
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2011

A multi-objective decision support system for worker-task A multi-objective decision support system for worker-task

assignments and workforce training. assignments and workforce training.

Brandon B. Elmes
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Elmes, Brandon B., "A multi-objective decision support system for worker-task assignments and
workforce training." (2011). Electronic Theses and Dissertations. Paper 401.
https://doi.org/10.18297/etd/401

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/401
mailto:thinkir@louisville.edu

A MULTI-OBJECTIVE DECISION SUPPORT SYSTEM FOR WORKER-TASK

ASSIGNMENTS AND WORKFORCE TRAINING

By

Brandon B. Elmes

B.S., University of Louisville, 2007

A Thesis

Submitted to the Faculty of the

University of Louisville

J.B. Speed School of Engineering

as Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Industrial Engineering

May 2011

ii

A MULTI-OBJECTIVE DECISION SUPPORT SYSTEM FOR WORKER-TASK

ASSIGNMENTS AND WORKFORCE TRAINING

Submitted by:__________________________________

Brandon B. Elmes

A Thesis Approved on

(Date)

by the Following Reading and Examination Committee:

Gerald W. Evans, Thesis Director

Gail W. DePuy, Thesis Director

Rammohan K. Ragade, Committee Member

iii

ACKNOWLEDGEMENTS

The author received considerable help from both Thesis Directors: Dr. Gerald Evans and

Dr. Gail DePuy. Thank you for your time, effort, and patience. Also, thanks to Dr.

Rammoham Ragade for his time as a thesis committee member.

The author acknowledges the assistance of the NSWC in Crane, IN which provided data

for the mathematical model.

iv

ABSTRACT

This paper models a realistic problem involving workforce assignment and

training for a large manufacturing environment. In this particular environment, the

workforce is undertrained and most assignments will result in necessary training. This

problem was previously addressed as a single objective problem. This paper expands to a

multi-objective formulation. This is a more accurate reflection of the problem because

almost all real world problems have many objectives which can be conflicting.

The program developed in this paper is designed for use by supervisors in the

production setting. A two stage program is designed where the first stage generates

initial solutions by solving each objective function idependently of the others. Meta-

RaPS—a modified greedy algorithm—is used to find these solutions. The user selects

one of these solutions to carry into the second stage: compromise programming. The

second stage uses input from the user in an iterative and intuitive fashion. This input

guides the program to the solution which the user determines is the best compromise

solution.

Meta-RaPS is effective at finding a good solution extremely quickly. There is an

important trade-off between the quality of solutions and computational run-time which

will need to be tweaked for a specific application. The compromise programming stage

could benefit from coding improvements; however, it is still effective at allowing the user

to guide the program towards the best compromise solution by assigning trade-off values

between objectives

v

TABLE OF CONTENTS

APPROVAL PAGE .. ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

NOMENCLATURE .. vi

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

I. INTRODUCTION .. 1

II. LITERATURE REVIEW ... 3

III. FORMULATION OF THE PROBLEM ... 6

A. Single Objective Function Formulation ... 6

B. Extension to Multi-Objective Formulation .. 8

1. Maximize Total Training Received .. 9

2. Maximize Worker Satisfaction ... 9

3. Goal of the Multi-Objective Decision Support System 11

IV. SOLUTION PROCESS .. 12

A. Multiple Stage Decision Support System ... 13

V. PSEUDO-CODE AND INPUT FROM THE USER .. 16

A. Input Button .. 16

B. Find Assignments Button ... 18

C. Pseudo-code for Decision Support System (DSS) ... 22

1. Key Variables used in Pseudo-code ... 22

2. Generalized Meta-RaPS Pseudo-code .. 23

3. InitialTrainingCostSoln Pseudo-code ... 23

4. InitialSkillGapSoln Pseudo-code .. 26

5. InitialWorkerPrefSoln Pseudo-code ... 27

6. Compromise Programming Pseudo-code ... 30

VI. RESULTS ... 32

A. Minimize Training Cost Results... 33

B. Maximize Skill Levels Gained Results .. 34

C. Maximize Worker Preference Results .. 35

D. Compromise Programming Results.. 36

VII. CONCLUSIONS AND RECOMMENDATIONS ... 37

vi

APPENDIX A—Results for Minimize Total Training Cost 43

APPENDIX B—Results for Maximize Skill Levels Gained 46

APPENDIX C—Results for Maximize Worker Preference 49

APPENDIX D–LINGO CODE... 52

APPENDIX E–Full Code Appendix ... 55

vii

NOMENCLATURE:

{j} = set of skills needed to perform task j

Sik = worker i‘s skill level for skill k

Rjk = required skill level for task j‘s skill k

Tj = length (hr) of task j

Ai = capacity (hr) of worker i

Cklm = cost associated with raising a worker‘s skill level on skill k from level l to level m

Eklm = time required (hr) to raise a worker‘s skill level on skill k from level l to level m

otherwise0

kskillintrainingadditionallikewouldiworker1
Pik

otherwise0

jtasktoassignediworker1
Xij

otherwise0

mtoSfromlevelskillraisetokskillontrainingreceivesiworker1
Z

ik

mikS ik

otherwise0

kskillintrainingfurtherneednotdoesiworker1
Nik

viii

LIST OF TABLES

TABLE I—SAMPLE PROBLEM SIZES ...4

TABLE II— MINIMIZE TRAINING COST RESULTS ...33

TABLE III— MAXIMIZE SKILL LEVELS GAINED RESULTS34

TABLE IV—MAXIMIZE WORKER PREFERENCE RESULTS35

ix

LIST OF FIGURES

FIGURE 1 – Demonstration of Skill Levels and Skill Gaps ...2

FIGURE 2 – Flowchart of the Solution Process ..15

FIGURE 3 – Input Button ..16

FIGURE 4 – Portion of Input Matrix ...18

FIGURE 5 – Find Assignments Button ...18

FIGURE 6 – Initial Solution (Stage 1 Complete) ..19

FIGURE 7 – Which Objective to Improve ..20

FIGURE 8 – How Much to Sacrifice Each Objective ...20

FIGURE 9 – Solution After Compromise Programming ..21

1

I. INTRODUCTION

The Naval Surface Warfare Center (NSWC) has a division located in Crane, Indiana.

NSWC Crane is a shore command of the US Navy. This division is a shore command of

the United States Navy under the Naval Sea Systems Command headquartered in

Washington D.C. NSWC specializes in the acquisition and fleet support of electronics,

ordinance products, and electronic warfare products. NSWC routinely bids on a wide

variety of remanufacturing work from many different military organizations.

One of the key challenges in preparing these bids is determining how to train their

current workforce to keep up with the new technology the military continues to develop.

NSWC wants to maintain their current workforce without eliminating any current

workers. So, if the current workforce does not have the skill set to complete the

necessary tasks, training will be required.

In formulating this problem, there are a series of tasks which will be completed by a

worker. Each worker has a particular skill set which they have obtained from previous

training. In addition, each worker has a skill level associated with each skill. These

levels range from novice to expert (1-5). So, each worker has a particular skill set

defined by the skill level. Similarly, each task has a skill set required to complete the

task at a desired quality. So, just as each worker has a skill set with associated skill

levels, each task has a skill set with associated skill level.

The problem then becomes a task of assigning tasks to workers. It is possible that

only one task is assigned to a worker; but it is also possible for more than one task to be

assigned to a worker. If a worker is assigned to a task where his skill level is below the

2

level required for the task, then a skill gap is present (Figure 1). In this case, the worker

will need to be trained to attain the necessary skill level as required by that task. This, of

course, incurs a training cost.

FIGURE 1 – Demonstration of Skill Levels and Skill Gaps

In Figure 1, if Employee 1 is assigned to Task 1, there is no skill gap present. This is

because the employee‘s skill level meets or exceeds the skill level required by the task.

On the other hand, if Employee 1 is assigned to Task 2, a skill gap is present. This is

because Skill 90 requires a level of 5 whereas the employee only has a skill level of 4.

Thus, there is a skill gap of 1, and the employee will require training. It is often the case

that the employee requires training in more than one skill. This is exemplified by

assigning Employee 2 to Task 3. A summarization of this information can also be found

in the technical paper by Elmes, Evans, and DePuy (2008).

• Employee 1

– Skill 27: skill level = 5

– Skill 43: skill level = 4

– Skill 90: skill level = 4

– Skill 187: skill level = 5

• Employee 2

– Skill 8: skill level = 2

– Skill 27: skill level = 1

– Skill 145: skill level = 2

•

• Employee N

• Task 1

– Skill 43: skill level = 4

– Skill 90: skill level = 3

– Skill 187: skill level = 4

• Task 2

– Skill 27: skill level = 3

– Skill 90: skill level = 5

• Task 3

– Skill 27: skill level = 3

– Skill 145: skill level = 3

•

• Task M

Skills G
ap =1

Skills Gap=3

Skills Gap=0

3

II. LITERATURE REVIEW

Worker assignment and scheduling problems are faced by virtually all companies.

For some companies, it is a simple scheduling problem. For example, hospitals need to

schedule enough nurses to cover all patients. The major challenge with this scheduling

problem is the length of shifts, when to take breaks, etc. Many manufacturing companies

have the challenge of scheduling trained workers to specific jobs. In these instances, the

workers are frequently cross-trained and can be assigned to a variety of different tasks.

The general worker assignment problem has been addressed in literature many times.

Mazolla and Neebe (1986) developed a branch and bound algorithm to solve the general

assignment problem where each potential assignment carries a cost. Even for a simple

assignment problem where the only consideration is cost, the formulation is NP-complete

and is extremely difficult to solve optimally when using a large data set (over 1,000

workers and 1,000 tasks). For this reason, Mazolla and Neebe developed a branch and

bound algorithm to solve the problem.

More recent articles have expanded upon this general assignment problem. For

example, Nembhard and Osothsilp (2005) incorporated individual learning and forgetting

rates for workers. They concluded it is beneficial to schedule tasks with lower

redundancy in order to reduce forgetting. That is, by giving workers a variety of tasks

(instead of performing the same tasks repeatedly), workers are less likely to forget what

they have learned. Sayin and Karabati (2007) took this one step further by including skill

gaps into their formulation. They used a learning curve to model how workers improve

their skill levels.

4

Adding these layers of complexity improves the assignments generated by the model;

unfortunately, it also makes it more difficult to solve optimally. Considering the size of

many of these problems, heuristics are the only feasible way to generate a solution. For

this particular problem, Table I below shows the number of decision variables and

constraints for certain problem sizes.

TABLE I

SAMPLE PROBLEM SIZES

workers skills tasks decision variables constraints

8 6 10 1328 552

8 15 10 3200 1332

15 6 20 2640 1925

15 15 20 6150 4728

Even with a relatively small problem size, the number of decision variables and

constraints grows very rapidly. When dealing with very large data sets (over 1,000

workers), the amount of decision variables and constraints make it extremely time

consuming to solve optimally. Thus, a heuristic is necessary to solve the problem in a

practical amount of time.

Other authors have pointed out that these heuristic methods provide very good results

when compared to optimum methods. Kolisch and Hartman (2005) as well as Campbell

and Diaby (2002) analyzed several different heuristic techniques and showed that proper

heuristics perform very well when compared to the optimum solution. In fact, heuristics

are consistently withing 5% of optimum solutions and many times within 2%.

5

The model developed in this paper is both multi-objective and has a very large data

set (over 1,000 workers and over 1,000 tasks). Thus, a heuristic is the only feasible way

to solve the problem. However, ―no matter how effective a heuristic or algorithm is,

there remains a need to use human judgment to find a balance between an organization‘s

conflicting objectives‖ (Belton and Elder, 1996). In multi-objective formulations, this

―human judgment‖ is incorporated through weights attached to each objective function or

through a value function. Cowling et. al.(2006) showed that this is not a good method

since ―objective weights are seldom known in advance‖ for complex real-world

problems. Furthermore, it is unreasonable to expect the user to decide these weights

without a thorough knowledge of the mathematical formulation (which a supervisor will

not have). As an alternative, the program developed in this paper utilizes iterative input

from the user to generate a solution.

6

III. FORMULATION OF THE PROBLEM

A. Single Objective Function Formulation

This problem was previously solved according to one objective function: to minimize

training costs (Douglas, 2006). The formulation of this problem can be found below:

Parameters:

{j} = set of skills needed to perform task j

Sik = worker i‘s skill level for skill k

Rjk = required skill level for task j‘s skill k

Tj = length (hr) of task j

Ai = capacity (hr) of worker i

Cklm = cost associated with raising a worker‘s skill level on skill k from level l to level m

Eklm = time required (hr) to raise a worker‘s skill level on skill k from level l to level m

Decision Variables:

otherwise0

jtasktoassignediworker1
Xij

otherwise0

mtoSfromlevelskillraisetokskillontrainingreceivesiworker1
Z

ik

mikS ik

otherwise0

kskillintrainingfurtherneednotdoesiworker1
Nik

Objective Function:

Minimize Training Cost Minimize
i k m

mikSmkS ikik
ZCZ1 (1)

Constraints:

7

Determine Needed Training ijjk

Sm

mikSikik XRmZNS
ik

ik

5

 }{,, jkji (2)

 1
5

ik

ik

Sm

mikSik ZN ki, (3)

All tasks assigned
i

ijX 1 j (4)

All workers assigned at least one task

j

ijX 1

i (5)

Worker Capacity
j

i

k m

mikSmkSijj AZEXT
ikik

 i (6)

Binary Variables }1,0{},1,0{},1,0{ ikmikSij NZX
ik

mkji ,,, (7)

The objective function (1), as previously mentioned, is to minimize the total training

cost. The inequalities (2) and (3) are used to determine the total amount of training a

worker will need in order to meet the skill levels required by a certain task. Equation (4)

is used to make sure that all tasks have been assigned and inequality (5) ensures that each

worker is assigned at least one task. Inequality (5) could be removed from the

formulation if it was not a requirement to retain the current workforce. Inequality (6) is

used to enforce the worker capacity constraint. That is, training time plus the time

required to complete the task(s) cannot exceed the total amount of time available to the

worker. Lastly, line (7) defines all decision variables to be binary.

When dealing with a problem size of thousands of workers and thousands of tasks,

solving this formulation optimally is not computationally feasible. Thus, DePuy et. al.

8

(2006) developed the Meta-RaPS heuristic to solve this formulation on the large scale.

Other authors such as Fowler, Wirojanagud, and Gel (2008) and Hartmann and Kolisch

(2000) have shown that heuristics provide accurate results using far less computational

time.

B. Extension to Multi-Objective Formulation

There are two primary reasons to expand this problem to a multi-objective

formulation:

1) It may be beneficial to provide workers with more than the minimal amount of

training.

2) In order to include worker preference in training decisions.

The expectation is that considering additional objective functions will improve the

quality of the solution presented by the Decision Support System created to solve this

worker assignment problem. Much of the information presented in this section is also

summarized in the technical paper written by Elmes, Evans, and DePuy (2008).

As with most multi-objective models, it is very common for the objectives to be

conflicting (Cowling et. al., 2006). This is very evident with the multi-objective

formulation used in this model. Specifically, minimizing total training cost and

maximizing the number of skill levels gained are conflicting objectives. The solution

which is preferred by the Decision Maker will most likely not be the optimal solutions to

one of the objective functions. Instead, the preferred solution will be a compromise of

each objective function.

9

1. Maximize Total Training Received

While minimizing the total training cost has obvious short-sighted benefits, it can

actually create the same problem in the future that is currently being solved. The

problem is that the workforce is undertrained. In addition, newer and newer technology

is being implemented which magnifies the problem of an undertrained workforce. Thus,

providing workers with minimal training today will lead to undertrained workers in the

future as well. With that in mind, an objective function to maximize training received

was included in the model:

Maximize Training Maximize
i k Sk

kikSik

ik

ik
ZSkZ

1'

'2 ' (8)

 The objective function above will maximize the total number of skill levels gained

across all skills and all workers.

2. Maximize Worker Satisfaction

Numerous articles have been written highlighting the benefits of worker happiness.

There is, obviously, the intrinsic benefit of having a happy workforce. There are also

several benefits to the employer which can be seen on the bottom line. According to

Sayin and Karabati (2007), ―cross-training and skill improvement have been regarded as

positive aspects for the self-esteem of the workers and their psychological well-being,

which in turn would lead to higher productivity.‖ Even as far back as 1919, George Bell

recognized that if ―we are to arrive at any real agreement between management and

workers to cooperate in increasing production we must conceive of the master aim of the

plant as being such production as is compatible with a real and measurable degree of

10

human happiness and content in the work.‖ Furthermore, Fischer and Sousa-Poza (2009)

showed that ―improvements in job satisfaction over time appear to prevent workers from

(further) health deterioration.‖

With the addition of one new parameter Pik (defined below), worker preference

regarding which skills they learn can be incorporated into the model. Sayin and Karabati

(2007) showed that skill acquisition improves worker self-esteem. This model takes that

one step further by allowing the workers to specify which skills they wish to acquire.

The new parameter and formulation for this objective function can be found below:

Maximize Worker Satisfaction:

Maximize
i k Sk

kikSikik

ik

ik
ZSkPZ

1'

'3 ' (9)

otherwise0

kskillintrainingadditionallikewouldiworker1
Pik

This objective function is very similar to (8), with the exception that each skill level

gained is multiplied by Pik. Thus, the objective function will maximize skill level gains

in skills which the worker would prefer to be trained. While (8) seeks to maximize

training across all workers and all skills, (9) incorporates worker preference regarding

which skills they wish to gain expertise.

As an example, suppose that worker 5 currently has a training level of 2 on skill 9

(i.e. S59 = 2), but has not expressed an interest in additional training in that skill (i.e., P59

= 0); then, a solution in which worker 5 were to be trained to level 4 on skill 9 (i.e. Z5924 =

11

1) would add 4-2 = 2 to the second objective function Z2 (8), but 0 to the third objective

function Z3 (9).

3. Goal of the Multi-Objective Decision Support System

Simply put, the goal of this Decision Support System (DSS) is to provide the

Decision Maker (DM) with a tool that is easy to use and will incorporate the expertise of

the DM in order to find the preferred solution to the worker assignment problem. While

Douglas (2006) solved this problem in terms of lowest training cost, it is believed that

using a multi-objective approach will present a solution which is more preferred by the

DM.

12

IV. SOLUTION PROCESS

It is important to point out an inherent problem with any multi-objective solution. In

actuality, there is no solution which optimizes all objectives simultaneously. Instead,

considering multiple objectives at the same time creates a Pareto-front where we have

numerous good solutions (Cowling et. al., 2006). How then, do you decide which

solution is the best compromise of all the objectives?

It is a long-standing industrial engineering principle that the person who knows best

is the person who does the job every day. No good industrial engineer would begin the

redesign of a process without talking to the worker who performs that process on a daily

basis. With that in mind, the ideal way to select the best compromise solution is to use

the knowledge of the person who has been doing the scheduling on a daily basis. This

person is usually a supervisor and is referred to in this paper as the Decision Maker

(DM).

The solution process used in the Decision Support System (DSS) developed in this

paper differs from the solution process used in many Multi-Objective Optimization

problems in the past. In these examples, a weight is assigned to each of the individual

objective functions and then the problem is solved in one pass. The problem with this

process is that the weight assigned to each individual objective function is essentially an

arbitrary value selected by the Decision Maker (DM). That is, without a thorough

knowledge of how the program runs one cannot assign accurate weights to each objective

function. Without accurate weights, the solution provided will not accurately reflect the

13

DM‘s idea of a ―good‖ solution. Cowling et. al. showed that the error associated with

having inaccurate weights on the objective functions can be very costly.

The solution process used for this DSS does not use arbitrary weights assigned to

each individual objective function. Instead, the expertise of the DM is used in an

iterative fashion in order to guide the DSS to the best compromise solution. Since the

DM will not have a detailed knowledge of the mathematical formulation behind the DSS,

it is much easier to guide the program through iterative input as opposed to assigning

weights to each objective function or by defining a value function.

A. Multiple Stage Decision Support System

The Decision Support System (DSS) is divided up into two primary stages (Figure 2).

The first stage is to solve each of the three objective functions independent of one

another. Each objective function is solved using the Meta-RaPS process developed by

DePuy et. al. (2006) Meta-RaPS is employed because the computational time is too large

to solve these objective functions optimally when using a large data set (over 1,000

workers and tasks).

The Decision Maker (DM) is presented a configurable number of solutions for each

of the three objective functions—usually this is five. Solving each objective function is

considered a step of the first stage. Since each objective function was solved independent

of the others, the solutions presented to the DM are extremes and none of them are likely

what the DM considers to be the best compromise solution. At this point, the DM selects

14

one of the 15 solutions presented as the preferred solution of that group. This concludes

Stage 1.

Stage 2 utilizes iterative input from the DM to execute compromise programming.

This allows the DM to guide the DSS towards the best compromise solution. Using the

solution identified in Stage 1, the DM is then asked two questions: which objective

function should be improved; and how much should the other two be compromised? The

DSS utilizes Meta-RaPS again to make trade-offs of worker-task assignments. The DSS

will continue to make these trade-offs in order to improve the objective function

identified by the DM until the compromise threshold (also identified by the DM) has

been met. At this point, the new solution is presented to the DM. If the DM feels that

this is the best compromise solution, the DSS is terminated and full results are presented

to the DM. If not, Stage 2 is repeated and the DM is again

15

FIGURE 2 – Flowchart of Solution Process

Stage 2 is repeated until the DM has guided the DSS to the solution which he feels is

the best compromise solution. This is the final solution, which is presented to the DM.

16

V. PSEUDO-CODE AND INPUT FROM THE USER

The previous sections outlined the motivation for solving this large worker-task

assignment problem in addition to providing a flowchart for the solution process. This

section describes the VBA program that the Decision Maker (DM) uses as well as the

pseudo-code for the problem solving algorithm. As mentioned before, a modified version

of the Meta-RaPS algorithm developed by DePuy et. al. is used during each step.

The program (Decision Support System, or DSS) has two different buttons on the

input sheet that control the operations. The first button is the ―input button‖ and the

second is the ―find assignments‖ button. The input button requires little explanation—it

sets up the tables for the DM to input all the necessary data (worker skill levels, etc.).

The ―find assignments‖ button actually executes the algorithm. This algorithm has been

explained in more detail in previous sections—Figure 2 provides a good summary.

A. Input Button

FIGURE 3 – Input Button

The first button is fairly self-explanatory: it will set up the input sheet for the DM to

input values. When the user clicks on ―input button,‖ this will clear the sheet of all

information. So, it is important to note that if you do not want to lose the information

currently on the sheet, do not click the input button unless the data has been saved

17

somewhere else. Once the input button is clicked, the program will prompt the user for

the following information:

 Number of workers in the problem size

 Number of tasks in the problem size

 Number of skills

 Number of solutions to store for each objective in Stage 1

With this information, the program automatically generates all the tables that need to be

filled out by the user. These tables can be found below:

 Worker-Skill Matrix

 Task-Skill Matrix

 Task Time Table

 Worker Capacity Table

 Cost to Train Matrix (cost of raising a skill level for each skill)

 Time to Train Matrix (again, for each skill level of each skill)

 Worker Preference Matrix

All of these tables are extremely important and must be filled out accurately by the

DM. Obviously, this is the input data for the program, and without good input data, one

cannot expect a good solution. The screenshot below shows a portion of the tables the

DM fills out. In this example (same example used throughout this section), there are 5

workers, 5 skills, and 5 tasks:

18

FIGURE 4 – Portion of Input Matrix

B. Find Assignments Button

FIGURE 5 – Find Assignments Button

This button executes a very short program which actually calls upon four larger

subprograms. The subprograms, in order, are listed below:

 InitialTrainingCostSoln (Stage 1, Step 1)

 InitialSkillGapSoln (Stage 1, Step 2)

 InitialWorkerPrefSoln (Stage 1, Step 3)

 Compromise (Stage 2)

The main program calls each subprogram individually in order to complete the

algorithm. The first three subprograms comprise Stage 1—Find Initial Solutions. Each

subprogram runs the Meta-RaPS heuristic to quickly calculate good solutions in regards

to each objective function. Each subprogram then displays these solutions on the screen

19

before moving on to the next subprogram. In this manner, the first three subprograms are

extremely similar.

After running the three steps in stage 1, the list of initial solutions are presented to the

DM. The DM chooses one of these initial solutions as the ―best‖ from that group.

However, as discussed earlier, all of the initial solutions optimize one of the objective

functions without consideration of the others. Thus, it is unlikely the solution chosen at

this point will be the final solution. This solution is simply used as a starting point

moving into Stage 2.

The screenshot below continues the example setup earlier with 5 workers, 5 skills,

and 5 tasks. In this example, the DM has chosen one of the solutions to Z2 (Maximize

Training). In turn, Z1 (Minimize Training Cost) and Z3 (Maximize Worker Satisfaction)

are far from optimized.

FIGURE 6 – Initial Solution (Stage 1 complete)

Unlike the first three subprograms, the final subprogram (Stage 2) utilizes iterative

input from the DM. Stage 2 uses compromise programming in order to improve one of

the objective functions at the sacrifice of the other two. The DM is first prompted for

which objective function should be improved. Since the solution used to initialize Stage

20

2 was one that optimized Z2 then the available choices are Z1 or Z3. The screenshot below

shows this prompt:

FIGURE 7 – Which Objective to Improve

After the DM specifies which objective function to improve, the DM inputs a

percentage that the other two objective functions can be sacrificed. The screenshot for

this choice is below:

FIGURE 8 – How Much to Sacrifice Each Objective

At this point, the algorithm now has a complete solution to work with in addition to

trade-off data between the different objectives provided by the DM. With this

information, a series of worker-task assignments swaps are made in order to improve the

base objective. The subprogram will continue to make swaps until one (or both) of the

21

bounds have been violated or there are no more beneficial swaps. The new solution is

then presented to the DM:

FIGURE 9 – Solution After Compromise Programming

At this point, if the DM is satisfied with the solution, the program is terminated. If

the DM is not satisfied, the program will prompt the DM for new trade-off data and

repeat Stage 2. This is repeated until the DM has reached the best compromise solution.

It is important to point out again that there is no solution which will optimize all the

objective functions simultaneously (Cowling et. al., 2006). Generally speaking, if a

multi-objective problem is solved optimally, it is through the use of weights on each

objective function or through a value function. It can be very difficult for the DM to

specify weights or define a value function. This is because the DM is selected for his

expertise in the production setting—not his knowledge of mathematical formulations.

The goal of this program is to use iterative input from the DM to guide the algorithm

towards the best compromise solution. This is a much more intuitive way for the DM to

use the program.

22

C. Pseudo-code for Decision Support System (DSS)

This section summarizes the code used for the DSS. There are four primary

sections of code to analyze. One section for each of the three objective functions and the

fourth section is for the compromise programming.

1. Key Variables used in Pseudo-code

Before jumping into the pseudo-code, it is beneficial to review some of the key

variables used throughout the code. First of all, it is important to note the similarities

between the three steps in the first stage. Take the first step for example; many of the

decisions about worker-task assignments are based on the variables ‗totaltaskcost‘ and

‗totalworkercost.‘ These variables are calculated using the ‗workertaskcost‘ variable,

which is a large array that holds the cost associated with training any worker to any task.

So, ‗totaltaskcost‘ is simply the sum of all workertaskcost values for a specific task.

Similarly, ‗totalworkercost‘ is the sum of all workertaskcost values for a specific worker.

These ‗total‘ variables are used to determine who is the least trained worker

(maxcostworker, for phase 1) and which is the most difficult task (maxcosttask, for phase

2). More detail on how the worker-task assignments are made can be found in the

following section. The intention of this section is to bring attention to the similarities

between the three steps in the first stage.

 In Stage 1, Step 1, the program uses variables such as ‗totaltaskcost,‘

‗workertaskcost,‘ etc. as outlined above. For Step 2, the program uses variables such as

‗totaltasksgap‘ and ‗workertasksgap.‘ Similarly, for Step 3, the program uses variables

such as ‗totaltaskpref‘ and ‗workertaskpref.‘ Each step uses the ―total‖ variables

23

associated with the objective function for making worker-task assignments; however, it

does keep track of all ―total‖ variables (i.e. the ones for the other objective functions).

While the other ―total‖ variables are not used for determining worker-task assignments,

they are used to calculate the objective function values once a complete assignment has

been made. Also, these values are used in Stage 2, where certain objectives are being

compromised for the benefit of another.

2. Generalized Meta-RaPS Pseudo-code

The pseudo-code below shows the generalized form of the Meta-RaPS heuristic.

Each of the three initial solution programs outlined below follows this generalized code:

Do Until max number of iterations is reached

 Do Until all tasks are assigned

 Identify the greedy assignment

 If random value <= priority percentage Then

 Make greedy assignment

 Else

Develop a candidate list of other assignments close in value to the

greedy assignment

 Choose an assignment from the candidate list

 End If

 Loop

 Place the solution in its ranked position compared to all other iterations

Loop

Sections 3-5 show how the Meta-RaPS heuristic is applied to each objective

function. Meta-RaPS is actually run twice for each objective function—once to make

sure each worker is assigned one task and the second time to assign all remaining tasks.

If there is not a constraint to retain the current workforce, the program can jump straight

to the second use of Meta-RaPS and simply assign all tasks.

3. InitialTrainingCostSoln Pseudo-code

24

Once the DM clicks the ―find assignments‖ button, this is the first subprogram

which is run. This subprogram uses the Meta-RaPS heuristic to determine worker-task

assignments. The pseudo-code for this subprogram is below:

Do Until max number of iterations is reached

 Do Until each worker has a task assigned

 Identify the maxcostworker

 Identify mincosttask for maxcostworker

 If random value <= priority percentage Then

 Assign mincosttask to maxcostworker

 Else

If worker is unassigned and totalworkercost >=

maxcostworker*restriction percent Then

If task is unassigned and cost to assign worker to that task

<= mincost*(1+restriction percentage) Then

 This worker-task assignment goes on candidate list

 End If

 End If

Use random number to select a worker-task assignment from the

candidate list

 End If

 Loop

Do Until all tasks are assigned

 Identify maxcosttask

 Identify mincostworker

 If random value <= priority percentage Then

 Assign mincostworker to maxcosttask

 Else

If task is unassigned and totaltaskcost >= maxcosttask*restriction

percent Then

If cost to assign worker to that task <=

mincost*(1+restriction percentage) Then

 This worker-task assignment goes on candidate list

 End If

 End If

 Use a random worker to select a worker-task assignment from the

candidate list

 End If

 Update objective function values and worker skill levels

 Loop

 Eliminate the solution if it is a duplicate from a previous iteration

 Place the solution in its ranked position compared to all other iterations

Loop

25

The complete code can be found in Appendix E. The two phases for the above

section of code are very similar. They both use the Meta-RaPS heuristic, which is a

modified greedy algorithm. The first step is to identify the worker who has the highest

training cost across all tasks. Next, the program identifies the task which can be assigned

to that worker at the minimum cost. This would be the greedy assignment, and according

to Meta-RaPS, this assignment is sometimes made. However, Meta-RaPS differs from a

greedy algorithm because it sometimes makes an assignment from a ―candidate list.‖ The

candidate list contains other worker-task assignments that are within a certain percentage

of the greedy assignment. This selection is made using random numbers.

 Phase 1 continues assigning tasks to workers who are currently unassigned. Once

each worker has a task assignment, the program moves to phase 2, where the rest of the

tasks are assigned. Phase 2 is extremely similar to phase 1 since they both employ the

Meta-RaPS heuristic. The difference is that phase 1 identifies a worker for assignment

and then finds a task for that worker. On the other hand, phase 2 identifies a task first,

and then finds a worker to assign to that task. Once phase 2 is complete, a complete

worker-task assignment has been completed. Next, the program determines how good

the current solution is compared to solutions from other iterations.

 The first step in determining how the current solution compares to other iterations

is to check if the current solution is a duplicate solution. All duplicate solutions are

thrown out and a new iteration begins. However, considering the problem size and the

randomness of Meta-RaPS, there are not many duplicate solutions. If a unique solution is

generated, the program determines what rank the solution is. If it is not a top ranking

26

solution (the number of solutions to store is a user input), then the program moves to the

next iteration. If the current solution is a unique, top ranking solution, then it is saved in

a best solution matrix. Once all the iterations are complete, the top ranking solutions are

printed on the screen and the program moves on to the second subprogram (Stage 1, Step

2): InitialSkillGapSoln.

4. InitialSkillGapSoln Pseudo-code

The program automatically starts this sub-program after the first sub-program

(InitialTrainingCostSoln; Stage 1, Step 1) is completed. The pseudo-code for this sub-

program is below:

Do Until max number of iterations is reached

 Do Until each worker has a task assigned

 Identify the maxsgapworker

 Identify maxsgaptask for maxsgapworker

 If random value <= priority percentage Then

 Assign maxsgaptask to maxsgapworker

 Else

If worker is unassigned and totalworkersgap >=

maxsgapworker*restriction percent Then

If task is unassigned and the skill gap closed >=

maxsgap*restriction percent Then

 This worker-task assignment goes on candidate list

 End If

 End If

 Use random number to select a worker-task assignment from the

candidate list

 End If

 Update objective function values and worker skill levels

 Loop

Do Until all tasks are assigned

 Identify maxsgaptask

 Identify maxsgapworker

 If random value <= priority percentage Then

 Assign maxsgapworker to maxsgaptask

 Else

27

If task is unassigned and totaltasksgap >= maxsgaptask*restriction

percent Then

 If skill level gained >= maxsgap*restriction percent Then

 This worker-task assignment goes on candidate list

 End If

 End If

Use a random worker to select a worker-task assignment from the

candidate list

 End If

 Update objective function values and worker skill levels

 Loop

 Eliminate the solution if it is a duplicate from a previous iteration

 Place the solution in its ranked position compared to all other iterations

Loop

Where the first sub-program identified the least trained worker (according to

training costs), and assigned that worker the most inexpensive task, this sub-program is

actually maximizing the total number of skill levels gained. So, the greedy assignment

would be the worker with the fewest total skill levels and the task which would gain that

worker the most skill levels. The candidate list is comprised of other worker-task

assignments that increase the worker‘s skill levels within a certain percentage of the

greedy assignment.

This sub-program is very similar to the first one (and the last one). This sub-

program has two phases which both employ Meta-RaPS. Also, this subprogram uses the

same ranking system. The major difference between each sub-program is that each one

solves a different objective function.

Once this sub-program is complete, it will print the top results on the screen and

then automatically move on to the last sub-program in Stage 1: InitialWorkerPrefSoln.

5. InitialWorkerPrefSoln Pseudo-code

28

The program automatically starts this sub-program after the first sub-program

(InitialTrainingCostSoln; Stage 1, Step 1) is completed. The pseudo-code for this sub-

program is below:

Do Until max number of iterations is reached

 Do Until each worker has a task assigned

 Identify the maxprefworker

 Identify maxpreftask for maxprefworker

 If random value <= priority percentage Then

 Assign maxpreftask to maxprefworker

 Else

If worker is unassigned and totalworkerpref >=

maxprefworker*restriction percent Then

If task is unassigned and the skill levels gained * worker

preference >= maxsgap*restriction percent Then

 This worker-task assignment goes on candidate list

 End If

 End If

 Use random number to select a worker-task assignment from the

candidate list

 End If

 Update objective function values and worker skill levels

 Loop

Do Until all tasks are assigned

 Identify maxpreftask

 Identify maxprefworker

 If random value <= priority percentage Then

 Assign maxprefworker to maxpreftask

 Else

If task is unassigned and totaltaskpref >= maxpreftask*restriction

percent Then

If skill level gained *worker preference >=

maxpref*restriction percent Then

 This worker-task assignment goes on candidate list

 End If

 End If

 Use a random worker to select a worker-task assignment from the

candidate list

 End If

 Update objective function values and worker skill levels

 Loop

 Eliminate the solution if it is a duplicate from a previous iteration

 Place the solution in its ranked position compared to all other iterations

29

Loop

This subprogram is extremely similar to the previous: InitialSkillGapSoln. The

worker-task assignments are still determined using the amount of skill levels gained on a

particular task; however, for this objective function, the skill levels gained is also

multiplied by a binary worker preference value. Consider the following hypothetical

example: if worker 1 is assigned to task 1, he will gain 3 skill levels in both skills 1 and 2.

In addition, worker 1 has a preference value of 0 for skill 1 and 1 for skill 2. That is, he

does not have a desire to learn skill 1, but does want to learn skill 2. In step 2, where

preferences are not considered, both skills would contribute a value of 3 to the objective

function if this assignment was selected. However, for step 3, the skill levels gained is

multiplied by the preference value. Thus, skill 1 would contribute 0 to the objective

function since the worker preference value is 0 also. On the other hand, skill 2 would

still add 3 to the objective function since the preference value is 1 for that skill. Here is

another situation to consider in understanding the relationship between step 2 and 3. If

the worker preference matrix was all set to 1, then the objective function for step 2 and 3

would be equivalent.

The results from this subprogram are displayed on the screen for the DM to

reference along with the other two subprograms. Complete worker-task assignments are

printed on the screen; however, for large data sets, it is not feasible to compare the

different solutions based on the individual assignments. For this reason, there is a

summary at the top of the page which simply shows the three objective function values

associated with each initial solution. The DM is then prompted to identify which of the

initial solutions is the preferred solution. At this point, the program is using input from

30

the DM to help guide the algorithm towards a solution which best matches the

preferences of the DM.

 This concludes the first stage of the program. Next, the program automatically

moves into stage 2—Compromise Programming.

6. Compromise Programming Pseudo-code

Compromise Programming makes up the second stage of the program, and is iterative in

nature. At this point, the DM has identified a single solution to use in the second stage.

Two pieces of information are prompted from the DM:

 Which objective function to improve

 Bounds on the other objective functions

Using this information, the program will continue to swap worker-task assignments until

one of the bounds on the other objective functions have been violated. The pseudo-code

for stage 2 is below:

Do Until usersatisfied=1

Prompt User for which objective to improve

 Option Box used to input bounds on the other two objective functions

 For i = 1 to numworkers

 For j = 1 to numtasks

 If worker i is assigned to task j Then

 For i2 = 1 to numworkers

 For j2 = 1 to numworkers

Calculate the affect this swap has on base and store than in

a matrix

 Next j2

 Next i2

 End If

 Next j

 Next i

31

Do Until bound on either non-basic objective function is violated Or no swap

improves base

 Determine which swap will increase the base the most and make that swap

 Update worker skill levels and objective function values

 Loop

 Print the new solution on the screen

 Ask if the user is satisfied (usersatisfied=[1 for yes, 0 for no])

Loop

 Right before the final loop, the program asks if the DM is satisfied with the

current solution. If he is not, then the subprogram loops to the top and asks the DM to

specify a base and bounds on non-basic objective functions once again. Hence, the DM

has complete control in manipulating the solution to accurately reflect his preferences.

He can continue to select the same objective function as the base to improve it more, or

he can select a different base to ―guide‖ the program in another direction. Additionally,

this goal is achieved without assigning weights to each objective function at the

beginning of the program. Instead, the DM‘s knowledge and experience is used later in

the program, and in a manner that is simple for the DM. After all, it is much easier for

someone inexperienced with how the program runs to specify bounds on objective

functions than to assign arbitrary weights at the beginning of the program.

32

VI. RESULTS

This section outlines the results calculated using several different data sets. All three

objective functions are analyzed, though the Minimize Training Cost is done so in less

detail due to the fact that Douglas (2006) already examined using Meta-RaPS on this

objective function in great detail. Similarly, this paper did not analyze the different

values that could be used for percent restriction and percent priority which could be used.

These values are used when the program decides whether to make a greedy assignment or

to choose an assignment from the candidate list. Douglas (2006) determined that 30 and

80 for percent restriction and priority, respectively, was best suited for this assignment

problem. These values were used in this data analysis.

Since Meta-RaPS executes very quickly and is quite random, it is very beneficial to

use a large number of iterations in order to find a near optimal solution. Douglas (2006)

recommended using 5000 iterations. However, it was determined that a much smaller

value is sufficient (200 iterations). While the program is running, the user can see the top

list of solutions currently found. Meta-RaPS is surprisingly effective at finding a good

solution quickly. Thus, a small number of iterations is sufficient. However, it should be

noted that when used in a practical setting, it would be recommended to use a larger

number of iterations to guarantee a good solution. For that matter, it would be wise to

tweak each of the parameter settings depending on the specific application.

Microsoft VBA for Excel was used to program the Meta-RaPS algorithm. While

there are other programming languages that would have been more efficient, Excel is

commonly used in practical settings. Thus, it is a very familiar way for the user to input

33

data into the model. In addition, since most companies already own and use Microsoft

Excel, there is no need to purchase any additional software.

The optimum solutions were calculated using LINGO mathematical software. The

code used can be found in Appendix E. The results for each objective function are

outlined in the following subsections.

A. Minimize Training Cost Results

Table II summarizes the results for the Minimize Training Cost objective function.

The full results can be found in Appendix A. Run times are in seconds unless otherwise

noted.

TABLE II

MINIMIZETRAINING COST RESULTS

workers skills tasks Meta-RaPS run-time Optimum run-time %diff

8 6 10 121.6 8.5 116.5 12.9 4.2%

8 15 10 532.6 8.1 513 1.75hr 3.8%

15 6 20 220.7 12.4 172 31.5hr 28.3%

15 15 20 801 11.56 - - -

When using a small data set, Meta-RaPS is extremely effective at finding a close

to optimum solution. However, once a larger data set was tested, Meta-RaPS was on

average close to 30% worse than optimum. Obviously, it would be preferred to have a

solution closer to optimum. This is where raising the number of iterations would be

beneficial. These trial runs were used with only 200 iterations. This is reflected in the

very fast run times. Certainly, a run time of 12.4 seconds is greatly superior to a run time

of over 31 hours (the 15 worker, 6 skills data set). Using a larger number of iterations

34

would produce results closer to optimum and still have a much shorter run time than the

optimum method.

B. Maximize Skill Levels Gained Results

Table III summarizes the results for the Maximize Skill Levels Gained objective

function. The full results can be found in Appendix B. Run times are in seconds unless

otherwise noted.

TABLE III

MAXIMIZE SKILL LEVELS GAINED RESULTS

workers skills tasks Meta-RaPS run-time Optimum run-time %diff

8 6 10 53.4 13.3 63.4 1 15.8%

8 15 10 128.9 9.0 147 7 12.3%

15 6 20 108.7 14.5 138 2 21.2%

15 15 20 233.1 13.5 294 409 20.7%

It can be seen from the table that Meta-RaPS produces solutions which are close to

optimum. While a little more than 20% from optimum may seem like a significant

difference, this is in part because only 200 iterations were used. A larger number of

iterations would produce a solution closer to the optimum.

However, there is an important trade-off between the number of iterations to use and

the run-time of the program. LINGO is able to produce optimum results for this

objective function (as well as Maximize Worker Preference) much faster than the

Minimize Training Cost objective function. Thus, it is not as easy to simply state that

raising the iterations will solve the problem. However, on the other hand, Meta-RaPS

35

already produces solutions closer to optimum compared to the first objective function.

So, there is not as much a need to raise the number of iterations.

C. Maximize Worker Preference Results

Table IV summarizes the results for the Maximize Worker Preference objective

function. The full results can be found in Appendix C. Run times are in seconds unless

otherwise noted.

TABLE IV

MAXIMIZE WORKER PREFERENCE RESULTS

workers skills tasks Meta-RaPS run-time Optimum run-time %diff

8 6 10 30.6 14.6 39.2 1.1 21.9%

8 15 10 76.0 9.6 96 1 20.8%

15 6 20 66.9 14.2 98 2 31.8%

15 15 20 139.2 13.8 187 81 25.6%

This objective function is very similar in nature to the Maximize Skill Levels Gained

objective function. However, you can see from the percent difference, that Meta-RaPS

was not as effective with this objective function. On the other hand, Meta-RaPS still

generated solutions closer to optimum than the first objective function (Minimize Total

Cost). This is a promising result and indicates that Meta-Raps is an effective method for

generating solutions to all three objective functions.

An interesting thing to point out with this data set is the run-time for calculating the

optimum solution. When comparing the optimum solution to Meta-RaPS run time for the

first objective function (total cost), the optimum solution took over 31 hours compared to

only 12.4 seconds for Meta-RaPS. There is nowhere near the same disparity when we

36

look at the results for this objective function. At the same time, the optimum solution did

take more than five times as long (81 seconds) compared to Meta-RaPS (13.8) seconds.

When using an extremely large data set (over 1,000 workers), this difference in run-time

will be very beneficial.

D. Compromise Programming Results

Unfortunately, there is no easy way to analyze results for the second stage of the

program. The only way to determine an optimum solution would be to run the model

through LINGO. However, to do that, each of the three objective functions would need

to have a weight assigned to it or a value function is neccesary. The premise to this paper

is to avoid using those techniques. Instead, the knowledge and expertise of the DM

guides the program to the best compromise solution. In a way, this interaction does

assign weights to each objective function, but it is done in a more intuitive fashion. This

will help the DM more accurately weigh the importance of each objective function.

This idea is supported by Cowling et. al.(2006) as well as Belton and Elder (1996).

They point out that using inaccurate weights can have very costly effects on the quality of

the solution. Since this program is designed for a supervisor in the field to use, it can be

assumed that the user will not have a detailed knowledge of the mathematical formulation

and thus cannot assign accurate weights. This is by design. Instead, the user can guide

the program towards the best compromise solution using the knowledge he has gained in

the field.

37

VII. CONCLUSIONS AND RECOMMENDATIONS

The goal of this paper is to extend the Decision Support System (DSS) developed by

Douglas (2006) to a multi-objective formulation. The two objective functions to

maximize skill levels gained as well as to maximize worker preference were incorporated

in with the original objective function to minimize total cost. Clearly, the objective

function to maximize skill levels gained contradicts the original objective function to

minimize cost because training costs money. However, as Cowling et. al.(2006) pointed

out, virtually every real world multi-objective problem has ―many and contradictory

objectives.‖ How then, do we determine the best solution?

It is a long-held Industrial Engineering principle that the person who knows how to

do the job the best is the person who has been doing it the longest. Enter: the Decision

Maker (DM). The Decision Support System (DSS) developed in this paper is designed to

take advantage of the knowledge the DM possesses from working in the field for many

years. Hence, the logical selection for the DM is a supervisor.

Many multi-objective formulations in the past assign a weight to each objective

function in order to solve the formulation as one larger optimization problem. Cowling

et. al.(2006) show that the cost of using inaccurate weights in this type of formulation can

have ―severe‖ detrimental effects. For this program, we assume that the DM will not be

able to assign accurate weights to the objective functions because this person does not

have a deep understanding of the mathematical formulation—that is not the DM‘s

purpose. The DM is being selected because of his knowledge of the production setting

38

(worker competencies, creating schedules, etc.). Thus, the DM‘s knowledge is used in an

iterative manner to arrive at the best compromise solution in the eyes of the DM.

One thing that makes this program unique is that it is designed to be used for very

large problem sizes (thousands of workers). This presents a problem regarding solution

time. Instead of solving each of the three objective functions optimally, they are solved

using the Meta-RaPS heuristic developed by DePuy, et. al. (2003) and adapted by

Douglas (2006) to be used for the assignment problem. Solving each objective function

independently is stage 1 of the program. These solutions (a configurable number) are

then fed into stage 2 of the program—which incorporates input from the DM.

Once a pool of initial solutions has been generated, the DM selects the one he feels is

closest to the ―best‖ solution. From there, the program utilizes compromise programming

to adjust the solution as the DM sees fit. More specifically, the DM identifies which

objective function should be improved and then provides bounds on the other objective

functions. The program then makes trade-offs in the worker-task assignments in order to

improve the identified objective function at the cost of the other. This process can be

repeated as many times as necessary until the DM has a solution he is satisfied with. In

this manner, the DM is essentially assigning weights to each objective function. These

weights are determined through the DM‘s iterative input regarding trade-off values.

While this concept appears to be very effective, it has yet to be tested using real-

world data. There are several other areas that provide good opportunity for future

research. For example, the VBA code was written by an Industrial Engineer—not a

computer programmer. As a result, the code is very inefficient, and cleaning up the code

39

would most likely reduce computational times. This could be done through code

refactoring. Code refactoring would shorten the length of the code as well as remove

unnecessary steps. A shorter run time would have huge benefits in practical applications.

Another area for improvement is in the compromise programming. Currently, when

the DM is specifying how much to sacrifice the objective functions (for the benefit of

another) these ranges are predefined percentages. It is possible to program this so that the

DM can enter his preferred percentage instead of choosing one from the option list.

Another way to get this input from the DM would be to include a slider. This way the

DM could move the slider to the percentage that he prefers. This provides more

flexibility while still maintaining ease of use.

One downside to the current input sheet is that it is very time consuming to enter in

data. When there are over 1,000 workers and tasks, it will take the DM a very long time

to input skill levels for each worker and task. There may be a way to group certain

workers together (by department, by years of experience, etc.). This way, the DM could

input a smaller amount of data. Similarly, there may be a way to group tasks together in

order to reduce input time.

Lastly, another area for improvement is with the parameters used in the program. As

mentioned during the Results section, Douglas (2006) concluded that the best values for

percent restriction and percent priority were 30 and 80, respectively. These values were

only tested for the first objective function (Minimize Training Cost). However, these

values were also used for the two new objective functions introduced in this paper. The

results could have been more accurate it different parameters were used for these

40

objective functions. On the other hand, this is somewhat a moot point because the

parameters for all three objective functions would need to be validated for a real-world

problem.

41

LIST OF REFERENCES

Bell, George. 1919. Production the Goal. Annals of the American Academy of Political

and Social Science. Vol. 85, Modern Manufacturing. A Partnership of Idealism and

Common Sense, 1-7

Belton, V., Elder, M.D. 1996. Exploring a Multicriteria Approach to Production

Scheduling. The Journal of the Operational Research Society. Volume 47, Issue 1,

162-174

Campbell, G.M., Diaby, M. 2002. Development and Evaluation of an Assignment

Heuristic for Allocating Cross-trained Workers. European Journal of Operational

Research. Volume 138, Issue 1, 9-20

Cowling, P., Colledge, N., Keshav, D., Remde, S. 2006. The Trade Off between

Diversity and Quality for Multi-objective Workforce Scheduling. Lecture Notes in

Computer Science, Volume 3906/2006, 13-24

DePuy, G.W., Moraga, R., Whitehouse, G. 2003. Meta-RaPS: A simple and effective

approach for solving the traveling salesman problem. Transportation Research Part

E. 212.

Douglas, Allison M. 2006. A Modified Greedy Algorithm for the Task Assignment

Problem. Master of Engineering Thesis, University of Louisville.

Elmes, B.B., Evans, G.W., DePuy, G.W., 2008. A Multi-Objective Decision Support

System for Workforce Training. Proceedings of the 2008 Industrial Engineering

Research Conference

Fischer, J., Sousa-Poza, A. 2009. Does Job Satisfaction Improve the Health of Workers?

New Evidence Using Panel Data and Objective Measures of Health. Health

Economics, Volume 18, Issue 1, 71-89

Fowler, J., Wirojanagud, P., Gel, E. 2008. Heuristics for workforce planning with worker

differences. European Journal of Operational Research. Volume 190, Issue 3, 724-

740.

Hartmann, S., Kolisch, R. 2000. Experimental evaluation of state-of-the-art heuristics for

the resource-constrained project scheduling problem. European Journal of

Operational Research. Volume 127, Issue 2, 394-407

Kolisch, R., Hartmann, S. 2005. Experimental investigation of heuristics for resource-

constrained project scheduling: An update. European Journal of Operational

Research. Volume 174, Issue 1, 23-37

Nembhard, D.A., Osothsilp, N. 2005. Learning and Forgetting-Based Worker Selection

for Tasks of Varying Complexity. The Journal of the Operational Research Society

Volume 56, Issue 5,576-587

42

Mazolla, J.B., Neebe, A.W. 1986. Resource-Constrained Assignment Scheduling.

Operations Research. Volume 34, Issue 4, 560-572

Sayin, S., Karabati, S. 2007. Assigning cross-trained workers to departments: A two-

stage optimization model to maximize utility and skill improvement. European

Journal of Operational Research. Volume 176, Issue 3, 1643-1658

43

APPENDIX A—Results for Minimize Total Training Cost

The table below has the full results for the Minimize Training Cost objective

function. The majority of the calculations were performed on a desktop computer with

an Intel Pentium 4 3.0GHz processor with 1GB of ram. Some of the run times had to be

discarded because they were performed on a laptop with faulty hardware that skewed the

run times.

For each trial run, the data was randomly generated. Summaries of this data can

be found the Results section of the text.

Trial Workers Skills Tasks
Meta-
RaPS

run-
time Optimum

run-
time %diff

1 8 6 10 70 8.3 70 2 0.0%

2 8 6 10 94 87 13 8.0%

3 8 6 10 95 91 3 4.4%

4 8 6 10 161 11.4 161 21 0.0%

5 8 6 10 82 77 12 6.5%

6 8 6 10 102 94 5 8.5%

7 8 6 10 145 142 2.1%

8 8 6 10 128 128 8 0.0%

9 8 6 10 69 67 6 3.0%

10 8 6 10 171 163 4.9%

11 8 6 10 124 8.2 112 10 10.7%

12 8 6 10 153 8.4 153 18 0.0%

13 8 6 10 152 145 23 4.8%

14 8 6 10 167 7.9 161 49 3.7%

15 8 6 10 120 7.6 109 4 10.1%

16 8 6 10 112 7.6 104 6 7.7%

17 8 15 10 513 7.8 513 6377s 0.0%

18 8 15 10 514 8.2 0.2%

19 8 15 10 548 8 6.8%

20 8 15 10 545 7.9 6.2%

21 8 15 10 518 7.9 1.0%

22 8 15 10 546 7.9 6.4%

44

23 8 15 10 533 8 3.9%

24 8 15 10 528 10 2.9%

25 8 15 10 536 7.9 4.5%

26 8 15 10 548 7.9 6.8%

27 8 15 10 528 7.9 2.9%

28 8 15 10 529 8 3.1%

29 8 15 10 532 8 3.7%

30 8 15 10 528 7.9 2.9%

31 8 15 10 528 7.9 2.9%

32 8 15 10 548 7.9 6.8%

33 15 6 20 223 12.4 172 31.5hr 29.7%

34 15 6 20 211 11.9 22.7%

35 15 6 20 208 12 20.9%

36 15 6 20 220 12 27.9%

37 15 6 20 223 11.8 29.7%

38 15 6 20 204 11.8 18.6%

39 15 6 20 220 11.9 27.9%

40 15 6 20 237 12.1 37.8%

41 15 6 20 209 12.9 21.5%

42 15 6 20 224 11.8 30.2%

43 15 6 20 234 11.8 36.0%

44 15 6 20 232 11.8 34.9%

45 15 6 20 234 11.9 36.0%

46 15 6 20 222 13.2 29.1%

47 15 6 20 232 11.9 34.9%

48 15 6 20 206 13 19.8%

49 15 6 20 223 11.9 29.7%

50 15 6 20 224 16.7 30.2%

51 15 6 20 220 11.9 27.9%

52 15 6 20 225 12 30.8%

53 15 6 20 202 15.4 17.4%

54 15 6 20 218 11.9 26.7%

55 15 6 20 224 12 30.2%

56 15 15 20 778 11.7 N/A N/A

57 15 15 20 814 11.7

58 15 15 20 778 11.4

59 15 15 20 795 11.5

60 15 15 20 770 11.7

61 15 15 20 807 11.6

62 15 15 20 820 11.4

63 15 15 20 777 11.5

45

64 15 15 20 800 11.6

65 15 15 20 773 11.5

66 15 15 20 821 11.5

67 15 15 20 848 11.6

68 15 15 20 792 11.7

69 15 15 20 809 11.5

70 15 15 20 813 11.5

71 15 15 20 811 11.6

72 15 15 20 811

46

APPENDIX B—Results for Maximize Skill Levels Gained

The table below has the full results for the Maximize Skill Levels Gained

objective function. The calculations were performed on a desktop computer with an Intel

Pentium 4 3.0GHz processor with 1GB of ram.

Trial Workers Skills Tasks
Meta-
RaPS

run-
time Optimum

run-
time %diff

1 8 6 10 47 9.1 53 1 11.3%

2 8 6 10 52 61 1 14.8%

3 8 6 10 51 61 1 16.4%

4 8 6 10 53 12.5 64 1 17.2%

5 8 6 10 52 63 1 17.5%

6 8 6 10 50 56 1 10.7%

7 8 6 10 54 68 1 20.6%

8 8 6 10 62 75 1 17.3%

9 8 6 10 45 58 1 22.4%

10 8 6 10 62 70 1 11.4%

11 8 6 10 48 24.1 58 1 17.2%

12 8 6 10 53 22.3 63 1 15.9%

13 8 6 10 64 73 1 12.3%

14 8 6 10 64 8.4 78 1 17.9%

15 8 6 10 52 8.4 59 1 11.9%

16 8 6 10 45 8.4 54 1 16.7%

17 8 15 10 129 8.7 147 7 12.2%

18 8 15 10 128 9.2 12.9%

19 8 15 10 129 9.1 12.2%

20 8 15 10 128 8.9 12.9%

21 8 15 10 131 9 10.9%

22 8 15 10 128 8.9 12.9%

23 8 15 10 131 8.9 10.9%

24 8 15 10 130 10.5 11.6%

25 8 15 10 130 8.9 11.6%

26 8 15 10 128 8.9 12.9%

27 8 15 10 128 8.8 12.9%

28 8 15 10 128 8.9 12.9%

29 8 15 10 129 8.9 12.2%

30 8 15 10 130 9.2 11.6%

47

31 8 15 10 129 8.9 12.2%

32 8 15 10 126 8.9 14.3%

33 15 6 20 108 13.5 138 2 21.7%

34 15 6 20 110 13.8 20.3%

35 15 6 20 107 13.8 22.5%

36 15 6 20 107 13.8 22.5%

37 15 6 20 111 13.7 19.6%

38 15 6 20 108 13.9 21.7%

39 15 6 20 108 15.7 21.7%

40 15 6 20 108 13.8 21.7%

41 15 6 20 109 14.3 21.0%

42 15 6 20 109 16.1 21.0%

43 15 6 20 109 13.7 21.0%

44 15 6 20 110 13.8 20.3%

45 15 6 20 109 13.8 21.0%

46 15 6 20 111 14.3 19.6%

47 15 6 20 108 13.9 21.7%

48 15 6 20 110 13.7 20.3%

49 15 6 20 109 13.5 21.0%

50 15 6 20 109 24.8 21.0%

51 15 6 20 109 13.7 21.0%

52 15 6 20 108 13.7 21.7%

53 15 6 20 108 14.7 21.7%

54 15 6 20 108 14 21.7%

55 15 6 20 108 13.7 21.7%

56 15 15 20 235 13.7 294 409 20.1%

57 15 15 20 234 13.6 20.4%

58 15 15 20 236 13.5 19.7%

59 15 15 20 234 13.6 20.4%

60 15 15 20 233 13.7 20.7%

61 15 15 20 232 13.4 21.1%

62 15 15 20 233 13.2 20.7%

63 15 15 20 232 13.7 21.1%

64 15 15 20 232 13.6 21.1%

65 15 15 20 230 13.5 21.8%

66 15 15 20 235 13.6 20.1%

67 15 15 20 230 13.4 21.8%

68 15 15 20 234 13.4 20.4%

69 15 15 20 234 13.7 20.4%

70 15 15 20 234 13.5 20.4%

71 15 15 20 232 13.4 21.1%

48

72 15 15 20 232 21.1%

49

APPENDIX C—Results for Maximize Worker Preference

The table below has the full results for the Maximize Worker Preference objective

function. The calculations were performed on a desktop computer with an Intel Pentium

4 3.0GHz processor with 1GB of ram.

Trial Workers Skills Tasks
Meta-
RaPS

run-
time Optimum

run-
time %diff

1 8 6 10 17 9.7 24 1 29.2%

2 8 6 10 29 33 1 12.1%

3 8 6 10 29 34 2 14.7%

4 8 6 10 37 12.9 44 1 15.9%

5 8 6 10 34 42 1 19.0%

6 8 6 10 36 43 1 16.3%

7 8 6 10 32 41 1 22.0%

8 8 6 10 36 49 1 26.5%

9 8 6 10 24 37 1 35.1%

10 8 6 10 29 42 1 31.0%

11 8 6 10 30 29.6 36 1 16.7%

12 8 6 10 30 23.8 39 1 23.1%

13 8 6 10 27 35 1 22.9%

14 8 6 10 37 8.5 48 1 22.9%

15 8 6 10 33 9 39 1 15.4%

16 8 6 10 30 9 41 1 26.8%

17 8 15 10 76 9.3 96 1 20.8%

18 8 15 10 76 9.7 20.8%

19 8 15 10 77 9.6 19.8%

20 8 15 10 76 9.6 20.8%

21 8 15 10 76 9.5 20.8%

22 8 15 10 78 9.6 18.8%

23 8 15 10 75 9.5 21.9%

24 8 15 10 74 10.7 22.9%

25 8 15 10 78 9.6 18.8%

26 8 15 10 76 9.6 20.8%

27 8 15 10 74 9.6 22.9%

28 8 15 10 76 9.5 20.8%

29 8 15 10 76 9.6 20.8%

30 8 15 10 78 9.6 18.8%

50

31 8 15 10 77 9.5 19.8%

32 8 15 10 73 9.5 24.0%

33 15 6 20 65 13.4 98 2 33.7%

34 15 6 20 70 13.8 28.6%

35 15 6 20 69 13.8 29.6%

36 15 6 20 68 13.7 30.6%

37 15 6 20 67 13.9 31.6%

38 15 6 20 68 13.8 30.6%

39 15 6 20 66 15.9 32.7%

40 15 6 20 68 13.9 30.6%

41 15 6 20 65 13.8 33.7%

42 15 6 20 67 15.8 31.6%

43 15 6 20 66 14 32.7%

44 15 6 20 66 13.8 32.7%

45 15 6 20 70 14.1 28.6%

46 15 6 20 65 13.8 33.7%

47 15 6 20 67 13.8 31.6%

48 15 6 20 67 13.9 31.6%

49 15 6 20 66 13.6 32.7%

50 15 6 20 66 17.3 32.7%

51 15 6 20 67 13.8 31.6%

52 15 6 20 67 14.3 31.6%

53 15 6 20 68 14 30.6%

54 15 6 20 63 14.1 35.7%

55 15 6 20 67 13.8 31.6%

56 15 15 20 144 187 81 23.0%

57 15 15 20 135 13.8 27.8%

58 15 15 20 138 13.7 26.2%

59 15 15 20 137 13.6 26.7%

60 15 15 20 142 13.6 24.1%

61 15 15 20 139 14.2 25.7%

62 15 15 20 141 13.6 24.6%

63 15 15 20 137 13.8 26.7%

64 15 15 20 141 13.7 24.6%

65 15 15 20 142 13.7 24.1%

66 15 15 20 139 14.6 25.7%

67 15 15 20 135 13.9 27.8%

68 15 15 20 141 13.9 24.6%

69 15 15 20 142 13.9 24.1%

70 15 15 20 139 13.8 25.7%

71 15 15 20 139 13.8 25.7%

51

72 15 15 20 135 27.8%

52

APPENDIX D–LINGO CODE

 Below is the LINGO code used to calculate the optimum solutions in the Results

section. All three objective functions are included in the code. Two of the three are

commented out so that only one will run at a time. Simply changing which objective

functions are commented will execute the correct objective function.

Model:

! Crane skills training;

Data:

 numworkers = @OLE('input 15-15-20.xls');

 numskills = @OLE('input 15-15-20.xls');

 numtasks = @OLE('input 15-15-20.xls');

enddata

Sets:

 levels/1..5/;

 workers/1..numworkers/;

 skills/1..numskills/;

 tasks/1..numtasks/;

 incremental(skills,levels):inctime,inccost;

 workerskill(workers,skills):wpref,wskill,notrai

n;

 taskskill(tasks,skills):tskill;

 workertask(workers,tasks):assigned;

 tasktime(tasks):ttime;

 workercap(workers):wcap;

 levelpairs(levels,levels);

 training(skills,levels,levels):tcost,trtime;

 moretraining(workers,skills,levels,levels):more

train;

 allcombos(workers,tasks,skills);

Endsets

53

Data:

wskill= @OLE('input 15-15-20.xls');

tskill = @OLE('input 15-15-20.xls');

ttime = @OLE('input 15-15-20.xls');

wcap = @OLE('input 15-15-20.xls');

tcost = @OLE('input 15-15-20.xls');

trtime = @OLE('input 15-15-20.xls');

wpref = @OLE('input 15-15-20.xls');

Enddata

!Minimize Total Cost;

 !Min =

@SUM(moretraining(i,k,l,m)|l#EQ#wskill(i,k) #AND#

m#GT#wskill(i,k): tcost(k,l,m)*moretrain(i,k,l,m));

!Maximize Skills Gained;

 !Max = @sum(workers(i):

 @sum(tasks(j):

 @sum(skills(k)|tskill(j,k)#GT#wskill(i,k):

(tskill(j,k)-wskill(i,k))*assigned(i,j))));

!Maximize Worker Preference;

 Max = @sum(workers(i):

 @sum(tasks(j):

 @sum(skills(k)|tskill(j,k)#GT#wskill(i,k):

wpref(i,k)*(tskill(j,k)-

wskill(i,k))*assigned(i,j))));

54

 @FOR(workers(i):

 @For(tasks(j):

 @For(skills(k)|tskill(j,k)#GT#0:

wskill(i,k)*notrain(i,k) +

 @Sum(levels(m)|m#GT#wskill(i,k):m*moretrain(i,k

,wskill(i,k),m)) >= tskill(j,k)*assigned(i,j))));

 @FOR(workers(i):

 @FOR(skills(k): notrain(i,k)+

 @Sum(levels(m)|m#GT#wskill(i,k):moretrain(i,k,w

skill(i,k),m)) = 1));

 @FOR(tasks(j):

 @Sum(workers(i):assigned(i,j)) = 1);

 @FOR(workers(i):

 @Sum(tasks(j):assigned(i,j)) >= 1);

 @FOR(workers(i):

 @Sum(tasks(j):ttime(j)*assigned(i,j))+

 @Sum(skills(k):@sum(levels(m):trtime(k,wskill(i

,k),m)*moretrain(i,k,wskill(i,k),m)))<=wcap(i));

 @FOR(workers(i):

 @FOR(tasks(j): @BIN(assigned(i,j))));

 @FOR(workers(i):

 @FOR(skills(k): @BIN(notrain(i,k))));

 @For(moretraining(i,k,l,m)|l#EQ#wskill(i,k):

@BIN(moretrain(i,k,l,m)));

End

55

APPENDIX E—

Code for Input Sheet

'This command button will setup the input sheet for the user

Public Sub InputButton_Click()

Dim numworkers As Single

Dim numskills As Single

Dim numtasks As Single

Dim numSolns As Single

Dim MinCostSwitch As Single

Dim MinSkillGapSwitch As Single

Dim MinPreferenceSwitch As Single

Dim MinOverTimeSwitch As Single

Dim TotalNumObjFn As Single

'initial values

TotalNumObjFn = 3

MinOverTimeSwitch = 0

'Clears all the sheets (except parameters)

Sheets("Input").Cells.Clear

Sheets("Results Summary").Cells.Clear

'Inputs setup values (number of workers/skills/tasks and which Objective Functions will be considered

56

Sheets("Input").Select

numworkers = Application.InputBox("Input number of workers", "")

numskills = Application.InputBox("Input number of skills", "")

numtasks = Application.InputBox("Input number of tasks", "")

numSolns = Application.InputBox("Input number of initial solutions to store", "")

'Insert values

ActiveSheet.Cells(1, 1).Value = "PROBLEM SIZE"

ActiveSheet.Cells(2, 1).Value = "Number of workers"

ActiveSheet.Cells(3, 1).Value = "Number of skills"

ActiveSheet.Cells(4, 1).Value = "Number of tasks"

ActiveSheet.Cells(5, 1).Value = "Numer of initial Solutions"

ActiveSheet.Cells(6, 1).Value = "OBJECTIVE FUNCTIONS"

ActiveSheet.Cells(7, 1).Value = "Min Training Cost?"

ActiveSheet.Cells(8, 1).Value = "Max Amount of Training?"

ActiveSheet.Cells(9, 1).Value = "Max Worker Preference?"

'ActiveSheet.Cells(10, 1).Value = "Min OverTime?"

ActiveSheet.Cells(2, 2).Value = numworkers

ActiveSheet.Cells(3, 2).Value = numskills

ActiveSheet.Cells(4, 2).Value = numtasks

ActiveSheet.Cells(5, 2).Value = numSolns

ActiveSheet.Cells(7, 2).Value = MinCostSwitch

ActiveSheet.Cells(8, 2).Value = MinSkillGapSwitch

ActiveSheet.Cells(9, 2).Value = MinPreferenceSwitch

'ActiveSheet.Cells(10, 2).Value = MinOverTimeSwitch

'Add some colors to these ranges

ActiveSheet.Range("A1", Cells(TotalNumObjFn + 6, 1)).Select

 With Selection.Interior

 .ColorIndex = 39

 .Pattern = xlSolid

57

 End With

'Create Worker Skill Matrix

For i = 1 To numworkers

 For k = 1 To numskills

 ActiveSheet.Cells(TotalNumObjFn + 8, 1).Value = "Worker Skill Matrix"

 ActiveSheet.Cells(i + TotalNumObjFn + 9, 1).Value = "Worker " & i

 If k < 6 Then ActiveSheet.Cells(TotalNumObjFn + 9, k + 1).Value = "Skill " & k

 If k >= 6 Then ActiveSheet.Cells(TotalNumObjFn + 9, k + 1).Value = k

 Next k

Next i

 'title coloring

 ActiveSheet.Cells(TotalNumObjFn + 8, 1).Select

 With Selection.Interior

 .ColorIndex = 36

 .Pattern = xlSolid

 End With

 'skill coloring

 ActiveSheet.Range(Cells(TotalNumObjFn + 9, 2), Cells(TotalNumObjFn + 9, numskills + 1)).Select

 With Selection.Interior

 .ColorIndex = 40

 .Pattern = xlSolid

 End With

 'worker coloring

 ActiveSheet.Range(Cells(TotalNumObjFn + 10, 1), Cells(TotalNumObjFn + numworkers + 9, 1)).Select

 With Selection.Interior

 .ColorIndex = 34

 .Pattern = xlSolid

 End With

58

'Create Task Skill Matrix

For j = 1 To numtasks

 For k = 1 To numskills

 ActiveSheet.Cells(11 + TotalNumObjFn + numworkers, 1).Value = "Task Skill Matrix"

 ActiveSheet.Cells(12 + TotalNumObjFn + numworkers + j, 1).Value = "Task " & j

 If k < 6 Then ActiveSheet.Cells(12 + TotalNumObjFn + numworkers, k + 1).Value = "Skill " & k

 If k >= 6 Then ActiveSheet.Cells(12 + TotalNumObjFn + numworkers, k + 1).Value = k

 Next k

Next j

 ActiveSheet.Range(Cells(11 + TotalNumObjFn + numworkers, 1), Cells(11 + TotalNumObjFn + numworkers, 1)).Select

 With Selection.Interior

 .ColorIndex = 36

 .Pattern = xlSolid

 End With

 ActiveSheet.Range(Cells(12 + TotalNumObjFn + numworkers, 2), Cells(12 + TotalNumObjFn + numworkers, numskills +

1)).Select

 With Selection.Interior

 .ColorIndex = 40

 .Pattern = xlSolid

 End With

 ActiveSheet.Range(Cells(13 + TotalNumObjFn + numworkers, 1), Cells(12 + TotalNumObjFn + numworkers + numtasks,

1)).Select

 With Selection.Interior

 .ColorIndex = 38

 .Pattern = xlSolid

 End With

59

'Create Task Time Matrix

For j = 1 To numtasks

 ActiveSheet.Cells(14 + TotalNumObjFn + numtasks + numworkers, 2).Value = "Task Time"

 ActiveSheet.Cells(14 + TotalNumObjFn + numtasks + numworkers + j, 1).Value = "Task " & j

Next j

 ActiveSheet.Range(Cells(14 + TotalNumObjFn + numworkers + numtasks, 2), Cells(14 + TotalNumObjFn + numworkers +

numtasks, 2)).Select

 With Selection.Interior

 .ColorIndex = 36

 .Pattern = xlSolid

 End With

 ActiveSheet.Range(Cells(15 + TotalNumObjFn + numworkers + numtasks, 1), Cells(14 + TotalNumObjFn + numworkers + 2 *

numtasks, 1)).Select

 With Selection.Interior

 .ColorIndex = 38

 .Pattern = xlSolid

 End With

'Create Worker Capacity Matrix

For i = 1 To numworkers

 ActiveSheet.Cells(16 + TotalNumObjFn + 2 * numtasks + numworkers, 2).Value = "Worker Capacity"

 ActiveSheet.Cells(16 + TotalNumObjFn + 2 * numtasks + numworkers + i, 1).Value = "Worker " & i

Next i

 ActiveSheet.Range(Cells(16 + TotalNumObjFn + numworkers + 2 * numtasks, 2), Cells(16 + TotalNumObjFn + numworkers + 2 *

numtasks, 3)).Select

 With Selection.Interior

 .ColorIndex = 36

 .Pattern = xlSolid

60

 End With

 ActiveSheet.Range(Cells(17 + TotalNumObjFn + numworkers + 2 * numtasks, 1), Cells(16 + TotalNumObjFn + 2 * numworkers +

2 * numtasks, 1)).Select

 With Selection.Interior

 .ColorIndex = 34

 .Pattern = xlSolid

 End With

'Create Training Cost Matrix

For i = 1 To numskills

 For j = 1 To 4

 ActiveSheet.Cells(18 + TotalNumObjFn + 2 * numtasks + 2 * numworkers, 1).Value = "Cost to Train Matrix"

 ActiveSheet.Cells(19 + TotalNumObjFn + 2 * numtasks + 2 * numworkers + i, 1).Value = "Skill " & i

 ActiveSheet.Cells(19 + TotalNumObjFn + 2 * numtasks + 2 * numworkers, 1 + j).Value = "Level " & j & " to " & j + 1

 Next j

Next i

 ActiveSheet.Range(Cells(18 + TotalNumObjFn + 2 * numworkers + 2 * numtasks, 1), Cells(18 + TotalNumObjFn + 2 *

numworkers + 2 * numtasks, 1)).Select

 With Selection.Interior

 .ColorIndex = 36

 .Pattern = xlSolid

 End With

 ActiveSheet.Range(Cells(20 + TotalNumObjFn + 2 * numworkers + 2 * numtasks, 1), Cells(19 + TotalNumObjFn + 2 *

numworkers + 2 * numtasks + numskills, 1)).Select

 With Selection.Interior

 .ColorIndex = 40

 .Pattern = xlSolid

 End With

61

 ActiveSheet.Range(Cells(19 + TotalNumObjFn + 2 * numworkers + 2 * numtasks, 2), Cells(19 + TotalNumObjFn + 2 *

numworkers + 2 * numtasks, 5)).Select

 With Selection.Interior

 .ColorIndex = 35

 .Pattern = xlSolid

 End With

'Create Training Time Matrix

For i = 1 To numskills

 For j = 1 To 4

 ActiveSheet.Cells(21 + TotalNumObjFn + 2 * numtasks + 2 * numworkers + numskills, 1).Value = "Time to Train Matrix"

 ActiveSheet.Cells(22 + TotalNumObjFn + 2 * numtasks + 2 * numworkers + numskills + i, 1).Value = "Skill " & i

 ActiveSheet.Cells(22 + TotalNumObjFn + 2 * numtasks + 2 * numworkers + numskills, 1 + j).Value = "Level " & j & " to " & j

+ 1

 Next j

Next i

 ActiveSheet.Range(Cells(21 + TotalNumObjFn + 2 * numworkers + 2 * numtasks + numskills, 1), Cells(21 + TotalNumObjFn + 2

* numworkers + 2 * numtasks + numskills, 1)).Select

 With Selection.Interior

 .ColorIndex = 36

 .Pattern = xlSolid

 End With

 ActiveSheet.Range(Cells(23 + TotalNumObjFn + 2 * numworkers + 2 * numtasks + numskills, 1), Cells(22 + TotalNumObjFn + 2

* numworkers + 2 * numtasks + 2 * numskills, 1)).Select

 With Selection.Interior

 .ColorIndex = 40

 .Pattern = xlSolid

 End With

62

 ActiveSheet.Range(Cells(22 + TotalNumObjFn + 2 * numworkers + 2 * numtasks + numskills, 2), Cells(22 + TotalNumObjFn + 2

* numworkers + 2 * numtasks + numskills, 5)).Select

 With Selection.Interior

 .ColorIndex = 35

 .Pattern = xlSolid

 End With

'Create Worker Skill Preference Matrix

For i = 1 To numworkers

 For j = 1 To numskills

 ActiveSheet.Cells(24 + TotalNumObjFn + 2 * numtasks + 2 * numworkers + 2 * numskills, 1).Value = "Worker Preference

Matrix"

 ActiveSheet.Cells(25 + TotalNumObjFn + 2 * numtasks + 2 * numworkers + 2 * numskills + i, 1).Value = "Worker " & i

 If j < 6 Then ActiveSheet.Cells(25 + TotalNumObjFn + 2 * numtasks + 2 * numworkers + 2 * numskills, j + 1).Value = "Skill "

& j

 If j >= 6 Then ActiveSheet.Cells(25 + TotalNumObjFn + 2 * numtasks + 2 * numworkers + 2 * numskills, j + 1).Value = j

 Next j

Next i

 ActiveSheet.Range(Cells(24 + TotalNumObjFn + 2 * numworkers + 2 * numtasks + 2 * numskills, 1), Cells(24 + TotalNumObjFn

+ 2 * numworkers + 2 * numtasks + 2 * numskills, 1)).Select

 With Selection.Interior

 .ColorIndex = 36

 .Pattern = xlSolid

 End With

 ActiveSheet.Range(Cells(26 + TotalNumObjFn + 2 * numworkers + 2 * numtasks + 2 * numskills, 1), Cells(26 + TotalNumObjFn

+ 3 * numworkers + 2 * numtasks + 2 * numskills - 1, 1)).Select

 With Selection.Interior

 .ColorIndex = 34

 .Pattern = xlSolid

63

 End With

 ActiveSheet.Range(Cells(25 + TotalNumObjFn + 2 * numworkers + 2 * numtasks + 2 * numskills, 2), Cells(25 + TotalNumObjFn

+ 2 * numworkers + 2 * numtasks + 2 * numskills, numskills + 1)).Select

 With Selection.Interior

 .ColorIndex = 40

 .Pattern = xlSolid

 End With

End Sub

''There will be a sub similar to this one for each of the objectives.

''A separate procedure will simply call each of them needed

'This command button will find the initial solution for Minimum Training Cost

Public Sub InitalTrainingCostSoln_click()

Dim workerskill() As Single, oworkerskill() As Single

Dim taskskill() As Single, otaskskill() As Single

Dim tasktime() As Single, otasktime() As Single

Dim workercapacity() As Single, oworkercapacity() As Single

Dim traincost() As Single, otraincost() As Single

Dim traintime() As Single, otraintime() As Single

Dim workerassign() As Single

Dim workertaskcost() As Single, oworkertaskcost() As Single

Dim workertasktime() As Single, oworkertasktime() As Single

Dim workertaskSgap() As Single, oworkertaskSgap() As Single

Dim workertaskPref() As Single, oworkertaskPref() As Single

Dim Prefmatrix() As Single

Dim taskassigned() As Single

64

Dim tcost() As Single

Dim ttime() As Single

Dim available() As Single

Dim bestworkerassign() As Single

Dim numworkers As Single, numskills As Single, numtasks As Single, numSolns As Single

Dim totaltaskcost() As Single

Dim totalworkercost() As Single

Dim totaltaskSgap() As Single

Dim totalworkerSgap() As Single

Dim totaltaskPref() As Single

Dim totalworkerPref() As Single

Dim workerphase1() As Single

Dim cellrow As Single

Dim trainingneeds() As Single

Dim skilltrainingneeds() As Single

'everything below is new:

Dim bestCost() As Single

Dim bestSgap() As Single

Dim bestPref() As Single

Dim TotalNumObjFn As Single

TotalNumObjFn = 3

Sheets("Results Summary").Cells.Clear

Sheets("Parameters").Select

p1perprior = ActiveSheet.Cells(1, 2).Value

p1perrestrict = ActiveSheet.Cells(2, 2).Value

65

perprior = ActiveSheet.Cells(3, 2).Value

perrestrict = ActiveSheet.Cells(4, 2).Value

numiter = ActiveSheet.Cells(5, 2).Value

phase1_on = 1 'this can be used as a switch to turn phase 1 on or off

Sheets("Input").Select

numworkers = ActiveSheet.Cells(2, 2).Value

numskills = ActiveSheet.Cells(3, 2).Value

numtasks = ActiveSheet.Cells(4, 2).Value

numSolns = ActiveSheet.Cells(5, 2).Value

'initialize arrays

ReDim workerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim oworkerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim taskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim otaskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim tasktime(0 To numtasks + 1) As Single

ReDim otasktime(0 To numtasks + 1) As Single

ReDim workercapacity(0 To numworkers + 1) As Single

ReDim oworkercapacity(0 To numworkers + 1) As Single

ReDim traincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim traintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

'added a dimension to the two matrices below

ReDim workerassign(0 To 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim bestworkerassign(0 To numSolns + 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskcost(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskcost(0 To numworkers + 1, 0 To numtasks + 1) As Single

66

ReDim workertaskSgap(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskSgap(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskPref(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskPref(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim Prefmatrix(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim workertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim taskassigned(0 To numtasks + 1) As Single

ReDim tcost(0 To numskills + 1, 0 To 5) As Single

ReDim ttime(0 To numskills + 1, 0 To 5) As Single

ReDim available(0 To numworkers * numtasks + 1, 0 To 3) As Single

ReDim totaltaskcost(0 To numtasks + 1) As Single

ReDim totalworkercost(0 To numworkers + 1) As Single

ReDim totaltaskSgap(0 To numtasks + 1) As Single

ReDim totalworkerSgap(0 To numworkers + 1) As Single

ReDim totaltaskPref(0 To numtasks + 1) As Single

ReDim totalworkerPref(0 To numworkers + 1) As Single

ReDim workerphase1(0 To numworkers + 1) As Single

ReDim trainingneeds(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim skilltrainingneeds(0 To numskills + 1, 0 To 5) As Single

'new one below:

ReDim bestCost(0 To numSolns + 20) As Single

ReDim bestSgap(0 To numSolns + 20) As Single

ReDim bestPref(0 To numSolns + 20) As Single

 starttime = Timer

For a = 0 To numSolns + 1

 bestCost(a) = 0

 bestSgap(a) = 0

 bestPref(a) = 0

67

 For b = 0 To numworkers + 1

 For c = 0 To numtasks + 1

 bestworkerassign(a, b, c) = 0

 Next c

 Next b

Next a

For b = 0 To numworkers + 1

 workercapacity(b) = 0

 oworkercapacity(b) = 0

 For k = 0 To numskills + 1

 workerskill(b, k) = 0

 oworkerskill(b, k) = 0

 trainingneeds(b, k) = 0

 Next k

Next b

For b = 0 To numworkers * numtasks + 1

 For k = 0 To 3

 available(b, k) = 0

 Next k

Next b

For b = 0 To numtasks + 1

 tasktime(b) = 0

 otasktime(b) = 0

 taskassigned(b) = 0

 totaltaskcost(b) = 0

 totaltaskSgap(b) = 0

68

 totaltaskPref(b) = 0

 For k = 0 To numskills + 1

 taskskill(b, k) = 0

 otaskskill(b, k) = 0

 Next k

Next b

For i = 0 To numskills + 1

 For j = 0 To 5

 tcost(i, j) = 0

 ttime(i, j) = 0

 skilltrainingneeds(i, j) = 0

 For k = 0 To 5

 traincost(i, j, k) = 0

 traintime(i, j, k) = 0

 otraincost(i, j, k) = 0

 otraintime(i, j, k) = 0

 Next k

 Next j

Next i

For b = 1 To numworkers

 totalworkercost(b) = 0

 totalworkerSgap(b) = 0

 totalworkerPref(b) = 0

 For k = 1 To numtasks

 workerassign(1, b, k) = 0

 workertaskcost(b, k) = 0

 oworkertaskcost(b, k) = 0

 workertaskSgap(b, k) = 0

 oworkertaskSgap(b, k) = 0

69

 workertaskPref(b, k) = 0

 oworkertaskPref(b, k) = 0

 Next k

Next b

'read in data from file

For b = 1 To numworkers

 For k = 1 To numskills

 oworkerskill(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + b, 1 + k)

 Next k

Next b

For b = 1 To numtasks

 For k = 1 To numskills

 otaskskill(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + b, 1 + k)

 Next k

Next b

For b = 1 To numtasks

 otasktime(b) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + b, 2)

Next b

For b = 1 To numworkers

 oworkercapacity(b) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + b, 2)

Next b

For i = 1 To numskills

 For j = 2 To 5

 tcost(i, j) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3 + i, j)

 Next j

70

Next i

For i = 1 To numskills

 For j = 2 To 5

 ttime(i, j) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3 +

numskills + 3 + i, j)

 Next j

Next i

For b = 1 To numworkers

 For k = 1 To numskills

 Prefmatrix(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3

+ numskills + 3 + numskills + 3 + b, k + 1)

 Next k

Next b

'done reading in values from the excel sheet

For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 If j < k And k > 1 Then

 otraincost(i, j, k) = otraincost(i, j, k - 1) + tcost(i, k)

 End If

 Next k

 Next j

Next i

For i = 1 To numskills

 For j = 1 To 5

71

 For k = 1 To 5

 If j < k And k > 1 Then

 otraintime(i, j, k) = otraintime(i, j, k - 1) + ttime(i, k)

 End If

 Next k

 Next j

Next i

'find task cost and training time for each worker for each task

For i = 1 To numworkers

 For j = 1 To numtasks

 oworkertasktime(i, j) = otasktime(j)

 For k = 1 To numskills

 If oworkerskill(i, k) < otaskskill(j, k) And otaskskill(j, k) > 1 Then

 oworkertaskcost(i, j) = oworkertaskcost(i, j) + otraincost(k, oworkerskill(i, k), otaskskill(j, k))

 oworkertaskSgap(i, j) = oworkertaskSgap(i, j) + (otaskskill(j, k) - oworkerskill(i, k))

 oworkertaskPref(i, j) = oworkertaskPref(i, j) + Prefmatrix(i, k) * (otaskskill(j, k) - oworkerskill(i, k))

 oworkertasktime(i, j) = oworkertasktime(i, j) + otraintime(k, oworkerskill(i, k), otaskskill(j, k))

 End If

 Next k

 Next j

Next i

For j = 1 To numtasks

 For i = 1 To numworkers

 totaltaskcost(j) = totaltaskcost(j) + oworkertaskcost(i, j)

 totaltaskSgap(j) = totaltaskSgap(j) + oworkertaskSgap(i, j)

 totaltaskPref(j) = totaltaskPref(j) + oworkertaskPref(i, j)

 Next i

Next j

72

For i = 1 To numworkers

 For j = 1 To numtasks

 totalworkercost(i) = totalworkercost(i) + oworkertaskcost(i, j)

 totalworkerSgap(i) = totalworkerSgap(i) + oworkertaskSgap(i, j)

 totalworkerPref(i) = totalworkerPref(i) + oworkertaskPref(i, j)

 Next j

Next i

''

warned1 = 0

warned2 = 0

For a = 1 To numSolns + 1

 bestCost(a) = 9999999

 bestSgap(a) = -9999999

 bestPref(a) = -9999999

Next a

bestCost(0) = -9999999

bestSgap(0) = 9999999

bestPref(0) = 9999999

For r = 1 To numiter

 'copy original data into matrices

 For b = 1 To numworkers

 workercapacity(b) = oworkercapacity(b)

 For k = 1 To numskills

 workerskill(b, k) = oworkerskill(b, k)

73

 Next k

 Next b

 For b = 1 To numtasks

 tasktime(b) = otasktime(b)

 taskassigned(b) = 0

 For k = 1 To numskills

 taskskill(b, k) = otaskskill(b, k)

 Next k

 Next b

 For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 traincost(i, j, k) = otraincost(i, j, k)

 traintime(i, j, k) = otraintime(i, j, k)

 Next k

 Next j

 Next i

 For b = 1 To numworkers

 For k = 1 To numtasks

 workerassign(1, b, k) = 0

 workertaskcost(b, k) = oworkertaskcost(b, k)

 workertaskSgap(b, k) = oworkertaskSgap(b, k)

 workertaskPref(b, k) = oworkertaskPref(b, k)

 workertasktime(b, k) = oworkertasktime(b, k)

 Next k

 Next b

 For b = 1 To numworkers

74

 workerphase1(b) = 0

 Next b

 totalcost = 0

 totalsgap = 0

 totalpref = 0

 numtaskassigned = 0

 If phase1_on = 1 Then 'this can be used as a switch to turn phase 1 on or off

 'start phase 1 - each worker assigned 1 task

 Do While numtaskassigned < numworkers

 'find lowest skilled worker - worker with the highest totalcost

 'make sure they are not already assigned

 maxcost = -55

 For i = 1 To numworkers

 If workerphase1(i) = 0 And totalworkercost(i) > maxcost Then

 maxcost = totalworkercost(i)

 maxcostworker = i

 End If

 Next i

 'find lowest cost task for maxcost worker - make sure task not already assigned

 'make sure worker has enough capacity

 mincost = 99999999

 mincosttask = 0

 For j = 1 To numtasks

 If taskassigned(j) = 0 And workertasktime(maxcostworker, j) <= workercapacity(maxcostworker) And

workertaskcost(maxcostworker, j) < mincost Then

 mincost = workertaskcost(maxcostworker, j)

75

 mincosttask = j

 End If

 Next j

 If mincosttask = 0 Then

 If warned1 = 0 Then

 response = MsgBox("no feasible solution - not enough worker capacity", vbOKOnly, "Capacity Error")

 warned1 = 1

 End If

 'If response = vbOK Then

 ' Stop

 'End If

 totalcost = 99999999

 numtaskassigned = numtasks + 1

 End If

 Randomize

 priorrnd = Round(((100 - 1) * Rnd) + 1)

 'make the best assignment

 If priorrnd <= p1perprior Then

 'assign maxcostworker to mincost task

 totalcost = totalcost + workertaskcost(maxcostworker, mincosttask)

 totalsgap = totalsgap + workertaskSgap(maxcostworker, mincosttask)

 totalpref = totalpref + workertaskPref(maxcostworker, mincosttask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, maxcostworker, mincosttask) = 1

 taskassigned(mincosttask) = 1

 workerphase1(maxcostworker) = 1

76

 workercapacity(maxcostworker) = workercapacity(maxcostworker) - workertasktime(maxcostworker, mincosttask)

 assignedworker = maxcostworker

 assignedtask = mincosttask

 End If

 'make a near-optimal assignment

 If priorrnd > p1perprior Then

 'form available list and choose assigned worker from available list

 numonlist = 0

 For i = 1 To numworkers

 If workerphase1(i) = 0 And totalworkercost(i) >= maxcost * (1 - (p1perrestrict / 100)) Then

 For j = 1 To numtasks

 If taskassigned(j) = 0 And workertaskcost(i, j) <= mincost * (1 + (p1perrestrict / 100)) And workertasktime(i, j)

<= workercapacity(i) Then

 numonlist = numonlist + 1

 available(numonlist, 1) = i

 available(numonlist, 2) = j

 End If

 Next j

 End If

 Next i

 'determine random assignment from the candidate list created above

 Randomize

 restrictrnd = Round(((numonlist - 1) * Rnd) + 1)

 assignedworker = available(restrictrnd, 1)

 assignedtask = available(restrictrnd, 2)

 'increase each objective function

 totalcost = totalcost + workertaskcost(assignedworker, assignedtask)

 totalsgap = totalsgap + workertaskSgap(assignedworker, assignedtask)

77

 totalpref = totalpref + workertaskPref(assignedworker, assignedtask)

 'adjust counter variables

 numtaskassigned = numtaskassigned + 1

 workerassign(1, assignedworker, assignedtask) = 1

 taskassigned(assignedtask) = 1

 workerphase1(assignedworker) = 1

 'reduce assigned workers capacity

 workercapacity(assignedworker) = workercapacity(assignedworker) - workertasktime(assignedworker, assignedtask)

 End If

 'update workerskills for assignedworker based on training received for assignedtask

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(assignedtask, k) Then

 workerskill(assignedworker, k) = taskskill(assignedtask, k)

 End If

 Next k

 'update workertaskcost and workertasktime for assignedworker

 For j = 1 To numtasks

 If taskassigned(j) = 0 Then

 'zero out all the objective function values and recalculate them with new skill levels determined above

 workertaskcost(assignedworker, j) = 0

 workertaskSgap(assignedworker, j) = 0

 workertaskPref(assignedworker, j) = 0

 workertasktime(assignedworker, j) = otasktime(j)

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(j, k) And taskskill(j, k) > 1 Then

 workertaskcost(assignedworker, j) = workertaskcost(assignedworker, j) + traincost(k, workerskill(assignedworker,

k), taskskill(j, k))

78

 workertaskSgap(assignedworker, j) = workertaskSgap(assignedworker, j) + (taskskill(j, k) -

workerskill(assignedworker, k))

 workertaskPref(assignedworker, j) = workertaskPref(assignedworker, j) + Prefmatrix(assignedworker, k) *

(taskskill(j, k) - workerskill(assignedworker, k))

 workertasktime(assignedworker, j) = workertasktime(assignedworker, j) + traintime(k,

workerskill(assignedworker, k), taskskill(j, k))

 End If

 Next k

 End If

 Next j

 Loop

 End If 'If phase1_on = 1

'end of phase 1 switch

'''

'''

 'start phase 2 - assign remaining tasks

 'very similar to phase 1, just making the next assignment a slightly different way

 Do While numtaskassigned < numtasks 'repeat until all tasks assigned

 'find highest cost task - make sure it is not already assigned

 maxcost = -55

 For j = 1 To numtasks

 If taskassigned(j) = 0 And totaltaskcost(j) > maxcost Then

 maxcost = totaltaskcost(j)

 maxcosttask = j

 End If

 Next j

79

 'find lowest cost worker for highest cost task - make sure worker has enough capacity

 mincost = 9999999

 mincostworker = 0

 For i = 1 To numworkers

 If workertasktime(i, maxcosttask) <= workercapacity(i) And workertaskcost(i, maxcosttask) < mincost Then

 mincost = workertaskcost(i, maxcosttask)

 mincostworker = i

 End If

 Next i

 Randomize

 priorrnd = Round(((100 - 1) * Rnd) + 1)

 If mincostworker > 0 Then

 If priorrnd <= perprior Then

 'assign mincostworker to maxcost task; update objective function values

 totalcost = totalcost + workertaskcost(mincostworker, maxcosttask)

 totalsgap = totalsgap + workertaskSgap(mincostworker, maxcosttask)

 totalpref = totalpref + workertaskPref(mincostworker, maxcosttask)

 'update counter variables

 numtaskassigned = numtaskassigned + 1

 workerassign(1, mincostworker, maxcosttask) = 1

 taskassigned(maxcosttask) = 1

 workercapacity(mincostworker) = workercapacity(mincostworker) - workertasktime(mincostworker, maxcosttask)

 assignedworker = mincostworker

 assignedtask = maxcosttask

 End If

 If priorrnd > perprior Then

80

 'form available list and choose assigned worker from available list

 numonlist = 0

 For j = 1 To numtasks

 If totaltaskcost(j) >= maxcost * (1 - (perrestrict / 100)) And taskassigned(j) = 0 Then

 For i = 1 To numworkers

 If workertaskcost(i, j) <= mincost * (1 + (perrestrict / 100)) And workertasktime(i, j) <= workercapacity(i) Then

 numonlist = numonlist + 1

 available(numonlist, 1) = i

 available(numonlist, 2) = j

 End If

 Next i

 End If

 Next j

 Randomize

 restrictrnd = Round(((numonlist - 1) * Rnd) + 1)

 assignedworker = available(restrictrnd, 1)

 assignedtask = available(restrictrnd, 2)

 totalcost = totalcost + workertaskcost(assignedworker, assignedtask)

 totalsgap = totalsgap + workertaskSgap(assignedworker, assignedtask)

 totalpref = totalpref + workertaskPref(assignedworker, assignedtask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, assignedworker, assignedtask) = 1

 taskassigned(assignedtask) = 1

 workercapacity(assignedworker) = workercapacity(assignedworker) - workertasktime(assignedworker, assignedtask)

 End If

 'update workerskills for assignedworker based on training received for assignedtask

 For k = 1 To numskills

81

 If workerskill(assignedworker, k) < taskskill(assignedtask, k) Then

 workerskill(assignedworker, k) = taskskill(assignedtask, k)

 End If

 Next k

 'update workertaskcost and workertasktime for assignedworker

 For j = 1 To numtasks

 If taskassigned(j) = 0 Then

 workertaskcost(assignedworker, j) = 0

 workertaskSgap(assignedworker, j) = 0

 workertaskPref(assignedworker, j) = 0

 workertasktime(assignedworker, j) = otasktime(j)

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(j, k) And taskskill(j, k) > 1 Then

 workertaskcost(assignedworker, j) = workertaskcost(assignedworker, j) + traincost(k, workerskill(assignedworker,

k), taskskill(j, k))

 workertaskSgap(assignedworker, j) = workertaskSgap(assignedworker, j) + (taskskill(j, k) -

workerskill(assignedworker, k))

 workertaskPref(assignedworker, j) = workertaskPref(assignedworker, j) + Prefmatrix(assignedworker, k) *

(taskskill(j, k) - workerskill(assignedworker, k))

 workertasktime(assignedworker, j) = workertasktime(assignedworker, j) + traintime(k, workerskill(assignedworker,

k), taskskill(j, k))

 End If

 Next k

 End If

 Next j

 End If

 If mincostworker = 0 Then

82

 If warned2 = 0 Then

 response = MsgBox("no feasible solution - not enough worker capacity", vbOKOnly, "Capacity Error")

 warned2 = 1

 End If

 'If response = vbOK Then

 ' Stop

 'End If

 totalcost = 99999999

 numtaskassigned = numtasks + 1

 End If

 Loop

'eliminate duplicate solutions by setting totalcost to M

For a = 1 To numSolns

 sameassign = 0

 If totalcost = bestCost(a) Then

 For b = 1 To numworkers

 For c = 1 To numtasks

 If workerassign(1, b, c) = bestworkerassign(a, b, c) Then

 sameassign = sameassign + 1

 'try adding in: Else, exit the entire loop.

 End If

 Next c

 Next b

 End If

 If sameassign = numworkers * numtasks Then

 totalcost = 999999

 End If

Next a

83

'check to see if totalcost is one of the top solutions. if so, everything behind it gets bumped

'and totalcost replaces the top solution that it beats out (a determines this)

If totalcost <= bestCost(numSolns) Then

 For a = numSolns To 1 Step -1

 'determines where in the list the new solution goes

 If totalcost <= bestCost(a) And totalcost > bestCost(a - 1) Then

 b = numSolns

 c = a

 'move the lower solutions back one rank

 Do While c < numSolns

 bestCost(b) = bestCost(b - 1)

 bestSgap(b) = bestSgap(b - 1)

 bestPref(b) = bestPref(b - 1)

 For i = 1 To numworkers

 For j = 1 To numtasks

 bestworkerassign(b, i, j) = bestworkerassign(b - 1, i, j)

 Next j

 Next i

 c = c + 1

 b = b - 1

 Loop

 'set the new solution into its rank

 bestCost(a) = totalcost

 bestSgap(a) = totalsgap

 bestPref(a) = totalpref

 For i = 1 To numworkers

 For j = 1 To numtasks

 bestworkerassign(a, i, j) = workerassign(1, i, j)

 Next j

 Next i

 End If

84

 Next a

End If

 'Print results

 Sheets("Results Summary").Select

 ActiveSheet.Cells(1, 1) = "Best Solution Costs"

 ActiveSheet.Cells(2, 1) = "Training Amount"

 ActiveSheet.Cells(3, 1) = "Worker Preference"

 For a = 1 To numSolns

 ActiveSheet.Cells(1, a + 1) = bestCost(a)

 Next a

 For a = 1 To numSolns

 ActiveSheet.Cells(2, a + 1) = bestSgap(a)

 Next a

 For a = 1 To numSolns

 ActiveSheet.Cells(3, a + 1) = bestPref(a)

 Next a

Next r

endtime = Timer

totaltime = endtime - starttime

Sheets("Results Summary").Select

ActiveSheet.Cells(1, numSolns + 3) = "Run Time"

ActiveSheet.Cells(1, numSolns + 4) = totaltime

'Print to Results Summary sheet

Sheets("Results Summary").Select

 'ActiveSheet.Cells(1, 1) = "Best Solution Costs"

 'ActiveSheet.Cells(1, 2) = bestsolution(1)

85

 ActiveSheet.Cells(6, 1) = "Solution #:"

 For a = 1 To numSolns

 ActiveSheet.Cells(6, 2 * a) = a

 Next a

 ActiveSheet.Cells(5, 1) = "Worker to Task Assignments"

 ActiveSheet.Cells(8 + numtasks, 1) = "Total Cost"

 ActiveSheet.Cells(9 + numtasks, 1) = "Total Skill Levels"

 ActiveSheet.Cells(10 + numtasks, 1) = "Total Preference"

 b = 1

 For a = 1 To numSolns * 2

 ActiveSheet.Cells(7, a) = "Worker"

 ActiveSheet.Cells(7, a + 1) = "Task"

 cellrow = 8

 For i = 1 To numworkers

 For j = 1 To numtasks

 If bestworkerassign(b, i, j) = 1 Then

 ActiveSheet.Cells(cellrow, a) = i

 ActiveSheet.Cells(cellrow, a + 1) = j

 cellrow = cellrow + 1

 End If

 Next j

 Next i

 ActiveSheet.Cells(8 + numtasks, a + 1) = bestCost(b)

 ActiveSheet.Cells(9 + numtasks, a + 1) = bestSgap(b)

 ActiveSheet.Cells(10 + numtasks, a + 1) = bestPref(b)

 b = b + 1

 a = a + 1

 Next a

 ActiveSheet.Range("A1").Select

86

 With Selection.Interior

 .ColorIndex = 35

 .Pattern = xlSolid

 End With

 ActiveSheet.Range("A4:B4").Select

 With Selection.Interior

 .ColorIndex = 36

 .Pattern = xlSolid

 End With

87

Public Sub InitialSkillGapSoln_click()

Dim workerskill() As Single, oworkerskill() As Single

Dim taskskill() As Single, otaskskill() As Single

Dim tasktime() As Single, otasktime() As Single

Dim workercapacity() As Single, oworkercapacity() As Single

Dim traincost() As Single, otraincost() As Single

Dim traintime() As Single, otraintime() As Single

Dim workerassign() As Single

Dim workertaskcost() As Single, oworkertaskcost() As Single

Dim workertasktime() As Single, oworkertasktime() As Single

Dim workertaskSgap() As Single, oworkertaskSgap() As Single

Dim workertaskPref() As Single, oworkertaskPref() As Single

Dim Prefmatrix() As Single

Dim taskassigned() As Single

Dim tcost() As Single

Dim ttime() As Single

Dim available() As Single

Dim bestworkerassign() As Single

Dim numworkers As Single, numskills As Single, numtasks As Single, numSolns As Single

Dim totaltaskcost() As Single

Dim totalworkercost() As Single

Dim totaltaskSgap() As Single

Dim totalworkerSgap() As Single

Dim totaltaskPref() As Single

Dim totalworkerPref() As Single

Dim workerphase1() As Single

Dim cellrow As Single

Dim trainingneeds() As Single

Dim skilltrainingneeds() As Single

Dim bestCost() As Single

88

Dim bestSgap() As Single

Dim bestPref() As Single

Dim TotalNumObjFn As Single

TotalNumObjFn = 3

Sheets("Parameters").Select

p1perprior = ActiveSheet.Cells(1, 2).Value

p1perrestrict = ActiveSheet.Cells(2, 2).Value

perprior = ActiveSheet.Cells(3, 2).Value

perrestrict = ActiveSheet.Cells(4, 2).Value

numiter = ActiveSheet.Cells(5, 2).Value

phase1_on = 1 'this can be used as a switch to turn phase 1 on or off

Sheets("Input").Select

numworkers = ActiveSheet.Cells(2, 2).Value

numskills = ActiveSheet.Cells(3, 2).Value

numtasks = ActiveSheet.Cells(4, 2).Value

numSolns = ActiveSheet.Cells(5, 2).Value

'initialize arrays

ReDim workerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim oworkerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim taskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim otaskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim tasktime(0 To numtasks + 1) As Single

ReDim otasktime(0 To numtasks + 1) As Single

89

ReDim workercapacity(0 To numworkers + 1) As Single

ReDim oworkercapacity(0 To numworkers + 1) As Single

ReDim traincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim traintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim workerassign(0 To 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim bestworkerassign(0 To numSolns + 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskcost(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskcost(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskSgap(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskSgap(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskPref(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskPref(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim Prefmatrix(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim workertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim taskassigned(0 To numtasks + 1) As Single

ReDim tcost(0 To numskills + 1, 0 To 5) As Single

ReDim ttime(0 To numskills + 1, 0 To 5) As Single

ReDim available(0 To numworkers * numtasks + 1, 0 To 3) As Single

ReDim totaltaskcost(0 To numtasks + 1) As Single

ReDim totalworkercost(0 To numworkers + 1) As Single

ReDim totaltaskSgap(0 To numtasks + 1) As Single

ReDim totalworkerSgap(0 To numworkers + 1) As Single

ReDim totaltaskPref(0 To numtasks + 1) As Single

ReDim totalworkerPref(0 To numworkers + 1) As Single

ReDim workerphase1(0 To numworkers + 1) As Single

ReDim trainingneeds(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim skilltrainingneeds(0 To numskills + 1, 0 To 5) As Single

ReDim bestCost(0 To numSolns + 20) As Single

90

ReDim bestSgap(0 To numSolns + 20) As Single

ReDim bestPref(0 To numSolns + 20) As Single

 starttime = Timer

For a = 0 To numSolns + 1

 bestCost(a) = 0

 bestSgap(a) = 0

 bestPref(a) = 0

 For b = 0 To numworkers + 1

 For c = 0 To numtasks + 1

 bestworkerassign(a, b, c) = 0

 Next c

 Next b

Next a

For b = 0 To numworkers + 1

 workercapacity(b) = 0

 oworkercapacity(b) = 0

 For k = 0 To numskills + 1

 workerskill(b, k) = 0

 oworkerskill(b, k) = 0

 trainingneeds(b, k) = 0

 Next k

Next b

For b = 0 To numworkers * numtasks + 1

 For k = 0 To 3

 available(b, k) = 0

91

 Next k

Next b

For b = 0 To numtasks + 1

 tasktime(b) = 0

 otasktime(b) = 0

 taskassigned(b) = 0

 totaltaskcost(b) = 0

 totaltaskSgap(b) = 0

 totaltaskPref(b) = 0

 For k = 0 To numskills + 1

 taskskill(b, k) = 0

 otaskskill(b, k) = 0

 Next k

Next b

For i = 0 To numskills + 1

 For j = 0 To 5

 tcost(i, j) = 0

 ttime(i, j) = 0

 skilltrainingneeds(i, j) = 0

 For k = 0 To 5

 traincost(i, j, k) = 0

 traintime(i, j, k) = 0

 otraincost(i, j, k) = 0

 otraintime(i, j, k) = 0

 Next k

 Next j

Next i

92

For b = 1 To numworkers

 totalworkercost(b) = 0

 totalworkerSgap(b) = 0

 totalworkerPref(b) = 0

 For k = 1 To numtasks

 workerassign(1, b, k) = 0

 workertaskcost(b, k) = 0

 oworkertaskcost(b, k) = 0

 workertaskSgap(b, k) = 0

 oworkertaskSgap(b, k) = 0

 workertaskPref(b, k) = 0

 oworkertaskPref(b, k) = 0

 Next k

Next b

'read in data from file

For b = 1 To numworkers

 For k = 1 To numskills

 oworkerskill(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + b, 1 + k)

 Next k

Next b

For b = 1 To numtasks

 For k = 1 To numskills

 otaskskill(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + b, 1 + k)

 Next k

Next b

For b = 1 To numtasks

 otasktime(b) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + b, 2)

Next b

93

For b = 1 To numworkers

 oworkercapacity(b) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + b, 2)

Next b

For i = 1 To numskills

 For j = 2 To 5

 tcost(i, j) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3 + i, j)

 Next j

Next i

For i = 1 To numskills

 For j = 2 To 5

 ttime(i, j) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3 +

numskills + 3 + i, j)

 Next j

Next i

For b = 1 To numworkers

 For k = 1 To numskills

 Prefmatrix(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3

+ numskills + 3 + numskills + 3 + b, k + 1)

 Next k

Next b

'done reading in values from the excel sheet

For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

94

 If j < k And k > 1 Then

 otraincost(i, j, k) = otraincost(i, j, k - 1) + tcost(i, k)

 End If

 Next k

 Next j

Next i

For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 If j < k And k > 1 Then

 otraintime(i, j, k) = otraintime(i, j, k - 1) + ttime(i, k)

 End If

 Next k

 Next j

Next i

'find task cost and training time for each worker for each task

For i = 1 To numworkers

 For j = 1 To numtasks

 oworkertasktime(i, j) = otasktime(j)

 For k = 1 To numskills

 If oworkerskill(i, k) < otaskskill(j, k) And otaskskill(j, k) > 1 Then

 oworkertaskcost(i, j) = oworkertaskcost(i, j) + otraincost(k, oworkerskill(i, k), otaskskill(j, k))

 oworkertaskSgap(i, j) = oworkertaskSgap(i, j) + (otaskskill(j, k) - oworkerskill(i, k))

 oworkertaskPref(i, j) = oworkertaskPref(i, j) + Prefmatrix(i, k) * (otaskskill(j, k) - oworkerskill(i, k))

 oworkertasktime(i, j) = oworkertasktime(i, j) + otraintime(k, oworkerskill(i, k), otaskskill(j, k))

 End If

 Next k

 Next j

95

Next i

For j = 1 To numtasks

 For i = 1 To numworkers

 totaltaskcost(j) = totaltaskcost(j) + oworkertaskcost(i, j)

 totaltaskSgap(j) = totaltaskSgap(j) + oworkertaskSgap(i, j)

 totaltaskPref(j) = totaltaskPref(j) + oworkertaskPref(i, j)

 Next i

Next j

For i = 1 To numworkers

 For j = 1 To numtasks

 totalworkercost(i) = totalworkercost(i) + oworkertaskcost(i, j)

 totalworkerSgap(i) = totalworkerSgap(i) + oworkertaskSgap(i, j)

 totalworkerPref(i) = totalworkerPref(i) + oworkertaskPref(i, j)

 Next j

Next i

''

warned3 = 0

For a = 1 To numSolns + 1

 bestCost(a) = 999999999

 bestSgap(a) = -9999999

 bestPref(a) = -9999999

Next a

bestCost(0) = -9999999

bestSgap(0) = 999999999

bestPref(0) = 999999999

96

For r = 1 To numiter

 'copy original data into matrices

 For b = 1 To numworkers

 workercapacity(b) = oworkercapacity(b)

 For k = 1 To numskills

 workerskill(b, k) = oworkerskill(b, k)

 Next k

 Next b

 For b = 1 To numtasks

 tasktime(b) = otasktime(b)

 taskassigned(b) = 0

 For k = 1 To numskills

 taskskill(b, k) = otaskskill(b, k)

 Next k

 Next b

 For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 traincost(i, j, k) = otraincost(i, j, k)

 traintime(i, j, k) = otraintime(i, j, k)

 Next k

 Next j

 Next i

 For b = 1 To numworkers

 For k = 1 To numtasks

 workerassign(1, b, k) = 0

97

 workertaskcost(b, k) = oworkertaskcost(b, k)

 workertaskSgap(b, k) = oworkertaskSgap(b, k)

 workertaskPref(b, k) = oworkertaskPref(b, k)

 workertasktime(b, k) = oworkertasktime(b, k)

 Next k

 Next b

 For b = 1 To numworkers

 workerphase1(b) = 0

 Next b

 totalcost = 0

 totalsgap = 0

 totalpref = 0

 numtaskassigned = 0

 If phase1_on = 1 Then

 Do While numtaskassigned < numworkers

 maxsgapt1 = -9999999

 For i = 1 To numworkers

 If workerphase1(i) = 0 And totalworkerSgap(i) > maxsgapt1 Then

 maxsgapt1 = totalworkerSgap(i)

 maxsgapworker = i

 End If

 Next i

 maxsgapt2 = -9999999

 For j = 1 To numtasks

 If taskassigned(j) = 0 And workertasktime(maxsgapworker, j) <= workercapacity(maxsgapworker) And

workertaskSgap(maxsgapworker, j) > maxsgapt2 Then

98

 maxsgapt2 = workertaskSgap(maxsgapworker, j)

 maxsgaptask = j

 End If

 Next j

 Randomize

 priorrnd = Round(((100 - 1) * Rnd) + 1)

 'make the best assignment

 If priorrnd <= p1perprior Then

 totalcost = totalcost + workertaskcost(maxsgapworker, maxsgaptask)

 totalsgap = totalsgap + workertaskSgap(maxsgapworker, maxsgaptask)

 totalpref = totalpref + workertaskPref(maxsgapworker, maxsgaptask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, maxsgapworker, maxsgaptask) = 1

 taskassigned(maxsgaptask) = 1

 workerphase1(maxsgapworker) = 1

 workercapacity(maxsgapworker) = workercapacity(maxsgapworker) - workertasktime(maxsgapworker, maxsgaptask)

 assignedworker = maxsgapworker

 assignedtask = maxsgaptask

 End If

 If priorrnd > p1perprior Then

 numonlist = 0

 For i = 1 To numworkers

 If workerphase1(i) = 0 And totalworkerSgap(i) >= maxsgapt1 * (1 - (p1perrestrict / 100)) Then

 For j = 1 To numtasks

 If taskassigned(j) = 0 And workertaskSgap(i, j) >= maxsgapt2 * (1 - (p1perrestrict / 100)) And workertasktime(i, j)

<= workercapacity(i) Then

 numonlist = numonlist + 1

99

 available(numonlist, 1) = i

 available(numonlist, 2) = j

 End If

 Next j

 End If

 Next i

 Randomize

 restrictrnd = Round(((numonlist - 1) * Rnd) + 1)

 assignedworker = available(restrictrnd, 1)

 assignedtask = available(restrictrnd, 2)

 totalcost = totalcost + workertaskcost(assignedworker, assignedtask)

 totalsgap = totalsgap + workertaskSgap(assignedworker, assignedtask)

 totalpref = totalpref + workertaskPref(assignedworker, assignedtask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, assignedworker, assignedtask) = 1

 taskassigned(assignedtask) = 1

 workerphase1(assignedworker) = 1

 workercapacity(assignedworker) = workercapacity(assignedworker) - workertasktime(assignedworker, assignedtask)

 End If

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(assignedtask, k) Then

 workerskill(assignedworker, k) = taskskill(assignedtask, k)

 End If

 Next k

 For j = 1 To numtasks

100

 If taskassigned(j) = 0 Then

 workertaskcost(assignedworker, j) = 0

 workertaskSgap(assignedworker, j) = 0

 workertaskPref(assignedworker, j) = 0

 workertasktime(assignedworker, j) = otasktime(j)

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(j, k) And taskskill(j, k) > 1 Then

 workertaskcost(assignedworker, j) = workertaskcost(assignedworker, j) + traincost(k, workerskill(assignedworker,

k), taskskill(j, k))

 workertaskSgap(assignedworker, j) = workertaskSgap(assignedworker, j) + (taskskill(j, k) -

workerskill(assignedworker, k))

 workertaskPref(assignedworker, j) = workertaskPref(assignedworker, j) + Prefmatrix(assignedworker, k) *

(taskskill(j, k) - workerskill(assignedworker, k))

 workertasktime(assignedworker, j) = workertasktime(assignedworker, j) + traintime(k,

workerskill(assignedworker, k), taskskill(j, k))

 End If

 Next k

 End If

 Next j

 Loop

 End If 'If phase1_on = 1

'end of phase 1 switch

'''

'''

 Do While numtaskassigned < numtasks 'repeat until all tasks assigned

 maxsgapt1 = -9999999

101

 For j = 1 To numtasks

 If taskassigned(j) = 0 And totaltaskSgap(j) > maxsgapt1 Then

 maxsgapt1 = totaltaskSgap(j)

 maxsgaptask = j

 End If

 Next j

 maxsgapt2 = -9999999

 maxsgapworker = 0

 For i = 1 To numworkers

 If workertasktime(i, maxsgaptask) <= workercapacity(i) And workertaskSgap(i, maxsgaptask) > maxsgapt2 Then

 maxsgapt2 = workertaskSgap(i, maxsgaptask)

 maxsgapworker = i

 End If

 Next i

 Randomize

 priorrnd = Round(((100 - 1) * Rnd) + 1)

 If maxsgapworker > 0 Then

 If priorrnd <= perprior Then

 totalcost = totalcost + workertaskcost(maxsgapworker, maxsgaptask)

 totalsgap = totalsgap + workertaskSgap(maxsgapworker, maxsgaptask)

 totalpref = totalpref + workertaskPref(maxsgapworker, maxsgaptask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, maxsgapworker, maxsgaptask) = 1

 taskassigned(maxsgaptask) = 1

 workercapacity(maxsgapworker) = workercapacity(maxsgapworker) - workertasktime(maxsgapworker, maxsgaptask)

 assignedworker = maxsgapworker

102

 assignedtask = maxsgaptask

 End If

 If priorrnd > perprior Then

 numonlist = 0

 For j = 1 To numtasks

 If totaltaskSgap(j) >= maxsgapt1 * (1 - (perrestrict / 100)) And taskassigned(j) = 0 Then

 For i = 1 To numworkers

 If workertaskSgap(i, j) >= maxsgapt2 * (1 - (perrestrict / 100)) And workertasktime(i, j) <= workercapacity(i) Then

 numonlist = numonlist + 1

 available(numonlist, 1) = i

 available(numonlist, 2) = j

 End If

 Next i

 End If

 Next j

 Randomize

 restrictrnd = Round(((numonlist - 1) * Rnd) + 1)

 assignedworker = available(restrictrnd, 1)

 assignedtask = available(restrictrnd, 2)

 totalcost = totalcost + workertaskcost(assignedworker, assignedtask)

 totalsgap = totalsgap + workertaskSgap(assignedworker, assignedtask)

 totalpref = totalpref + workertaskPref(assignedworker, assignedtask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, assignedworker, assignedtask) = 1

 taskassigned(assignedtask) = 1

 workercapacity(assignedworker) = workercapacity(assignedworker) - workertasktime(assignedworker, assignedtask)

 End If

103

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(assignedtask, k) Then

 workerskill(assignedworker, k) = taskskill(assignedtask, k)

 End If

 Next k

 For j = 1 To numtasks

 If taskassigned(j) = 0 Then

 workertaskcost(assignedworker, j) = 0

 workertaskSgap(assignedworker, j) = 0

 workertaskPref(assignedworker, j) = 0

 workertasktime(assignedworker, j) = otasktime(j)

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(j, k) And taskskill(j, k) > 1 Then

 workertaskcost(assignedworker, j) = workertaskcost(assignedworker, j) + traincost(k, workerskill(assignedworker,

k), taskskill(j, k))

 workertaskSgap(assignedworker, j) = workertaskSgap(assignedworker, j) + (taskskill(j, k) -

workerskill(assignedworker, k))

 workertaskPref(assignedworker, j) = workertaskPref(assignedworker, j) + Prefmatrix(assignedworker, k) *

(taskskill(j, k) - workerskill(assignedworker, k))

 workertasktime(assignedworker, j) = workertasktime(assignedworker, j) + traintime(k, workerskill(assignedworker,

k), taskskill(j, k))

 End If

 Next k

 End If

 Next j

 End If

 If maxsgapworker = 0 Then

104

 If warned3 = 0 Then

 response = MsgBox("no feasible solution - not enough worker capacity", vbOKOnly, "Capacity Error")

 warned3 = 1

 End If

 'If response = vbOK Then

 ' Stop

 'End If

 totalsgap = -999997

 numtaskassigned = numtasks + 1

 End If

 Loop

For a = 1 To numSolns

 sameassign = 0

 If totalsgap = bestSgap(a) Then

 For b = 1 To numworkers

 For c = 1 To numtasks

 If workerassign(1, b, c) = bestworkerassign(a, b, c) Then

 sameassign = sameassign + 1

 End If

 Next c

 Next b

 End If

 If sameassign = numworkers * numtasks Then

 totalsgap = -9995

 End If

Next a

If totalsgap > bestSgap(numSolns) Then

 For a = numSolns To 1 Step -1

105

 If totalsgap >= bestSgap(a) And totalsgap < bestSgap(a - 1) Then

 b = numSolns

 c = a

 Do While c < numSolns

 bestCost(b) = bestCost(b - 1)

 bestSgap(b) = bestSgap(b - 1)

 bestPref(b) = bestPref(b - 1)

 For i = 1 To numworkers

 For j = 1 To numtasks

 bestworkerassign(b, i, j) = bestworkerassign(b - 1, i, j)

 Next j

 Next i

 c = c + 1

 b = b - 1

 Loop

 bestCost(a) = totalcost

 bestSgap(a) = totalsgap

 bestPref(a) = totalpref

 For i = 1 To numworkers

 For j = 1 To numtasks

 bestworkerassign(a, i, j) = workerassign(1, i, j)

 Next j

 Next i

 End If

 Next a

End If

 'Print results

 Sheets("Results Summary").Select

 ActiveSheet.Cells(1, 1) = "Best Solution Costs"

 ActiveSheet.Cells(2, 1) = "Training Amount"

106

 ActiveSheet.Cells(3, 1) = "Worker Preference"

 For a = 1 To numSolns

 ActiveSheet.Cells(1, a + 1) = bestCost(a)

 Next a

 For a = 1 To numSolns

 ActiveSheet.Cells(2, a + 1) = bestSgap(a)

 Next a

 For a = 1 To numSolns

 ActiveSheet.Cells(3, a + 1) = bestPref(a)

 Next a

Next r

endtime = Timer

totaltime = endtime - starttime

Sheets("Results Summary").Select

ActiveSheet.Cells(2, numSolns + 3) = "Run Time"

ActiveSheet.Cells(2, numSolns + 4) = totaltime

'Print to Results Summary sheet

 Sheets("Results Summary").Select

 'ActiveSheet.Cells(1, 1) = "Best Solution Costs"

 'ActiveSheet.Cells(1, 2) = bestsolution(1)

 ActiveSheet.Cells(12 + numtasks, 1) = "Solution #:"

 For a = 1 To numSolns

 ActiveSheet.Cells(12 + numtasks, 2 * a) = numSolns + a

 Next a

 b = 1

 For a = 1 To numSolns * 2

107

 ActiveSheet.Cells(13 + numtasks, a) = "Worker"

 ActiveSheet.Cells(13 + numtasks, a + 1) = "Task"

 ActiveSheet.Cells(14 + 2 * numtasks, 1) = "Total Cost"

 ActiveSheet.Cells(15 + 2 * numtasks, 1) = "Total Skill Levels"

 ActiveSheet.Cells(16 + 2 * numtasks, 1) = "Total Preference"

 cellrow = 14 + numtasks

 For i = 1 To numworkers

 For j = 1 To numtasks

 If bestworkerassign(b, i, j) = 1 Then

 ActiveSheet.Cells(cellrow, a) = i

 ActiveSheet.Cells(cellrow, a + 1) = j

 cellrow = cellrow + 1

 End If

 Next j

 Next i

 ActiveSheet.Cells(14 + 2 * numtasks, a + 1) = bestCost(b)

 ActiveSheet.Cells(15 + 2 * numtasks, a + 1) = bestSgap(b)

 ActiveSheet.Cells(16 + 2 * numtasks, a + 1) = bestPref(b)

 b = b + 1

 a = a + 1

 Next a

End Sub

108

Public Sub InitialWorkerPrefSoln_click()

Dim workerskill() As Single, oworkerskill() As Single

Dim taskskill() As Single, otaskskill() As Single

Dim tasktime() As Single, otasktime() As Single

Dim workercapacity() As Single, oworkercapacity() As Single

Dim traincost() As Single, otraincost() As Single

Dim traintime() As Single, otraintime() As Single

Dim workerassign() As Single

Dim workertaskcost() As Single, oworkertaskcost() As Single

Dim workertasktime() As Single, oworkertasktime() As Single

Dim workertaskSgap() As Single, oworkertaskSgap() As Single

Dim workertaskPref() As Single, oworkertaskPref() As Single

Dim Prefmatrix() As Single

Dim taskassigned() As Single

Dim tcost() As Single

Dim ttime() As Single

Dim available() As Single

Dim bestworkerassign() As Single

Dim numworkers As Single, numskills As Single, numtasks As Single, numSolns As Single

Dim totaltaskcost() As Single

Dim totalworkercost() As Single

Dim totaltaskSgap() As Single

Dim totalworkerSgap() As Single

Dim totaltaskPref() As Single

Dim totalworkerPref() As Single

Dim workerphase1() As Single

Dim cellrow As Single

Dim trainingneeds() As Single

Dim skilltrainingneeds() As Single

Dim bestCost() As Single

109

Dim bestSgap() As Single

Dim bestPref() As Single

Dim TotalNumObjFn As Single

TotalNumObjFn = 3

Sheets("Parameters").Select

p1perprior = ActiveSheet.Cells(1, 2).Value

p1perrestrict = ActiveSheet.Cells(2, 2).Value

perprior = ActiveSheet.Cells(3, 2).Value

perrestrict = ActiveSheet.Cells(4, 2).Value

numiter = ActiveSheet.Cells(5, 2).Value

phase1_on = 1 'this can be used as a switch to turn phase 1 on or off

Sheets("Input").Select

numworkers = ActiveSheet.Cells(2, 2).Value

numskills = ActiveSheet.Cells(3, 2).Value

numtasks = ActiveSheet.Cells(4, 2).Value

numSolns = ActiveSheet.Cells(5, 2).Value

'initialize arrays

ReDim workerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim oworkerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim taskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim otaskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim tasktime(0 To numtasks + 1) As Single

ReDim otasktime(0 To numtasks + 1) As Single

110

ReDim workercapacity(0 To numworkers + 1) As Single

ReDim oworkercapacity(0 To numworkers + 1) As Single

ReDim traincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim traintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim workerassign(0 To 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim bestworkerassign(0 To numSolns + 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskcost(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskcost(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskSgap(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskSgap(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskPref(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskPref(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim Prefmatrix(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim workertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim taskassigned(0 To numtasks + 1) As Single

ReDim tcost(0 To numskills + 1, 0 To 5) As Single

ReDim ttime(0 To numskills + 1, 0 To 5) As Single

ReDim available(0 To numworkers * numtasks + 1, 0 To 3) As Single

ReDim totaltaskcost(0 To numtasks + 1) As Single

ReDim totalworkercost(0 To numworkers + 1) As Single

ReDim totaltaskSgap(0 To numtasks + 1) As Single

ReDim totalworkerSgap(0 To numworkers + 1) As Single

ReDim totaltaskPref(0 To numtasks + 1) As Single

ReDim totalworkerPref(0 To numworkers + 1) As Single

ReDim workerphase1(0 To numworkers + 1) As Single

ReDim trainingneeds(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim skilltrainingneeds(0 To numskills + 1, 0 To 5) As Single

ReDim bestCost(0 To numSolns + 20) As Single

111

ReDim bestSgap(0 To numSolns + 20) As Single

ReDim bestPref(0 To numSolns + 20) As Single

 starttime = Timer

For a = 0 To numSolns + 1

 bestCost(a) = 0

 bestSgap(a) = 0

 bestPref(a) = 0

 For b = 0 To numworkers + 1

 For c = 0 To numtasks + 1

 bestworkerassign(a, b, c) = 0

 Next c

 Next b

Next a

For b = 0 To numworkers + 1

 workercapacity(b) = 0

 oworkercapacity(b) = 0

 For k = 0 To numskills + 1

 workerskill(b, k) = 0

 oworkerskill(b, k) = 0

 trainingneeds(b, k) = 0

 Next k

Next b

For b = 0 To numworkers * numtasks + 1

 For k = 0 To 3

 available(b, k) = 0

112

 Next k

Next b

For b = 0 To numtasks + 1

 tasktime(b) = 0

 otasktime(b) = 0

 taskassigned(b) = 0

 totaltaskcost(b) = 0

 totaltaskSgap(b) = 0

 totaltaskPref(b) = 0

 For k = 0 To numskills + 1

 taskskill(b, k) = 0

 otaskskill(b, k) = 0

 Next k

Next b

For i = 0 To numskills + 1

 For j = 0 To 5

 tcost(i, j) = 0

 ttime(i, j) = 0

 skilltrainingneeds(i, j) = 0

 For k = 0 To 5

 traincost(i, j, k) = 0

 traintime(i, j, k) = 0

 otraincost(i, j, k) = 0

 otraintime(i, j, k) = 0

 Next k

 Next j

Next i

113

For b = 1 To numworkers

 totalworkercost(b) = 0

 totalworkerSgap(b) = 0

 totalworkerPref(b) = 0

 For k = 1 To numtasks

 workerassign(1, b, k) = 0

 workertaskcost(b, k) = 0

 oworkertaskcost(b, k) = 0

 workertaskSgap(b, k) = 0

 oworkertaskSgap(b, k) = 0

 workertaskPref(b, k) = 0

 oworkertaskPref(b, k) = 0

 Next k

Next b

'read in data from file

For b = 1 To numworkers

 For k = 1 To numskills

 oworkerskill(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + b, 1 + k)

 Next k

Next b

For b = 1 To numtasks

 For k = 1 To numskills

 otaskskill(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + b, 1 + k)

 Next k

Next b

For b = 1 To numtasks

 otasktime(b) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + b, 2)

Next b

114

For b = 1 To numworkers

 oworkercapacity(b) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + b, 2)

Next b

For i = 1 To numskills

 For j = 2 To 5

 tcost(i, j) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3 + i, j)

 Next j

Next i

For i = 1 To numskills

 For j = 2 To 5

 ttime(i, j) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3 +

numskills + 3 + i, j)

 Next j

Next i

For b = 1 To numworkers

 For k = 1 To numskills

 Prefmatrix(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3

+ numskills + 3 + numskills + 3 + b, k + 1)

 Next k

Next b

'done reading in values from the excel sheet

For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

115

 If j < k And k > 1 Then

 otraincost(i, j, k) = otraincost(i, j, k - 1) + tcost(i, k)

 End If

 Next k

 Next j

Next i

For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 If j < k And k > 1 Then

 otraintime(i, j, k) = otraintime(i, j, k - 1) + ttime(i, k)

 End If

 Next k

 Next j

Next i

'find task cost and training time for each worker for each task

For i = 1 To numworkers

 For j = 1 To numtasks

 oworkertasktime(i, j) = otasktime(j)

 For k = 1 To numskills

 If oworkerskill(i, k) < otaskskill(j, k) And otaskskill(j, k) > 1 Then

 oworkertaskcost(i, j) = oworkertaskcost(i, j) + otraincost(k, oworkerskill(i, k), otaskskill(j, k))

 oworkertaskSgap(i, j) = oworkertaskSgap(i, j) + (otaskskill(j, k) - oworkerskill(i, k))

 oworkertaskPref(i, j) = oworkertaskPref(i, j) + Prefmatrix(i, k) * (otaskskill(j, k) - oworkerskill(i, k))

 oworkertasktime(i, j) = oworkertasktime(i, j) + otraintime(k, oworkerskill(i, k), otaskskill(j, k))

 End If

 Next k

 Next j

116

Next i

For j = 1 To numtasks

 For i = 1 To numworkers

 totaltaskcost(j) = totaltaskcost(j) + oworkertaskcost(i, j)

 totaltaskSgap(j) = totaltaskSgap(j) + oworkertaskSgap(i, j)

 totaltaskPref(j) = totaltaskPref(j) + oworkertaskPref(i, j)

 Next i

Next j

For i = 1 To numworkers

 For j = 1 To numtasks

 totalworkercost(i) = totalworkercost(i) + oworkertaskcost(i, j)

 totalworkerSgap(i) = totalworkerSgap(i) + oworkertaskSgap(i, j)

 totalworkerPref(i) = totalworkerPref(i) + oworkertaskPref(i, j)

 Next j

Next i

''

warned4 = 0

For a = 1 To numSolns + 1

 bestCost(a) = 999999999

 bestSgap(a) = -9999999

 bestPref(a) = -9999999

Next a

bestCost(0) = -9999999

bestSgap(0) = 999999999

bestPref(0) = 999999999

117

For r = 1 To numiter

 'copy original data into matrices

 For b = 1 To numworkers

 workercapacity(b) = oworkercapacity(b)

 For k = 1 To numskills

 workerskill(b, k) = oworkerskill(b, k)

 Next k

 Next b

 For b = 1 To numtasks

 tasktime(b) = otasktime(b)

 taskassigned(b) = 0

 For k = 1 To numskills

 taskskill(b, k) = otaskskill(b, k)

 Next k

 Next b

 For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 traincost(i, j, k) = otraincost(i, j, k)

 traintime(i, j, k) = otraintime(i, j, k)

 Next k

 Next j

 Next i

 For b = 1 To numworkers

 For k = 1 To numtasks

 workerassign(1, b, k) = 0

118

 workertaskcost(b, k) = oworkertaskcost(b, k)

 workertaskSgap(b, k) = oworkertaskSgap(b, k)

 workertaskPref(b, k) = oworkertaskPref(b, k)

 workertasktime(b, k) = oworkertasktime(b, k)

 Next k

 Next b

 For b = 1 To numworkers

 workerphase1(b) = 0

 Next b

 totalcost = 0

 totalsgap = 0

 totalpref = 0

 numtaskassigned = 0

 If phase1_on = 1 Then

 Do While numtaskassigned < numworkers

 maxpreft1 = -9999999

 For i = 1 To numworkers

 If workerphase1(i) = 0 And totalworkerPref(i) > maxpreft1 Then

 maxpreft1 = totalworkerPref(i)

 maxprefworker = i

 End If

 Next i

 maxpreft2 = -9999999

 For j = 1 To numtasks

 If taskassigned(j) = 0 And workertasktime(maxprefworker, j) <= workercapacity(maxprefworker) And

workertaskPref(maxprefworker, j) > maxpreft2 Then

119

 maxpreft2 = workertaskPref(maxprefworker, j)

 maxpreftask = j

 End If

 Next j

 Randomize

 priorrnd = Round(((100 - 1) * Rnd) + 1)

 'make the best assignment

 If priorrnd <= p1perprior Then

 totalcost = totalcost + workertaskcost(maxprefworker, maxpreftask)

 totalsgap = totalsgap + workertaskSgap(maxprefworker, maxpreftask)

 totalpref = totalpref + workertaskPref(maxprefworker, maxpreftask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, maxprefworker, maxpreftask) = 1

 taskassigned(maxpreftask) = 1

 workerphase1(maxprefworker) = 1

 workercapacity(maxprefworker) = workercapacity(maxprefworker) - workertasktime(maxprefworker, maxpreftask)

 assignedworker = maxprefworker

 assignedtask = maxpreftask

 End If

 If priorrnd > p1perprior Then

 numonlist = 0

 For i = 1 To numworkers

 If workerphase1(i) = 0 And totalworkerPref(i) >= maxpreft1 * (1 - (p1perrestrict / 100)) Then

 For j = 1 To numtasks

 If taskassigned(j) = 0 And workertaskPref(i, j) >= maxpreft2 * (1 - (p1perrestrict / 100)) And workertasktime(i, j)

<= workercapacity(i) Then

 numonlist = numonlist + 1

120

 available(numonlist, 1) = i

 available(numonlist, 2) = j

 End If

 Next j

 End If

 Next i

 Randomize

 restrictrnd = Round(((numonlist - 1) * Rnd) + 1)

 assignedworker = available(restrictrnd, 1)

 assignedtask = available(restrictrnd, 2)

 totalcost = totalcost + workertaskcost(assignedworker, assignedtask)

 totalsgap = totalsgap + workertaskSgap(assignedworker, assignedtask)

 totalpref = totalpref + workertaskPref(assignedworker, assignedtask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, assignedworker, assignedtask) = 1

 taskassigned(assignedtask) = 1

 workerphase1(assignedworker) = 1

 workercapacity(assignedworker) = workercapacity(assignedworker) - workertasktime(assignedworker, assignedtask)

 End If

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(assignedtask, k) Then

 workerskill(assignedworker, k) = taskskill(assignedtask, k)

 End If

 Next k

 For j = 1 To numtasks

121

 If taskassigned(j) = 0 Then

 workertaskcost(assignedworker, j) = 0

 workertaskSgap(assignedworker, j) = 0

 workertaskPref(assignedworker, j) = 0

 workertasktime(assignedworker, j) = otasktime(j)

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(j, k) And taskskill(j, k) > 1 Then

 workertaskcost(assignedworker, j) = workertaskcost(assignedworker, j) + traincost(k, workerskill(assignedworker,

k), taskskill(j, k))

 workertaskSgap(assignedworker, j) = workertaskSgap(assignedworker, j) + (taskskill(j, k) -

workerskill(assignedworker, k))

 workertaskPref(assignedworker, j) = workertaskPref(assignedworker, j) + Prefmatrix(assignedworker, k) *

(taskskill(j, k) - workerskill(assignedworker, k))

 workertasktime(assignedworker, j) = workertasktime(assignedworker, j) + traintime(k,

workerskill(assignedworker, k), taskskill(j, k))

 End If

 Next k

 End If

 Next j

 Loop

 End If 'If phase1_on = 1

'end of phase 1 switch

'''

'''

 Do While numtaskassigned < numtasks 'repeat until all tasks assigned

 maxpreft1 = -9999999

122

 For j = 1 To numtasks

 If taskassigned(j) = 0 And totaltaskPref(j) > maxpreft1 Then

 maxpreft1 = totaltaskPref(j)

 maxpreftask = j

 End If

 Next j

 maxpreft2 = -9999999

 maxprefworker = 0

 For i = 1 To numworkers

 If workertasktime(i, maxpreftask) <= workercapacity(i) And workertaskPref(i, maxpreftask) > maxpreft2 Then

 maxpreft2 = workertaskPref(i, maxpreftask)

 maxprefworker = i

 End If

 Next i

 Randomize

 priorrnd = Round(((100 - 1) * Rnd) + 1)

 If maxprefworker > 0 Then

 If priorrnd <= perprior Then

 totalcost = totalcost + workertaskcost(maxprefworker, maxpreftask)

 totalsgap = totalsgap + workertaskSgap(maxprefworker, maxpreftask)

 totalpref = totalpref + workertaskPref(maxprefworker, maxpreftask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, maxprefworker, maxpreftask) = 1

 taskassigned(maxpreftask) = 1

 workercapacity(maxprefworker) = workercapacity(maxprefworker) - workertasktime(maxprefworker, maxpreftask)

 assignedworker = maxprefworker

123

 assignedtask = maxpreftask

 End If

 If priorrnd > perprior Then

 numonlist = 0

 For j = 1 To numtasks

 If totaltaskPref(j) >= maxpreft1 * (1 - (perrestrict / 100)) And taskassigned(j) = 0 Then

 For i = 1 To numworkers

 If workertaskPref(i, j) >= maxpreft2 * (1 - (perrestrict / 100)) And workertasktime(i, j) <= workercapacity(i) Then

 numonlist = numonlist + 1

 available(numonlist, 1) = i

 available(numonlist, 2) = j

 End If

 Next i

 End If

 Next j

 Randomize

 restrictrnd = Round(((numonlist - 1) * Rnd) + 1)

 assignedworker = available(restrictrnd, 1)

 assignedtask = available(restrictrnd, 2)

 totalcost = totalcost + workertaskcost(assignedworker, assignedtask)

 totalsgap = totalsgap + workertaskSgap(assignedworker, assignedtask)

 totalpref = totalpref + workertaskPref(assignedworker, assignedtask)

 numtaskassigned = numtaskassigned + 1

 workerassign(1, assignedworker, assignedtask) = 1

 taskassigned(assignedtask) = 1

 workercapacity(assignedworker) = workercapacity(assignedworker) - workertasktime(assignedworker, assignedtask)

 End If

124

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(assignedtask, k) Then

 workerskill(assignedworker, k) = taskskill(assignedtask, k)

 End If

 Next k

 For j = 1 To numtasks

 If taskassigned(j) = 0 Then

 workertaskcost(assignedworker, j) = 0

 workertaskSgap(assignedworker, j) = 0

 workertaskPref(assignedworker, j) = 0

 workertasktime(assignedworker, j) = otasktime(j)

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(j, k) And taskskill(j, k) > 1 Then

 workertaskcost(assignedworker, j) = workertaskcost(assignedworker, j) + traincost(k, workerskill(assignedworker,

k), taskskill(j, k))

 workertaskSgap(assignedworker, j) = workertaskSgap(assignedworker, j) + (taskskill(j, k) -

workerskill(assignedworker, k))

 workertaskPref(assignedworker, j) = workertaskPref(assignedworker, j) + Prefmatrix(assignedworker, k) *

(taskskill(j, k) - workerskill(assignedworker, k))

 workertasktime(assignedworker, j) = workertasktime(assignedworker, j) + traintime(k, workerskill(assignedworker,

k), taskskill(j, k))

 End If

 Next k

 End If

 Next j

 End If

 If maxprefworker = 0 Then

125

 If warned4 = 0 Then

 response = MsgBox("no feasible solution - not enough worker capacity", vbOKOnly, "Capacity Error")

 warned4 = 1

 End If

 'If response = vbOK Then

 ' Stop

 'End If

 totalpref = -999997

 numtaskassigned = numtasks + 1

 End If

 Loop

For a = 1 To numSolns

 sameassign = 0

 If totalpref = bestPref(a) Then

 For b = 1 To numworkers

 For c = 1 To numtasks

 If workerassign(1, b, c) = bestworkerassign(a, b, c) Then

 sameassign = sameassign + 1

 End If

 Next c

 Next b

 End If

 If sameassign = numworkers * numtasks Then

 totalpref = -9995

 End If

Next a

If totalsgap > bestSgap(numSolns) Then

 For a = numSolns To 1 Step -1

126

 If totalpref >= bestPref(a) And totalpref < bestPref(a - 1) Then

 b = numSolns

 c = a

 Do While c < numSolns

 bestCost(b) = bestCost(b - 1)

 bestSgap(b) = bestSgap(b - 1)

 bestPref(b) = bestPref(b - 1)

 For i = 1 To numworkers

 For j = 1 To numtasks

 bestworkerassign(b, i, j) = bestworkerassign(b - 1, i, j)

 Next j

 Next i

 c = c + 1

 b = b - 1

 Loop

 bestCost(a) = totalcost

 bestSgap(a) = totalsgap

 bestPref(a) = totalpref

 For i = 1 To numworkers

 For j = 1 To numtasks

 bestworkerassign(a, i, j) = workerassign(1, i, j)

 Next j

 Next i

 End If

 Next a

End If

 'Print results

 Sheets("Results Summary").Select

 ActiveSheet.Cells(1, 1) = "Best Solution Costs"

 ActiveSheet.Cells(2, 1) = "Training Amount"

127

 ActiveSheet.Cells(3, 1) = "Worker Preference"

 For a = 1 To numSolns

 ActiveSheet.Cells(1, a + 1) = bestCost(a)

 Next a

 For a = 1 To numSolns

 ActiveSheet.Cells(2, a + 1) = bestSgap(a)

 Next a

 For a = 1 To numSolns

 ActiveSheet.Cells(3, a + 1) = bestPref(a)

 Next a

Next r

endtime = Timer

totaltime = endtime - starttime

Sheets("Results Summary").Select

ActiveSheet.Cells(3, numSolns + 3) = "Run Time"

ActiveSheet.Cells(3, numSolns + 4) = totaltime

'Print to Results Summary sheet

 Sheets("Results Summary").Select

 'ActiveSheet.Cells(1, 1) = "Best Solution Costs"

 'ActiveSheet.Cells(1, 2) = bestsolution(1)

 ActiveSheet.Cells(18 + 2 * numtasks, 1) = "Solution #:"

 For a = 1 To numSolns

 ActiveSheet.Cells(18 + 2 * numtasks, 2 * a) = 2 * numSolns + a

 Next a

 b = 1

 For a = 1 To numSolns * 2

128

 ActiveSheet.Cells(19 + 2 * numtasks, a) = "Worker"

 ActiveSheet.Cells(19 + 2 * numtasks, a + 1) = "Task"

 cellrow = 20 + 2 * numtasks

 For i = 1 To numworkers

 For j = 1 To numtasks

 If bestworkerassign(b, i, j) = 1 Then

 ActiveSheet.Cells(cellrow, a) = i

 ActiveSheet.Cells(cellrow, a + 1) = j

 cellrow = cellrow + 1

 End If

 Next j

 Next i

 ActiveSheet.Cells(20 + 3 * numtasks, a + 1) = bestCost(b)

 ActiveSheet.Cells(21 + 3 * numtasks, a + 1) = bestSgap(b)

 ActiveSheet.Cells(22 + 3 * numtasks, a + 1) = bestPref(b)

 b = b + 1

 a = a + 1

 Next a

 ActiveSheet.Cells(20 + 3 * numtasks, 1) = "Total Cost"

 ActiveSheet.Cells(21 + 3 * numtasks, 1) = "Total Skill Levels"

 ActiveSheet.Cells(22 + 3 * numtasks, 1) = "Total Preference"

End Sub

129

'This command button will find the initial solution for Minimum Training Cost

Public Sub Compromise_click()

Dim workerskill() As Single, oworkerskill() As Single

Dim taskskill() As Single, otaskskill() As Single

Dim tasktime() As Single, otasktime() As Single

Dim workercapacity() As Single, oworkercapacity() As Single

Dim traincost() As Single, otraincost() As Single

Dim traintime() As Single, otraintime() As Single

Dim workerassign() As Single

Dim workertaskOFVs() As Single, oworkertaskOFVs() As Single

Dim workertasktime() As Single, oworkertasktime() As Single

Dim Prefmatrix() As Single

Dim taskassigned() As Single

Dim tcost() As Single

Dim ttime() As Single

Dim available() As Single

Dim bestworkerassign() As Single

Dim numworkers As Single, numskills As Single, numtasks As Single, numSolns As Single

Dim totaltaskOFVs() As Single

Dim totalworkerOFVs() As Single

Dim workerphase1() As Single

Dim cellrow As Single

Dim trainingneeds() As Single

Dim skilltrainingneeds() As Single

'everything below is new:

Dim bestOFVs() As Single

Dim TotalOFVs() As Single

Dim st2workerassign() As Single

Dim Valuefn() As Single

Dim Lambda() As Single

Dim varB() As Single

130

Dim workerswapped() As Single

Dim baseOF() As Single

Dim tempOFVs() As Single

Dim tempwskill() As Single

Dim tempwtOFVs() As Single

Dim workerswap() As Single

Dim tempworkerassign() As Single

Dim TotalNumObjFn As Single

Dim temptaskcost() As Single

Dim temptaskSgap() As Single

Dim temptaskPref() As Single

Dim possibleswaps() As Single

Dim st2OFV() As Single

TotalNumObjFn = 3

'Sheets("Results Summary").Cells.Clear

'Sheets("Worker Training Results").Cells.Clear

'Sheets("Skill Training Results").Cells.Clear

'might need to use different parameters here

Sheets("Parameters").Select

p1perprior = ActiveSheet.Cells(1, 2).Value

p1perrestrict = ActiveSheet.Cells(2, 2).Value

perprior = ActiveSheet.Cells(3, 2).Value

perrestrict = ActiveSheet.Cells(4, 2).Value

numiter = ActiveSheet.Cells(5, 2).Value

phase1_on = 1 'this can be used as a switch to turn phase 1 on or off

131

Sheets("Input").Select

numworkers = ActiveSheet.Cells(2, 2).Value

numskills = ActiveSheet.Cells(3, 2).Value

numtasks = ActiveSheet.Cells(4, 2).Value

numSolns = ActiveSheet.Cells(5, 2).Value

maxcompromises = 50

'initialize arrays

ReDim workerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim oworkerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim taskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim otaskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim tasktime(0 To numtasks + 1) As Single

ReDim otasktime(0 To numtasks + 1) As Single

ReDim workercapacity(0 To numworkers + 1) As Single

ReDim oworkercapacity(0 To numworkers + 1) As Single

ReDim traincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim traintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

'added a dimension to the two matrices below

ReDim workerassign(0 To 1, 0 To 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim bestworkerassign(0 To TotalNumObjFn + 1, 0 To numSolns + 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskOFVs(0 To TotalNumObjFn + 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskOFVs(0 To TotalNumObjFn + 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim Prefmatrix(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim workertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim taskassigned(0 To numtasks + 1) As Single

132

ReDim tcost(0 To numskills + 1, 0 To 5) As Single

ReDim ttime(0 To numskills + 1, 0 To 5) As Single

ReDim available(0 To numworkers * numtasks + 1, 0 To 3) As Single

ReDim totaltaskOFVs(0 To TotalNumObjFn + 1, 0 To numtasks + 1) As Single

ReDim totalworkerOFVs(0 To TotalNumObjFn + 1, 0 To numworkers + 1) As Single

ReDim workerphase1(0 To numworkers + 1) As Single

ReDim trainingneeds(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim skilltrainingneeds(0 To numskills + 1, 0 To 5) As Single

'new one below:

ReDim bestOFVs(0 To TotalNumObjFn + 1, 0 To TotalNumObjFn + 1, 0 To numSolns + 1) As Single

ReDim TotalOFVs(0 To TotalNumObjFn + 1) As Single

ReDim possibleswaps(0 To numworkers + 1, 0 To numtasks + 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim st2workerassign(0 To maxcompromises + 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim Valuefn(0 To maxcompromises + 1) As Single

ReDim Lambda(0 To TotalNumObjFn + 1, 0 To maxcompromises + 1) As Single

ReDim varB(0 To TotalNumObjFn + 1, 0 To maxcompromises + 1) As Single

ReDim baseOF(0 To maxcompromises + 1) As Single

ReDim workerswapped(0 To numworkers + 1) As Single

ReDim tempOFVs(0 To TotalNumObjFn + 1) As Single

ReDim tempwskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim tempwtOFVs(0 To TotalNumObjFn + 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workerswap(0 To maxcompromises + 1, 0 To numworkers + 1) As Single

ReDim tempworkerassign(0 To 1, 0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim temptaskcost(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim temptaskSgap(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim temptaskPref(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim possibleswaps(0 To numworkers + 1, 0 To numtasks + 1, 0 To numworkers + 1, 0 To numtasks + 1, 0 To TotalNumObjFn +

1) As Single

ReDim st2OFV(0 To maxcompromises + 1, 0 To TotalNumObjFn + 1) As Single

starttime = Timer

133

'new thing below

For a = 0 To numworkers + 1

 For b = 0 To numtasks + 1

 For i = 0 To numworkers + 1

 For j = 0 To numtasks + 1

 For y = 0 To TotalNumObjFn + 1

 possibleswaps(a, b, i, j, y) = 0

 Next y

 Next j

 Next i

 Next b

Next a

For a = 0 To maxcompromises

 Valuefn(a) = 0

 baseOF(a) = 0

 For i = 1 To numworkers + 1

 For j = 1 To numtasks + 1

 st2workerassign(a, i, j) = 0

 Next j

 Next i

Next a

'read in data from file

For b = 1 To numworkers

 For k = 1 To numskills

 oworkerskill(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + b, 1 + k)

 Next k

Next b

134

For b = 1 To numtasks

 For k = 1 To numskills

 otaskskill(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + b, 1 + k)

 Next k

Next b

For b = 1 To numtasks

 otasktime(b) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + b, 2)

Next b

For b = 1 To numworkers

 oworkercapacity(b) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + b, 2)

Next b

For i = 1 To numskills

 For j = 2 To 5

 tcost(i, j) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3 + i, j)

 Next j

Next i

For i = 1 To numskills

 For j = 2 To 5

 ttime(i, j) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3 +

numskills + 3 + i, j)

 Next j

Next i

For b = 1 To numworkers

 For k = 1 To numskills

135

 Prefmatrix(b, k) = ActiveSheet.Cells(9 + TotalNumObjFn + numworkers + 3 + numtasks + 2 + numtasks + 2 + numworkers + 3

+ numskills + 3 + numskills + 3 + b, k + 1)

 Next k

Next b

'done reading in values from the excel sheet

For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 If j < k And k > 1 Then

 otraincost(i, j, k) = otraincost(i, j, k - 1) + tcost(i, k)

 End If

 Next k

 Next j

Next i

For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 If j < k And k > 1 Then

 otraintime(i, j, k) = otraintime(i, j, k - 1) + ttime(i, k)

 End If

 Next k

 Next j

Next i

''

136

Sheets("Results Summary").Select

 For a = 1 To numSolns

 ActiveSheet.Cells(1, a + 1) = ActiveSheet.Cells(8 + numtasks, 2 * a)

 Next a

 For a = 1 To numSolns

 ActiveSheet.Cells(2, a + 1) = ActiveSheet.Cells(15 + 2 * numtasks, 2 * a)

 Next a

 For a = 1 To numSolns

 ActiveSheet.Cells(3, a + 1) = ActiveSheet.Cells(22 + 3 * numtasks, 2 * a)

 Next a

st2count = 1

prefsoln = Application.InputBox("What is the preferred solution so far?", "")

UserForm1.Label1.Caption = "To what percent would you like to compromise each objective? "

 varB(1, st2count) = 0

 varB(2, st2count) = 0

 varB(3, st2count) = 0

If prefsoln <= numSolns Then

 cellrow = 7

 cellcol = prefsoln * 2

 Do Until baseOF(st2count) = 2 Or baseOF(st2count) = 3

 baseOF(st2count) = InputBox("Which objective do you want to improve? (2-Training Amount, or 3-Worker Preference)", "")

 Loop

 totalcost = ActiveSheet.Cells(cellrow + numtasks + 1, cellcol)

 totalsgap = ActiveSheet.Cells(cellrow + numtasks + 2, cellcol)

 totalpref = ActiveSheet.Cells(cellrow + numtasks + 3, cellcol)

 If baseOF(st2count) = 2 Then

137

 'UserForm1.Label1.Caption = UserForm1.Label1.Caption & baseOF(st2count) & " from " & totalsgap & " to " & totalsgap * 1.1

& "(10%)"

 UserForm1.Frame1.Caption = "Total Cost (Obj 1)"

 UserForm1.Frame2.Caption = "Worker Preference (Obj 3)"

 UserForm1.OptionButton1.Caption = totalcost * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = totalcost * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = totalcost * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = totalcost * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = totalcost * 0.16 & " (16%)"

 UserForm1.OptionButton6.Caption = totalpref * 0.04 & " (4%)"

 UserForm1.OptionButton7.Caption = totalpref * 0.07 & " (7%)"

 UserForm1.OptionButton8.Caption = totalpref * 0.1 & " (10%)"

 UserForm1.OptionButton9.Caption = totalpref * 0.13 & " (13%)"

 UserForm1.OptionButton10.Caption = totalpref * 0.16 & " (16%)"

 UserForm1.Show

 If (UserForm1.OptionButton1.Value = True) Then varB(1, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(1, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(1, st2count) = 0.1

 If (UserForm1.OptionButton4.Value = True) Then varB(1, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(1, st2count) = 0.16

 If (UserForm1.OptionButton6.Value = True) Then varB(3, st2count) = 0.04

 If (UserForm1.OptionButton7.Value = True) Then varB(3, st2count) = 0.07

 If (UserForm1.OptionButton8.Value = True) Then varB(3, st2count) = 0.1

 If (UserForm1.OptionButton9.Value = True) Then varB(3, st2count) = 0.13

 If (UserForm1.OptionButton10.Value = True) Then varB(3, st2count) = 0.16

 End If

 If baseOF(st2count) = 3 Then

 'UserForm1.Label1.Caption = UserForm1.Label1.Caption & baseOF(st2count) & " from " & totalpref & " to " & totalpref * 1.1

& "(10%)"

 UserForm1.Frame1.Caption = "Total Cost (Obj 1)"

138

 UserForm1.Frame2.Caption = "Training Amount (Obj 2)"

 UserForm1.OptionButton1.Caption = totalcost * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = totalcost * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = totalcost * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = totalcost * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = totalcost * 0.16 & " (16%)"

 UserForm1.OptionButton6.Caption = totalsgap * 0.04 & " (4%)"

 UserForm1.OptionButton7.Caption = totalsgap * 0.07 & " (7%)"

 UserForm1.OptionButton8.Caption = totalsgap * 0.1 & " (10%)"

 UserForm1.OptionButton9.Caption = totalsgap * 0.13 & " (13%)"

 UserForm1.OptionButton10.Caption = totalsgap * 0.16 & " (16%)"

 UserForm1.Show

 If (UserForm1.OptionButton1.Value = True) Then varB(1, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(1, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(1, st2count) = 0.1

 If (UserForm1.OptionButton4.Value = True) Then varB(1, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(1, st2count) = 0.16

 If (UserForm1.OptionButton6.Value = True) Then varB(2, st2count) = 0.04

 If (UserForm1.OptionButton7.Value = True) Then varB(2, st2count) = 0.07

 If (UserForm1.OptionButton8.Value = True) Then varB(2, st2count) = 0.1

 If (UserForm1.OptionButton9.Value = True) Then varB(2, st2count) = 0.13

 If (UserForm1.OptionButton10.Value = True) Then varB(2, st2count) = 0.16

 End If

End If

If prefsoln > numSolns And prefsoln <= numSolns * 2 Then

 cellrow = 7 + numtasks + 6

 cellcol = (prefsoln - numSolns) * 2

 Do Until baseOF(st2count) = 1 Or baseOF(st2count) = 3

 baseOF(st2count) = InputBox("Which objective do you want to improve? (1-Training Cost, or 3-Worker Preference)", "")

 Loop

139

 totalcost = ActiveSheet.Cells(cellrow + numtasks + 1, cellcol)

 totalsgap = ActiveSheet.Cells(cellrow + numtasks + 2, cellcol)

 totalpref = ActiveSheet.Cells(cellrow + numtasks + 3, cellcol)

 If baseOF(st2count) = 1 Then

 'UserForm1.Label1.Caption = UserForm1.Label1.Caption & baseOF(st2count) & " from " & totalcost & " to " & totalcost * 0.9

& "(10%)"

 UserForm1.Frame1.Caption = "Training Amount (Obj 2)"

 UserForm1.Frame2.Caption = "Worker Preference (Obj 3)"

 UserForm1.OptionButton1.Caption = totalsgap * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = totalsgap * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = totalsgap * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = totalsgap * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = totalsgap * 0.16 & " (16%)"

 UserForm1.OptionButton6.Caption = totalpref * 0.04 & " (4%)"

 UserForm1.OptionButton7.Caption = totalpref * 0.07 & " (7%)"

 UserForm1.OptionButton8.Caption = totalpref * 0.1 & " (10%)"

 UserForm1.OptionButton9.Caption = totalpref * 0.13 & " (13%)"

 UserForm1.OptionButton10.Caption = totalpref * 0.16 & " (16%)"

 UserForm1.Show

 If (UserForm1.OptionButton1.Value = True) Then varB(2, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(2, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(2, st2count) = 0.1

 If (UserForm1.OptionButton4.Value = True) Then varB(2, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(2, st2count) = 0.16

 If (UserForm1.OptionButton6.Value = True) Then varB(3, st2count) = 0.04

 If (UserForm1.OptionButton7.Value = True) Then varB(3, st2count) = 0.07

 If (UserForm1.OptionButton8.Value = True) Then varB(3, st2count) = 0.1

 If (UserForm1.OptionButton9.Value = True) Then varB(3, st2count) = 0.13

 If (UserForm1.OptionButton10.Value = True) Then varB(3, st2count) = 0.16

 End If

140

 If baseOF(st2count) = 3 Then

 'UserForm1.Label1.Caption = UserForm1.Label1.Caption & baseOF(st2count) & " from " & totalpref & " to " & totalpref * 1.1

& "(10%)"

 UserForm1.Frame1.Caption = "Total Cost (Obj 1)"

 UserForm1.Frame2.Caption = "Training Amount (Obj 2)"

 UserForm1.OptionButton1.Caption = totalcost * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = totalcost * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = totalcost * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = totalcost * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = totalcost * 0.16 & " (16%)"

 UserForm1.OptionButton6.Caption = totalsgap * 0.04 & " (4%)"

 UserForm1.OptionButton7.Caption = totalsgap * 0.07 & " (7%)"

 UserForm1.OptionButton8.Caption = totalsgap * 0.1 & " (10%)"

 UserForm1.OptionButton9.Caption = totalsgap * 0.13 & " (13%)"

 UserForm1.OptionButton10.Caption = totalsgap * 0.16 & " (16%)"

 UserForm1.Show

 If (UserForm1.OptionButton1.Value = True) Then varB(1, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(1, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(1, st2count) = 0.1

 If (UserForm1.OptionButton4.Value = True) Then varB(1, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(1, st2count) = 0.16

 If (UserForm1.OptionButton6.Value = True) Then varB(2, st2count) = 0.04

 If (UserForm1.OptionButton7.Value = True) Then varB(2, st2count) = 0.07

 If (UserForm1.OptionButton8.Value = True) Then varB(2, st2count) = 0.1

 If (UserForm1.OptionButton9.Value = True) Then varB(2, st2count) = 0.13

 If (UserForm1.OptionButton10.Value = True) Then varB(2, st2count) = 0.16

 End If

End If

If prefsoln > numSolns * 2 And prefsoln <= numSolns * 3 Then

 cellrow = 7 + numtasks + 6 + numtasks + 6

 cellcol = (prefsoln - 2 * numSolns) * 2

141

 Do Until baseOF(st2count) = 2 Or baseOF(st2count) = 1

 baseOF(st2count) = InputBox("Which objective do you want to improve? (1-Training Cost, or 2-Training Amount)", "")

 Loop

 totalcost = ActiveSheet.Cells(cellrow + numtasks + 1, cellcol)

 totalsgap = ActiveSheet.Cells(cellrow + numtasks + 2, cellcol)

 totalpref = ActiveSheet.Cells(cellrow + numtasks + 3, cellcol)

 If baseOF(st2count) = 1 Then

 'UserForm1.Label1.Caption = UserForm1.Label1.Caption & baseOF(st2count) & " from " & totalcost & " to " & totalcost * 0.9

& "(10%)"

 UserForm1.Frame1.Caption = "Training Amount (Obj 2)"

 UserForm1.Frame2.Caption = "Worker Preference (Obj 3)"

 UserForm1.OptionButton1.Caption = totalsgap * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = totalsgap * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = totalsgap * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = totalsgap * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = totalsgap * 0.16 & " (16%)"

 UserForm1.OptionButton6.Caption = totalpref * 0.04 & " (4%)"

 UserForm1.OptionButton7.Caption = totalpref * 0.07 & " (7%)"

 UserForm1.OptionButton8.Caption = totalpref * 0.1 & " (10%)"

 UserForm1.OptionButton9.Caption = totalpref * 0.13 & " (13%)"

 UserForm1.OptionButton10.Caption = totalpref * 0.16 & " (16%)"

 UserForm1.Show

 If (UserForm1.OptionButton1.Value = True) Then varB(2, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(2, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(2, st2count) = 0.1

 If (UserForm1.OptionButton4.Value = True) Then varB(2, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(2, st2count) = 0.16

 If (UserForm1.OptionButton6.Value = True) Then varB(3, st2count) = 0.04

 If (UserForm1.OptionButton7.Value = True) Then varB(3, st2count) = 0.07

 If (UserForm1.OptionButton8.Value = True) Then varB(3, st2count) = 0.1

142

 If (UserForm1.OptionButton9.Value = True) Then varB(3, st2count) = 0.13

 If (UserForm1.OptionButton10.Value = True) Then varB(3, st2count) = 0.16

 End If

 If baseOF(st2count) = 2 Then

 'UserForm1.Label1.Caption = UserForm1.Label1.Caption & baseOF(st2count) & " from " & totalsgap & " to " & totalsgap * 1.1

& "(10%)"

 UserForm1.Frame1.Caption = "Total Cost (Obj 1)"

 UserForm1.Frame2.Caption = "Worker Preference (Obj 3)"

 UserForm1.OptionButton1.Caption = totalcost * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = totalcost * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = totalcost * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = totalcost * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = totalcost * 0.16 & " (16%)"

 UserForm1.OptionButton6.Caption = totalpref * 0.04 & " (4%)"

 UserForm1.OptionButton7.Caption = totalpref * 0.07 & " (7%)"

 UserForm1.OptionButton8.Caption = totalpref * 0.1 & " (10%)"

 UserForm1.OptionButton9.Caption = totalpref * 0.13 & " (13%)"

 UserForm1.OptionButton10.Caption = totalpref * 0.16 & " (16%)"

 UserForm1.Show

 If (UserForm1.OptionButton1.Value = True) Then varB(1, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(1, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(1, st2count) = 0.1

 If (UserForm1.OptionButton4.Value = True) Then varB(1, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(1, st2count) = 0.16

 If (UserForm1.OptionButton6.Value = True) Then varB(3, st2count) = 0.04

 If (UserForm1.OptionButton7.Value = True) Then varB(3, st2count) = 0.07

 If (UserForm1.OptionButton8.Value = True) Then varB(3, st2count) = 0.1

 If (UserForm1.OptionButton9.Value = True) Then varB(3, st2count) = 0.13

 If (UserForm1.OptionButton10.Value = True) Then varB(3, st2count) = 0.16

 End If

End If

143

For j = 1 To numtasks

 st2workerassign(st2count, ActiveSheet.Cells(cellrow + j, cellcol - 1), ActiveSheet.Cells(cellrow + j, cellcol)) = 1

Next j

st2OFV(st2count, 1) = totalcost

st2OFV(st2count, 2) = totalsgap

st2OFV(st2count, 3) = totalpref

'want to make this print on a new sheet

Sheets("Results Summary").Select

ActiveSheet.Cells.Clear

ActiveSheet.Cells(1, 1) = "Iteration"

ActiveSheet.Cells(1, 2) = st2count

cellrow = 2

For i = 1 To numworkers

For j = 1 To numtasks

 If st2workerassign(st2count, i, j) = 1 Then

 ActiveSheet.Cells(cellrow, st2count) = i

 ActiveSheet.Cells(cellrow, st2count + 1) = j

 cellrow = cellrow + 1

 End If

Next j

Next i

ActiveSheet.Cells(2 + numtasks, 1) = "Total Cost"

ActiveSheet.Cells(3 + numtasks, 1) = "Total Training Amount"

ActiveSheet.Cells(4 + numtasks, 1) = "Total Worker Preference"

ActiveSheet.Cells(2 + numtasks, 2) = st2OFV(st2count, 1)

ActiveSheet.Cells(3 + numtasks, 2) = st2OFV(st2count, 2)

144

ActiveSheet.Cells(4 + numtasks, 2) = st2OFV(st2count, 3)

usersatisfied = 0

Do While usersatisfied = 0

 For y = 1 To numworkers

 workerswap(st2count, y) = 0

 Next y

 For i1 = 1 To numworkers

 For j1 = 1 To numtasks

 If st2workerassign(st2count, i1, j1) = 1 Then

 For i2 = 1 To numworkers

 For j2 = 1 To numtasks

 If st2workerassign(st2count, i2, j2) = 1 And i2 > i1 Then

 'zero out temptaskcost here for all i and j

 For i3 = 1 To numworkers

 For j3 = 1 To numtasks

 tempworkerassign(1, i3, j3) = st2workerassign(st2count, i3, j3)

 Next j3

 Next i3

 tempworkerassign(1, i1, j1) = 0

 tempworkerassign(1, i2, j2) = 0

 tempworkerassign(1, i1, j2) = 1

 tempworkerassign(1, i2, j1) = 1

 'we now have the new assignment to be considered against the Value Fn

145

 tempcost = 0

 tempsgap = 0

 temppref = 0

 For i4 = 1 To numworkers

 For j4 = 1 To numtasks

 If tempworkerassign(1, i4, j4) = 1 Then

 For a = 1 To numworkers

 For b = 1 To numtasks

 temptaskcost(a, b) = 0

 temptaskSgap(a, b) = 0

 temptaskPref(a, b) = 0

 Next b

 Next a

 For k = 1 To numskills

 If oworkerskill(i4, k) < otaskskill(j4, k) And otaskskill(j4, k) > 1 Then

 temptaskcost(i4, j4) = temptaskcost(i4, j4) + otraincost(k, oworkerskill(i4, k), otaskskill(j4, k))

 temptaskSgap(i4, j4) = temptaskSgap(i4, j4) + (otaskskill(j4, k) - oworkerskill(i4, k))

 temptaskPref(i4, j4) = temptaskPref(i4, j4) + Prefmatrix(i4, k) * (otaskskill(j4, k) - oworkerskill(i4, k))

 End If

 Next k

 tempcost = tempcost + temptaskcost(i4, j4)

 tempsgap = tempsgap + temptaskSgap(i4, j4)

 temppref = temppref + temptaskPref(i4, j4)

 End If

 Next j4

 Next i4

 possibleswaps(i1, j1, i2, j2, 1) = tempcost - st2OFV(st2count, 1)

 possibleswaps(i1, j1, i2, j2, 2) = tempsgap - st2OFV(st2count, 2)

 possibleswaps(i1, j1, i2, j2, 3) = temppref - st2OFV(st2count, 3)

 End If

146

 Next j2

 Next i2

 End If

 Next j1

 Next i1

 For i = 1 To numworkers

 For j = 1 To numtasks

 st2workerassign(st2count + 1, i, j) = st2workerassign(st2count, i, j)

 Next j

 Next i

'''

NEWcost = st2OFV(st2count, 1)

NEWsgap = st2OFV(st2count, 2)

NEWpref = st2OFV(st2count, 3)

If baseOF(st2count) = 1 Then

Do Until NEWsgap <= st2OFV(st2count, 2) * (1 - varB(2, st2count)) Or NEWpref <= st2OFV(st2count, 3) * (1 - varB(3, st2count))

 mindeltacost = 0

 For a = 1 To numworkers

 If workerswap(st2count, a) = 0 Then

 For b = 1 To numtasks

 If st2workerassign(st2count, a, b) = 1 Then

 For i = 1 To numworkers

 If workerswap(st2count, i) = 0 Then

 For j = 1 To numtasks

 If st2workerassign(st2count, i, j) = 1 Then

 If possibleswaps(a, b, i, j, 1) < mindeltacost Then

 besti1 = a

147

 bestj1 = b

 besti2 = i

 bestj2 = j

 mindeltacost = possibleswaps(a, b, i, j, 1)

 End If

 End If

 Next j

 End If

 Next i

 End If

 Next b

 End If

 Next a

 workerswap(st2count, besti1) = 1

 workerswap(st2count, besti2) = 1

 st2workerassign(st2count + 1, besti1, bestj1) = 0

 st2workerassign(st2count + 1, besti2, bestj2) = 0

 st2workerassign(st2count + 1, besti1, bestj2) = 1

 st2workerassign(st2count + 1, besti2, bestj1) = 1

 NEWsgap = NEWsgap + possibleswaps(besti1, bestj1, besti2, bestj2, 2)

 NEWpref = NEWsgap + possibleswaps(besti1, bestj1, besti2, bestj2, 3)

Loop

End If

If baseOF(st2count) = 2 Then

Do Until NEWcost >= st2OFV(st2count, 1) * (1 + varB(1, st2count)) Or NEWpref <= st2OFV(st2count, 3) * (1 - varB(3, st2count))

 maxdeltasgap = 0

 For a = 1 To numworkers

 If workerswap(st2count, a) = 0 Then

148

 For b = 1 To numtasks

 If st2workerassign(st2count, a, b) = 1 Then

 For i = 1 To numworkers

 If workerswap(st2count, i) = 0 Then

 For j = 1 To numtasks

 If st2workerassign(st2count, i, j) = 1 Then

 If possibleswaps(a, b, i, j, 2) > maxdeltasgap Then

 besti1 = a

 bestj1 = b

 besti2 = i

 bestj2 = j

 maxdeltasgap = possibleswaps(a, b, i, j, 2)

 End If

 End If

 Next j

 End If

 Next i

 End If

 Next b

 End If

 Next a

 workerswap(st2count, besti1) = 1

 workerswap(st2count, besti2) = 1

 st2workerassign(st2count + 1, besti1, bestj1) = 0

 st2workerassign(st2count + 1, besti2, bestj2) = 0

 st2workerassign(st2count + 1, besti1, bestj2) = 1

 st2workerassign(st2count + 1, besti2, bestj1) = 1

 NEWcost = NEWcost + possibleswaps(besti1, bestj1, besti2, bestj2, 1)

149

 NEWpref = NEWpref + possibleswaps(besti1, bestj1, besti2, bestj2, 3)

Loop

End If

If baseOF(st2count) = 3 Then

Do Until NEWcost >= st2OFV(st2count, 1) * (1 + varB(1, st2count)) Or NEWsgap <= st2OFV(st2count, 2) * (1 - varB(2, st2count))

 maxdeltapref = 0

 For a = 1 To numworkers

 If workerswap(st2count, a) = 0 Then

 For b = 1 To numtasks

 If st2workerassign(st2count, a, b) = 1 Then

 For i = 1 To numworkers

 If workerswap(st2count, i) = 0 Then

 For j = 1 To numtasks

 If st2workerassign(st2count, i, j) = 1 Then

 If possibleswaps(a, b, i, j, 3) > maxdeltapref Then

 besti1 = a

 bestj1 = b

 besti2 = i

 bestj2 = j

 maxdeltapref = possibleswaps(a, b, i, j, 3)

 End If

 End If

 Next j

 End If

 Next i

 End If

 Next b

 End If

 Next a

 workerswap(st2count, besti1) = 1

150

 workerswap(st2count, besti2) = 1

 st2workerassign(st2count + 1, besti1, bestj1) = 0

 st2workerassign(st2count + 1, besti2, bestj2) = 0

 st2workerassign(st2count + 1, besti1, bestj2) = 1

 st2workerassign(st2count + 1, besti2, bestj1) = 1

 NEWcost = NEWcost + possibleswaps(besti1, bestj1, besti2, bestj2, 1)

 NEWsgap = NEWsgap + possibleswaps(besti1, bestj1, besti2, bestj2, 2)

Loop

End If

 st2count = st2count + 1

 st2OFV(st2count, 1) = 0

 st2OFV(st2count, 2) = 0

 st2OFV(st2count, 3) = 0

 For i4 = 1 To numworkers

 For j4 = 1 To numtasks

 If st2workerassign(st2count, i4, j4) = 1 Then

 For a = 1 To numworkers

 For b = 1 To numtasks

 temptaskcost(a, b) = 0

 temptaskSgap(a, b) = 0

 temptaskPref(a, b) = 0

 Next b

 Next a

 For k = 1 To numskills

 If oworkerskill(i4, k) < otaskskill(j4, k) And otaskskill(j4, k) > 1 Then

151

 temptaskcost(i4, j4) = temptaskcost(i4, j4) + otraincost(k, oworkerskill(i4, k), otaskskill(j4, k))

 temptaskSgap(i4, j4) = temptaskSgap(i4, j4) + (otaskskill(j4, k) - oworkerskill(i4, k))

 temptaskPref(i4, j4) = temptaskPref(i4, j4) + Prefmatrix(i4, k) * (otaskskill(j4, k) - oworkerskill(i4, k))

 End If

 Next k

 st2OFV(st2count, 1) = st2OFV(st2count, 1) + temptaskcost(i4, j4)

 st2OFV(st2count, 2) = st2OFV(st2count, 2) + temptaskSgap(i4, j4)

 st2OFV(st2count, 3) = st2OFV(st2count, 3) + temptaskPref(i4, j4)

 End If

 Next j4

 Next i4

 ActiveSheet.Cells(1, 2 * st2count) = st2count

 cellrow = 2

 For i = 1 To numworkers

 For j = 1 To numtasks

 If st2workerassign(st2count, i, j) = 1 Then

 ActiveSheet.Cells(cellrow, st2count * 2 - 1) = i

 ActiveSheet.Cells(cellrow, st2count * 2) = j

 cellrow = cellrow + 1

 End If

 Next j

 Next i

 ActiveSheet.Cells(2 + numtasks, st2count * 2) = st2OFV(st2count, 1)

 ActiveSheet.Cells(3 + numtasks, st2count * 2) = st2OFV(st2count, 2)

 ActiveSheet.Cells(4 + numtasks, st2count * 2) = st2OFV(st2count, 3)

 usersatisfied = Application.InputBox("Is this a satisfactory assignment (1)? Run compromise stage again(0)", "")

152

 If usersatisfied = 1 Then

 MsgBox ("Done")

 End If

 If usersatisfied <> 1 Then

 Do Until baseOF(st2count) = 1 Or baseOF(st2count) = 2 Or baseOF(st2count) = 3

 baseOF(st2count) = InputBox("Which objective do you want to improve? (1-Cost, 2-Training, 3-Preference)", "")

 Loop

 UserForm1.Label1.Caption = "To what percent would you like to compromise each objective? "

 varB(1, st2count) = 0

 varB(2, st2count) = 0

 varB(3, st2count) = 0

 If baseOF(st2count) = 2 Then

 'UserForm1.Label1.Caption = UserForm1.Label1.Caption & baseOF(st2count) & " from " & st2OFV(st2count, 2) & " to " &

st2OFV(st2count, 2) * 1.1 & "(10%)"

 UserForm1.Frame1.Caption = "Total Cost (Obj 1)"

 UserForm1.Frame2.Caption = "Worker Preference (Obj 3)"

 UserForm1.OptionButton1.Caption = st2OFV(st2count, 1) * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = st2OFV(st2count, 1) * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = st2OFV(st2count, 1) * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = st2OFV(st2count, 1) * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = st2OFV(st2count, 1) * 0.16 & " (16%)"

 UserForm1.OptionButton6.Caption = st2OFV(st2count, 3) * 0.04 & " (4%)"

 UserForm1.OptionButton7.Caption = st2OFV(st2count, 3) * 0.07 & " (7%)"

 UserForm1.OptionButton8.Caption = st2OFV(st2count, 3) * 0.1 & " (10%)"

 UserForm1.OptionButton9.Caption = st2OFV(st2count, 3) * 0.13 & " (13%)"

 UserForm1.OptionButton10.Caption = st2OFV(st2count, 3) * 0.16 & " (16%)"

 UserForm1.Show

153

 If (UserForm1.OptionButton1.Value = True) Then varB(1, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(1, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(1, st2count) = 0.1

 If (UserForm1.OptionButton4.Value = True) Then varB(1, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(1, st2count) = 0.16

 If (UserForm1.OptionButton6.Value = True) Then varB(3, st2count) = 0.04

 If (UserForm1.OptionButton7.Value = True) Then varB(3, st2count) = 0.07

 If (UserForm1.OptionButton8.Value = True) Then varB(3, st2count) = 0.1

 If (UserForm1.OptionButton9.Value = True) Then varB(3, st2count) = 0.13

 If (UserForm1.OptionButton10.Value = True) Then varB(3, st2count) = 0.16

 End If

 If baseOF(st2count) = 3 Then

 'UserForm1.Label1.Caption = UserForm1.Label1.Caption & baseOF(st2count) & " from " & st2OFV(st2count, 3) & " to " &

st2OFV(st2count, 3) * 1.1 & "(10%)"

 UserForm1.Frame1.Caption = "Total Cost (Obj 1)"

 UserForm1.Frame2.Caption = "Training Amount (Obj 2)"

 UserForm1.OptionButton1.Caption = st2OFV(st2count, 1) * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = st2OFV(st2count, 1) * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = st2OFV(st2count, 1) * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = st2OFV(st2count, 1) * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = st2OFV(st2count, 1) * 0.16 & " (16%)"

 UserForm1.OptionButton1.Caption = st2OFV(st2count, 2) * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = st2OFV(st2count, 2) * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = st2OFV(st2count, 2) * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = st2OFV(st2count, 2) * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = st2OFV(st2count, 2) * 0.16 & " (16%)"

 UserForm1.Show

 If (UserForm1.OptionButton1.Value = True) Then varB(1, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(1, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(1, st2count) = 0.1

154

 If (UserForm1.OptionButton4.Value = True) Then varB(1, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(1, st2count) = 0.16

 If (UserForm1.OptionButton1.Value = True) Then varB(2, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(2, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(2, st2count) = 0.1

 If (UserForm1.OptionButton4.Value = True) Then varB(2, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(2, st2count) = 0.16

 End If

 If baseOF(st2count) = 1 Then

 'UserForm1.Label1.Caption = UserForm1.Label1.Caption & baseOF(st2count) & " from " & st2OFV(st2count, 1) & " to " &

st2OFV(st2count, 1) * 0.9 & "(10%)"

 UserForm1.Frame1.Caption = "Training Amount (Obj 2)"

 UserForm1.Frame2.Caption = "Worker Preference (Obj 3)"

 UserForm1.OptionButton1.Caption = st2OFV(st2count, 2) * 0.04 & " (4%)"

 UserForm1.OptionButton2.Caption = st2OFV(st2count, 2) * 0.07 & " (7%)"

 UserForm1.OptionButton3.Caption = st2OFV(st2count, 2) * 0.1 & " (10%)"

 UserForm1.OptionButton4.Caption = st2OFV(st2count, 2) * 0.13 & " (13%)"

 UserForm1.OptionButton5.Caption = st2OFV(st2count, 2) * 0.16 & " (16%)"

 UserForm1.OptionButton6.Caption = st2OFV(st2count, 3) * 0.04 & " (4%)"

 UserForm1.OptionButton7.Caption = st2OFV(st2count, 3) * 0.07 & " (7%)"

 UserForm1.OptionButton8.Caption = st2OFV(st2count, 3) * 0.1 & " (10%)"

 UserForm1.OptionButton9.Caption = st2OFV(st2count, 3) * 0.13 & " (13%)"

 UserForm1.OptionButton10.Caption = st2OFV(st2count, 3) * 0.16 & " (16%)"

 UserForm1.Show

 If (UserForm1.OptionButton1.Value = True) Then varB(2, st2count) = 0.04

 If (UserForm1.OptionButton2.Value = True) Then varB(2, st2count) = 0.07

 If (UserForm1.OptionButton3.Value = True) Then varB(2, st2count) = 0.1

 If (UserForm1.OptionButton4.Value = True) Then varB(2, st2count) = 0.13

 If (UserForm1.OptionButton5.Value = True) Then varB(2, st2count) = 0.16

 If (UserForm1.OptionButton6.Value = True) Then varB(3, st2count) = 0.04

155

 If (UserForm1.OptionButton7.Value = True) Then varB(3, st2count) = 0.07

 If (UserForm1.OptionButton8.Value = True) Then varB(3, st2count) = 0.1

 If (UserForm1.OptionButton9.Value = True) Then varB(3, st2count) = 0.13

 If (UserForm1.OptionButton10.Value = True) Then varB(3, st2count) = 0.16

 End If

End If

Loop 'this loop ends when usersatisfied=1

End Sub

	A multi-objective decision support system for worker-task assignments and workforce training.
	Recommended Citation

	tmp.1423685735.pdf.dd6tn

