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ABSTRACT

AUTOMATIC PURE ANCHOR BASED TAXONOMY GENERATION FROM THE 
WORLD WIDE WEB

Joseph Paul Elliott

May 3, 2007

This thesis proposes a new method of automatic taxonomy generation using the 

link structure of Webpages.  Taxonomy is a hierarchy of concepts where each child 

concept is said to be encompassed by its parent concept.  Techniques have previously 

been developed to extract taxonomies from a traditional text corpus, but this thesis relies 

exclusively on the links between documents in the corpus, as opposed to the text of the 

corpus itself.

A series of algorithms were designed and implemented to realize the objectives of 

this thesis.  These programs perform comparably to other techniques using the text in the 

documents and have shown that there is information available in the link structure of 

Webpages when creating concept taxonomies.
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1. INTRODUCTION

1.1. Background
The World Wide Web is an ever changing, yet vast source of information.  New 

websites are constantly appearing and old ones disappearing.  Two pages may be 

connected via direct link today and not tomorrow.  Also, web pages are created using a 

variety of technologies (HTML, CSS, JavaScript, Flash, etc.) and presented in as many 

human languages as one can name.  However, in spite of the difficulty of extracting data 

from the Web, researchers continue to try, due to the abundant amount of available 

information on any conceivable subject.

One such set of attempts is the Semantic Web [13], an effort directed toward a 

more complete markup language that the creators of Webpages can use to identify pieces 

of data on their websites.  Therefore, if items on a webpage are appropriately marked, 

software agents can know what kind of data a text string represents, instead of just 

displaying it to the user.  The Semantic Web uses the Resource Description Framework 

(RDF), a markup language designed to describe objects, and to present information in an 

organized and consistent form.  It also uses the Web Ontology Language (OWL) to 

describe objects, properties of those objects, and their relationships.   Using both RDF 

and OWL web designers can describe the data in their Webpages and how it relates to 

both itself and other pieces of data in a form more easily manageable by software.  This 

approach to extract data effectively and accurately from the internet puts the burden on 
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the designer to create their pages in a manner that can be easily parsed and understood 

and ties them to rigid standards in the way they encode their content.

Researchers have also attempted to automatically extract information from the 

World Wide Web by applying traditional Information Extraction techniques to the Web’s 

documents, Webpages [1,3,4,5,8].  For instance, in [3], PANKOW is developed to search 

for lexico-syntactic patterns on the internet using Google in order to discover concept 

relationships.  Lexico-syntactic patterns were originally developed to be used on a 

traditional text corpus, but are now applied to the Web.  Also, [4] discusses how to 

represent terms as vectors extracted from webpages and calculate statistical similarities

between the vectors to determine concept relationships.  Similar approaches, developed 

for Information Extraction from a standard text corpus, are being tried on the Web.

Due to the difficulty of creating taxonomies (from either a traditional text corpus 

or the World Wide Web), generally an ontology engineer, a human judge with topic 

specific knowledge, is required to validate, trim and add to the automatically generated 

ontology.  This is known as the Knowledge Acquisition Bottleneck.  Because of this 

bottleneck, heuristics that create more accurate ontologies are very valuable as they 

reduce, and may one day eliminate, the time required for the ontology engineer to review 

the created ontology.

This thesis outlines a new method of taxonomy construction built from data 

extracted from the link structure of the internet.  The taxonomy created displays 

perceived relationships between terms, and is displayed as a  rooted tree.  That is to say, it 

is a graph with no cycles and has a designated root node.  Each node represents a term 

and the edges from one node to the next represent a parent-child relationship.  The 
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concept represented by the term in the child node should be more specific and subsumed 

by the concept represented by the parent node.  The algorithms in this thesis also identify 

topic and instance nodes/terms.  A topic node is more generic and is able to be expanded 

into more specific concepts.  An instance node is specific and is a single occurrence of a 

particular topic node.  An example taxonomy is show in Figure 1-1.

Figure 1-1 Example term taxonomy

Currently there are no “perfect” taxonomy creation algorithms.  Every algorithm 

has its strengths and drawbacks and use different pieces of information for generation.  

The heuristics proposed in this thesis are unique in that they use specifically the link 

structure of Webpages and the anchor text in links to automatically generate taxonomies.  

The software developed in this thesis was able to create viable taxonomies from three 

different topic domains, SPORTS, COMPUTER HARDWARE, and NEWS.  Each of 

these taxonomies were judged by humans and found to perform favorably based on 

developed statistical metrics that evaluate the consistency of a taxonomy.  Additionally, 

while most existing techniques use the entire document text, this thesis only uses a 

fraction of the document that is limited to the anchor text.  Therefore this thesis shows 

that there is valuable and currently ignored information inherent in the link structure of 

webpages for automatic taxonomy generation.

music

instrument genre

drum guitar rap rock country

electric

horn

acoustic alternative heavy metal progressive
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1.2. Organization of this Thesis
Chapter Two presents a detailed literature review of existing automatic taxonomy 

generation techniques.  Chapter Three discusses the algorithms used to generate 

taxonomies from links in Webpages.  Chapter Four presents the software developed for 

this thesis to implement the ideas in chapter two.  Chapter Five presents the experiments

designed to test the performance of our approach, then shows the results obtained, and 

discusses ways to improve the algorithms discussed in this thesis.  Finally, Chapter 6 

discusses the conclusions reached from performing the research in this thesis.
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2. LITERATURE REVIEW

The Web is a very large source of potentially valuable, unorganized information.  

Because it is such an impressive source of information, a substantial effort has gone into 

extracting information and knowledge from, and organizing its contents.

2.1. Bottleneck Minimization/Process Definition
One set of efforts has been directed at creating concept hierarchies to act as a 

backbone for organizing other sets of information.  These techniques generally suffer 

from a knowledge acquisition bottleneck, the process of a human knowledge engineer 

pruning a tree created from one of a variety of algorithms.  Tools have been developed to 

lower the time and resources spent pruning these hierarchies [1,5,9].

[1] details a tool developed to compare a variety of clustering techniques in order 

to more easily determine which methods are the most effective in ontology building.  The 

developed workbench provides methods for choosing what grammatical relations indicate 

a relationship between concepts and what pruning threshold to use.  It uses a standard 

vector based distance measure to determine if two concepts are related.

The Mo’K workbench is an excellent tool for comparing how grammatical 

relationships and pruning parameters affect ontology building.  It facilitates a deeper 

insight and understanding these parameters contribute to the final ontology.
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The Mo’K workbench is similar to the SiteGraph tool developed in this thesis.  

They are both graphical utilities that allow the user to modify factors controlling the 

taxonomy and see how it affects the relationships therein.

[5] uses K-Means clustering and Latent Semantic Indexing to extract topics from 

a corpus.  These techniques were combined into a software suite that proposes topics and 

relationships to an ontology engineer in a concise, manageable way who makes the final 

decisions about the topic relationships.

The authors outline an interface that the engineer could use to facilitate the 

process of pruning an existing ontology created using a variety of other approaches.  It 

provides an impressive and complete interface to allow quick and easy ontology editing.

The Ontology Editor developed in this paper is similar to the SiteGraph

application developed in this thesis.  However, while they both provide graphical 

representations of the created taxonomies, Ontology Editor allows the user to delete 

relationships in order to refine the taxonomy.  It is a tool for directly editing taxonomies 

while SiteGraph is a tool for viewing and manipulating taxonomies created by the ideas 

in this thesis.

[9] outlines a process for semi-automatic ontology construction.  It identifies four 

steps for ontology learning used by their Ontology maintenance application, OntoEdit.  

The Import/Reuse step discusses the methods for which already defined ontologies can be 

merged with an existing one.  Extraction deals with the actual ontology creation from a 

text corpus.  Various standard ontology extraction techniques are discussed such as 

Hierarchical Concept Clustering and Lexical Entry Extraction.  Hierarchical Concept 

Clustering uses the similarity of items to create a hierarchy by grouping those items 
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which are most similar.  Similarity can be calculated using measures such as adjacency or 

syntactic relationships.  Lexical Entry Extraction is the process of extracting N-grams 

from a document set based on statistical frequencies of co-occurrence.  The third step, 

pruning an ontology, includes the balancing act of removing those concepts and 

relationships that are most likely invalid from the ontology.  The final step is ontology 

refinement.  During the refinement step the ontology pieces of the ontology are extracted 

and fine tuned for use with a specific application.  The authors provide a good overview 

of various techniques used in Information Extraction and Ontology Building.  They also 

suggest a solid, robust framework for creating an ontology building system and addresses 

the challenges and benefits to automatic ontology creation.  However, it does not 

significantly add to the study of ontology building and only serves as summary or 

introductory work.  This paper discusses very broad ideas regarding an entire life cycle of 

ontology maintenance.  However, the ideas in this thesis are a very specific method that 

would fall under the single step, Extraction, discussed in this paper.

2.2. Syntactic Analysis
Many techniques have been used to create the taxonomies to be evaluated by a 

knowledge engineer including traditional knowledge extraction techniques such as 

collocation measures and syntactic pattern matching to the large text corpus that the 

internet provides [3, 4, 7].  These measures have enjoyed varying degrees of success, but 

still require human interaction to create viable term hierarchies.

[3] discusses a method of using Google to expand a text corpus to find instance of 

and subclass relationships.  Previous attempts to use text patterns to find these 
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relationships suffered from a lack of text to search.  The method takes a given Instance 

<I> and Concept <C>, and searches for the Hearst Patterns [14], e.g. <C>s such as <I> and 

such <C>s as <I>.  It also uses Definite, Apposition and Copula patterns.  Each of these 

pattern sets exploits commonly used syntactic patterns to extract term relationships.  

Using this method a given instance can be compared with a large number of concepts to 

see which concept it matches up with most successfully.

Although this method provides impressively reliable results it requires a rather 

narrow set of instances and concepts to be effective.  Since every combination of every 

concept and instance and phrase must be searched this technique would require a large 

amount of time and internet resources to process even a small set of data.  If only 10 

concepts and 100 instances and all 8 mentioned patterns are used it would require 10 * 

100 * 8 = 8000 Google searches on a very small set of data.  Another weakness to this 

approach is that it requires a set of concepts and instances to start with as opposed to 

generating its own from the corpus.  For this reason it would be a powerful, albeit 

expensive, pruning algorithm as opposed to an ontology builder itself.

These methods would be a great addition to other ontology building algorithms 

because it can reinforce or refute an existing set of relationships.  For instance, if these 

methods were to be integrated it into the ideas in this thesis, they could be used to check 

all created relationships to see if they appear a significant number of times on the 

internet.  This would be a very powerful pruning step if the resources were available.

[7] proposes a new method for extracting concepts and relationships from text 

documents and compares it to another approach employed by Text-To-Onto.  Text-To-

Onto is another automatic taxonomy generation program which uses the tf/idf measure to 
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compute similarity.  tf/idf  (term frequency–inverse document frequency) is a measure 

used in information retrieval to determine the importance of a word by using its 

frequency of appearances.  CRCTOL (Concept Relation Concept Tuple based Ontology 

Learning) is a system that given a parsed and tagged text input and a domain lexicon 

creates an ontology.  This system uses TIM-DRM scores to create an initial list of terms 

and then uses a second process to pull commonly used single terms out of multi-term 

phrases found using TIM-DRM.  TIM-DRM is a statistical measure, which uses tf and idf

and adds syntactic relationships, to create a more meaningful weighting parameter. 

Semantic Relations are extracted using syntactical relations of the form <Noun, Verb, 

Noun>.  The two nouns have a relationship through the verb.

In a given domain this technique outperformed the Text-To-Onto in both concept 

and relationship extraction using the measures of recall and precision.

The techniques discussed in this paper are similar to the ideas in this thesis in that 

they both automatically attempt to generate taxonomies.  However, CRCTOL is based on 

syntactic analysis of a set of documents while this thesis only uses the link structure of a 

set Webpages to determine concept relationships.  

[6] generalized to the case of digital libraries, the syntactic hierarchy based 

similarity originally proposed in [19] to compare URLs for the purpose of clustering user 

sessions. The idea behind this similarity is that URLs are considered closer if they share 

in common a larger proportion of the path from the root of the hierarchy to each of the 

URLs.
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2.3. Statistical Analysis
Clustering algorithms have also been applied to sets of Webpages in order to 

measure similarity and extract hierarchies [2, 8].  These clusters have also been compared 

to a site’s link structure as a measure of the cohesiveness and organization of the site 

[10].

[10] attempts to use page clustering and link structure to make suggestions on 

how to improve a website.  The authors suggest a method of slowly increasing the 

number of clusters to create a tree of which the root node contains all of the pages and 

each level groups the pages into an increasing number of clusters.  The number of 

clusters to be used in this process is determined experimentally for each site.  Then, using 

usage information, the most frequently visited clusters are identified.  The authors then 

conclude that for “good” website design, clusters of pages should be connected together 

and those most visited clusters should have links from the main page.  While this

approach does use the link structure of the site to determine information about the site, it 

does not attempt to build taxonomies of terms from this structure as does this thesis.   

However, the paper uses this information, compared to usage statistics and page 

similarity measures to try to determine if a site is organized well.

[8] gives an overview of the current state and accepted practices in retrieving 

taxonomies from the web and then proposes a combination of syntactic and statistical 

methods for creating taxonomic relations.  It states that the solution to more intelligent 

and functional web services is semantic descriptions of objects that will facilitate a “new 

level of Web Intelligence”.  The paper concludes that automatic ontology generation and

object classification is the key to the Semantic Web and, therefore, research in this field 

is valuable.  Unfortunately, due to the complexity of information available on the web 
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this is also a very difficult task.  The author begins by classifying automatic ontology 

generation into two main categories.  The first is a symbolic approach which relies on 

matching lexico-syntactic patterns to create term relationships.  While this technique is 

powerful it suffers from being language dependent and not as scalable as its alternative, a 

statistic based approach.  The statistics based clustering approach uses a similarity 

measure and a computation strategy to create clusters of similar words.  It has the 

strength of being scalable, however, it suffers because it doesn’t make use of language 

constructions which have been shown to be very powerful.  The author then goes on to 

propose a new method combining the advantages of the statistical and symbolic 

approaches.  Given an existing taxonomy and a new word to insert, the authors propose

considering both the words semantic and statistic relationships to the words already in the 

hierarchy.  Although, it was concluded that this method is not statistically advantageous 

over the previous methods, it was expected that further study of combined approaches 

will yield better results.

The ideas proposed in this thesis could be considered a combination of syntactic 

and symbolic approaches as well.  However, instead of using lexico-syntactic patterns to 

create relationships between words, the actual link structure of the web pages themselves 

is used.  Also, collocation statistics by appearance in links is used to determine some 

relationships between sibling terms.
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3. THEORY AND DESIGN

3.1. Introduction
This thesis focuses on using only the link structure and anchor text in a set of 

domain specific sites in order to extract a hierarchy.  It does not propose to create 

complete or perfect hierarchies, but rather to show that the largely ignored link structure 

of a site contains valuable information for taxonomy building.  Generally website 

designers attempt to organize their sites for easy human access and navigation to the 

topics in their site.  Therefore, there is information inherent in the way the pages in a site 

are linked and by examining the link structure, anchor text and URL itself, a taxonomy

can be created.  Using this information only, this thesis proposes methods to map a site 

and organize the pages from “most generic” to “most specific”.  Then the relationships in 

this tree are examined to create a taxonomic tree.

The methods discussed in this thesis do not attempt to create complete taxonomies

from the topic domains in question.  These methods do, however, show that using the link 

structure of sites is a valuable addition to the variety of techniques already employed in 

automatic taxonomy creation.  Two applications were developed, SiteGraph and 

SiteMap,  in order to create taxonomies using the ideas discussed in this thesis.  These 

applications generated taxonomies from three different topic domains, NEWS, SPORTS, 

and COMPUTER HARDWARE, that were evaluated using several different measures 

including human judges.  Theses taxonomies compared favorably with taxonomies 

generated using other means.  Therefore, this thesis shows that the information contained 



13

in the link structure of webpages can and should be used in automatic taxonomy 

generation.

3.2. Notation
Terms

A term, defined as a string of characters, will be referred to with a lowercase t or 

variant thereof (t′ for instance).

Link
A link, defined as the <a> tag in an html document, will be referred to with a 

lowercase l or variant thereof (l′ for instance).  A link has the following properties:

l.text The text, or anchor text, is the set of terms, t, that falls between the 
opening <a> tag and the closing </a> tag.  The text is filtered according 
to a procedure to be described later.

[{l1,l2,l3...ln}] Given a set of links [] returns the set of terms from the text of each link.
   textltextltextltextlllll nn ....,, 321321  

Webpage
A Webpage, defined as a single document as shown by a normal web browser, 

will be referred to with a lowercase p or variant thereof (p′ for instance).  A page has the 

following properties:

p.url The URL for this web page.
p.domain The fully qualified domain name from the URL.  For instance, the 

domain of the url http://www.google.com/index.html is 
www.google.com.

p.depthrating The depth rating is a natural number between 0 and 1 which gives a 
relative indication of how general or specific p’s contents are.  See 
Section 3 for a specific description of how a depth rating is calculated.

p.linksout The set of links contained in webpage p.
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D(p, p′) The D function takes two pages and returns the minimum link distance 
between the two pages.  Since this is a real metric, it has the following 
properties:

 
   
     233121

1221

21

,D,D,D

,D,D

0,D

pppppp

pppp

pp





The distance from a page to itself is always zero.  The direction of the 
links does not affect distance and the distance from page to another is 
always the minimum link distance.

WebSite
A website is defined as a set of Webpages that are a certain link distance from the 

“root” page and belong to the same domain.  A website will be referred to with a 

lowercase w or variant thereof (w′ for example).  The set of all websites used in an 

algorithm will be represented by a capital W.

w.root The “root” page of the website.  This is not necessarily the “home” page 
or what might be considered the root page by a human viewer of the 
website.  See Section 3 for more information on how the root pages are 
obtained.3

w.pages The set of pages whose domain match w.root and are reachable within δ 
links or less.  Formally,

    domainrootwdomainprootwpppagesw ....,D|.  

The δ value is used to limit the resource usage of the crawler to a 
reasonable amount.

pages(W) The pages() function takes a set of Websites, W, and returns the union of 
their pages set.  Formally,

        pageswpageswpageswW n...pages 31 

Notation Refinement
Now that all of our concepts are defined we can expand the definition of the Link and 

Webpage.

A Link, l, also has the following characteristics:

l.to The webpage pointed to by the link indicated by the contents of the href 
attribute.
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l.from The webpage containing the link.

A Webpage, p, also has the following characteristics:

p.website The website that this page belongs to.  Note that the website’s domain 
matches p.domain.  Formally,

domainpdomainrootwwwebsitep ...:. 
p.pagesto The set of all pages that the links in p point to and that belong in the 

same website as p.  Formally,













websitepwebsitep

ptolpfromllp
pagestop

'..

'..:|'
.

p.linksin The set of all links pointing to p by other pages in the same website as p.  
Formally,

 pageswebsitepfromlptolllinksinp ....|. 

p.pagesfrom The set of all pages that contain links that point to p and belong to the 
same website as p.

 '..:|'. pfromllinksinpllppagesfromp 

p.terms The set of terms used in anchor text for anchors that link to p.  Formally,
  linksinptttermsp .|. 

count(p,t) Given a page p, and a term t, this is the total number of times t appears in 
[p.linksin].  This considers the text in anchors only and not the rest of the 
page content.

Relationships
The terms from the anchor text and link structure of the Website are used to create 

a relationship with the following properties.  

A relationship is a set of tuples with three attributes:

(parent-term, child-term, count)

parent-term The parent term or more general term in the taxonomy.
child-term The child term or more specific term in the taxonomy.  There is only 

one tuple for each child-term and parent-term combination.  If a tuple 
appears then the following is true about the parent-term and child-
term:

termspchildtermr

termspparenttermr

pagestoppWpWppp

'..

..

.'':'





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count
A natural number from 0 to infinity indicating the number of times the 
parent-term and child-term appear in the above relationship.  The 
contribution of the pages is normalized by the number of terms in the 
page.

parent_term_s
upport(r, R)

Given a tuple r and a relationship R where r Є R, the 
parent_term_support is a number between 0 and 1 that represents the 
percentage of all tuples r′ with the same parent-term as r, r.parent-
term.  Formally,

 


parenttermrparenttermrRr

countr

countr
Rr

.'.|'
'.

.
),m_support(parent_ter

 In other words, this is the tuple’s count divided by the sum of the 
counts of the tuples where the parent term matches r.parent-term.

add (r, R) Given a tuple r and a relationship R, if there already exists a tuple in R 
with a matching parent-term and child-term then r.count is added to 
the existing tuple.  Otherwise r is added to the relationship R.  
Formally,

add(r, R):

Rrr  ':'if

     
childtermrchildtermr

parenttermrparenttermr

.'.

.'.




        r′.count += r.count
else
        R = R U {r}

3.3. Creating the Relationships
All websites that contain a significant amount of content require a link structure to 

allow navigation from the highest level documents, the site’s root or home page, to the 

lowest level, topic specific documents.  For example, a site with information about the C 

programming language may have a home page, topic pages about keywords, function 

libraries, etc. and then specific pages detailing one keyword, one function etc.  

Organizing the page from most generic to the most specific sets up the tree from which 

the term hierarchy is eventually derived.  This functionality is encapsulated by the 

SiteMap application discussed in Section 4.1.

The process for developing the taxonomy is shown in Figure 3-1.
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Figure 3-1 Overview of taxonomy creation

3.3.1. Crawling the Pages
First a set of websites that define a certain domain are chosen and downloaded.  

The set of pages retrieved by the crawler from each WebSite is formally defined as:

  domainrootwdomainprootwpppagesw ....,D|)(.  

Recall that the function D() is defined in Section 3.2 as being the shortest link 

distance between two pages.  The value δ is set experimentally.

A crawler is used to navigate each site and store information regarding the links, 

pages, and anchor text.   For each webpage, all of the incoming and outgoing links with 

their anchor text is recorded.  In order to limit the amount of a website the crawler 

explores and to limit the amount of time it ran, several rules are employed, as explained 

below.

Rule 1:  The crawler limits itself only to the domain of the root webpage.  In an 

attempt to keep the crawler obtaining pages in the domain we are interested in creating a 

hierarchy for, the simplest solution is to keep it inside of the website it is traversing.

Pages
(described by their 
anchor text only)

Organize 
Pages into 
Hierarchy

Build Term 
Taxonomy 
from Pages

Analyze/Display Term Taxonomy

Build a Level

Trim a Level
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Rule 2:  In order to keep the crawler from spending too much time on a single 

website, only pages found in the first δ levels of the link structure from the root are used.  

Because the sites used tended to be very large, crawling a single one would take too long 

to allow for efficient use of time.  Also, even though only δ levels are used, most sites 

still return thousands of Webpages.

Rule 3: To keep the crawler focused on pages that contain domain specific 

content and away from pages that are specific to site structure or maintenance, links with 

the following text in the URL or anchor are not followed:

forum
site
newsletter
search
archive
blog
rss

After we have mapped each website, the crawled Webpages are organized from 

most general to most specific in a hierarchy.  The webpage hierarchy will in turn be used 

to create the term hierarchy as described below.

3.3.2. Organizing the Pages
Next, we will reorganize the graph of Webpages created by the site’s link 

structure into a tree.  This will require an algorithm that will attempt to organize the 

pages by content (from most general at the root to most specific at the leaves).  After all 

of the pages are downloaded and stored, the first step is to calculate a depth rating for 

each page which gives an indication of how deep in the tree it should appear.  The depth 

rating for each page is calculated as follows:

 









































linksinp

p.linksin

lengthurlp

lengthurlp
gdepthratinp

pageswebsitepp

pageswebsitepp

'.max
1*1

.'.max

..
*.

..'

..'







19

where length is a function that returns the number of characters in the URL.  In 

other words, the above formula returns the sum of the length of the page’s URL divided 

by the longest URL in the website and the page’s number of incoming links divided by

the number of incoming links of the page with the most incoming links.  These two 

factors that make up the depth rating are also weighted using the parameter α whose 

value is determined experimentally.

Then, after the depth rating for each page is calculated, the pages are organized 

(using the depth rating) in a tree structure where each node represents one Webpage.  We 

start with the node that represents the root of the Website.  All of the Webpages that the 

root Webpage links to are added as children of the root node in the tree.  Then the tree is 

traversed and every Webpage node in the tree that doesn’t yet have children has the 

Webpages it links to added as children in the tree.  This process is repeated until all of the 

Webpages in the site end up in the tree.

We note, however, that a webpage can only exist once in the tree.  Therefore, 

when a webpage is reached that already exists in the tree, the algorithm uses the depth 

rating to see if it should move the webpage node or leave it where it is.  The page is 

moved only if two conditions are satisfied.  First, the page has to be moving farther down 

the tree, towards the leaves, away from the root.  Second, the depth rating of the webpage 

to be moved has to be significantly larger than the depth rating of the webpage node it 

would be moved under.

For example, consider a Website about Computer Hardware which contains three 

Webpages as shown in Figure 3-2.  The example below is contrived and the URLs 

involved are not known to exist and should not be followed:
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Figure 3-2 Three pages in an example website

w.root = p1
w.pages = {p1, p2, p3, ..., pn}

p1.url = http://www.pchw.com/
p1.url.length = 20
p1.pagesfrom = {p2, p3, ..., pn}
|p1.linksin| = 20

p2.url = http://www.pchw.com/videocards/
p2.url.length = 31
p2.pagesfrom = {p1, p3, ..., pn }
|p2.linksin| = 15

p3.url = http://www.pchw.com/videocards/radeon/
p3.url.length = 38
p3.pagesfrom = {p1, p2, ..., pn }
|p3.linksin| = 4

First, we need to calculate the depth rating of each page.

max(|w.pages.linksin|) = 20
max(w.pages.url.length) = 38

p1.depthrating = .6 * (20 / 38) + .4 * (1 - (20 / 20)) = .6 * .526 + .4 * 0   = .316
p2.depthrating = .6 * (31 / 38) + .4 * (1 - (15 / 20)) = .6 * .816 + .4 * .25 = .589
p3.depthrating = .6 * (38 / 38) + .4 * (1 - (4 / 20)) = .6 * 1    + .4 * .8 = .920

Next we need the standard deviation of the depth ratings:

DepthStdDev = .303

Website (W)

Page1 (p1)
URL: http://www.pchw.com/
Content: The home page for a site about computer hardware.
Incoming Links:  Assume 18 other webpages link to this page.

Page2 (p2)
URL: http://www.pchw.com/videocards/
Content: A webpage discussing video cards in general.
Incoming Links: Assume 13 other webpages link to this page.

Page3 (p3)
URL:  http://www.pchw.com/videocards/radeon/
Content: A webpage discussing cards made by Radeon specifically.
Incoming Links: Assume 2 other webpages link to this page.
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Now we will execute the logic in the tree building algorithm designed to build a 

tree from the most general webpage to the most specific webpage:

Step 1:
Q = {p1}
T  = 

for each Webpage pChild in p1.pagesto
p2 does not exist in the tree

therefore it is made a child of p1 and placed in the queue
p3 does not exist in the tree

therefore it is made a child of p1 and placed in the queue

Step 2:
Q = {p2, p3}
T = 

for each Webpage pChild in p2.pagesto
p1 does exist in the tree

p2.depthrating + DepthStdDev < p1.depthrating
.589 + .303 < .316  (FALSE)

p3 does exist in the tree
p2.depthrating + DepthStdDev < p3.depthrating
.589 + .303 < .920  (TRUE)
therefore it is removed from p1 and made a child of p2

Step 3:
Q = {p3}
T = 

for each Webpage pChild in p3.pagesto
p1 does exist in the tree

p3.depthrating + DepthStdDev < p1.depthrating
.920 + .303 < .316  (FALSE)

p2 does exist in the tree
p3.depthrating + DepthStdDev < p2.depthrating
.920 + .589 < .589  (FALSE)

Completed Tree:

p1

p2

p3

p1

p2 p3

p1
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Due to the length of the url and the number of incoming links, the webpage about 

Radeon brand video cards is moved down under the webpage about video cards in 

general.  Although this example is simplistic, it demonstrates how the depth rating is 

calculated and used to organize the Webpages of websites from most general to most 

specific.

If, however, p3 had a larger than expected number of incoming links, it would be 

feasible that p3 would not be moved down below p2.  For example, if p3 had 40 incoming 

links:

max(|w.pages.linksin|) = 40
max(w.pages.url.length) = 38

p1.depthrating = .6 * (20 / 38) + .4 * (1 - (20 / 40)) = .6 * .526 + .4 * .5   = .516
p2.depthrating = .6 * (31 / 38) + .4 * (1 - (15 / 40)) = .6 * .816 + .4 * .625 = .739
p3.depthrating = .6 * (38 / 38) + .4 * (1 - (40 / 40)) = .6 * 1    + .4 * 0   = .600

DepthStdDev = .113

In this case, even though p3 should be under p2, the situation would be reversed 

and p2 would be under p3 because the DepthStdDev is less than the difference in their 

depthratings.  However, in this case, it requires that p3 have nearly three times the 

number of incoming links which would be unlikely if the content in p3 truly was more 

specific.

3.3.3. Calculating Term Relationships
The final step in creating the term relationships is to process the tree created in the 

above step and, using the Webpage terms set (defined in Section 3.2), create a set of 

p1

p2

p3
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relationships.  The terms are the actual strings of characters representing a word found in 

an anchor link referring to this webpage.

The tree is traversed and for each parent-child connection in the tree, a set of 

tuples is generated to be added to the relationship.  A tuple is created for every 

combination of terms in the parent webpage’s terms set and child webpages terms set.  

These sets contain every term in any anchor text that is pointing to each page.  Therefore, 

if a parent page has the terms {computer, pc} and has two child webpages with the term 

sets {motherboard, memory} and {sound, card} then tuples are created with the following 

parent and child terms:

computer-motherboard
computer-memory
computer-sound
computer-card
pc-motherboard
pc-memory
pc-sound
pc-card

As the terms are added, they are normalized so that the contribution of each child 

webpage was weighed equally.  This simply means that the count of each term was 

divided by the total number of terms that refer to this webpage.  For instance, if a 

treenode has two child treenodes with pages that contain the list of terms and counts in 

Table 3-1,

Child Webpage 1 Child Webpage 2
child.term child.count child.term child.count

motherboard 24 sound 3
memory 10 card 1

Table 3-1 Example child counts before normalization

then the first webpage would contribute significantly more than the second 

webpage simply because it had more links referencing it.  Therefore, we normalize the 

contribution by dividing the first Webpage’s counts by 24 + 10 = 34 and the second 

Webpage’s counts by 3 + 1 = 4.  This yields:
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Table 3-2 Example child counts after normalization

Therefore, both child Webpages contribute equally to the terms of the webpage of 

the current treenode.

When creating a relationship (set of tuples described in Section 3.2), each website 

contributes using the above process.  The pages in the site are first organized using the 

depth rating, and then the tree is traversed and has the relationships added using the 

process described in this section.  When a website generates a tuple, it is added to the 

relationship using the add(r, R) described in Section 3.2.  Therefore, webpages contribute 

to the overall taxonomy by adding individual tuples to the relationship.  If two webpages 

generate the same tuple, then it is strengthened by adding the counts together.  In this 

fashion, the relationship is created from all of the contributing websites to be analyzed in 

the following sections.

3.4. Analyzing the Relationship to Create the Term Hierarchy
Now that the relationships have been created, the next step is to create the term 

hierarchy.  A variety of parameters that directly influence its size and shape have to be 

adjusted to provide meaningful term hierarchies.  These parameters control tree depth, 

trimming, allowed terms, the root term, and a large number of other factors.  All of these 

parameters and this functionality are encapsulated in the SiteGraph application discussed 

in Section 4.2.

Child Webpage 1 Child Webpage 2
motherboard 0.705882 sound 0.75
memory 0.294118 card 0.25
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3.4.1. Terminology
term_anchor_support(t): The term anchor support is simply the proportion of all pages 

that a given term appears in (anchor text only).  Given a term t:

    
 W

linksinptWpp

pages

.pages| 

Note that a capital W is used indicating the set of all pages of all websites crawled 

to create the relationship R.

Instance Terms:  Instance terms (sometimes referred to as instance children when a 

specific child/parent relationship is being discussed) are terms that use only a relationship 

percentage value compared to a cutoff value to determine if they are valid.  An instance 

term intends to represent a specific instance of a broader subject.  For example, in the 

SPORTS domain a player’s name such as “BRYANT” could be considered an instance 

term.

Topic Terms: Topic terms (sometimes referred to as topic children when a specific 

child/parent relationship is being discussed) are terms that use both a relationship 

percentage value and the term_anchor_support as measures to determine validity.  A 

topic term intends to represent a subject that can be broken down into smaller instances.  

For instance, in the SPORTS domain a sport such as “BASKETBALL” could be 

considered a topic term.

Modifier Terms:  Referring to terms as “modifiers” simply indicates that they co-occur

more frequently in the same link’s anchor text than a given threshold.  They are searched 

for and displayed in results simply to give the user more insight into the relationships 

between terms.  For example, in the COMPUTER HARDWARE domain the term 

“SOUND” could be considered a modifier of the term “CARD”.
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topic_rank:  The topic rank of a term t, given a parent p, is the term_anchor_support

plus the parent_term_support (see Section 3.2) where t is the child-term and p is the 

parent-term.  It is used in generating topic terms.  Formally,

    ),_support(parent_temr_supportterm_ancho,topic_rank rRttp 

where R is the relationship created from the webpages and r is the tuple containing t as 

the child-term and p as the parent-term.

3.4.2. Input Parameters

root-term - This is the term chosen to be the root of the hierarchy.

max-levels - The maximum number of levels keeps the algorithm from 

continuing infinitely.  Generally, the other trimming parameters will keep the hierarchy 

from reaching the maximum number of levels.  However, this value is included as a fail 

safe.

instance-cutoff - The instance-cutoff is used when searching for child instance 

terms for a parent term.  They are generated by comparing the instance-cutoff value with 

the parent_term_support value.  For instance, if the term “CARD” appears as the parent-

term in the tuples in R, listed in Table 3-3.

parent-term child-term count parent_term_support
CARD VIDEO 0.52 0.07
CARD AUDIO 2.88 0.41
CARD RADEON 1.77 0.25
CARD GEFORCE 0.31 0.04
CARD PCI 1.5 0.21

Table 3-3 Example children demonstrating the use of the instance-cutoff parameter

and the topic-cutoff is 0.2 then PCI, AUDIO, and RADEON would be retrieved as  

child instance terms.  
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top-topic-percent - This parameter controls what percent of all potential topics 

actually become topics.  It defaults to ten percent.  See below for more information.

topic-cutoff - The topic cutoff is used when searching for child topic terms for a 

parent term.  They are generated by comparing the topic-cutoff value with the 

parent_term_support value.  The values are compared exactly like the instance-cutoff

value, except the relationships are also ordered by topic_rank and only the top-topic-

percent of terms are returned.  Because only the top-topic-percent of candidate topics are 

retained the topic-cutoff tends to be an order of magnitude less than the instance-cutoff.

Sorting the pages in this manner causes those terms appearing in the largest 

percentage of pages to be favored for topics.  This method was used (and works) because 

the links that tend to contain “topic” terms are those that appear as navigational links on 

every page in a site.  For instance, when navigating http://www.cnn.com (as of March, 

2007) there is a blue bar appearing at the top of every page allowing instant navigation to 

the main topics of the site:  World, U.S., Business, Sports, etc.  Refer to figure 3-3.
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Figure 3-3 Example webpage from CNN.com (March, 2007) hosted in the Firefox web browser

Because this design structure is used so frequently, the term_anchor_support of a term is 

a very powerful indicator of whether or not this term is a good topic.  Returning to our 

example, Table 3-4 shows the child terms with the term_anchor_support added and 

sorted by a topic_rank:

parent-term child-term count
parent_term_

support
term_anchor_

support topic_rank
CARD AUDIO 2.88 0.41 0.48 0.89
CARD VIDEO 0.52 0.07 0.52 0.59
CARD PCI 1.5 0.21 0.23 0.44
CARD RADEON 1.77 0.25 0.12 0.37
CARD GEFORCE 0.31 0.04 0.09 0.13

Table 3-4 Example children sorted by topic_rank
Using this methodology AUDIO and VIDEO are the two most likely candidates 

for topic children of the parent term “CARD” based on the topic_rank.

topic-trim-cutoff - The algorithm first attempts to generate topic children for a 

given term.  If, however, during the trimming phase a greater percentage of topics are 
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removed than the topic-trim-cutoff, then all of the topic children are removed and are 

replaced with instance children using the above methodologies.

modifier-cutoff - This parameter determines what percentage of a term’s total 

appearances have to co-occur with another term for it to be considered a modifier term.  

In this case, co-occurrence is defined as appearing in the same anchor text.  Creating 

modifier terms is part of the trimming phase and is designed to reveal more information 

about the relationships between sibling terms.

Using the above input parameters, the taxonomy is created by building one level 

at a time and then trimming that level until either max-levels is reached or all of the leaf 

nodes are instance nodes (See Section 3.4.4 to find how instance nodes are created).

3.4.3. Building a Level
We start by adding the root-term as the root node of the tree and a Topic node.  

Then we build each level by traversing the tree and creating child topic nodes using the 

topic-trim-cutoff.  After each level is built it is trimmed using the below process.  The 

trimming process determines if a Topic node makes a significant contribution to the 

taxonomy.  If it does not then the Topic children are removed and replaced with Instance 

children.  Therefore, because the building process does not build off of instance children, 

the taxonomy creation process will eventually end when there are no more topic leaf 

nodes.

3.4.4. Trimming a Level
After a level is built, the algorithm uses a series of trimming rules that remove and 

move TreeNodes.  There are three basic trimming rules that are applied to each level.

Topic Trimming
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The first kind of trimming removes topic children, and, if certain conditions are 

met, it removes all topic children of a node and replaces them with instance children.  

The hierarchy does not build off of instance children so if a node’s child topic terms are 

replaced with child instance terms, then that will be the last level of the tree on this 

branch.

First, the trimming logic checks how many unique topic children a node brings 

into the tree.  If a node fails to bring any new topics to the entire tree, it has its child topic 

nodes removed.  Next, if the topic node provides at least one new topic to the tree, it then 

removes all topics that already appear in a higher level.  If it removes a larger percentage 

than the topic-trim-cutoff parameter, or only has one topic child left then it will have all 

of its topic children removed.  Then, all of those nodes who had their Topic children 

removed, have them replaced with Instance children.  Instance children are generated as 

described above.

Modifier Trimming

The next kind of trimming, identifies “modifier” nodes among sibling terms and 

decides if one should be moved over as a modifier of another.  Each node on the newly 

created level is checked against each of its sibling terms to see if its co-occurrence in 

anchor text with every other term divided by its total appearances is greater than the 

modifier-cutoff parameter.  This is performed for both instance and topic nodes.  If this is 

true then the term is moved over as a “modifier” of the other term.

Appearances
power 200
supply 100
co-occurrence: 80

Table 3-5 Co-occurence example
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In the example, shown in Table 3-4, supposing the modifier-cutoff is set to .5, then 

supply would be considered a modifier term of power because 80% of the times supply

appeared in anchor text it appeared with power.  However, power would not be 

considered a modifier of supply because only 40% of its appearances in links co-occurred 

with supply.  This is equal to the conditional probability of the terms.  If,

  toffModifierCuBA |p

is true then B is considered a modifier of A.

CrossTopic Trimming

Sometimes a child term will appear across so many topic terms, that expanding it 

further would cause huge redundancies in the tree.  Therefore terms that appear across a 

sufficient number of topic nodes will be considered “cross topic”.  In order to find cross 

topics nodes, a given term’s appearances on a given level is compared to the average 

appearances by the other nodes.  If a term is two standard deviations away from the 

average term appearance at that level it is to be considered a cross topic node because 

only those terms that were true outliers should be moved up as a cross topic node.  

During experimentation it was found that a single standard deviation was not restrictive 

enough and too many nodes were considered cross topic.

For instance, in the tree cross topics are listed in Table 3-6 marked with orange:

Level
1 2 3

VIDEO 1
CARD VIDEO SOUND 2

SOUND USB 3
USB ABIT 1
PCI NIKON 1

MEMORY 1
HARDWARE MOTHERBOARD ABIT PCI 1

USB DIGITAL 1
SOUND
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MEMORY

CAMERA NIKON Average 1.375
USB Std Dev: 0.744024
DIGITAL Threshold: 2.863048

Table 3-6 Crosstopic trimming example.

If we are trimming the third level, then USB would be considered a cross topic 

term.  This is because it appears three times in the level which is greater than the average 

appearance at that level plus two times the standard deviation.
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4. IMPLEMENTATION
A series of programs were developed to implement the ideas described in this 

thesis regarding taxonomy building and information extraction.  These programs were 

developed in C# using Visual Studio .NET 2005 with SQL Server as a back end to store 

the recovered data.  Several externally developed tools were also used such as the Badger 

Information Extraction Software (http://www-nlp.cs.umass.edu/software/badger.html) 

developed by the Center for Intelligent Information Retrieval at the University of 

Massachusetts.

The first program, SiteMap, downloads and maps a list of websites and inserts 

them into an SQL Server database.  It is responsible for accurately maintaining the links 

between all pages in a site, and tracking what words are used in the link text to link from 

page to page.  The second program, SiteGraph, reads the data from the database and 

displays it in a manageable form to the user.  It also allows the user to easily modify a 

variety of constants and threshold values in order to understand what values lead to the 

best results.

Sitemap XML 
Files

3.3.1 Crawling the Pages

Sitegraph User

3.4.3 Building a Level
3.4.4 Trimming a Level

Sitemap

3.3.2 Organizing the Pages
3.3.3 Calculating Term Relationships

SQL 
Database
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Figure 4-1 Overview of Implementation

4.1. SiteMap
The SiteMap application is responsible for mapping a list of sites, arranging the 

pages in a hierarchy of each individual site from most general to most specific, extracting 

link text from each page and inserting all relationships, pages and links into the database.  

This application was developed using C# in Visual Studio 2005.

Figure 4-2 Screenshot of Sitemap as used to map websites

The interface allows the user to add a list of Webpages by entering each site into 

the URL Entry text box and clicking add.  This populates the listbox with each entered 

URL.  When the user clicks “Begin Map” the program will then map each website in 

order and save the data in XML files.  The websites used were determined by searching 

Google using the topics we intended to create taxonomies for and using the first five 

results.  For a given website the mapping process can take anywhere from half an hour to 

two or three hours depending on the number of links found.
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When the user clicks “Insert Data” the program will open each indicated xml file 

(created in the Mapping Phase), create a hierarchy of pages, and insert the relationships 

into the database using the contents of the Root Word text box as the root of each 

website.  It generally takes about half an hour to an hour per site to insert all of its 

relationships into the database.

4.1.1. Mapping and Parsing
This phase of the program happens when the user clicks the Begin Map button.  

Each list entry is the root (w.root) of a website (w).  For each Url in the listbox SiteMap

follows all of the mapping specifications explained in Section 3.3.1.  This includes the 

depth restrictions, staying in the same domain as the w.root page and not following links 

that contain specific stopwords.

The anchor text of each link in each webpage is subjected to a cleaning process to 

extract only the nouns as terms to be added to the XML file using the following steps:

1) Replace common escape sequences with the characters they represent:

&quot => “
&amp  => and
&lt   => <
&gt   => >
&nbsp => <space>

2) Remove any html tags that may fall in the anchor text <*>.

3) Pass the text through Badger Information Extraction Software (http://www-

nlp.cs.umass.edu/software/badger.html) and only use the terms identified as nouns by the 

software.

4) Remove any terms that match the following terms.  First remove pronouns:

i,me,mine,you,you,your,he,him,his,she,her,hers,it,its,we,us,our,ours,you,,you,yours,they,
them,their,theirs
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Also, remove artifacts left by badger: %poss%,@@.  %poss% is created by Badger to 

indicate a term is possessive.  @@ is created by Badger to indicate a word indicating a time 

span or position in time.  i.e. yesterday, March 13th, 4:00 PM, etc.

5) Remove common endings:

ies => y, s (unless the term ends in a double s), ing

Originally the nouns were then passed through the Porter Stemming algorithm to 

remove common endings and combine singular with plural forms.  However, it was 

determined that the Porter Stemming algorithm was too aggressive and combined terms 

that did not make sense in the context of taxonomy building.  For instance, it combines 

the terms “DIGITAL” and “DIGIT” whose English meaning is very different.  Therefore, 

a simple, custom algorithm was written to only change plural forms to singular and 

remove the “ing” ending.  The set of terms that is retrieved from Badger is now run 

through this simpler algorithm.  This leaves a list of stemmed nouns to be stored as the 

set of terms for a given link.  This set of terms is the same set that is referred to in Section 

3.2 and is retrieved using the [] syntax:  [p.linksin].

Each website is stored as its own XML file with its Webpages, urls, links, and 

processed anchor text.   There is only one website per file.  The XML contains, for each 

mapped webpage, its URL and an id field.  The webpage node has a <linksto> node which 

contains a list of all pages it links to and the number of times it links to that page.  The 

<linksfrom> node contains a list of all pages that this page is linked from and all of the 

terms used in each link.  The <terms> node contains all of the terms used to refer to this 

page (obtained from anchor text in the <linksfrom> nodes) and how many times they were 

used to refer to this page.  The <TotalCount> node is the total number of terms used to refer 

to this page.  This XML files is then parsed by the same program in a second run when 
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the user clicks “Insert Data”.  See below for the DTD for the xml file and refer to the 

appendix for a sample of the file.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Count (#PCDATA)>
<!ELEMENT Term (Text, Count)>
<!ELEMENT Terms (TotalCount, Term*)>
<!ELEMENT Text (#PCDATA)>
<!ELEMENT TotalCount (#PCDATA)>
<!ELEMENT count (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT link (pointsto, count, terms)>
<!ELEMENT linksfrom (link+)>
<!ELEMENT linksto (link*)>
<!ELEMENT page (url, id, linksto, linksfrom, Terms)>
<!ELEMENT pointsto (#PCDATA)>
<!ELEMENT root (page+)>
<!ELEMENT term (#PCDATA)>
<!ELEMENT terms (term*)>
<!ELEMENT url (#PCDATA)>

4.1.2. Inserting Into the Database
After the user has mapped a set of websites and has saved the XML files using 

SiteMap, they would use the program again to import the XML files into the database.  

This time the user would enter the XML file names into the listbox and press the “Insert 

Data” button.  The user also indicates the root subject that they are importing:

Figure 4-3 Screenshot of Sitemap used to insert data into the database
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When the user clicks “Insert Data” SiteMap imports each XML element one at a 

time and builds the tree of Webpages from most generic to most specific as detailed in 

Section 3.  Each XML  file contains information from only one website.

After the tree of Webpages has been built in memory, SiteMap recursively 

traverses the tree breadth-first and inserts each relationship (r in Section 3.2) into the 

SQL Database for later analysis.  SiteMap also inserts all links between all Webpages and 

all processed anchor text into the database in order to help in calculating the 

term_anchor_support as mentioned previously.

4.2. SiteGraph
Now that the data has been inserted in the database the SiteGraph application 

provides an interface to examine the data and extract a hierarchy of terms from it based 

on the link structure of the tree created by SiteMap and inserted into the database.
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4.2.1. Word Graph

Figure 4-4 Screenshot of the Word Graph tab of SiteGraph

The Word Graph tab makes use of the Open Source Netron Light control that 

continues to be developed under the name Netron Reloaded1.  This tab displays the tree 

built from the database using the algorithm described in Section 3.  It allows the user to 

adjust all of the variables that control the tree structure which helps them determine the 

settings that optimize the results.  The tree diagram displays nodes retrieved as topic 

terms in red and nodes retrieved as instance terms in blue.  The darker the shade the 

larger a percentage the child word appears in the parent word.  It generally takes about a 

minute to generate a taxonomy from the relationships in the database depending on the 

options selected.

                                                
1 http://sourceforge.net/projects/netron-reloaded
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Root Term:  This is the term that the user wishes to use as the root node of the tree.  

Although other terms can be used, the root term specified when the tree is inserted into 

the database by SiteMap is generally used as it contains the richest and deepest tree.  This 

is the same as the root-term parameter in Section 3.4.

Max No. Levels: This is the maximum height of the tree.  The value is considered a 

safeguard to keep the program from spending too much time generating the tree and is 

usually chosen to be larger than the expected number of levels.  Most trees generate 

around three levels of topic terms so a common value for this parameter is four.  This is 

the same as the max-levels parameter in Section 3.4.

Topic Cutoff: This is the same as the topic-cutoff parameter in Section 3.4.  It 

controls how restrictive the algorithm is when finding Topic Terms.

Instance Cutoff: This is the same as the instance-cutoff parameter in Section 3.4.  It 

controls how restrictive the algorithm is when finding Instance Terms.

Top Topic Percent:  This is the same as the top-topic-percent parameter in Section 

3.4.  It controls what percentage of potential topics actually become topics.

Topics Only:  This check box keeps the program from retrieving the instance 

nodes.  This is used to reduce the time to build the tree but still see the main structure.  It 

is always left checked for generating complete taxonomies.

Find Cross Topic:  This check box controls whether or not “Cross-Topic” nodes 

are identified.  It is always left checked for generating complete taxonomies.

Topic Trim Cutoff:  This check box and the nearby text box control whether or not 

the instance trimming rules are applied to each node.  If they are, then value indicated in 

the text box indicates the percentage required to be kept in order for the child nodes to be 
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considered topic nodes as described in Section 3.4.  It is always left checked for 

generating complete taxonomies.  The value in the textbox is used as the topic-trim-cutoff

value in Section 3.4.

Modifier Cutoff:  This check box and the nearby text box control whether or not all 

of the child nodes are checked against their siblings to see if their collocation is 

significant enough to be a modifier.  It is always left checked for generating complete 

taxonomies. The value in the textbox is used as the modifier-cutoff value in Section 3.4.

Export Tree:  The export tree button exports the displayed tree into a comma 

delimited .csv file.  If the tree is:

then the comma delimited file would be:

sport,football,
,golf,leaderboard
,,tournament

and it would appear in a spreadsheet editor as:

sport football
golf leaderboard

tournament

Context Menu
If the user right clicks on any node in the tree they are given a context menu which 

gives them tools to further understand and make sense of the underlying data:

sport

football golf

leaderboard tournament
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Figure 4-5 Screenshot of a taxonomy node context menu in SiteGraph

Figure 4-6 Screenshot of the Stats dialog in SiteGraph

Stats Dialog
The stats dialog shows a variety of stats regarding the node and the node’s children.  

It also provides links allowing the user to navigate between the node’s children, parent, 

and siblings.
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Figure 4-7 Screenshot of the Hierarchy dialog in SiteGraph

Hierarchy Dialog

The hierarchy dialog uses a hierarchical clustering algorithm detailed in [8] on the 

children of the selected node and displays the results.  The algorithm begins by assigning 

each term to its own cluster.  It then repeatedly combines the two “nearest” clusters until 

there is only one cluster remaining.  The algorithm uses the group-average distance 

between two clusters, i.e. the average cosine distance between all combinations of terms 

from each cluster to determine the total distance between clusters.  The distance between 

two terms is defined as the cosine distance between vector representations of each term.  

The vectors used are either constructed from the collocation with all other terms in pages 

or in links (chosen by the user).  Two terms collocate in a link if they both appear in the 

anchor text of the same link.   Two terms collocate in a page if they both appear in the 

anchor text of links that appear on the same page.  For instance, if a term t extracted from 

the anchor text of a link collocates with t0 24 times, t1 17 times, t2 0 times, etc. then the 
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first three values in its vector representation would be [24,17,0,....].  The cosine distance 

between two vectors is defined as:


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In this manner the terms are clustered and displayed to the user.

4.2.2. Word Frequency

Figure 4-8 Screenshot of the Word Frequency tab in SiteGraph

The Word Frequency tab uses a charting object developed by .net Charting1.  This 

tab displays the distribution of term appearances in links and pages (a term is considered 

to appear in a page if it appears in the anchor text in a link in that page)  and helps the 

user choose the cutoff values for links and pages.  This tab is used in conjunction with the 

                                                
1 http://www.dotnetcharting.com
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Word Management Tab which shows the actual words that are allowed for different 

thresholds.

4.2.3. Word Management

Figure 4-9 Screenshot of the Word Management tab in SiteGraph

The word management tab allows the user to see the current stop words and 

allowed words.  It also lets them choose the threshold values for percent appearance in 

pages and links.

If the “Use ‘OR’ relationship” checkbox is checked, the union of the terms 

allowed by pages and terms is used.  However, if it is unchecked, the intersection is used.

4.3. Miscellaneous tools

4.3.1. stopwords.vbs
Stopwords.vbs is a vbscript that was written to import the list of stopwords into 

the database.  It opens a text file, stopwords.txt, and inserts all of the words into the 

stopwords table in the database.  
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Stopwords.txt was initially comprised of the words found at this site 

http://www.pagex.com/webtools/stopwords.cfm.  Additional words were added such as 

numbers and various symbols.

4.3.2. wordnet.vbs
Wordnet.vbs is a vbscript written to determine what percentage of the terms that 

appeared in the SiteMap database also appeared in Wordnet.  It is currently unused.  

Originally Wordnet was going to be used to evaluate the generated taxonomies.  

However, due to a large number of proper terms (brand names, product names), Wordnet 

was not recognizing a significant percentage of the terms and could not be used to 

evaluate the taxonomies.  In the Computer Hardware domain it recognizes 3702 out of 

8515 total terms:  43.8%.

4.3.3. results.vbs
Results.vbs is a vbscript written to read the .csv files output by the SiteGraph

application and generate the conditonal entropy and subsumption results discussed in 

Section 5.

4.4. Implementation Issues
A variety of issues and difficulties came up during the implementation process 

and many lessons were learned during the process.  For instance, originally, only the 

relationships created while building the pyramid were inserted into the database using the 

words and relationship tables.  This caused issues when the data such as collocation in 

pages and links became important and so the process was rewritten to add the full link 

structure in using the link and pages tables.  This allowed a considerable amount of new 

data to make sense of the tree and relationships between the words.  The process should 
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have been written from the ground up to put the lowest level of data (the words, links and 

urls) into the database and the word relationships should have been built from that.  It 

would have allowed much better flexibility in the relationship building algorithms from 

the very beginning.

Secondly, an open source crawler should have been used.  A custom written 

crawler was used which had to be updated several times to support more and more tags as 

they were discovered.  Portions of some websites were probably omitted because certain 

kinds of links are not supported by the currently used crawler.  The current crawler only 

supports the <a> tag and the alt= attribute for image links.  An open source crawler would 

have been significantly easier, faster, and more complete than the custom written crawler.

Also, a text parser, Badger (http://www-nlp.cs.umass.edu/software/badger.html), 

was used to extract nouns from the anchor text as that is the only part of speech that was 

to be included in the hierarchy tree.  It was hoped that adjectives, verbs, and other parts of 

speech would be excluded.  Unfortunately, Badger struggled with most anchor text 

because most anchor text is not complete sentences.   Badger does an admirable job of 

parsing full sentences, however, with phrases, it tends to consider the entire thing as a 

noun phrase and mark every term as a noun.  For instance, this phrase: “Overclocking 9 

Value-Priced DDR2-800 Kits” has every word marked as a noun.  Future 

implementations would use a different text parser.

Finally, a C# implementation of the Porter Stemming algorithm was originally 

used to stem words and combine concepts.  However, the stemming tended to be too 

strict and it was decided that a custom written parser that simply stripped plurals and 

“ing” endings would appropriately combine terms.  The Porter Stemming was combining 
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terms such as “DIGITAL” and “DIGIT”, concepts that we wanted to remain separate.  

Therefore a much simpler algorithm was implemented that suited the needs of this project 

more appropriately.

Many issues were encountered and lessons were learned during the 

implementation process.  Most importantly:

1) Always store the lowest level of data before processing

2) Use already written, proven code where available

3) Understand the strengths and limitations of all of the third party tools used.
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5. EXPERIMENTAL RESULTS

5.1. Generation
In order to evaluate the validity of the ideas proposed in this thesis, three topic 

domains were chosen at random:  Computer Hardware, Sports, and News.  In order to be 

impartial, the set of websites (W) chosen to represent each topic domain are the first five 

websites returned by Google when searching for each phrase “Computer Hardware”, 

“Sports” and “News” (entered without quotes into Google).  The first five Webpages for 

each domain are:

Computer Hardware:
http://www.pricewatch.com
http://www.geeks.com
http://www.newegg.com
http://www.tomshardware.com
http://www.devhardware.com

Sports:
http://espn.go.com
http://sportsillustrated.cnn.com
http://sports.yahoo.com
http://msn.foxsports.com
http://www.sportsline.com

News:
http://www.cnn.com
http://news.google.com
http://www.foxnews.com
http://news.yahoo.com
http://www.msnbc.com

Each of these URLs was used as a w.root along with δ = 3 and α = 0.6 (these 

values were determined by trial and error) to create each website in the set W.  These 

websites were the top five returned by Google in the fall of 2006.
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5.1.1. Human Judging
The above algorithms were used to generate one taxonomy for each set of 

websites (each topic phrase) using the following settings.  The topic-cutoff and topic-

trim-cutoff are not included because they were determined by comparing input 

combinations versus output measures in Section Error! Reference source not found.. 

The other settings were used for the taxonomies submitted for human judging and they 

were determined previously by trial and error.

Computer Hardware: (crawled 2/4/2007)
Tree Parameters
root-term: HARDWARE
max-levels: 4
instance-cutoff: .01
modifier-cutoff: .4
top-topic-percent: 10%
Term Set Parameters
Pages: .0007
Links: .0007
Intersection (And relationship)

Sports: (crawled 2/4/2007)
Tree Parameters
root-term: SPORT
max-levels: 4
instance-cutoff: .01
modifier-cutoff: .4
top-topic-percent: 10%
Term Set Parameters
Pages: .0008
Links: .0004
Intersection (And relationship)

News: (crawled 1/30/2007)
Tree Parameters
root-term: NEW
max-levels: 4
instance-cutoff: .01
modifier-cutoff: .4
top-topic-percent: 10%
Term Set Parameters
Pages: .001
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Links: 1
Union (Or relationship)

The complete taxonomy result sets submitted for human judging are available in 

the appendix.

5.2. Evaluation
In order to evaluate the taxonomies created from the sites listed above, three 

methods were chosen.  First, the conditional probability of the child and parent term 

appearing in the same page was used.  In our case, since we only used the anchor text of 

links, this measure is the conditional probability of the child and parent term appearing in 

the anchor text of two links appearing in the same page.  According to this subsumption 

measure [12, 15, 20], if p subsumes c then the following is true:

    )|P(|P8.|P cppccp 

The second measure, Generalization/Specialization Quality, is calculated using 

the conditonal entropy of the parent and child terms [18].  Given a child term, c, and a 

parent term, p, the Generalization/Specialization Quality is calculated as:

   )|P(log*,P cpcp

This measure is designed to “quantif[y] how a hierarchy respects the relation of 

generalization/specialization between the objects which are in the nodes.” [18]  A lower 

value indicates a better taxonomy.

The third measure used human judges to determine the validity of the taxonomy.  

Six judges were asked to rate each relationship (parent-term, child-term).  This measures 

the precision of the created taxonomy.  Each of the judges was at least moderately 

familiar with each of the three topic domains, NEWS, SPORTS, and COMPUTER 
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HARDWARE.  The judges were knowledgeable enough to understand the basic concepts 

in each domain and how they are related to each other.

5.2.1. Effect of Cutoff Parameters
Based on preliminary trial and error experiments, we found that the two input 

parameters that most affect the content of the tree were the topic-trim-cutoff and the 

topic-cutoff.  The topic-cutoff affects the number of topic nodes allowed into the tree and 

the topic-trim-cutoff affects how liberal the algorithm is when trimming Topic nodes.  

Both of these parameters have a very large effect on the length and breadth of the tree.  

Sixteen combinations of both input parameters for each domain were tried versus the 

percent of relationships in the output taxonomies that fulfilled both requirements of the 

subsumption measure.  First, P(parent|child) must greater than 60% (see rationale for 

choosing 60% below).  Second, P(parent|child) must be greater than P(child|parent).  The 

chosen input values for topic-cutoff were:  .002, .003, .004, and .005.   The chosen input 

values for topic-trim-cutoff were: .2, .3, .4, and .5.  The effect of the parameters on the 

average Specialization/Generalization quality described in [18] was also studied.

Due to the fact that the subsumption measure is designed for traditional taxonomy 

building techniques [12, 15, 20], instead of using the recommended 80% guideline we 

will be using 60%.  Traditional techniques use either syntactic pattern matching or 

statistical collocation both of which require related terms to be near each other in text.  

Therefore, such measures are good for evaluating taxonomies already based on distance 

or pattern matching.  Because the techniques developed in this thesis rely primarily on 

link structure, related terms don’t necessarily have to appear in the same document.  
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Also, the subsumption measure was designed using complete text documents which 

would contain significantly more text then the anchor text used by these algorithms.

Computer Hardware
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topic-cutoff
0.005 0.004 0.003 0.002

0.5 42.42 49.02 63.25 59.35
0.4 40.00 50.94 64.57 60.00
0.3 66.67 74.42 61.18 57.14

topic-
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cutoff

0.2 66.67 72.41 71.01 58.46
Figure 5-1 Percent of Output that fulfills Subsumption Measure vs. Input parameters for Computer 
Hardware domain

0.005 0.004 0.003 0.002

0.5
0.4

0.3
0.2

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Average 
Quality

topic-cutoff

topic-trim-
cutoff

Computer Hardware



54

topic-cutoff
0.005 0.004 0.003 0.002

0.5 0.0016 0.0016 0.0011 0.0012
0.4 0.0017 0.0016 0.0011 0.0012
0.3 0.0011 0.0013 0.0012 0.0015

topic-
trim-

cutoff

0.2 0.0011 0.0015 0.0013 0.0016
Figure 5-2 Average Generalization/Specialization quality vs. Input parameters for Computer 
Hardware domain

According to the subsumption measure, the Computer Hardware domain was best 

when the topic-cutoff is 0.004.  Also, except for a couple exceptions, it appears as if the 

more restrictive values for the topic-cutoff  and topic-trim-cutoff generate better results.  

Also, the average Generalization/Specialization Quality agrees with the Subsumption 

measure.  According to both measures the worst taxonomies are created when the topic-

cutoff is 0.005 and the topic-trim-cutoff is 0.5 or 0.4.
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topic-cutoff
0.005 0.004 0.003 0.002

0.5 71.88 65.71 66.67 57.61
0.4 71.88 65.71 67.86 69.57
0.3 71.88 65.71 79.55 78.13

topic-
trim-

cutoff

0.2 71.43 70.37 85.00 83.33
Figure 5-3 Percent of Output that fulfills Subsumption Measure vs. Input parameters for Sports
domain
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Sports

topic-cutoff
0.005 0.004 0.003 0.002

0.5 0.0059 0.0052 0.0040 0.0043
0.4 0.0059 0.0052 0.0039 0.0047
0.3 0.0059 0.0052 0.0043 0.0048

topic-
trim-

cutoff

0.2 0.0066 0.0045 0.0043 0.0044
Figure 5-4 Average Generalization/Specialization quality vs. Input parameters for Sports domain

The Sports topic domain also shows that more restrictive values of the topic-cutoff

and topic-trim-cutoff tend to create better results as measured by the Subsumption 

measure.  Overall the results are the best of all three topic domains and reach as high as 

85% of all output relationships according to the Subsumption measure.  Also, the 

Subsumption measure and the Generalization/Specialization quality again agree on the 

best and worst taxonomies in the Sports domain.
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News
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News

topic-cutoff
0.005 0.004 0.003 0.002

0.5 63.16 52.29 48.39 42.76
0.4 65.79 54.46 52.03 47.24
0.3 95.24 54.70 57.14 52.71

topic-
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0.2 95.24 54.70 63.41 66.67
Figure 5-5 Percent of Output that fulfills Subsumption Measure vs. Input parameters for News 
domain
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0.3 0.0008 0.0021 0.0027 0.0022
0.2 0.0008 0.0021 0.0020 0.0021

Figure 5-6 Average Generalization/Specialization quality vs. Input parameters for News domain

The News topic domain also shows that more restrictive values of the topic-cutoff

and topic-trim-cutoff tend to create better results as measured by the subsumption 

measure.  The two output taxonomies that had the highest ratings (95%) both created less 

than twenty relationships in the final taxonomy.  For more practically sized taxonomies, 

the scores in the News topic domain were less than the previous domains.  The most 

impressive score being about 65% of output relationships fulfilling the subsumption 

measure.  Also, the two measures again agree on which taxonomies are the best.

Over all three topic domains there appears to be a correlation between topic-cutoff

and topic-trim-cutoff.  Making these values more restrictive tends to create results that 

score better using the both the Subsumption Measure and the 

Generalization/Specialization quality.

5.2.2. Human Judging
Six taxonomies were generated and submitted for human judging.  Each 

taxonomy was generated using the settings in Section 5.1.1 and a topic-cutoff and topic-

trim-cutoff  that generated the best taxonomies in Section Error! Reference source not 

found..  For the SPORTS and COMPUTER HARDWARE domain, two different 

taxonomies were indicated best by the Subsumption measure and the 

Generalization/Specialization quality.  Therefore, both taxonomies were submitted for 

human judging.  In the NEWS domain the same taxonomy scored the best for both 

measures.  The second best taxonomy from the NEWS domain was also added.  The 

chosen taxonomies for human evaluation are listed in Table 5-1.
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Topic Domain
topic-
cutoff

topic-
trim-
cutoff

# of 
relationships

Subsumption 
Measure

Generalization/ 
Specialization 
Measure

Computer Hardware 0.004 0.3 43 74.42% 0.0013
Computer Hardware 0.005 0.2 36 66.67% 0.0011
Sports 0.003 0.2 40 85.00% 0.0043
Sports 0.003 0.4 56 67.86% 0.0039
News 0.005 0.2 21 95.24% 0.0008
News 0.003 0.2 123 63.41% 0.0020

Table 5-1 Output Measures for the taxonomies submitted for human judging

5.2.3. Human Judges
Each of six human judges was presented with the following text:

A taxonomy is a classification in a hierarchical system.  A hierarchy is a system 
of ranking and organizing things, where each element of the system (except for the top 
element) is subordinate to a single other element.  The concept of the subordinate, child 
element should be more specific than the parent element.

For instance:
    In the domain of Musical Instruments
    Parent -> Child
    DRUM   -> BONGO
    would make sense because a bongo is a type of drum.

You will be presented with pairs of elements (a parent and child) from a taxonomy 
of terms generated from three topic domains:  SPORTS, COMPUTER HARDWARE, and NEWS.  For 
each pair rank them on a scale from 1 (is not meaningful) to 3 (is meaningful) keeping in 
mind the domain the term pair is coming from.

1: NOT MEANINGFUL
2: SOMEWHAT MEANINGFUL
3: MEANINGFUL

Then each judge used a program, SiteJudge, to evaluate the pairs of terms in the 

result set.  The judge was presented with this screen:

Figure 5-7 Screenshot of SiteJudge

The parent and child relationship was displayed along with the domain and a set 

of radio buttons to select the rating (1 through 3).  Selecting a rating would make the next 

relationship immediately appear.  If the judge felt they had misselected or wanted to 

review their choices they could use the back button.  To see the full set of results refer to 

the Appendix.
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The average ratings and standard deviation of all relationships from all judges for 

each submitted taxonomy was:

Topic Domain
topic-
cutoff

topic-
trim-
cutoff

Average 
Rating

Percent 
> 2

Standard 
Deviation

Computer Hardware 0.004 0.3 2.43 79.07% 0.45
Computer Hardware 0.005 0.2 2.30 66.67% 0.44
Sports 0.003 0.2 2.43 90.00% 0.43
Sports 0.003 0.4 2.35 82.14% 0.49
News 0.005 0.2 2.30 80.95% 0.49
News 0.003 0.2 2.24 57.72% 0.45

Table 5-2 Average and standard deviation of relationship ratings by topic and totals

As one can see the results are positive.  The Sports domain did the best with 90% 

of relationships having an average rating across all raters greater than 2, while the News 

domain was overall the worst.  This may be due to the fact that News is, perhaps, the 

broadest of all three topics.  In the case of the Sports and Computer Hardware domains, 

the taxonomy that scored better using the Subsumption measure also was judged better 

by humans.  Also the standard deviations are all relatively low meaning that, in general, 

the judges agreed on the meaning of the terms and rated them very closely.
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6. CONCLUSION AND FURTHER WORK

This thesis describes a method to extract information from the link structure of a 

website and proves that this is a viable method for automatic taxonomy generation.  Two 

programs, SiteMap and SiteGraph, were developed in order to demonstrate the 

information available in the link structure of the website.

The taxonomies created by SiteMap and SiteGraph were evaluated using three 

different techniques.  The Subsumption measure, the Generalization/Specialization 

Quality and particularly the human judging validate the use of the link structure of 

Websites to create term taxonomies.  The methods used in this thesis do not necessarily 

create perfect taxonomies, but they definitely prove that the link structure contains 

unused information that, combined with other techniques, can create more and more 

accurate term taxonomies with less and less human interaction.  This thesis contributes 

new ideas about using the link structure and text from the World Wide Web, and has an 

impact on the fields of Information Retrieval and Data Mining. In the future, more 

information will become available on the web, hyperlinked with existing documents, 

which means that the use of the links between documents will become a more important 

clue into data categorization.

Also in the future, the ideas in this thesis could be used in combination with other 

automatic taxonomy generation algorithms.  The link structure could be used in concert 

with clustering or syntactic analysis in order to create more accurate taxonomies.  Also, 
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the link structure could be used more directly by clustering algorithms by considering the 

linking terms in collocation measures.

There are still many barriers to automatically creating taxonomies that the ideas in 

this thesis did not overcome.  Accurately parsing natural languages is difficult, but as 

these techniques improve, taxonomy generation will also improve greatly and vice versa.  

There are three main shortcomings of natural language processing that impacted the 

results of this thesis.

First, this thesis attempted to only categorize nouns by using a natural language 

processor, but it became apparent that a large number of other parts of speech ended up in 

the taxonomies.  Part of speech processing is important in all kinds of taxonomy 

generation and gives important clues to how words should be placed in a hierarchy.

Second, the accurate identification of n-grams in the document set would have 

increased the strength of the algorithm.  If you pull apart the n-gram “SOUND CARD”,

you lose the meaning of the terms in the document.  Processing the term “SOUND” 

separately from “CARD” is completely different from the combined concept.

Finally, more accurately identifying and combining the meaning of synonymous 

terms and phrases would have strengthened the concepts in the final taxonomies.  Some 

concepts were referred to using many different term sets such as: “COLLEGE BBALL”, 

“BASKETBALL”, “NCAA BASKETBALL” or from another domain: 

“MOTHERBOARD”, “MOBO” or “MB”.  If these concepts were identified as being 

similar while parsing the documents, and their meanings combined, the final taxonomies 

would have been significantly stronger.
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As computers become more “intelligent” and require the ability to classify larger 

amounts of information, taxonomy generation becomes more important.  The ability to 

process new data and place it appropriately into a hierarchy of known data is important 

for both humans and computers.  Early research, such as the work in this thesis, on 

taxonomy generation and data classification can be considered an important step in the 

field of Artificial Intelligence and Semantic Web Mining.
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APPENDIX A (CODE)
This appendix contains code detailing the most important parts of the SiteGraph

and SiteMap applications.  The code is not reproduced here in full due to its length.

This first code section describes the way the Webpages are organized into a tree 

hierarchy using the depth rating.

Assume:
+Q is a Queue

Enqueue(): Adds an object to the tail of the queue.
Dequeue(): Returns and removes the object at the head of the queue.
length   : Returns the number of objects in the queue.

+T is a Tree
root    : The root treenode

+w is a Website as defined in the Notation section
+A TreeNode has the following properties and functions

page    : A Webpage as defined in the Notation section
nodes   : The set of child nodes of this node.   
AddNode(): Takes a TreeNode and adds it to the nodes set.
depth   : the distance from the root node.

+FindPageInTree(p) is a function that searches the tree for the Webpage p in the each 
TreeNode’s Page property.  It returns a TreeNode if it finds it, otherwise null.

+MoveNodeInTree(tn, tn′) is a function that moves the node tn (and all descendants) 
from its current location to be a child of tn′.

+DepthStdDev is the standard deviation of all depth ratings of Webpages in W.pages
+tChild is a TreeNode
+pChild is a Webpage
+tNew is a newly created TreeNode

fBuildTree()

T.root.page = w.root
Q.Enqueue(T.root)

//while we have nodes left to process
while Q.length > 0

TreeNode tNode = Q.Dequeue()

//check each webpage this node points to
for each Webpage pChild in tNode.page.pagesto
   //check to see if the node already exists
   if (tChild = FindPageInTree(pChild)) is null

//it hasn’t been added, so by default its our child
tNew.page = pChild
tNode.AddNode(tNew)
Q.Enqueue(tNew)

   else
//it already exists in the tree, check to see if we should move it
if tNode.page.depthrating + DepthStdDev < tChild.page.depthrating

if tNode.depth > tChild.depth
MoveNodeInTree(tChild, tNode)

end if
end if

   end if
end for

end while
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The above algorithm adds each TreeNode with its associated Webpage into a 

queue, starting with the TreeNode encapsulating w.root, from which they are removed 

and processed one at a time.  As it processes the TreeNode it checks each member of the 

TreeNode’s Page’s pagesto set.  If the Webpage from the pagesto set has not yet been 

added to the tree then a new TreeNode is created and added as a child of tNode with the 

Webpage as its page property.  If the Webpage has already been added to the tree, it 

evaluates two conditional expressions to determine if it should move the Webpage to be a 

child of the current TreeNode.

depthtChilddepthNodet

gdepthratinpagetChildvDepthStdDegdepthratinpageNodet

...

.....




The first expression checks to see if the depth rating of the Webpage in question 

is greater than the potential parent Webpage’s depth rating plus one standard deviation.  

The standard deviation is used to make sure that the Webpage’s depth ratings are 

significantly different.

The second expression makes sure that we are always moving the TreeNode 

“down” the tree to a lower level.  This check makes sure that a TreeNode that exists at a 

lower, “more specific” level isn’t moved up or sideways.

This next code section describes the way the hierarchy of Webpages is used to 

create the Relationship (a set of tuples described in Section 3.2).

Assume:
+The TreeNode objects are the same as those in the above section (Organizing the 
Pages)
+L is a list

Contains(): Returns true if the input string exists in L
Add(): Adds the input string to L

+T is the same tree as in the above section (Organizing the Pages)
+This recursive function is called on fCalcRel(T.root, {})
+AddRel() is a function defined externally which takes a parent term, child term, and 
a value indicating the strength of the relationship.  These values are stored for 
later use.

fCalculateRelationships(TreeNode tn, List L)
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//for every combination of parent
foreach parent in tn.page.terms

foreach pChild in tn.nodes.page
    //and child term
    foreach child in pChild.terms

//if we’ve not already added it
if not L.Contains(child)
  //add the tuple to the relationship
  fAddRel(parent,child,count(pChild,child) / Σt Є pChild.terms count(pChild, t))

           end if
        end for
   end for

   L.add(parent-term.term)
end for

foreach pChild in tn.nodes.page
//and recurse the tree

   fCalculateRelationships(pChild, L)
end for

This recursive algorithm descends the tree created out of the Webpages in the 

website and adds relationships for all of the anchor text used to refer to the current 

webpage as the “parent” terms (tn.page.terms) and all of the anchor text used to refer to 

all of its child Webpages as the “child” terms (tn.nodes.page.terms).  The fAddRel()

function is a wrapper for the add() function described in Section 3.2 above.  If a tuple, r, 

already exists such that r.parent-term = parent.term and r.child-term = child.term then 

r.count += 
  termspChildt

tpChild

childpChild

.
),count(

),count(

Otherwise, a new tuple is created and added to the relationship R with 

  termspChildt
tpChild

childpChild

.
),count(

),count(

as r.count.

The list L is used to keep the algorithm from adding children to a term if any 

ancestor node has already handled that term.  Early on during development it was noticed 

that very often, more generic terms used farther up in the tree would have their child 

relationships severely altered by more specific uses farther down inside of the tree.  
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Therefore, a list of already used words was created to keep descendants from contributing 

to an already defined term.

It should be noted that, as the terms are added, they are normalized so that the 

contribution of each child webpage was weighed equally: 















  termspChildt
tpChild

childpChild
childparent

.
),count(

),count(
,,fAddRel

This next code section shows the driving loop that SiteGraph uses to create the final 

taxonomies using the Relationship.

Assume:
+T is a Tree

root    : The root treenode
+A TreeNode has the following properties and functions

term    : a character string
nodes   : The set of child nodes of this node.   
AddNode(): Takes a TreeNode and adds it to the nodes set.
depth   : the distance from the root node.
instance: a boolean value indicating if this is an instance term

+root-term and max-levels are input parameters as defined above.

fBuildTaxonomy()

T.root.term   = root-term
CurrentLevel  = 0
while(CurrentLevel < max-levels)

BuildLevel(CurrentLevel, T.root)
TrimLevel(CurrentLevel, T.root)
CurrentLevel++

end while

This code section shows how the taxonomy is trimmed while it is being created.

Assume:
+L is a list of tree nodes

Add() : adds the input TreeNode to the list
+AddInstanceChildren(): adds instance terms as described above using the input

TreeNode.term as the parent term.
+RemoveChildren(): Removes all child nodes from the TreeNode.nodes set
+CountUniqueChildrenInWholeTree(): Counts the number of children of the input TreeNode 

whose .term appears nowhere else in the tree.
+CountUniqueChildrenInHigherLevels(): Counts the number of children of the input

TreeNode whose .term appear in no nodes whose depth is <= the input
TreeNode.depth.

+RemoveChildrenInHigherLevels(): Removes all child nodes of the input TreeNode whose 
.term appears whose depth is <= the input TreeNode.depth.

+UniqueChildren and TotalChildren are integer values
+topic-trim-cutoff is the cutoff parameter set by the user described above.
+CurrentLevel is input this trimming function

TrimLevel(CurrentLevel, T)

//get all nodes at this level
for each TreeNode tn in T where tn.depth = CurrentLevel

nUniqueChildren = CountUniqueChildreninWholeTree(tn)
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//and remove children if we either contribute no new children or our 
//new children/all children ratio is less than topic-trim-cutoff
if nUniqueChildren = 0

L.Add(tn)
else

nUniqueChildren = CountUniqueChildreninHigherLevels(tn)
nTotalChildren  = |tn.nodes|

if nUniqueChildren / nTotalChildren > topic-trim-cutoff or
           nUniqueChildren = 1                    then

//add to the remove list
L.Add(TreeNode)

end if
end if

end for

//Remove all children from trimmed topic nodes and add instance children
for each TreeNode tn in L

RemoveChildren(tn)
AddInstanceChildren(tn)

end for

//now remove children that have already appeared in the tree at a higher lvl
for each TreeNode tn at CurrentLevel

RemoveChildrenInHigherLevels(tn)
end for

This code section shows how crosstopic terms are discovered which is part of the 

trimming process.

Assume:
+TermCount is an object with the following properties and methods

count: The number of times a term has appeared
treenode: The treenode containing the Term

+L is a list of TermCount objects
Contains(): takes a string and returns true if one of the TermCount.treenode.terms 

matches it.
Add(): takes a TreeNode and integer and adds a new TermCount object
[]: takes a string and returns the TermCount object whose treenode.term matches it.
+CalcAvgAppearance() takes a list of term count objects and returns the average of the 

count property
+CalcStdDevAppearance() takes a list of term count objects and returns the standard 

deviation of the count property
+MarkAsCrossTopic() marks the node as a crosstopic node so it’s displayed 

appropriately to the user.
+Avg and StdDev are real values

for each TreeNode tn in T where tn.Depth = CurrentLevel + 1
if L.Contains(TreeNode.Term)

listNodeCounts[TreeNode.Term].count++
else

listNodeCounts.Add(TreeNode, 1)
end if

end for

fFindCrossTopic()

Avg    = CalcAvgAppearance(L)
StdDev = CalcStdDevAppearance(L)

for each TermCount tc in L
//if this term appears more times than the average plus two times the
// std dev, than this is an outlier and a modifier term.
if tc.Count > Avg + StdDev * 2 then

MarkAsCrossTopic(tc.treenode)
end if

end for



70

SiteMap.sql
Due to length, only the tables, functions, and procedure stubs are included.

--use sitemap
--create database sitemap

use sitemap
go

create table words
(

id int NOT NULL,
word varchar(100) NOT NULL

)
go

create table relationship
(

parent_id int NOT NULL,
child_id int NOT NULL,
count int NOT NULL

)
go

create table pages
(

id int NOT NULL,
url varchar(500) NOT NULL

)
go

create table link
(

id int NOT NULL,
to_id int NOT NULL,
from_id int NOT NULL,
word_id int NOT NULL

)
go

create table stopwords
(

id int NOT NULL
)
go

CREATE FUNCTION fGetNextID()
RETURNS int

create procedure pInsertWord
@p_Word varchar(100)

create function fGetID
(@p_Word varchar(100))

RETURNS int

create procedure pInsertRelationship
@p_WordParent varchar(100),
@p_WordChild  varchar(100),
@p_Count      int

CREATE function fGetParentCount
(@p_id int)

RETURNS int

CREATE FUNCTION fGetNextPageID()
RETURNS int

CREATE FUNCTION fGetNextLinkID()
RETURNS int
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create function fGetPageID
(@p_URL varchar(500))

RETURNS int

create procedure pInsertPage
@p_URL    varchar(500)

create function fGetLinkID
(@p_FromURL varchar(500), @p_ToURL varchar(500))

RETURNS int

create procedure pInsertLinkTerm
@p_FromURL varchar(500),
@p_ToURL   varchar(500),
@p_Term    varchar(100)

create function fGetAllowedTerms
(@p_LinkThreshold real,
 @p_PageThreshold real,
 @p_Or   bit)

RETURNS @words table
(

id int,
word varchar(100),
in_links int,
total_links int,
in_pages int,
total_pages int

)

create function fGetAllowedTermsFromLinks
(@p_LinkThreshold real)

RETURNS @words table
(

id int,
word varchar(100),
inlinks int,
totallinks int,
percentlinks real

)

create function fGetAllowedTermsFromPages
(@p_PageThreshold real)

RETURNS @words table 
(

id int,
word varchar(100),
inpages int,
totalpages int,
percentpages real

)

create function fGetChildren
(@p_word varchar(100),
 @p_LinkThreshold real,
 @p_PageThreshold real,
 @p_Threshold real,
 @p_Or bit)

returns @childwords table
(

child_id int,
child_word varchar(100),
child_count int,
parent_count int,
perc_appear real,
in_links int,
total_links int,
in_pages int,
total_pages int

)
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create function fGetCollocationByPage
(@p_word1 varchar(100),
 @p_word2 varchar(100))

returns @collocation table
(

word1total int,
word2total int,
collocation int

)

create function fGetCollocationByLink
(@p_word1 varchar(100),
 @p_word2 varchar(100))

returns @collocation table
(

word1total int,
word2total int,
collocation int

)
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APPENDIX B (XML FORMATS)
This appendix contains the format of two of the XML files mentioned in this thesis.  

The first, SiteMap XML, is created when SiteMap maps Webpages and saves the pages.  

The second, Term Cluster XML, is created when the user selects Export from the Cluster 

Dialog in the SiteGraph application.

SiteMap XML
<root>

<page>
<url><![CDATA[http://www.foxsports.com:80]]></url>
<id>0</id>
<linksto>

<link>
<pointsto>1</pointsto>
<count>1</count>

</link>
... repeat for all links to

</linksto>
<linksfrom>

<link>
<pointsto>28</pointsto>
<count>2</count>
<terms>

<term><![CDATA[BEN]]></term>
<term><![CDATA[MALLER]]></term>
<term><![CDATA[RUMORS]]></term>
<term><![CDATA[NOTES]]></term>

</terms>
</link>
... repeat for all links from

</linksfrom>
<Terms>

<TotalCount>4</TotalCount>
<Term>

<Text><![CDATA[BEN]]></Text>
<Count>1</Count>

</Term>
... repeat for all terms

</Terms>
</page>
... repeat for all pages

</root>

Term Cluster XML
<split>

<split>
<split>

<word><![CDATA[MIDI]]></word>
<word><![CDATA[AUDIO]]></word>

</split>
<split>

<word><![CDATA[LAB]]></word>
<word><![CDATA[CREATIVE]]></word>

</split>
</split>
<word><![CDATA[SORT]]></word>
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</split>
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APPENDIX C (RESULTS)

Human Judged Taxonomies

Computer Hardware
topic-cutoff: 0.004
topic-trim-cutoff: 0.3
HARDWARE CARD:USB VIDEO GEFORCE

TV
SONY
CAMERA
HD
LITE-ON
ATI:RADEON

SOUND
PCI

PC:USB REVIEW
SYSTEM SERVER

WINDOW
CISCO
XP
PRO
LAPTOP
APPLE
RAM

MOTHERBOARD INTEL
SOCKET

MEMORY BOX
512MB
DDR
OCZ
1GB
256MB
RAT
FLASH:USB
2GB
CPU
FAN
128MB

NETWORK:USB WIRELESS NETGEAR
FIREWALL

MICROSOFT
topic-cutoff: 0.005
topic-trim-cutoff: 0.3
HARDWARE CARD:USB VIDEO:RAT:PCI GEFORCE

TV
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SONY
CAMERA
HD
LITE-ON
ATI:RADEON
128MB

SOUND:RAT:PCI CREATIVE:LAB
AUDIO
SORT
SIIG
MIDI
GOLD

PC:USB REVIEW
ATHLON
PENTIUM

MOTHERBOARD INTEL
SOCKET

MEMORY BOX
FLASH DRIVE

2GB
DISK
1GB
RAT
PORTABLE
KINGSTON
512MB
256MB

Sports
topic-cutoff: 0.003
topic-trim-cutoff: 0.2
SPORT NFL:PHOTO REGISTER

STATE
OKLAHOMA
SPORTSNATION
QUICK:HIT

NHL:TEAM RANK
ALL-STAR
ROSTER
STAR

MLB:PHOTO:TEAM DEAL
BOND
RED
ODD
SIGN
HALL
STAT
TRANSACTION
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INJURY
PLAYER
STAND

NBA:PHOTO:TEAM DRAFT
HISTORY
TORONTO

NCAA:TEAM STAT
STAND FLORIDA

MICHIGAN
TEXA

PLAYER
WOMEN

SCHEDULE RECAP
BOX:SCORE
VIDEO
HUNT

topic-cutoff: 0.003
topic-trim-cutoff: 0.4
SPORT NFL:PLAYER REGISTER

NHL:TEAM RANK
ALL-STAR
ROSTER
STAR

MLB:PLAYER:TEAM DEAL
BOND
RED
ODD
SIGN
HALL
STAT
TRANSACTION
INJURY
STAND
PHOTO

NBA:PLAYER:TEAM DRAFT OKLAHOMA
STATE
SPORTSNATION
HISTORY

NCAA:PLAYER:TEAM STAT STATISTIC
LEADER
FUTURE

STAND STATE
FLORIDA
MICHIGAN
TEXA

WOMEN WNBA
STATE
FLORIDA
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TV
SCOREBOARD

SCHEDULE RECAP JONE
FULL
SHOT
CHART

BOX:SCORE SIMMON
WIRE
NIGHT
CHAMPION
TV:ESPN
TITLE
PETER
SCORECARD

News
topic-cutoff: 0.005
topic-trim-cutoff: 0.2

NEW WORLD IRAN:U.S.
HOUSE:WHITE:F
ULL:COVERAGE

SHIITE:IRAQI:ARMY:LEADER:CUL
T
ABC

MISUSED:ISRAEL:BOMB
RESPOND:CHENEY
HAGEL:CRITICISM
DENOUNCE
ATTACK
MILLION
MARK
PASTRY:CHEF

PLEAD:TERROR:SUSPECT
GUILTY
HIRE:GIULIANI
N.H:GOP:CHAIR

IRAQ:FULL MILITARY
SURGE:TROOP
BUSH
OPTION
DEATH
TROUBLE
CONFLICT
IMAGE

HEALTH BIRD:FLU
VIDEO
LIBRARY
HEART
DRUG
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MOM:OLDE
ST
CLINIC
LABOR
BIG
CHINA
MENTAL

topic-cutoff: 0.003
topic-trim-cutoff: 0.2
NE
W WORLD ROAD

RETIREMENT
IRAN
FORECAST
CANADIAN
WINDOW:VISTA
TEMPERATURE
PERSON:OLDEST

HEALTH:VIDEO BIRD:FLU
LIBRARY
HEART
DRUG
MOM:OLDEST
CLINIC
LABOR
BIG
CHINA
MENTAL

ENTERTAINME
NT:VIDEO TV QUESTION AP

CHENEY
COLT
CASE
LIVE
VOTE
PART
STAND
TRIAL

SHOW PHOTO
JOHN

TROUBLE
MISSION

DOWNLOAD
ALAN

EXCLUSIVE
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BIO
PICK
WALL
FAMOU
FACE
OFFICIAL
RULE
TURN

WAR FULL

COVERAGE

CONGRESS
BILL
LEVEL

MISUSED:ISRAEL:
BOMB

RESPOND:CHENE
Y

HAGEL:CRITICISM
LEAVE

PASTRY:CHEF

DENOUNCE:ATTA
CK

PLEAD:TERROR:S
USPECT
GUILTY

HIRE:GIULIANI

N.H:GOP:CHAIR
REPORT EARTH

PROBE

S.D:LAWMAKER:A
BORTION:MEASU
RE
NASA
CHIEF
LAW
WOMEN



81

CHALLENGE

REVIEW
HILLARY:CLIN
TON
WIND
IOWA
HIT
CAMPAIGN
WHITE

2008
REPUBLICAN
EARLY
MOVE

POLICE

TRAVEL

CRUISE:EUROPE
AN:FAMILY:TREN
D:PORT
HOTEL
BLUE
GREEN
DESTINATION
GUIDE
CARNIVAL

POLITIC:VIDEO PROFILE
HOUSE
PRESIDENT:BUS
H

SPORT GOLF
SOCCER
TENNI
FOOTBALL
FREE
BASKETBALL
HOCKEY:TEAM
BASEBALL
BOX
SI:MEDIA:KIT
COLLEGE

BUSINESS:VID
EO CAR

RETIREMENT
PLAN
PROFIT

U.S.:VIDEO ATOM
IRAN
NUCLEAR
AMERICAN
INTERACTIVE
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MILITARY
SOLDIER
WORK

Subsumption Measure Results
These are the Subsumption results from the human judged taxonomies.  Due to length 
they are incomplete.  The format is:
Parent-term:Child-term:P(Child-term|Parent-term):running average of probability

Computer Hardware
topic-cutoff: 0.004
topic-trim-cutoff: 0.3
HARDWARE:CARD:0.5:0.9846154:0.5
CARD:VIDEO:0.9637097:0.9335938:0.7318548
VIDEO:GEFORCE:0.9473684:7.258064E-02:0.8036926
VIDEO:TV:0.9333333:0.2258064:0.8361028
VIDEO:SONY:0.5:0.141129:0.7688823
VIDEO:CAMERA:0.9615384:0.8064516:0.8009916
VIDEO:HD:0.8793104:0.2056452:0.81218
VIDEO:LITE-ON:0.3888889:2.822581E-02:0.7592686
VIDEO:ATI:0.8695652:8.064516E-02:0.7715237
CARD:SOUND:0.9949495:0.7695313:0.7938663
...
MEMORY:FLASH:0.9638554:0.7619048:0.7802655
MEMORY:2GB:0.8571429:0.1142857:0.7824621
MEMORY:CPU:0.7405064:0.5571429:0.7812966
MEMORY:FAN:0.9580838:0.7619048:0.7860746
MEMORY:128MB:0.9:8.571429E-02:0.7890727
HARDWARE:NETWORK:0.4401914:0.7076923:0.780127
NETWORK:WIRELESS:0.8478261:0.3732058:0.7818195
WIRELESS:NETGEAR:0.7692308:0.1086956:0.7815124
WIRELESS:FIREWALL:0.9:0.5869565:0.7843335
NETWORK:MICROSOFT:0.3392857:9.090909E-02:0.7739836
Average Prob: 0.7739836
Percent Correct: 74.4186046511628

topic-cutoff: 0.005
topic-trim-cutoff: 0.2
HARDWARE:CARD:0.5:0.9846154:0.5
CARD:VIDEO:0.9637097:0.9335938:0.7318548
VIDEO:GEFORCE:0.9473684:7.258064E-02:0.8036926
VIDEO:TV:0.9333333:0.2258064:0.8361028
VIDEO:SONY:0.5:0.141129:0.7688823
VIDEO:CAMERA:0.9615384:0.8064516:0.8009916
VIDEO:HD:0.8793104:0.2056452:0.81218
VIDEO:LITE-ON:0.3888889:2.822581E-02:0.7592686
VIDEO:ATI:0.8695652:8.064516E-02:0.7715237
VIDEO:128MB:0.8:6.451613E-02:0.7743713
CARD:SOUND:0.9949495:0.7695313:0.7944239
...
MEMORY:FLASH:0.9638554:0.7619048:0.7325475
FLASH:DRIVE:0.8926554:0.9518072:0.7382656
FLASH:2GB:0.7857143:0.1325301:0.7399018
FLASH:DISK:0.7647059:7.831325E-02:0.7407286
FLASH:1GB:0.8529412:0.1746988:0.7443483
FLASH:RAT:1:0.2710843:0.7523375
FLASH:PORTABLE:0.7083333:0.2048193:0.751004
FLASH:KINGSTON:0.7:8.433735E-02:0.7495039
FLASH:512MB:0.7857143:0.1325301:0.7505385
FLASH:256MB:0.7368421:8.433735E-02:0.7501581
Average Prob: 0.7501581
Percent Correct: 66.6666666666667
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Sports
topic-cutoff: 0.003
topic-trim-cutoff: 0.2
SPORT:NFL:0.6592427:0.9704918:0.6592427
NFL:REGISTER:0.9885057:0.1915368:0.8238742
NFL:STATE:0.948718:0.1648107:0.8654888
NFL:OKLAHOMA:0.9148936:9.576838E-02:0.87784
NFL:SPORTSNATION:1:0.3608018:0.902272
NFL:QUICK:0.9:2.004454E-02:0.9018934
SPORT:NHL:0.6607143:0.9704918:0.8674392
NHL:RANK:0.9178082:0.4486607:0.8737353
NHL:ALL-STAR:0.9774011:0.3861607:0.8852537
NHL:ROSTER:0.9473684:4.017857E-02:0.8914652
...
STAND:FLORIDA:0.7321429:0.1261538:0.8899621
STAND:MICHIGAN:1:3.692308E-02:0.8934008
STAND:TEXA:1:7.692308E-02:0.8966311
NCAA:PLAYER:0.9513678:0.7864321:0.898241
NCAA:WOMEN:0.9611111:0.4346734:0.9000373
SPORT:SCHEDULE:0.6541787:0.7442623:0.893208
SCHEDULE:RECAP:0.7419355:6.628242E-02:0.8891195
SCHEDULE:BOX:0.9313725:0.5475504:0.8902315
SCHEDULE:VIDEO:0.8854167:0.4899136:0.890108
SCHEDULE:HUNT:1:5.475504E-02:0.8928553
Average Prob: 0.8928553
Percent Correct: 85

topic-cutoff: 0.003
topic-trim-cutoff: 0.4
SPORT:NFL:0.6592427:0.9704918:0.6592427
NFL:REGISTER:0.9885057:0.1915368:0.8238742
SPORT:NHL:0.6607143:0.9704918:0.7694876
NHL:RANK:0.9178082:0.4486607:0.8065677
NHL:ALL-STAR:0.9774011:0.3861607:0.8407344
NHL:ROSTER:0.9473684:4.017857E-02:0.8585067
NHL:STAR:0.8:4.464286E-02:0.8501487
SPORT:MLB:0.6584821:0.9672131:0.8261904
MLB:DEAL:0.9756098:8.928572E-02:0.8427925
MLB:BOND:0.95:4.241071E-02:0.8535132
...
RECAP:CHART:4.347826E-02:3.225806E-02:0.7697395
SCHEDULE:BOX:0.9313725:0.5475504:0.7731069
BOX:SIMMON:0.9938272:0.7892157:0.7776114
BOX:WIRE:0.875:0.7892157:0.7795592
BOX:NIGHT:0.9638554:0.7843137:0.7831728
BOX:CHAMPION:0.4782609:5.392157E-02:0.7773091
BOX:TV:0.8858696:0.7990196:0.7793574
BOX:TITLE:0.3421053:6.372549E-02:0.7712601
BOX:PETER:1:0.7892157:0.7754191
BOX:SCORECARD:0.2753623:9.313726E-02:0.7664895
Average Prob: 0.7664895
Percent Correct: 67.85714285714295

News
topic-cutoff: 0.005
topic-trim-cutoff: 0.2
NEW:WORLD:0.9916143:0.8240418:0.9916143
WORLD:ROAD:0.9090909:2.096436E-02:0.9503526
WORLD:RETIREMENT:0.75:2.515723E-02:0.8835685
WORLD:IRAN:1:0.2348008:0.9126763
WORLD:FORECAST:1:5.031446E-02:0.9301411
WORLD:CANADIAN:1:1.467505E-02:0.9417842
WORLD:WINDOW:0.7878788:5.450734E-02:0.9197978
WORLD:TEMPERATURE:1:1.886792E-02:0.929823
WORLD:PERSON:1:9.224319E-02:0.9376205
NEW:HEALTH:0.9936575:0.8188154:0.9432241
HEALTH:BIRD:1:1.902748E-02:0.9483856



84

HEALTH:VIDEO:0.9636363:0.448203:0.9496565
HEALTH:LIBRARY:1:1.268499E-02:0.9535291
HEALTH:HEART:1:2.959831E-02:0.9568484
HEALTH:DRUG:1:3.805497E-02:0.9597252
HEALTH:MOM:1:1.479915E-02:0.9622424
HEALTH:CLINIC:1:2.114165E-02:0.9644634
HEALTH:LABOR:1:1.902748E-02:0.9664376
HEALTH:BIG:1:0.2854123:0.9682041
HEALTH:CHINA:0.5294118:0.1141649:0.9462644
HEALTH:MENTAL:1:1.268499E-02:0.9488233
Average Prob: 0.9488233
Percent Correct: 95.2380952380952

topic-cutoff: 0.003
topic-trim-cutoff: 0.2
NEW:WORLD:0.9916143:0.8240418:0.9916143
WORLD:ROAD:0.9090909:2.096436E-02:0.9503526
WORLD:RETIREMENT:0.75:2.515723E-02:0.8835685
WORLD:IRAN:1:0.2348008:0.9126763
WORLD:FORECAST:1:5.031446E-02:0.9301411
WORLD:CANADIAN:1:1.467505E-02:0.9417842
WORLD:WINDOW:0.7878788:5.450734E-02:0.9197978
WORLD:TEMPERATURE:1:1.886792E-02:0.929823
WORLD:PERSON:1:9.224319E-02:0.9376205
NEW:HEALTH:0.9936575:0.8188154:0.9432241
...
BUSINESS:PROFIT:0.972973:8.035714E-02:0.6866588
NEW:U.S.:0.992629:0.7038327:0.6893194
U.S.:ATOM:0.5365854:0.1081081:0.6880028
U.S.:IRAN:0.8839286:0.2432432:0.6896773
U.S.:NUCLEAR:0.8833333:0.1302211:0.6913185
U.S.:AMERICAN:0.8076923:0.1031941:0.6922964
U.S.:INTERACTIVE:1:1.719902E-02:0.6948606
U.S.:MILITARY:0.9821429:0.1351351:0.6972348
U.S.:SOLDIER:0.9444444:0.1670762:0.6992611
U.S.:WORK:0.9130435:5.159705E-02:0.7009991
Average Prob: 0.7009991
Percent Correct: 63.4146341463415

Generalization/Specialization Quality Results
These are the Generalization/Specialization Quality results from the human judged 
taxonomies.  The results are incomplete due to length.  The format is:
Parent-term:Child-term:running Generalization/Specialization Quality running total

Computer Hardware
topic-cutoff: 0.004
topic-trim-cutoff: 0.3
HARDWARE:CARD:7.12972739711404E-03
CARD:VIDEO:7.83967893079147E-03
VIDEO:GEFORCE:7.9178856194704E-03
VIDEO:TV:8.22836283547948E-03
VIDEO:SONY:1.01778977033697E-02
VIDEO:CAMERA:1.08082499507103E-02
VIDEO:HD:1.13353672153172E-02
VIDEO:LITE-ON:1.18666427975409E-02
VIDEO:ATI:1.20912669823207E-02
CARD:SOUND:1.21714228740842E-02
...
MEMORY:FLASH:4.47801046254436E-02
MEMORY:2GB:4.50774041138781E-02
MEMORY:CPU:4.79019833734342E-02
MEMORY:FAN:4.84525429976885E-02
MEMORY:128MB:4.86049440728293E-02
HARDWARE:NETWORK:5.46713027945711E-02
NETWORK:WIRELESS:5.57060302311227E-02
WIRELESS:NETGEAR:5.59168649554397E-02
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WIRELESS:FIREWALL:5.63740681631666E-02
NETWORK:MICROSOFT:5.80244398785758E-02
------------------------------------
Generalization/Specialization: 5.80244398785758E-02
 Average / 43 : 1.34940557857153E-03
------------------------------------

topic-cutoff: 0.005
topic-trim-cutoff: 0.2
HARDWARE:CARD:7.12972739711404E-03
CARD:VIDEO:7.83967893079147E-03
VIDEO:GEFORCE:7.9178856194704E-03
VIDEO:TV:8.22836283547948E-03
VIDEO:SONY:1.01778977033697E-02
VIDEO:CAMERA:1.08082499507103E-02
VIDEO:HD:1.13353672153172E-02
VIDEO:LITE-ON:1.18666427975409E-02
VIDEO:ATI:1.20912669823207E-02
VIDEO:128MB:1.23781744079139E-02
...
MEMORY:FLASH:3.49098508699634E-02
FLASH:DRIVE:3.63516330847343E-02
FLASH:2GB:3.67779859598559E-02
FLASH:DISK:0.037058234401599
FLASH:1GB:3.74289231279485E-02
FLASH:RAT:3.74289231279485E-02
FLASH:PORTABLE:3.83711049058686E-02
FLASH:KINGSTON:3.87723762740137E-02
FLASH:512MB:3.91987291491353E-02
FLASH:256MB:3.95422938252601E-02
------------------------------------
Generalization/Specialization: 3.95422938252601E-02
 Average / 36 : 1.09839705070167E-03
------------------------------------

Sports
topic-cutoff: 0.003
topic-trim-cutoff: 0.2
SPORT:NFL:2.33138129311759E-02
NFL:REGISTER:2.35017551483286E-02
NFL:STATE:2.42381564768176E-02
NFL:OKLAHOMA:2.49611564064423E-02
NFL:SPORTSNATION:2.49611564064423E-02
NFL:QUICK:2.51404053851315E-02
SPORT:NHL:4.83294614956872E-02
NHL:RANK:0.051588214670321
NHL:ALL-STAR:5.23357349798667E-02
NHL:ROSTER:5.25197030924198E-02
...
STAND:FLORIDA:0.141944059852529
STAND:MICHIGAN:0.141944059852529
STAND:TEXA:0.141944059852529
NCAA:PLAYER:0.144893810320894
NCAA:WOMEN:0.146190966768096
SPORT:SCHEDULE:0.164401035446416
SCHEDULE:RECAP:0.165698806677842
SCHEDULE:BOX:0.168252299461557
SCHEDULE:VIDEO:0.172163091059452
SCHEDULE:HUNT:0.172163091059452
------------------------------------
Generalization/Specialization: 0.172163091059452
 Average / 40 : 4.30407727648631E-03
------------------------------------

topic-cutoff: 0.003
topic-trim-cutoff: 0.4
SPORT:NFL:2.33138129311759E-02
NFL:REGISTER:2.35017551483286E-02
SPORT:NHL:4.66908112588843E-02
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NHL:RANK:4.99495644335181E-02
NHL:ALL-STAR:5.06970847430638E-02
NHL:ROSTER:5.08810528556169E-02
NHL:STAR:5.17246798532486E-02
SPORT:MLB:7.50241051102732E-02
MLB:DEAL:7.52108130458425E-02
MLB:BOND:7.53950388636583E-02
...
RECAP:CHART:0.19825867787979
SCHEDULE:BOX:0.200812170663505
BOX:SIMMON:0.201000618280672
BOX:WIRE:0.205064540876345
BOX:NIGHT:0.206177985303137
BOX:CHAMPION:0.207711716121927
BOX:TV:0.211445719201146
BOX:TITLE:0.214081639142079
BOX:PETER:0.214081639142079
BOX:SCORECARD:0.218713628631962
------------------------------------
Generalization/Specialization: 0.218713628631962
 Average / 56 : 3.90560051128504E-03

------------------------------------

News
topic-cutoff: 0.005
topic-trim-cutoff: 0.2
NEW:WORLD:1.10615933828328E-03
WORLD:ROAD:1.37084361264356E-03
WORLD:RETIREMENT:2.32954424448661E-03
WORLD:IRAN:2.32954424448661E-03
WORLD:FORECAST:2.32954424448661E-03
WORLD:CANADIAN:2.32954424448661E-03
WORLD:WINDOW:4.05097131513425E-03
WORLD:TEMPERATURE:4.05097131513425E-03
WORLD:PERSON:4.05097131513425E-03
NEW:HEALTH:4.88144567664206E-03
HEALTH:BIRD:4.88144567664206E-03
HEALTH:VIDEO:7.06222154525354E-03
HEALTH:LIBRARY:7.06222154525354E-03
HEALTH:HEART:7.06222154525354E-03
HEALTH:DRUG:7.06222154525354E-03
HEALTH:MOM:7.06222154525354E-03
HEALTH:CLINIC:7.06222154525354E-03
HEALTH:LABOR:7.06222154525354E-03
HEALTH:BIG:7.06222154525354E-03
HEALTH:CHINA:1.65996691820336E-02
HEALTH:MENTAL:1.65996691820336E-02
------------------------------------
Generalization/Specialization: 1.65996691820336E-02
 Average / 21 : 7.90460437239696E-04
------------------------------------

topic-cutoff: 0.003
topic-trim-cutoff: 0.2
NEW:WORLD:1.10615933828328E-03
WORLD:ROAD:1.37084361264356E-03
WORLD:RETIREMENT:2.32954424448661E-03
WORLD:IRAN:2.32954424448661E-03
WORLD:FORECAST:2.32954424448661E-03
WORLD:CANADIAN:2.32954424448661E-03
WORLD:WINDOW:4.05097131513425E-03
WORLD:TEMPERATURE:4.05097131513425E-03
WORLD:PERSON:4.05097131513425E-03
NEW:HEALTH:4.88144567664206E-03
...
BUSINESS:PROFIT:0.226781334148232
NEW:U.S.:0.227611381326893
U.S.:ATOM:0.235218174998882
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U.S.:IRAN:0.238610249727116
U.S.:NUCLEAR:0.240436124225285
U.S.:AMERICAN:0.242927199800051
U.S.:INTERACTIVE:0.242927199800051
U.S.:MILITARY:0.243202413610948
U.S.:SOLDIER:0.244281803307974
U.S.:WORK:0.244812339299248
------------------------------------
Generalization/Specialization: 0.244812339299248
 Average / 123 : 1.99034422194511E-03

------------------------------------

Human Judging Results
The human judged results show each judged pair and the average rating from all 

six human judges.

Computer Hardware
topic-cutoff: 0.004
topic-trim-cutoff: 0.3
HARDWARE CARD 2.50 HARDWARE MOTHERBOARD 3.00
CARD VIDEO 2.67 MOTHERBOARD INTEL 2.67
VIDEO GEFORCE 2.33 MOTHERBOARD SOCKET 2.17
VIDEO TV 2.33 HARDWARE MEMORY 2.83
VIDEO SONY 1.83 MEMORY BOX 1.67
VIDEO CAMERA 2.17 MEMORY 512MB 2.67
VIDEO HD 2.17 MEMORY DDR 3.00
VIDEO LITE-ON 1.83 MEMORY OCZ 2.67

VIDEO
ATI 
RADEON 2.50 MEMORY 1GB 2.67

CARD SOUND 2.50 MEMORY 256MB 2.67
CARD PCI 2.67 MEMORY RATING 2.00
HARDWARE PC 2.67 MEMORY FLASH 3.00
PC REVIEW 1.83 MEMORY 2GB 2.67
PC SYSTEM 1.83 MEMORY CPU 1.83
SYSTEM SERVER 2.17 MEMORY FAN 2.00
SYSTEM WINDOWS 2.17 MEMORY 128MB 2.67
SYSTEM CISCO 2.67 HARDWARE NETWORKING 2.33
SYSTEM XP 2.83 NETWORKING WIRELESS 3.00
SYSTEM PRO 2.00 WIRELESS NETGEAR 2.67
SYSTEM LAPTOP 2.67 WIRELESS FIREWALL 2.33
SYSTEM APPLE 2.83 NETWORKING MICROSOFT 2.17
SYSTEM RAM 2.50

topic-cutoff: 0.005
topic-trim-cutoff: 0.2
HARDWARE CARD 2.50 PC REVIEW 1.83
CARD VIDEO 2.67 PC ATHLON 2.50
VIDEO GEFORCE 2.33 PC PENTIUM 2.50
VIDEO TV 2.33 HARDWARE MOTHERBOARD 3.00
VIDEO SONY 1.83 MOTHERBOARD INTEL 2.67



88

VIDEO CAMERA 2.17 MOTHERBOARD SOCKET 2.17
VIDEO HD 2.17 HARDWARE MEMORY 2.83
VIDEO LITE-ON 1.83 MEMORY BOX 1.67

VIDEO
ATI 
RADEON 2.50 MEMORY FLASH 3.00

VIDEO 128MB 2.17 FLASH DRIVE 2.00
CARD SOUND 2.50 FLASH 2GB 2.83

SOUND
CREATIVE 
LAB 2.00 FLASH DISK 2.00

SOUND AUDIO 2.17 FLASH 1GB 2.83
SOUND SORT 2.17 FLASH RATING 1.83
SOUND SIIG 1.67 FLASH PORTABLE 2.33
SOUND MIDI 2.00 FLASH KINGSTON 2.33
SOUND GOLD 2.00 FLASH 512MB 2.83
HARDWARE PC 1.67 FLASH 256MB 2.83

News
topic-cutoff: 0.005
topic-trim-cutoff: 0.2
NEWS WORLD 2.50 HEALTH VIDEO 2.20
WORLD ROAD 2.00 HEALTH LIBRARY 2.17
WORLD RETIREMENT 2.17 HEALTH HEART 2.50
WORLD IRAN 2.67 HEALTH DRUG 2.50

WORLD FORECAST 2.17 HEALTH
OLDEST 
MOM 2.17

WORLD CANADIAN 2.17 HEALTH CLINIC 2.33

WORLD
WINDOWS 
VISTA 2.00 HEALTH LABOR 2.50

WORLD TEMPERATURE 2.17 HEALTH BIG 1.67

WORLD
OLDEST 
PERSON 2.17 HEALTH CHINA 1.83

NEWS HEALTH 2.83 HEALTH MENTAL 2.67
HEALTH BIRD FLU 3.00

topic-cutoff: 0.003
topic-trim-cutoff: 0.2
NEWS WORLD 2.5 WAR HIRE GIULIANI 2
WORLD ROAD 2 WAR N.H. GOP CHAIR 2.17
WORLD RETIREMENT 2.17 TV REPORT 2.67
WORLD IRAN 2.67 REPORT EARTH 2.17
WORLD FORECAST 2.17 REPORT PROBE 2.17

WORLD CANADIAN 2.17 REPORT

S.D. LAWMAKER 
ABORTION 
MEASURE 2

WORLD
WINDOWS
VISTA 2 REPORT NASA 2.17

WORLD
TEMPERATUR
E 2.17 REPORT CHIEF 2.17

WORLD
OLDEST 
PERSON 2.17 REPORT LAW 2.17

NEWS HEALTH 2.83 REPORT WOMEN 2.17
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HEALTH BIRD FLU 3 REPORT CHALLENGE 2

HEALTH LIBRARY 2

ENTERT
AINMEN
T REVIEW 2.5

HEALTH HEART 2.5 REVIEW
HILLARY 
CLINTON 2.17

HEALTH DRUG 2.5 REVIEW WIND 1.83

HEALTH OLDEST MOM 2.17 REVIEW IOWA 1.83
HEALTH CLINIC 2.5 REVIEW HIT 1.83

HEALTH LABOR 2.33 REVIEW CAMPAIGN 2.17
HEALTH BIG 1.67 REVIEW WHITE HOUSE 2.17
HEALTH CHINA 1.83 REVIEW 2008 2
HEALTH MENTAL 2.83 REVIEW REPUBLICAN 2.17

NEWS
ENTERTAINM
ENT 2.5 REVIEW EARLY 2

ENTERTAINM
ENT TV 3 REVIEW MOVE 2

TV QUESTION 2

ENTERT
AINMEN
T POLICE 2

QUESTION AP 1.67 NEWS TRAVEL 2.5
QUESTION CHENEY 1.83 TRAVEL CRUISE 3
QUESTION COLTS 1.83 TRAVEL HOTEL 3
QUESTION CASE 1.83 TRAVEL BLUE 1
QUESTION LIVE 1.83 TRAVEL GREEN 1
QUESTION VOTE 2 TRAVEL DESTINATION 2.83
QUESTION PART 1.83 TRAVEL GUIDE 3
QUESTION STAND 1.83 TRAVEL CARNIVAL 2.5
QUESTION TRIAL 2.17 NEWS POLITICS 3

TV SHOW 3
POLITIC
S PROFILE 2.17

SHOW PHOTO 2
POLITIC
S HOUSE 2.67

SHOW JOHN 1.67
POLITIC
S PRESIDENT 2.83

SHOW TROUBLE 1.67 NEWS SPORTS 2.67
SHOW MISSION 1.83 SPORTS GOLF 3
SHOW DOWNLOAD 2 SPORTS SOCCER 3

SHOW ALAN 1.83 SPORTS TENNIS 3
SHOW EXCLUSIVE 1.83 SPORTS FOOTBALL 3
SHOW BIO 2 SPORTS FREE 1.83
SHOW PICK 2 SPORTS BASKETBALL 3
SHOW WALL 2 SPORTS HOCKEY TEAM 3
SHOW FAMOUS 2 SPORTS BASEBALL 3
SHOW FACE 2 SPORTS BOXING 3
SHOW OFFICIAL 2 SPORTS SI MEDIA KIT 2.17
SHOW RULE 1.83 SPORTS COLLEGE 2.83
SHOW TURN 1.83 NEWS BUSINESS 2.83

TV WAR 2
BUSINE
SS CAR 2.33

WAR FULL 1.33
BUSINE
SS RETIREMENT 2.67
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WAR COVERAGE 2.83
BUSINE
SS PLAN 3

WAR CONGRESS 2.17
BUSINE
SS PROFIT 3

WAR BILL 2 NEWS U.S. 2.33
WAR LEVEL 2 U.S. ATOM 1.5

WAR
MISUSED 
ISRAEL BOMB 2.33 U.S. IRAN 2

WAR
RESPOND 
CHENEY 2.17 U.S. NUCLEAR 2.67

WAR
HAGEL 
CRITICISM 2 U.S. AMERICAN 2.83

WAR LEAVE 2 U.S. INTERACTIVE 1.5
WAR PASTRY CHEF 1.17 U.S. MILITARY 2.67

WAR
DENOUNCE 
ATTACK 2.17 U.S. SOLDIER 2.5

WAR

TERROR 
SUSPECT 
PLEAD 2.17 U.S. WORK 2.17

WAR GUILTY 2.17

Sports
topic-cutoff: 0.003
topic-trim-cutoff: 0.2
SPORTS NFL 3.00 MLB INJURY 2.17
NFL REGISTER 2.00 MLB PLAYER 3.00
NFL STATE 2.17 MLB STANDINGS 2.50
NFL OKLAHOMA 2.17 SPORTS NBA 3.00
NFL SPORTSNATION 2.17 NBA DRAFT 2.67
NFL QUICK HIT 1.67 NBA HISTORY 2.50
SPORTS NHL 2.67 NBA TORONTO 2.33
NHL RANK 2.17 SPORTS NCAA 3.00
NHL ALL-STAR 2.33 NCAA STATS 2.83
NHL ROSTER 2.33 NCAA STANDINGS 2.50
NHL STARS 2.33 STANDINGS FLORIDA 2.67
SPORTS MLB 2.83 STANDINGS MICHIGAN 2.50
MLB DEAL 2.17 STANDINGS TEXAS 2.50
MLB BONDS 2.17 NCAA PLAYER 3.00
MLB REDS 2.50 NCAA WOMEN 2.67
MLB ODDS 2.50 SPORTS SCHEDULE 2.67
MLB SIGN 2.17 SCHEDULE RECAP 2.67
MLB HALL 2.17 SCHEDULE BOXING 2.67
MLB STATS 2.83 SCHEDULE VIDEO 1.50
MLB TRANSACTION 2.17 SCHEDULE HUNTING 1.50

topic-cutoff: 0.003
topic-trim-cutoff: 0.4
SPORTS NFL 3.00 STATS LEADER 2.83
NFL REGISTER 2.00 STATS FUTURE 2.33
SPORTS NHL 2.67 NCAA STANDINGS 2.50
NHL RANK 2.17 STANDINGS STATE 2.33
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NHL ALL-STAR 2.33 STANDINGS FLORIDA 2.67
NHL ROSTER 2.33 STANDINGS MICHIGAN 2.50
NHL STARS 2.33 STANDINGS TEXAS 2.50
SPORTS MLB 2.83 NCAA WOMEN 2.67
MLB DEAL 2.17 WOMEN WNBA 2.83
MLB BONDS 2.17 WOMEN STATE 2.00
MLB REDS 2.50 WOMEN FLORIDA 1.83
MLB ODDS 2.50 WOMEN TV 2.17
MLB SIGN 2.17 WOMEN SCOREBOARD 2.00
MLB HALL 2.17 SPORTS SCHEDULE 2.67
MLB STATS 2.83 SCHEDULE RECAP 2.67
MLB TRANSACTION 2.17 RECAP JONES 2.17
MLB INJURY 2.17 RECAP FULL 2.17
MLB STANDINGS 2.50 RECAP SHOT 2.17
MLB PHOTO 2.50 RECAP CHART 2.17
SPORTS NBA 3.00 SCHEDULE BOXING 2.67
NBA DRAFT 2.67 BOXING SIMMON 2.17
DRAFT OKLAHOMA 2.20 BOXING WIRE 1.83
DRAFT STATE 2.17 BOXING NIGHT 2.00
DRAFT SPORTSNATION 1.17 BOXING CHAMPION 2.33
DRAFT HISTORY 1.83 BOXING TV 2.00
SPORTS NCAA 3.00 BOXING TITLE 2.33
NCAA STATS 2.67 BOXING PETER 1.83
STATS STATISTIC 2.83 BOXING SCORECARD 2.33
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