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Figure 1.  Ground state (S0) optimized E isomers of im (a), pz (b), and py (c). Color assignments: gray – C atom, 
white – H atom, blue – N atom. 

ABSTRACT 

Azoheteroarenes are relatively new photoswitchable compounds, where one of the phenyl rings of 

an azobenzene molecule is replaced by a heteroaromatic five-membered ring. Although few 

studies have been performed, recent findings on methylated azoheteroarenes show that these 

photoswitches have great potential in various optically addressable applications. Thermal stability 

of molecular switches is one of the primary factors considered in the design process. For the 

purposes of quick information transmission in materials science, the thermal (Z – E) relaxation 

process should be as short as possible. On the other hand, molecular memory storage devices prefer 

long Z - E relaxation times. In this computational study, we investigate how oriented external 

electric fields (OEEFs) can be used to tune the photoswitching properties of three unsubstituted 

heteroaryl azo compounds – azoimidazole (im), azopyrazole (pz), and azopyrrole (py). (Figure 1) 

Based on a density functional theory (DFT) approach, we examine the electric field control of the 

thermal half-lives and nonlinear optical properties of im, pz, and py. We show that favorable 

OEEF orientations can increase thermal half-life of studied molecules by as much as 60 times, 

compared to their half-life values in the field-free environment. A deeper understanding of the 

kinetic and nonlinear optical properties provides greater insight of how molecular switches can be 

enhanced for user-selective design in different environments.   

 

 

 

 

          (a)    (b)          (c) 
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INTRODUCTION 

Molecular switches are molecular systems that can reversibly shift between at least two 

different states.1 Azobenzene (AB) has been studied extensively as a prototypical photoswitch 

molecule2-5,21 and its applications range from memory devices6,7 to molecular motors and 

actuators.8-10 AB exhibits a photo-induced isomerization process, converting from its E (trans) 

isomer to Z (cis) isomer, after which a thermal relaxation back to the E isomer can occur. Thermal 

stability of a photoswitch represents one of the important properties of the photoswitch 

performance. Another factor that influences the switch’s potential is the completeness of the 

photoswitching process.11 Certain drawbacks of AB, such as its incomplete photoswitching due to 

overlapping absorbance of the two isomers12, have confirmed the need for modified molecular 

switches.  

In recent years, azoheteroarenes, a new class of AB-based photoswitches, have been 

synthesized and found to provide more efficient and suitable molecular switches for a variety of 

uses.11,16,17 Azoheteroarenes are compounds having one or both rings of AB substituted by a five-

membered heteroaromatic ring (usually nitrogen-based). These compounds provide long thermal 

half-life of the Z isomer and substantial quantitative switching to the E isomer.13 To the best of our 

knowledge, most research regarding these compounds has focused on the effect of methylation, of 

one or both rings, on the photoswitching response.11,13-15 Due to the electron-donating character of 

the methyl group, such switches provide longer thermal relaxation times. In contrast, few studies 

have been performed regarding heteroarenes that lack methyl groups on the heterocyclic ring, and 

how they can be improved to offer better switching performance.  

Previous work done by Calbo and co-workers reports a list of novel azoheteroarene 

photoswitches with Z isomer half-lives ranging from seconds to years, all through tuning of the 
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heteroaromatic ring.11 The highest performing molecular switches from the groups of pyrazole, 

imidazole, and pyrrole molecules are studied in this work (figure 1). All three molecular 

representatives are studied without the additional methyl groups on the heterocyclic ring, i.e., the 

unsubstituted equivalents are considered. The motivation for studying unsubstituted 

azoheteroarenes comes from the lack of additional steric hindrance of these compounds caused by 

methylation, making them particularly useful in photopharmacology16, 24, as part of a drug delivery 

system, and as potential photoswitches for biomolecules.17 Moreover, these compounds can be 

synthesized inexpensively and do not require an additional methylation step in the synthesis 

process.32  

Based on a recent study of the photo and thermal isomerization of AB 23, oriented external 

electric fields (OEEFs) have been demonstrated as a highly feasible design route for molecular 

devices. In this work, we describe how OEEFs alter the thermal behavior of unsubstituted 

azoheteroarenes. Specifically, we computationally explore how the electric fields control partial 

and complete conjugation of specific azoheteroarenes, and how this field-induced repolarization 

affects their relaxation time and nonlinear optical properties. Due to their strong dipole character 

and promising photoswitching potential, azoimidazole (im), azopyrazole (pz), and azopyrrole (py) 

were classified as the appropriate candidates for the OEEF application. Electric field gradients 

have, and are still being used as a research tool to control chemical reactions via manipulation of 

activation energy barriers through stabilization of valence bond structures.25,26,27 OEEFs can 

modify the orientation of molecules and the overall π conjugation of conjugated systems. The 

distortion in electronic distributions and nuclear positions of a polar molecule, caused by OEEFs 

of adequate magnitude, can temporarily be used to manipulate the preferred isomerization pathway 

of a photochemical reaction.  
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To assess the tuning effects of the applied OEEFs, we consider kinetic properties of the 

studied molecules. Thermal stability of potential molecular switches is one of the primary factors 

considered in the photoswitch design process. For the purposes of quick information transmission 

in materials science, the Z - E relaxation process should be as short as possible.26 On the other 

hand, molecular memory storage devices prefer long Z - E relaxation times.6,7 Here, we use the 

Wiberg Index (WI) method to explain the correlation between the calculated thermal half-lives 

and the OEEF effects on the length of the Z - E isomerization of im, pz, and py.  In addition, we 

elucidate trends in the ground state first hyperpolarizabilities of these molecules as an assessment 

of the nonlinear optical properties that would contribute to the switch design. 

THEORY 

Electric dipole moment (µ) is the first nonzero term in a multipole expansion of charge 

distribution in a neutral molecule. µ is a vector that has three components, µx, µy, and µz, 

corresponding to the directions in which the dipole contributions from atoms (or molecules) of a 

system lie. The direction of µ represents the dipole orientation while the length of µ represents its 

magnitude. Total dipole moment is related to its vector components as follows, 

𝜇!"!#$ = (𝜇%& +	𝜇'& +	𝜇(&))/&. 

Fundamentally, a dipole moment is the product of charge (C, coulomb) and length (m, meter), so 

the SI unit of µ is C m. However, it is common practice in chemistry to express the total dipole 

moment in debye, D, where 1 D = 3.33564 x 10-30 C m. Any reported µ values will, therefore, be 

expressed in debye in this work. In the presence of an electric field, the permanent dipole moment 

reorients to follow the field, i.e., the molecule rotates into a new direction. For example, AB 
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molecules can be attached to immobile media, so that the electric fields can be applied with respect 

to a fixed orientation of the molecule.38  

In this work, we compare total dipole moments of different structures of im, pz, and py, 

and study how the electric field direction affects the dipole moment magnitude of the three 

azoheteroarenes. The electric field sign convention is the same as that used by Shaik and co-

workers, where the positive sign indicates that the field gradient along the specified axis points 

from the negative charge to the positive charge.18 

 Aside from creating a difference in a system’s dipole magnitude and direction, electric 

fields can also change optical properties of that system, giving rise to nonlinear optical phenomena. 

At low light intensity, most systems respond linearly, given by 

𝜇 = 	𝛼𝐸, 

where α is the polarizability and E is the incident electric field. The nonlinear response of a system 

can be written as a Taylor series expansion, 

𝜇 = 	𝛼𝐸 +	)
&
𝛽𝐸& + )

+
𝛾𝐸,…,                                               (1) 

where β is the first hyperpolarizability and γ is the second hyperpolarizability of the system. From 

equation (1), it can be seen that at low field magnitudes, polarization approximates a linear 

response, whereas with increasing field strength, nonlinear properties become more important.  

Similar to the total dipole calculation, total first hyperpolarizability can be calculated as follows, 

𝛽 = (𝛽%& +	𝛽'& +	𝛽(&))/&. 
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However, this relationship is quite oversimplified, neglecting the tensorial nature of the system’s 

ability to polarize, i.e., the system’s second-order electric susceptibility per unit volume.28 So, 

the more complete picture of polarization, P can be described by, 

𝑷 =	𝜒-.
())𝑬 +	𝜒-.1

(&)𝑬& +	𝜒-.1$
(,) 𝑬, +⋯	 

where χ(2) and χ(3) are the second- and third-order electric susceptibilities, respectively. From this 

relationship, we can see that the first hyperpolarizability is a third-rank tensor that can be described 

by a 3x3x3 matrix. Due to Kleinman symmetry, which holds at low frequencies (for a static field 

ω = 0) and states that susceptibilities are independent of the wavelength interacting fields, the 3D 

matrix can be reduced to 10 components. Using the x, y, and z components of β, βtotal is given by, 

𝛽!"!#$ = 0(𝛽%%% +	𝛽%'' +	𝛽%(()& +	(𝛽''' +	𝛽'(( +	𝛽'%%)& +	(𝛽((( +	𝛽(%% +	𝛽('')&1
)/&  (2) 

The SI unit of β is 2
!3!

4"
. For convenience, the reported β values in this work will be expressed in 

atomic units (a.u.) (1 a.u. = 3.2063 x 10-53  2
!3!

4"
). 

 To assess the thermal stability of studied molecules, their half-lives (t1/2) are considered. 

Here, we only focus on the ground state (S0) isomerization process where t1/2 signifies the time 

taken for the concentration of the Z isomer to fall to half its initial value. The half-life of each 

molecule was calculated assuming a first-order reaction and following the first-order rate law, as 

shown below 

𝑡)/& 	= 	
56	(&)
1

 .                                                              (3) 

In this relationship, k represents the rate constant of the reaction and can be obtained following 

the transition state theory,35 
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𝑘(𝑇) = 	 1#8
9:°

𝑒
;∆‡>°

?8@ ,                                                     (4) 

where kB is the Boltzmann constant, kB = 1.380662 x 10-23 J/K, T is the temperature,  

T = 298.15 K, h is the Planck’s constant, h = 6.626176 x 10-34 J s, c° is the concentration, here  

c° = 1, ∆‡G° is the free activation energy, and R is the ideal gas constant, R = 8.31441 J/(mol K). 

Equation (4) shows that there is a significant kinetic component to the calculated thermal half-

lives where free energy variations of only 1 kcal/mol can cause a difference in t1/2 of tens of days.  

 Following the example of Calbo et al.11, we use Wiberg indices to establish a relationship 

between the strength of the azo bond (N=N) of the different molecular geometries and their 

respective half-lives. The WI measures the density between atoms A and B and is determined as 

the sum of the off-diagonal square of the density matrix P, where P is different than the previously 

described polarization term,20 

𝑊𝐼𝑨𝑩 =	∑ ∑ 𝑷CD&D𝑩C𝑨 .                                                     (5) 

The Wiberg bond index is only one of the parameters provided by the Natural Bond Orbital (NBO) 

analysis. The NBO analysis is often used to explain the computational solutions of the 

Schrödinger’s wave equation in terms of chemical bonds. NBOs are localized electron pair orbitals 

for bonding pairs and lone pairs generated from an idealized Lewis structure of the molecule in 

question. In other words, NBO analysis is based on the optimal transformation of a wave function 

into a localized form. This localized form corresponds to the bonding pairs, i.e., chemical bonds, 

and lone pairs of electrons. Here, we use the analyzed electron density expressed in the complete 

orthonormal set of 1-center localized orbitals — Natural Atomic Orbitals (NAOs). The NAO bond 

order aspect of the NBO analysis can be used to investigate the electric field effect on the N=N 

bond character. 
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COMPUTATIONAL DETAILS AND METHODOLOGY 

 Due to high sensitivity of the calculated thermal half-lives to the free energy variations, we 

compared the response properties of the studied molecules among eight different functionals and 

three different basis sets. The calculated field-free responses are listed in Table 1, along with the 

tested functionals. Our results show that B2PLYP functional significantly overestimated the 

calculated free energies, while BLYP underestimated them. This was expected since the amount 

of Hartree-Fock (HF) exchange increases from 0% in BLYP to 53% in B2PLYP, resulting in an 

energy activation barrier increase. The hybrid exchange-correlation PBE0 functional provided t1/2 

values the closest to those reported in the literature.11 All field calculations were computed using 

CAM-B3LYP, PBE0, and PBE0-D3 functionals. CAM-B3LYP functional was tested based on the 

Sadley-Sosnowska’s work, suggesting that a long-range corrected functional fixes the incorrect 

electric field dependence modeled by the exchange functional of the traditional DFT methods as 

B3LYP.19 Compared to the two PBE0 functionals, CAM-B3LYP vastly overestimated the 

activation energy barriers (∆‡G), as shown in Figure 2, resulting in t1/2 values much higher than 

anything experimentally observed up to date. Similarly, the addition of Grimme’s dispersion 

correction (D3)36 to the PBE0 functional also increased the energy activation barriers. This was 

expected based on the previously reported results, as the dispersion was shown to stabilize the Z 

isomers of the azoheteroarenes compared to their transition states, leading to an increase in t1/2 

with the addition of dispersion.11 Since the systems under study here are lacking methyl groups, 

and therefore have less dispersion, the PBE0 functional was used for the primary data collection. 

Additionally, we decided to use a triple zeta basis set that includes diffuse and polarization 

functions (6-311+G(d)) to achieve the correct response in the field environment. 
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Figure 2. Comparison of the performance of various functionals benchmarked on the im type I structure in 
the field environment. Solid red line – CAM-B3LYP, dashed black line – PBE0-D3, dotted blue line – PBE0. 

Table 1. Comparison of the performance of various functionals benchmarked on the field-free im type I structure. 
Results are compared to the experimental half-life of the methylated im type I reported by Calbo et al.11 

 

 

 

 

 

 

 

 

 

  

Functional ∆‡G (kcal/mol) t1/2 (day) 

Experiment - 6.5 

BLYP 22.96 0.1 

BLYP-D3 24.79 2.0 

B2PLYP 28.71 1471.1 

B3LYP 24.44 1.1 

B3LYP-D3 25.87 12.1 

ωB97XD 27.97 423.1 

PBE0 25.12 3.4 

PBE0-D3 25.58 7.5 

CAM-B3LYP 26.44 31.5 
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Figure 3.  OEEF directions demonstrated on the S0 E isomer of azopyrrole. The arrows are pointing in what will 
be referred to as the negative field direction. Positive field direction is facing the opposite way. 

Based on the benchmarking results, we apply the DFT method33 on the PBE0/6-311+G(d) 

level of theory, as implemented in the Gaussian 16 suite of programs34, for the ground state 

geometry optimizations, free energy calculations, first hyperpolarizability computations, and 

Wiberg indices. Relaxed scanning along the -N=N-C bond was employed in the transition state 

search, after which the intrinsic reaction coordinate (IRC) calculations were used to confirm the 

accuracy of identified transition states. All calculations were done in gas phase at 25℃, without 

considering solvent and temperature effects. 

All geometry optimizations were first studied in the field-free conditions. The OEEFs were 

then applied along two different axes, namely Fazo and Fhet. Fazo is aligned along an internal 

coordinate defined by the azo bond and Fhet is oriented along the internal coordinate defined by 

the N-H bond in the five-membered ring. (Figure 3) The fields were applied in intervals of 0.0025 

a.u. from ±0.0025 to ±0.0100 a.u. (1 a.u. = 5.14 × 103 MV cm-1), following the example of 

Kempfer-Robertson and Thompson23. It should be noted that two different atomic arrangements 

of the five-membered ring were considered – type I and type II structure of each molecule (Figure 

4). This was done to compare the effect of the arrangement of N atoms, within the same system, 

on that molecule’s photoswitching performance.  

 

 

         

      (a) Fazo    (b) Fhet 
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Figure 4. Optimized S0 E isomers of all studied molecules. 
(a) – im type I, (b) – im type II, (c) – pz type I, (d) – pz type II, (e) – py type I, (f) – py type II 

 

 

 

 

 

 

 

 

 

 

 

RESULTS AND DISCUSSION 

 

Gibbs Reaction Energies of Azoheteroaryl Photoswitches 

Four mechanisms have been proposed as possible pathways for the AB photoisomerization 

– rotation, inversion, concerted inversion, and inversion-assisted rotation.24 Previous work done 

on azoheteroaryl photoswitches has shown inversion to be the lowest energy pathway for the 

thermal isomerization.11 Computed transition states (TS) and activation barriers for different Z - E 

isomerization processes confirmed inversion being the preferred pathway for all molecules 

studied, with the inversion TS S0 energy values being lower than those of the rotation TS in each 

case. Optimized S0 Z and E minima and the TS structures for the two pathways, represented using 

im, are shown in figure 5. In the transition state of the inversion mechanism, one N=N-C angle 

reaches the value of 180° while the C-N=N-C dihedral angle is 0°. Considering that azoheteroaryl 

molecules have two different cyclic arrangements of atoms in their structure, there are two possible 

N=N-C angles that could reach the value of 180°. Initial testing of both possibilities yielded very 

similar results, so all TS calculations were performed with the N=N-C fragment attached to the 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 



17 
 

Figure 5. Optimized structures of azoimidazole type I S0 stationary points showing both S0 rotation  
and inversion pathways. 

phenyl ring being 180°. It is also common to use multiple isomerization pathways to explain 

experimental observations when studying AB systems.29 Stability of the inversion pathway is a 

consequence of the inversion of an sp2-hybridized N orbital, conserving the double bond character 

of the azo (N=N) group.23 

  

 

 

 

 

 

 

 

 

 

 

Rotation of the rings relative to the azo bridge allows for formation of many different E 

and Z conformations of heteroaryl systems. Here, only the lowest energy conformers are 

considered. Since all compounds studied in this work are unsubstituted, they were all found to 

exhibit a perpendicular T-shaped Z isomer conformation (figure 6), as suggested by previous 

studies.24 Note that we will refer to the substitution at 

one or both of the positions of the five-membered 

heteroarene adjacent to the azo group as ortho in this 

work. A significant difference was noticed in the 

geometry of the Z isomer of both types of im structures 

compared to the pz and py Z isomer geometries. In im 

Figure 6. Optimized S0 Z isomer of im type I in 
the T-shaped conformation. 
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type I molecule, the ortho positioned nitrogen atom with a lone pair (lp) in its sp2 orbital is facing 

the benzene ring (Figure 6), and the -N-C-N=N- dihedral angle (φ) is 17.1°. In im type II structure, 

ortho hydrogen interacts with the benzene ring and the -C-C-N=N- φ is 13.8°. Interestingly, type 

I im structure was calculated to be 1.3 kcal/mol lower in energy than its type II counterpart, despite 

the greater tilt angle. This suggests that in this case, the lp ⋯ π interaction is stronger than the C-

H ⋯ π interaction. Previous studies have demonstrated similar results in aromatic residues of 

protein structures, and the strong lp ⋯ π interaction was explained on the basis of dispersion 

forces.30, 31 Molecules pz and py both have -C-C-N=N- φ angles between 0.1° and 0.2° in all Z 

geometries. Here, it was noticed that the positioning of the sp3 nitrogen in the heteroaryl ring 

influenced Z isomer’s geometry. In the case of pz and py structures, tilt angle reached the value 

of 0.2° only when the sp3 N atom was positioned next to the C-H group interacting with the 

benzene ring (pz type II and py type I). This had immediate consequences on the stabilization of 

the Z isomer, with the pz type II structure being 0.9 kcal/mol higher in energy than its type I 

counterpart. In the case of py, the difference was more significant, and the type I structure was 

calculated to be 2.6 kcal/mol higher than the type II structure of the Z isomer. These findings 

provided first insight into the effects of heteroatom positioning in the five-membered ring on the 

molecular thermal half-lives. Lone pair in the sp3 orbital of the sp3 hybridized N atom provides 

additional conjugation in the ring, giving the C atom attached to the sp3 N a higher possibility to 

bear negative charge, and the formed carbanion leads to the overall destabilization of the molecular 

system. In terms of conjugation, pz and py molecules can be described as having “partial” 

conjugation with respect to the azo bond, i.e., the entire molecular system is not conjugated with 

the azo group and the phenyl ring. On the other hand, im has “complete” conjugation with respect 

to the azo bond and the phenyl ring. This is only true in their E isomers. As mentioned previously, 
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Z isomer is oriented so that the phenyl and heteroaryl rings are, essentially, perpendicular to one 

another, preventing the conjugation with the phenyl ring.32  

Application of electric fields in certain directions was able to change the overall geometry 

of inversion transition state (inv TS). In some cases, the N=N-C fragment of the inv TS structure, 

attached to the phenyl ring, is still at 180°, but as the greater magnitude field is applied, the phenyl 

ring rotates to become planar as opposed to perpendicular with respect to the heterocyclic ring. 

This phenomenon appeared in the inv TS structures of all molecules, only in the negative direction 

of either of the two fields. When the azo and het fields are applied in the negative direction, 

regardless of the molecular system, they both cause the electron density to relocate from the 

heterocyclic ring in the direction of the phenyl moiety (Figure 3). However, there appears to be a 

threshold which when crossed, the phenyl ring reorients to become planar in the inv TS, stabilizing 

the system and decreasing the overall Gibbs activation energy (∆‡G). 

Tables S1-S12 show calculated Gibbs reaction energies (∆G) for all molecules, with 

respect to their field-free E isomer’s energies. Graphical representation of Z isomer’s ∆G values 

can be found in Figures 7-9.  

 

 

  

Figure 7. Reaction Gibbs energy for the S0 Z isomer of azoimidazole, with respect to the E isomer, as a function of field 
strength. Pink – im type I Fazo, purple - im type I Fhet, dark green - im type II Fazo, light green - im type II Fhet. 
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Figure 9. Reaction Gibbs energy for the S0 Z isomer of azopyrrole, with respect to the E isomer, as a function 
of field strength. Dark purple – py type I Fazo, light purple - py type I Fhet, dark yellow - py type II Fazo, light 
yellow - py type II Fhet. 

Figure 8. Reaction Gibbs energy for the S0 Z isomer of azopyrazole, with respect to the E isomer, as a function 
of field strength. Light blue – pz type I Fazo, dark blue - pz type I Fhet, dark orange - pz type II Fazo, light orange 
- pz type II Fhet. 
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 First, we elaborate the Fazo effects on ∆G of each system. Positive Fazo stabilized all Z 

isomers of the studied molecules while negative Fazo had various effects on the molecular systems. 

In the case of im, negative Fazo stabilized the Z isomer of the type II molecule but destabilized type 

I molecule’s Z isomer. The pz type II Z isomer was stabilized by negative Fazo, while its type I 

structure was destabilized. Z isomer of the py type II molecule was destabilized by negative Fazo, 

and its type I counterpart was stabilized only when the -0.0075 a.u. and -0.0100 a.u. field 

magnitudes were applied. The E isomer was primarily stabilized by the positive Fazo in all 

molecules. The only exception is the type II pz E isomer, which was only stabilized once the higher 

field magnitudes were applied (0.0075 a.u.). The inversion transition state (inv TS) was stabilized 

by the positive Fazo in all cases. All type II E isomers were stabilized under the application of 

negative Fazo while the opposite was true for all type I structures. A similar trend was noticed for 

the inv TS under the application of the negative Fazo.  

 Now, we turn to the effects of Fhet on ∆G values. Figures 7-9 should, once again, be referred 

to for the visual representation of the observed field effects on the ∆G values of the Z isomer. In 

general, application of Fhet in the positive direction stabilized every molecular system studied, 

while the negative Fhet direction destabilized each structure. This was entirely true for the Z isomers 

and inv TS geometries, however, E isomers showed some deviation from this trend when the pz 

and py molecules were studied. In the case of both pz structures, the molecules were stabilized 

after the -0.0050 a.u. field was applied.  

 Both fields were shown to stabilize the Z isomers of the studied molecules using certain 

field magnitudes and directions. Some Z isomers were stabilized by as much as 7 kcal/mol (py, 

type II, +0.0100 a.u. Fazo), while the highest calculated energetic destabilization was by 10 
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kcal/mol (pz, type II, -0.0100 a.u. Fhet), in reference to the Z isomer’s free energy value in the 

field-free environment. 

 

Dipoles and First Hyperpolarizabilities of Azoheteroaryl Photoswitches 

 In the field-free environment, S0 E structure is planar in all three molecules, im, pz, py, 

and their respective total dipole moments (µtot) were calculated to be 4.2 D, 2.3 D, and 3.1 D. The 

full point group of these molecular systems is C1, indicating no symmetry in any case. S0 Z 

structures were calculated to have total dipole moment values of 6.7 D, 3.9 D, and 5.5 D for im, 

pz, and py, respectively. Table 2 shows calculated first hyperpolarizabilities (βtot) for all structures 

in the field-free environment, as well as the relevant bond lengths of the inv TS. Figure 10 shows 

the optimized S0 inv TS structure showing NN and NC bonds. 

 

 

 

Table 2. Total first hyperpolarizabilities calculated for the E and Z isomers and inv TS of the studied molecules in the field-
free environment, along with NN and NC bond lengths of inv TS. 

 
Molecule Type βtot E isomer 

(a.u.) 
βtot Z isomer 

(a.u.) 
βtot inv TS 

(a.u.) 
NN bond 
length (Å) 

NC bond 
length (Å) 

Azoimidazole 
I 168 148 710 1.2155 1.3226 

II 140 109 1090 1.2172 1.3230 

Azopyrazole 
I 79 107 145 1.2177 1.3248 

II 60 56 50 1.2176 1.3242 

Azopyrrole 
I 134 124 564 1.2188 1.3219 

II 112 94 502 1.2184 1.3214 
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 Observing each molecular system separately, 

with its two types, our results show that 

structures with highest βtot inv TS also have the 

longest NN and NC bonds. For im structures, 

type II inv TS was calculated to have βtot of 

1090 a.u., about 1.5 times greater than inv TS 

βtot of type I. Im type I was also found to have 

longer NN and NC bonds than its type II counterpart. Similarly, in the case of pz molecules, type 

I has inv TS βtot value almost 3 times greater than the type II structure, and the type I’s NN and 

NC bonds were calculated to be longer than those of type II. Finally, the same trend was noticed 

for the py systems, with the type I structure showing higher inv TS βtot and longer NN and NC 

bonds. Longer NN and NC bond lengths imply lower p character of these bonds which is further 

connected to lower strength of those connections. It would be expected that molecules that exhibit 

weaker double bonding in the inv TS give a higher potential for a dipole to be induced in those 

systems. 

 Figures 11 (a)-(c) illustrate observed trends regarding the βtot values for each system in the 

field environment. Beginning with Fazo, when applied in the positive direction, this field caused an 

increase in both, µtot and βtot of all Z isomers. In the case of im, negative Fazo increased type II’s 

µtot and βtot, but decreased type I’s µtot and βtot values. An increase in µtot and βtot was noticed for 

both structural types of pz. Z isomer of the py type II molecule showed a decrease in its µtot and 

βtot under negative Fazo. Its type I counterpart showed an increase in µtot and βtot values only when 

the -0.0075 a.u. and -0.0100 a.u. field magnitudes were applied. This is an example of a strong-

Figure 10. Optimized S0 inv TS of im type II showing 
N14=C5 of the Fhet atom arrangement. 
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field dipole-inversion effect where due to the strength of the electric field, the dipole vector 

realigns to be antiparallel to the applied field.23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The µtot trends follow the general notion of energetic stabilization offering higher total 

dipole values and vice versa. µtot and βtot values for the E isomer increased in all systems when 

positive Fazo was applied. µtot and βtot of inv TS also increased with this field direction, except for 

the βtot values of the im structures which decreased. Under the application of negative Fhet, βtot 

values decreased for most E isomers, with the exception of the pz type II structure. The inv TS 

showed an increase in βtot for both im molecules and the pz type II structure, and a decrease in βtot 

for both py molecules and the pz type I structure.  

(a) (b) 

(c) 

Figure 11. Total first hyperpolarizability as a function of field strength. Solid red line – type I Fazo, solid orange 
line – type II Fazo, dashed black line – type I Fhet, dashed blue line – type II Fhet.  (a) – im, (b) – pz, (c) – py. 
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 As for the Fhet effects, in general, positive Fhet direction increased the µtot values for all 

molecules while the negative direction decreased them. Values of βtot were increased by the 

positive Fhet direction for all E and Z isomers but decreased for some inv TS structures (im type I, 

type II and py type II). Opposite trend was observed once the negative direction of Fhet was applied. 

Overall, the highest increase in µtot was noted to be of 4.5 D (im, type I, +0.0100 a.u. Fazo), while 

the highest increase in βtot was calculated to be of 100 a.u (im, type I, +0.0100 a.u. Fazo) compared 

to the field-free values of the particular Z isomer. A clearer structure of the observed trends can be 

noticed with the application of an electric field along one of the N-H bonds in each structure, as 

opposed to general trends noticed when Fazo was used. In comparison to Fazo, Fhet initiates a more 

uniform response from the azoheteroarenes studied in this work and would likely be a better 

experimental tool for studying their nonlinear optical properties.  

Gibbs Activation Energies and Thermal Half-Lives of Azoheteroaryl Photoswitches 

 Given that the reaction kinetics were 

calculated according to the transition 

state theory, previously described Z 

isomer free energy deviations had a 

significant impact on the calculated 

field-free half-lives. Table 3 shows the 

obtained t1/2 values for both Z 

geometries of each molecule. It should 

be noted that t1/2 is a property of ∆‡G, 

hence the two are discussed together. 

 
1 Structures of methylated derivatives can be found in Ref. [11]. 

Table 3. Thermal half-lives calculated for the studied molecules in 
the field-free environment as compared to the experimental half-
lives calculated for the methylated derivatives.  

Molecule Type t1/2 (day) Experimental1 
 t1/2 (day) 

Azoimidazole 
I 1.4 

6.5 
II 4.7 

Azopyrazole 
I 134.6 

1000 
II 52.4 

Azopyrrole 
I 5.7 

3.7 
II 7.8 
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Tables S13 and S14 show calculated ∆‡G values for all studied systems. In the case of pz 

and py, the more stable Z isomers were calculated to have longer thermal half-lives in the field-

free environment, 134.6 days (pz, type I) and 7.8 days (py, type II). The im molecule offered the 

lowest thermal half-life of 4.7 days for its type II Z isomer geometry. Table 3 also includes the 

previously reported experimental values of similar molecules that include methyl substituents, 

obtained by Calbo et al.11 Even without the electric field applied, the unsubstituted py molecule 

offered a higher theoretical thermal half-life than the trisubstituted pyrrole heteroarene molecule 

(t1/2 = 3.7 days) in the previously mentioned study. To the best of our knowledge, no previous 

reports on the experimental half-lives of the studied molecules exist, so we are unable to deduce 

the exact comparison between the theoretical and experimental trends. Nonetheless, the field-free 

t1/2 results support the previously established advantage of azopyrazole’s geometry as related to its 

kinetics.11 Pyrazoles are the worst electron-donors to the azo group in comparison to pyrroles and 

imidazoles. Partial conjugative electron donation of azopyrazoles results in a higher double-bond 

character of the azo bridge, giving a more stable Z isomer that takes a longer time to isomerize to 

the E isomer. A note should be made on the connection between t1/2 and nonlinear optical 

properties of these molecules. For example, pz type I molecule offers a great theoretical t1/2 but its 

βtot values are not as high as those calculated for the im molecules. While, on the other hand, im 

molecules did not offer as large t1/2 values. These findings suggest that the trade-off between 

kinetic performance and the ability to induce a dipole in a particular molecular system should be 

taken into consideration prior to development of a molecular switch.  

 We will now examine the effects of Fazo on ∆‡G and t1/2 values. Table 4 contains all 

calculated t1/2 values under the application of Fazo.   
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 We will focus on the most notable findings as compared to the field-free values. Overall, 

the negative direction of Fazo increased t1/2 values of all studied molecules while the positive 

direction did the opposite. The only exception was found to be the type II structure of py for which 

the trend was reversed. A clear correlation to the observed ∆G trends is seen among the data 

presented in Table 4, with there existing a threshold field value for each molecule, after which the 

molecule stabilizes, and its t1/2 starts decreasing. Two most commonly observed electric field 

threshold magnitudes are 0.0050 a.u. and 0.0075 a.u.  

Examining the im molecule, type II structure was noted to have a higher field-free t1/2 than 

the type I structure. Theoretical calculations show that once the 0.0050 a.u. field is applied along 

the azo bond in the negative direction, im type II structure’s t1/2 reaches 45.1 days, a value almost 

10 times greater than the calculated field-free one. This increase in length of t1/2 of im was followed 

by a 1.35 kcal/mol increase in ∆‡G. In the case of pz molecule, its type I structure retained the 

highest t1/2 in the field-free environment, but the type II structure’s t1/2 was raised to 238.2 days 

with the application of the 0.0050 a.u. field along the azo group in the negative direction. It should 

be noted that the field-free t1/2 of pz type I does not follow the general trend observed in other 

molecules, in terms of the t1/2 values increasing or decreasing in a specific direction. Compared to 

Table 4. Thermal half-lives reported in days for all molecules under the application of Fazo. 

Molecule Type -0.0100 
a.u. 

-0.0075 
a.u. 

-0.0050 
a.u. 

-0.0025 
a.u. 

0.0000 
a.u. 

0.0025 
a.u. 

0.0050 
a.u. 

0.0075 
a.u. 

0.0100 
a.u. 

im 
I 0.8 4.0 7.4 2.1 1.4 0.4 0.1 0 0 

II 0.4 3.6 45.1 5.1 4.6 1.9 0.4 0 0 

pz 
I 122.0 214.7 25.1 3.1 134.6 4.8 0.3 0 0 

II 0.6 224.7 238.2 78.1 52.4 14.5 2.1 0.2 0 

py 
I 1.5 9.2 0.7 0.5 5.7 0.7 0.1 0 0 

II 0.1 58.4 16.9 14.3 7.8 2.1 0.3 0 0 
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the type II structure’s field-free t1/2 of 52.4 days, application of the electric field increased type II’s 

t1/2 by 4.5 times, while ∆‡G was raised by 0.89 kcal/mol. Finally, looking at the py molecule, our 

calculations showed that with the application of 0.0075 a.u. field in the negative direction, t1/2 of 

this molecule could be increased to 58.4 days, with its ∆‡G increasing by 1.19 kcal/mol. All 

calculated t1/2 value should be taken with a dose of uncertainty due to the intricate nature of the 

transition state theory calculations, where even minuscule variations in the activation barrier of 

less than 1 kcal/mol can change t1/2 values by an order of magnitude. Nonetheless, even the py 

type II structure was improved in terms of its t1/2 which rose to 9.2 days once the 0.0075 a.u. field 

was applied in the negative direction, while its ∆‡G was increased by 0.29 kcal/mol. Now we can 

see that, even though the exact half-lives should be confirmed experimentally, the OEEFs can 

certainly be used to tune the kinetics of the thermal isomerization of unsubstituted azoheteroarenes 

and bring them to a level comparable to their methylated derivatives.  

Turning to the effects of Fhet, detailed t1/2 values for this field can be found in Table 5.  

  Table 5. Thermal half-lives reported in days for all molecules under the application of Fhet. 

Molecule Type -0.0100 
a.u. 

-0.0075 
a.u. 

-0.0050 
a.u. 

-0.0025 
a.u. 

0.0000 
a.u. 

0.0025 
a.u. 

0.0050 
a.u. 

0.0075 
a.u. 

0.0100 
a.u. 

im 
I 0 0.9 4.7 25.4 1.4 0.3 0 0 0 

II 0.2 0.2 0.6 1.7 4.6 12.6 34.1 94.3 254.9 

pz 
I 0.1 2.8 10.3 2.6 134.6 6.4 0.5 0 0 

II 0.4 1.8 5.4 17.0 52.4 153.8 437.6 1222.5 3185.0 

py 
I 0.1 1.6 13.2 0.8 5.7 0.5 0 0 0 

II 0.1 0.3 0.8 2.4 7.8 22.9 74.5 256.6 889.7 
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In terms of the overall kinetics of the isomerization process, negative Fhet direction consistently 

lowered t1/2 values of all molecules, while the positive Fhet direction offered varying results for 

different systems. In im, type I structure’s t1/2 were decreased in the positive direction, while its 

counterpart, type II, showed an overall increase once this field direction was used. The highest 

calculated t1/2 for im was 254.9 days, achieved when the +0.0100 a.u. Fhet was applied to the type 

II structure. This t1/2 value is approximately 54 times higher than the t1/2 calculated in the field-free 

environment. The ∆‡G was raised by 2.37 kcal/mol. Compared to the highest t1/2 value calculated 

for im with the Fazo application (t1/2, azo = 45.1 days), orientation of the electric field along the N-

H bond increased t1/2 by over 5 times. A significant increase in the t1/2 for the pz type II molecule 

was achieved by application of +0.0100 a.u. Fhet field, with the calculated t1/2 being 3185 days, a 

value 61 times greater than the calculated field-free t1/2 of 52.4 days. Increase in the calculated t1/2 

was followed by a 2.44 kcal/mol increase in ∆‡G. In the case of py molecule, t1/2 of its type II 

structure showed the highest calculated value of 889.7 days upon the application of positive 0.0100 

a.u. Fhet, a value 114 times greater than the calculated t1/2 in the field-free environment (t1/2, field-free 

= 7.8 days). As mentioned previously, Fazo application increased the py t1/2 to 58.4 days, which is 

about 15 times lower than the value obtained by the Fhet application. This increase in t1/2 was 

followed by a 2.81 kcal/mol increase in ∆‡G. 

 

Wiberg Indices as They Relate to the Isomerization kinetics  

 To further investigate the OEEF effects on isomerization kinetics of azoheteroarenes, we 

discuss one aspect of NBO analysis – Wiberg bond indices (WIs) – as it relates to the calculated 

t1/2 values. Based on the work done by Calbo et al., higher WI values should be representative of 

higher t1/2 values, and vice versa.11 This was deemed partially true based on the results discussed 

here. Focusing on the inv TSs, we calculated WIs for the NN and NC bonds (figure 10) in each 
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molecular system. Table 6 lists the highest calculated t1/2 values for each molecule, along with the 

field conditions at which those values are achieved, NN and NC bond lengths, and their respective 

WIs.  

 

 

 

 When comparing type I and type II values for each molecular system, it can be observed 

that molecules with higher t1/2 values, also have higher NC WIs and lower NN WIs. For example, 

in the case of im type I and type II molecules, type II was calculated to have a t1/2 value of about 

255 days, whereas type I was found to have a t1/2 of 25 days. Observing their WIs, type II structure 

has a higher NC WI of 1.2394, compared to an NC WI of 1.2159 for the type I structure. On the 

other hand, NN WI was calculated to be lower for the type II structure (1.8298) and higher for the 

type I structure (1.8566). A similar trend is observed for every molecular system studied. Higher 

t1/2 values are correlated with higher NC WIs. This suggests that the more electron density is 

relocated towards the heterocyclic moiety, the NC bond in particular, the higher the thermal 

Molecule Type Conditions 
t1/2 

(day) 

NN bond 
length 

(Å) 

NC bond 
length 

(Å) 
NN WI NC WI 

im 
I Fhet -0.0025 au. 25.4 1.2155 1.3275 1.8566 1.2159 

II Fhet +0.0100 au. 254.9 1.2209 1.3203 1.8298 1.2394 

pz 
I Fazo -0.0075 au. 214.7 1.2212 1.3366 1.8556 1.1863 

II Fhet +0.0100 au. 3185.0 1.2282 1.3207 1.8187 1.2375 

py 
I Fhet -0.0050 au. 13.2 1.2170 1.3327 1.8411 1.2101 

II Fhet +0.0100 au. 889.7 1.2229 1.3198 1.8072 1.2437 

Table 6. Highest thermal half-lives calculated for the studied molecules in the field environment along with the NN 
and NC bond lengths of their inv TSs and their respective WIs. 
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Figure 12. Optimized S0 Z isomers of all studied molecules. 
(a) – im type I, (b) – im type II, (c) – pz type I, (d) – pz type II, (e) – py type I, (f) – py type II 

stability of the particular system. This is also confirmed by the general trend regarding the field 

conditions that afforded the highest t1/2 values – positive Fhet of greater magnitudes (0.0075 a.u. 

and 0.0100 a.u.) provided the longest t1/2. Another interesting finding was the connection between 

the positioning of the N-H bond along which the Fhet was applied and the calculated t1/2 values. 

Figure 12 shows the optimized S0 Z isomers of all molecules. From this illustration, it can be 

noticed that all structural types that were found to have a dominant t1/2 over the other, have their 

N-H bonds almost perpendicular to the N=N bond (figure 12 b, d, e). Positive Fhet direction is, 

essentially, aiding in electron density relocalization from the N=N bond towards the heterocyclic 

moiety, in a perpendicular fashion. This is the case in im type II, pz type II, and py type I 

molecules, all of which were calculated to have higher t1/2 than the other type of the same molecular 

classification. These results suggest that the application of an electric field perpendicular to the 

azo bond, in the sense of an internal molecular coordinate, stimulates a higher degree of partial 

conjugation in the molecule, which in turn leads to a longer thermal half-life of that system.  
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Overall, Fhet showed to increase the NC WIs of the inv TSs more than Fazo did, suggesting 

that the internal coordinate defined by the N-H bond may be a better choice in terms of the OEEF 

tuning potential. Even though an experimentalist may not be able to directly manipulate the 

transition state of the particular isomerization reaction, knowing how the electric fields will affect 

this structure can help determine what initial conditions can be applied on the starting isomer to 

increase the overall t1/2 of the preferred state. If the molecule is tethered to a surface, the orientation, 

with respect to the field, is well defined, so electric fields can effectively be used in a 

photoswitching device.   

CONCLUSIONS 

In this work, we examined how OEEFs can be used to tune the photoswitching properties 

of three unsubstituted heteroaryl azo compounds — azoimidazole (im), azopyrazole (pz), and 

azopyrrole (py). Based on a density functional theory approach, the electric field control of the 

thermal relaxation time and nonlinear optical properties of im, pz, and py was examined. Wiberg 

indices and appropriate bond lengths were used to explain the correlation between the observed 

half-life (t1/2) trends and the electric field effects. The results of our study show that favorable 

OEEF orientations can increase the t1/2 values of the studied molecules by as much as 60 times, 

compared to their t1/2 values in the field-free environment. For example, the application of an 

electric field along an internal coordinate defined by the N-H bond of an arylazopyrazole molecule 

at a magnitude of 0.0100 a.u. yielded a theoretical t1/2 value of approximately 3000 days. These 

findings show that OEEFs can be used to tune the kinetics of the thermal isomerization of 

unsubstituted azoheteroarenes and bring them to a level comparable to their methylated 

derivatives. To achieve slower Z – E isomerization kinetics, the activation energy barrier (∆‡G) 

was only raised by 2.4 kcal/mol. In addition, certain OEEF magnitudes were found to increase 
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total first hyperpolarizabilities of some azoheteroarenes by as much as 100 a.u., as was the case 

with the arylazoimidazole molecule. The OEEFs offered a possibility of controlling the energy 

activation barrier heights for the thermal isomerization process as some Z isomers were stabilized 

by as much as 7 kcal/mol, while the highest calculated energetic destabilization was by 10 

kcal/mol, in reference to the Z isomer’s free energy value in the field-free environment.  
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