the high population of particles do not seem to follow any sort of 

long-range order. One additional note is that the size of the particles actually appears 

larger in this particular sample versus the non-immersed sample.  This seems to suggest 

that the presence of and drying of ethanol enables particle mobility to arrangements more 

stable than the arrangement post-polymerization.  The added size may be the result of 

aggregation of the particles.  Previous studies have suggested this phenomenon, and it is 

verified by the larger, globular like characteristics of the observed particles for this 

sample, when compared to the smaller, much less globular characteristics of the non-

immersed polymer. 
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VIII. CONCLUSIONS 
 
 There are many conclusions that can be drawn from this work.  First, it can be 

concluded that the high energy, glass tube surface plays a very significant role in the 

nucleation of the gold nanoparticles.  Based upon a cursory glance at the sample, one 

may infer that the reduction of the nanoparticle precursor and nucleation of the 

nanoparticles is occurring along the glass surface of the capillary tube in which 

polymerization occurs.  The fact that the dark purple regions on the samples, which flag 

the presence of nanoparticles, are concentrated around the very edge of the samples is a 

basis for this conjecture.  Further examination, with atomic force microscopy, reveals that 

the polymeric composites are completely devoid of particles across the entirety of their 

cross section, except on the very edge of the dark purple regions.  When AFM was used 

to image the sides of the provided sample, it was found that the highest concentrations 

discovered anywhere in the sample were found in the purple strip regions running down 

the side edge of the polymer.  The combined evidence strongly suggests that nucleation 

of the gold nanoparticles is occurring as a result of contact with the high energy, curved, 

glass surface of the tube in which polymerization of the material and reduction of the 

gold nanoparticle precursors occurred. 

 The next conclusion that can be drawn from this work is that the polymer, during 

the drying of ethanol from various immersed samples, self-assembles into a more 
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energetically stable and preferred structure.  Figures 20 through 25 illustrate that as 

ethanol leaves the polymer pores and dendrite-like networks begin to form as a result of 

broken bonds between the ethanol and hydrophilic sections of the polymer.  Figures 24 

and 25 reveal ordered structures that arise from the drying process.  Figure 25 shows a 

structure with polymeric folds repeating around particular axes in one region of the 

polymer.  This is strong evidence for self-assembly.  Further evidence is seen in images 

where gold nanoparticles were present in the ridge regions of the immersed samples.  

Figure 31 is an example of this type of region.  Rectangular polymeric prisms can be seen 

in one section of this image stacked along one axis, with adjacent prisms running parallel 

to the stacked formations.  In another area, on the same image, parallel rows of polymeric 

channels can be seen running along a different axis.  Finally, Figure 33 shows some 

globular structures arranged in clustered globule formations that seem to exist 

independently of an axis.  This feature is anticipated by previous work and provides 

evidence that 3D bicontinuous structures are present in random forms throughout the 

polymer. 

 AFM images generated on the sides of both the non-immersed and immersed 

composite samples give further credence to the idea of self-assembly within the polymer.   

In the non-immersed images, the sides of the polymer are highly concentrated with 

nanoparticles that are tightly packed along the sides of the sample.  However, in the 

immersed and dried images, globule like structures of agglomerated and encapsulated 

nanoparticles appear with relatively even spacing between the globules and lower 

concentrations of particles at the very surface.  This strongly suggests particle mobility 
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and arrangement in the presence of ethanol.  Self-assembly is apparent by the uniform 

distribution and agglomerated arrangement of the nanoparticles in the material. 

 The purpose of this work was to determine whether or not gold nanoparticles, 

upon self-assembly of the ionic liquid during the drying of ethanol, were aligning into 

hydrophilic channels of the hexagonally structured polymers.  Evidence from AFM 

imaging of the polymeric samples has revealed that these arrangements are occurring.  

Figure 37 depicts channel like folds in the polymer lined with a stagger stacked 

arrangement of particles.  It is very likely that this arrangement is the result of self-

assembly because the highest concentrations of particles in the channel like regions of 

these images lie in the channels themselves.  If there were no self-assembly occurring, 

there would not be a stagger stacked arrangement of particles within the polymer and the 

particles would be scattered independently of polymeric channels.   

 The only concern regarding these findings is that the arrangements may be more a 

function of position in the polymer during drying rather than actually representing an 

arrangement that is going on within the polymer.  Figure 38 shows where the majority of 

the images of these particle laden channels were taken for different samples.  Whether the 

arrangement of these particles is a function of drying in regions where some of the 

polymer remains stuck to Petri dish paper while being subsequently pulled in by the 

remainder of the polymeric column remains to be seen.  Further work is necessary to 

investigate how to optimize the presence of these particle-laden channel formations. 
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IX. RECOMMENDATIONS FOR FURTHER WORK 
 
 The ability to analyze the nanoparticle composite polymers is dependent upon the 

dimensions of given samples.  In this work, a cylindrical composite gel was provide by 

Argonne scientists.  This gel had a high concentration of nanoparticles in thin strips along 

the outer ridge and side of the polymer.  AFM was utilized to analyze the edge of cross 

sectional regions as well as the sides of the cylinder where high concentrations of 

particles were present.  There are several of variables that can be changed in future work 

to gain more comprehensive knowledge of the internal dimensions and self-assembled 

structures of the composite. 

Experiments could be conducted where the concentration of the particles is varied 

to see how the overall self-assembly of the polymer is affected.  It was observed that 

there were high concentrations of particles in the material along the ridge regions.  This 

high concentration, which caused the particles to be tightly packed before the addition of 

ethanol, may impede particle mobility to some degree.  Therefore, polymerizing the 

composite material with varying degrees of particle concentrations may reveal more self-

assembled structures than seen in this work.  Instead of the combination of ordered 

structures, with randomly dispersed particles in many areas, it is thought that fewer 

particles may enable the polymer to more easily assemble ordered structures alone. 
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The polymer could be developed in shorter tubes with more uniform distribution 

of the particles throughout the polymer.  A small Petri dish sort of set up may work very 

well for this. If the precursor was at least uniformly distributed around a short Petri dish 

and along the bottom, more structural qualities of the polymer could be examined.  This 

would also make imaging of the polymer via AFM easier because the cantilever would 

not have to scan at odd angles to try and reach a strip of particles.  If the particles were 

more evenly distributed in a thinner more uniform polymer surface, the AFM’s cantilever 

could more readily access particles and structures from a wider variety of angles.  

Additionally, a uniform distribution of particles, at varying concentrations per sample, 

may also lend to particle mobility while immersed in ethanol and reveal more well 

ordered structures. 

If the polymer composite were developed in a lens or watch glass, it may be 

possible to see the effect the particles play on the polymer in a longitudinal type cross 

section.  In the current setup, there is a lot of space in the polymer where no particles are 

present, which makes it difficult to see what the particles are doing at very small 

distances from the glass surface.  A longitudinal cross section may reveal more structural 

properties than a “latitudinal” cross section. Also, the bent glass surface would aid in 

nucleating more particles in a lens type setup. 

 Finally, it was clear the UV radiation only nucleated gold particles on the very 

surface of the polymeric sample.  Further attempts to provide UV uniformly throughout 

the material would improve AFM analysis and potentially form more of the desired 

hydrophilic channel structures. 
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 In short, attempts made to change the geometric shape and size of the polymeric 

cylindrical samples would be beneficial in terms of providing more regions to analyze via 

AFM.  Attempts made at changing particle distribution and concentration within the 

sample may lend to improved particle mobility and better development of self-assembled 

structures in the polymer. 
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APPENDIX 
Figure 41 - 20 µm image of immersed polymer edge 

 

Figure 42 - 7.93 µm image from an area of Figure 40 
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Figure 43 - 2.93 µm image – a closer look at Figure 41 
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