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ABSTRACT

DEVELOPING ADVANCED MATHEMATICAL MODELS FOR DETECTING
ABNORMALITIES IN 2D /3D MEDICAL STRUCTURES

Ahmed Abd-Elrahman Elnakib

December 05, 2013

Detecting abnormalities in two-dimensional (2D) and three-dimensional (3D)
medical structures is among the most interesting and challenging research areas in
the medical imaging field. Obtaining the desired accurate automated quantifica-
tion of abnormalities in medical structures is still very challenging. This is due to
a large and constantly growing number of different objects of interest and asso-
ciated abnormalities, large variations of their appearances and shapes in images,
different medical imaging modalities, and associated changes of signal homogene-
ity and noise for each object. The main objective of this dissertation is to address
these problems and to provide proper mathematical models and techniques that
are capable of analyzing low and high resolution medical data and providing an
accurate, automated analysis of the abnormalities in medical structures in terms of

their area/volume, shape, and associated abnormal functionality.

This dissertation presents different preliminary mathematical models and

techniques that are applied in three case studies: (i) detecting abnormal tissue in

Vi



the left ventricle (LV) wall of the heart from delayed contrast-enhanced cardiac
magnetic resonance images (MRI), (i) detecting local cardiac diseases based on es-
timating the functional strain metric from cardiac cine MRI, and (i) identifying the
abnormalities in the corpus callosum (CC) brain structure—the largest fiber bun-
dle that connects the two hemispheres in the brain—for subjects that suffer from
developmental brain disorders. For detecting the abnormal tissue in the heart,
a graph-cut mathematical optimization model with a cost function that accounts
for the object’s visual appearance and shape is used to segment the the inner cav-
ity. The model is further integrated with a geometric model (i.e., a fast marching
level set model) to segment the outer border of the myocardial wall (the LV). Then
the abnormal tissue in the myocardium wall (also called dead tissue, pathological
tissue, or infarct area) is identified based on a joint Markov-Gibbs random field
(MGRF) model of the image and its region (segmentation) map that accounts for
the pixel intensities and the spatial interactions between the pixels. Experiments
with real in-vivo data and comparative results with ground truth (identified by a
radiologist) and other approaches showed that the proposed framework can accu-
rately detect the pathological tissue and can provide useful metrics for radiologists

and clinicians.

To estimate the strain from cardiac cine MRI, a novel method based on track-
ing the LV wall geometry is proposed. To achieve this goal, a partial differen-
tial equation (PDE) method is applied to track the LV wall points by solving the
Laplace equation between the LV contours of each two successive image frames
over the cardiac cycle. The main advantage of the proposed tracking method over
traditional texture-based methods is its ability to track the movement and rotation
of the LV wall based on tracking the geometric features of the inner, mid-, and
outer walls of the LV. This overcomes noise sources that come from scanner and

heart motion.
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To identify the abnormalities in the CC from brain MRI, the CCs are aligned
using a rigid registration model and are segmented using a shape-appearance
model. Then, they are mapped to a simple unified space for analysis. This work
introduces a novel cylindrical mapping model, which is conformal (i.e., one to one
transformation and bijective), that enables accurate 3D shape analysis of the CC in
the cylindrical domain. The framework can detect abnormalities in all divisions
of the CC (i.e., splenium, rostrum, genu and body). In addition, it offers a whole
3D analysis of the CC abnormalities instead of only area-based analysis as done
by previous groups. The initial classification results based on the centerline length
and CC thickness suggest that the proposed CC shape analysis is a promising sup-

plement to the current techniques for diagnosing dyslexia.

The proposed techniques in this dissertation have been successfully tested
on complex synthetic and MR images and can be used to advantage in many of
today’s clinical applications of computer-assisted medical diagnostics and inter-

vention.
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CHAPTER 1

INTRODUCTION

Early detection of abnormalities in human organs is very important for the
diagnosis of human diseases and can lead to better treatment outcomes. The goal
of this work is to detect abnormalities in medical structures and to investigate
extracting automated and accurate metrics that can quantify these abnormalities.
Medical reports show that the early detection of heart diseases (e.g., left ventricle
dysfunction and ischemic heart disease, a case study in this dissertation), and brain
disorders (e..g, dyslexia, a case study in this dissertation) can assist the clinicians to
afford better treatment and leads to increase the survival rate of patients with these
diseases. Medical imaging represents a noninvasive way to reveal these abnor-
malities and has been emerged as a basic component in current medical diagnostic
tools. Nowadays, it has been effectively used to assist clinicians and radiologists

in diagnosis, therapy decisions, and surgery operations.

Recent advances in medical image modalities, including magnetic resonance
imaging (MRI), computed tomography (CT), and ultrasound (US), enable the ac-
quisition of images for almost all types and sizes of different structures with ac-
ceptable degrees of contrast and resolution. A wide scope of abnormalities have
been extensively explored in different research areas, such as detecting cancerous
cells in different medical structures, identifying dead tissues in different organs,
and detecting brain abnormalities in subjects with brain disorders. The process of

detecting these abnormalities from medical images involves developing advanced



mathematical models for the appearance and shapes of the structures and their
abnormalities and providing efficient algorithms towards accurate abnormality
detection and quantification. Various aspects of these mathematical models and
algorithms have been extensively explored for many years in a host of publica-
tions. However, obtaining the desired accurate automated abnormality detection
and quantification is still very challenging due to a large and constantly growing
number of abnormalities in medical structures, large variations of their properties
in images, different metrics used to quantify each abnormality, different medical
imaging modalities, and associated changes of signal homogeneity, variability, and
noise for each modality. The main objective of this dissertation is to address these
problems and present proper mathematical models and techniques in order to pro-
vide an accurate, automated detection and quantification of abnormalities using
medical imaging. Since all the work presented in this dissertation mainly deals
with medical images, below, the different types of modalities that are used to

capture medical images are overviewed.

Medical Imaging Modalities

Single Photon Emission
Computed Tomography

Magnetic Resonance
Imaging (MRI)

Computed Positron Emission
Tomography Tomography

FIGURE 1: Classes of medical image modalities. This dissertation mainly deals

with MRI (written with yellow font).

A. MEDICAL IMAGING

A constant growing number of image modalities with different imaging
capture parameters has been recently developed in order to capture and visual-

ize the constantly growing number of different medical structures with acceptable



resolution and contrast. Each of these modalities (see e.g., Figure 1, Figure 2, and
Figure 3) has its own mechanism of providing relevant physiological information
of the organ being imaged as well as its own advantages and limitations. Medical
images can be classified based on their modalities (Figure 1) or based on the type of
information that they provide (i.e., the structure or the function of the organ being
imaged, see Figure 3). Since all the work presented in this dissertation mainly
deals with magnetic resonance images, the details of the different techniques of

magnetic resonance images are presented below.

1. Magnetic Resonance Imaging (MRI)

MRI is a medical imaging modality that is based on the same principles of
nuclear magnetic resonance (NMR) spectroscopy [12]. MRI has become the most
powerful and central non-invasive tool for clinical diagnosis of diseases [13]. The
fundamental principle of MRI is based on the use of a strong static magnetic field in
which the hydrogen nuclei (single proton) of water molecules in human tissues are
aligned parallel to that field. Then, an external radio frequency (RF) pulse (wave)
is applied to the unpaired magnetic spins (proton) aligned in the static magnetic
tield, making them spin in different directions [14]. The interaction between the
RF and proton spins leads to periodic absorption and emission of energy. When
the protons relax back to their lower energy (equilibrium) state, they release de-
tectable signals (energy) that are spatially encoded and are used to construct the
MR image. Different types of tissues (muscle, fat, cerebral spinal fluid, etc.) send
back measurably different types of tissue-specific signals following the applica-
tion of the same RF pulse. The contrast of an MR image is strongly dependent
on the way the image is acquired. Different components of the scanned area can
be highlighted using different pulse sequences: a preselected strength, shape, and

timing of defined RF and gradient pulses (external fields). Generally, MRI can be
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FIGURE 2: Different types of medical images: (a) magnetic resonance imaging

(MRI) of the brain, (b) computed tomography (CT) image of the kidney, (c) ultra-
sound (US) image of the fetus, (d) positron emission tomography (PET) image of
the lung, and (e) single photon emission computed tomography (SPECT) image of

the liver.
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FIGURE 3: Categories of medical image modalities based on the type of informa-
tion that they provide about the organ being imaged, i.e., structural or functional
imaging. MRI, CT, US, PET, SPECT, MRA, CE-MRI, fMRI, MRS, CT-CE stand for
magnetic resonance imaging, computed tomography, ultrasound, positron emis-
sion tomography, single photon emission computed tomography, magnetic reso-
nance angiography, contrast-enhanced MRI, functional MRI, magnetic resonance
spectroscopy, and contrast-enhanced CT, respectively. This dissertation mainly

deals with the categories that are written in yellow.

used to acquire planner 2D images (Figure 5), 3D volumes (Figure 6), or sequences
of 3D volumes. Most commonly-known specialized MRI techniques are shown
in Figure 4. The following sections focus on the MRI techniques that are used
throughout this dissertation (i.e., structural MRI to image the brain and CE-MRI

and 4D MRI to image the heart).
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FIGURE 4: Different specialized MRI acquisition techniques. MRA, DWI, DSI,
DTI, CE-MRI, DCE-MRI, fMRI, MRS, stand for magnetic resonance angiography,
diffusion-weighted imaging, diffusion spectrum imaging, diffusion tensor imag-
ing, contrast-enhanced MRI, dynamic CE-MRI, functional MRI, and magnetic reso-
nance spectroscopy, respectively. The dissertation mainly deals with the categories

that are written in yellow.

FIGURE 5: 2D MR image of the knee. Courtesy of [2]

a. Structural MRI: Structural MRI involves the MRI techniques that show
the anatomy of human structures or body tissues, such as T-weighted, T2-weighted,
proton density (PD), and magnetic resonance angiography (MRA). Since MRA, a

MRI exam for imaging the vascular anatomy, is out of the scope of this dissertation,



(a) (b) ()
FIGURE 6: Typical 3D MRI of the brain, captured in three views: (a) sagittal plane,

(b) coronal plane, and (c) axial plane.

this section will focus on illustrating the other three types. The amount of energy
(or signal strength) on each of these three types primarily depends on the magnetic
relaxation properties of body atomic nuclei. The time of the relaxation process (i.e.,
the time taken by nuclei to return to their baseline states after applying the RF
pulse) is known as longitudinal relaxation time (T1) or transverse relaxation time
(T2), based on the orientation of the component with respect to the magnetic field.
Every tissue in the human body has its own T1 and T2 values, which depend on the
concentration of protons in the tissue in the form of water and macromolecules. T1-
weighted MRI is the commonly-run clinical MRI scan that emphasizes T1-contrast,
i.e., most of the contrast between tissues is due to differences in tissue T1 values.
Thus, it is the best MRI method for demonstrating anatomical details. T2-weighted
scans are another basic type that emphasizes T2 contrast. Usually, T2-weighted is
used when it is required to show high contrast between fluid, abnormalities (e.g.,
tumors, inflammation, trauma), and the surrounding tissues. Therefore, it is the
best MRI method for pathological details. In practice, T1- and T2-weighted images
provide complementary information, so both are important for characterizing ab-
normalities. Finally, the proton density (spin density) weighted scans try to have
no contrast from either T1 or T2. The only signal change is due to differences in

the amount of available spins (hydrogen nuclei in water). The main advantage of



the PD-weighted images is the increase in contrast between fluid and non-fluid
tissues. However, PD-weighted images usually show less contrast resolution than
T1- and T2-weighted images. This is due to the fact that the difference in hydrogen

concentration (proton density) of soft tissues is relatively small.

The main strength of MRI is that it offers the best soft tissue contrast among
all image modalities. Moreover, it is a dynamic technology that can be optimized
to tailor the imaging study to the anatomical part of interest and to the disease
process being studied. In this regard, MRI offers different degrees of dynamic
optimization. For example, the imaging plane can be optimized to the anatomi-
cal area being studied (axial, coronal, sagittal, see Figure 6), and multiple oblique
planes can be captured with equal ease. In addition, as described above, the sig-
nal intensities of the imaged tissues can be controlled by selecting the type of the
scan: either proton density, T1-weighted, or T2-weighted [13, 15, 16] (see, Figure 7).
Moreover, for a given type of scan, a pulse sequence is designed and imaging pa-

rameters are optimized to produce the desired image contrast (see Figure 8).

(a) (b) ()
FIGURE 7: Examples of MRI brain scans: (a) T1-weighted, (b) proton density, and
(c) T2-weighted images. The images have very different image contrasts that reveal

specific information about various structures in the brain.



(a) (b) (c) (d)

FIGURE 8: MRI scans of the brain using different pulse sequences and scanning

parameters: (a)&(b) two Tl-weighted images captured using different scanning
parameters and (c)&(d) two T2-weighted images captured using different scan-

ning parameters. Courtesy of [3].

b. Contrast-enhanced MRI (CE-MRI): Although structural MRI provides
excellent soft tissue contrast, it lacks functional information. Contrast-enhanced
MRI (CE-MRI) is a special MR technique that has the ability to provide superior
information of the anatomy, function, and metabolism of target tissues [17]. The
technique involves the acquisition of MR images with high temporal resolution
before, during, and at several times after the administration of a contrast agent
into the blood stream. In CE-MRI, the signal intensity in target tissue changes in
proportion to the contrast agent concentration in the volume element of measure-
ment, or voxel. CE-MRI is commonly used to enhance the contrast between dif-
ferent tissues, particularly normal and pathological. Typical examples of CE-MRI

time series data of the kidney, heart, and prostate are shown in Figure 9.

CE-MRI has gained considerable attention due to the lack of ionizing radi-
ation, and increased spatial resolution. It has been extensively used in many clini-
cal applications, including detection of pathological tissue in the myocardium and
early detection of acute renal rejection [18]. Unlike structural MRI where the con-
trast mainly depends on the intrinsic magnetic relaxation times T1 and T2, CE-MRI

technique employs the administration (oral, rectal, intravesical, or intravenous) of
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Pre-Contrast Post-Contrast Late-Contrast

(b)

(c)
FIGURE 9: CE-MRI images taken at different time points post the adminstration of
the contrast agent showing the change of the contrast as the contrast agent perfuse

into the tissue beds for (a) kidney, (b) heart, and (c) prostate.

contrast agents prior to the medical scan. The main role of the use of the con-
trast agents is to increase the image contrast of anatomical structures (e.g., blood
vessels) that are not easily visualized by the alteration of the magnetic properties
of water molecules in their vicinity. This in turns improves the visualization of
tissues, organs, and physiological processes. In clinical practice, several types of
contrast agents are in use and their choice is based on the imaging modality. In
particular, for MRI there are several types of contrast agents such as paramagnetic
agents, superparamagnetic agents, extracellular fluid space (ECF) agents, and tis-

sue (organ)-specific agents, see Figure 10.
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FIGURE 10: Different types of contrast agents used in MRI medical scans. In this
dissertation, Gadolinium-based (written in yellow) CE-MRI is used to detect the

pathological tissue from the left ventricle (LV) wall of the heart.

The most successful MRI contrast agents that have been widely investigated
are gadolinium-based. Gadolinium, a rare metal, is a non-toxic paramagnetic con-
trast agent that enhances the detected MR signal and produces high contrast im-
ages of soft tissues by decreasing T1 relaxation times of water protons in living
tissue in the vicinity of the paramagnetic contrast agent. Gadolinium-based CE-
MRI has been extensively used in cardiovascular, oncological, and neurological

imaging applications.

c. Four-dimensional (4D) MRI: Recent advances and scanning techniques
of MRI allow the capture of 4D MRI images of the human structures. 4D MRI rep-
resents sequences of 3D volumes that are captured on different time instances. To
acquire the 4D MRI, dedicated scanning techniques should be developed to scan
the human structure of interest with a sufficient speed to cover the change in the
anatomy with time. 4D MRI images have the ability to provide both functional
and anatomical information about the human structure being imaged. Recently,
they have been used in many applications, e.g., to show how the anatomy changes
and provide the functionality of the heart during the cardiac cycle. An example of

using 4D MRI of the heart is shown in Figure 11.
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FIGURE 11: Typical 4D (3D plus time) cardiac MRI data. Images are acquired at

Short-Axis Image Sections

different sections covering the heart (from basal to apical), and each section con-
sists of a time series of 25 images over the cardiac cycle. Cine CMRI has the ability
to show how the anatomy changes and provide the functionality of the heart dur-

ing the cardiac cycle.

In total, potential advantages of MRI include that MRI does not involve
exposure to any harmful radiation, can be repeated sequentially over time, and
has the ability to generate cross-sectional images in any plane (including oblique
planes). Additionally, MRI provides superior resolution with far better contrast
(the ability to distinguish the differences between two arbitrarily similar but not
identical tissues) compared with other medical image modalities [13]. Finally, MRI
plays an important role in assessing tumors’ locations and extent, directing biop-

sies, planning proper therapy, and evaluating therapeutic results [19].

On the other hand, MRI imaging modality has its own disadvantages: (i)

MRI data acquisition is a relatively long and complex process—for each scan the
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imaging parameters and the pulse sequence need to be fixed; (ii) MRI is not suit-
able for patients with metal implants due to its magnetic nature; (iii) MRI suffers
from sensitivity to noise and image artifacts; (iv) MRI signals are dependent on
the imaging sequence used and can become non-linear beyond certain concentra-
tions leading to errors in extracted physiology; (v) MRI scanning processes may
be uncomfortable for some people because it can produce claustrophobia. Recent
improvements in MRI design aim to aid claustrophobic patients by using more
open magnet designs and shorter exam times. However, there is often a trade-off

between image quality and open design.

B. QUANTIFYING ABNORMALITIES IN MRI

Using MRI, several types of abnormalities in human structures can be re-
vealed. In general, these abnormalities can be quantified based on different types
of metrics, e.g., areal /volumetric, shape-based metrics, and/or functional metrics.

A taxonomy of the different metrics are shown in Figure 12.

Volumetric metrics are of great clinical importance in diagnostics of diseases
and deciding the need for therapies or proper medications. For example, they
can be used to investigate the progress of tumors by estimating the correspond-
ing change in the volume of tumors over periodic scans. The shape features are
severely used to define certain diseases or pathologies associated in different med-
ical structures. For example, the shape of lung nodules can be used as a discrim-
inatory feature to distinguish malignant and benign nodules. Functional features
are used to determine the status and functionality of different structures and can
conclude patient enhancement. The goal of this work is to detect abnormalities in
medical structures and to investigate extracting automated and accurate metrics

that can quantify these abnormalities. In particular, this dissertation addresses two
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Abnormality Quantification Metrics

Areal / Volumetric

Medial Axis

A Ejection
(centerline)

Pathology Area Fraction

Transmural
Extent

Tumor Growth
Rate

Spherical .
Harmonic Perfusion

Analysis Analysis

Procrustes
Analysis

Geodesic

Distance

FIGURE 12: Taxonomy of abnormality quantification metrics showing examples

for each category. The dissertation deals with the metrics written in yellow.

case studies for abnormality detection and quantification. The first case study is to
detect the abnormal tissue in the left ventricle (LV) wall of the heart from cardiac
magnetic resonance images in order to quantify the LV dysfunction. The second
case study is to detect local cardiac diseases based on functional strain estimation
from cine MRI. The third case study is to identify the shape abnormalities in the
the corpus callosum (CC) brain structure—the largest fiber bundle that connects
the two hemispheres in the brain—for the subjects that suffer from dyslexia using
brain MRI. Since the main interest of this dissertation is to extract accurate met-
rics to quantify abnormalities in these three case studies, the next section will

detail the different types of quantification metrics for each case study.
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1. Quantification of the LV Dysfunction

Different metrics can be extracted to quantify the LV dysfunction using MRI,
such as the area of pathological tissue, the transmural extent, and the functional in-
dexes (e.g., functional strain and the ejection fraction (EF)). Measuring the area of
pathological tissue in the LV (see Figure 13) is important to assist the cardiologists
in the diagnosis of the LV dysfunction and ischemic heart disease. However, for
reliable size measurement, the pathological tissue has to be accurately delineated
within the LV wall from the adjacent undamaged tissue. Accurate identification
of the pathology is a challenge due to image noise, limited resolution, and im-

precise boundaries.

o
aafrea of

“w.= ~pathology

FIGURE 13: Area of pathological tissue in the LV wall, delineated in yellow, in a
typical Gadolinium-based CE-MRI of the heart.

The transmural extent (or transmurality) is one of the candidate shape met-
rics that has been explored to quantify the myocardial viability. Transmurality
is defined as the fraction of pathological tissue’s extension across the myocardial
wall. A previously investigated procedure for estimating the transmural extent
(e.g., used in [20, 21]) extends a fixed number of radial lines from the inner to the
outer contour of the LV (see Figure 14(a)). After segments of the pathological tissue

along each line are determined, the transmural extent is estimated as the average
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< LV Wall

LV Wall

FIGURE 14: (a) The standard radial approach for the estimation of the transmural
extent of pathological tissue in the LV wall and (b) the deviations of the radial

method from the co-located corresponding pixel pairs.

pathological tissue’s extent relative to these lines. As illustrated in Figure 14 (b),
this, so-called radial method, is in principle inaccurate in establishing point-to-
point correspondences and geometrically inconsistent in estimating the transmu-
ral extent. Therefore, a more accurate shape-based analysis for estimating the

transmural extent should be investigated.

2. Detection of Local and Global Cardiac Diseases

Functional indexes can help cardiologists to accurately quantify the heart
status and detect local and global cardiac diseases, e.g., the EF metric and the func-
tional strain. The EF is a clinically relevant and well-documented global indicator
of the LV function in terms of the total cavity volume (the LV volume variation

over time):

_EDV-ESV _ ESV

EF EDV  EDV

(1)
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where ESV and EDV are the end systolic (the smallest cavity area) and the end

diastolic (the greatest cavity area) volumes, respectively.

To estimate the EF, the LV cavity volume-time data at each image slice is
used. Following the delineation of the cavity contour at each time point (image
frame) of the cardiac cycle, the corresponding cavity areas are computed and a
curve representing the physiology over the cardiac cycle is constructed. Then, the
Simpson’s rule is used to estimate the total LV volume by summing the contribu-
tions of enclosed areas from the individual image slices. From the total ventricular
function curve, the EDV and ESV can be automatically extracted (see Figure 15 (a))

and hence calculate the EF.

0.05

@ Functional Strain

End Diastolic Volume (EDV)

EDV —ESV
EDV

End Systolic Volume (ESV)

230 Ejection Fraction(EF) =

LV Volume (ml)
Functional Strain

5 0 s 2 % 0.2 5 10 15 20 25
Frame Number Frame Number

(a) (b)

FIGURE 15: (a) Ventricular function curve (obtained by summing the cavity ar-
eas over the heart) over the cardiac cycle, being used to estimate the EF, and (b)

corresponding functional strain of the heart over cardiac cycle.

On the other hand, the functional strain is one of the important quantifica-
tion metrics of the cardiac status. Local cardiac diseases (such as coronary atheroscle-
rosis) and global conditions (such as heart failure and diabetes) result in wall
dysfunction that manifests on strain slopes during the contraction and expansion
phases of the cardiac cycle [22]. Therefore, accurate strain estimation is important
for the early detection of these diseases (see Figure 15 (b)). Traditionally, the func-

tional strain is estimated by using the tagged images that lead to errors between
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the estimated indexes due to the inter-slice variability between the different im-
age modalities. There is a need to develop approaches that can estimate more

correlated functional indexes to completely characterize the heart status.

(a) (b)

FIGURE 16: The corpus callosum (CC) brain structure: (a) 3D illustration and (b) a

typical MR brain image with the CC delineated in yellow.

3. Identification of the CC Shape Abnormalities in Dyslexic Brains

The CC is the largest fiber bundle in the brain that is responsible for pass-
ing sensory, motor and cognitive information between homologous regions in the
two cerebral hemispheres (see Figure 16). Since human reading skills are highly
affected by the impaired communication between the hemispheres, the analysis
of the CC for dyslexic subjects is extensively explored [23-26]. The CC center-
line length (CLL) is a candidate metric to quantify the shape differences between
the normal and dyslexic subjects (see Figure 17). Unfortunately, the existing tech-
niques for extracting CC centerlines suffer from at least one of the following short-
comings: (i) they are computationally expensive, (ii) suffer from lack of robustness,
and (iii) are sensitive to boundary noise. There is a need to develop more accurate
approaches to accurately extract the centerline in order to characterize the shape

differences between normal and dyslexic subjects.
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FIGURE 17: 3D visualization of the CC centerline.

C. THE NEED FOR THIS WORK

The current abnormality detection and quantification metrics suffer from

the following limitations:

e The area and volumetric measurements are:

— Subject to errors coming from spatial smoothing, spatial registration,

and segmentation of structures.

- Sensitive to image noise, limited resolution, and imprecise object bound-

aries.

e Current radial estimation method for the transmural extent of pathological
tissue in the LV wall suffers from geometric inconsistency in estimating the

point-to-point correspondences between the inner and outer boundaries.

e Most of the current approaches for extracting CC centerline are computa-
tionally expensive, suffer from lack of robustness, and/or are sensitive to

boundary noise.

e The functional strain is estimated by using the tagged images whereas the
EF metric is estimated from cine cardiac MRI. This leads to errors between
the estimated indexes due to the inter-slice variability between the different

image modalities.
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To overcome these limitations, comprehensive mathematical models and
advanced techniques are provided to analyze medical images and provide an accu-
rate automated detection and quantification of abnormalities in medical structures.
These mathematical models include three novel segmentation models. The first
model is a graph-cut optimization model that integrates the appearance and shape
of the object of interest for the purpose of segmentation. Experiments, presented
in Chapter III, confirm that this approach shows superior results in segmenting
the inner cavity of the heart. The second model is a fast marching level set that
evolves from an initial boundary with a speed function formed based on the inten-
sity, spatial interaction, and object shape. Experiments, presented in Chapter III,
confirm the high capabilities of this approach to evolve from the inner cavity and
stop by the outer boundaries of the LV of the heart, providing an accurate segmen-
tation of the outer contour of the LV wall. The third segmentation approach makes
full use of the intensity and spatial interaction descriptors, in a joint Markov Gibbs
random field (MGRF) model of the image signals and their region map, to iden-
tify the pathological tissue in the LV wall. The intensity, spatial interaction, and
shape descriptor are further extended in 3D (Chapter VII) to segment the 3D CC
structure from the brain. The preliminary results of the proposed segmentation
approaches confirm the benefits of these models and encourage applying them in

other applications.

In addition to the proposed segmentation models, this work proposes an
accurate model to estimate the transmural extent, an important metric to quantify
the myocardial wall of the heart. The model is based on solving the PDE Laplace
equation to collocate the correspondence between two contours. Phantom valida-
tion shows that the PDE Laplace-based method outperforms the current methods

in estimating the transmural extent.
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Moreover, a novel method for estimating the strain from cine MRI is pre-
sented. Unlike current methods that depend on the intensity and spatial informa-
tion to track the wall motion, the proposed method sticks to the geometry of the
heart to track its motion. To achieve this goal, this method applied a PDE method
to track the LV wall points by solving the Laplace equation between the LV con-
tours of each two successive image frames over the cardiac cycle. The main advan-
tage of the proposed tracking method over traditional texture-based methods is its
ability to track the movement and rotation of the LV wall based on tracking the
geometrical features of the inner, mid-, and outer walls of the LV. This overcomes

noise sources that come from scanner and heart motion.

Furthermore, an automated level-set-based model is presented to extract the
CC centerline from brain MRI. The key idea of this model is to propagate wave-
fronts from the splenium with a fast speed. Then, the trajectory of wavefront points
that have the maximum positive curvature and are located at the maximum dis-
tance from the object boundary represents the extracted centerline. Experiments

show good dyslexia diagnostic results based on using this model.

Finally, a novel mapping model to establish correspondences between two
3D surfaces is proposed. Surfaces are mapped to a unified cylindrical domain for
analysis. The model has been used to detect the abnormalities in the CC brain
structure between the dyslexic and normal brains by analyzing the CCs in the
cylindrical domain. This mapping leads to detect abnormalities in all divisions
of the CC (i.e., splenium, rostrum, genu, and body) and offers a whole 3D analysis

of the CC abnormalities instead of only area based as done by other groups.

D. DISSERTATION ORGANIZATION

This dissertation consists of eight chapters. The following remarks summa-

rize the scope of each chapter:
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Chapter II overviews the existing computational methods for identifying

left ventricle heart pathologies.

Chapter III illustrates the proposed framework for the segmentation of the
inner cavity and outer border of the myocardial (LV) wall using graph-cut op-
timization of a cost function that accounts for the object visual appearance and

shape.

Chapter IV illustrates the proposed framework for LV pathology identifica-
tion and quantification based on a joint MGRF of image and its region map that

accounts for the pixel intensities and the spatial interactions between the pixels.

Chapter V illustrates the proposed framework for estimating the functional
strain from cine cardiac MRI based on tracking the geometric features of the inner-,

mid-, and outer-walls of the LV.

Chapter VI overviews the existing MRI-based systems for detecting brain
abnormalities that are associated with dyslexia. The chapter covers the findings
in the literature for detecting dyslexia-associated abnormalities in structural MRI,

diffusion tensor imaging (DTI), and functional MRI (fMRI).

Chapter VII explains the proposed framework for detecting abnormalities in
the CC brain structure based on a novel cylindrical mapping of the CC surface that
offers a whole 3D analysis of the CC abnormalities and reveals 3D discriminant

features for dyslexia diagnosis.

Chapter VIII concludes the work and outlines the future work.
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CHAPTER II

COMPUTATIONAL METHODS FOR IDENTIFYING LEFT VENTRICLE (LV)
HEART PATHOLOGIES: A SURVEY

Characterizing the workings of the heart and detecting left ventricle (LV)
wall pathologies are very important for diagnosing ischemic heart disease and
heart failure. Heart failure is the most important cause of morbidity and mor-
tality in adult cardiovascular disease, affecting 6 million USA patients annually.
If not diagnosed and treated early, these patients have a relentless time course to

premature death.

Recent advances in cardiac MRI (CMRI), enable the detection of the LV wall
pathologies and estimation of different quantification metrics that characterize the
working of the heart. Examples of these metrics include the area of pathological
tissue in the LV wall, the transmural extent of pathology, and other indexes such
as wall thickening, functional strain, and the ejection fraction (EF) metrics. Sev-
eral computational methods have been proposed in the literature in order to esti-
mate these metrics based on using different CMRI acquisition techniques, such as
cardiac-enhance CMRI (CE-CMRI) and cine CMRI. This chapter overviews these
computational methods, focusing on the metrics extracted using CE-CMRI and

cine CMRI (see Figure 18).

To estimate these metrics, a general framework for analyzing CMRI in order
to quantify the LV wall pathologies is demonstrated in Figure 19. The framework

consists of two processing steps: the segmentation of the LV wall and estimation of
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Cine CMRI

FIGURE 18: CMRI data showing the cross sections of the heart from basal to apical.
Left: CE-CMRI, commonly used to enhance the contrast between different tissues,
particularly normal and pathological; and right: cine-CMRI, each section consists
of a time series of 25 images over the cardiac cycle. Cine CMRI has the ability to
show how the anatomy changes and provide the functionality of the heart during

the cardiac cycle.

the different metrics used to assess the LV dysfunction and related heart diseases.
This section will discuss the computational methods used for each of these pro-

cessing steps.

A. SEGMENTATION OF THE LV WALL
Accurate segmentation of the LV borders from CMRI is of great impor-

tance for the reliable assessment of myocardial viability and diagnostics of is-

chemic heart disease and LV dysfunction [27]. However, the segmentation is a
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challenge [28] due to: (i) the existence of large variabilities in LV appearances
from patient to patient and within the subsequent images of the same patient; (ii)
the large shape variations of target boundaries; and (iii) other problems arising
from broken or discontinuous object boundaries, large image noise, and inhomo-
geneities. This section will overview the different computational methods that

address the segmentation of the LV wall from CE-CMRI and cine CMRI.
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FIGURE 19: A general framework to analyze CMRI. The framework consists of
two steps: the segmentation of the LV wall and the estimation of candidate metrics

for quantifying the LV wall pathologies.

1. Segmentation of the LV Wall from CE-CMRI

Most research studies manually segmented the LV wall from CE-CMRI (see
Figure 20) in order to use the segmentation to delineate the pathological tissues and
provide the quantification metrics, e.g., in [29-36]. However, the segmentation is

observer dependent and time consuming. Very limited number of research studies
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(a) (b)

FIGURE 20: Example of the delineation of the LV wall from CE-CMRI of the heart.
(a) The original image, and (b) the inner and outer borders of the LV wall are de-

lineated in green (inner) and red (outer).

used semi-automated or automated methods to segment of the LV wall. For exam-
ple, Hennemuth et al. [37] used a general purpose semi-automated segmentation
method proposed by Schenk et al. [38], where the LV wall is segmented interac-
tively using a live-wire-algorithm [38]. Elagouni et al. [39] proposed a framework
for pathological tissue segmentation where the LV wall is segmented using a seg-
mentation method proposed by Ciofolo et al. [40]. In this method, the LV wall is
segmented based on 2D geometric template deformation and shape prior. A regis-
tration step is applied to align the shape prior to the LV wall segmentation contours
obtained using the deformable geometric template. However, such a registration
step is computationally expensive and time-consuming. Table 1 presents the dif-
ferent methodologies for LV wall segmentation from CE-CMRI. A limited number
of research studies have addressed the segmentation problem of the LV wall from
CE-CMRI. Most of these methods are (i) computationally expensive and/or (if)
based on semi-automated or general purpose segmentation frameworks. There-
fore, there is a need to develop more dedicated methods for accurate segmenta-

tion of the LV wall from CE-CMRI.
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TABLE 1: Methodologies for segmentation of the LV wall from CE-CMRI. For each
study, the number of subjects, the segmentation method, the automation level, and

the performance are reported.

Study Data Method Performance
e Live-wire seg-
Hennemuth et mentation [38]
21 Subjects e Not reported
al. [37] e Semi-
automatic
e 2D geomet- e Average distance er-
. rors between manual
ric template
def ) and automatic con-
Elagouni et eformation
11 Subjects tours are 2.24+0.6 mm
al. [39] and shape
prior [40] for endocardium and
2.0£0.8 mm for epi-
e Automatic .
cardium

2. Segmentation of the LV Wall from Cine CMRI

Traditionally, the segmentation of the LV contours from cine-CMRI is per-
formed manually [41,42]. However, it is prohibitively time consuming, labor-
intensive, and is prone to intra- and inter-observer variability [43]. To avoid the
manual procedure shortcomings, several semi-automated and automated tech-

niques have been proposed for the delineation of the LV wall.

Semi-automated Methods: Many semi-automated techniques for the extraction
of the LV wall borders have been proposed [44-50]. For example, Ben Ayed et
al. [44,45] proposed a semi-automated approach for the segmentation of the LV
using a variational deformable model-based approach to minimize an energy func-

tional containing a similarity overlap constraint, measured by the Bhattacharyya
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coefficient. A semi-automated framework to extract the myocardium was pro-
posed by Li et al. [46]. Their framework employed two energy functionals, each
represented by a weighted sum of edge-, region-, and shape-based features, for
segmenting the endo- and the epi-cardiums. Chen et al. [48] proposed a hybrid
semi-automated framework to segment the LV wall borders using variational level
sets. The myocardium is separated from the background, in a user defined region-
of- interest (ROI), based on the difference in their intensity distributions. The de-
formable model evolution was derived by minimizing an energy function con-
sisting of regional and edge-based information. Pednekar et al. [49] proposed
an intensity-based segmentation approach that uses circular Hough transform to
estimate the LV borders in CMR images. Uziimcii et al. [50] proposed a semi-
automated method that is based on a multidimensional dynamic programming
(DP), which is applied to a parametric shape model instead of applying it directly
to image data. Please see Petitjean and Dacher [51] for a more comprehensive re-
view of semi-automated methods for cardiac image segmentation.

Automated Methods: The challenging problem of the LV wall borders segmenta-
tion has also been addressed using automated techniques [52-69]. In particular,
O’Brien et al. [70] proposed a model-based technique for the LV segmentation on
cardiac MR image. An active shape model (ASM) was employed for statistical
modeling of the LV shape, and separate models for spatial and temporal variation
were used. Cousty et al. [71] proposed a segmentation framework based on dis-
crete mathematical morphology and spatiotemporal watershed transform to seg-
ment the endocardium and the epicardium separately. Zhang et al. [52] proposed
a segmentation approach based on a combination of an ASM and an active appear-
ance model (AAM) to segment the LV wall using short- and long-axes CMR data.
A refinement step followed by using a reversed 3D ASM model to achieve better
cardiac motion tracking as well as improved shape details. Andreopoulos etal. [72]
achieved LV segmentation using statistical models of shape and appearance. Their

method employed a fitting of a 3D AAM on short axis cardiac MR images followed
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by hierarchical 2D + time ASM to refine segmentation. Jolly et al. [53] proposed
an automated framework based on deformable registration for the LV segmenta-
tion. Candidate contours of each slice are obtained in the average image of the
co-aligned time frames using the shortest paths, and a minimal surface is built to
generate the final contours. Kurkure et al. [54] proposed a hybrid segmentation
approach that integrates intensity- and texture-based information for the extrac-
tion of the myocardium, LV blood pool, and other adjacent structures, e.g., lungs
and liver. A DP-based boundary detection method was used to delineate the LV
myocardial contours. Cocosco et al. [56] proposed an automated approach for the
segmentation of the LV on cardiac images based on binary classification within a
predefined ROI to segment the blood pool. Lynch et al. [57] presented an auto-
mated level-set scheme for the segmentation of CMR data using prior knowledge
of the temporal deformation of the myocardium. Liang et al. [58] proposed an au-
tomated approach using the radial GVF [73] and the Hough transform to segment
the LV contours. Zhuang et al. [59] proposed a framework to propagate the labels
in a heart atlas to the CMR images for ventricle segmentations based on image reg-
istration. Their method employed anatomical information from the atlas as priors
to constrain the registration. To improve the quality of segmentations obtained by
the AAMs on CMR data, Zambal et al. [60] combined a set of local 2D AAMs with
a global shape model. Their method propagates the position and size of the basal
slices to apical ones and keeps the global shape characteristics plausible. Lynch et
al. [61] presented a coupled level-set segmentation of the LV of the heart using a
priori information. Two fronts representing the epi- and endo-cardium boundaries
of the LV were evolved using both gradient- and region-based information. The
segmentation is supervised with a coupling function and a probabilistic model
built from training instances. An approach relying on morphological operations
is proposed by Katouzian et al. [62]. For endo-cardium segmentation, the edge
detection is performed and the pupillary muscles are excluded via a convex-hull

method. The epicardial boundary is delineated through a threshold decomposition
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opening approach. Jolly et al. [63,64] introduced an automated LV segmentation
technique to extract the myocardium using Gaussian mixture models and Dijkstra
active contours. Lynch et al. [65] introduced an automated framework for the seg-
mentation of the LV of the heart using clustering and cardiac anatomy knowledge.
Lelieveldt et al. [66] proposed a multiview AAM for the segmentation of multiple
views in long- and short-axis CMR images. Fu et al. [67] developed a wavelet-
based image enhancement technique to enhance the LV wall border profiles as the
pre-processor for a DP-based automatic border detection algorithm. A variational
coupled level set approach that combined boundary and region-based informa-
tion to segment the LV borders was introduced by Paragios [74]. They presented
an anatomical module to constrain the relative positions of the endocardium and
epicardium interfaces and to enforce an intensity consistency over the temporal
cycle. State-of-the-art automated techniques for cardiac image segmentation are
detailed in the recent review by Petitjean and Dacher [51]. Table 2 summarizes the
different methodologies for LV wall segmentation from cine-CMRI, presenting the

number of evaluation datasets and the achieved performance for each method.

To summarize, the segmentation of cine CMR images has been the subject
of extensive research in the last few years. Several semi-automated and automated
segmentation methods have been developed. However, the known methods have
the following limitations: (i) some techniques require intensive manual training;
(i) most of them are computationally expensive; (iii) parametric shape-based ap-
proaches depend on the existence of good texture features in cardiac images and
perform poorly on some slices due to noise and lack of well-defined features; and
(iv) the accuracy of the knowledge-based approaches (e.g., deformable models that
are based on shape priors) depends on the size of the training data and the accu-

racy of the alignment.
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TABLE 2: Methodologies for segmentation of the LV wall from cine-CMRI. For
each study, the number of subjects, the segmentation method, the automation

level, and the performance are reported.

Study Data Method Performance

e Average Dice similar-

ity coefficient (DSC)

e Deformable

between manual
model and semi-automatic
Ayed et al. [44] 10 datasets
e Semi- inner and outer con-
automatic tours are 0.93 + 0.02

and 094 £+ 0.01,

respectively

e Energy min-

imization
based on
edge re- e Average DSC be-
: d tween manual and
Li et al. [46] 25 images gion, an
shape-based semi-automatic
features contours are 0.87+5.2
e Semi-
automatic
o Level-set e Average DSC be-
5 subjects, 294 tween manual and
Chen et al. [48] o Semi-
images semi-automatic
automatic

contours are 0.89 +3.5
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Table 2: Continued.

e Threshold-
based +

Hough trans-

e Bland-Altman anal-

ysis  shows  good

Pednekar et | 14  subjects, agreement between
al. [49] 294 images form the semi-automated
e Semi- technique and manual
automatic segmentation
* Dynamic Average border posi-
programming tioning errors for all
Uzmcu et + parametric slices are 1.77 4+ 0.57
20 subjects h del
al. [50] shape mode mm for epicardial and
e Semi- 1.86 +0.59 mm for en-
automatic docardial contours
Average volumetric
point-to-curve errors
between the method
o Active shape and manual segmen-
tation are 1.98 + 0.13
O’Brien et model (ASM)
33 datasets mm for epicardial and
al. [70] i
* Semi 1.87 £+ 0.21 mm for
automatic

endocardial contours,
using a set of 10
(out of 33) training

datasets
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Table 2: Continued.

Cousty et

al. [71]

18 subjects

e Mathematical
morphology
+ watershed

transform

e Semi-

automatic

e Mean point to surface

errors are 1.51 + 0.38
mm for the endocar-
dial border and 1.81 +
0.43 mm for the epi-

cardial border

Zhang et
al. [52]

50 subjects

e ASM + AAM

e Automatic

Average border posi-
tioning error was 1.89
mm for epicardial and
2.52 mm for endocar-
dial contours; average
DSC between manual
and automatic con-
tours are 0.90 and
0.91 for epicardial and
endocardial contours,

respectively

Andreopoulos

et al. [72]

33 subjects

e ASM + AAM

e Automatic

Inner/outer error
(mean distance be-
tween annotated
landmarks and seg-
mented contours)

are 143 =+ 049

mm/1.51 £+ 0.48 mm
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Table 2: Continued.

Jolly et al. [53]

19 datasets

Deformable

registration of

e Root mean square dis-

tance between ground

truth and automatic

contours
contours is 2.7 mm,
Automatic .
Average DSC is 0.89
Dynamic
program-
Average DSC between

ming  based

Kurkure et . . automatic and man-
357 images on Intensity
al. [54] and  texture ual segmentation is

. . 0.86 = 0.12

information

Automatic
Resulting quantitative
cardiac functional pa-

Binary classi- rameters using auto-

Cocosco et ficati
32 datasets 1cation mated method show
al. [56]

Automatic good agreement with
manual quantification
of clinical datasets

Level-set Average DSCis 0.81 +

Lynch et al. [57] | 6 datasets 0.16 for all data ana-

Automatic

lyzed
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Table 2: Continued.

Zhuang et

Atlas-based

image regis-

e DSC for myocardium

segmentation is 0.75.
The average surface

distance,  including

8 datasets . the endocardial sur-
al. [59] tration
face and epicardial
Automatic surface of the ven-
tricles, is 0.7 £ 1.0
mm
2D AAM and The average point-to-
Zambal et 3D shape surface error with re-
32 datsets del
al. [60] mode spect to expert anno-
Automatic tation is 1.96 mm
The average point-to-
surface errors with re-
Coupled spect to expert anno-
Lynch et al. [61] | 4 datasets level-set tation are 0.477 mm
Automatic and 1.149 mm for en-
docardium and epi-
cardium, respectively
Gaussian mix-
ture model + The average error dis-
9 subjects, 482 Diikst ”
Jolly et al. [63] yKstra active tance is less than 1
images contour :
pixel
Automatic
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Table 2: Continued.

Lynch et al. [65]

25 datasets

e Clustering
based on car-
diac anatomy

knowledge

e Automatic

e Root mean square dis-

tance errors are 4.765
and 3.75 for endo- and

epi-cardium

Lelieveld et

al. [66]

29 subjects

e AAM

e Automatic

Point-to-curve border
positioning errors
are 41.7 £+ 0.8 pixels
for the two-chamber
view, 1.5 + 0.7 pixels
for the four-chamber
view and 1.440.7 pix-
els for the short-axis

contours

Fu et al. [67]

10 subjects,

e Dynamic
program-
ming border
detection  +

wavelet-based

Statistical ¢-test based
on Hausdorff distance

implies that the seg-

160 images mentation is closer to
enhancement the manually drawn
approach borders

e Automatic
e Coupled
Paragios [74] Not reported level-set e Not reported

e Automatic
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B. METRICS FOR QUANTIFYING LV WALL PATHOLOGIES

After segmenting the LV wall from CMRI, different quantification metrics
that characterize the working of the heart can be extracted. From CE-CMRI the
area of pathological tissue in the LV wall and the transmural extent of pathology
can be estimated. From cine CMRI, wall thickening, functional strain, and EF met-
rics can be calculated. Figure 21 summarizes the different quantification metrics
that can be extracted from CE-CMRI and cine CMRI. Below, the current computa-

tional methods to calculate these metrics are illustrated.

Quantification Metrics

Area of
pathological
tissue

Ejection fraction

Transmural extent

Wall thickening

Functional strain

FIGURE 21: Taxonomy of quantification metrics that can be extracted from CE-

CMRI and cine CMRI.

1. Area of Pathological Tissue

Assessment of myocardial viability through identifying ischemically dam-
aged tissue is of great clinical importance as the standard means of diagnosing and

monitoring irreversible myocardial sequelae of ischemic heart disease, as well as
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guiding optimal therapies for individual patients [27]. The infarcted myocardium,
after administering a gadolinium contrast agent, appears hyper-enhanced com-
pared to the normal myocardium on late (15-25 min) acquisitions [75-79] (see Fig-
ure 22). Extensive research has been conducted on the use of late CE-CMRI, which
allows for estimating the transmural extent of damaged myocardium with high
spatial resolution [75-79], to delineate the pathological tissue and extract useful

metrics for indexing myocardial injury.

(a) (b)
FIGURE 22: (a) Original CE-MRI of the heart and (b) the pathological area is de-

lineated in yellow.

Measuring the area of pathological tissue in the LV (see Figure 22) is impor-
tant to assist the cardiologists in the diagnosis of the LV dysfunction and ischemic
heart disease. For reliable size measurement, the pathological tissue has to be accu-
rately delineated within the LV wall from the adjacent undamaged tissue. Accurate
identification is a challenge due to image noise, limited resolution, and imprecise
boundaries. While the pathological tissue can be outlined manually to determine
its area, such a measurement is time-consuming and operator-dependent. Auto-
mated or semi-automated myocardial viability assessment overcomes these draw-

backs, but most of these techniques use simple, heuristic intensity thresholds to
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detect the pathological tissue. Previous definitions of abnormality empirically set a
threshold at more than two [29] or three [30] standard deviations above the average
intensity in a remote (presumedly healthy) myocardial region. A user-specified
threshold was employed by Setser et al. [31] to distinguish between viable and
nonviable myocardium. Amado et al. [32] used the full-width at half-maximum
(FWHM) criterion [80] to identify the pathological tissue: a seed point in the hy-
perenhanced region is provided manually, and the pathological tissue includes, by
definition, all the pixels with the intensities exceeding 50% of the seed intensity,

which propagate from the seed point.

A recent study by Neizel et al. [33] with a group of 62 patients demonstrated
that infarct segmentation using a visual, user-specified threshold is better corre-
lated with manually traced infarcts than the FWHM approach. Beek et al. [34]
compared the FWHM approach with the simple thresholding method, using vari-
ous thresholds, in predicting segmental recovery after therapy. Unlike the study by
Neizel et. al. [33], this comparison documented no significant difference between
the accuracy of the two approaches in a group of 38 patients with chronic ischemic
myocardial dysfunction. Tao et al. [35] extended the gray-level-histogram-based
threshold selection used by Otsu et. al. [81], to initially determine the infarct area,
with an augmented assessment to reduce the false positive (FP) and false nega-
tive (FN) errors based on connectivity filtering and region growing. Heiberg et
al. [36] augmented the intensity thresholding with a level-set-based regulation to
exclude small noisy regions. Hennemuth et al. [37] used the image intensity pro-
file to initiate a watershed-based segmentation. Connected component analysis,
to fill holes and exclude small noisy regions was further used to refine this seg-
mentation. Recently, Elagouni et al. [39] analyzed the LV wall intensities to gen-
erate a fuzzy segmentation map, characterizing the membership degree for each
pixel. After thresholding and morphological cleaning of the fuzzy map, the area of

pathology was delineated by region analysis. The main concern with these meth-
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ods is that they do not adequately account for spatial interactions between the
myocardium pixels and are quite sensitive to imperfect myocardium contours

and image noise.

TABLE 3: Methodologies for pathology identification using CE-CMRI. For each
study, the number of patients, the LV wall segmentation method, the pathology

identification method, and the performance are reported.

Method

Study # Data Performance
LV Wall Pathology Identification

Threshold based:

Kim et Manual two standard de-
26 e Visually acceptable
al. [29] outline viation above the
average

Threshold based:

Fieno et Manual | three standard
24 e Visually acceptable
al. [30] outline deviation above the
average
e Results shows good
Setser et Manual A user-specified
18 agreement with ob-
al. [31] outline threshold
server delineation
e Bland-Altman
analysis shows
Amado et Manual segmented  based good agreement
13
al. [32] outline on FWHM region between the FWHM
approach and

postmortem data
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Table 3:

Continued.

e The difference in
infarct size between
semi-automatic

Intensity threshold-
Heiberg et Manual quantification
40 ing with a level-set-
al. [36] outline and the mean of
based regulation
three observers
was 6.19+6.6 ml
(mean=4SD)
Bland-Altman
analysis shows
Segmented better  agreement
Watershed-based
based on between the manual
Hennemuth segmentation
21 a  semi- and the automatic
et al. [37] and Connected
automatic segmentations than
component analysis
live-wire between the manual
and the Fieno et
al. [30] method
User-specified
Compared visual threshold-based
user-specified method is Dbetter
Neizel et Manual
62 threshold with correlated with
al. [33] outline
FWHM Region manually traced
growing infarcts than the
FWHM approach
Compared the Results reported no
FWHM approach significant  differ-
Beek et Manual
38 with  the  sim- ence between the
al. [34] outline
ple  thresholding accuracy of the two
method approaches
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Table 3: Continued.
e DSC values are 0.83
Gray-level- + 0.07 and 0.79 +
histogram-based 0.08 between the
Tao et Manual threshold selection automatic iden-
20
al. [35] outline + connectivity tification and the
filtering and region manual tracing
growing from observer 1 and
observer 2
Extracted  metrics
using  automated
Segmented
segmentation
based on
Elagouni et Fuzzy  segmenta- showed agree-
11 a de-
al. [39] tion map ment with those
formable
extracted using
template . .
semi-automatic
expert delineations

2. Transmural Extent

After the identification of the pathological tissue in the LV wall, it is im-

portant to extract useful metrics to quantify these pathologies. The transmural

extent (or transmurality) is one of the candidate shape-based metrics that has been

explored to quantify the myocardial viability. Transmurality is defined as the frac-

tion of pathological tissue’s extension across the myocardial wall (see Figure 23). A

previously investigated procedure for estimating the transmural extent (e.g., used

in [20,21]) extends a fixed number of radial lines from the inner to the outer con-

tour of the LV (see Figure 14(a)). After segments of the pathological tissue along
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each line are determined, the transmural extent is estimated as the average patho-
logical tissue’s extent relative to these lines. As illustrated in Figure 14 (b), this,
so-called radial method, is in principle inaccurate in establishing point-to-point
correspondences and geometrically inconsistent in estimating the transmural ex-
tent. The alternate centerline method estimates the transmural extent by gener-
ating a fixed number of lines that are perpendicular to the computed centerline
between the inner and outer contours of the LV wall. Similarly, after identifying
the pathological tissue along each line, the transmural extent is defined as the aver-
age pathological tissue’s extent relative to these lines. The centerline method was
historically used for wall motion regional assessment [82], and subsequently for
wall thickening analysis [83], and for transmural extent estimation [84]. Unlike the
radial method, the centerline method does not depend on the choice of the centroid
or the coordinate system of lines [85], but is affected by inner and outer contour
imperfections and image noise. As previously mentioned, a more accurate shape-

based analysis for estimating the transmural extent should be investigated.

FIGURE 23: Illustration of the transmural extent of the pathological tissue in the
LV wall. Right: CE-CMRI of the heart with the pathological area delineated in
yellow, and left: an enlarged section of the pathology showing the extent of the

pathology as the blue lines connecting the edges of the pathology.

43



3. Functional Strain

Functional strain is one of the important quantification metrics of the car-
diac status. Local cardiac diseases (such as coronary atherosclerosis) and global
conditions (such as heart failure and diabetes) result in wall dysfunction that man-
ifests on strain slopes during the contraction and expansion phases of the cardiac
cycle [22] (see Figure 24). Therefore, accurate strain estimation is important for the

early detection of these diseases.

0.05 . . . . ,
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FIGURE 24: Functional strain curve showing the systolic and diastolic strain slopes

during the contraction and expansion phases of the cardiac cycle.

In the literature, functional strain is estimated based on nonrigid registra-
tion using ultrasound images [86, 87] or motion analysis using tagged MRI [88-92]
(see Figure 25). Current studies calculate the heart displacement and strain param-
eters from ultrasound images by estimating the motion of the heart using spatio-
temporal elastic registration. For example, Ledesma-Carbayo et al. [86] used a
spatio-temporal elastic registration algorithm for motion reconstruction from two-
dimensional ultrasound sequences of the heart. A B-spline transformation model
is used to model the motion and deformation of the myocardium through the car-

diac cycle. The spatio-temporal deformation field that represents the heart motion
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is found by minimizing an image similarity criterion and is further used to obtain
the displacement and the strain parameters. Elen et al. [86] extended the work
in [86] to 3D and applied an automated intensity-based nonrigid spatio-temporal
registration for 3D ultrasound images to estimate the heart motion. The 3D de-
formation field between different image frames is found by maximizing the mu-
tual information of corresponding voxel intensities. The main concern with using
ultrasound images for estimating the functional strain is that they are low con-
trast. Moreover, the registration is always computationally expensive and involve
pixel/voxel errors. Therefore, other modalities should be investigated to afford

more accurate estimation of the functional strain parameters.

Strain estimation methods using tagged MRI are more common. These
methods can be categorized as spatial- or spectral-domain techniques. The former
estimates the whole tissue motion and strain by identifying spatial locations of the
tag lines in an image and using either model-based or model-free interpolation and
differentiation [88, 89]. Because spatial methods track actual pixels throughout the
image, they require substantial image preprocessing and segmentation, and there-
fore are often computationally expensive. On the other hand, the spectral analysis
harmonic phase (HARP) method computes phase images from sinusoidal tagged
MR images by bandpass filtering in the Fourier domain [90-92]. Unfortunately, the
spectral tracking failed in cases of a high rate motion between successive frames,
through plane motion, or boundary points [93]. Moreover, to completely quantify
the status of the heart, other performance indexes are needed (e.g., global index
and wall thickness from cine CMRI). However, the derived indexes from cine and
tagged CMRI suffer from inter-slice variability since they are extracted from differ-

ent cross-sections and different image modalities.

To avoid the inter-slice variability, recent trends estimate the strain from cine

CMRI (e.g., [94-97]). Most of these methods depend on texture features to track
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Functional strain estimation

Ultrasound Tagged images CineCMRI

Non-rigid registration Spatial-domain Feature tracking

Spectral-domain (HARP)

FIGURE 25: Taxonomy of function strain estimation methods from ultrasound im-

ages, tagged MRI, and cine CMRIL.

predefined points on the inner and outer LV wall. For example, Maret et al. [94]
used a feature tracking method to estimate the strain and other indexes from cine
CMRI and showed that it can be used for the detection of the transmural scar. Hor
et al. [95] correlated between the estimated strains from tagged MRI (using HARP
method) and from cine CMRI (using tracking) in a population with a wide range
of cardiac dysfunction. Their study showed that the circumferential strain estima-
tion can be performed from the cine CMRI without the need for additional tagged
images. Since the current tracking methods are based on image features, such as
the pixels” intensity and their spatial features, they suffer from the following limi-
tations: (i) they are not sufficient to accurately track the LV points due to the lack
of texture information inside the wall, (i) they are not able to track all the LV wall
points, and (iii) the intensity and spatial information inside the wall (e.g., at the
mid-wall) remains unchanged, which leads to inaccurate strain estimation at the
mid-wall. Therefore, there is a need for developing more efficient techniques

for accurate strain estimation.
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C. LIMITATIONS OF CURRENT APPROACHES

The current approaches for the quantification of the LV dysfunction suffer

from the following limitations:

e The segmentation of the LV wall in most of the known frameworks is not

sufficiently accurate and reliable because:
- Image intensities for the goal objects and their backgrounds vary greatly
across subjects and time.

— Parametric shape models become unsuitable for discontinuous objects

due to a small number of distinct cardiac landmarks.

— Deformable models without adequate appearance and shape priors fail
under excessive image noise, poor resolution, diffuse boundaries, or oc-

cluded shapes.

e Current approaches for sizing the area of the pathological tissue in the LV

wall do not adequately account for spatial interactions between the myocardium

pixels and are quite sensitive to imperfect myocardium contours and image

noise.

e Current radial shape-based approach for transmural extent estimation suf-
fers from geometric inconsistency in estimating the point-to-point correspon-
dences between the inner and outer boundaries, while the centerline method

suffers from imperfect inner and outer contours, especially for noisy images.

e Current tracking methods are based on image features, such as the pixels’

intensity and their spatial features; they suffer from the following limitations:

— They are not sufficient to accurately track the LV points due to the lack

of texture information inside the wall.
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— They are not able to track all the LV wall points.

— The intensity and spatial information inside the wall (e.g., at the mid-
wall) remains unchanged, which leads to inaccurate strain estimation at

the mid-wall.

To overcome the aforementioned limitations, an augmented, automatic frame-
work to analyze the CE-CMR images is proposed. The framework is based on
the segmentation of the inner cavity and outer border of myocardial (LV) wall us-
ing graph-cut optimization of a cost function that accounts for the object visual
appearance and shape. The details of the proposed segmentation method are
presented in Chapter III. To delineate the pathological tissue in the LV wall, the
image is modeled as a joint Markov-Gibbs random field (MGRF) that accounts for
not only the 1%-order visual appearance (based on the pixel-wise intensities), but
also incorporates the 2"¢-order spatial interactions between the pixels. Then, the
transmural extent is estimated using a geometrically motivated approach, based
on a partial differential equation (PDE) that accurately co-locates the correspond-
ing pixel pairs. The details of the proposed methods for sizing the area of the
pathological tissue and for estimating the transmural extent are presented in
Chapter IV. To estimate the strain from cine CMRI, a novel method is proposed
based on tracking the LV wall geometry. Unlike current methods that depend on
the intensity and spatial information to track the wall motion, this method sticks to
the geometry of the heart to track its motion. To achieve this goal, the application
of the proposed PDE method is extended to track the LV wall points by solving the
Laplace equation between the LV contours of each two successive image frames
over the cardiac cycle. The details of the proposed method for estimating the

strain from cine CMRI are presented in Chapter V.
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CHAPTER III

SEGMENTATION OF LV WALL FROM CE-CMRI

To identify the pathological tissue in the left ventricle (LV) wall, an accurate
segmentation of the LV wall borders is a mandatory step. In this chapter, a novel
automatic framework for the segmentation of the LV wall from contrast-enhanced
cardiac magnetic resonance imaging (CE-CMRI) is proposed. The framework con-
sists of two main steps. First, the inner cavity of the LV is segmented from the
surrounding tissues based on finding the maximum a posteriori (MAP) estimation
of a new energy function using a graph-cuts-based optimization algorithm. The
proposed energy function consists of three descriptors: 1%-order visual appear-
ance descriptors of the CE-CMR image, a 2D spatially rotation-variant 2"4-order
homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer
contour of the LV is segmented by generating an orthogonal wave, starting from
the LV inner contour, by solving an Eikonal partial differential equation with a
new speed function that combines the prior shape and current visual appearance
models of the LV wall. The proposed framework was tested on in-vivo CE-CMR
images and validated with manual expert delineations of the LV borders. Experi-
ments and comparison results on real CE-CMR images confirm the robustness and

accuracy of the proposed framework over the existing ones.
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A. BASIC ANALYSIS STAGES

Accurate segmentation of the LV borders from CE-CMR images is of great
importance for the reliable assessment of myocardial viability and diagnostics of
ischemic heart disease and LV dysfunction [27]. However, the segmentation in
most of the known frameworks is not sufficiently accurate and reliable because
image intensities for the goal objects and their backgrounds vary greatly across
subjects and time. Parametric shape models become unsuitable for discontinu-
ous objects due to a small number of distinct cardiac landmarks, and deformable
models without adequate appearance and shape priors fail under excessive image
noise, poor resolution, diffuse boundaries, or occluded shapes. To overcome these
limitations, an automatic framework to analyze CE-CMR images is proposed. The
proposed framework (i) segments the inner cavity of the LV from the surrounding
tissues based on a learned soft inner cavity shape model and an identifiable joint
MGRF model of CE-CMR image and “object-background” region maps, and (ii)
segments the outer contour of the LV by evolving an orthogonal wave from the
inner contour by solving an Eikonal partial differential equation with a new speed
function that combines the prior shape and current visual appearance models of

the LV wall.

1. LV Inner Cavity Segmentation

The segmentation of the inner cavity of the LV is a challenge due to the
dynamic heart motion and the image artifacts from blood circulation within the
ventricular cavity. This stage proposes a powerful approach for inner cavity seg-
mentation based on a learned soft inner cavity shape model and an identifiable

joint MGRF model of CE-CMR image and “object-background” region maps.
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a. Joint MGRF model of the inner cavity and background: The joint-MGRF
model fundamentally relates the joint probability of an image and its object - back-
ground region map to geometric structure and to the energy of repeated patterns
within the image [98,99]. The basic theory behind such models is that they assume
that the signals associated with each pixel depend on the signals of the neighbor-
ing pixels, and thus explicitly take into account their spatial interactions, and other

features, such as shape.

Let Q = {0,...,Q — 1}, L = {ob,bg}, and U = [0, 1] be a set of () integer
gray levels, a set of object (“ob”) and background (“bg”) labels, and a unit inter-
val, respectively. Let a 2D arithmetic grid R = {(z,y) : = 0,1,..., X — 1,y =
0,1,...,Y — 1} support grayscale CE-CMR image g : R — Q, their binary re-
gion maps m : R — L, and probabilistic shape model s : R — U. The shape
model allows for registered (aligned) CE-CMR images. The co-registered CE-CMR
images and their region maps m are modeled with a joint MGRF model as fol-
lows [100, 101]:

P(g,m) = P(g/m)P(m) @

combining a 2"-order MGRF P(m) of region labels for a spatially homogeneous
evolving region map m and a 1%-order conditionally independent random field
P(g|m) of image intensities given the map. The map model P(m) = F;(m) 5, (m)
has two independent parts: a subject-specific dynamical shape prior, which is a
spatially variant independent random field of region labels P,(m), and a 2" -order

MGRF model 5 (m) of a spatially homogeneous evolving map m for the image.

As shown in Figure 26, the proposed method focuses on accurate identi-
fication of spatial interactions in 5, (m), pixel-wise distributions of intensities in
P(g|lm), and prior distribution of the shape of the inner cavity in P(m) for co-
aligned CE-MR images. The probabilistic shape model s is learned from a set of

co-aligned training images. To perform the initial inner cardiac cavity segmen-
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FIGURE 26: Aligning a joint MGRF model to a shape prior.

tation, every given CE-CMR image is aligned to a selected reference image. The
shape model provides the pixel-wise object and background probabilities being
used, together with the conditional image intensity model P(g|m), to build an ini-
tial region map. The final segmentation is performed by optimizing the identified
joint MGRF model of the CE-CMR image and its region map using global graph-

cuts.

b. Spatial interaction in the inner cavity of the LV: A generic MGREF of re-
gion maps accounts only for pairwise interaction between each region label and its
neighbors [100, 101].Generally, the interaction structure and Gibbs potentials are
arbitrary and can be identified from the training data. For simplicity, the interac-
tion structure is restricted to the nearest pixels only (i.e., to the 8-neighborhood)
and assume, by symmetry considerations, that the potentials depend only on the
intra- or inter-region position of each pixel pair (i.e., whether the labels are equal
or not) but are independent of its relative orientation. Under these restrictions, it
is similar to the conventional auto-binomial (Potts) model and differs only in that

the potentials are estimated analytically.

The 8-neighborhood (Figure 27) has two types of symmetric pairwise inter-
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actions specified by the absolute distance a between two pixels in the CE-CMR
slice (a = 1, and /2, respectively): (i) the closest pairs with the inter-pixel coor-
dinate offsets N; = {(%1,0), (0,+£1)}; and (ii) the farther diagonal pairs with the
offsets N 5 = {(1,£1),(—1,#£1)}. The potentials of each type are bi-valued be-
cause only the coincidence of the labels is taken into account: V, = {V, eq; Vane}
where Vo = Vo(L,I)ifl =1'and Ve = Vo (LU)if L # 1,0 € A = {1, v2}. Then
the MGRF model of region maps is as follows:

m) o exp Z Z Z Va (M, Mateyrn) 3)

(z,y)ER a€A (£,1)EN,

To identify the MGRF described in Equation (2), approximate analytical maximum

likelihood estimates are formed in line with [100, 101] as follows:

1

Va,eq = _‘/a,ne =2 (fa,eq(m) - 5) (4)

where f, .,(m) denotes the relative frequency of the equal label pairs in the equiv-

alent pixel pairs {((z,y), (z + &,y +n)): (z,y) € R; (x + &y +1) € R; (§,1) € Nu}.

FIGURE 27: A2"-order MGRF neighborhood system.

c. Conditional intensity model for CE-CMR slice: A simple random field
of conditionally independent intensities is used to model the CE-CMR slice, given
a region map:

Pgm)= [ pm.,(9:s)
(z,y)ER
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where the pixel-wise probability distributions for the inner cardiac contour and
its background, p) = [pa(q) : ¢ € Q]; A € L, are estimated during the segmenta-
tion process. To separate po, and pyg, the mixed empirical distribution of all the
pixel intensities is approximated with a linear combination of discrete Gaussians

(LCDG)' [101-103].

The LCDG assignment separates the object from the background? more ac-
curately than a more conventional mixture of only the positive Gaussians (e.g., [106])
and can account for non-linear intensity variations, such as those caused by pa-
tient weight and data acquisition factors. The LCDG has two dominant positive
DGs that represent modes associated with the object (i.e., inner cavity) and back-
ground, respectively, in the empirical intensity distribution for the CE-CMR image
to be segmented. To approximate more closely this distribution, the LCDG also

contains a number of positive and negative subordinate DGs:

Cp Cn
prepc(q) = wp ¥ (glpps) — > watb(qlpa.y) ()
=1 i=1

where the index a € {p,n} specifies whether the DG is positive or negative, C,, is
the number of such components, and p, ; and w, ; denote the weight and param-
eters of each individual DG ¥, .; j = 1,...,c,, respectively. The LCDG of Equa-
tion (5), including the numbers C}, and C,, of its components, is identified using the

expectation-maximization (EM)-based algorithm introduced in [100-103, 107-112].

d. Probabilistic model of the inner cavity shape: Most of the recent works

on image segmentation use level-set based representations of shapes: an individ-

A Discrete Gaussian (DG) ¥, = (¢(qlp) : ¢ € Q) with p = (u,0?) is defined as (qlp) =
®,(¢+0.5) —®,(q—0.5)forg=1,...,Q —2,9(0|p) = ®,(0.5),, and (Q — 1|p) = 1 — ,(Q — 1.5)

where ®,(g) is the cumulative Gaussian function with the mean p and the variance o2,

2LCDG model is also applicable for images with more than two classes. The number of mixture
components can be automatically estimated from the image using the modified Akiake information

criterion [104, 105].
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ual shape is outlined by a set of boundary pixels at the zero-level of a certain dis-
tance function, and a given shape is approximated with the closest linear combi-
nation of the training shapes. The main drawback of this representation is that
the space of signed distances is not closed with respect to linear operations. As a
result, linear combinations of the distance functions may relate to invalid or even

physically impossible boundaries.

To circumvent this limitation, a soft probabilistic inner cavity shape model

is used

P(m)= ] Sm.,
(z,y)eR
where S,,,  is the empirical probability that the pixel (z,y) belongs to the inner
cavity given the map. The proposed framework exploits three shape priors (built
at the learning stage) for the basal, mid-ventricular and apical levels. Each soft

template is constructed following Algorithm 1.

Algorithm 1 Shape Prior Construction

e Co-align a set of training CE-CMR images (shown in the top row of Fig-
ure 28) using rigid registration with mutual-information as a similarity mea-

sure [113] as shown in the middle row of Figure 28.

e Manually segment the object (the inner cavity) from the aligned sets as

shown in the bottom row of Figure 28.

e Estimate the pixel-wise probabilities by counting how many times each pixel

(z,y) was segmented as the object as shown in Figure 29.

e. Optimization of the joint MGRF model using the graph-cut algorithm: Af-
ter accurately identifying the joint MGRF model of the CE-CMR image, the inner
cavity segmentation problem is formed as a search for the MAP region map m in

all the possible configurations of this joint MGRF model. The MAP region map is
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FIGURE 28: Inner cavity shape prior reconstruction: top row- database samples;

middle row- affine mutual-information-based registration ; and bottom row- man-

ual segmentation.

T

Variabil
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o

(a) (b) (c) (d)
FIGURE 29: (a) & (b) Gray-coded inner and LV wall shape priors. (c) & (d) Another

way for visualization using color-map.
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found by maximizing the interaction energy of the joint MGRF model. A new en-
ergy function E is formulated to accurately model the CE-CMR image. This new
function is formed as the logarithmic function of the probability distribution of the

joint MGRF model given in Equation (2):

E(m) = log(P(g|m)) + log(Fy(m)) + log(Fs(m)) (6)

The search problem is an exhausting task and should be done in an efficient and
precise way. A graph-cut based algorithm (i.e., the two-terminal Min-Cut/Max-
Flow algorithm [114]) is applied for such a task due to its powerful capability to
end up with the optimal global region map [115], which is obtained by maximizing
E (i.e., minimizing — F using graph-cut). The two-terminal graph-cut with positive

edge weights is constructed as follows (see Figure 30 for more illustration):

Object
Energy terms 2 and 3
(Object shape and intensity)

Energy term 1

(Spatial interaction)

Background

FIGURE 30: Constructed two terminal graph-cuts: terminal-links (in blue and red)
account for both the 1%-order visual appearance descriptors of the CE-CMR im-
age and the inner cavity shape, and neighbor-links (in orange) penalize for the
spatially invariant 2"¢-order homogeneity descriptor of the CE-CMR image (the

thicker links denote greater affinity between corresponding nodes or terminals).
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Algorithm 2 Graph-Cut Construction

e Define the terminal-links by accounting for both the 1*-order visual appear-

ance descriptors of the CE-CMR image and the inner cavity shape descriptor

(i.e., —log(P(glm)) — log(Fs(m))).

e Define the neighbor-links by penalizing for the spatially invariant 2"?-order

homogeneity descriptor of the CE-CMR image (i.e.,— log(F,(m))).

2. LV Outer Contour Segmentation

The goal of the LV outer contour segmentation method is to suppress the
effect of gray level inhomogeneity and lack of the edges of the LV wall in order to
enhance the segmentation accuracy. To achieve this goal, the outer border of the
LV wall is extracted by a robust wave-propagation based search (see Figure 31).
An orthogonal wave is emitted from the inner border (¢ = 0) towards the external
border of the LV wall (i.e., a fast marching level-set [116-118]). Every point on the
emitted wave is classified to be wall or background based on three descriptors:
shape prior of the LV wall (see Figure 32), 1*-order visual appearance descriptors
of the LV wall, and a 2"d-order spatial interaction homogeneity descriptor. Note
that the proposed segmentation approach follows the same methodologies as in
Section III.A.1 to estimate three descriptors of the LV wall. The whole search algo-

rithm for the outer border of the LV wall is described in Algorithm 3.

3. Performance Evaluation of the Proposed Segmentation Algorithms

Dice similarity coefficient (DSC): The segmentation performance is eval-
uated by using the DSC metric [120] that estimates the overlap between the ex-
perimentally segmented region and ground truth (GT) segmentation. Let |C|, |G|,

and |g| denote areas (by the number of pixels) of the segmented object C (i.e., in-
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FIGURE 31: Outer contour segmentation: (a) inner edge of the LV wall at time
(t=0), (b) normalized minimum Euclidian distance between every point in the
outer area of the LV inner cavity and the LV inner edge, (c) an emitted wave at time
(t=2) where every point is classified to be wall or background using a Bayesian clas-
sifier based on three descriptors, and (d) samples of the propagating waves from
the inner edge of the LV at different time instants; the red contour represents the

final segmentation of the outer contour of the LV.
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Algorithm 3 Segmentation of the Epicardium Contour of the Myocardium

1. Find the inner edge of the LV wall (see Figure 31(a)).

2. Find the normalized minimum Euclidian distance D(z,y) between every
point (z,y) in the outer area of the LV inner cavity and the LV inner edge

(see Figure 31(b)) by solving the Eikonal equation
VT (2, y)|F(2,y) = 1 )

where T'(x, y) is the time at which the front crosses the point (z, y) and F(z,y)
is the speed function [119]; the solution uses the fast marching level-set at

unit speed function F(z,y) = 1.

3. Propagate an orthogonal wave from the inner edge of the LV points by
solving Equation (7) using the fast-marching level-set at the speed function
F(z,y) = exp(—pFD(z,y)), where § is a constant to control the evolution of

the generated wave. For a smooth evolution 5 < 1.

4. Classify every point on the emitted wave to be wall or background using
a Bayesian classifier based on the three descriptors as illustrated in sec-

tion III.A.1 (see Figure 31(c)).

5. Iteratively repeat 3 and 4 until no change occurs in the position of the gener-
ated wave; the final area represents the segmentation of the outer contour of

the LV (see Figure 31(d)).

ner or outer areas), its GT G, and the CE-CMR data g, respectively. Then the true
positive TP = |C N G| is the overlapping between C and G; the false positive
FP = |C — C N G|, and the false negative FN = |G — C N G|. The DSC is defined

as (see Figure 33):

2 x TP

D pu—
5C 2 x TP + FP + FN

(8)
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FIGURE 32: Gray coded myocardium wall shape prior at the mid-ventricular level.

G

T TN

N

FIGURE 33: Image segmentation performance is evaluated by the Dice similar-
ity coefficient (DSC). The true positive (TP) is the overlap between the segmented
object (C) and the GT (G); the false positive (FP) is the difference between the seg-
mented object and the TP, and the false negative (FN) is the difference between
the GT and the TP. The DSC measures the similarity between the segmented object

and the GT: the closer the DSC to ”1”, the better the segmentation.

The DSC measures the agreement between the segmentation and the GT;

the closer the DSC to unity (”1”), the better the segmentation. Dice similarity of
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the proposed segmentation method was compared to well-established approaches,
using the two-tailed Student’s t-test for paired data. P-value of less than 0.05 is

considered statistically significant.

B. EXPERIMENTAL RESULTS

The proposed framework was tested on 14 datasets collected from six pa-
tients who had suffered chronic heart attacks (at least four months prior), with
clinically documented ejection fraction dysfunction, and who subsequently un-
derwent an experimental myocardial regeneration therapy, as part of an institu-
tionally approved trial. All images were obtained using a Siemens 1.5T Espree
system (Siemens Medical Solutions, USA Inc), with multichannel phased array re-
ception coils [121]. Late (at 15 to 25 min) gadolinium contrast agent enhanced (0.2
mM/kg) acquisitions, using both conventional inversion time chosen acquisitions
and phase sensitive inversion recovery. To ensure adequate signal-to-noise ratios,
the typical spatial resolution was 2.08 x 2.08 x 8.0 mm?®. Typically 10-14 image cross-
sections were obtained to cover the LV. To test the proposed method, a total of 168
images were examined. To evaluate the segmentation accuracy of the proposed
framework, the “ground truth (GT)” delineations of the inner and outer contours

were given by an expert (a radiologist) for five datasets; a total of 55 images.

The results of the proposed segmentation approaches for inner and outer
borders are illustrated in Figure 34 and Figure 35. To highlight the advantage of
integrating the shape prior with the intensity and spatial interaction information
in the joint MGRF probabilistic model, the inner cavity region is segmented based
on the intensity only (Figure 36(b)), and based on the intensity and the spatial
interaction information (Figure 36(c)). It is clear that counting only on intensity and

spatial interaction information will not lead to accurate segmentation due to the
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FIGURE 34: Segmentation results of the inner and outer contours for CE-CMR

images of one data subject.
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gray-levels inhomogeneities. Figure. 36(d) shows how the segmentation result is
enhanced after integrating the shape prior. These results highlight the advantages

of the proposed segmentation approach.

FIGURE 35: More segmentation results for sample image cross-sections from dif-

ferent datasets.

Figure 37 and Figure 38 show visual comparative segmentation results for
the proposed approach versus the level-sets based segmentation approach pro-
posed in [1] for the segmentation of the inner cavity and of the outer region of the
LV wall, respectively. Table 4 summarizes the comparative segmentation results

for the five data sets (55 images) with the known GT (manual segmentation by an
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(a) (b)

(©) (d)

FIGURE 36: Inner cavity segmentation: (a) original slice, and segmentation (b)

using intensity model alone, (c) using intensity and spatial interaction models, and

(d) after integrating shape model.

expert). As presented in the table, the proposed segmentation approaches for in-
ner and outer borders of the LV wall show better performance than the level-set
shape-based approach of Tsai et al. [1], as evidenced by larger DSCs approaching
the ideal value 1 (DSC metric is calculated as illustrated in Section III.A.3). More-
over, the differences in the mean DSC between the proposed segmentation and
Tsai et. al approach are statistically significant according to the unpaired ¢-test (the
two-tailed P values for the segmentation of the inner and outer borders are less
than or equal to 0.0001 and 0.003, respectively). These results highlight the advan-

tage of the proposed segmentation approaches.
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FIGURE 37: Comparative segmentation results for the LV wall inner cavity for the
proposed approach (a) versus the level-sets based segmentation [1] (b) for different
sample images. Yellow represents the missed segmented points (FN) and green

represents the introduced segmented points that were not on the GT (FP).
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(a) (b)

FIGURE 38: Comparative segmentation results for the outer region of the LV wall
for the proposed approach (a) versus the level-sets based segmentation [1] (b) for
different sample images. Yellow represents the FN points and green represents the

FP points.
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TABLE 4: Dice similarity coefficients (DSC) between the proposed segmentation

and the ground truth (GT) in comparison to the level-sets based segmentation ap-

proach in [1].
Inner Outer
Proposed Method | [1] | Proposed Method | [1]
Minimum DSC 0.85 0.75 0.80 0.34
Maximum DSC 0.99 0.93 0.96 0.91
Mean DSC 0.94 0.83 0.92 0.81
Standard Deviation 0.045 0.055 0.047 0.157
P-value <1074 0.003

C. SUMMARY

In total, a fully-automated segmentation framework for segmenting the LV
wall is presented based on three image descriptors: the gray level intensity, the
shape information, and the spatial information descriptors. For segmenting the
LV inner cavity, these descriptors are embedded into a new energy function that
is globally optimized using graph cuts. For segmenting the LV outer borders, the
three descriptors are used to control the speed of an orthogonal wave starting from
the LV inner borders. The results suggest that the proposed approach can pre-
cisely segment CE-CMR images. In addition, the results confirm the robustness
of the proposed methods against the complex shape variations of the LV. The de-
veloped segmentation framework is very suitable for segmenting the anatomical
structures that have noise and inhomogeneity problems. The work presented in
this chapter has been published in the international conference of image process-
ing (ICIP) [122]. The next chapter investigates the identification of the pathological

tissue in the LV wall based on the accurate segmentation of the wall borders.
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CHAPTER IV

SIZING THE PATHOLOGICAL TISSUE IN THE LV WALL USING CE-CMRI

A novel automatic framework for detecting and quantifying viability from
cardiac-enhanced magnetic resonance imaging (CE-CMRI) is proposed. The frame-
work identifies the pathological tissues in a segmented left ventricle (LV) wall (the
segmentation of LV wall is presented in Chapter III) based on a joint Markov-Gibbs
random field (MGRF) model that accounts for the 1%-order visual appearance of
the myocardial wall (in terms of the pixel-wise intensities) and the 2"-order spa-
tial interactions between pixels. The pathological tissue is quantified based on two
metrics: the percentage area in each segment with respect to the total area of the
segment (area metric), and the trans-wall extent of the pathological tissue (shape
metric). In this work, the transmural extent is estimated using point-to-point cor-
respondences based on the geometrical features that are extracted from the solu-
tion of the Laplace partial differential equation. Transmural extent was validated
using a simulated phantom. Fourteen datasets (168 images) were tested and val-
idated against manual expert delineation of the pathological tissue, outlined by
two observers. Mean Dice similarity coefficient (DSC) values of 0.90 and 0.88
were obtained for the observers, approaching the ideal value, 1. The Bland Alt-
man statistic of infarct volumes estimated by manual versus the MGRF estimation
revealed little bias difference, and most values falling within the 95% confidence
interval, suggesting good agreement. The DSC measure documented statistically
significant superior segmentation performance for the proposed MGRF method

versus established intensity-based methods (greater DSC, and smaller standard
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deviation). The proposed Laplace method showed good operating characteristics
across the full range of extent of transmural infarct, outperforming conventional
methods. Phantom validation and experiments on patient data confirmed the ro-

bustness and accuracy of the proposed framework.

A. INTRODUCTION

Assessment of myocardial viability through identifying ischemically dam-
aged tissue is of great clinical importance as the standard means of diagnosing and
monitoring irreversible myocardial sequelae of ischemic heart disease, as well as
guiding optimal therapies for individual patients [27]. The infarcted myocardium,
after administering a gadolinium contrast agent, appears hyper-enhanced com-
pared to the normal myocardium on late (15-25 min) acquisitions [75-79]. Exten-
sive research has been conducted on the use of late CE-CMR images, which allow
for estimating the transmural extent of damaged myocardium with high spatial
resolution [75-79], to delineate the pathological tissue and extract useful metrics
for indexing myocardial injury. In this chapter, two candidate metrics have been
explored to quantify myocardial viability: the percentage of the segmented patho-
logical tissue with respect to the total area of the myocardial wall, and the trans-
mural extent of this tissue relative to the full LV wall thickness. A review of the
current methods to estimate the area and the transmural extent of pathology are

presented in Sections II.B.1 and II.B.2, respectively.

As discussed in Chapter I, the current methods for identifying ischemically
damaged tissue have the following aggregate limitations: (i) the pathological tis-
sue identification does not adequately account for spatial interactions between the
myocardium pixels; (i) many of these methods are quite sensitive to imperfect

myocardium contours and image noise; and (iii) the radial transmural extent esti-
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mation suffers from geometric inconsistency in estimating the point-to-point corre-
spondences between the inner and outer boundaries, while the centerline method

suffers from imperfect inner and outer contours, especially for noisy images.

To overcome these drawbacks, an augmented, automatic framework is pro-
posed to analyze the CE-CMR images. To delineate the pathological tissue in the
LV wall, the image is modeled as a joint MGRF that accounts for not only the 1°-
order visual appearance (based on the pixel-wise intensities), but also incorporates
the 2"-order spatial interactions between the pixels. Next, area and shape metrics
are estimated to quantify the infracted region. The shape metric (i.e., the trans-
mural extent) is estimated using a geometrically motivated approach, based on
a partial differential equation (PDE) that accurately co-locates the corresponding
pixel pairs. This distance metric, as shown in Figure 39(b), overcomes the geomet-

ric inconsistency of the often-used radial procedure, as shown in Figure 39(c).

Radial Method Laplace Method Radial vs. Laplace

Lv wall

(a) (b) (c)

FIGURE 39: Illustration of estimating the transmural extent of pathological tissue
in the LV wall: (a) standard radial approach, (b) proposed Laplace PDE-based ap-

proach, and (c) deviations of (a) from the co-located corresponding pixel pairs of

(b).
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B. BASIC ANALYSIS STAGES

This chapter details the identification and quantification of damaged my-
ocardial tissue on CE-CMR images (steps 2 and 3 of the proposed framework; see

Figure 40). Myocardium contour segmentation (step 1) was previously discussed

in Chapter III.

CE-CMR LV Wall Pathology Myocardial Viability

Data Segmentation | Identification Quantification

N N \

[Area Extent] [Transmurality]
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FIGURE 40: Basic processing steps of the proposed framework for analyzing CE-

CMR images: LV wall segmentation, pathology identification, and myocardial vi-

ability quantification in terms of the area extent and transmurality metrics.

1. Identification of the Pathological Tissue in the LV Wall

For the challenging task of delineating the pathological tissue in the LV wall,
a powerful approach is proposed based on applying a joint MGRF model to the CE-
CMR image signals and the region map labels (i.e., object and background) that
accounts for the intensity and the spatial interactions between the pixels of patho-

logical tissue. The main novelty of this joint MGRF segmentation compared to the
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conventional thresholding methods, with heuristic or user-selected thresholds, is
two-fold. First, an initial proper threshold is found automatically by accurate iden-
tification of pixel-wise object and background intensity distributions. Second, the
initial region map is refined by identifying the 2"4-order spatial interactions. For
the initial segmentation, the mixed 1%'-order intensity distribution for the image is
separated into the conditional object and background components, which are used
to build an initial region map. To optimize the final region map, the iterative condi-
tional mode (ICM) relaxation approach [123] is used to search for a local maximum
of the joint image-map probability by maximizing sequentially the pixel-wise con-
ditional probabilities of region map labels. At each step the approach minimizes
the MGREF energy for each pixel in the entire image. This minimization step is re-
peated until there is no further decrease in the MGRF energy, thereby establishing

a stopping criterion.

The intensity and the spatial interaction descriptors for the pathological tis-
sue and the background (other tissue in the LV wall) are estimated using the same
methodologies described in Sections III.A.1.a and III.A.1.b, respectively. The whole
search algorithm for identifying the pathological tissue in the LV wall is described

in Algorithm 4.

2. Myocardial Viability Quantification

After accurately segmenting the pathological tissues, two potential met-
rics have been derived to quantify the myocardial viability: the geographic ex-
tent (area) of the pathological tissue, and the transmural extent (transmurality).
These metrics have been previously explored as indexes of myocardial viability. In
particular, the transmurality has been well-documented as a predictor of clinical

outcomes using CE-CMR data [124].
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Algorithm 4 Segmentation of the Pathological Tissues of the Heart

1. For the bounded myocardial wall for each CE-CMR image, obtain the in-
tensity model, namely the marginal intensity distributions of the patholog-
ical tissue and its background, by the LCDG-based approximation of the
mixed empirical intensity probability distribution using the corresponding

EM-based algorithms [102].

2. Use the estimated intensity model to get the initial segmentation of the patho-

logical tissues, i.e., form an initial region map of pathological tissues.

3. Estimate the log-likelihood MGRF energy of the image and its initial region

map.

4. Use the ICM relaxation algorithm [123] to estimate the final map (segmenta-

tion of pathological tissues) that maximizes the MGRF energy .

a. The percentage area P, of the pathological tissue: The percentage area
P,rea of the pathological tissue is estimated for each segment 7 in the 17-segment

model (Figure 41) [4]; i € {0, .., 17}, as follows (see Figure 42):

Area of pathological tissue in the segment (A;)
Area of myocardium wall segment (B;)

Pirea(segment i) = x 100%  (9)

b. The transmural extent of the pathological tissues (Piays):  The transmural
extent of the pathological tissues (transmurality) is the fraction of the pathological
tissue’s extension across the myocardial wall [125]. Inaccurate geometric point-to-
point correspondences and inconsistencies in the resulting transmural extent affect
its traditional estimation as illustrated in Section IV.A (Figure 39). In this work,
a PDE-based approach is proposed to co-locate the corresponding pixel pairs be-
tween the inner and outer contours of the LV wall, and between the inner and outer
edges of the pathological tissue (Figure 43). These correspondences are found by

solving the 2"-order linear Laplace PDE for a scalar potential field T [18,126-129].
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Two-Chamber Single Shot Image

I Mid-Cavity
I Apical

(a) (b)
FIGURE 41: The myocardial 17-segment model [4]: (a) the circumferential polar
plot and (b) the locations of the segments for basal (left), mid-cavity (middle), and
apical (right) image sections. The segment numbering starts contour-clockwise
from the anatomical landmark indicated by the green arrow in the basal section,

namely, the anterior insertion of the right ventricle wall on the left ventricle wall.

Laplace’s equation is a 2"¥-order linear PDE for a scalar field. It arises in a
variety of applications including fluid mechanics, electromagnetism, potential the-
ory, solid mechanics, heat conduction, geometry, probability, etc. Mathematically,

the planer Laplace PDE equation takes the form:

2 2
U S 10)

VT = 222 " 92y?

Generally, the solution of the Laplace equation between two boundaries,
such as B, and By in Figure 44, can be envisioned as resulting in intermediate
equipotential surfaces (dashed lines in Figure 44) and streamlines that connect the
boundaries. The desired point-to-point correspondences between the boundaries

are established by the streamlines, orthogonal to all the equipotential surfaces (vi-
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=  Area of Path. Tissues
= Area of Myocardium Wall

FIGURE 42: Estimation of the percentage area of myocardial injury (P,,e.): A; is
the area of injury in segment ¢ and B; is the total area of the segment. For each
segment, P,,., is the percentage of the area of the injury in the segment (4;) with

respect to the total area of the segment (B;).
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FIGURE 43: Estimation of the transmural extent of myocardial injury. The patho-
logical tissue in the LV wall is identified in the middle image. The Laplace cor-
respondence is shown in the right image between the inner and outer borders of
the LV wall (7}), and in the left image between the inner and outer borders of the

pathological tissue (d; ). For each segment, P.,.,. = mean(dj/T’j) for all the lines

inside the segment.
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sualized by the line connecting the points B,; and B;; in Figure 44). The correspon-
dences between the borders of the pathological tissue and between the contours of
the LV wall, found by solving the Laplace PDE (see Figure 43), are used in the pro-
posed estimation of the transmural extent. The transmural extent for each segment
in the 17-segment model is estimated as the average ratio between the segment’s
pathology extent (d) and the segment’s wall thickness (7):
Pirans (segment ) ! 2": 4 x 100%

rans t)=1-=— =

t g o 2 T] 0
where n is the number of lines in the segment i that connect the estimated corre-

sponding pairs.

Equipotential
Surfaces

Bp....B,)

*am.

al®

B, =

Bbz[galvazv' - -:an]

Streamlines

FIGURE 44: Schematic illustration of correspondences by a potential field. The
solution of the Laplace PDE between the two boundaries B, and By, results in in-
termediate equipotential surfaces (dashed lines), and orthogonal streamlines that
connect both the boundaries. The streamlines (e.g. the line connecting the points

B, and By;) establish the point-to-point correspondences between the boundaries.
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C. PERFORMANCE EVALUATION AND VALIDATION

1. Evaluation of the Proposed Segmentation Algorithm

The segmentation performance is evaluated using two metrics, the DSC
metric [120] and the Bland Altman analysis. The DSC metric estimates the overlap
between the experimentally segmented region and ground truth (GT) segmenta-
tion (Figure 45). It is calculated as illustrated in Section III.A.3. The Bland Altman
analysis assesses the degree of agreement between two methods of clinical mea-
surement [130]. To indicate an agreement, the bias (mean difference of the clinical
measurement between the two methods) should be near zero; also most of the data
points should fall within 95% limits of agreement (£1.96 Standard Deviation (SD)
around the bias). The Bland Altman statistic is computed to compare the com-
puted volume of infarcted tissue (total number of voxels scaled by the resolution
and the slice thickness) using the proposed automatic method versus the GT, as

determined by two experienced observers.

Ground Truth (G)

False Positive (FP)
False Negative (FN)
True Positive (TP)

Segmentation (C)

~ 2*TP
2*TP+FP + FN

DSC

FIGURE 45: Image segmentation performance is evaluated by the Dice Similarity
Coefficient (DSC).
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2. Validation the Proposed Method of Estimating Transmural Extent using a Sim-

ulated Phantom

To validate the proposed transmural extent method, a realistic synthetic
phantom with varying injury transmural extent was constructed and tested us-
ing the proposed Laplace PDE-based method versus two alternate standards (the
radial method and the centerline method [82]). A phantom is constracted with el-
liptical symmetry (to represent the heart in cross-section), and considered uniform
thickness of infarct throughout for practicality of computation. Total wall thick-
ness was used as 12 mm to correspond to a realistic normal heart wall dimension,
and a realistic inner LV wall edge extracted from actual patient image data. To
account for the fact that a real infarct can have nonuniform thickness throughout
a region, varying thicknesses (from 2mm to 10mm to correspond from small to
very large infarcts) were considered. Particularly, ranges less than 25% (small), 25
to 50% (intermediate), and more than 50% (large) of the wall are physiologically
meaningful ranges of the transmural extent of injury, as previously documented
by Kim et al. [124]. For idealized transmural resolution, an in-plane spatial reso-
lution of 1 mm x 1 mm is used to obtain a sufficient number of pixels across the
wall. This phantom is illustrated in Figure 46, where Figure 46(a) shows the full
phantom illustrating uniform size injury, and Figure 46(b) is a schematic depicting
the proposed approach to account for varying thicknesses across the infarct, par-
ticularly at the step between the different thicknesses, as indicated by the dashed

arrows.

Figure 47(a) illustrates the transmural extent estimation using the radial
method with lines extended from the center of the LV inner cavity. Figure 47(b)
illustrates the centerline estimation method with lines perpendicular to the center-
line, defined as joining the midpoints of the known simulated full wall thickness.

Figure 47(c) illustrates the proposed Laplace PDE-based estimation of the trans-
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(a) (b)
FIGURE 46: Validation of the proposed method for transmural extent estimation
using simulated phantoms with a realistic inner LV wall edge: (a) a representa-
tive phantom with elliptical symmetry and uniform thickness of infarct, (b) an
approach to account for the fact that a real infarct can have nonuniform thickness
throughout a region: varying thicknesses were considered, from 17 % to 83% to
correspond from small to large infarcts, particularly at the step between the differ-

ent thicknesses as indicated by the dashed black arrows.

Radial lines

Centerline

Y i Point-to-point correspondence
Lines normal to the centerline by solving Laplace equation
between inner and outer edge

() (b) (c)
FIGURE 47: Illustration of the different methods, i.e., the radial method (a), the
centerline method (b), and the Laplace method (c), used to estimate the transmural

extent on a simulated phantom.
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mural extent, where the streamlines via the equipotential surfaces connect each
corresponding pair of points, at the inner- and outer-edges of pathology. For all

the three methods, the average of the line-wise transmural extents is used.

D. EXPERIMENTAL RESULTS

The proposed framework was tested on 14 datasets collected from six pa-
tients who had suffered chronic heart attacks (at least four months prior), with
clinically documented ejection fraction dysfunction, and who subsequently un-
derwent an experimental myocardial regeneration therapy, as part of an institu-
tionally approved trial. All images were obtained using a Siemens 1.5T Espree
system (Siemens Medical Solutions, USA Inc), with multichannel phased array re-
ception coils [121]. Late (at 15 to 25 min) gadolinium contrast agent enhanced (0.2
mM/kg) acquisitions, using both conventional inversion time chosen acquisitions
and phase sensitive inversion recovery. To ensure adequate signal-to-noise ratios,
the typical spatial resolution was 2.08 x 2.08 x 8.0 mm?. Typically 10-14 image
cross-sections were obtained to cover the LV. To test the proposed method, a total
of 168 images were examined. To evaluate the segmentation accuracy of the pro-
posed framework, the “ground truth (GT)” delineations of pathological tissues in

each image were given by an expert (a radiologist).

1. Delineation of Pathological Tissues

To assess the myocardial viability, first the pathological tissue. are identified
Typical results of the proposed joint MGRF-based estimation, compared to the GT
manual expert delineation are shown in Figure 48. Table 5 presents the DSC values

between the proposed automatic segmentation and the GT, for two independent
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observers, Obl and Ob2. The agreement between this GT and the proposed seg-
mentation was confirmed using the paired ¢-test, for each of the observers (P-value
0.487). In addition, the Bland Altman analysis [130] comparing estimated infarct
volumes for the MGRF segmentation versus manual delineation by two indepen-
dent experienced observers revealed bias (mean difference) near zero, with most
of the data points falling within the 95% confidence limits of agreement, reflecting
good agreement with GT (see Figure 49 (a) and (b)). The DSC and the Bland Alt-
man analyses confirm the robustness and reproducibility of the proposed frame-

work.

The DSC was also used to compare the proposed framework with two es-
tablished segmentation approaches namely, the 20 [29] and 30 [30] threshold tech-
niques. As shown in Table 5, the proposed approach outperforms both of these
techniques, as evidenced by the DSC approaching the ideal value of 1, and having
the smallest standard deviation. Furthermore, a statistically significant difference
is documented between the proposed approach and the 20- and the 30-threshold
techniques. The reported results in table 5 agrees with the work of Amado et
al. [32] in that the performance of the simple intensity methods gets worse as one
goes to higher o cut-offs.

TABLE 5: Performance of the proposed pathological tissue segmentation versus
the established 20- and 30-threshold methods on the 14 datasets (168 images) in
terms of the DSC metric compared with the ground truth (GT), for two experienced

observers Ob1 and Ob2. SD stands for the standard deviation.

Proposed Approach | 20-threshold [29] | 30-threshold [30]
Observer (Ob) | Obl Ob2 Obl Ob2 Obl Ob2
DSC Mean 0.90 0.88 0.73 0.76 0.52 0.61
DSC SD 0.056 0.057 0.088 0.078 0.113 0.162
P-value (versus Proposed approach) | <107* | <107* | <107*| <1074
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Subject 1

Subject 2 B

FIGURE 48: Sample results for the proposed pathological tissue identification com-
pared with the manual expert ground truth (GT) for a representative image section

from two subjects.

2. Validation of the Transmural Extent using Synthetic Phantoms

Two key metrics for quantifying the myocardial viability: the percentage
area of pathological tissue and the transmural extent were explored. To validate
the proposed framework, varying transmural injury extents were simulated using
a simulated phantom. Figure 39 illustrates theoretic geometric errors of the es-
tablished radial method. Table 6 summarizes estimates for the proposed method
versus the two established methods, where idealized infarcts of transmural extents
(encompassing less than 25%, 25 to 50%, and more than 50% of the wall) were cho-
sen for their previously documented physiological relevance [35] (see Fig 46). As
shown in Table 6, the Laplace method provides the closest absolute estimates of the

known GT, over all ranges of infarct. Moreover, the computed errors in estimat-
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FIGURE 49: Bland Altman plots for the 14 datasets presented in

clinical parameter, infarct volume, is estimated using the proposed automatic seg-
mentation (Aut) versus manual delineations by two observers, Ob1 (a) and Ob2
(b). For good agreement, the mean of the volume difference between the two

methods should be near zero, and data points should fall within the 95% confi-

dence interval (i.e., between 1.96 SD and -1.96 SD).
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ing the transmural extent using the proposed method are all less than 3%, while
they approach 25% for the radial method, and 7% for the centerline method. These

differences were statistically significant (see Table 6).

3. Clinically Meaningful Effects

The ability of the proposed framework for the detection and quantifica-
tion of damaged tissue has been initially explored to index clinically meaningful
changes. Figure 50 visually illustrates the changes in the injured myocardium, pro-
cessed using the MGRF method, for a representative patient, one year after treat-
ment. Table 7 presented the reported extracted two parameters for myocardium
viability quantification for this patient over one year of treatment. Table 8 sum-
marizes the overall extracted two parameters for myocardium viability quantifica-
tion for all datasets enrolled in this study (i.e., 14 datasets from six patients). Fig-
ure 51 and Figure 52 show the potential of the two metrics to document changes
with treatment, that were consistent with improvements in patient status, as doc-
umented by clinical indexes. This lends encouragement for the proposed frame-

work to detect meaningful effects in treatment and physiological studies.

An important feature is that the proposed framework is not tied to a spe-
cific image resolution, given that the pathological tissue size is typically of similar
dimension or greater than the scanner pixel size, and depends on the pathology
size only implicitly, via the MGRF model learned. One should expect that the
higher the scanner resolution (essentially the finer the nearest neighbor grid), the
more the interactions between the pixel labels will be taken into account. It is con-
ceivable that the finer the scale at which the pathology is examined (attained via
higher scanner resolution), more sophisticated nearest neighborhood interactions

may need to be taken into account.
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TABLE 6: Transmural extent estimation using the three methods (i.e., radial and
centerline standards, and the proposed proposed Laplace method) on a synthetic
simulated phantom with varying transmural infarct. All simulated results have
been computed using double precision (16 decimal places with error equal to
1.224x1071%). The final results were approximated to three decimal points to reflect

an idealized precision for estimating the transmural extent.

Transmural Extent Metric Laplace | Radial | Centerline

2 mm (17%) Extent (mm) | 1.954 2.493 2.126
Error (mm) 0.046 0.493 0.126
Error% 2.300 24.664 6.292

3 mm (25%) Extent (mm) | 2.987 3.711 3.179
Error (mm) 0.013 0.711 0.179
Error % 0.450 | 23.712 6.562

4 mm (33%) Extent (mm) | 3.974 4.861 4.250
Error (mm) 0.026 0.861 0.250
Error % 0.652 | 21.518 6.245

6 mm (50%) Extent (mm) | 6.021 7.265 6.304
Error (mm) 0.021 1.265 0.304
Error % 0.348 | 21.092 5.060

8 mm (66%) Extent (mm) | 7.981 9.548 8.342
Error (mm) 0.019 1.548 0.342
Error % 0.236 | 19.353 4.272

10 mm (83%) Extent (mm) | 10.047 | 11.912 10.422
Error (mm) 0.047 1.912 0.422

Error % 0.047 19.118 4.219

P-value (Error % versus Laplace) <1074 <1074
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Basal Mid-cavity

FIGURE 50: Changes in the injured myocardium, processed using the MGRF

method, for a representative patient, one year after treatment.

E. DISCUSSION

The overall motivation of this work is that while qualitative assessment of
the extent of damaged myocardial tissues is often adequate for routine clinical ap-
plications, efficient and accurate quantitative estimation is desirable for research,
and to help elucidate mechanisms (e.g. in testing new therapies). Current meth-
ods based on heuristic or user-selected thresholds do not account for the textures
of the segmented pixels, and, further most of them require user interaction. There-
fore, a fully automated quantification of the myocardial viability may represent an

advance.
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TABLE 7: The extracted two parameters for myocardium viability quantification

