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Abstract 

One of the most common medical procedures performed in US hospitals is blood transfusions. 

Unfortunately, the red blood cells (RBCs) for transfusion have a limited shelf life after donation 

due to detrimental storage effects on morphological and biochemical properties. Inspired by 

nature, I am developing a biomimetics approach to preserve RBCs for long-term storage using 

compounds that occur in animals that have developed a natural propensity to survive in a frozen 

or desiccated state for decades. Trehalose was employed as a cryoprotective agent when added to 

the extracellular freezing solution. The highest percent of RBCs with intact membranes after 

freezing and thawing was obtained using a cryopreservation solution comprised of 250 million 

RBCs/mL, 300 mM trehalose, 100 mM NaCl, in 20 mM HEPES buffer, pH 7.1. Under these 

conditions RBCs with intact membranes were recovered at 86  12%. I have demonstrated the 

effectiveness and feasibility of using trehalose as a cryoprotective agent, and morphological 

intact RBCs were recovered after freezing and thawing with low cellular loss. 
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Introduction 

One of the most common medical procedures performed in US hospitals is blood transfusions1. 

Unfortunately, the red blood cells (RBCs) that are transfused have a limited shelf life after 

donation due to detrimental storage effects on morphological and biochemical properties2. 

Unused RBCs must be stored at 1–6 C and discarded after only 42 days in the United States3. 

This short lifespan and temperature dependent storage of transfusable RBCs, also known as 

packed RBCs (pRBCs), can lead to detrimental shortages in resource-constrained environments4. 

Despite the fact that blood transfusions are one of the most essential part of hospital-based health 

care, methods to increase their shelf life or allowing for long-term storage of RBCs are either 

cumbersome, non-practical, or entirely lacking. Currently, the only method to preserve RBCs for 

years is in a frozen state that utilizes glycerol, a compound that permeates human cells relatively 

easily, but requires to confer protection a very high intracellular concentrations (~3-4 mol/L) 

which leads to a time-consuming process of compound-unloading after thawing of the cells (45 

min–2 hrs)5. This limits the utility of RBCs preserved with glycerol in emergency situations that 

depend on readily transfusable cells. Furthermore, glycerol is not applicable for alternative 

preservation approaches such as lyophilization of RBCs for dry storage. Inspired by nature, I am 

developing a biomimetics approach to preserve RBCs for long-term storage using compounds 

that occur in animals that have developed a natural propensity to survive in a frozen or 

desiccated state for decades6-8. The most promising compound currently under investigation is 

trehalose, a non-toxic sugar, which is predicted to only require intracellular concentrations of 

~0.05–0.15 M to confer protection during freezing or drying 9. Trehalose has also been shown to 

be safe to administer intravenously, unlike glycerol10. Unfortunately, human cells lack trehalose 

transporters in their membranes, which would allow for loading of the necessary concentrations 
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of the compound into RBCs. The only known cellular mode of transport for this compound 

across the plasma membrane into nucleated cells is by endocytosis, a slow cellular process that 

can deliver small amount of extracellular material into the cell through invagination, but 

unfortunately RBCs do not undergo endocytosis9. It has been a goal of my lab at UofL to 

develop a process that would allow for freezing of RBCs at high concentrations and then 

removing the frozen water from the solution (lyophilization) in order to store RBCs in a dry state 

for long periods of time and rehydrate them when needed. Theoretically, this mechanism should 

be feasible in presence of high trehalose concentrations as is postulated by the water replacement 

hypothesis11. The hypothesis states that when water is stripped from molecular structures, such 

as proteins and membranes, disaccharides like trehalose are thermodynamically driven, because 

of the arrangement of their hydroxyl groups, to replace the water bound to these structures. This 

can help to stabilize them in the desiccated state. 

For RBCs to be lyophilized or freeze-dried, they must be able to survive the freezing process to 

be dried and rehydrated successfully. This has been the main focus of my undergraduate research 

career. It has been my goal to determine if trehalose can assist in protecting RBCs from the 

cellular damage that occurs during the freeze-thaw process and if different concentration of 

trehalose and other cryoprotectants have an effect on preventing this damage. After much trial 

and error, I also came to realize that not only was the storage solution affecting the membrane 

integrity of the RBCs, but the thawing temperature and the concentration of the RBCs also 

played a significant role in the number of cells that could withstand the process. Furthermore, 

RBCs judged as being intact when viewed under a hematocytometer do not necessarily function 

properly to deliver oxygen throughout the body. The protein hemoglobin must also maintain its 

quaternary structure to bind and release oxygen at the appropriate tissues in an organism12. 
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Therefore, it will be important to follow up with studies on the impact of storage on hemoglobin 

structure and function for frozen or dried RBCs to be judged on their usefulness in emergency 

situations. 
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Materials and Methods 

Chemicals  

Low endotoxin α,α-trehalose dihydrate was obtained from Pfanstiehl Inc. (Waukegan, IL). All 

other compounds were obtained from VWR (Radnor, PA) or MilliporeSigma (Burlington, MA) 

and were of the highest purity commercially available. Water for solution preparation was 

purified with a Milli-Q Reagent Water System (Burlington, MA).  

Porcine RBC Collection 

Porcine whole blood was acquired from a slaughterhouse (JBS USA, Louisville, KY) and 

collected in 50–100 units heparin per mL blood to inhibit coagulation. The whole blood solution 

was quickly transported back to the laboratory on the University of Louisville’s Belknap campus, 

where blood cells were pelleted using a Centrifuge 5804 R from Eppendorf (Hamburg, 

Germany) at 600g for 10 min. After centrifugation, the supernatant of the solution was decanted 

and the pellet was resuspended in modified PBS (–calcium, –MgCl) from Cytiva (Marlborough, 

MA) and then the pellet was resuspended. This centrifugation-based RBC washing process was 

performed two more times but with the final resuspension (50–60% hematocrit) in an FDA-

approved RBC storage solution known as Additive Solution-3 (AS-3). These washed pRBCs 

were stored for no longer then 14 days at 4 C before use.  

RBC Experimental Preparation  

RBCs were prepped for freezing and thawing by determining their concentration using a 

hematocytometer, and then adding the volume of pRBCs needed to achieve concentrations of 50 

million, 250 million, 500 million, 1 billion, or 2.5 billion RBCs/mL in a solution containing 200 

mM, 250 mM, 300 mM, 400 mM, 500 mM, or 600 mM of trehalose, 75 mM, 100 mM, or 150 
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mM NaCl, in 20 mM HEPES buffer, pH 7.1. These different RBC and compound concentrations 

were compared to identify conditions that conferred optimal membrane integrity after freezing 

and thawing. Serial dilutions were used for concentration less than 1 billion RBCs/mL. Two 

counts using a hematocytometer were performed and averaged to determine a precise RBC 

concentration in the preprocessed samples. 

RBC Freezing  

All RBC solutions were frozen in an identical fashion. Rapid freezing of RBC was performed by 

placing 1 mL of sample into a cryovial and dropping it into a Dewar of liquid N2. The sample 

remained in liquid N2. for at least 10 min before it was thawed for analysis. 

RBC Thawing 

RBCs were thawed by removing the frozen sample from liquid nitrogen and quickly placing it 

into a water bath at 30 C, 40 C, 50 C, 55 C, 60 C, or 70 C then whirling the sample around 

in a circle with plyers, performing 180 circles per minute. Each rotation had a diameter of about 

15 cm. The sample was pulled out of the water bath when only a small piece of sample remained 

frozen. 

Membrane Integrity Analysis 

Membrane integrity was determined using a hematocytometer to enumerate RBC concentration. 

After thawing, a sample was held at room temperature for 10 min. An aliquot of the sample was 

diluted using modified PBS, and red blood cells were quantified using a hematocytometer. The 

determined concentration was then compared to the preprocessed RBC concentration to 

determine the percentage of cells that maintain membrane integrity after freezing and thawing. 

Hemolysis Analysis 
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The percentage of hemolysis of RBCs was determined by comparing the amount of hemoglobin 

in the supernatant to the amount in the pellet after centrifugation at 600g for 10 min using a 

Hemoglobin Assay Kit from MilliporeSigma (Burlington, MA). Hemolysis was determined for 

samples of 250 million and 1.25 billion RBCs/mL in a solution containing 300 mM trehalose, 

100 mM NaCl, in 20 mM HEPES buffer, pH 7.1 with thawing at 55 C and for control samples 

that did not undergo freezing and thawing. After thawing, a sample was held at room 

temperature for 10 min. The sample was then centrifuged at 600g for 10 min. An aliquot of the 

supernatant was collected to quantify the hemoglobin concentrations. The supernatant was then 

removed, and the pellet was resuspended in 1 mL of purified water with 0.1% Triton-X to ensure 

complete cell lysis. A portion of the lysed pellet was collected, and hemoglobin concentrations 

were determined. The total amount of hemoglobin within the sample was determined, and the 

amount in the supernatant was divided by the total amount to determine percent hemolysis. 

Statistical analyses  

Data were analyzed with one-way ANOVA tests using SigmaPlot 11.0 (Systat Software Inc., San 

Jose, CA) using a Holm-Sidak post hoc analysis.  
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Results 

Cryoprotective Solution 

RBC membrane integrity was analyzed after 

freezing and thawing the cells in different 

cryoprotective solutions. Initially the impact 

of changing the trehalose concentration was 

analyzed. A concentration of 50 million 

RBCs/mL was used in different cryoprotective 

solutions containing trehalose concentrations 

ranging from 200 mM to 600 mM in 20 mM 

HEPES buffer, pH 7.1. Thawing was 

performed at 40 C. The percentage of RBCs 

with intact membranes after freezing and 

thawing was determined for each solution. A 

cryoprotective solution containing 300 mM 

trehalose in 20 mM HEPES buffer, pH 7.1 

showed numerically the highest recovery of 

cells with a membrane integrity of 87  4% (n 

= 3, 3 nested replicates), but this value was not 

statistically significant different from results 

obtained at 250 mM and 400 mM trehalose 

(Fig. 1). From prior experiments, we noticed 

that the addition of sodium chloride to the 

Fig. 1. Percent of RBCs with intact membranes 

after freezing in a cryoprotective solution 

containing different concentrations of trehalose 

with 50 million RBCs/mL in 20mM HEPES 

buffer, pH 7.1. Thawing was performed at 40 C 

(n = 3, 3 nested replicates). 

Fig. 2. Percent of RBCs with intact membranes 

after freezing in a cryoprotective solution 

containing different cryoprotective compounds, 

200 mM trehalose, in 20 mM HEPES buffer, pH 

7.1. Thawing was performed at 40 C. * denotes 

statistically significant difference from base 

buffer (p<0.05, n = 3, 3 nested replicates).  
 

* 
* 
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cryoprotective solution increased membrane integrity (Fig. 2). I then wanted to determine an 

optimal NaCl concentration for the cryopreservation solution. I hypothesized that the overall 

increase in osmolarity by adding excess NaCl to the solution could have a negative effect on the 

RBCs freeze-thaw membrane integrity. An experiment was designed and performed to determine 

if osmolarity has an effect on RBCs membrane integrity and to acquire an optimal NaCl 

concertation for the freezing solution. Therefore, RBC concentration of 250 million cells/mL 

were processed in solutions containing 200 mM, 250 mM, or 300 mM trehalose, and 75 mM, 

100 mM, or 150 mM NaCl, in 20 mM HEPES buffer, pH 7.1, and the percent membrane 

integrity was determined after thawing at 40 C. There was no statistically significant difference 

in recovery of RBCs among solutions with different NaCl concentrations. The highest 

percentage of cells with intact membrane after freezing and thawing was a solution of 250 

million RBCs/mL, 300 mM trehalose, 100 mM NaCl, in 20 mM HEPES buffer, pH 7.1 with a 

membrane integrity of 86  12% (n = 3, 3 nested replicates) (Fig. 3). 

Fig. 3. Percent of RBCs with intact membranes after freezing in a cryoprotective solutions containing 

different concentrations of trehalose and NaCl, 250 million RBCs/mL, in 20 mM HEPES buffer, pH 7.1. 

Thawing was performed at 40 C (n = 3, 3 nested replicates). 



 12 

RBC Thawing Temperature 

RBC membrane integrity was determined at 

different thawing temperatures. Thawing 

temperatures ranged from 30 C to 70 C 

using solutions comprised of 50 million 

RBCs/mL, 200 mM trehalose, in 20 mM 

HEPES buffer, pH 7.1. The most promising 

recovery of RBCs was obtained when 

thawing was being performed at 55 C (Fig. 4). 

RBCs thawed at 55 C had a statistically 

significant higher membrane integrity of 64  

4% when compared against the standard 

temperature of 40 C, which had a membrane 

integrity of 55  5% (n = 3, 3 nested 

replicates). 

RBC Concentration 

RBC membrane integrity was analyzed after 

freezing and thawing at different RBC 

concentrations in a cryopreservation solution 

comprised of 300 mM trehalose, 100 mM 

NaCl, in 20 mM HEPES buffer, pH 7.1. 

Thawing was performed at 55 C, and membrane integrity was determined after freezing and 

thawing at RBC concentrations of 250 million, 500 million, 1 billion, and 2.5 billion RBCs/mL 

Fig. 4. Percent of RBCs with intact membranes 

after freezing with 200 mM trehalose in 20 mM 

HEPES buffer, pH 7.1 while thawing at different 

temperatures. * denotes statistically significant 

difference from 40 C (p<0.05, n = 3, 3 nested 

replicates). 

 

* 

Fig. 5. Percent of RBCs with intact membranes 

after freezing in a cryoprotective solution 

containing 300 mM trehalose, 100 mM NaCl, in 

20 mM HEPES buffer, pH 7.1 and different RBC 

concentration. Thawing was performed at 55 C 

(n = 3, 3 nested replicates).  



 13 

(Fig. 5). At a concentration of 2.5 billion RBCs/mL, 49  8% (n = 3, 3 nested replicates) of the 

cells retained intact membranes after freezing and thawing. 

 

Hemolysis Analysis 

The percentage of hemolysis after freezing 

and thawing was determined for samples 

of 250 million and 1.25 billion RBCs/mL 

in a cryopreservation solution comprised 

of 300 mM trehalose, 100 mM NaCl, in 20 

mM HEPES buffer, pH 7.1. Thawing was 

performed at 55 C. RBCs at a 

concentration of 250 million cells/mL had a 

percent hemolysis of 14  2% (n = 3, 3 

nested replicates). In comparison, control 

samples that did not undergo the freezing 

and thawing displayed a percent hemolysis 

of 3  0% (n = 3, 2 nested replicates). 

Samples at concentrations of 1.25 billion RBCs/mL after freezing and thawing had a percent 

hemolysis of 26  1% (n = 3, 3 nested replicates). The control for this concentration had a 

percent hemolysis of 1  0% (n = 3, 2 nested replicates) (Fig. 6). 

 

 

 

 

Fig. 6. Grey Bar. Percent hemolysis of RBCs that 

did not undergo freezing and thawing (n = 3, 2 

nested replicates). White Bar. Percent Hemolysis 

of cells that did undergo freezing and thawing (n 

= 3, 3 nested replicates). All RBC samples were 

placed in a cryoprotective solution composed of 

different RBC concentrations, 300 mM trehalose, 

100 mM NaCl, in 20 mM HEPES buffer, pH 7.1. 

Thawing was performed at 55C. * denotes 

statistically significant difference from control 

groups (p<0.05). 

* 

* 
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Discussion 

Trehalose was employed as a cryoprotective agent (CPA) to protect RBCs for biopreservation 

purposes. I have demonstrated the effectiveness and feasibility of using trehalose as a CPA and 

morphological intact RBCs were recovered after the freezing and thawing with low loss in cell 

numbers and hemoglobin content. The cryopreservative solution had an osmolarity of 420 

mOsm/kg. This is higher than the intravenous whole blood osmolarity of 280–300 mOsm/kg13. 

The higher osmolarity of the cryoprotective solution likely causes water loss from the RBC 

cytoplasm14. An intracellular dehydration due to the hyperosmotic solution combined with water 

replacement by trehalose during freezing could be part of the observed cryoprotective effect in 

this study. Dou et al. (2019) showed similar results using a hypertonic solution comprised of 

trehalose and L-proline15. 

Several thawing temperatures were tested to determine if the standard 37C–40C thawing 

temperature was the most optimal for the freezing and thawing16. The obtained recoveries of 

RBCs at 55 C were statistically significant higher when compared to the standard 40 C. I 

believe this shows that the most rapid thawing procedure will be optimal for recovering intact 

RBCs. During the thawing process ice is melting and recrystallizing until the temperature is 

warm enough to inhibit new ice formation. Ice crystallization is a major cause of cell loss during 

the freezing and thawing17. I hypothesize by rapidly thawing the RBCs the amount of ice 

recrystallization is reduced due to the decreased time of thawing. Temperatures higher than 55 

C yielded more variable recoveries than compared to other temperatures. This may be due to the 

outside of the sample becoming too warm before the inside completely melts. This intense heat 

can cause cell death18. Future studies to optimize this process could determine at what exact 

point in time frozen RBCs should be taken from the water bath at temperatures above 55 C so 
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that the walls of the cryogenic vial do not become excessively warm causing cell death. These 

higher temperatures may improve recovery, but the excessive heat could cause a decrease in 

oxygen transport functionality since heat can cause proteins to unfold19. In future studies, 

hemoglobin oxygen binding curves should be performed to determine if increased thawing 

temperatures cause protein denaturation which could change the way oxygen binds to 

hemoglobin. A possible outcome may be irreversible hemoglobin subunit dissociation20. 

Based on the optimization data of the cryopreservation solution, it may be possible to optimize 

for even higher concentration of RBCs than tested in this study. The current optimizations were 

performed at concentrations of 50 million and 250 million RBCs/mL. One characteristic of 

RBCs that was not taken into consideration for this study was that the RBCs themselves take up 

volume within the solution. Hematocrit is a measure of RBC concentration and it represents the 

amount of volume within the solution that the RBCs themselves are taking up21. In comparison, 

1% hematocrit is equivalent to about 100 million RBCs/mL. This means that at a concentration 

of 250 million RBCs/mL the cells themselves take up 2.5% of the total volume of solution. This 

is much lower than used for pRBCs, which has a hematocrit value of 65–80%22. When I scale up 

the RBC concentration, I hypothesize that less total trehalose will be needed since the RBCs take 

up the majority of the volume of the solution. Utilizing extracellular concentration of 300 mM 

trehalose will require lower total sugar amounts per sample volume at higher concentration of 

RBCs which will reduce the sugar load during transfusion. 

From the cell recovery studies I was able to determine that the percent hemolysis is very similar 

to the percent of cell that are not recovered. This indicates that cells that are not lysed during 

freezing and thawing are able to maintain their native hemoglobin concentration within the cell, 

and only lysed RBCs lose their hemoglobin to the supernatant. I am unsure if the hemoglobin 
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that remains in the RBCs after freezing and thawing is still functional for oxygen and CO2 

transport throughout the body which will be the subject of future studies.  

Lyophilization will be an important next step to optimize the storage efforts for RBCs. In a 

lyophilized state RBCs can theoretically remain viable at room temperature for decades. 

Determining a buffer solution to freeze the RBCs was an important first step but researching the 

most optimal lyophilization conditions will be the next challenge. Once a method to recover 

RBCs after lyophilization is determined it will be paramount to make sure the hemoglobin within 

the cells is still functional, and hemoglobin oxygen-binding curves are needed to address this 

question. Furthermore, loading of RBCs with trehalose may be required before the cells are 

frozen and lyophilized since these cells cannot undergo endocytosis23. A process using 

ultrasound, microbubbles, and a microfluidic system to load RBCs with trehalose is currently 

being developed at UofL24. The intracellular concentration of trehalose that can be achieved by 

this process may assist in maintaining functional hemoglobin during cryo- and lyo-

preservation23. 
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