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ABSTRACT

DEVELOPING ADVANCED MATHEMATICAL MODELS FOR DETECTING

ABNORMALITIES IN 2D/3D MEDICAL STRUCTURES

Ahmed Abd-Elrahman Elnakib

December 05, 2013

Detecting abnormalities in two-dimensional (2D) and three-dimensional (3D)

medical structures is among the most interesting and challenging research areas in

the medical imaging field. Obtaining the desired accurate automated quantifica-

tion of abnormalities in medical structures is still very challenging. This is due to

a large and constantly growing number of different objects of interest and asso-

ciated abnormalities, large variations of their appearances and shapes in images,

different medical imaging modalities, and associated changes of signal homogene-

ity and noise for each object. The main objective of this dissertation is to address

these problems and to provide proper mathematical models and techniques that

are capable of analyzing low and high resolution medical data and providing an

accurate, automated analysis of the abnormalities in medical structures in terms of

their area/volume, shape, and associated abnormal functionality.

This dissertation presents different preliminary mathematical models and

techniques that are applied in three case studies: (i) detecting abnormal tissue in
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the left ventricle (LV) wall of the heart from delayed contrast-enhanced cardiac

magnetic resonance images (MRI), (ii) detecting local cardiac diseases based on es-

timating the functional strain metric from cardiac cine MRI, and (iii) identifying the

abnormalities in the corpus callosum (CC) brain structure—the largest fiber bun-

dle that connects the two hemispheres in the brain—for subjects that suffer from

developmental brain disorders. For detecting the abnormal tissue in the heart,

a graph-cut mathematical optimization model with a cost function that accounts

for the object’s visual appearance and shape is used to segment the the inner cav-

ity. The model is further integrated with a geometric model (i.e., a fast marching

level set model) to segment the outer border of the myocardial wall (the LV). Then

the abnormal tissue in the myocardium wall (also called dead tissue, pathological

tissue, or infarct area) is identified based on a joint Markov-Gibbs random field

(MGRF) model of the image and its region (segmentation) map that accounts for

the pixel intensities and the spatial interactions between the pixels. Experiments

with real in-vivo data and comparative results with ground truth (identified by a

radiologist) and other approaches showed that the proposed framework can accu-

rately detect the pathological tissue and can provide useful metrics for radiologists

and clinicians.

To estimate the strain from cardiac cine MRI, a novel method based on track-

ing the LV wall geometry is proposed. To achieve this goal, a partial differen-

tial equation (PDE) method is applied to track the LV wall points by solving the

Laplace equation between the LV contours of each two successive image frames

over the cardiac cycle. The main advantage of the proposed tracking method over

traditional texture-based methods is its ability to track the movement and rotation

of the LV wall based on tracking the geometric features of the inner, mid-, and

outer walls of the LV. This overcomes noise sources that come from scanner and

heart motion.
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To identify the abnormalities in the CC from brain MRI, the CCs are aligned

using a rigid registration model and are segmented using a shape-appearance

model. Then, they are mapped to a simple unified space for analysis. This work

introduces a novel cylindrical mapping model, which is conformal (i.e., one to one

transformation and bijective), that enables accurate 3D shape analysis of the CC in

the cylindrical domain. The framework can detect abnormalities in all divisions

of the CC (i.e., splenium, rostrum, genu and body). In addition, it offers a whole

3D analysis of the CC abnormalities instead of only area-based analysis as done

by previous groups. The initial classification results based on the centerline length

and CC thickness suggest that the proposed CC shape analysis is a promising sup-

plement to the current techniques for diagnosing dyslexia.

The proposed techniques in this dissertation have been successfully tested

on complex synthetic and MR images and can be used to advantage in many of

today’s clinical applications of computer-assisted medical diagnostics and inter-

vention.

viii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. MEDICAL IMAGING . . . . . . . . . . . . . . . . . . . . . . . . . 2

1. Magnetic Resonance Imaging (MRI) . . . . . . . . . . . . . . 3

a. Structural MRI: . . . . . . . . . . . . . . . . . . . . . . . . 6

b. Contrast-enhanced MRI (CE-MRI): . . . . . . . . . . . . 9

c. Four-dimensional (4D) MRI: . . . . . . . . . . . . . . . . 11

B. QUANTIFYING ABNORMALITIES IN MRI . . . . . . . . . . . . 13

1. Quantification of the LV Dysfunction . . . . . . . . . . . . . 15

2. Detection of Local and Global Cardiac Diseases . . . . . . . 16

3. Identification of the CC Shape Abnormalities in Dyslexic
Brains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C. THE NEED FOR THIS WORK . . . . . . . . . . . . . . . . . . . . 19

D. DISSERTATION ORGANIZATION . . . . . . . . . . . . . . . . . 21

ix



II. COMPUTATIONAL METHODS FOR IDENTIFYING LEFT VEN-

TRICLE (LV) HEART PATHOLOGIES: A SURVEY . . . . . . . . . . . 23

A. SEGMENTATION OF THE LV WALL . . . . . . . . . . . . . . . . 24

1. Segmentation of the LV Wall from CE-CMRI . . . . . . . . . 25

2. Segmentation of the LV Wall from Cine CMRI . . . . . . . . 27

B. METRICS FOR QUANTIFYING LV WALL PATHOLOGIES . . . 36

1. Area of Pathological Tissue . . . . . . . . . . . . . . . . . . . 37

2. Transmural Extent . . . . . . . . . . . . . . . . . . . . . . . . 42

3. Functional Strain . . . . . . . . . . . . . . . . . . . . . . . . . 44

C. LIMITATIONS OF CURRENT APPROACHES . . . . . . . . . . . 47

III. SEGMENTATION OF LV WALL FROM CE-CMRI . . . . . . . . . . . 49

A. BASIC ANALYSIS STAGES . . . . . . . . . . . . . . . . . . . . . . 49

1. LV Inner Cavity Segmentation . . . . . . . . . . . . . . . . . 50

a. Joint MGRF model of the inner cavity and background: 51

b. Spatial interaction in the inner cavity of the LV: . . . . . 52

c. Conditional intensity model for CE-CMR slice: . . . . . 53

d. Probabilistic model of the inner cavity shape: . . . . . . 54

e. Optimization of the joint MGRF model using the graph-
cut algorithm: . . . . . . . . . . . . . . . . . . . . . . . . . 55

2. LV Outer Contour Segmentation . . . . . . . . . . . . . . . . 58

3. Performance Evaluation of the Proposed Segmentation Al-
gorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . 62

C. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

IV. SIZING THE PATHOLOGICAL TISSUE IN THE LV WALL USING

x



CE-CMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B. BASIC ANALYSIS STAGES . . . . . . . . . . . . . . . . . . . . . . 71

1. Identification of the Pathological Tissue in the LV Wall . . . 72

2. Myocardial Viability Quantification . . . . . . . . . . . . . . 73

a. The percentage area Parea of the pathological tissue: . . . 74

b. The transmural extent of the pathological tissues (Ptrans): 74

C. PERFORMANCE EVALUATION AND VALIDATION . . . . . . 78

1. Evaluation of the Proposed Segmentation Algorithm . . . . 78

2. Validation the Proposed Method of Estimating Transmural
Extent using a Simulated Phantom . . . . . . . . . . . . . . . 79

D. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . 81

1. Delineation of Pathological Tissues . . . . . . . . . . . . . . 81

2. Validation of the Transmural Extent using Synthetic Phan-
toms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3. Clinically Meaningful Effects . . . . . . . . . . . . . . . . . . 85

E. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

1. Pathological Tissue Identification . . . . . . . . . . . . . . . 88

2. Transmural Evaluation . . . . . . . . . . . . . . . . . . . . . 90

F. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

V. A NOVEL FRAMEWORK FOR ESTIMATING FUNCTIONAL STRAIN

FROM CARDIAC CINE MRI . . . . . . . . . . . . . . . . . . . . . . . . 93

A. PROPOSED FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . 94

1. LV Wall Segmentation . . . . . . . . . . . . . . . . . . . . . . 94

2. LV Centerline (Midwall) Extraction . . . . . . . . . . . . . . 95

xi



3. Laplace-based Tracking . . . . . . . . . . . . . . . . . . . . . 96

4. Strain Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 99

B. INDEXING FUNCTIONAL PARAMETERS . . . . . . . . . . . . . 100

1. Maximal Systolic Strain Change and Strain Slopes . . . . . . 100

2. Derivation of Maximal Systolic and Diastolic Contractile
Function from Full Cardiac Cycle Data . . . . . . . . . . . . 101

C. METHOD VALIDATION ON SYNTHETIC PHANTOMS . . . . . 103

D. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . 104

1. Validation on Synthetic Phantoms . . . . . . . . . . . . . . . 105

2. Experiments on In vivo Data . . . . . . . . . . . . . . . . . . 108

E. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

1. Comparison of the Proposed Method to the Ground Truth
and Other Methods . . . . . . . . . . . . . . . . . . . . . . . 111

2. Robustness of the Strain Indexing Against Noise . . . . . . 112

3. Reasonableness of the Physiological Indexing . . . . . . . . 113

4. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

F. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

VI. MRI FINDINGS FOR DYSLEXIA: A SURVEY . . . . . . . . . . . . . . 115

A. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B. STRUCTURAL MRI . . . . . . . . . . . . . . . . . . . . . . . . . . 119

1. The Grey Matter . . . . . . . . . . . . . . . . . . . . . . . . . 120

2. White Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3. Planum Temporale and Cerebellum . . . . . . . . . . . . . . 132

4. Corpus Callosum (CC) . . . . . . . . . . . . . . . . . . . . . 137

C. DIFFUSION TENSOR IMAGING (DTI) . . . . . . . . . . . . . . . 142

xii



D. FUNCTIONAL MRI . . . . . . . . . . . . . . . . . . . . . . . . . . 148

E. DISCUSSION AND SUMMARY . . . . . . . . . . . . . . . . . . . 169

1. Research Challenges . . . . . . . . . . . . . . . . . . . . . . . 172

2. Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

VII. DYSLEXIA DIAGNOSTICS BY 3D SHAPE ANALYSIS OF CORPUS

CALLOSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B. 3D CORPUS CALLOSUM SEGMENTATION . . . . . . . . . . . . 181

C. CENTERLINE EXTRACTION FROM THE CC . . . . . . . . . . . 184

D. CYLINDRIC MAPPING TO EVALUATE CC VARIABILITY . . . 186

E. PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . 189

1. Centerline Extraction Evaluation on Synthetic Phantom . . 191

2. Validation of Electric Field Establishing and Arc-length Es-
timation on a Synthetic Phantom . . . . . . . . . . . . . . . . 192

3. Validation of Variability Detection between 3D Surfaces us-
ing Synthetic Phantoms . . . . . . . . . . . . . . . . . . . . . 193

F. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . 194

1. 3D Detection of CC Abnormalities of Dyslexia . . . . . . . . 196

2. 3D Shape Analysis Diagnostic Results . . . . . . . . . . . . . 199

G. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

H. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

VIII. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . 205

A. CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

B. DIRECTIONS FOR FUTURE RESEARCH . . . . . . . . . . . . . . 208

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

xiii



APPENDIX

I. NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

xiv



LIST OF TABLES

TABLE. PAGE

1. Methodologies for segmentation of the LV wall from CE-CMRI.
For each study, the number of subjects, the segmentation method,
the automation level, and the performance are reported. . . . . . . 27

2. Methodologies for segmentation of the LV wall from cine-CMRI.
For each study, the number of subjects, the segmentation method,
the automation level, and the performance are reported. . . . . . . 31

3. Methodologies for pathology identification using CE-CMRI. For
each study, the number of patients, the LV wall segmentation
method, the pathology identification method, and the performance
are reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. Dice similarity coefficients (DSC) between the proposed segmen-
tation and the ground truth (GT) in comparison to the level-sets
based segmentation approach in [1]. . . . . . . . . . . . . . . . . . . 68

5. Performance of the proposed pathological tissue segmentation
versus the established 2σ- and 3σ-threshold methods on the 14
datasets (168 images) in terms of the DSC metric compared with
the ground truth (GT), for two experienced observers Ob1 and
Ob2. SD stands for the standard deviation. . . . . . . . . . . . . . . 82

6. Transmural extent estimation using the three methods (i.e., radial
and centerline standards, and the proposed proposed Laplace
method) on a synthetic simulated phantom with varying trans-
mural infarct. All simulated results have been computed using
double precision (16 decimal places with error equal to 1.224 ×
10−16). The final results were approximated to three decimal points
to reflect an idealized precision for estimating the transmural ex-
tent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7. The extracted two parameters for myocardium viability quantifi-
cation (i.e., Parea and Ptrans) for one patient over one year treat-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xv

Administrator
Text Box



8. Summary of the overall extracted two parameters for myocardium
viability quantification for all datasets enrolled in this study (i.e.,
14 datasets from six patients) after six months (post 1) and one
year (post 2) treatment. . . . . . . . . . . . . . . . . . . . . . . . . . 89

9. Quantitative functional mid-wall circumferential strain results es-
timated using the simulated phantoms with different levels of Ri-
cian noise, for five repeated trials at each noise level, where the
proposed framework is used to estimate the metrics. Note the
noise is scaled such that 0 indicates no noise and a value of 1 in-
dicates maximum noise corruption. . . . . . . . . . . . . . . . . . . 107

10. Results of the metrics that are used to follow up treatment using
stem cell therapy for 14 datasets (from 6 patients) after 6 months
(post 1) and one year (post 2) treatment. Larger peak systolic
change and absolute slope values indicate an enhancement in the
myocardial wall function. . . . . . . . . . . . . . . . . . . . . . . . . 111

11. Image-based systems for the detection of dyslexia-associated grey
matter abnormalities using structural MRI. For each study, the
number of subjects, the method, and the study outcomes are re-
ported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

12. Image-based systems for the detection of dyslexia-associated white
matter abnormalities using structural MRI. For each study, the
number of subjects, the method, and the study outcomes are re-
ported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

13. Image-based systems for the detection of dyslexia-associated ab-
normalities in the planum temporale and cerebellum using struc-
tural MRI. For each study, the number of subjects, the method,
and the study outcomes are reported. . . . . . . . . . . . . . . . . . 135

14. Image-based systems for the detection of dyslexia-associated CC
abnormalities. For each study, the number of subjects, the method,
and the study outcomes are reported. . . . . . . . . . . . . . . . . . 139

15. Image-based systems for the detection of dyslexia-associated white
matter microstructure abnormalities using DTI. For each study,
the number of subjects, the method, and the study outcomes are
reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

16. Image-based systems for the detection of dyslexia-associated func-
tional abnormalities using fMRI. For each study, the number of
subjects, the method, and the study outcomes are reported. . . . . 157

xvi



17. The percentage error in the detected volumes of variability be-
tween the short and reference phantoms and between the thin
and the reference phantom. . . . . . . . . . . . . . . . . . . . . . . . 194

18. Summary of study participants. All participants were right handed,
male, and Caucasian. Values are given as mean±SD. GFW stands
for Goldman-Fristoe-Woodcock sound symbol test, GORT-3 stands
for gray oral reading test, 3rd edition, WAIS-R atands for Wech-
sler adult intelligence scale, revised, and WRAT-3 stands for wide
range achievement test, third edition . . . . . . . . . . . . . . . . . 197

19. Statistical analysis for the centerline length and the CC thickness
for 16 dyslexic subjects and 14 control subjects. . . . . . . . . . . . 200

20. Summary of diagnostic results for the test datasets (nine dyslexic
subjects and seven control subjects) at 95% confidence interval for
white matter volumetric approach (WMVA), Centerline Length
(CLL) based approach, CC Thickness (CCT) based approach, and
the combined CLL and CCT based approach. . . . . . . . . . . . . 201

xvii



LIST OF FIGURES

FIGURE. PAGE

1. Classes of medical image modalities. This dissertation mainly
deals with MRI (written with yellow font). . . . . . . . . . . . . . . 2

2. Different types of medical images: (a) magnetic resonance imag-
ing (MRI) of the brain, (b) computed tomography (CT) image of
the kidney, (c) ultrasound (US) image of the fetus, (d) positron
emission tomography (PET) image of the lung, and (e) single
photon emission computed tomography (SPECT) image of the
liver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Categories of medical image modalities based on the type of in-
formation that they provide about the organ being imaged, i.e.,
structural or functional imaging. MRI, CT, US, PET, SPECT, MRA,
CE-MRI, fMRI, MRS, CT-CE stand for magnetic resonance imag-
ing, computed tomography, ultrasound, positron emission tomog-
raphy, single photon emission computed tomography, magnetic
resonance angiography, contrast-enhanced MRI, functional MRI,
magnetic resonance spectroscopy, and contrast-enhanced CT, re-
spectively. This dissertation mainly deals with the categories that
are written in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4. Different specialized MRI acquisition techniques. MRA, DWI,
DSI, DTI, CE-MRI, DCE-MRI, fMRI, MRS, stand for magnetic res-
onance angiography, diffusion-weighted imaging, diffusion spec-
trum imaging, diffusion tensor imaging, contrast-enhanced MRI,
dynamic CE-MRI, functional MRI, and magnetic resonance spec-
troscopy, respectively. The dissertation mainly deals with the cat-
egories that are written in yellow. . . . . . . . . . . . . . . . . . . . 6

5. 2D MR image of the knee. Courtesy of [2] . . . . . . . . . . . . . . 6

6. Typical 3D MRI of the brain, captured in three views: (a) sagittal
plane, (b) coronal plane, and (c) axial plane. . . . . . . . . . . . . . 7

xviii

Administrator
Text Box



7. Examples of MRI brain scans: (a) T1-weighted, (b) proton density,
and (c) T2-weighted images. The images have very different im-
age contrasts that reveal specific information about various struc-
tures in the brain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

8. MRI scans of the brain using different pulse sequences and scan-
ning parameters: (a)&(b) two T1-weighted images captured us-
ing different scanning parameters and (c)&(d) two T2-weighted
images captured using different scanning parameters. Courtesy
of [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

9. CE-MRI images taken at different time points post the adminstra-
tion of the contrast agent showing the change of the contrast as
the contrast agent perfuse into the tissue beds for (a) kidney, (b)
heart, and (c) prostate. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

10. Different types of contrast agents used in MRI medical scans. In
this dissertation, Gadolinium-based (written in yellow) CE-MRI
is used to detect the pathological tissue from the left ventricle (LV)
wall of the heart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

11. Typical 4D (3D plus time) cardiac MRI data. Images are acquired
at different sections covering the heart (from basal to apical), and
each section consists of a time series of 25 images over the car-
diac cycle. Cine CMRI has the ability to show how the anatomy
changes and provide the functionality of the heart during the car-
diac cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

12. Taxonomy of abnormality quantification metrics showing exam-
ples for each category. The dissertation deals with the metrics
written in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

13. Area of pathological tissue in the LV wall, delineated in yellow,
in a typical Gadolinium-based CE-MRI of the heart. . . . . . . . . 15

14. (a) The standard radial approach for the estimation of the trans-
mural extent of pathological tissue in the LV wall and (b) the de-
viations of the radial method from the co-located corresponding
pixel pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

15. (a) Ventricular function curve (obtained by summing the cavity
areas over the heart) over the cardiac cycle, being used to estimate
the EF, and (b) corresponding functional strain of the heart over
cardiac cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

16. The corpus callosum (CC) brain structure: (a) 3D illustration and
(b) a typical MR brain image with the CC delineated in yellow. . . 18

xix



17. 3D visualization of the CC centerline. . . . . . . . . . . . . . . . . . 19

18. CMRI data showing the cross sections of the heart from basal to
apical. Left: CE-CMRI, commonly used to enhance the contrast
between different tissues, particularly normal and pathological;
and right: cine-CMRI, each section consists of a time series of 25
images over the cardiac cycle. Cine CMRI has the ability to show
how the anatomy changes and provide the functionality of the
heart during the cardiac cycle. . . . . . . . . . . . . . . . . . . . . . 24

19. A general framework to analyze CMRI. The framework consists
of two steps: the segmentation of the LV wall and the estimation
of candidate metrics for quantifying the LV wall pathologies. . . . 25

20. Example of the delineation of the LV wall from CE-CMRI of the
heart. (a) The original image, and (b) the inner and outer borders
of the LV wall are delineated in green (inner) and red (outer). . . . 26

21. Taxonomy of quantification metrics that can be extracted from
CE-CMRI and cine CMRI. . . . . . . . . . . . . . . . . . . . . . . . . 37

22. (a) Original CE-MRI of the heart and (b) the pathological area is
delineated in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

23. Illustration of the transmural extent of the pathological tissue in
the LV wall. Right: CE-CMRI of the heart with the pathologi-
cal area delineated in yellow, and left: an enlarged section of the
pathology showing the extent of the pathology as the blue lines
connecting the edges of the pathology. . . . . . . . . . . . . . . . . 43

24. Functional strain curve showing the systolic and diastolic strain
slopes during the contraction and expansion phases of the cardiac
cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

25. Taxonomy of function strain estimation methods from ultrasound
images, tagged MRI, and cine CMRI. . . . . . . . . . . . . . . . . . 46

26. Aligning a joint MGRF model to a shape prior. . . . . . . . . . . . 52

27. A2nd-order MGRF neighborhood system. . . . . . . . . . . . . . . . 53

28. Inner cavity shape prior reconstruction: top row- database sam-
ples; middle row- affine mutual-information-based registration ;
and bottom row- manual segmentation. . . . . . . . . . . . . . . . 56

29. (a) & (b) Gray-coded inner and LV wall shape priors. (c) & (d)
Another way for visualization using color-map. . . . . . . . . . . . 56

xx



30. Constructed two terminal graph-cuts: terminal-links (in blue and
red) account for both the 1st-order visual appearance descriptors
of the CE-CMR image and the inner cavity shape, and neighbor-
links (in orange) penalize for the spatially invariant 2nd-order ho-
mogeneity descriptor of the CE-CMR image (the thicker links de-
note greater affinity between corresponding nodes or terminals). . 57

31. Outer contour segmentation: (a) inner edge of the LV wall at time
(t=0), (b) normalized minimum Euclidian distance between every
point in the outer area of the LV inner cavity and the LV inner
edge, (c) an emitted wave at time (t=2) where every point is clas-
sified to be wall or background using a Bayesian classifier based
on three descriptors, and (d) samples of the propagating waves
from the inner edge of the LV at different time instants; the red
contour represents the final segmentation of the outer contour of
the LV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

32. Gray coded myocardium wall shape prior at the mid-ventricular
level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

33. Image segmentation performance is evaluated by the Dice simi-
larity coefficient (DSC). The true positive (TP) is the overlap be-
tween the segmented object (C) and the GT (G); the false positive
(FP) is the difference between the segmented object and the TP,
and the false negative (FN) is the difference between the GT and
the TP. The DSC measures the similarity between the segmented
object and the GT: the closer the DSC to ”1”, the better the seg-
mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

34. Segmentation results of the inner and outer contours for CE-CMR
images of one data subject. . . . . . . . . . . . . . . . . . . . . . . . 63

35. More segmentation results for sample image cross-sections from
different datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

36. Inner cavity segmentation: (a) original slice, and segmentation
(b) using intensity model alone, (c) using intensity and spatial
interaction models, and (d) after integrating shape model. . . . . . 65

37. Comparative segmentation results for the LV wall inner cavity
for the proposed approach (a) versus the level-sets based seg-
mentation [1] (b) for different sample images. Yellow represents
the missed segmented points (FN) and green represents the in-
troduced segmented points that were not on the GT (FP). . . . . . 66

xxi



38. Comparative segmentation results for the outer region of the LV
wall for the proposed approach (a) versus the level-sets based
segmentation [1] (b) for different sample images. Yellow repre-
sents the FN points and green represents the FP points. . . . . . . 67

39. Illustration of estimating the transmural extent of pathological
tissue in the LV wall: (a) standard radial approach, (b) proposed
Laplace PDE-based approach, and (c) deviations of (a) from the
co-located corresponding pixel pairs of (b). . . . . . . . . . . . . . . 71

40. Basic processing steps of the proposed framework for analyzing
CE-CMR images: LV wall segmentation, pathology identifica-
tion, and myocardial viability quantification in terms of the area
extent and transmurality metrics. . . . . . . . . . . . . . . . . . . . 72

41. The myocardial 17-segment model [4]: (a) the circumferential po-
lar plot and (b) the locations of the segments for basal (left), mid-
cavity (middle), and apical (right) image sections. The segment
numbering starts contour-clockwise from the anatomical land-
mark indicated by the green arrow in the basal section, namely,
the anterior insertion of the right ventricle wall on the left ventri-
cle wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

42. Estimation of the percentage area of myocardial injury (Parea): Ai

is the area of injury in segment i and Bi is the total area of the
segment. For each segment, Parea is the percentage of the area of
the injury in the segment (Ai) with respect to the total area of the
segment (Bi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

43. Estimation of the transmural extent of myocardial injury. The
pathological tissue in the LV wall is identified in the middle im-
age. The Laplace correspondence is shown in the right image
between the inner and outer borders of the LV wall (Tj), and in
the left image between the inner and outer borders of the patho-
logical tissue (dj ). For each segment, Ptrans = mean(dj/Tj) for
all the lines inside the segment. . . . . . . . . . . . . . . . . . . . . 76

44. Schematic illustration of correspondences by a potential field. The
solution of the Laplace PDE between the two boundaries Ba and
Bb results in intermediate equipotential surfaces (dashed lines),
and orthogonal streamlines that connect both the boundaries. The
streamlines (e.g. the line connecting the points Bai and Bbi) estab-
lish the point-to-point correspondences between the boundaries. . 77

45. Image segmentation performance is evaluated by the Dice Simi-
larity Coefficient (DSC). . . . . . . . . . . . . . . . . . . . . . . . . . 78

xxii



46. Validation of the proposed method for transmural extent esti-
mation using simulated phantoms with a realistic inner LV wall
edge: (a) a representative phantom with elliptical symmetry and
uniform thickness of infarct, (b) an approach to account for the
fact that a real infarct can have nonuniform thickness through-
out a region: varying thicknesses were considered, from 17 % to
83% to correspond from small to large infarcts, particularly at the
step between the different thicknesses as indicated by the dashed
black arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

47. Illustration of the different methods, i.e., the radial method (a),
the centerline method (b), and the Laplace method (c), used to
estimate the transmural extent on a simulated phantom. . . . . . . 80

48. Sample results for the proposed pathological tissue identification
compared with the manual expert ground truth (GT) for a repre-
sentative image section from two subjects. . . . . . . . . . . . . . . 83

49. Bland Altman plots for the 14 datasets presented in this study.
The clinical parameter, infarct volume, is estimated using the pro-
posed automatic segmentation (Aut) versus manual delineations
by two observers, Ob1 (a) and Ob2 (b). For good agreement, the
mean of the volume difference between the two methods should
be near zero, and data points should fall within the 95% confi-
dence interval (i.e., between 1.96 SD and -1.96 SD). . . . . . . . . . 84

50. Changes in the injured myocardium, processed using the MGRF
method, for a representative patient , one year after treatment. . . 87

51. Summary of overall Parea for six patients before treatment (pre),
after six months, and after one year treatment. . . . . . . . . . . . . 89

52. Summary of overall Ptrans for six patients before treatment (pre),
after six months, and after one year treatment. . . . . . . . . . . . . 90

53. Basic processing steps for the proposed framework. The segmen-
tation of the inner, mid- and outer walls of the LV is followed by
geometrical tracking to estimate the circumferential and radial
strain curves over the cardiac cycle. . . . . . . . . . . . . . . . . . . 95

54. Illustration of the centerline extraction: (a) the inner (green) and
outer (red) boundaries of the LV wall, (b) streamlines found by
solving Laplace equation, (c) the identified centerline points (white
open circles), and (d) the extracted centerline (blue). . . . . . . . . 96

xxiii



55. Co-allocating point-to-point correspondences by solving the Laplace
equation between the different time points of a particular heart
wall, for the purpose of tracking that wall over the time series.
(a) The geometrical feature of the wall, i.e., the electric filed vec-
tors in the area between two inclosed regions Ba (in blue) and Bb

(in green), are used to find the point-to-point correspondences.
(b) An enlarged section around the indicated streamline. . . . . . . 97

56. Estimation of radial and circumferential strains: (a) schematic il-
lustration of the radial (X2) and circumferential (X1) directions for
an element (e.g., the red square in the figure) on the LV wall and
(b) illustration of the estimation of the normal strain components
in the X1 (εx1 =

∆x1

x1
) and X2 (εx2 =

∆x2

x2
) directions. . . . . . . . . . . 99

57. Illustration of the tracking process throughout the cardiac cycle
to estimate the radial and circumferential strains. . . . . . . . . . . 101

58. Three functional metrics are used to follow up treatment: the sys-
tolic and diastolic circumferential strain slopes and peak systolic
change derived from the cine CMRI. . . . . . . . . . . . . . . . . . 102

59. Automated estimation of functional strain metrics: a six-order
polynomial fit of the strain data is used. From the fitted curve, the
first- and second-order derivative curves were computed. The
systolic and diastolic strain slopes are estimated as the values of
the first-order derivative curve points (red rhombus) associated
with the zero-crossing of the second-order derivative curve. . . . . 102

60. (a) Simulated phantom that generates deformation of the heart
borders over the cardiac cycle, and corrupted phantoms with two
representative levels of Rician noise; 0.15 (b), and 0.45 (c), respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

61. Comparison results between the proposed strain estimation and
HARP methods with the truth points obtained from the deforma-
tion of the phantom model. . . . . . . . . . . . . . . . . . . . . . . . 105

62. Tracking the inner LV contour points (blue points) using the pro-
posed Laplace-based feature tracking algorithm from end-diastolic
(the large contour) to end-systolic (the small contour) for a repre-
sentative phantom model, showing the ability of the proposed
method to track the rotation of the LV wall. . . . . . . . . . . . . . 108

xxiv



63. (a) Circumferential strains estimated at the inner wall, mid-wall
and outer wall of the LV of one patient, plotted over the cardiac
cycle. (b) Radial strains estimated between the inner and mid-
wall (blue), and between the outer and mid-walls (red) of the
LV of the same patient. (c) Relation between the average inner
to mid-wall radial strain (solid circle), mid-wall circumferential
strain (solid square), and the global ventricular volume curve,
using normalized values between 0 and 1 for comparison. Note
that the timing of the smallest cavity volume is coincident with
peak radial strain and peak circumferential strain. Note also the
peak systolic and peak diastolic slopes of the strain curve occur
at the same optimum with respect to the timing of the ventricular
volume curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

64. Different brain structures that are involved in dyslexia. . . . . . . . 118

65. A general framework for analyzing MRI images in order to detect
brain abnormalities associated with dyslexia. . . . . . . . . . . . . 118

66. A taxonomy of the different findings that can be obtained using
the different MRI techniques such as structural MRI, fMRI, and
DTI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

67. Different brain structures that are involved in dyslexia as appears
in structural MRI: (a) grey matter (delineated in dark-red), (b)
white matter (delineated in dark-cyan), (c) corpus callosum (de-
lineated in yellow) , (d) cerebellum (delineated in green), and (e)
Planum temporale (delineated in red). . . . . . . . . . . . . . . . . 120

68. A visualization figure for the brain showing the grey matter, white
matter, and corpus callosum structures. . . . . . . . . . . . . . . . . 122

69. Method proposed by Nitzken et al. [5] for the approximation of
the 3D brain cortex shape for dyslexic and normal subjects. . . . . 124

70. Extracted CWM gyrifications (pink) using the method proposed
by El-Baz et al. [6–8] . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

71. A visualization figure for the brain showing the cerebellum brain
structure and the Wernicke’s area that the planum temporale form-
ing its heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xxv



72. 33D shape analysis of the CC proposed by Elnakib et al. [9]: (a)
color-coded anatomical differences between the CC for normal
and dyslexic subjects: the common parts (gray), parts that exist in
normal subjects and do not exist in dyslexic subjects (blue), and
parts that exist in dyslexic subjects and do not exist in normal
subjects (pink), (b) 3D CC features used to classify normal and
dyslexic subjects: the centerline length (CLL) and the mean CC
thickness (CCT), defined as the mean thickness for each CC cross
section perpendicular to the centerline. . . . . . . . . . . . . . . . . 142

73. Colored streamlines represent likely paths of nerve fiber bundles.
This data was extracted from a diffusion imaging data set. Cour-
tesy of Schultz [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

74. The proposed framework for analyzing 3D MR brain images. . . . 180

75. Joint Markov-Gibbs random field model of 3D MR images. . . . . 182

76. 3D 2nd order MRF neighborhood system. The reference voxel is
shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

77. Shape reconstruction (2D illustrations): database samples (a), rigid
mutual information based registration (b), manual segmentation
(c), and a sagittal cross section in the estimated 3D voxel-wise
probabilities of the CC shape. . . . . . . . . . . . . . . . . . . . . . 183

78. 2D Illustration for the steps of the proposed centerline algorithm:
(a) a sagittal 2D cross-section on the 3D CC, (b) its estimated CC
edges, (c) its normalized distance map, (d) the orthogonal wave
propagated from the extracted centerline, (e) 2D extracted center-
line, and (f) its 3D visualization. . . . . . . . . . . . . . . . . . . . . 186

79. Illustrations of (a) 2D and (b) 3D re-slicing. . . . . . . . . . . . . . . 188

80. The proposed cylindric mapping: (a) a cross-section of the re-
sliced CC, (b) the CC cross-section mapped onto a circle, (c) plac-
ing the circle onto the corresponding location in the cylinder. . . . 189

81. Left: A cross-section of the corpus callosum (CC) perpendicu-
lar to the centerline. Right: Mapping the cross section boundary
points to the corresponding circle on the cylinder. Each point on
the boundary is superimposed to the corresponding location on
the circle, having the same angle θ, by its representative distance
r to the CC centerline axis. The distance, r, is measured as the arc
length of an electric field line inside the CC-shaped conducting
surface with a point charge on the axis. . . . . . . . . . . . . . . . 190

xxvi



82. Validation results of 3D centerline extraction on a simulated phan-
tom visualized on two different views (up and down rows): (a)
the 3D phantom, (b) its known ground truth centerline, (c) the
proposed estimated centerline, and (d) the proposed estimated
centerline superimposed on the ground truth. . . . . . . . . . . . . 191

83. Validation of electric field establishing and arc-length estimation
for a simulated phantom of a circle with a point charge at center. . 192

84. 3D simulated phantoms to test the ability of the proposed ap-
proach in detecting variability between 3D surfaces: (a) reference
phantom, (b) short phantom, and (c) thin phantom. . . . . . . . . . 193

85. Unfolded cylindrical mapped sheets for (a) the reference, (b) short,
and (c) thin simulated phantoms presented in Figure 84; dotted
black lines point to the detected variability with respect to the
reference phantom. . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

86. Accuracy of detecting the variability between the short and refer-
ence phantoms: (a) the short phantom superimposed on the ref-
erence phantom, (b) ground truth variability (blue) between the
two phantoms, and (c) estimated variability using the proposed
approach: blue represents the common detected area with the
ground truth (true positive), red represents the missed points that
were not detected (false negative), and green represents the in-
troduced detected points that were not on the ground truth (false
positive). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

87. Accuracy of detecting the variability between the thin and ref-
erence phantoms: (a) the short phantom superimposed on the
reference phantom, (b) ground truth variability between the two
phantoms, and (c) estimated variability using the proposed ap-
proach: blue represents the common detected area with the ground
truth (true positive), red represents the missed points that were
not detected (false negative), and green represents the introduced
detected points that were not on the ground truth (false positive). 195

88. Automated 3D CC segmentation results projected onto the 2D (a)
axial, (b) coronal, (c) sagittal planes, and (d) their 3D visualization. 198

89. Average cylindric maps of (a) normal and (b) dyslexic subjects . . 198

xxvii



90. (a) Areas of the 95%-significant difference between normal and
dyslexic subjects, and (b) color-coded anatomical differences be-
tween the CC for normal and dyslexic subjects: the common parts
(gray), parts that exist in normal and do not exist in dyslexic sub-
jects (blue), and parts that exist in dyslexic and do not exist in
normal subjects (pink). . . . . . . . . . . . . . . . . . . . . . . . . . 199

91. Features used to classify normal and dyslexic subject: the center-
line length (CLL) and the mean CC thickness (CCT). . . . . . . . . 200

92. The ROC curves for white matter volumetric approach [11] (blue),
CLL based approach (red), CCT based approach (green), and the
combined CLL and CCT diagnostic approach (black). Note that
‘Az’ stands for the area under the curve. . . . . . . . . . . . . . . . 202

xxviii



LIST OF ALGORITHMS

ALGORITHM. PAGE

1. Shape Prior Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2. Graph-Cut Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3. Segmentation of the Epicardium Contour of the Myocardium . . . . 60

4. Segmentation of the Pathological Tissues of the Heart . . . . . . . . . 74

5. Extraction of the Centerline of the Myocardium . . . . . . . . . . . . . 96

6. Laplace-Based Contour Tracking over the Time Series . . . . . . . . . 98

7. Strain Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 100

8. Segmentation of the Corpus Callosum (CC) Brain Structure . . . . . . 184

9. Extraction of the Centerline of the CC . . . . . . . . . . . . . . . . . . 187

xxix

Administrator
Text Box



CHAPTER I

INTRODUCTION

Early detection of abnormalities in human organs is very important for the

diagnosis of human diseases and can lead to better treatment outcomes. The goal

of this work is to detect abnormalities in medical structures and to investigate

extracting automated and accurate metrics that can quantify these abnormalities.

Medical reports show that the early detection of heart diseases (e.g., left ventricle

dysfunction and ischemic heart disease, a case study in this dissertation), and brain

disorders (e..g, dyslexia, a case study in this dissertation) can assist the clinicians to

afford better treatment and leads to increase the survival rate of patients with these

diseases. Medical imaging represents a noninvasive way to reveal these abnor-

malities and has been emerged as a basic component in current medical diagnostic

tools. Nowadays, it has been effectively used to assist clinicians and radiologists

in diagnosis, therapy decisions, and surgery operations.

Recent advances in medical image modalities, including magnetic resonance

imaging (MRI), computed tomography (CT), and ultrasound (US), enable the ac-

quisition of images for almost all types and sizes of different structures with ac-

ceptable degrees of contrast and resolution. A wide scope of abnormalities have

been extensively explored in different research areas, such as detecting cancerous

cells in different medical structures, identifying dead tissues in different organs,

and detecting brain abnormalities in subjects with brain disorders. The process of

detecting these abnormalities from medical images involves developing advanced
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mathematical models for the appearance and shapes of the structures and their

abnormalities and providing efficient algorithms towards accurate abnormality

detection and quantification. Various aspects of these mathematical models and

algorithms have been extensively explored for many years in a host of publica-

tions. However, obtaining the desired accurate automated abnormality detection

and quantification is still very challenging due to a large and constantly growing

number of abnormalities in medical structures, large variations of their properties

in images, different metrics used to quantify each abnormality, different medical

imaging modalities, and associated changes of signal homogeneity, variability, and

noise for each modality. The main objective of this dissertation is to address these

problems and present proper mathematical models and techniques in order to pro-

vide an accurate, automated detection and quantification of abnormalities using

medical imaging. Since all the work presented in this dissertation mainly deals

with medical images, below, the different types of modalities that are used to

capture medical images are overviewed.

FIGURE 1: Classes of medical image modalities. This dissertation mainly deals

with MRI (written with yellow font).

A. MEDICAL IMAGING

A constant growing number of image modalities with different imaging

capture parameters has been recently developed in order to capture and visual-

ize the constantly growing number of different medical structures with acceptable

2



resolution and contrast. Each of these modalities (see e.g., Figure 1, Figure 2, and

Figure 3) has its own mechanism of providing relevant physiological information

of the organ being imaged as well as its own advantages and limitations. Medical

images can be classified based on their modalities (Figure 1) or based on the type of

information that they provide (i.e., the structure or the function of the organ being

imaged, see Figure 3). Since all the work presented in this dissertation mainly

deals with magnetic resonance images, the details of the different techniques of

magnetic resonance images are presented below.

1. Magnetic Resonance Imaging (MRI)

MRI is a medical imaging modality that is based on the same principles of

nuclear magnetic resonance (NMR) spectroscopy [12]. MRI has become the most

powerful and central non-invasive tool for clinical diagnosis of diseases [13]. The

fundamental principle of MRI is based on the use of a strong static magnetic field in

which the hydrogen nuclei (single proton) of water molecules in human tissues are

aligned parallel to that field. Then, an external radio frequency (RF) pulse (wave)

is applied to the unpaired magnetic spins (proton) aligned in the static magnetic

field, making them spin in different directions [14]. The interaction between the

RF and proton spins leads to periodic absorption and emission of energy. When

the protons relax back to their lower energy (equilibrium) state, they release de-

tectable signals (energy) that are spatially encoded and are used to construct the

MR image. Different types of tissues (muscle, fat, cerebral spinal fluid, etc.) send

back measurably different types of tissue-specific signals following the applica-

tion of the same RF pulse. The contrast of an MR image is strongly dependent

on the way the image is acquired. Different components of the scanned area can

be highlighted using different pulse sequences: a preselected strength, shape, and

timing of defined RF and gradient pulses (external fields). Generally, MRI can be
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(a) (b)

(c) (d)

(e)

FIGURE 2: Different types of medical images: (a) magnetic resonance imaging

(MRI) of the brain, (b) computed tomography (CT) image of the kidney, (c) ultra-

sound (US) image of the fetus, (d) positron emission tomography (PET) image of

the lung, and (e) single photon emission computed tomography (SPECT) image of

the liver.
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FIGURE 3: Categories of medical image modalities based on the type of informa-

tion that they provide about the organ being imaged, i.e., structural or functional

imaging. MRI, CT, US, PET, SPECT, MRA, CE-MRI, fMRI, MRS, CT-CE stand for

magnetic resonance imaging, computed tomography, ultrasound, positron emis-

sion tomography, single photon emission computed tomography, magnetic reso-

nance angiography, contrast-enhanced MRI, functional MRI, magnetic resonance

spectroscopy, and contrast-enhanced CT, respectively. This dissertation mainly

deals with the categories that are written in yellow.

used to acquire planner 2D images (Figure 5), 3D volumes (Figure 6), or sequences

of 3D volumes. Most commonly-known specialized MRI techniques are shown

in Figure 4. The following sections focus on the MRI techniques that are used

throughout this dissertation (i.e., structural MRI to image the brain and CE-MRI

and 4D MRI to image the heart).
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FIGURE 4: Different specialized MRI acquisition techniques. MRA, DWI, DSI,

DTI, CE-MRI, DCE-MRI, fMRI, MRS, stand for magnetic resonance angiography,

diffusion-weighted imaging, diffusion spectrum imaging, diffusion tensor imag-

ing, contrast-enhanced MRI, dynamic CE-MRI, functional MRI, and magnetic reso-

nance spectroscopy, respectively. The dissertation mainly deals with the categories

that are written in yellow.

FIGURE 5: 2D MR image of the knee. Courtesy of [2]

a. Structural MRI: Structural MRI involves the MRI techniques that show

the anatomy of human structures or body tissues, such as T-weighted, T2-weighted,

proton density (PD), and magnetic resonance angiography (MRA). Since MRA, a

MRI exam for imaging the vascular anatomy, is out of the scope of this dissertation,
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(a) (b) (c)

FIGURE 6: Typical 3D MRI of the brain, captured in three views: (a) sagittal plane,

(b) coronal plane, and (c) axial plane.

this section will focus on illustrating the other three types. The amount of energy

(or signal strength) on each of these three types primarily depends on the magnetic

relaxation properties of body atomic nuclei. The time of the relaxation process (i.e.,

the time taken by nuclei to return to their baseline states after applying the RF

pulse) is known as longitudinal relaxation time (T1) or transverse relaxation time

(T2), based on the orientation of the component with respect to the magnetic field.

Every tissue in the human body has its own T1 and T2 values, which depend on the

concentration of protons in the tissue in the form of water and macromolecules. T1-

weighted MRI is the commonly-run clinical MRI scan that emphasizes T1-contrast,

i.e., most of the contrast between tissues is due to differences in tissue T1 values.

Thus, it is the best MRI method for demonstrating anatomical details. T2-weighted

scans are another basic type that emphasizes T2 contrast. Usually, T2-weighted is

used when it is required to show high contrast between fluid, abnormalities (e.g.,

tumors, inflammation, trauma), and the surrounding tissues. Therefore, it is the

best MRI method for pathological details. In practice, T1- and T2-weighted images

provide complementary information, so both are important for characterizing ab-

normalities. Finally, the proton density (spin density) weighted scans try to have

no contrast from either T1 or T2. The only signal change is due to differences in

the amount of available spins (hydrogen nuclei in water). The main advantage of
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the PD-weighted images is the increase in contrast between fluid and non-fluid

tissues. However, PD-weighted images usually show less contrast resolution than

T1- and T2-weighted images. This is due to the fact that the difference in hydrogen

concentration (proton density) of soft tissues is relatively small.

The main strength of MRI is that it offers the best soft tissue contrast among

all image modalities. Moreover, it is a dynamic technology that can be optimized

to tailor the imaging study to the anatomical part of interest and to the disease

process being studied. In this regard, MRI offers different degrees of dynamic

optimization. For example, the imaging plane can be optimized to the anatomi-

cal area being studied (axial, coronal, sagittal, see Figure 6), and multiple oblique

planes can be captured with equal ease. In addition, as described above, the sig-

nal intensities of the imaged tissues can be controlled by selecting the type of the

scan: either proton density, T1-weighted, or T2-weighted [13, 15, 16] (see, Figure 7).

Moreover, for a given type of scan, a pulse sequence is designed and imaging pa-

rameters are optimized to produce the desired image contrast (see Figure 8).

(a) (b) (c)

FIGURE 7: Examples of MRI brain scans: (a) T1-weighted, (b) proton density, and

(c) T2-weighted images. The images have very different image contrasts that reveal

specific information about various structures in the brain.
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(a) (b) (c) (d)

FIGURE 8: MRI scans of the brain using different pulse sequences and scanning

parameters: (a)&(b) two T1-weighted images captured using different scanning

parameters and (c)&(d) two T2-weighted images captured using different scan-

ning parameters. Courtesy of [3].

b. Contrast-enhanced MRI (CE-MRI): Although structural MRI provides

excellent soft tissue contrast, it lacks functional information. Contrast-enhanced

MRI (CE-MRI) is a special MR technique that has the ability to provide superior

information of the anatomy, function, and metabolism of target tissues [17]. The

technique involves the acquisition of MR images with high temporal resolution

before, during, and at several times after the administration of a contrast agent

into the blood stream. In CE-MRI, the signal intensity in target tissue changes in

proportion to the contrast agent concentration in the volume element of measure-

ment, or voxel. CE-MRI is commonly used to enhance the contrast between dif-

ferent tissues, particularly normal and pathological. Typical examples of CE-MRI

time series data of the kidney, heart, and prostate are shown in Figure 9.

CE-MRI has gained considerable attention due to the lack of ionizing radi-

ation, and increased spatial resolution. It has been extensively used in many clini-

cal applications, including detection of pathological tissue in the myocardium and

early detection of acute renal rejection [18]. Unlike structural MRI where the con-

trast mainly depends on the intrinsic magnetic relaxation times T1 and T2, CE-MRI

technique employs the administration (oral, rectal, intravesical, or intravenous) of
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(a)

(b)

(c)

FIGURE 9: CE-MRI images taken at different time points post the adminstration of

the contrast agent showing the change of the contrast as the contrast agent perfuse

into the tissue beds for (a) kidney, (b) heart, and (c) prostate.

contrast agents prior to the medical scan. The main role of the use of the con-

trast agents is to increase the image contrast of anatomical structures (e.g., blood

vessels) that are not easily visualized by the alteration of the magnetic properties

of water molecules in their vicinity. This in turns improves the visualization of

tissues, organs, and physiological processes. In clinical practice, several types of

contrast agents are in use and their choice is based on the imaging modality. In

particular, for MRI there are several types of contrast agents such as paramagnetic

agents, superparamagnetic agents, extracellular fluid space (ECF) agents, and tis-

sue (organ)-specific agents, see Figure 10.
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FIGURE 10: Different types of contrast agents used in MRI medical scans. In this

dissertation, Gadolinium-based (written in yellow) CE-MRI is used to detect the

pathological tissue from the left ventricle (LV) wall of the heart.

The most successful MRI contrast agents that have been widely investigated

are gadolinium-based. Gadolinium, a rare metal, is a non-toxic paramagnetic con-

trast agent that enhances the detected MR signal and produces high contrast im-

ages of soft tissues by decreasing T1 relaxation times of water protons in living

tissue in the vicinity of the paramagnetic contrast agent. Gadolinium-based CE-

MRI has been extensively used in cardiovascular, oncological, and neurological

imaging applications.

c. Four-dimensional (4D) MRI: Recent advances and scanning techniques

of MRI allow the capture of 4D MRI images of the human structures. 4D MRI rep-

resents sequences of 3D volumes that are captured on different time instances. To

acquire the 4D MRI, dedicated scanning techniques should be developed to scan

the human structure of interest with a sufficient speed to cover the change in the

anatomy with time. 4D MRI images have the ability to provide both functional

and anatomical information about the human structure being imaged. Recently,

they have been used in many applications, e.g., to show how the anatomy changes

and provide the functionality of the heart during the cardiac cycle. An example of

using 4D MRI of the heart is shown in Figure 11.
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FIGURE 11: Typical 4D (3D plus time) cardiac MRI data. Images are acquired at

different sections covering the heart (from basal to apical), and each section con-

sists of a time series of 25 images over the cardiac cycle. Cine CMRI has the ability

to show how the anatomy changes and provide the functionality of the heart dur-

ing the cardiac cycle.

In total, potential advantages of MRI include that MRI does not involve

exposure to any harmful radiation, can be repeated sequentially over time, and

has the ability to generate cross-sectional images in any plane (including oblique

planes). Additionally, MRI provides superior resolution with far better contrast

(the ability to distinguish the differences between two arbitrarily similar but not

identical tissues) compared with other medical image modalities [13]. Finally, MRI

plays an important role in assessing tumors’ locations and extent, directing biop-

sies, planning proper therapy, and evaluating therapeutic results [19].

On the other hand, MRI imaging modality has its own disadvantages: (i)

MRI data acquisition is a relatively long and complex process–for each scan the
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imaging parameters and the pulse sequence need to be fixed; (ii) MRI is not suit-

able for patients with metal implants due to its magnetic nature; (iii) MRI suffers

from sensitivity to noise and image artifacts; (iv) MRI signals are dependent on

the imaging sequence used and can become non-linear beyond certain concentra-

tions leading to errors in extracted physiology; (v) MRI scanning processes may

be uncomfortable for some people because it can produce claustrophobia. Recent

improvements in MRI design aim to aid claustrophobic patients by using more

open magnet designs and shorter exam times. However, there is often a trade-off

between image quality and open design.

B. QUANTIFYING ABNORMALITIES IN MRI

Using MRI, several types of abnormalities in human structures can be re-

vealed. In general, these abnormalities can be quantified based on different types

of metrics, e.g., areal/volumetric, shape-based metrics, and/or functional metrics.

A taxonomy of the different metrics are shown in Figure 12.

Volumetric metrics are of great clinical importance in diagnostics of diseases

and deciding the need for therapies or proper medications. For example, they

can be used to investigate the progress of tumors by estimating the correspond-

ing change in the volume of tumors over periodic scans. The shape features are

severely used to define certain diseases or pathologies associated in different med-

ical structures. For example, the shape of lung nodules can be used as a discrim-

inatory feature to distinguish malignant and benign nodules. Functional features

are used to determine the status and functionality of different structures and can

conclude patient enhancement. The goal of this work is to detect abnormalities in

medical structures and to investigate extracting automated and accurate metrics

that can quantify these abnormalities. In particular, this dissertation addresses two
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FIGURE 12: Taxonomy of abnormality quantification metrics showing examples

for each category. The dissertation deals with the metrics written in yellow.

case studies for abnormality detection and quantification. The first case study is to

detect the abnormal tissue in the left ventricle (LV) wall of the heart from cardiac

magnetic resonance images in order to quantify the LV dysfunction. The second

case study is to detect local cardiac diseases based on functional strain estimation

from cine MRI. The third case study is to identify the shape abnormalities in the

the corpus callosum (CC) brain structure—the largest fiber bundle that connects

the two hemispheres in the brain—for the subjects that suffer from dyslexia using

brain MRI. Since the main interest of this dissertation is to extract accurate met-

rics to quantify abnormalities in these three case studies, the next section will

detail the different types of quantification metrics for each case study.
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1. Quantification of the LV Dysfunction

Different metrics can be extracted to quantify the LV dysfunction using MRI,

such as the area of pathological tissue, the transmural extent, and the functional in-

dexes (e.g., functional strain and the ejection fraction (EF)). Measuring the area of

pathological tissue in the LV (see Figure 13) is important to assist the cardiologists

in the diagnosis of the LV dysfunction and ischemic heart disease. However, for

reliable size measurement, the pathological tissue has to be accurately delineated

within the LV wall from the adjacent undamaged tissue. Accurate identification

of the pathology is a challenge due to image noise, limited resolution, and im-

precise boundaries.

FIGURE 13: Area of pathological tissue in the LV wall, delineated in yellow, in a

typical Gadolinium-based CE-MRI of the heart.

The transmural extent (or transmurality) is one of the candidate shape met-

rics that has been explored to quantify the myocardial viability. Transmurality

is defined as the fraction of pathological tissue’s extension across the myocardial

wall. A previously investigated procedure for estimating the transmural extent

(e.g., used in [20, 21]) extends a fixed number of radial lines from the inner to the

outer contour of the LV (see Figure 14(a)). After segments of the pathological tissue

along each line are determined, the transmural extent is estimated as the average
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FIGURE 14: (a) The standard radial approach for the estimation of the transmural

extent of pathological tissue in the LV wall and (b) the deviations of the radial

method from the co-located corresponding pixel pairs.

pathological tissue’s extent relative to these lines. As illustrated in Figure 14 (b),

this, so-called radial method, is in principle inaccurate in establishing point-to-

point correspondences and geometrically inconsistent in estimating the transmu-

ral extent. Therefore, a more accurate shape-based analysis for estimating the

transmural extent should be investigated.

2. Detection of Local and Global Cardiac Diseases

Functional indexes can help cardiologists to accurately quantify the heart

status and detect local and global cardiac diseases, e.g., the EF metric and the func-

tional strain. The EF is a clinically relevant and well-documented global indicator

of the LV function in terms of the total cavity volume (the LV volume variation

over time):

EF =
EDV − ESV

EDV
= 1− ESV

EDV
(1)
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where ESV and EDV are the end systolic (the smallest cavity area) and the end

diastolic (the greatest cavity area) volumes, respectively.

To estimate the EF, the LV cavity volume-time data at each image slice is

used. Following the delineation of the cavity contour at each time point (image

frame) of the cardiac cycle, the corresponding cavity areas are computed and a

curve representing the physiology over the cardiac cycle is constructed. Then, the

Simpson’s rule is used to estimate the total LV volume by summing the contribu-

tions of enclosed areas from the individual image slices. From the total ventricular

function curve, the EDV and ESV can be automatically extracted (see Figure 15 (a))

and hence calculate the EF.

(a) (b)

FIGURE 15: (a) Ventricular function curve (obtained by summing the cavity ar-

eas over the heart) over the cardiac cycle, being used to estimate the EF, and (b)

corresponding functional strain of the heart over cardiac cycle.

On the other hand, the functional strain is one of the important quantifica-

tion metrics of the cardiac status. Local cardiac diseases (such as coronary atheroscle-

rosis) and global conditions (such as heart failure and diabetes) result in wall

dysfunction that manifests on strain slopes during the contraction and expansion

phases of the cardiac cycle [22]. Therefore, accurate strain estimation is important

for the early detection of these diseases (see Figure 15 (b)). Traditionally, the func-

tional strain is estimated by using the tagged images that lead to errors between
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the estimated indexes due to the inter-slice variability between the different im-

age modalities. There is a need to develop approaches that can estimate more

correlated functional indexes to completely characterize the heart status.

(a) (b)

FIGURE 16: The corpus callosum (CC) brain structure: (a) 3D illustration and (b) a

typical MR brain image with the CC delineated in yellow.

3. Identification of the CC Shape Abnormalities in Dyslexic Brains

The CC is the largest fiber bundle in the brain that is responsible for pass-

ing sensory, motor and cognitive information between homologous regions in the

two cerebral hemispheres (see Figure 16). Since human reading skills are highly

affected by the impaired communication between the hemispheres, the analysis

of the CC for dyslexic subjects is extensively explored [23–26]. The CC center-

line length (CLL) is a candidate metric to quantify the shape differences between

the normal and dyslexic subjects (see Figure 17). Unfortunately, the existing tech-

niques for extracting CC centerlines suffer from at least one of the following short-

comings: (i) they are computationally expensive, (ii) suffer from lack of robustness,

and (iii) are sensitive to boundary noise. There is a need to develop more accurate

approaches to accurately extract the centerline in order to characterize the shape

differences between normal and dyslexic subjects.
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FIGURE 17: 3D visualization of the CC centerline.

C. THE NEED FOR THIS WORK

The current abnormality detection and quantification metrics suffer from

the following limitations:

• The area and volumetric measurements are:

– Subject to errors coming from spatial smoothing, spatial registration,

and segmentation of structures.

– Sensitive to image noise, limited resolution, and imprecise object bound-

aries.

• Current radial estimation method for the transmural extent of pathological

tissue in the LV wall suffers from geometric inconsistency in estimating the

point-to-point correspondences between the inner and outer boundaries.

• Most of the current approaches for extracting CC centerline are computa-

tionally expensive, suffer from lack of robustness, and/or are sensitive to

boundary noise.

• The functional strain is estimated by using the tagged images whereas the

EF metric is estimated from cine cardiac MRI. This leads to errors between

the estimated indexes due to the inter-slice variability between the different

image modalities.

19



To overcome these limitations, comprehensive mathematical models and

advanced techniques are provided to analyze medical images and provide an accu-

rate automated detection and quantification of abnormalities in medical structures.

These mathematical models include three novel segmentation models. The first

model is a graph-cut optimization model that integrates the appearance and shape

of the object of interest for the purpose of segmentation. Experiments, presented

in Chapter III, confirm that this approach shows superior results in segmenting

the inner cavity of the heart. The second model is a fast marching level set that

evolves from an initial boundary with a speed function formed based on the inten-

sity, spatial interaction, and object shape. Experiments, presented in Chapter III,

confirm the high capabilities of this approach to evolve from the inner cavity and

stop by the outer boundaries of the LV of the heart, providing an accurate segmen-

tation of the outer contour of the LV wall. The third segmentation approach makes

full use of the intensity and spatial interaction descriptors, in a joint Markov Gibbs

random field (MGRF) model of the image signals and their region map, to iden-

tify the pathological tissue in the LV wall. The intensity, spatial interaction, and

shape descriptor are further extended in 3D (Chapter VII) to segment the 3D CC

structure from the brain. The preliminary results of the proposed segmentation

approaches confirm the benefits of these models and encourage applying them in

other applications.

In addition to the proposed segmentation models, this work proposes an

accurate model to estimate the transmural extent, an important metric to quantify

the myocardial wall of the heart. The model is based on solving the PDE Laplace

equation to collocate the correspondence between two contours. Phantom valida-

tion shows that the PDE Laplace-based method outperforms the current methods

in estimating the transmural extent.
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Moreover, a novel method for estimating the strain from cine MRI is pre-

sented. Unlike current methods that depend on the intensity and spatial informa-

tion to track the wall motion, the proposed method sticks to the geometry of the

heart to track its motion. To achieve this goal, this method applied a PDE method

to track the LV wall points by solving the Laplace equation between the LV con-

tours of each two successive image frames over the cardiac cycle. The main advan-

tage of the proposed tracking method over traditional texture-based methods is its

ability to track the movement and rotation of the LV wall based on tracking the

geometrical features of the inner, mid-, and outer walls of the LV. This overcomes

noise sources that come from scanner and heart motion.

Furthermore, an automated level-set-based model is presented to extract the

CC centerline from brain MRI. The key idea of this model is to propagate wave-

fronts from the splenium with a fast speed. Then, the trajectory of wavefront points

that have the maximum positive curvature and are located at the maximum dis-

tance from the object boundary represents the extracted centerline. Experiments

show good dyslexia diagnostic results based on using this model.

Finally, a novel mapping model to establish correspondences between two

3D surfaces is proposed. Surfaces are mapped to a unified cylindrical domain for

analysis. The model has been used to detect the abnormalities in the CC brain

structure between the dyslexic and normal brains by analyzing the CCs in the

cylindrical domain. This mapping leads to detect abnormalities in all divisions

of the CC (i.e., splenium, rostrum, genu, and body) and offers a whole 3D analysis

of the CC abnormalities instead of only area based as done by other groups.

D. DISSERTATION ORGANIZATION

This dissertation consists of eight chapters. The following remarks summa-

rize the scope of each chapter:
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Chapter II overviews the existing computational methods for identifying

left ventricle heart pathologies.

Chapter III illustrates the proposed framework for the segmentation of the

inner cavity and outer border of the myocardial (LV) wall using graph-cut op-

timization of a cost function that accounts for the object visual appearance and

shape.

Chapter IV illustrates the proposed framework for LV pathology identifica-

tion and quantification based on a joint MGRF of image and its region map that

accounts for the pixel intensities and the spatial interactions between the pixels.

Chapter V illustrates the proposed framework for estimating the functional

strain from cine cardiac MRI based on tracking the geometric features of the inner-,

mid-, and outer-walls of the LV.

Chapter VI overviews the existing MRI-based systems for detecting brain

abnormalities that are associated with dyslexia. The chapter covers the findings

in the literature for detecting dyslexia-associated abnormalities in structural MRI,

diffusion tensor imaging (DTI), and functional MRI (fMRI).

Chapter VII explains the proposed framework for detecting abnormalities in

the CC brain structure based on a novel cylindrical mapping of the CC surface that

offers a whole 3D analysis of the CC abnormalities and reveals 3D discriminant

features for dyslexia diagnosis.

Chapter VIII concludes the work and outlines the future work.
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CHAPTER II

COMPUTATIONAL METHODS FOR IDENTIFYING LEFT VENTRICLE (LV)
HEART PATHOLOGIES: A SURVEY

Characterizing the workings of the heart and detecting left ventricle (LV)

wall pathologies are very important for diagnosing ischemic heart disease and

heart failure. Heart failure is the most important cause of morbidity and mor-

tality in adult cardiovascular disease, affecting 6 million USA patients annually.

If not diagnosed and treated early, these patients have a relentless time course to

premature death.

Recent advances in cardiac MRI (CMRI), enable the detection of the LV wall

pathologies and estimation of different quantification metrics that characterize the

working of the heart. Examples of these metrics include the area of pathological

tissue in the LV wall, the transmural extent of pathology, and other indexes such

as wall thickening, functional strain, and the ejection fraction (EF) metrics. Sev-

eral computational methods have been proposed in the literature in order to esti-

mate these metrics based on using different CMRI acquisition techniques, such as

cardiac-enhance CMRI (CE-CMRI) and cine CMRI. This chapter overviews these

computational methods, focusing on the metrics extracted using CE-CMRI and

cine CMRI (see Figure 18).

To estimate these metrics, a general framework for analyzing CMRI in order

to quantify the LV wall pathologies is demonstrated in Figure 19. The framework

consists of two processing steps: the segmentation of the LV wall and estimation of
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FIGURE 18: CMRI data showing the cross sections of the heart from basal to apical.

Left: CE-CMRI, commonly used to enhance the contrast between different tissues,

particularly normal and pathological; and right: cine-CMRI, each section consists

of a time series of 25 images over the cardiac cycle. Cine CMRI has the ability to

show how the anatomy changes and provide the functionality of the heart during

the cardiac cycle.

the different metrics used to assess the LV dysfunction and related heart diseases.

This section will discuss the computational methods used for each of these pro-

cessing steps.

A. SEGMENTATION OF THE LV WALL

Accurate segmentation of the LV borders from CMRI is of great impor-

tance for the reliable assessment of myocardial viability and diagnostics of is-

chemic heart disease and LV dysfunction [27]. However, the segmentation is a
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challenge [28] due to: (i) the existence of large variabilities in LV appearances

from patient to patient and within the subsequent images of the same patient; (ii)

the large shape variations of target boundaries; and (iii) other problems arising

from broken or discontinuous object boundaries, large image noise, and inhomo-

geneities. This section will overview the different computational methods that

address the segmentation of the LV wall from CE-CMRI and cine CMRI.

FIGURE 19: A general framework to analyze CMRI. The framework consists of

two steps: the segmentation of the LV wall and the estimation of candidate metrics

for quantifying the LV wall pathologies.

1. Segmentation of the LV Wall from CE-CMRI

Most research studies manually segmented the LV wall from CE-CMRI (see

Figure 20) in order to use the segmentation to delineate the pathological tissues and

provide the quantification metrics, e.g., in [29–36]. However, the segmentation is

observer dependent and time consuming. Very limited number of research studies
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(a) (b)

FIGURE 20: Example of the delineation of the LV wall from CE-CMRI of the heart.

(a) The original image, and (b) the inner and outer borders of the LV wall are de-

lineated in green (inner) and red (outer).

used semi-automated or automated methods to segment of the LV wall. For exam-

ple, Hennemuth et al. [37] used a general purpose semi-automated segmentation

method proposed by Schenk et al. [38], where the LV wall is segmented interac-

tively using a live-wire-algorithm [38]. Elagouni et al. [39] proposed a framework

for pathological tissue segmentation where the LV wall is segmented using a seg-

mentation method proposed by Ciofolo et al. [40]. In this method, the LV wall is

segmented based on 2D geometric template deformation and shape prior. A regis-

tration step is applied to align the shape prior to the LV wall segmentation contours

obtained using the deformable geometric template. However, such a registration

step is computationally expensive and time-consuming. Table 1 presents the dif-

ferent methodologies for LV wall segmentation from CE-CMRI. A limited number

of research studies have addressed the segmentation problem of the LV wall from

CE-CMRI. Most of these methods are (i) computationally expensive and/or (ii)

based on semi-automated or general purpose segmentation frameworks. There-

fore, there is a need to develop more dedicated methods for accurate segmenta-

tion of the LV wall from CE-CMRI.
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TABLE 1: Methodologies for segmentation of the LV wall from CE-CMRI. For each

study, the number of subjects, the segmentation method, the automation level, and

the performance are reported.

Study Data Method Performance

Hennemuth et

al. [37]
21 Subjects

• Live-wire seg-

mentation [38]

• Semi-

automatic

• Not reported

Elagouni et

al. [39]
11 Subjects

• 2D geomet-

ric template

deformation

and shape

prior [40]

• Automatic

• Average distance er-

rors between manual

and automatic con-

tours are 2.2±0.6 mm

for endocardium and

2.0±0.8 mm for epi-

cardium

2. Segmentation of the LV Wall from Cine CMRI

Traditionally, the segmentation of the LV contours from cine-CMRI is per-

formed manually [41, 42]. However, it is prohibitively time consuming, labor-

intensive, and is prone to intra- and inter-observer variability [43]. To avoid the

manual procedure shortcomings, several semi-automated and automated tech-

niques have been proposed for the delineation of the LV wall.

Semi-automated Methods: Many semi-automated techniques for the extraction

of the LV wall borders have been proposed [44–50]. For example, Ben Ayed et

al. [44, 45] proposed a semi-automated approach for the segmentation of the LV

using a variational deformable model-based approach to minimize an energy func-

tional containing a similarity overlap constraint, measured by the Bhattacharyya
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coefficient. A semi-automated framework to extract the myocardium was pro-

posed by Li et al. [46]. Their framework employed two energy functionals, each

represented by a weighted sum of edge-, region-, and shape-based features, for

segmenting the endo- and the epi-cardiums. Chen et al. [48] proposed a hybrid

semi-automated framework to segment the LV wall borders using variational level

sets. The myocardium is separated from the background, in a user defined region-

of- interest (ROI), based on the difference in their intensity distributions. The de-

formable model evolution was derived by minimizing an energy function con-

sisting of regional and edge-based information. Pednekar et al. [49] proposed

an intensity-based segmentation approach that uses circular Hough transform to

estimate the LV borders in CMR images. Uzümcü et al. [50] proposed a semi-

automated method that is based on a multidimensional dynamic programming

(DP), which is applied to a parametric shape model instead of applying it directly

to image data. Please see Petitjean and Dacher [51] for a more comprehensive re-

view of semi-automated methods for cardiac image segmentation.

Automated Methods: The challenging problem of the LV wall borders segmenta-

tion has also been addressed using automated techniques [52–69]. In particular,

O’Brien et al. [70] proposed a model-based technique for the LV segmentation on

cardiac MR image. An active shape model (ASM) was employed for statistical

modeling of the LV shape, and separate models for spatial and temporal variation

were used. Cousty et al. [71] proposed a segmentation framework based on dis-

crete mathematical morphology and spatiotemporal watershed transform to seg-

ment the endocardium and the epicardium separately. Zhang et al. [52] proposed

a segmentation approach based on a combination of an ASM and an active appear-

ance model (AAM) to segment the LV wall using short- and long-axes CMR data.

A refinement step followed by using a reversed 3D ASM model to achieve better

cardiac motion tracking as well as improved shape details. Andreopoulos et al. [72]

achieved LV segmentation using statistical models of shape and appearance. Their

method employed a fitting of a 3D AAM on short axis cardiac MR images followed
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by hierarchical 2D + time ASM to refine segmentation. Jolly et al. [53] proposed

an automated framework based on deformable registration for the LV segmenta-

tion. Candidate contours of each slice are obtained in the average image of the

co-aligned time frames using the shortest paths, and a minimal surface is built to

generate the final contours. Kurkure et al. [54] proposed a hybrid segmentation

approach that integrates intensity- and texture-based information for the extrac-

tion of the myocardium, LV blood pool, and other adjacent structures, e.g., lungs

and liver. A DP-based boundary detection method was used to delineate the LV

myocardial contours. Cocosco et al. [56] proposed an automated approach for the

segmentation of the LV on cardiac images based on binary classification within a

predefined ROI to segment the blood pool. Lynch et al. [57] presented an auto-

mated level-set scheme for the segmentation of CMR data using prior knowledge

of the temporal deformation of the myocardium. Liang et al. [58] proposed an au-

tomated approach using the radial GVF [73] and the Hough transform to segment

the LV contours. Zhuang et al. [59] proposed a framework to propagate the labels

in a heart atlas to the CMR images for ventricle segmentations based on image reg-

istration. Their method employed anatomical information from the atlas as priors

to constrain the registration. To improve the quality of segmentations obtained by

the AAMs on CMR data, Zambal et al. [60] combined a set of local 2D AAMs with

a global shape model. Their method propagates the position and size of the basal

slices to apical ones and keeps the global shape characteristics plausible. Lynch et

al. [61] presented a coupled level-set segmentation of the LV of the heart using a

priori information. Two fronts representing the epi- and endo-cardium boundaries

of the LV were evolved using both gradient- and region-based information. The

segmentation is supervised with a coupling function and a probabilistic model

built from training instances. An approach relying on morphological operations

is proposed by Katouzian et al. [62]. For endo-cardium segmentation, the edge

detection is performed and the pupillary muscles are excluded via a convex-hull

method. The epicardial boundary is delineated through a threshold decomposition
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opening approach. Jolly et al. [63, 64] introduced an automated LV segmentation

technique to extract the myocardium using Gaussian mixture models and Dijkstra

active contours. Lynch et al. [65] introduced an automated framework for the seg-

mentation of the LV of the heart using clustering and cardiac anatomy knowledge.

Lelieveldt et al. [66] proposed a multiview AAM for the segmentation of multiple

views in long- and short-axis CMR images. Fu et al. [67] developed a wavelet-

based image enhancement technique to enhance the LV wall border profiles as the

pre-processor for a DP-based automatic border detection algorithm. A variational

coupled level set approach that combined boundary and region-based informa-

tion to segment the LV borders was introduced by Paragios [74]. They presented

an anatomical module to constrain the relative positions of the endocardium and

epicardium interfaces and to enforce an intensity consistency over the temporal

cycle. State-of-the-art automated techniques for cardiac image segmentation are

detailed in the recent review by Petitjean and Dacher [51]. Table 2 summarizes the

different methodologies for LV wall segmentation from cine-CMRI, presenting the

number of evaluation datasets and the achieved performance for each method.

To summarize, the segmentation of cine CMR images has been the subject

of extensive research in the last few years. Several semi-automated and automated

segmentation methods have been developed. However, the known methods have

the following limitations: (i) some techniques require intensive manual training;

(ii) most of them are computationally expensive; (iii) parametric shape-based ap-

proaches depend on the existence of good texture features in cardiac images and

perform poorly on some slices due to noise and lack of well-defined features; and

(iv) the accuracy of the knowledge-based approaches (e.g., deformable models that

are based on shape priors) depends on the size of the training data and the accu-

racy of the alignment.
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TABLE 2: Methodologies for segmentation of the LV wall from cine-CMRI. For

each study, the number of subjects, the segmentation method, the automation

level, and the performance are reported.

Study Data Method Performance

Ayed et al. [44] 10 datasets

• Deformable

model

• Semi-

automatic

• Average Dice similar-

ity coefficient (DSC)

between manual

and semi-automatic

inner and outer con-

tours are 0.93 ± 0.02

and 0.94 ± 0.01,

respectively

Li et al. [46] 25 images

• Energy min-

imization

based on

edge, re-

gion, and

shape-based

features

• Semi-

automatic

• Average DSC be-

tween manual and

semi-automatic

contours are 0.87±5.2

Chen et al. [48]
5 subjects, 294

images

• Level-set

• Semi-

automatic

• Average DSC be-

tween manual and

semi-automatic

contours are 0.89±3.5
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Table 2: Continued.

Pednekar et

al. [49]

14 subjects,

294 images

• Threshold-

based +

Hough trans-

form

• Semi-

automatic

• Bland-Altman anal-

ysis shows good

agreement between

the semi-automated

technique and manual

segmentation

Uzmcu et

al. [50]
20 subjects

• Dynamic

programming

+ parametric

shape model

• Semi-

automatic

• Average border posi-

tioning errors for all

slices are 1.77 ± 0.57

mm for epicardial and

1.86± 0.59 mm for en-

docardial contours

O’Brien et

al. [70]
33 datasets

• Active shape

model (ASM)

• Semi-

automatic

• Average volumetric

point-to-curve errors

between the method

and manual segmen-

tation are 1.98 ± 0.13

mm for epicardial and

1.87 ± 0.21 mm for

endocardial contours,

using a set of 10

(out of 33) training

datasets
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Table 2: Continued.

Cousty et

al. [71]
18 subjects

• Mathematical

morphology

+ watershed

transform

• Semi-

automatic

• Mean point to surface

errors are 1.51 ± 0.38

mm for the endocar-

dial border and 1.81±

0.43 mm for the epi-

cardial border

Zhang et

al. [52]
50 subjects

• ASM + AAM

• Automatic

• Average border posi-

tioning error was 1.89

mm for epicardial and

2.52 mm for endocar-

dial contours; average

DSC between manual

and automatic con-

tours are 0.90 and

0.91 for epicardial and

endocardial contours,

respectively

Andreopoulos

et al. [72]
33 subjects

• ASM + AAM

• Automatic

• Inner/outer error

(mean distance be-

tween annotated

landmarks and seg-

mented contours)

are 1.43 ± 0.49

mm/1.51± 0.48 mm
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Table 2: Continued.

Jolly et al. [53] 19 datasets

• Deformable

registration of

contours

• Automatic

• Root mean square dis-

tance between ground

truth and automatic

contours is 2.7 mm,

Average DSC is 0.89

Kurkure et

al. [54]
357 images

• Dynamic

program-

ming based

on intensity

and texture

information

• Automatic

• Average DSC between

automatic and man-

ual segmentation is

0.86± 0.12

Cocosco et

al. [56]
32 datasets

• Binary classi-

fication

• Automatic

• Resulting quantitative

cardiac functional pa-

rameters using auto-

mated method show

good agreement with

manual quantification

of clinical datasets

Lynch et al. [57] 6 datasets
• Level-set

• Automatic

• Average DSC is 0.81±

0.16 for all data ana-

lyzed
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Table 2: Continued.

Zhuang et

al. [59]
8 datasets

• Atlas-based

image regis-

tration

• Automatic

• DSC for myocardium

segmentation is 0.75.

The average surface

distance, including

the endocardial sur-

face and epicardial

surface of the ven-

tricles, is 0.7 ± 1.0

mm

Zambal et

al. [60]
32 datsets

• 2D AAM and

3D shape

model

• Automatic

• The average point-to-

surface error with re-

spect to expert anno-

tation is 1.96 mm

Lynch et al. [61] 4 datasets

• Coupled

level-set

• Automatic

• The average point-to-

surface errors with re-

spect to expert anno-

tation are 0.477 mm

and 1.149 mm for en-

docardium and epi-

cardium, respectively

Jolly et al. [63]
9 subjects, 482

images

• Gaussian mix-

ture model +

Dijkstra active

contour

• Automatic

• The average error dis-

tance is less than 1

pixel
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Table 2: Continued.

Lynch et al. [65] 25 datasets

• Clustering

based on car-

diac anatomy

knowledge

• Automatic

• Root mean square dis-

tance errors are 4.765

and 3.75 for endo- and

epi-cardium

Lelieveld et

al. [66]
29 subjects

• AAM

• Automatic

• Point-to-curve border

positioning errors

are 41.7 ± 0.8 pixels

for the two-chamber

view, 1.5 ± 0.7 pixels

for the four-chamber

view and 1.4±0.7 pix-

els for the short-axis

contours

Fu et al. [67]
10 subjects,

160 images

• Dynamic

program-

ming border

detection +

wavelet-based

enhancement

approach

• Automatic

• Statistical t-test based

on Hausdorff distance

implies that the seg-

mentation is closer to

the manually drawn

borders

Paragios [74] Not reported

• Coupled

level-set

• Automatic

• Not reported
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B. METRICS FOR QUANTIFYING LV WALL PATHOLOGIES

After segmenting the LV wall from CMRI, different quantification metrics

that characterize the working of the heart can be extracted. From CE-CMRI the

area of pathological tissue in the LV wall and the transmural extent of pathology

can be estimated. From cine CMRI, wall thickening, functional strain, and EF met-

rics can be calculated. Figure 21 summarizes the different quantification metrics

that can be extracted from CE-CMRI and cine CMRI. Below, the current computa-

tional methods to calculate these metrics are illustrated.

FIGURE 21: Taxonomy of quantification metrics that can be extracted from CE-

CMRI and cine CMRI.

1. Area of Pathological Tissue

Assessment of myocardial viability through identifying ischemically dam-

aged tissue is of great clinical importance as the standard means of diagnosing and

monitoring irreversible myocardial sequelae of ischemic heart disease, as well as
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guiding optimal therapies for individual patients [27]. The infarcted myocardium,

after administering a gadolinium contrast agent, appears hyper-enhanced com-

pared to the normal myocardium on late (15-25 min) acquisitions [75–79] (see Fig-

ure 22). Extensive research has been conducted on the use of late CE-CMRI, which

allows for estimating the transmural extent of damaged myocardium with high

spatial resolution [75–79], to delineate the pathological tissue and extract useful

metrics for indexing myocardial injury.

(a) (b)

FIGURE 22: (a) Original CE-MRI of the heart and (b) the pathological area is de-

lineated in yellow.

Measuring the area of pathological tissue in the LV (see Figure 22) is impor-

tant to assist the cardiologists in the diagnosis of the LV dysfunction and ischemic

heart disease. For reliable size measurement, the pathological tissue has to be accu-

rately delineated within the LV wall from the adjacent undamaged tissue. Accurate

identification is a challenge due to image noise, limited resolution, and imprecise

boundaries. While the pathological tissue can be outlined manually to determine

its area, such a measurement is time-consuming and operator-dependent. Auto-

mated or semi-automated myocardial viability assessment overcomes these draw-

backs, but most of these techniques use simple, heuristic intensity thresholds to
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detect the pathological tissue. Previous definitions of abnormality empirically set a

threshold at more than two [29] or three [30] standard deviations above the average

intensity in a remote (presumedly healthy) myocardial region. A user-specified

threshold was employed by Setser et al. [31] to distinguish between viable and

nonviable myocardium. Amado et al. [32] used the full-width at half-maximum

(FWHM) criterion [80] to identify the pathological tissue: a seed point in the hy-

perenhanced region is provided manually, and the pathological tissue includes, by

definition, all the pixels with the intensities exceeding 50% of the seed intensity,

which propagate from the seed point.

A recent study by Neizel et al. [33] with a group of 62 patients demonstrated

that infarct segmentation using a visual, user-specified threshold is better corre-

lated with manually traced infarcts than the FWHM approach. Beek et al. [34]

compared the FWHM approach with the simple thresholding method, using vari-

ous thresholds, in predicting segmental recovery after therapy. Unlike the study by

Neizel et. al. [33], this comparison documented no significant difference between

the accuracy of the two approaches in a group of 38 patients with chronic ischemic

myocardial dysfunction. Tao et al. [35] extended the gray-level-histogram-based

threshold selection used by Otsu et. al. [81], to initially determine the infarct area,

with an augmented assessment to reduce the false positive (FP) and false nega-

tive (FN) errors based on connectivity filtering and region growing. Heiberg et

al. [36] augmented the intensity thresholding with a level-set-based regulation to

exclude small noisy regions. Hennemuth et al. [37] used the image intensity pro-

file to initiate a watershed-based segmentation. Connected component analysis,

to fill holes and exclude small noisy regions was further used to refine this seg-

mentation. Recently, Elagouni et al. [39] analyzed the LV wall intensities to gen-

erate a fuzzy segmentation map, characterizing the membership degree for each

pixel. After thresholding and morphological cleaning of the fuzzy map, the area of

pathology was delineated by region analysis. The main concern with these meth-
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ods is that they do not adequately account for spatial interactions between the

myocardium pixels and are quite sensitive to imperfect myocardium contours

and image noise.

TABLE 3: Methodologies for pathology identification using CE-CMRI. For each

study, the number of patients, the LV wall segmentation method, the pathology

identification method, and the performance are reported.

Study # Data
Method

Performance
LV Wall Pathology Identification

Kim et

al. [29]
26

Manual

outline

Threshold based:

two standard de-

viation above the

average

• Visually acceptable

Fieno et

al. [30]
24

Manual

outline

Threshold based:

three standard

deviation above the

average

• Visually acceptable

Setser et

al. [31]
18

Manual

outline

A user-specified

threshold

• Results shows good

agreement with ob-

server delineation

Amado et

al. [32]
13

Manual

outline

segmented based

on FWHM region

• Bland-Altman

analysis shows

good agreement

between the FWHM

approach and

postmortem data
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Table 3: Continued.

Heiberg et

al. [36]
40

Manual

outline

Intensity threshold-

ing with a level-set-

based regulation

• The difference in

infarct size between

semi-automatic

quantification

and the mean of

three observers

was 6.19±6.6 ml

(mean±SD)

Hennemuth

et al. [37]
21

Segmented

based on

a semi-

automatic

live-wire

Watershed-based

segmentation

and Connected

component analysis

• Bland-Altman

analysis shows

better agreement

between the manual

and the automatic

segmentations than

between the manual

and the Fieno et

al. [30] method

Neizel et

al. [33]
62

Manual

outline

Compared visual

user-specified

threshold with

FWHM Region

growing

• User-specified

threshold-based

method is better

correlated with

manually traced

infarcts than the

FWHM approach

Beek et

al. [34]
38

Manual

outline

Compared the

FWHM approach

with the sim-

ple thresholding

method

• Results reported no

significant differ-

ence between the

accuracy of the two

approaches
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Table 3: Continued.

Tao et

al. [35]
20

Manual

outline

Gray-level-

histogram-based

threshold selection

+ connectivity

filtering and region

growing

• DSC values are 0.83

± 0.07 and 0.79 ±

0.08 between the

automatic iden-

tification and the

manual tracing

from observer 1 and

observer 2

Elagouni et

al. [39]
11

Segmented

based on

a de-

formable

template

Fuzzy segmenta-

tion map

• Extracted metrics

using automated

segmentation

showed agree-

ment with those

extracted using

semi-automatic

expert delineations

2. Transmural Extent

After the identification of the pathological tissue in the LV wall, it is im-

portant to extract useful metrics to quantify these pathologies. The transmural

extent (or transmurality) is one of the candidate shape-based metrics that has been

explored to quantify the myocardial viability. Transmurality is defined as the frac-

tion of pathological tissue’s extension across the myocardial wall (see Figure 23). A

previously investigated procedure for estimating the transmural extent (e.g., used

in [20, 21]) extends a fixed number of radial lines from the inner to the outer con-

tour of the LV (see Figure 14(a)). After segments of the pathological tissue along
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each line are determined, the transmural extent is estimated as the average patho-

logical tissue’s extent relative to these lines. As illustrated in Figure 14 (b), this,

so-called radial method, is in principle inaccurate in establishing point-to-point

correspondences and geometrically inconsistent in estimating the transmural ex-

tent. The alternate centerline method estimates the transmural extent by gener-

ating a fixed number of lines that are perpendicular to the computed centerline

between the inner and outer contours of the LV wall. Similarly, after identifying

the pathological tissue along each line, the transmural extent is defined as the aver-

age pathological tissue’s extent relative to these lines. The centerline method was

historically used for wall motion regional assessment [82], and subsequently for

wall thickening analysis [83], and for transmural extent estimation [84]. Unlike the

radial method, the centerline method does not depend on the choice of the centroid

or the coordinate system of lines [85], but is affected by inner and outer contour

imperfections and image noise. As previously mentioned, a more accurate shape-

based analysis for estimating the transmural extent should be investigated.

FIGURE 23: Illustration of the transmural extent of the pathological tissue in the

LV wall. Right: CE-CMRI of the heart with the pathological area delineated in

yellow, and left: an enlarged section of the pathology showing the extent of the

pathology as the blue lines connecting the edges of the pathology.
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3. Functional Strain

Functional strain is one of the important quantification metrics of the car-

diac status. Local cardiac diseases (such as coronary atherosclerosis) and global

conditions (such as heart failure and diabetes) result in wall dysfunction that man-

ifests on strain slopes during the contraction and expansion phases of the cardiac

cycle [22] (see Figure 24). Therefore, accurate strain estimation is important for the

early detection of these diseases.

FIGURE 24: Functional strain curve showing the systolic and diastolic strain slopes

during the contraction and expansion phases of the cardiac cycle.

In the literature, functional strain is estimated based on nonrigid registra-

tion using ultrasound images [86, 87] or motion analysis using tagged MRI [88–92]

(see Figure 25). Current studies calculate the heart displacement and strain param-

eters from ultrasound images by estimating the motion of the heart using spatio-

temporal elastic registration. For example, Ledesma-Carbayo et al. [86] used a

spatio-temporal elastic registration algorithm for motion reconstruction from two-

dimensional ultrasound sequences of the heart. A B-spline transformation model

is used to model the motion and deformation of the myocardium through the car-

diac cycle. The spatio-temporal deformation field that represents the heart motion
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is found by minimizing an image similarity criterion and is further used to obtain

the displacement and the strain parameters. Elen et al. [86] extended the work

in [86] to 3D and applied an automated intensity-based nonrigid spatio-temporal

registration for 3D ultrasound images to estimate the heart motion. The 3D de-

formation field between different image frames is found by maximizing the mu-

tual information of corresponding voxel intensities. The main concern with using

ultrasound images for estimating the functional strain is that they are low con-

trast. Moreover, the registration is always computationally expensive and involve

pixel/voxel errors. Therefore, other modalities should be investigated to afford

more accurate estimation of the functional strain parameters.

Strain estimation methods using tagged MRI are more common. These

methods can be categorized as spatial- or spectral-domain techniques. The former

estimates the whole tissue motion and strain by identifying spatial locations of the

tag lines in an image and using either model-based or model-free interpolation and

differentiation [88, 89]. Because spatial methods track actual pixels throughout the

image, they require substantial image preprocessing and segmentation, and there-

fore are often computationally expensive. On the other hand, the spectral analysis

harmonic phase (HARP) method computes phase images from sinusoidal tagged

MR images by bandpass filtering in the Fourier domain [90–92]. Unfortunately, the

spectral tracking failed in cases of a high rate motion between successive frames,

through plane motion, or boundary points [93]. Moreover, to completely quantify

the status of the heart, other performance indexes are needed (e.g., global index

and wall thickness from cine CMRI). However, the derived indexes from cine and

tagged CMRI suffer from inter-slice variability since they are extracted from differ-

ent cross-sections and different image modalities.

To avoid the inter-slice variability, recent trends estimate the strain from cine

CMRI (e.g., [94–97]). Most of these methods depend on texture features to track
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FIGURE 25: Taxonomy of function strain estimation methods from ultrasound im-

ages, tagged MRI, and cine CMRI.

predefined points on the inner and outer LV wall. For example, Maret et al. [94]

used a feature tracking method to estimate the strain and other indexes from cine

CMRI and showed that it can be used for the detection of the transmural scar. Hor

et al. [95] correlated between the estimated strains from tagged MRI (using HARP

method) and from cine CMRI (using tracking) in a population with a wide range

of cardiac dysfunction. Their study showed that the circumferential strain estima-

tion can be performed from the cine CMRI without the need for additional tagged

images. Since the current tracking methods are based on image features, such as

the pixels’ intensity and their spatial features, they suffer from the following limi-

tations: (i) they are not sufficient to accurately track the LV points due to the lack

of texture information inside the wall, (ii) they are not able to track all the LV wall

points, and (iii) the intensity and spatial information inside the wall (e.g., at the

mid-wall) remains unchanged, which leads to inaccurate strain estimation at the

mid-wall. Therefore, there is a need for developing more efficient techniques

for accurate strain estimation.
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C. LIMITATIONS OF CURRENT APPROACHES

The current approaches for the quantification of the LV dysfunction suffer

from the following limitations:

• The segmentation of the LV wall in most of the known frameworks is not

sufficiently accurate and reliable because:

– Image intensities for the goal objects and their backgrounds vary greatly

across subjects and time.

– Parametric shape models become unsuitable for discontinuous objects

due to a small number of distinct cardiac landmarks.

– Deformable models without adequate appearance and shape priors fail

under excessive image noise, poor resolution, diffuse boundaries, or oc-

cluded shapes.

• Current approaches for sizing the area of the pathological tissue in the LV

wall do not adequately account for spatial interactions between the myocardium

pixels and are quite sensitive to imperfect myocardium contours and image

noise.

• Current radial shape-based approach for transmural extent estimation suf-

fers from geometric inconsistency in estimating the point-to-point correspon-

dences between the inner and outer boundaries, while the centerline method

suffers from imperfect inner and outer contours, especially for noisy images.

• Current tracking methods are based on image features, such as the pixels’

intensity and their spatial features; they suffer from the following limitations:

– They are not sufficient to accurately track the LV points due to the lack

of texture information inside the wall.
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– They are not able to track all the LV wall points.

– The intensity and spatial information inside the wall (e.g., at the mid-

wall) remains unchanged, which leads to inaccurate strain estimation at

the mid-wall.

To overcome the aforementioned limitations, an augmented, automatic frame-

work to analyze the CE-CMR images is proposed. The framework is based on

the segmentation of the inner cavity and outer border of myocardial (LV) wall us-

ing graph-cut optimization of a cost function that accounts for the object visual

appearance and shape. The details of the proposed segmentation method are

presented in Chapter III. To delineate the pathological tissue in the LV wall, the

image is modeled as a joint Markov-Gibbs random field (MGRF) that accounts for

not only the 1st-order visual appearance (based on the pixel-wise intensities), but

also incorporates the 2nd-order spatial interactions between the pixels. Then, the

transmural extent is estimated using a geometrically motivated approach, based

on a partial differential equation (PDE) that accurately co-locates the correspond-

ing pixel pairs. The details of the proposed methods for sizing the area of the

pathological tissue and for estimating the transmural extent are presented in

Chapter IV. To estimate the strain from cine CMRI, a novel method is proposed

based on tracking the LV wall geometry. Unlike current methods that depend on

the intensity and spatial information to track the wall motion, this method sticks to

the geometry of the heart to track its motion. To achieve this goal, the application

of the proposed PDE method is extended to track the LV wall points by solving the

Laplace equation between the LV contours of each two successive image frames

over the cardiac cycle. The details of the proposed method for estimating the

strain from cine CMRI are presented in Chapter V.
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CHAPTER III

SEGMENTATION OF LV WALL FROM CE-CMRI

To identify the pathological tissue in the left ventricle (LV) wall, an accurate

segmentation of the LV wall borders is a mandatory step. In this chapter, a novel

automatic framework for the segmentation of the LV wall from contrast-enhanced

cardiac magnetic resonance imaging (CE-CMRI) is proposed. The framework con-

sists of two main steps. First, the inner cavity of the LV is segmented from the

surrounding tissues based on finding the maximum a posteriori (MAP) estimation

of a new energy function using a graph-cuts-based optimization algorithm. The

proposed energy function consists of three descriptors: 1st-order visual appear-

ance descriptors of the CE-CMR image, a 2D spatially rotation-variant 2nd-order

homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer

contour of the LV is segmented by generating an orthogonal wave, starting from

the LV inner contour, by solving an Eikonal partial differential equation with a

new speed function that combines the prior shape and current visual appearance

models of the LV wall. The proposed framework was tested on in-vivo CE-CMR

images and validated with manual expert delineations of the LV borders. Experi-

ments and comparison results on real CE-CMR images confirm the robustness and

accuracy of the proposed framework over the existing ones.
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A. BASIC ANALYSIS STAGES

Accurate segmentation of the LV borders from CE-CMR images is of great

importance for the reliable assessment of myocardial viability and diagnostics of

ischemic heart disease and LV dysfunction [27]. However, the segmentation in

most of the known frameworks is not sufficiently accurate and reliable because

image intensities for the goal objects and their backgrounds vary greatly across

subjects and time. Parametric shape models become unsuitable for discontinu-

ous objects due to a small number of distinct cardiac landmarks, and deformable

models without adequate appearance and shape priors fail under excessive image

noise, poor resolution, diffuse boundaries, or occluded shapes. To overcome these

limitations, an automatic framework to analyze CE-CMR images is proposed. The

proposed framework (i) segments the inner cavity of the LV from the surrounding

tissues based on a learned soft inner cavity shape model and an identifiable joint

MGRF model of CE-CMR image and “object–background” region maps, and (ii)

segments the outer contour of the LV by evolving an orthogonal wave from the

inner contour by solving an Eikonal partial differential equation with a new speed

function that combines the prior shape and current visual appearance models of

the LV wall.

1. LV Inner Cavity Segmentation

The segmentation of the inner cavity of the LV is a challenge due to the

dynamic heart motion and the image artifacts from blood circulation within the

ventricular cavity. This stage proposes a powerful approach for inner cavity seg-

mentation based on a learned soft inner cavity shape model and an identifiable

joint MGRF model of CE-CMR image and “object–background” region maps.
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a. Joint MGRF model of the inner cavity and background: The joint-MGRF

model fundamentally relates the joint probability of an image and its object - back-

ground region map to geometric structure and to the energy of repeated patterns

within the image [98, 99]. The basic theory behind such models is that they assume

that the signals associated with each pixel depend on the signals of the neighbor-

ing pixels, and thus explicitly take into account their spatial interactions, and other

features, such as shape.

Let Q = {0, . . . , Q − 1}, L = {ob, bg}, and U = [0, 1] be a set of Q integer

gray levels, a set of object (“ob”) and background (“bg”) labels, and a unit inter-

val, respectively. Let a 2D arithmetic grid R = {(x, y) : x = 0, 1, . . . , X − 1; y =

0, 1, . . . , Y − 1} support grayscale CE-CMR image g : R → Q, their binary re-

gion maps m : R → L, and probabilistic shape model s : R → U. The shape

model allows for registered (aligned) CE-CMR images. The co-registered CE-CMR

images and their region maps m are modeled with a joint MGRF model as fol-

lows [100, 101]:

P (g,m) = P (g|m)P (m) (2)

combining a 2nd-order MGRF P (m) of region labels for a spatially homogeneous

evolving region map m and a 1st-order conditionally independent random field

P (g|m) of image intensities given the map. The map model P (m) = Ps(m)Ph(m)

has two independent parts: a subject-specific dynamical shape prior, which is a

spatially variant independent random field of region labels Ps(m), and a 2nd -order

MGRF model Ph(m) of a spatially homogeneous evolving map m for the image.

As shown in Figure 26, the proposed method focuses on accurate identi-

fication of spatial interactions in Ph(m), pixel-wise distributions of intensities in

P (g|m), and prior distribution of the shape of the inner cavity in Ps(m) for co-

aligned CE-MR images. The probabilistic shape model s is learned from a set of

co-aligned training images. To perform the initial inner cardiac cavity segmen-
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FIGURE 26: Aligning a joint MGRF model to a shape prior.

tation, every given CE-CMR image is aligned to a selected reference image. The

shape model provides the pixel-wise object and background probabilities being

used, together with the conditional image intensity model P (g|m), to build an ini-

tial region map. The final segmentation is performed by optimizing the identified

joint MGRF model of the CE-CMR image and its region map using global graph-

cuts.

b. Spatial interaction in the inner cavity of the LV: A generic MGRF of re-

gion maps accounts only for pairwise interaction between each region label and its

neighbors [100, 101].Generally, the interaction structure and Gibbs potentials are

arbitrary and can be identified from the training data. For simplicity, the interac-

tion structure is restricted to the nearest pixels only (i.e., to the 8-neighborhood)

and assume, by symmetry considerations, that the potentials depend only on the

intra- or inter-region position of each pixel pair (i.e., whether the labels are equal

or not) but are independent of its relative orientation. Under these restrictions, it

is similar to the conventional auto-binomial (Potts) model and differs only in that

the potentials are estimated analytically.

The 8-neighborhood (Figure 27) has two types of symmetric pairwise inter-
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actions specified by the absolute distance a between two pixels in the CE-CMR

slice (a = 1, and
√
2, respectively): (i) the closest pairs with the inter-pixel coor-

dinate offsets N1 = {(±1, 0), (0,±1)}; and (ii) the farther diagonal pairs with the

offsets N√
2 = {(1,±1), (−1,±1)}. The potentials of each type are bi-valued be-

cause only the coincidence of the labels is taken into account: Va = {Va,eq;Va,ne}

where Va,eq = Va(l, l
′) if l = l′ and Va,ne = Va(l, l

′) if l ̸= l′; a ∈ A = {1,
√
2}. Then

the MGRF model of region maps is as follows:

Ph(m) ∝ exp
∑

(x,y)∈R

∑
a∈A

∑
(ξ,η)∈Na

Va(mx,y,mx+ξ,y+η) (3)

To identify the MGRF described in Equation (2), approximate analytical maximum

likelihood estimates are formed in line with [100, 101] as follows:

Va,eq = −Va,ne = 2

(
fa,eq(m)− 1

2

)
(4)

where fa,eq(m) denotes the relative frequency of the equal label pairs in the equiv-

alent pixel pairs {((x, y), (x+ ξ, y + η)): (x, y) ∈ R; (x+ ξ, y + η) ∈ R; (ξ, η) ∈ Na}.

FIGURE 27: A2nd-order MGRF neighborhood system.

c. Conditional intensity model for CE-CMR slice: A simple random field

of conditionally independent intensities is used to model the CE-CMR slice, given

a region map:

P (g|m) =
∏

(x,y)∈R

pmx,y(gx,y)
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where the pixel-wise probability distributions for the inner cardiac contour and

its background, pλ = [pλ(q) : q ∈ Q]; λ ∈ L, are estimated during the segmenta-

tion process. To separate pob and pbg, the mixed empirical distribution of all the

pixel intensities is approximated with a linear combination of discrete Gaussians

(LCDG)1 [101–103].

The LCDG assignment separates the object from the background2 more ac-

curately than a more conventional mixture of only the positive Gaussians (e.g., [106])

and can account for non-linear intensity variations, such as those caused by pa-

tient weight and data acquisition factors. The LCDG has two dominant positive

DGs that represent modes associated with the object (i.e., inner cavity) and back-

ground, respectively, in the empirical intensity distribution for the CE-CMR image

to be segmented. To approximate more closely this distribution, the LCDG also

contains a number of positive and negative subordinate DGs:

pLCDG(q) =

Cp∑
j=1

wp,jψ(q|ρp,j)−
Cn∑
j=1

wn,jψ(q|ρn,j) (5)

where the index α ∈ {p, n} specifies whether the DG is positive or negative, Cα is

the number of such components, and ρα,j and wα,j denote the weight and param-

eters of each individual DG Ψρα,j
; j = 1, . . . , cα, respectively. The LCDG of Equa-

tion (5), including the numbers Cp and Cn of its components, is identified using the

expectation-maximization (EM)-based algorithm introduced in [100–103, 107–112].

d. Probabilistic model of the inner cavity shape: Most of the recent works

on image segmentation use level-set based representations of shapes: an individ-

1A Discrete Gaussian (DG) Ψρ = (ψ(q|ρ) : q ∈ Q) with ρ = (µ, σ2) is defined as ψ(q|ρ) =

Φρ(q+0.5)−Φρ(q− 0.5) for q = 1, . . . , Q− 2, ψ(0|ρ) = Φρ(0.5), , and ψ(Q− 1|ρ) = 1−Φρ(Q− 1.5)

where Φρ(q) is the cumulative Gaussian function with the mean µ and the variance σ2.

2LCDG model is also applicable for images with more than two classes. The number of mixture

components can be automatically estimated from the image using the modified Akiake information

criterion [104, 105].
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ual shape is outlined by a set of boundary pixels at the zero-level of a certain dis-

tance function, and a given shape is approximated with the closest linear combi-

nation of the training shapes. The main drawback of this representation is that

the space of signed distances is not closed with respect to linear operations. As a

result, linear combinations of the distance functions may relate to invalid or even

physically impossible boundaries.

To circumvent this limitation, a soft probabilistic inner cavity shape model

is used

Ps(m) =
∏

(x,y)∈R

Smx,y

where Smx,y is the empirical probability that the pixel (x, y) belongs to the inner

cavity given the map. The proposed framework exploits three shape priors (built

at the learning stage) for the basal, mid-ventricular and apical levels. Each soft

template is constructed following Algorithm 1.

Algorithm 1 Shape Prior Construction

• Co-align a set of training CE-CMR images (shown in the top row of Fig-

ure 28) using rigid registration with mutual-information as a similarity mea-

sure [113] as shown in the middle row of Figure 28.

• Manually segment the object (the inner cavity) from the aligned sets as

shown in the bottom row of Figure 28.

• Estimate the pixel-wise probabilities by counting how many times each pixel

(x, y) was segmented as the object as shown in Figure 29.

e. Optimization of the joint MGRF model using the graph-cut algorithm: Af-

ter accurately identifying the joint MGRF model of the CE-CMR image, the inner

cavity segmentation problem is formed as a search for the MAP region map m in

all the possible configurations of this joint MGRF model. The MAP region map is
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FIGURE 28: Inner cavity shape prior reconstruction: top row- database samples;

middle row- affine mutual-information-based registration ; and bottom row- man-

ual segmentation.

(a) (b) (c) (d)

FIGURE 29: (a) & (b) Gray-coded inner and LV wall shape priors. (c) & (d) Another

way for visualization using color-map.
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found by maximizing the interaction energy of the joint MGRF model. A new en-

ergy function E is formulated to accurately model the CE-CMR image. This new

function is formed as the logarithmic function of the probability distribution of the

joint MGRF model given in Equation (2):

E(m) = log(P (g|m)) + log(Ph(m)) + log(Ps(m)) (6)

The search problem is an exhausting task and should be done in an efficient and

precise way. A graph-cut based algorithm (i.e., the two-terminal Min-Cut/Max-

Flow algorithm [114]) is applied for such a task due to its powerful capability to

end up with the optimal global region map [115], which is obtained by maximizing

E (i.e., minimizing −E using graph-cut). The two-terminal graph-cut with positive

edge weights is constructed as follows (see Figure 30 for more illustration):

FIGURE 30: Constructed two terminal graph-cuts: terminal-links (in blue and red)

account for both the 1st-order visual appearance descriptors of the CE-CMR im-

age and the inner cavity shape, and neighbor-links (in orange) penalize for the

spatially invariant 2nd-order homogeneity descriptor of the CE-CMR image (the

thicker links denote greater affinity between corresponding nodes or terminals).
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Algorithm 2 Graph-Cut Construction

• Define the terminal-links by accounting for both the 1st-order visual appear-

ance descriptors of the CE-CMR image and the inner cavity shape descriptor

(i.e., − log(P (g|m))− log(Ps(m))).

• Define the neighbor-links by penalizing for the spatially invariant 2nd-order

homogeneity descriptor of the CE-CMR image ( i.e.,− log(Ph(m))).

2. LV Outer Contour Segmentation

The goal of the LV outer contour segmentation method is to suppress the

effect of gray level inhomogeneity and lack of the edges of the LV wall in order to

enhance the segmentation accuracy. To achieve this goal, the outer border of the

LV wall is extracted by a robust wave-propagation based search (see Figure 31).

An orthogonal wave is emitted from the inner border (t = 0) towards the external

border of the LV wall (i.e., a fast marching level-set [116–118]). Every point on the

emitted wave is classified to be wall or background based on three descriptors:

shape prior of the LV wall (see Figure 32), 1st-order visual appearance descriptors

of the LV wall, and a 2nd-order spatial interaction homogeneity descriptor. Note

that the proposed segmentation approach follows the same methodologies as in

Section III.A.1 to estimate three descriptors of the LV wall. The whole search algo-

rithm for the outer border of the LV wall is described in Algorithm 3.

3. Performance Evaluation of the Proposed Segmentation Algorithms

Dice similarity coefficient (DSC): The segmentation performance is eval-

uated by using the DSC metric [120] that estimates the overlap between the ex-

perimentally segmented region and ground truth (GT) segmentation. Let |C|, |G|,

and |g| denote areas (by the number of pixels) of the segmented object C (i.e., in-
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(a) (b)

(c) (d)

FIGURE 31: Outer contour segmentation: (a) inner edge of the LV wall at time

(t=0), (b) normalized minimum Euclidian distance between every point in the

outer area of the LV inner cavity and the LV inner edge, (c) an emitted wave at time

(t=2) where every point is classified to be wall or background using a Bayesian clas-

sifier based on three descriptors, and (d) samples of the propagating waves from

the inner edge of the LV at different time instants; the red contour represents the

final segmentation of the outer contour of the LV.
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Algorithm 3 Segmentation of the Epicardium Contour of the Myocardium

1. Find the inner edge of the LV wall (see Figure 31(a)).

2. Find the normalized minimum Euclidian distance D(x, y) between every

point (x, y) in the outer area of the LV inner cavity and the LV inner edge

(see Figure 31(b)) by solving the Eikonal equation

|∇T (x, y)|F (x, y) = 1 (7)

where T (x, y) is the time at which the front crosses the point (x, y) and F (x, y)

is the speed function [119]; the solution uses the fast marching level-set at

unit speed function F (x, y) = 1.

3. Propagate an orthogonal wave from the inner edge of the LV points by

solving Equation (7) using the fast-marching level-set at the speed function

F (x, y) = exp(−βD(x, y)), where β is a constant to control the evolution of

the generated wave. For a smooth evolution β < 1.

4. Classify every point on the emitted wave to be wall or background using

a Bayesian classifier based on the three descriptors as illustrated in sec-

tion III.A.1 (see Figure 31(c)).

5. Iteratively repeat 3 and 4 until no change occurs in the position of the gener-

ated wave; the final area represents the segmentation of the outer contour of

the LV (see Figure 31(d)).

ner or outer areas), its GT G, and the CE-CMR data g, respectively. Then the true

positive TP = |C ∩ G| is the overlapping between C and G; the false positive

FP = |C −C ∩G|, and the false negative FN = |G −C ∩G|. The DSC is defined

as (see Figure 33):

DSC =
2× TP

2× TP + FP + FN
(8)
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FIGURE 32: Gray coded myocardium wall shape prior at the mid-ventricular level.

FIGURE 33: Image segmentation performance is evaluated by the Dice similar-

ity coefficient (DSC). The true positive (TP) is the overlap between the segmented

object (C) and the GT (G); the false positive (FP) is the difference between the seg-

mented object and the TP, and the false negative (FN) is the difference between

the GT and the TP. The DSC measures the similarity between the segmented object

and the GT: the closer the DSC to ”1”, the better the segmentation.

The DSC measures the agreement between the segmentation and the GT;

the closer the DSC to unity (”1”), the better the segmentation. Dice similarity of
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the proposed segmentation method was compared to well-established approaches,

using the two-tailed Student’s t-test for paired data. P -value of less than 0.05 is

considered statistically significant.

B. EXPERIMENTAL RESULTS

The proposed framework was tested on 14 datasets collected from six pa-

tients who had suffered chronic heart attacks (at least four months prior), with

clinically documented ejection fraction dysfunction, and who subsequently un-

derwent an experimental myocardial regeneration therapy, as part of an institu-

tionally approved trial. All images were obtained using a Siemens 1.5T Espree

system (Siemens Medical Solutions, USA Inc), with multichannel phased array re-

ception coils [121]. Late (at 15 to 25 min) gadolinium contrast agent enhanced (0.2

mM/kg) acquisitions, using both conventional inversion time chosen acquisitions

and phase sensitive inversion recovery. To ensure adequate signal-to-noise ratios,

the typical spatial resolution was 2.08×2.08×8.0 mm3. Typically 10-14 image cross-

sections were obtained to cover the LV. To test the proposed method, a total of 168

images were examined. To evaluate the segmentation accuracy of the proposed

framework, the “ground truth (GT)” delineations of the inner and outer contours

were given by an expert (a radiologist) for five datasets; a total of 55 images.

The results of the proposed segmentation approaches for inner and outer

borders are illustrated in Figure 34 and Figure 35. To highlight the advantage of

integrating the shape prior with the intensity and spatial interaction information

in the joint MGRF probabilistic model, the inner cavity region is segmented based

on the intensity only (Figure 36(b)), and based on the intensity and the spatial

interaction information (Figure 36(c)). It is clear that counting only on intensity and

spatial interaction information will not lead to accurate segmentation due to the
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FIGURE 34: Segmentation results of the inner and outer contours for CE-CMR

images of one data subject.
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gray-levels inhomogeneities. Figure. 36(d) shows how the segmentation result is

enhanced after integrating the shape prior. These results highlight the advantages

of the proposed segmentation approach.

FIGURE 35: More segmentation results for sample image cross-sections from dif-

ferent datasets.

Figure 37 and Figure 38 show visual comparative segmentation results for

the proposed approach versus the level-sets based segmentation approach pro-

posed in [1] for the segmentation of the inner cavity and of the outer region of the

LV wall, respectively. Table 4 summarizes the comparative segmentation results

for the five data sets (55 images) with the known GT (manual segmentation by an
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(a) (b)

(c) (d)

FIGURE 36: Inner cavity segmentation: (a) original slice, and segmentation (b)

using intensity model alone, (c) using intensity and spatial interaction models, and

(d) after integrating shape model.

expert). As presented in the table, the proposed segmentation approaches for in-

ner and outer borders of the LV wall show better performance than the level-set

shape-based approach of Tsai et al. [1], as evidenced by larger DSCs approaching

the ideal value 1 (DSC metric is calculated as illustrated in Section III.A.3). More-

over, the differences in the mean DSC between the proposed segmentation and

Tsai et. al approach are statistically significant according to the unpaired t-test (the

two-tailed P values for the segmentation of the inner and outer borders are less

than or equal to 0.0001 and 0.003, respectively). These results highlight the advan-

tage of the proposed segmentation approaches.
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(a) (b)

FIGURE 37: Comparative segmentation results for the LV wall inner cavity for the

proposed approach (a) versus the level-sets based segmentation [1] (b) for different

sample images. Yellow represents the missed segmented points (FN) and green

represents the introduced segmented points that were not on the GT (FP).
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(a) (b)

FIGURE 38: Comparative segmentation results for the outer region of the LV wall

for the proposed approach (a) versus the level-sets based segmentation [1] (b) for

different sample images. Yellow represents the FN points and green represents the

FP points.
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TABLE 4: Dice similarity coefficients (DSC) between the proposed segmentation

and the ground truth (GT) in comparison to the level-sets based segmentation ap-

proach in [1].

Inner Outer

Proposed Method [1] Proposed Method [1]

Minimum DSC 0.85 0.75 0.80 0.34

Maximum DSC 0.99 0.93 0.96 0.91

Mean DSC 0.94 0.83 0.92 0.81

Standard Deviation 0.045 0.055 0.047 0.157

P-value < 10−4 0.003

C. SUMMARY

In total, a fully-automated segmentation framework for segmenting the LV

wall is presented based on three image descriptors: the gray level intensity, the

shape information, and the spatial information descriptors. For segmenting the

LV inner cavity, these descriptors are embedded into a new energy function that

is globally optimized using graph cuts. For segmenting the LV outer borders, the

three descriptors are used to control the speed of an orthogonal wave starting from

the LV inner borders. The results suggest that the proposed approach can pre-

cisely segment CE-CMR images. In addition, the results confirm the robustness

of the proposed methods against the complex shape variations of the LV. The de-

veloped segmentation framework is very suitable for segmenting the anatomical

structures that have noise and inhomogeneity problems. The work presented in

this chapter has been published in the international conference of image process-

ing (ICIP) [122]. The next chapter investigates the identification of the pathological

tissue in the LV wall based on the accurate segmentation of the wall borders.
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CHAPTER IV

SIZING THE PATHOLOGICAL TISSUE IN THE LV WALL USING CE-CMRI

A novel automatic framework for detecting and quantifying viability from

cardiac-enhanced magnetic resonance imaging (CE-CMRI) is proposed. The frame-

work identifies the pathological tissues in a segmented left ventricle (LV) wall (the

segmentation of LV wall is presented in Chapter III) based on a joint Markov-Gibbs

random field (MGRF) model that accounts for the 1st-order visual appearance of

the myocardial wall (in terms of the pixel-wise intensities) and the 2nd-order spa-

tial interactions between pixels. The pathological tissue is quantified based on two

metrics: the percentage area in each segment with respect to the total area of the

segment (area metric), and the trans-wall extent of the pathological tissue (shape

metric). In this work, the transmural extent is estimated using point-to-point cor-

respondences based on the geometrical features that are extracted from the solu-

tion of the Laplace partial differential equation. Transmural extent was validated

using a simulated phantom. Fourteen datasets (168 images) were tested and val-

idated against manual expert delineation of the pathological tissue, outlined by

two observers. Mean Dice similarity coefficient (DSC) values of 0.90 and 0.88

were obtained for the observers, approaching the ideal value, 1. The Bland Alt-

man statistic of infarct volumes estimated by manual versus the MGRF estimation

revealed little bias difference, and most values falling within the 95% confidence

interval, suggesting good agreement. The DSC measure documented statistically

significant superior segmentation performance for the proposed MGRF method

versus established intensity-based methods (greater DSC, and smaller standard
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deviation). The proposed Laplace method showed good operating characteristics

across the full range of extent of transmural infarct, outperforming conventional

methods. Phantom validation and experiments on patient data confirmed the ro-

bustness and accuracy of the proposed framework.

A. INTRODUCTION

Assessment of myocardial viability through identifying ischemically dam-

aged tissue is of great clinical importance as the standard means of diagnosing and

monitoring irreversible myocardial sequelae of ischemic heart disease, as well as

guiding optimal therapies for individual patients [27]. The infarcted myocardium,

after administering a gadolinium contrast agent, appears hyper-enhanced com-

pared to the normal myocardium on late (15-25 min) acquisitions [75–79]. Exten-

sive research has been conducted on the use of late CE-CMR images, which allow

for estimating the transmural extent of damaged myocardium with high spatial

resolution [75–79], to delineate the pathological tissue and extract useful metrics

for indexing myocardial injury. In this chapter, two candidate metrics have been

explored to quantify myocardial viability: the percentage of the segmented patho-

logical tissue with respect to the total area of the myocardial wall, and the trans-

mural extent of this tissue relative to the full LV wall thickness. A review of the

current methods to estimate the area and the transmural extent of pathology are

presented in Sections II.B.1 and II.B.2, respectively.

As discussed in Chapter I, the current methods for identifying ischemically

damaged tissue have the following aggregate limitations: (i) the pathological tis-

sue identification does not adequately account for spatial interactions between the

myocardium pixels; (ii) many of these methods are quite sensitive to imperfect

myocardium contours and image noise; and (iii) the radial transmural extent esti-
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mation suffers from geometric inconsistency in estimating the point-to-point corre-

spondences between the inner and outer boundaries, while the centerline method

suffers from imperfect inner and outer contours, especially for noisy images.

To overcome these drawbacks, an augmented, automatic framework is pro-

posed to analyze the CE-CMR images. To delineate the pathological tissue in the

LV wall, the image is modeled as a joint MGRF that accounts for not only the 1st-

order visual appearance (based on the pixel-wise intensities), but also incorporates

the 2nd-order spatial interactions between the pixels. Next, area and shape metrics

are estimated to quantify the infracted region. The shape metric (i.e., the trans-

mural extent) is estimated using a geometrically motivated approach, based on

a partial differential equation (PDE) that accurately co-locates the corresponding

pixel pairs. This distance metric, as shown in Figure 39(b), overcomes the geomet-

ric inconsistency of the often-used radial procedure, as shown in Figure 39(c).

(a) (b) (c)

FIGURE 39: Illustration of estimating the transmural extent of pathological tissue

in the LV wall: (a) standard radial approach, (b) proposed Laplace PDE-based ap-

proach, and (c) deviations of (a) from the co-located corresponding pixel pairs of

(b).
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B. BASIC ANALYSIS STAGES

This chapter details the identification and quantification of damaged my-

ocardial tissue on CE-CMR images (steps 2 and 3 of the proposed framework; see

Figure 40). Myocardium contour segmentation (step 1) was previously discussed

in Chapter III.

FIGURE 40: Basic processing steps of the proposed framework for analyzing CE-

CMR images: LV wall segmentation, pathology identification, and myocardial vi-

ability quantification in terms of the area extent and transmurality metrics.

1. Identification of the Pathological Tissue in the LV Wall

For the challenging task of delineating the pathological tissue in the LV wall,

a powerful approach is proposed based on applying a joint MGRF model to the CE-

CMR image signals and the region map labels (i.e., object and background) that

accounts for the intensity and the spatial interactions between the pixels of patho-

logical tissue. The main novelty of this joint MGRF segmentation compared to the
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conventional thresholding methods, with heuristic or user-selected thresholds, is

two-fold. First, an initial proper threshold is found automatically by accurate iden-

tification of pixel-wise object and background intensity distributions. Second, the

initial region map is refined by identifying the 2nd-order spatial interactions. For

the initial segmentation, the mixed 1st-order intensity distribution for the image is

separated into the conditional object and background components, which are used

to build an initial region map. To optimize the final region map, the iterative condi-

tional mode (ICM) relaxation approach [123] is used to search for a local maximum

of the joint image-map probability by maximizing sequentially the pixel-wise con-

ditional probabilities of region map labels. At each step the approach minimizes

the MGRF energy for each pixel in the entire image. This minimization step is re-

peated until there is no further decrease in the MGRF energy, thereby establishing

a stopping criterion.

The intensity and the spatial interaction descriptors for the pathological tis-

sue and the background (other tissue in the LV wall) are estimated using the same

methodologies described in Sections III.A.1.a and III.A.1.b, respectively. The whole

search algorithm for identifying the pathological tissue in the LV wall is described

in Algorithm 4.

2. Myocardial Viability Quantification

After accurately segmenting the pathological tissues, two potential met-

rics have been derived to quantify the myocardial viability: the geographic ex-

tent (area) of the pathological tissue, and the transmural extent (transmurality).

These metrics have been previously explored as indexes of myocardial viability. In

particular, the transmurality has been well-documented as a predictor of clinical

outcomes using CE-CMR data [124].
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Algorithm 4 Segmentation of the Pathological Tissues of the Heart

1. For the bounded myocardial wall for each CE-CMR image, obtain the in-

tensity model, namely the marginal intensity distributions of the patholog-

ical tissue and its background, by the LCDG-based approximation of the

mixed empirical intensity probability distribution using the corresponding

EM-based algorithms [102].

2. Use the estimated intensity model to get the initial segmentation of the patho-

logical tissues, i.e., form an initial region map of pathological tissues.

3. Estimate the log-likelihood MGRF energy of the image and its initial region

map.

4. Use the ICM relaxation algorithm [123] to estimate the final map (segmenta-

tion of pathological tissues) that maximizes the MGRF energy .

a. The percentage area Parea of the pathological tissue: The percentage area

Parea of the pathological tissue is estimated for each segment i in the 17-segment

model (Figure 41) [4]; i ∈ {0, .., 17}, as follows (see Figure 42):

Parea(segment i) =
Area of pathological tissue in the segment (Ai)

Area of myocardium wall segment (Bi)
× 100% (9)

b. The transmural extent of the pathological tissues (Ptrans): The transmural

extent of the pathological tissues (transmurality) is the fraction of the pathological

tissue’s extension across the myocardial wall [125]. Inaccurate geometric point-to-

point correspondences and inconsistencies in the resulting transmural extent affect

its traditional estimation as illustrated in Section IV.A (Figure 39). In this work,

a PDE-based approach is proposed to co-locate the corresponding pixel pairs be-

tween the inner and outer contours of the LV wall, and between the inner and outer

edges of the pathological tissue (Figure 43). These correspondences are found by

solving the 2nd-order linear Laplace PDE for a scalar potential field Υ [18, 126–129].
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(a) (b)

FIGURE 41: The myocardial 17-segment model [4]: (a) the circumferential polar

plot and (b) the locations of the segments for basal (left), mid-cavity (middle), and

apical (right) image sections. The segment numbering starts contour-clockwise

from the anatomical landmark indicated by the green arrow in the basal section,

namely, the anterior insertion of the right ventricle wall on the left ventricle wall.

Laplace’s equation is a 2nd-order linear PDE for a scalar field. It arises in a

variety of applications including fluid mechanics, electromagnetism, potential the-

ory, solid mechanics, heat conduction, geometry, probability, etc. Mathematically,

the planer Laplace PDE equation takes the form:

∇2Υ =
∂2Υ

∂2x2
+
∂2Υ

∂2y2
= 0 (10)

Generally, the solution of the Laplace equation between two boundaries,

such as Ba and Bb in Figure 44, can be envisioned as resulting in intermediate

equipotential surfaces (dashed lines in Figure 44) and streamlines that connect the

boundaries. The desired point-to-point correspondences between the boundaries

are established by the streamlines, orthogonal to all the equipotential surfaces (vi-

75



FIGURE 42: Estimation of the percentage area of myocardial injury (Parea): Ai is

the area of injury in segment i and Bi is the total area of the segment. For each

segment, Parea is the percentage of the area of the injury in the segment (Ai) with

respect to the total area of the segment (Bi).

FIGURE 43: Estimation of the transmural extent of myocardial injury. The patho-

logical tissue in the LV wall is identified in the middle image. The Laplace cor-

respondence is shown in the right image between the inner and outer borders of

the LV wall (Tj), and in the left image between the inner and outer borders of the

pathological tissue (dj ). For each segment, Ptrans = mean(dj/Tj) for all the lines

inside the segment.
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sualized by the line connecting the points Bai and Bbi in Figure 44). The correspon-

dences between the borders of the pathological tissue and between the contours of

the LV wall, found by solving the Laplace PDE (see Figure 43), are used in the pro-

posed estimation of the transmural extent. The transmural extent for each segment

in the 17-segment model is estimated as the average ratio between the segment’s

pathology extent (d) and the segment’s wall thickness (T ):

Ptrans (segment i) =

(
1

n

n∑
j=1

dj
Tj

)
× 100%

where n is the number of lines in the segment i that connect the estimated corre-

sponding pairs.

FIGURE 44: Schematic illustration of correspondences by a potential field. The

solution of the Laplace PDE between the two boundaries Ba and Bb results in in-

termediate equipotential surfaces (dashed lines), and orthogonal streamlines that

connect both the boundaries. The streamlines (e.g. the line connecting the points

Bai and Bbi) establish the point-to-point correspondences between the boundaries.
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C. PERFORMANCE EVALUATION AND VALIDATION

1. Evaluation of the Proposed Segmentation Algorithm

The segmentation performance is evaluated using two metrics, the DSC

metric [120] and the Bland Altman analysis. The DSC metric estimates the overlap

between the experimentally segmented region and ground truth (GT) segmenta-

tion (Figure 45). It is calculated as illustrated in Section III.A.3. The Bland Altman

analysis assesses the degree of agreement between two methods of clinical mea-

surement [130]. To indicate an agreement, the bias (mean difference of the clinical

measurement between the two methods) should be near zero; also most of the data

points should fall within 95% limits of agreement (±1.96 Standard Deviation (SD)

around the bias). The Bland Altman statistic is computed to compare the com-

puted volume of infarcted tissue (total number of voxels scaled by the resolution

and the slice thickness) using the proposed automatic method versus the GT, as

determined by two experienced observers.

FIGURE 45: Image segmentation performance is evaluated by the Dice Similarity

Coefficient (DSC).
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2. Validation the Proposed Method of Estimating Transmural Extent using a Sim-

ulated Phantom

To validate the proposed transmural extent method, a realistic synthetic

phantom with varying injury transmural extent was constructed and tested us-

ing the proposed Laplace PDE-based method versus two alternate standards (the

radial method and the centerline method [82]). A phantom is constracted with el-

liptical symmetry (to represent the heart in cross-section), and considered uniform

thickness of infarct throughout for practicality of computation. Total wall thick-

ness was used as 12 mm to correspond to a realistic normal heart wall dimension,

and a realistic inner LV wall edge extracted from actual patient image data. To

account for the fact that a real infarct can have nonuniform thickness throughout

a region, varying thicknesses (from 2mm to 10mm to correspond from small to

very large infarcts) were considered. Particularly, ranges less than 25% (small), 25

to 50% (intermediate), and more than 50% (large) of the wall are physiologically

meaningful ranges of the transmural extent of injury, as previously documented

by Kim et al. [124]. For idealized transmural resolution, an in-plane spatial reso-

lution of 1 mm × 1 mm is used to obtain a sufficient number of pixels across the

wall. This phantom is illustrated in Figure 46, where Figure 46(a) shows the full

phantom illustrating uniform size injury, and Figure 46(b) is a schematic depicting

the proposed approach to account for varying thicknesses across the infarct, par-

ticularly at the step between the different thicknesses, as indicated by the dashed

arrows.

Figure 47(a) illustrates the transmural extent estimation using the radial

method with lines extended from the center of the LV inner cavity. Figure 47(b)

illustrates the centerline estimation method with lines perpendicular to the center-

line, defined as joining the midpoints of the known simulated full wall thickness.

Figure 47(c) illustrates the proposed Laplace PDE-based estimation of the trans-
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(a) (b)

FIGURE 46: Validation of the proposed method for transmural extent estimation

using simulated phantoms with a realistic inner LV wall edge: (a) a representa-

tive phantom with elliptical symmetry and uniform thickness of infarct, (b) an

approach to account for the fact that a real infarct can have nonuniform thickness

throughout a region: varying thicknesses were considered, from 17 % to 83% to

correspond from small to large infarcts, particularly at the step between the differ-

ent thicknesses as indicated by the dashed black arrows.

(a) (b) (c)

FIGURE 47: Illustration of the different methods, i.e., the radial method (a), the

centerline method (b), and the Laplace method (c), used to estimate the transmural

extent on a simulated phantom.
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mural extent, where the streamlines via the equipotential surfaces connect each

corresponding pair of points, at the inner- and outer-edges of pathology. For all

the three methods, the average of the line-wise transmural extents is used.

D. EXPERIMENTAL RESULTS

The proposed framework was tested on 14 datasets collected from six pa-

tients who had suffered chronic heart attacks (at least four months prior), with

clinically documented ejection fraction dysfunction, and who subsequently un-

derwent an experimental myocardial regeneration therapy, as part of an institu-

tionally approved trial. All images were obtained using a Siemens 1.5T Espree

system (Siemens Medical Solutions, USA Inc), with multichannel phased array re-

ception coils [121]. Late (at 15 to 25 min) gadolinium contrast agent enhanced (0.2

mM/kg) acquisitions, using both conventional inversion time chosen acquisitions

and phase sensitive inversion recovery. To ensure adequate signal-to-noise ratios,

the typical spatial resolution was 2.08 × 2.08 × 8.0 mm3. Typically 10-14 image

cross-sections were obtained to cover the LV. To test the proposed method, a total

of 168 images were examined. To evaluate the segmentation accuracy of the pro-

posed framework, the “ground truth (GT)” delineations of pathological tissues in

each image were given by an expert (a radiologist).

1. Delineation of Pathological Tissues

To assess the myocardial viability, first the pathological tissue. are identified

Typical results of the proposed joint MGRF-based estimation, compared to the GT

manual expert delineation are shown in Figure 48. Table 5 presents the DSC values

between the proposed automatic segmentation and the GT, for two independent
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observers, Ob1 and Ob2. The agreement between this GT and the proposed seg-

mentation was confirmed using the paired t-test, for each of the observers (P -value

0.487). In addition, the Bland Altman analysis [130] comparing estimated infarct

volumes for the MGRF segmentation versus manual delineation by two indepen-

dent experienced observers revealed bias (mean difference) near zero, with most

of the data points falling within the 95% confidence limits of agreement, reflecting

good agreement with GT (see Figure 49 (a) and (b)). The DSC and the Bland Alt-

man analyses confirm the robustness and reproducibility of the proposed frame-

work.

The DSC was also used to compare the proposed framework with two es-

tablished segmentation approaches namely, the 2σ [29] and 3σ [30] threshold tech-

niques. As shown in Table 5, the proposed approach outperforms both of these

techniques, as evidenced by the DSC approaching the ideal value of 1, and having

the smallest standard deviation. Furthermore, a statistically significant difference

is documented between the proposed approach and the 2σ- and the 3σ-threshold

techniques. The reported results in table 5 agrees with the work of Amado et

al. [32] in that the performance of the simple intensity methods gets worse as one

goes to higher σ cut-offs.

TABLE 5: Performance of the proposed pathological tissue segmentation versus

the established 2σ- and 3σ-threshold methods on the 14 datasets (168 images) in

terms of the DSC metric compared with the ground truth (GT), for two experienced

observers Ob1 and Ob2. SD stands for the standard deviation.

Proposed Approach 2σ-threshold [29] 3σ-threshold [30]

Observer (Ob) Ob1 Ob2 Ob1 Ob2 Ob1 Ob2

DSC Mean 0.90 0.88 0.73 0.76 0.52 0.61

DSC SD 0.056 0.057 0.088 0.078 0.113 0.162

P-value (versus Proposed approach) < 10−4 < 10−4 < 10−4 < 10−4
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FIGURE 48: Sample results for the proposed pathological tissue identification com-

pared with the manual expert ground truth (GT) for a representative image section

from two subjects.

2. Validation of the Transmural Extent using Synthetic Phantoms

Two key metrics for quantifying the myocardial viability: the percentage

area of pathological tissue and the transmural extent were explored. To validate

the proposed framework, varying transmural injury extents were simulated using

a simulated phantom. Figure 39 illustrates theoretic geometric errors of the es-

tablished radial method. Table 6 summarizes estimates for the proposed method

versus the two established methods, where idealized infarcts of transmural extents

(encompassing less than 25%, 25 to 50%, and more than 50% of the wall) were cho-

sen for their previously documented physiological relevance [35] (see Fig 46). As

shown in Table 6, the Laplace method provides the closest absolute estimates of the

known GT, over all ranges of infarct. Moreover, the computed errors in estimat-
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(a)

(b)

FIGURE 49: Bland Altman plots for the 14 datasets presented in this study. The

clinical parameter, infarct volume, is estimated using the proposed automatic seg-

mentation (Aut) versus manual delineations by two observers, Ob1 (a) and Ob2

(b). For good agreement, the mean of the volume difference between the two

methods should be near zero, and data points should fall within the 95% confi-

dence interval (i.e., between 1.96 SD and -1.96 SD).
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ing the transmural extent using the proposed method are all less than 3%, while

they approach 25% for the radial method, and 7% for the centerline method. These

differences were statistically significant (see Table 6).

3. Clinically Meaningful Effects

The ability of the proposed framework for the detection and quantifica-

tion of damaged tissue has been initially explored to index clinically meaningful

changes. Figure 50 visually illustrates the changes in the injured myocardium, pro-

cessed using the MGRF method, for a representative patient, one year after treat-

ment. Table 7 presented the reported extracted two parameters for myocardium

viability quantification for this patient over one year of treatment. Table 8 sum-

marizes the overall extracted two parameters for myocardium viability quantifica-

tion for all datasets enrolled in this study (i.e., 14 datasets from six patients). Fig-

ure 51 and Figure 52 show the potential of the two metrics to document changes

with treatment, that were consistent with improvements in patient status, as doc-

umented by clinical indexes. This lends encouragement for the proposed frame-

work to detect meaningful effects in treatment and physiological studies.

An important feature is that the proposed framework is not tied to a spe-

cific image resolution, given that the pathological tissue size is typically of similar

dimension or greater than the scanner pixel size, and depends on the pathology

size only implicitly, via the MGRF model learned. One should expect that the

higher the scanner resolution (essentially the finer the nearest neighbor grid), the

more the interactions between the pixel labels will be taken into account. It is con-

ceivable that the finer the scale at which the pathology is examined (attained via

higher scanner resolution), more sophisticated nearest neighborhood interactions

may need to be taken into account.
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TABLE 6: Transmural extent estimation using the three methods (i.e., radial and

centerline standards, and the proposed proposed Laplace method) on a synthetic

simulated phantom with varying transmural infarct. All simulated results have

been computed using double precision (16 decimal places with error equal to

1.224×10−16). The final results were approximated to three decimal points to reflect

an idealized precision for estimating the transmural extent.

Transmural Extent Metric Laplace Radial Centerline

2 mm (17%) Extent (mm) 1.954 2.493 2.126

Error (mm) 0.046 0.493 0.126

Error% 2.300 24.664 6.292

3 mm (25%) Extent (mm) 2.987 3.711 3.179

Error (mm) 0.013 0.711 0.179

Error % 0.450 23.712 6.562

4 mm (33%) Extent (mm) 3.974 4.861 4.250

Error (mm) 0.026 0.861 0.250

Error % 0.652 21.518 6.245

6 mm (50%) Extent (mm) 6.021 7.265 6.304

Error (mm) 0.021 1.265 0.304

Error % 0.348 21.092 5.060

8 mm (66%) Extent (mm) 7.981 9.548 8.342

Error (mm) 0.019 1.548 0.342

Error % 0.236 19.353 4.272

10 mm (83%) Extent (mm) 10.047 11.912 10.422

Error (mm) 0.047 1.912 0.422

Error % 0.047 19.118 4.219

P-value (Error % versus Laplace) < 10−4 < 10−4
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FIGURE 50: Changes in the injured myocardium, processed using the MGRF

method, for a representative patient , one year after treatment.

E. DISCUSSION

The overall motivation of this work is that while qualitative assessment of

the extent of damaged myocardial tissues is often adequate for routine clinical ap-

plications, efficient and accurate quantitative estimation is desirable for research,

and to help elucidate mechanisms (e.g. in testing new therapies). Current meth-

ods based on heuristic or user-selected thresholds do not account for the textures

of the segmented pixels, and, further most of them require user interaction. There-

fore, a fully automated quantification of the myocardial viability may represent an

advance.
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TABLE 7: The extracted two parameters for myocardium viability quantification

(i.e., Parea and Ptrans) for one patient over one year treatment.

Parea Ptrans

Segment Pre Post Pre Post

# 1 0.0 0.0 0.0 0.0

# 2 0.0 0.0 0.0 0.0

# 3 2.4 2.2 2.0 1.4

# 4 6.4 4.3 6.2 2.9

# 5 0.0 0.0 0.0 0.0

# 6 0.0 0.0 0.0 0.0

# 7 0.0 2.7 0.0 0.3

# 8 0.0 0.0 0.0 0.0

# 9 2.2 0.0 0.8 0.0

# 10 4.6 4.7 3.8 2.7

# 11 27.4 12.8 20.3 10.5

# 12 19.1 2.6 10.1 1.3

# 13 5.8 0.0 2.7 0.0

# 14 0.9 1.2 0.2 0.03

# 15 9.0 2.4 9.0 2.5

# 16 15.9 0.0 6.9 0.0

# 17 0.0 0.0 0.0 0.0

Overall 4.5 2.4 3.1 1.3

1. Pathological Tissue Identification

The proposed framework presents a powerful new approach for identifying

the pathological tissue based on a joint MGRF model of the pathological (object)

and healthy (background) tissue. In addition to a more accurate selection of an
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TABLE 8: Summary of the overall extracted two parameters for myocardium via-

bility quantification for all datasets enrolled in this study (i.e., 14 datasets from six

patients) after six months (post 1) and one year (post 2) treatment.

Parea Ptrans

Subject Pre Post 1 Post 2 Pre Post 1 Post 2

# 1 6.5 5.2 2.0 5.3 3.6 1.3

# 2 18.4 14.4 14.1 14.8 11.3 9.7

# 3 4.5 2.4 – 3.1 1.3 –

# 4 11 8.6 – 5.0 3.8 –

# 5 2.1 1.1 – 0.8 0.5 –

# 6 10.9 9.2 – 3.6 3.5 –

FIGURE 51: Summary of overall Parea for six patients before treatment (pre), after

six months, and after one year treatment.
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FIGURE 52: Summary of overall Ptrans for six patients before treatment (pre), after

six months, and after one year treatment.

intensity threshold to separate the pathological and normal tissues, it accounts for

the textures of the segmented pixel groups via the spatial interaction between the

neighboring pixels. The MGRF model effectively discards noisy pixels, and results

in a more smooth and connected segmentation. In this study, DSC analysis docu-

mented good interobserver agreement in the ability of the MGRF method to corre-

spond to the GT (see Table 5). Also, as shown in Table 5, the proposed framework

outperforms the standard 2σ- and 3σ-threshold based techniques, as evidenced by

DSC analysis. In addition, there is a good agreement with GT for computing clin-

ical quantities such as infarct volumes, as documented using the Bland-Altman

statistic (see Figure 49).

2. Transmural Evaluation

Two myocardial viability metrics were explored; the percentage area of patho-

logical tissue, and the transmural extent that have been well documented to pre-

dict patient outcomes [124]. The seminal study of Kim et. al [124] has established
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pathophysiologically meaningful ranges of transmural extent of infarcts, namely

transmurality of less than 25% (essentially clinically small infarct) and more than

50% (clinically large infarct). It would appear that it is for infarcts of intermediate

extent, in the 25% to 50% transmural extent range, for which improved character-

ization and better understanding of mechanisms would be of greatest benefit. In

this regard, Table 6 shows that the percentage error for the radial and centerline

methods manifest an approximate decreasing monotonic function as infarct trans-

mural extent increases. For the proposed Laplace method, the behavior departs

from monotonicity. While largest corresponding to the smallest transmural infarct

decreases considerably, but remains approximately flat, for intermediate and large

extent infracts. This behavior is explained, at least in part, by the fact that the abso-

lute error is small (approximately less than 0.05 mm) for all values examined, and

thus is of importance mainly for the small transmural infarcts. Thus the Laplace

method has a superior operating characteristic in the range of values correspond-

ing to the intermediate size infracts, compared to the radial or centerline methods.

In terms of practicality of computations, the present Matlab implementation

using an Intel quad-core processor (3.2GHz each), with 16 GB of memory, and a 1

TB hard drive with RAID technology required approximately three minutes for

identifying pathological tissue in a dataset encompassing 12 cross-sections, and

less than one minute for computing the two quantification metrics for all the seg-

ments of the myocardial 17-segment model. The processing time on a typical desk-

top with a dual-core processor (2.1 GHz each), and 4 GB of memory was approxi-

mately eight minutes and less than one minute, for identifying pathological tissue

and estimating the two quantification metrics, respectively. By implementing the

proposed algorithms in the C/C++/C sharp programming environment, this time

may be considerably reduced. The present analysis is explored to be extended

from 2D images to 3D considerations, especially as relates to implementation of a

3-D MGRF [131].
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F. SUMMARY

A fully-automated framework for quantification of myocardial viability is

proposed. The framework presents a powerful approach for segmenting the patho-

logical tissue from CE-CMR images. The approach takes into account the spatial

interaction between the myocardium pixels to ensure the homogeneity of the seg-

mented tissue. In addition, the proposed framework provides a method to ac-

curately estimate the transmural extent of the pathological tissues in the LV wall

and overcome the inconsistencies of the traditional estimation method. The esti-

mated myocardial viability quantification parameters allow for both diagnosis and

monitoring the patients. Phantom validation and experiments with CE-CMR im-

ages and manually segmented expert delineations confirm the robustness and the

accuracy of the proposed approach. The work presented in this chapter has been

published in the IEEE international symposium on biomedical imaging (ISBI) [132]

and the international journal of cardiovascular imaging [127].
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CHAPTER V

A NOVEL FRAMEWORK FOR ESTIMATING FUNCTIONAL STRAIN FROM
CARDIAC CINE MRI

Functional strain is one of the important quantification metrics of the car-

diac status. Local cardiac diseases (such as coronary atherosclerosis) and global

conditions (such as heart failure and diabetes) result in wall dysfunction that man-

ifests on strain slopes during the contraction and expansion phases of the cardiac

cycle. Therefore, accurate strain estimation is important for the early detection of

these diseases.

In this chapter, a novel method to estimate the strain from cine cardiac cine

magnetic resonance imaging (CMRI) is proposed based on tracking the left ven-

tricle (LV) wall geometry. Unlike current methods that depend on the intensity

and spatial information to track the wall motion, the proposed method sticks to

the geometry of the heart to track its motion. To achieve this goal, a three-step

framework is presented. First, the LV wall borders are segmented using a level-set

based deformable model guided by a stochastic force derived from a second or-

der Markov-Gibbs random field (MGRF) model that accounts for the object shape

and appearance features. Second, the mid-wall of the LV is found by estimat-

ing the centerline between the inner and outer segmented LV borders. Finally, a

Laplace-based partial deferential equation (PDE) method is used to track the LV

wall points over each two successive image frames over the cardiac cycle. The

proposed method is the first Laplace-based strain estimation framework that uses

Laplace equation to accurately track the myocardium points over the cardiac cycle
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in such a way that overcomes noise sources, which come from scanner and heart

motion. The proposed method shows the ability to track all the LV wall points and

the cardiac motion even at the mid-wall. Moreover, it shows accurate results on

simulated phantom images, with predefined point locations of the LV wall through

the cardiac cycle. In addition, the same image modality is used (i.e., cine CMRI) to

estimate the strain and other performance indexes (e.g., global index), more cor-

related and accurate indexes can be obtained. In this chapter, three performance

indexes, i.e., peak systolic strain change, systolic strain slope, and diastolic strain

slope, are used to follow-up on a given treatment (e.g., stem cell therapy [133], the

case study in this work).

A. PROPOSED FRAMEWORK

As shown in Figure 53, the proposed framework for strain estimation con-

sists of four main processing steps. First, the LV wall is segmented from the cine

CMR images. Second, the mid-wall is determined. Third, the points on the inner,

mid-wall, and outer contours of the LV wall are tracked through the cardiac cycle.

Finally, the circumferential and radial strains are estimated. This section will detail

each of these processing steps.

1. LV Wall Segmentation

In the first step of the proposed framework, a segmentation method of the

LV wall is implemented based on a validated geometric (level set-based) deformable

model [134–138]. The evolution of the level set is controlled by three features,

namely a probabilistic shape prior, the first-order pixel-wise image intensities, and

a second-order Potts-MGRF spatial interaction model. These three features are
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FIGURE 53: Basic processing steps for the proposed framework. The segmentation

of the inner, mid- and outer walls of the LV is followed by geometrical tracking to

estimate the circumferential and radial strain curves over the cardiac cycle.

used to construct a speed function that is subsequently used to evolve the de-

formable boundary. For more details on this method and the comparison with

other segmentation approaches, please see [134–138].

2. LV Centerline (Midwall) Extraction

To delineate the centerline, a three-step approach is used to extract the mid-

wall. First, the solution of the Laplace equation is found (Equation (10)) between

the segmented inner and outer contours of the LV wall in order to get the paired

correspondence points. Then, the points located equidistant from the boundary

point-pairs are determined using the Euclidian distance. Finally, the mid-wall is
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approximated using a closed spline fit for the identified points. This procedure is

summarized as an algorithm:

Algorithm 5 Extraction of the Centerline of the Myocardium

1. Segment the inner and outer borders of the LV wall from the input cardiac

data (see Figure 54(a)).

2. Solve the Laplace equation between the inner and outer borders to find the

corresponding point pairs (see Figure 54(b)).

3. Determine the points located equidistant from the boundary point-pairs, es-

timated using Euclidian distance (see Figure 54(c)).

4. Determine the centerline (i.e., the mid-wall) using a closed spline fit for the

identified points (see Figure 54(d)).

(a) (b) (c) (d)

FIGURE 54: Illustration of the centerline extraction: (a) the inner (green) and outer

(red) boundaries of the LV wall, (b) streamlines found by solving Laplace equa-

tion, (c) the identified centerline points (white open circles), and (d) the extracted

centerline (blue).

3. Laplace-based Tracking

In order to estimate the strain function, points along myocardial contours

are tracked over the cardiac cycle. A geometrically motivated method is used to

determine the matching of myocardial points from time-frame to time-frame by
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(a)

(b)

FIGURE 55: Co-allocating point-to-point correspondences by solving the Laplace

equation between the different time points of a particular heart wall, for the pur-

pose of tracking that wall over the time series. (a) The geometrical feature of the

wall, i.e., the electric filed vectors in the area between two inclosed regions Ba (in

blue) and Bb (in green), are used to find the point-to-point correspondences. (b) An

enlarged section around the indicated streamline.

solving the Laplace equation (Equation (10)) between each two successive contours

(see Figure 55). In this fashion, a material point can be tracked from one temporal

frame to another. Figure 55 shows an illustration of how the solution of Laplace’s
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equation is used to determine the corresponding pixel pairs. A potential Υ is found

in the interior area enclosed by both surfaces Ba and Bb in Figure 55 by solving the

Laplace equation such that Υ is maximum at Ba and minimum at Bb . Then, the

electric field vectors (the geometrical features of the wall, the electric filed vectors

Ex = ∂Υ
∂x

and Ey = ∂Υ
∂y

, in the interior area between Ba and Bb) are used to find

the corresponding pixel pairs as shown in Figure 55. Algorithm 6 summarizes the

steps used to track the LV contour on successive temporal frames.

Algorithm 6 Laplace-Based Contour Tracking over the Time Series
Step 1. Wall Borders Segmentation:

Segment the LV inner and outer walls from cine CMRI cross section image (e.g., by

the approach in [134]).

Step 2. Centerline Estimation:

Find the centerline of the segmented LV wall using Algorithm 5.

Step 3. Laplace Tracking:

For each two successive image frames, track the border points on the inner, mid-,

and outer wall edges throughout the cardiac cycle:

(a) Initial condition: set the maximum and minimum (zero) potential at the inner

walls of the reference (current) image frame and the target (successive) image

frame, respectively.

(b) Solve the Laplace equation to find the potentials between the respective inner

wall borders.

(c) Compute the components of the electric field vectors Ex and Ey for the esti-

mated potential in Step 3(b).

(d) Form the streamlines using the electric field vectors in Step 3(c), then track the

point-to-point correspondences between respective inner borders.

(e) Repeat Step 3(a) to Step 3(d) for respective mid- and outer wall borders.
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4. Strain Estimation

The estimation of strain is based on the Lagrangian strain calculation for

finitely small displacement. Mathematically, the strain is estimated as [139]:

SL =

 εx1 εx1x2

εx2x1 εx2

 (11)

Where εx1 and εx2 are the normal strain components (associated with the normal

motion to the object borders), i.e., εx1 = ∆x1

x1
and εx2 = ∆x2

x2
. εx1x2 and εx1x2 are the

shear strain components (associated with the parallel motion to the object borders),

i.e., εx1x2 =
∆x1

x2
and εx2x1 =

∆x2

x1
. This work focuses on estimating the normal strain

components (i.e., the circumferential (εx1) and radial (εx2) strains, Figure 56).

(a) (b)

FIGURE 56: Estimation of radial and circumferential strains: (a) schematic illustra-

tion of the radial (X2) and circumferential (X1) directions for an element (e.g., the

red square in the figure) on the LV wall and (b) illustration of the estimation of the

normal strain components in the X1 (εx1 =
∆x1

x1
) and X2 (εx2 =

∆x2

x2
) directions.
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To estimate the radial and circumferential strains through the cardiac cycle

from the cine CMRI, Algorithm 7 is followed, which summarizes the processing

steps for the proposed framework.

Algorithm 7 Strain Estimation Algorithm
Step 1. Contour Tracking:

Track the inner border, mid-wall, and outer border over the time series images

based on the proposed Laplace-based tracking algorithm (Algorithm 6).

Step 2. Strain Estimation:

(a) Estimate the Lagrangian circumferential strains by tracking the fractional

change in Euclidean distance between two adjacent reference correspondence

points on the same border (i.e., inner, mid-wall, or outer border), see Figure 57.

(b) Estimate the mean radial strain (between inner and mid-wall or between mid-

wall and outer wall, where the mid-wall was obtained using Algorithm 5) by

tracking the fractional change in Euclidean distance between the two adjacent

reference tracked points along the radial direction, see Figure 57.

B. INDEXING FUNCTIONAL PARAMETERS

1. Maximal Systolic Strain Change and Strain Slopes

The ability of the proposed framework for the quantification of myocar-

dial wall dysfunction has been initially explored to index clinically meaningful

changes. In this chapter, the systolic and diastolic circumferential strain slopes

and peak systolic change (see Figure 58) derived from the cine CMRI are used as

metrics to follow up treatment using stem cell therapy for the six patients enrolled

in this study.
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FIGURE 57: Illustration of the tracking process throughout the cardiac cycle to

estimate the radial and circumferential strains.

2. Derivation of Maximal Systolic and Diastolic Contractile Function from Full

Cardiac Cycle Data

A six-order polynomial fit of full cardiac cycle feature tracking derived strains

was empirically used. From the fitted curve, the first and second derivative curves

were computed. The systolic and diastolic strain slopes are estimated as the val-

ues of the first-order derivative curve points associated with the zero-crossing of

the second-order derivative curve (see Figure 59). This combination objectively

yielded the timing and magnitude of maximal change in strain (a parameter re-

sembling ejection fraction), as well as the timing and magnitude of occurrence of

greatest systolic and diastolic rate of strain (a parameter resembling strain rate).
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FIGURE 58: Three functional metrics are used to follow up treatment: the systolic

and diastolic circumferential strain slopes and peak systolic change derived from

the cine CMRI.

FIGURE 59: Automated estimation of functional strain metrics: a six-order poly-

nomial fit of the strain data is used. From the fitted curve, the first- and second-

order derivative curves were computed. The systolic and diastolic strain slopes

are estimated as the values of the first-order derivative curve points (red rhombus)

associated with the zero-crossing of the second-order derivative curve.
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C. METHOD VALIDATION ON SYNTHETIC PHANTOMS

In order to validate the proposed framework for strain estimation, it has

been tested using synthetic phantoms. The synthetic phantoms were constructed

using a previously validated phantom [140] that generates the geometry of the

heart borders over the cardiac cycle based on a descriptive mathematical model

that accounts for the physiological features and the LV response during the cardiac

cycle. A geometric transformation that covers shearing, rotation, translation, tor-

sion, and compression of the LV is used in the model to describe the LV motion by

mapping each location defined in the LV model to a corresponding spatial point

at a certain time instant [141, 142]. Using this transformation, an inverse motion

map is calculated analytically and is used to establish correspondences between

two points at any two time instants. This allows for estimating ground truth (GT)

strain values for validating the proposed method. A phantom constructed using

this model is simulated to mimic the grey-level distribution of the cine CMRI im-

ages using the inverse mapping approach that was proposed in [101, 143] and is

exemplified in Figure 60(a).

Effect of graded Rician noise on the synthetic phantom model: In order

to evaluate the effect of noise on the accuracy of strain estimation, four corrupted

phantoms were constructed with different levels of Rician noise, 0.15, 0.25, 0.35,

and 0.45 (see Figure 60(b) and (c)). Note the noise is scaled such that 0 indicates no

noise and a value of 1 indicates maximum noise corruption. The effect of the noise

is to make determination of the wall boundaries, from which the strain is com-

puted, less reliable. The proposed framework was tested using these four phan-

toms in order to test the robustness of the proposed strain estimation framework

against noise.
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FIGURE 60: (a) Simulated phantom that generates deformation of the heart bor-

ders over the cardiac cycle, and corrupted phantoms with two representative levels

of Rician noise; 0.15 (b), and 0.45 (c), respectively.

D. EXPERIMENTAL RESULTS

The proposed framework has been tested and validated on both in vivo cine

CMRI data and a phantom model. The ability of the proposed framework to index

the functional strain parameters was explored on both types of data. This section

will present the reported results on phantom data as well as on in-vivo data.
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1. Validation on Synthetic Phantoms

Comparison of the proposed method to the ground truth strain curve: In

order to validate the proposed strain estimation method, it is compared with the

phantom model constructed on a mathematical model accounting for the phys-

iological features and the LV response during the cardiac cycle (please, see Sec-

tion V.C). The GT strain values for validating proposed method are estimated

based on an analytically estimated inverse motion map that was used to establish

correspondences between two points at any two time instants. The visual compar-

ison (Figure 61) shows good agreement between the strain curves of the mid-wall

determined using GT points obtained from the deformation of the phantom model

and that obtained using the proposed framework. In addition, the mean percent-

age error between the estimated strain points and the GT points, calculated as the

average percentage difference in the strain with respect to the GT, is 8.8%, which

indicates good agreement.

FIGURE 61: Comparison results between the proposed strain estimation and

HARP methods with the truth points obtained from the deformation of the phan-

tom model.

To highlight the advantage of the proposed method, the estimated strain pa-

rameters using the proposed method on the constructed phantom was compared

with the strain parameters using the constructed phantom obtained by the com-
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mercial HARP diagnosoft package, version 2.6 (www.diagnosoft.com) on a corre-

sponding tagged phantom that has the same GT strains and is constructed with the

same transformation model used for the proposed method. Figure 61 represents

the estimated strains using the proposed method in comparison with the HARP

method with respect to the GT strains. The reported correlation coefficients with

repect to the GT (r(GT)) for the proposed method and HARP method are 0.97 and

0.87, respectively. The reported mean percentage errors for the proposed method

and HARP method with respect to the GT are 8.8% and 12.5%, respectively. As

reported, the proposed strain estimation method is more close to the GT than the

HARP method as evidenced by the higher correlation coefficient and lower mean

percentage error values. This highlights the advantage of the proposed method.

Comparison of the proposed method to the ground truth for indexing the

functional parameters: In addition to the comparison with the GT strain curve,

the framework was tested for indexing functional parameters, i.e., the systolic and

diastolic circumferential strain slopes, and the peak systolic change, derived from

the cine CMRI. Five trials have been made to estimate the strain using different sets

of points (each trial is done with the same points to be tracked). Then, the func-

tional parameters are estimated from each trial. The propsoed model agrees with

the GT for functional parameter estimation to within approximately 10% (calcu-

lated as the range of the parameter values divided by their mean). The statistical

t-test for estimating the functional parameters using the proposed feature track-

ing method versus the GT for the five repeated trials report p-values of 0.11, 0.18,

and 0.06 for indexing the peak systolic change, systolic strain slope, and diastolic

strain slope, respectively. This indicates good agreement with the GT for index-

ing the functional parameters, as evidenced by p-values greater than 0.05 (which

indicates no statistical significance).
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Robustness of the strain indexing in the presence of noise: In order to

test the robustness of the proposed strain estimation framework against noise, the

proposed framework was tested on four corrupted phantoms with different levels

of Rician noise, 0.15, 0.25, 0.35, and 0.45 for indexing the functional parameters. As

reported in Table 1, the functional parameters were typically within 25% (the range

of parameter values divided by their mean) for a wide range of the examined noise

values.

TABLE 9: Quantitative functional mid-wall circumferential strain results estimated

using the simulated phantoms with different levels of Rician noise, for five re-

peated trials at each noise level, where the proposed framework is used to estimate

the metrics. Note the noise is scaled such that 0 indicates no noise and a value of 1

indicates maximum noise corruption.

Noise Level Peak Systolic Change % Systolic strain slope Diastolic strain slope

Uncorrupted 6.0±0.22 -0.021±0.001 0.028±0.040

0.15 6.0±0.14 -0.020±0.001 0.027±0.003

0.25 5.8±0.17 -0.024±0.001 0.031±0.010

0.35 5.5±0.24 -0.022±0.001 0.025±0.008

0.45 6.1±0.21 -0.023±0.002 0.024±0.004

Range 5.5 to 6.1 -0.020 to -0.024 0.024 to 0.031

(%) (10.3 %) (18.0 %) (25 %)

Ability to track the movement and rotation of the heart: In order to get

accurate estimation of the strain, the method should have the ability to track the LV

wall movements within the cardiac cycle. Since the Laplace-based feature tracking

method is a step-wise method, i.e., tracks the contour from one frame to the next

(see step 3 in Algorithm 6), the movement of the LV wall can be tracked. Figure 62

visually shows the tracking of the LV inner contour points using the propsoed
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method from end-diastolic to end-systolic over a representative phantom model

that involves rotation. In addition, the mean distance error between the estimated

points and the GT points, calculated as the average percentage difference in the

Euclidian distance between the estimated points and the GT, is 3.26 mm, which

is relatively small with respect to the LV wall dimensions. These results show

the ability of the proposed method to accurately track the LV points even in the

existence of high deformation and rotation of the LV wall during the cardiac cycle.

FIGURE 62: Tracking the inner LV contour points (blue points) using the proposed

Laplace-based feature tracking algorithm from end-diastolic (the large contour) to

end-systolic (the small contour) for a representative phantom model, showing the

ability of the proposed method to track the rotation of the LV wall.

2. Experiments on In vivo Data

CMRI protocol: The proposed framework has been tested on 14 indepen-

dent cine CMR data sets, obtained from six infarction patients. These patients

had suffered chronic heart attacks (at least four months prior) with clinically doc-

umented ejection fraction dysfunction. Subsequently, they underwent an exper-

imental myocardial regeneration therapy as part of an institutionally approved
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trial [133]. Short-axis images were obtained using a 1.5 T Espree system, Siemens

Medical Solutions, USA Inc., with phased array wrap-around reception coils. Breath-

hold cine imaging was done using segmented True-FISP contrast. Typical param-

eters were: repetition time (TR): 4.16 ms; echo time (TE): 1.5 ms; flip angle: 80o,

1 average; k-space lines per segment: 12; in-plane resolution: 1.4 × 3.1 mm2; and

slice thickness: 8 mm. Typical 25 temporal image frames were obtained for each

slice.

Physiology of the strain dependence: To estimate the strain and construct

strain curves, Algorithm 7 is applied. Figures 63(a) and (b) illustrate the circumfer-

ential and radial strain results for one patient. As expected, the global ventricular

volume curve of this patient is correlated with the estimated circumferential strain,

whereas it is inversely correlated with the estimated radial strain, as shown in Fig-

ure 63(c). This is clearly manifested with the synchronization between the timing

of occurrence of end systole of the ventricular volume curve and the timing of peak

circumferential and radial strains. These results emphasize the correctness of the

proposed strain estimation method.

Clinically meaningful effects: The ability of the proposed framework for

the detection and quantification of damaged tissue has been initially explored to

index clinically meaningful changes. Table 10 illustrates the potential of using

these metrics to document changes with treatment that were consistent with im-

provements in patient status, as documented by clinical indexes. This lends en-

couragement for the proposed framework to detect and quantify meaningful ef-

fects in treatment and physiological studies.
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(a)

(b)

(c)

FIGURE 63: (a) Circumferential strains estimated at the inner wall, mid-wall and

outer wall of the LV of one patient, plotted over the cardiac cycle. (b) Radial strains

estimated between the inner and mid-wall (blue), and between the outer and mid-

walls (red) of the LV of the same patient. (c) Relation between the average inner to

mid-wall radial strain (solid circle), mid-wall circumferential strain (solid square),

and the global ventricular volume curve, using normalized values between 0 and

1 for comparison. Note that the timing of the smallest cavity volume is coincident

with peak radial strain and peak circumferential strain. Note also the peak sys-

tolic and peak diastolic slopes of the strain curve occur at the same optimum with

respect to the timing of the ventricular volume curve.
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TABLE 10: Results of the metrics that are used to follow up treatment using stem

cell therapy for 14 datasets (from 6 patients) after 6 months (post 1) and one year

(post 2) treatment. Larger peak systolic change and absolute slope values indicate

an enhancement in the myocardial wall function.

Peak Systolic Change Systolic Strain Slope Diastolic Strain Slope

Subject Pre Post 1 Post 2 Pre Post 1 Post 2 Pre Post 1 Post 2

# 1 9.2 % 13.8 % 17.5 % -0.010 -0.011 -0.018 0.014 0.017 0.020

# 2 2.8 % 5.2 % 7.2 % -0.011 -0.012 -0.021 0.014 0.023 0.011

# 3 8.2% 9.9 % – -0.017 -0.020 – 0.021 0.015 –

# 4 13.6% 17.4 % – -0.021 -0.031 – 0.029 0.041 –

# 5 10.1% 22.4% – -0.023 -0.040 – 0.026 0.027 –

# 6 9.8% 10.6% – -0.015 -0.014 – 0.012 0.014 –

E. DISCUSSION

This chapter investigated the utility of conventional cine data to estimate

the functional strain parameters at the inner, mid-, and outer LV walls for the

characterization of myocardial function. Unlike traditional texture-based tracking

methods, the proposed method is based on the geometrical features of the inner,

mid- and outer walls of the LV. The proposed method showed the ability to track

the movement and rotation of the heart. Hence, overcoming any noise that comes

from heart motion and permitting accurate strain estimation.

1. Comparison of the Proposed Method to the Ground Truth and Other Methods

The mean percentage error between the strain points estimated using the

proposed method and the GT points, obtained from the deformation of the phan-

tom model, is 8.8%. This indicates that the accuracy for measuring the strain is
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above 90%, which is promising. In addition, the proposed model agrees with the

GT for indexing functional metrics to within approximately 10%. The statistical

t-test between the proposed method versus the GT for five repeated trials report

p-values of 0.111, 0.177, and 0.063 for indexing the peak systolic change, systolic

strain slope, and diastolic strain slope, respectively. This indicates good agree-

ment with the GT for indexing the functional parameters, as evidenced by p-values

greater than 0.05 (which indicate no statistical significance). In addition, the pro-

posed strain estimation method is more close to the GT than the HARP method as

evidenced by the higher correlation coefficient and lower mean percentage error

values with respect to the GT. The reason behind the superiority of the proposed

method over the HARP technique is that the HARP method introduces large errors

in the case of high rate motion. This problem is partially solved in the proposed

method by tracking the heart motion based on the geometrical features of the in-

ner, mid- and outer walls of the LV. This is documented with the small reported

distance error between the tracked points using the propsoed model and the GT

points in the case of heart motion (see Figure 62).

2. Robustness of the Strain Indexing Against Noise

For the simulated phantom data with respect to noise using the propsoed

Laplace tracking method, the functional parameters were typically within 25% for

a wide range of noise values examined. This is within the variability of functional

parameters that can be observed related to breath-hold irreproducibility [144].
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3. Reasonableness of the Physiological Indexing

For sample real patient data, a monotonic dependence of strain across the

myocardial wall was obtained, with the greatest strain observed in the inner wall

for both circumferential and radial strains [145]. In addition, the expected full

cardiac cycle temporal strain dependence of circumferential strain versus radial

strain was observed. Further, when comparing circumferential and radial strains

to physiological events as plotted using a ventricular volume curve derived from

cine data, the timing of physiological cardiac events–smallest cavity volume (end-

systole), fastest systolic emptying (contraction), and fastest diastolic filling (relaxation)–

were found to be temporally coincident. This would be expected since they charac-

terize corresponding physiological events. In addition, the ability of functional in-

dexes derived using the proposed Laplace-based tracking method is documented

to index clinically meaningful change on sample clinical data.

4. Limitations

The proposed framework estimate the functional strain parameters from

3D (2D + time) sequences of thick-slice cine CMRI data. Future work includes

the application of the algorithm on 4D (3D+time) thin-slice data in order to fully

estimate all the strain components in 3D. This will be achieved by extending the

proposed Laplace-based method in 3D in order to find the potential field between

3D surfaces.
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F. Summary

A novel framework for strain estimation from cine CMRI is presented. The

LV wall points are tracked throughout the cardiac cycle by applying a PDE method

to track the LV points by solving the Laplace equation between the LV wall borders.

The main advantage of the proposed tracking method over traditional texture-

based methods is its ability to track the movement and rotation of the LV wall

based on tracking the geometric features of the inner, mid-, and outer walls of the

LV. This overcomes noise sources that come from scanner and heart motion. In

addition, the strain estimation method shows accurate validation results on simu-

lated phantoms with predefined point locations of the LV wall through the cardiac

cycle. Moreover, the proposed method will allow an accurately estimate of the

correlation coefficients between the strain index and other performance indexes

derived from cine images, such as global (e.g., ejection fraction) and local (e.g.,

wall thickening) indexes. This will avoid the inter-slice variability problem since

all indexes will be derived from cine CMRI data. The work presented in this chap-

ter has been published in the international conference of image processing [146]

and the international symposium on computational models for life science [147].

Future work includes extending this study to 4D (3D+time) and investigating the

type of correlation between these indexes.
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CHAPTER VI

MRI FINDINGS FOR DYSLEXIA: A SURVEY

Developmental dyslexia is a brain disorder that is associated with a dis-

ability to read, which affects both the behavior and the learning abilities of chil-

dren. Recent advances in MRI techniques have enabled imaging of different brain

structures and correlating the results to clinical findings. The goal of this chap-

ter is to cover these imaging studies in order to provide a better understanding

of dyslexia and its associated brain abnormalities. In addition, this survey cov-

ers the noninvasive MRI-based diagnostics methods that can offer early detec-

tion of dyslexia. This chapter focuses on three MRI techniques: structural MRI,

functional MRI (fMRI), and diffusion tensor imaging (DTI). Structural MRI reveals

dyslexia-associated volumetric and shape-based abnormalities in different brain

structures (e.g., reduced grey matter volumes, decreased cerebral white matter

gyrifications , increased corpus callosum (CC) size, and abnormal asymmetry of

the cerebellum and planum temporale structures). fMRI reports abnormal activa-

tion patterns in dyslexia during reading operations (e.g., aggregated studies ob-

served under-activations in the left hemisphere fusiform and supramarginal gyri

and over-activation in the left cerebellum in dyslexic subjects compared with con-

trols). Finally, DTI reveals abnormal orientations in areas within the white matter

micro-structures of dyslexic brains (e.g., aggregated studies reported a reduction

of the fraction anisotropy (FA) values in bilateral areas within the white matter).

Herein, all of these MRI findings will be discussed focusing on various aspects of

implemented methodologies, testing databases, as well as the reported findings.
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Finally, the chapter addresses the correlation between the MRI findings in the lit-

erature, various aspects of research challenges, and future trends in this active

research field.

A. INTRODUCTION

Developmental brain disorders are among the most interesting and chal-

lenging research areas in modern neuroscience. Dyslexia is an extremely com-

plicated example of such a disorder that affects anywhere between 4% to 10% of

the general population [148]. Dyslexia is characterized by the failure to develop

age-appropriate reading skills in spite of a normal intelligence level and adequate

reading instructions [149]. Perceptual problems in dyslexia seemingly result from

an inability to retrieve correct verbal labels for phonemes [150], which makes it

difficult to deconstruct words into constituent sounds and match written words to

spoken language. Educational interventions that teach phoneme awareness have

shown better results in dealing with reading disorders than other programs [151].

Although considerable progress has been made towards the identification of ef-

fective instructional practices, the knowledge regarding the underlying pathology

and pathophysiological mechanisms remains fragmentary.

Case studies in dyslexia have suggested various flaws in the circuitry of the

visual cortex and connectivity/synchronicity between different brain regions [152].

Research studies suggest that the alteration in connectivity between brain regions

is basically derived from microscopic abnormalities in the minicolumn’s basic on-

togenetic pattern [153]. Minicolumns are the basic unit of function of the cere-

bral cortex each brain having hundreds of millions of them [154]. The areal ex-

pansion of the cerebral cortex across species (encephalization) presumably occurs

through an increased number of minicolumns. Therefore, it is not surprising that
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some of the gross changes observed in putative minicolumnopathies include vari-

ations in brain volume, gyrification, and size of the CC. Recent neuropathological

case reports suggest the presence of a minicolumnopathy in dyslexia [155, 156].

Consistent with this observation, some structural MRI-based studies have shown

that dyslexic patients have a reduced brain volume, decreased gyrification, and

increased CC volume relative to total brain size [11]. This survey expands on these

microscopic findings by describing reported MRI findings for dyslexia. The re-

view aims to improve the understanding of possible causal abnormalities, their

topography, and proposed MRI-based diagnostics methods.

Multiple studies have identified different brain structures (e.g., grey mat-

ter, white matter, cerebellum, planum temporale, and CC structures) involved in

abnormal neural development associated with dyslexia [157] (see Figure 64). A

general MRI-based dyslexia framework to detect such abnormalities is illustrated

in Figure 65. The input of the framework is the MRI data (e.g., structural MRI,

fMRI, or DTI). The first step of the framework is to remove the noise and enhance

the images using image filtering and noise removal techniques. Second, the brain

structure is selected either manually or using a specified segmentation technique

for the target brain structure. Finally, different metrics can be derived from the

selected brain structure to indicate an abnormality associated with dyslexia. An

abnormality is identified if a candidate metric showed a significant difference be-

tween its reported values tested on two sample groups of normal and dyslexic

subjects. The goal of this survey is to address these abnormalities and present the

different metrics used to describe them using MRI techniques.

These brain abnormalities can be reported using different MRI techniques

(e.g., structural MRI, fMRI, or DTI). Using structural MRI, the brain abnormalities

can be described using different volumetric and shape metrics. For example, MRI

studies reported altered brain volumes in the brain of dyslexic individuals found
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FIGURE 64: Different brain structures that are involved in dyslexia.

FIGURE 65: A general framework for analyzing MRI images in order to detect

brain abnormalities associated with dyslexia.

on specific regions of the brain (e.g., in the grey matter, white matter, cerebellum,

and CC structures). In addition, shape metrics have been derived from structural

MRI, such as the reported abnormality in CC thickness and asymmetry of the cere-

bellum in dyslexic subjects with respect to controls. fMRI can provide measures for

the under- or over-activations in dyslexic subjects compared with controls, when

stimulated with different reading operations. Using DTI, the diffusion parameters,

such as the fraction anisotropy (FA), are candidate metrics to describe the abnor-

118



malities associated with dyslexia. Figure 66 summarizes the different findings that

can be obtained using different MRI techniques such as structural MRI, fMRI, and

DTI. The following section will discuss all these findings including the various

aspects of implemented methodologies and testing databases.

FIGURE 66: A taxonomy of the different findings that can be obtained using the

different MRI techniques such as structural MRI, fMRI, and DTI.

B. STRUCTURAL MRI

Magnetic resonance imaging (MRI) is a medical imaging modality that is

based on the principles of nuclear magnetic resonance (NMR) spectroscopy [12].

The main strength of MRI is that it offers the best soft tissue contrast among all

image modalities. This makes MRI the most powerful noninvasive tool for clini-

cal diagnosis and a very useful modality in imaging the brain anatomy [13]. Due

to the structural MRI ability to image brain soft tissues with high contrast, it has

been used extensively to reveal dyslexia-associated abnormalities in different brain

structures as well as to derive volumetric and shape metrics to describe these ab-

normalities [158]. Below, the structural MRI findings for dyslexia are described for

each brain structure that has been investigated, i.e., the grey matter, white matter,

cerebellum, planum temporale, and CC (see Figure 67).
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(a) (b)

(c) (d) (e)

FIGURE 67: Different brain structures that are involved in dyslexia as appears in

structural MRI: (a) grey matter (delineated in dark-red), (b) white matter (delin-

eated in dark-cyan), (c) corpus callosum (delineated in yellow) , (d) cerebellum

(delineated in green), and (e) Planum temporale (delineated in red).

1. The Grey Matter

The cerebral cortex or grey matter contains the nerve cells responsible for

routing sensory and/or motor stimuli through the central nervous system (see

Figure 68). One hypothesis suggests that the grey matter density in specific re-

gions (e.g., reading areas) of the brains of dyslexic individuals is altered. Fol-

lowing this hypothesis, altered brain regions were identified with a voxel-based

morphometry (VBM) [159–168] using software packages, such as BrainImage soft-

ware [159] and statistical parametric mapping (SPM) software [160, 161, 163–168].

The idea behind the VBM approach is to normalize the brain stereotactically to a

common space (e.g., an atlas with predefined anatomic subregions) and use voxel

statistics to identify anatomical brain regions of altered grey matter density. Using

120



the VBM analysis, altered grey matter density was identified in the left temporal

lobes [159], left and right fusiform gyrus, bilateral anterior cerebellum, and right

supramarginal gyrus [160]. Brown et al. [161] reported decreased volumes of the

gray matter in the left temporal lobe, bilaterally in the temporoparietooccipital

juncture, frontal lobe, caudate, thalamus, and cerebellum of dyslexic brains. Bram-

bati et al. [162] reported focal abnormalities in gray matter volume bilaterally in the

planum temporale, inferior temporal cortex, and cerebellar nuclei. Silani et al. [163]

identified altered grey and white matter density in the left middle and inferior tem-

poral gyri and the left arcuate fasciculus. Eckert et al. [164] identified gray matter

volume differences in the left and right lingual gyrus, left inferior parietal lobule,

and cerebellum. Vinckenbosch et al. [165] reported reduced gray matter volumes

in both temporal lobes of dyslexic brains, particularly in the middle and inferior

temporal gyri of the left temporal lobe. In addition, the study reported increased

gray matter density bilaterally in the precentral gyri. Hoeft et al. [166] reported re-

duced gray matter volume in the left parietal region in dyslexic brains. Steinbrink

et al. [168] reported reduced gray matter volumes in the superior temporal gyrus

of both hemispheres of dyslexic brains. Pernet et al. [169] reported alterations of

the grey matter in the left superior temporal gyrus, occipital-temporal cortices, and

lateral/medial cerebellum.

Schultz et al. [170] emphasized the role of sex and age when analyzing

the brain abnormalities associated with dyslexia. Following this way of thinking,

Evans et al. [171] investigated grey matter abnormalities associated with sex and

age in dyslexia. They used a VBM approach to study the grey matter differences

between four groups: 28 men (mean age 43 years), 26 women (mean age 34 years),

30 boys (mean age10 years), and 34 girls (mean age 10 years). For the first group

(men), reduced grey matter volumes were reported in both the left middle/inferior

temporal gyri and right postcentral/supramarginal gyri of the brains. In the sec-

ond group (women), reduced grey matter volumes were reported in the right pre-
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FIGURE 68: A visualization figure for the brain showing the grey matter, white

matter, and corpus callosum structures.

cuneus and paracentral lobule/medial frontal gyrus. In boys, a reduced grey mat-

ter volume was reported in the left inferior parietal cortex (supramarginal/ angu-

lar gyri). Finally, differences in girls were seen within the right central sulcus and

adjacent gyri, and the left primary visual cortex. The study suggested the impor-

tance of considering sex and age when analyzing grey matter abnormalities.

In addition, VBM analysis has been used to investigate other findings asso-

ciated with dyslexia. For example, Jednoróg et al. [172] used a VBM approach to in-

vestigate the existence of anatomical markers associated with distinct cognitive im-

pairments of dyslexia. VBM analysis has been applied to four groups: a group of 35

controls and three groups of dyslexic subtypes (total of 46 dyslexic children). These

groups were classified based on the cognitive deficits: phonological, rapid nam-

ing, magnocellular/dorsal, and auditory attention shifting. VBM analysis revealed

grey matter volume clusters specific to each studied group including areas of left

inferior frontal gyrus, cerebellum, right putamen, and bilateral parietal cortex.

Krafnick et al. [173] used VBM analysis to investigate possible volumetric changes

in the grey matter following intensive reading intervention in dyslexic children,

which resulted in significant gains in reading skills. The study on 11 dyslexic chil-

dren showed that the intervention was accompanied by an increase in grey mat-
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ter volume, reported in the left anterior fusiform gyrus/hippocampus, left pre-

cuneus, right hippocampus and right anterior cerebellum. Raschle et al. [174] used

VBM analysis to investigate if the structural alterations in the brain are present

before reading is taught. This study, performed on 20 children, reported a reduc-

tion in gray matter volumes in the left occipitotemporal, bilateral parietotempo-

ral regions, left fusiform gyrus, and right lingual gyrus for pre-reading children

with a family history of dyslexia compared to children without a family history of

dyslexia. The study suggested that the reported brain alteration in dyslexia may

be present at birth or develop in early childhood prior to reading onset.

Instead of examining the volumetric changes in the grey matter densities in

the brain, several studies have investigated the shape abnormalities in the brain

cortex associated with dyslexia [5, 175, 176]. For example, Nitzken et al. [5] used

spherical harmonic (SH) analysis to detect the brain cortex variability between

dyslexic and normal brains. The SHs (a linear combination of special basis func-

tions) were used to represent the shape complexity of the 3D surface of the brain

in controls and dyslexic individuals. The shape complexity of the brain was de-

scribed using the estimated number of the SHs to delineate the brain cortex (see

Figure 69). This number was used to classify the brains as normal or dyslexic.

Their experiments suggest that the estimated number of the SHs is a promising

supplement to the current screening methods for dyslexia. A study by Williams

et al. [175], using the SH analysis in [31], observed that dyslexic brains exhibit

less surface complexity than controls (see Figure 69). Altarelli et al. [176] analyzed

the cortical thickness on the ventral occipitotemporal regions, due to their defined

functional response to visual categories. The cortical thickness was estimated for

each participant using Freesurfer software [177, 178]. The study reported a reduc-

tion in the cortical thickness in the left hemisphere regions of dyslexic brain, which

are responsive to words. Table 11 summarizes the current MRI-based systems for

the detection of dyslexia-associated grey matter abnormalities.
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Dyslexic Control

Original

Mesh

1 SH

5 SHs

20 SHs

40 SHs

60 SHs

FIGURE 69: Method proposed by Nitzken et al. [5] for the approximation of the

3D brain cortex shape for dyslexic and normal subjects.

TABLE 11: Image-based systems for the detection of dyslexia-associated grey mat-

ter abnormalities using structural MRI. For each study, the number of subjects, the

method, and the study outcomes are reported.

Study Data Method Findings

Eliez et al. [159]

30 subjects:

16 dyslexic

and 14 control

Voxel-based mor-

phometry (VBM)

• Altered grey matter

density was reported

in the left temporal

lobes

124



Table 11: Continued.

Brown et

al. [161]

30 subjects:

16 dyslexic

and 14 control

Voxel-based mor-

phometry (VBM)

• Reduced gray mat-

ter volumes were

reported in dyslexic

brains in the left tem-

poral lobe, bilaterally

in the temporopari-

etooccipital juncture,

in the frontal lobe,

caudate, thalamus,

and cerebellum

Silani et

al. [163]

64 subjects:

32 dyslexic

and 32 control

Voxel-based mor-

phometry (VBM)

• Altered grey matter

density was reported

in the left middle and

inferior temporal gyri

and the left arcuate

fasciculus

Eckert et

al. [164]

26 subjects:

13 dyslexic

and 13 control

Voxel-based mor-

phometry (VBM)

• Altered grey matter

density was reported

in the left and right

lingual gyrus, left in-

ferior parietal lobule,

and cerebellum
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Table 11: Continued.

Vinckenbosch

et al. [165]

24 subjects:

10 dyslexic

and 14 control

Voxel-based mor-

phometry (VBM)

• Reduced gray mat-

ter volumes were

reported in both tem-

poral lobes of dyslexic

brains, particularly in

the middle and infe-

rior temporal gyri of

the left temporal lobe.

Increased gray matter

density was reported

in the precentral gyri

bilaterally

Kronbichler et

al. [160]

28 subjects:

13 dyslexic

and 15 control

Voxel-based mor-

phometry (VBM)

• Altered grey matter

density was reported

in the left and right

fusiform gyrus, bilat-

eral anterior cerebel-

lum, and right supra-

marginal gyrus

Steinbrink et

al. [168]

16 subjects: 8

dyslexic and 8

control

Voxel-based mor-

phometry (VBM)

• Reduced gray matter

volumes were re-

ported in the superior

temporal gyrus of

both hemispheres of

dyslexic brains
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Table 11: Continued.

Pernet et

al. [169]

77 subjects:

38 dyslexic

and 39 control

Voxel-based mor-

phometry (VBM)

• Altered grey mat-

ter volumes were

reported in the left

superior temporal

gyrus, occipital-

temporal cortices,

and lateral/medial

cerebellum

Krafnick et

al. [173]

11 dyslexic

children

Voxel-based mor-

phometry (VBM)

• Reading improve-

ments are accompa-

nied by an increase in

grey matter volume,

reported in the left

anterior fusiform

gyrus/hippocampus,

left precuneus, right

hippocampus and

right anterior cerebel-

lum
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Table 11: Continued.

Raschle et

al. [174]
20 children

Voxel-based mor-

phometry (VBM)

• Reduced gray mat-

ter volumes were

reported in the left

occipitotemporal,

bilateral parietotem-

poral regions, left

fusiform gyrus and

right lingual gyrus for

pre-reading children

with a family-history

of dyslexia compared

to children without

a family-history of

dyslexia

Nitzken et

al. [5]

30 subjects:

16 dyslexic

and 14 control

Analysis of cortex

using spherical har-

monics (SHs)

• The estimated num-

ber of the SHs, used to

approximate the brain

shape complexity, can

be used as a discrimi-

nant feature to distin-

guish dyslexic brains

from controls

Williams et

al. [175]

47 subjects:

16 dyslexic

and 31 control

Analysis of cortex

using spherical har-

monics (SHs)

• The study observed

that dyslexic brains

exhibit less surface

complexity than

controls
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Table 11: Continued.

Evans et

al. [171]

118 subjects:

59 dyslexic

and 59 control

Voxel-based mor-

phometry (VBM)

• The study reported

reduction in the grey

matter densities in

specific regions based

on sex and age

Jednorog et al.

[172]

81 subjects:

46 dyslexic

and 35 control

Voxel-based mor-

phometry (VBM)

• VBM revealed grey

matter volume clus-

ters specific for three

studied groups (clas-

sified based on the

cognitive deficits)

including areas of

left inferior frontal

gyrus, cerebellum,

right putamen, and

bilateral parietal

cortex

Altarelli et

al. [176]

29 subjects:

14 dyslexic

and 15 control

Analysis of the cor-

tical thickness us-

ing Freesurfer soft-

ware [177]

• The study reported a

reduction in thickness

in dyslexic chil-

dren compared with

controls in the left

hemisphere regions

that are responsive to

words
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2. White Matter

The white matter of the brain connects different areas of the gray matter

within the nervous system (see Figure 68). Several studies [6–8, 163, 179] have at-

tempted to identify how the connectivity (i.e., the white matter) between different

gray matter areas is related to dyslexia. Using VBM, white matter brain regions

were identified to be associated with developmental dyslexia. For example, Silani

et al. [163] used a VBM method to identify altered white matter density in the left

middle and inferior temporal gyri and the left arcuate fasciculus.

Instead of examining the volumetric changes in the white matter densities

in the brain, other studies have investigated the shape abnormalities in the white

matter in dyslexic brains [6–8, 179]. For example, El-Baz et al. [6–8] quantified the

differences between the shape of cerebral white matter (CWM) gyrifications for

dyslexic and normal subjects, see Figure 70. The reported results showed statisti-

cal significant differences in the reported geometric characteristics of CWM gyrifi-

cations between normal and dyslexic subjects. Casanova et al. [179] analyzed the

depth of the gyral white matter measured in an MRI series of 15 dyslexic adult men

and 11 age-matched comparison subjects. Measurements were based upon the 3D

Euclidean distance map inside the segmented cerebral white matter surface. Mean

gyral white matter depth was 3.05 mm (SD ±0.30 mm) in dyslexic subjects and

1.63 mm (SD ±0.15 mm) in the controls. The results added credence to the grow-

ing literature suggesting that the attained reading circuit in dyslexia is abnormal.

Otherwise, the anatomical substratum (i.e., corticocortical connectivity) underly-

ing this inefficient circuit is normal. Table 12 summarizes the current MRI-based

systems for the detection of dyslexia-associated white matter abnormalities.

130



FIGURE 70: Extracted CWM gyrifications (pink) using the method proposed by

El-Baz et al. [6–8]

TABLE 12: Image-based systems for the detection of dyslexia-associated white

matter abnormalities using structural MRI. For each study, the number of subjects,

the method, and the study outcomes are reported.

Study Data Method Findings

Silani et

al. [163]

64 subjects:

32 dyslexic

and 32 control

Voxel-based mor-

phometry (VBM)

• Altered white matter

density was reported

in the left middle and

inferior temporal gyri

and the left arcuate

fasciculus

El-Baz et al. [6–

8]

30 subjects:

16 dyslexic

and 14 control

Shape analysis of the

thickness of CWM

gyrifications

• Results reported sta-

tistically significant

differences in the

reported geometric

characteristics of

CWM gyrifications

between normal and

dyslexic subjects

131



Table 12: Continued.

Casanova et

al. [179]

26 subjects:

15 dyslexic

and 11 control

Analysis of the

depth of the gyral

white matter

• Mean gyral white

matter depth was 3.05

mm (SD ±0.30 mm) in

dyslexic subjects and

1.63 mm (SD ±0.15

mm) in the controls

3. Planum Temporale and Cerebellum

Other brain structures, such as the planum temporale [180, 181] and cere-

bellum [182, 183], have been studied to investigate their relation to developmen-

tal dyslexia. The planum temporale is a highly lateralized cortical region located

posterior to the auditory cortex within the Sylvian fissure. It is a key anatomical

component of Wernicke’s area (see Figure 71), an area which is involved in the

understanding of written and spoken language. This structure has shown a sig-

nificant asymmetry between the two hemispheres of the brain and found to be

larger in the left cerebral hemisphere than the right. Since earlier studies reported

a disturbance in the leftward asymmetry in dyslexia [184], several quantitative

methods for identifying planum temporale anomalies on the MRI of subjects with

developmental dyslexia were developed. For example, Brambati et al. [162] used

a VBM analysis to report focal abnormalities in gray matter volume bilaterally

in the planum temporale. Larsen et al. [185] analyzed the size and symmetry of

the planum temporale using MRI in two groups of normal and dyslexic subjects.

The study observed a planum symmetry of around 70% among the dyslexic and

around only 30% among the control subjects. Among two group of 19 dyslexic and

12 control subjects, Leonard et al. [186] used structural MRI to report asymmetry

in the left-side temporal bank and the right-side parietal bank within both groups,
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with the dyslexic brains showing larger asymmetries. The authors explained these

exaggerated asymmetries as due to an observed shift of right planar tissue from

the temporal to parietal bank in dyslexic individuals. The study also observed a

higher incidence of cerebral anomalies bilaterally in dyslexic subjects. More re-

cently, Bloom et al. [187] analyzed the symmetry of the planum temporale to iden-

tify possible anomalies in developmental dyslexia. They reported a significantly

reduced leftward asymmetry in children with dyslexia.

FIGURE 71: A visualization figure for the brain showing the cerebellum brain

structure and the Wernicke’s area that the planum temporale forming its heart

Although the studies [162, 185–187] showed abnormalities in the asymme-

try of the planum temporale in dyslexic individuals, Rumsey et el. [188] analysis

for the size and asymmetry of the planum temporale reported different findings.

Their study was performed on 16 dyslexic subjects and 14 matched controls that

had been previously analyzed using positron emission tomography (PET) dur-

ing tasks for word recognition and phonological processing [189]. PET analysis

showed functional abnormalities (differences in activation patterns) in temporal

and parietal regions in dyslexic individuals, including the posterior portions of the

superior temporal gyrus containing the planum temporale [189]. However, their

analysis for the size and asymmetry of the planum temporale reported equivalent

leftward asymmetries of the planum temporale in the two groups, i.e., the left side

133



is larger than the right side in around 70% to 80% of both groups. They suggested

that the anomalous asymmetry of the planum temporale is not strongly associ-

ated with dyslexia and did not contribute to the reported functional abnormalities

using PET analysis.

Other studies attempted to distinguish between dyslexic and control par-

ticipants using volumetric features extracted from the cerebellum (see Figure 71).

VBM analysis identified altered grey matter density in the cerebellum [160, 161,

164, 169]. For example, Brown et al. [161] reported decreased volumes of the gray

matter in the cerebellum of dyslexic individuals. Kronbichler et al. [160] identi-

fied altered grey matter bilaterally in the anterior cerebellum. Pernet et al. [169]

reported alterations of the grey matter in lateral/medial cerebellum. Based on

manual tracing of the cerebellum region, Eckert et al. [190] reported reduced vol-

ume of the right anterior lobe of the cerebellum and pars triangularis bilaterally in

dyslexic subjects. Using these volumes, 72% of the dyslexic subjects and 88% of

the controls were correctly classified. Correlated with these findings, Fernandez

et al. [191] also reported reduced volume of the anterior lobe of the cerebellum

in dyslexic individuals based on manual tracing, which was aided by the cerebel-

lar atlas published by Schmahmann et al. [192]. Table 13 summarizes the current

MRI-based systems for the detection of dyslexia-associated abnormalities in the

planum temporale and cerebellum. Due to the limited number of these studies,

more research should be conducted to provide more accurate findings regarding

a possible relation between the planum temporale and cerebellar anomalies to de-

velopmental dyslexia.

Other studies attempt to distinguish between dyslexic and control partici-

pants using volumetric features extracted from the cerebellum, the superior-most

region of the central nervous system (see Figure 71). Using the VBM analysis,

the altered grey matter density was identified in the cerebellum [160, 161, 164, 169].
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For example, Brown et al. [161] reported decreased volumes of the gray matter in

cerebellum of dyslexic brains. Kronbichler et al. [160] identified altered grey mat-

ter bilaterally in the anterior cerebellum. Pernet et al. [169] reported alterations

of the grey matter in lateral/medial cerebellum. Based on manual tracing of the

cerebellum region, Eckert et al. [190] reported reduced volume of the right ante-

rior lobe of the cerebellum and pars triangularis bilaterally in dyslexic subjects.

Using these volumes, 72% of the dyslexic subjects and 88% of the controls were

correctly classified. Correlated with these findings, Fernandez et al. [191] also re-

ported reduced volume of the anterior lobe of the cerebellum in dyslexic brains

based on manual tracing, which was aided by the cerebellum atlas published by

Schmahmann et al. [192]. Table 13 summarizes the current MRI-based systems for

the detection of dyslexia-associated abnormalities in the planum temporale and

cerebellum. Due to the limited number of these studies, more research should be

conducted to provide more accurate findings regarding a possible relation between

the planum temporale and cerebellum anomalies to developmental dyslexia.

TABLE 13: Image-based systems for the detection of dyslexia-associated abnor-

malities in the planum temporale and cerebellum using structural MRI. For each

study, the number of subjects, the method, and the study outcomes are reported.

Study Data Method Findings

Larsen et

al. [185]

28 subjects: 19

dyslexic and

19 controls

Analysis of the size

and symmetry of the

planum temporale

• The results reported

a planum symmetry

of around 70% among

the dyslexic and only

around 30% among

the control subjects
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Table 13: Continued.

Leonard et

al. [186]

31 subjects: 19

dyslexic and

12 controls

Analysis of the size

and symmetry of the

planum temporale

• Reported asymme-

tries in the left-side

temporal bank and

the right-side pari-

etal bank within

both groups were

observed, with

the dyslexic brains

showing larger

asymmetries

Rumsey et

el. [188]

40 subjects: 16

dyslexic and

14 controls

Analysis of the size

and symmetry of the

planum temporale

• Equivalent leftward

asymmetries of the

planum temporale

was reported in

around 70% to 80% of

both groups

Eckert et

al. [190]

50 subjects:

32 dyslexic

and 18 control

Volumetric mea-

surements of brain

regions and cere-

bellum based on

manual tracing

• Reduced volume was

observed in the right

anterior lobe of the

cerebellum and pars

triangularis bilater-

ally of dyslexic brains.

Using these volumes,

72% of the dyslexic

subjects and 88% of

the controls were

correctly classified
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Table 13: Continued.

Eckert et

al. [164]

26 subjects:

13 dyslexic

and 13 control

Voxel-based mor-

phometry (VBM)

• Altered grey matter

density was reported

in the cerebellum

Kronbichler et

al. [160]

28 subjects:

13 dyslexic

and 15 control

Voxel-based mor-

phometry (VBM)

• Altered grey matter

density was reported

bilaterally in the ante-

rior cerebellum

Pernet et

al. [169]

77 subjects:

38 dyslexic

and 39 control

Voxel-based mor-

phometry (VBM)

• Altered grey mat-

ter volumes were

reported in the

lateral/medial cere-

bellum

Bloom et

al. [187]

55 subjects: 29

dyslexic and

26 controls

Analysis of the size

and symmetry of the

planum temporale

• A significant reduc-

tion of the leftward

asymmetry in chil-

dren with dyslexia

was reported

Fernandez et

al. [191]

39 subjects:

23 dyslexic

and 16 control

Volumetric analysis

of the cerebellum

brain structure

based on manual

tracing

• Reduced volume of

the anterior lobe of

the cerebellum was

observed in dyslexic

brains

4. Corpus Callosum (CC)

The CC is the largest fiber bundle in the brain that is responsible for trans-

ferring sensory, motor and cognitive information between homologous regions of
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the two cerebral hemispheres. Since human reading skills are highly affected by

impaired communication between the hemispheres, the detection of CC abnor-

malities in dyslexia has been an area of research interest. To detect these abnor-

malities, several studies [23–26] traced the CC from a midsagittal MRI slice either

manually [23–25] or with commercial software packages [26], and the statistical

difference analysis has been applied to find out which part in the CC contributes

significantly to identifying brains of dyslexic individuals.

Instead of using area metrics that are subject to errors associated with pixel-

based measurement, shape-based approaches to detect the shape differences be-

tween the CC of normal and dyslexic subjects have been explored. Earlier works

for dyslexia detection focused on the 2D analysis of the CC. For example, Plessen

et al. [193] computed the mean shape of both dyslexic and normal CCs from the

midsagittal slice of the CC and noticed that the CC body length is a discriminatory

feature between the dyslexic and normal subjects.

To ensure a more accurate quantification of anatomical differences between

the CC of dyslexic and control subjects, Casanova et al. [194] and Elnakib et al. [195]

applied a 3D analysis method for the CC surface. To ensure a complete 3D anal-

ysis, the whole CC surface (traced from all the slices in which the CC appears) is

mapped onto a cylinder, in such a way as to accurately compare various CCs of

dyslexic and normal individuals. Validation on 3D simulated phantoms demon-

strated the ability of the method in [194, 195] to accurately detect the shape vari-

ability between two 3D surfaces [9]. The study reported a generalized increase in

size of the CC in dyslexia with a concomitant diminution at its rostral and cau-

dal poles. In addition, they reported significant differences between 14 normal

and 16 dyslexic subjects in all four anatomical divisions, i.e., the splenium, ros-

trum, genu and body of their CCs (see Figure 72). The 3D analysis of the CC sur-

face resulted in a number of 3D features that can be used to discriminate between
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dyslexic subjects and controls [9, 196]. In [196], Elnakib et al. reported significant

differences between the CC centerlines (CCL) for 14 normal and 16 dyslexic sub-

jects. They extended their work in [9] and used another feature- the centerline

thickness (CCT) defined as the mean thickness for each CC cross section perpen-

dicular to the centerline- to distinguish between normal and dyslexic subjects (see

Figure 72). The combination of the two features (CCL and CCT) showed an in-

crease in the accuracy from 75% (using the CLL alone)-88% (using CCT alone) to

94%. To summarize the current image-based systems for detection of dyslexia-

associated abnormalities in CC brain structure, Table 14 provides a summary of

these systems.

TABLE 14: Image-based systems for the detection of dyslexia-associated CC ab-

normalities. For each study, the number of subjects, the method, and the study

outcomes are reported.

Study Data Method Findings

Hynd et al. [23]

32 subjects:

16 dyslexic

and 16 control

Area-based analysis

of the CC in the mid-

sagittal MRI brain

slice

• The study reported

a significantly smaller

anterior region of in-

terest (the genu) in

the dyslexic children

and significant corre-

lations between read-

ing achievement and

the region-of-interest

measurements for the

genu and splenium
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Table 14: Continued.

Rumsey et

al. [24]

40 subjects:

21 dyslexic

and 19 control

Area-based analysis

of the CC in the mid-

sagittal MRI brain

slice

• The study reported a

larger area of the pos-

terior third of the CC

in dyslexic men than

in controls. No differ-

ences were reported

in the anterior or mid-

dle CC

Robichon et

al. [25]

28 subjects:

16 dyslexic

and 12 control

Area- and

morphological-

based analysis of

the CC in the mid-

sagittal MRI brain

slice

• The study reported

a more circular and

thicker shape of the

dyslexics’ CC and

a larger average

midsagittal surface in

dyslexic men than in

controls, in particular

in the isthmus

Fine et al. [26] 68 readers

Area-based analysis

of the CC in the mid-

sagittal MRI brain

slice

• Results suggested

that better readers

have larger midsagit-

tal areas at the CC

midbody

Plessen et

al. [193]

40 subjects:

20 dyslexic

and 20 control

Analysis of the CC

shape in the mid-

sagittal MRI brain

slice

• The study reported

a shorter CC length

in the dyslexic

group, localized

in the posterior

midbody/isthmus

region
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Table 14: Continued.

Elnakib et

al. [196]

40 subjects: 16

dyslexic and

14 controls

3D shape analysis of

the CC

• The study reported

significant differences

between the CC cen-

terlines between nor-

mal and dyslexic sub-

jects

Elnakib et

al. [195]

40 subjects: 16

dyslexic and

14 controls

3D shape analysis of

the CC

• The study reported

significant differences

between normal and

dyslexic subjects in all

four anatomical divi-

sions, i.e., splenium,

rostrum, genu and

body of the CC

Casanova et

al. [194]

40 subjects: 16

dyslexic and

14 controls

3D shape analysis of

the CC

• The study reported

a generalized increase

in size of the CC in

dyslexia with a con-

comitant diminution

at its rostral and cau-

dal poles

Elnakib et

al. [9]

40 subjects: 16

dyslexic and

14 controls

3D shape analysis of

the CC

• Combining two fea-

tures, CCL and CCT,

reported an increase

in the accuracy from

75% (using the CLL

alone)–88% (using

CCT alone) to 94%
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(a) (b)

FIGURE 72: 33D shape analysis of the CC proposed by Elnakib et al. [9]: (a) color-

coded anatomical differences between the CC for normal and dyslexic subjects:

the common parts (gray), parts that exist in normal subjects and do not exist in

dyslexic subjects (blue), and parts that exist in dyslexic subjects and do not exist

in normal subjects (pink), (b) 3D CC features used to classify normal and dyslexic

subjects: the centerline length (CLL) and the mean CC thickness (CCT), defined as

the mean thickness for each CC cross section perpendicular to the centerline.

C. DIFFUSION TENSOR IMAGING (DTI)

DTI is another type of MRI that is based on the measurement of the Brown-

ian motion of water molecules in tissue. DTI is a newly developed MRI technique

to study in vivo tissue microstructure, e.g., the connectivity between different brain

areas. This MRI modality allows the scientist to look at the network of nerve fibers.

In addition, the analysis of DTI derives important features of the brain tissue, e.g.,

FA feature. The latter micro-structural feature reflects how the diffusion within

a voxel depends on orientation, i.e., specifies the degree of diffusion directional-
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ity. Due to these reasons, DTI has been investigated by neuroscientists to study a

number of disorders (e.g., addiction, epilepsy, traumatic brain injury, and various

neurodegenerative diseases) and to demonstrate subtle abnormalities in a variety

of diseases, (e.g., stroke, multiple sclerosis, dyslexia, and schizophrenia) [197–199].

An example of brain nerves’ connectivity bundle obtained from a 3D DTI data set

is shown in Figure 73.

FIGURE 73: Colored streamlines represent likely paths of nerve fiber bundles. This

data was extracted from a diffusion imaging data set. Courtesy of Schultz [10].

DTI was used extensively to determine regions related to dyslexia within

the white matter [168, 200–207]. Klingberg et al. [200] applied a voxel-based ap-

proach based on the SPM software package to spatially smooth and normalize

the brains to a common stereotactic space before analyzing the FA values. They re-

ported that the FA scores decrease bilaterally in the temporal-parietal white matter

in the subjects with reading difficulties. Correlated with these findings, Beaulieu et

al. [208] used DTI to show that the brain connectivity in the white matter, region-

ally in the left temporo-parietal, is correlated with a wide range of reading abilities

in young children (age, 8-12 years).

To avoid the potential influence of spatial smoothing and spatial registra-

tion associated with the voxel-based analyses (e.g., with the SPM software), Niogi

et al. [201] determined a region of interest either manually or semi-automatically

with user-selected seed pixels. They reported significant differences in the FA
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scores within the left superior corona radiata and the left centrum semiovale com-

paring children with a reading disability and non-impaired children. Steinbrink

et al. [168] reported a decreased FA in bilateral fronto-temporal and left temporo-

parietal white matter regions (inferior and superior longitudinal fasciculus) in the

dyslexic subjects. A correlation between white matter anisotropy and speed of

pseudoword reading was observed. Richards et al. [202] reported alterations of the

white matter microstructure in specific bilateral tracts within the frontal lobe, tem-

poral lobe, occipital lobe, and parietal lobe. Carter et al. [203] reported a reduced

FA in the left superior longitudinal fasciculus (SLF) and abnormal orientation in

the right SLF in dyslexics. Odegard et al. [204] reported correlations between FA

values and real word and pseudoword decoding in the left superior corona radi-

ata (positive correlation) and the left posterior CC (negative correlation). Rimrodt

et al. [209] reported reduced FA values in the left inferior frontal gyrus and left

temporo-parietal white matter of dyslexic brains. Vandermosten et al. [205] re-

ported a reduced FA in the left arcuate fasciculus of adults with dyslexia. In an

extension of this work, Vandermosten et al. [206] reported a reduction in the white

matter lateralization in both the posterior superior temporal gyrus and the arcuate

fasciculus in the dyslexic readers. Hasan et al. [207] studied the utility of regional

DTI measurements of the CC in understanding the neurobiology of reading disor-

ders in a group of 50 childen: 24 dyslexics, 15 readers with comprehension or flu-

ency problems, and 11 controls. They analyzed the diffusion attributes in the mid-

sagittal cross-sectional CC subregions using DTI. The results reported a significant

correlation of the callosal microstructural attributes, such as the mean diffusivity

of the posterior middle sector of the CC, with measures of word reading and read-

ing comprehension. In addition, reading group differences in FA, mean diffusivity

and radial diffusivity were observed in the posterior CC. Table 15 summarizes the

current DTI-based systems for the detection of dyslexia-associated white matter

microstructure abnormalities.
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TABLE 15: Image-based systems for the detection of dyslexia-associated white

matter microstructure abnormalities using DTI. For each study, the number of sub-

jects, the method, and the study outcomes are reported.

Study Data Method Findings

Klingberg et

al. [200]

17 subjects: 6

dyslexic and

11 control

A voxel-based ap-

proach based on the

SPM software to de-

fine the regions and

statistical analysis to

analyze FA values

• The study reported re-

duced FA scores bilat-

erally in the temporal-

parietal white matter

in the subjects with

reading difficulties

Beaulieu et

al. [208]
32 subjects

A voxel-based ap-

proach based on the

SPM software to de-

fine the regions and

statistical analysis to

analyze FA values

• The study reported

that the brain con-

nectivity in the white

matter, regionally

in the left temporo-

parietal, is correlated

with a wide range of

reading abilities in

young children

Niogi et

al. [201]

31 subjects:

11 dyslexic

and 20 control

Manual or semi-

automated determi-

nation of the region

of interest to analyze

the FA values

• They reported signifi-

cant differences in the

FA scores within the

left superior corona

radiata and the left

centrum semioval be-

tween children with

a reading disability

and non-impaired

children
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Table 15: Continued.

Steinbrink et

al. [168]

16 subjects: 8

dyslexic and 8

control

Analysis of DTI data

to examine white

matter microstruc-

ture

• DTI reported re-

duced FA scores in

the dyslexic group

in bilateral fronto-

temporal and left

temporo-parietal

white matter regions

(inferior and supe-

rior longitudinal

fasciculus)

Richards et

al. [202]

21 subjects: 14

dyslexic and 7

control

Voxel-wise sta-

tistical analysis

of the fractional

anisotropy data

using Tract-Based

Spatial Statistics

• Alterations of the

white matter mi-

crostructure were

reported in the

dyslexic group in

specific bilateral tracts

within the frontal

lobe, temporal lobe,

occipital lobe, and

parietal lobe

Carter et

al. [203]

13 subjects: 7

dyslexic and 6

control

Analysis of DTI data

to examine white

matter microstruc-

ture

• A reduced FA score

was reported in the

dyslexic group in the

left superior longitu-

dinal fasciculus (SLF)

and an abnormal ori-

entation was found in

the dyslexic group in

the right SLF
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Table 15: Continued.

Odegard et

al. [204]

17 subjects: 10

dyslexic and 7

control

Voxel-wise sta-

tistical analysis

of the fractional

anisotropy data

using Tract-Based

Spatial Statistics

• Correlations between

FA values and real

word and pseu-

doword decoding

were reported in the

left superior corona

radiata (positive

correlation) and the

left posterior corpus

callosum (negative

correlation)

Rimrodt et

al. [209]

31 subjects:

14 dyslexic

and 17 control

Semi-automated

analysis of DTI data

to examine white

matter microstruc-

ture

• Reduced FA scores

were reported in

the dyslexic sub-

jects in left inferior

frontal gyrus and

left temporo-parietal

white matter

Hasan et

al. [207]

50 children:

24 dyslexic,

15 readers

with compre-

hension or

fluency prob-

lems, and 11

controls

Diffusion analy-

sis of midsagittal

cross-sectional CC

subregions using

DTI

• Reading group differ-

ences in FA, mean

diffusivity, and radial

diffusivity were ob-

served in the posterior

CC
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Table 15: Continued.

Vandermosten

et al. [205, 206]

40 subjects:

20 dyslexic

and 20 control

Analysis of DTI data

to examine white

matter microstruc-

ture

• Reduced white matter

lateralization was re-

ported in the poste-

rior superior temporal

gyrus [206] and the ar-

cuate fasciculus [205,

206] of the dyslexic

group

D. FUNCTIONAL MRI

Functional magnetic resonance imaging (fMRI) is a noninvasive MRI tech-

nique that is used to study the activated area of the brain after certain stimuli and

to map changes of brain hemodynamics that correspond to mental operations. The

technique has the ability to observe which structures participate in specific mental

tasks [210]. Functional MRI acquires two images, one while the brain is in the rest-

ing state followed by another one after the brain has been stimulated in some way.

The areas of brain activation are determined as any regions which are different

between the two scans. Functional MRI allows radiologists to better understand

brain organization and has the advantage of providing in-depth details of what is

inside the brain.

In the literature, fMRI has played an important role in understanding the

pathophysiology of dyslexia and analyzing the neural brain systems for read-

ing [211]. It has been used extensively to analyze the activation areas of the brain

associated with the reading process within groups of normal and dyslexic subjects.

Rimrodt et al. [212] used fMRI to observe brain activation associated with sentence

comprehension (SC) and word recognition (WR) in two groups of 14 dyslexic sub-
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jects and 15 controls. Activation areas associated with the SC-WR contrast were re-

ported in left inferior frontal and extrastriatal regions. The dyslexic group showed

more activation than controls in the left middle/superior temporal gyri (areas as-

sociated with linguistic processing), bilateral insula, right cingulate gyrus, right

superior frontal gyrus, and right parietal lobe (areas associated with attention and

response selection). Baillieux et al. [213] used fMRI to analyze the activation pat-

terns of 15 dyslexic children and seven matched control subjects during a semantic

association task. The activation patterns showed significant differences in cere-

bral and cerebellar activation between the dyslexic and the control groups. Focal

activation patterns were found in the control group bilaterally in the frontal and

parietal lobes and the posterior regions of the two cerebellar hemispheres. In con-

trast, diffuse activation was reported on cerebral and cerebellar regions of dyslexic

subjects. The authors suggested the association between dyslexia and deficits of in-

formation processing and transfer within the cerebellar cortex. Reilhac et al. [214]

used fMRI to investigate functional abnormalities in dyslexic children with visual

attention span disorder during a letter-string comparison task. A lower accuracy

of detecting letter identity substitutions within strings was reported in dyslexic

subjects. Compared to the control group, under-activation was detected in the

left superior parietal lobules and the left ventral occipito-temporal area of dyslexic

subjects, suggesting that these regions may participate in letter string processing.

Olulade et al. [215] analyzed fMRI activation patterns of nine reading-disabled and

12 control subjects during the analysis of complex spatial material unrelated to the

reading of text. To perform that, two spatial problem solving tasks were tested: a

word reading-rhyming task and a spatial visualization-rotation task. Reduced ac-

tivation was observed in bilateral occipital, parietal and middle frontal regions in

the reading-disabled group during both spatial tasks. The authors suggested that

the underlying neural abnormality in dyslexic brains may affect non-related read-

ing processes. In addition, they suggested that this abnormality may be reflected

on other left hemisphere brain areas that are not associated with text reading.
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In addition, fMRI has been used extensively to analyze brain functionality

in dyslexia during phonological processing [216–222]. For example, Shaywitz et

al. [216] analyzed fMRI activation patterns of 26 dyslexic subjects and 23 control

subjects during a phonological analysis task. Under-activation was observed in

Wernicke’s area, the angular gyrus, and striate cortex and over-activation was ob-

served in the inferior frontal gyrus , suggesting a neural deficit in dyslexia. Shay-

witz et al. [217] used fMRI to analyze the activation patterns of dyslexic children

during tasks that required phonologic analysis (i.e., during pseudoword and real-

word reading tasks). The study was conducted on 70 dyslexic cildren and 74

controls. The dyslexic subjects reported deficits in the posterior brai regions, in-

cluding regions in the parietotemporal and occipitotemporal sites. The activation

magnitude in the left occipitotemporal region was positively correlated with the

reading skill. In addition, younger dyslexic children exhibited lower activation

in the left and right inferior frontal lobe compared with older dyslexic children.

The authors suggested that dyslexic children have deficits in the neural systems

involved in reading that become evident at a young age. Georgiewa et al. [218]

analyzed the activation patterns of 9 dyslexic and 8 control children during non-

oral reading of German words. Compared to the control group, fMRI reported

hyper-activation in the left inferior frontal gyrus in the dyslexic group suggestive

of abnormalities in phonological processing. The control subjects exhibited activa-

tion in the left middle temporal gyrus area, whereas this area showed disturbed

activity in dyslexics. Groth et al. [219] used fMRI to study the auditory temporal

and phonological processing in dyslexic individuals using a German vowel length

discrimination task. Dyslexic subjects performed worse than controls in response

to temporal processing, whereas they did not differ in response to phonological

processing. The study suggested that dyslexia is associated with impairments in

temporal processing. The group extended their study in [220] and showed that the

dyslexic subjects, who performed low in response to temporal processing, showed

decreased activation of the insular cortices and the left inferior frontal gyrus. These
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results suggested a neural basis for the deficits in the temporal auditory process-

ing for dyslexic subjects. Dı́az et al. [221] analyzed fMRI activation patterns of

14 dyslexic subjects and 14 matched controls during a phonological task (attend-

ing to speech sound changes) and a speaker task (attending to changes in voice

characteristics). For both tasks, the dyslexic subjects exhibited abnormal activa-

tion of the medial geniculate body of the auditory sensory thalamus. In addition,

this activity was correlated with reading scores, suggesting that the dysfunction

of the auditory thalamus may participate in dyslexia. Kovelman et al. [222] an-

alyzed fMRI activation patterns of 12 dyslexic, 12 age-matched control children,

and 10 Kindergarten controls, who were matched to dyslexic children based on

standardized tests of phonological awareness. During an auditory word-rhyming

task, both control groups, but not the dyslexic, showed activation in the left dorso-

lateral prefrontal cortex, suggesting that phonological awareness may depend on

the proper function of this region.

Moreover, fMRI has been used to investigate the neural integration of let-

ters and speech in the brains of dyslexic individuals [148, 223]. Blau et al. [148] an-

alyzed fMRI activation patterns of 13 dyslexic and 13 control subjects during four

conditions of either reading letters or understanding speech sounds: visual, audi-

tory, congruent audiovisual speech stimuli, and incongruent audiovisual speech

stimuli. The study revealed under-activation of the superior temporal cortex in

the dyslexic group when integrating letter and speech sounds, suggesting a deficit

in the neural integration of letters and speech in dyslexic brains. The group ex-

tended their work in [223] on 18 dyslexic children and 16 control children to study

letter-speech sound integration in dyslexia. The study reported reduced neural

integration of letters and speech sounds in the planum temporale/Heschl sulcus

and the superior temporal sulcus in dyslexic subjects. The authors suggested that

letter-speech sound integration contributes to learning to read but may be poorly

developed in dyslexia.
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Investigation of the pathophysiology of dyslexic brains using fMRI has been

the focus of several research studies [224–226]. Demb et al. [225] used fMRI to ana-

lyze the pathophysiology of dyslexic brains in an experiment using visual stimuli.

The primary visual cortex and extrastriatal areas showed reduced activations in

dyslexic subjects, suggesting a deficit in the magnocellular pathway in the dyslexic

brains. In [224], Eden et al. used fMRI to study visual motion processing on six

dyslexic subjects and eight controls. During the presentation of stationary patterns,

both groups showed same activation in the extrastriatal cortex and V5/MT area-a

part of the magnocellular visual subsystem located in the extrastriatal visual area

that has been previously characterized for visual motion processing [227]. During

the presentation of moving stimuli, the V5/MT area was activated in the control

but not the dyslexic group. Peyrin et al. [226] investigated neurobiological evi-

dence from fMRI for the reported dissociation between phonological and visual

attention span disorders in dyslexic children [228]. The study analyzed the activa-

tion patterns of two dyslexic subjects: one with a phonological disorder but pre-

served visual attention span abilities and the second with the reverse profile. fMRI

reported a decreased activation in the left inferior frontal gyrus of the first subject

during a phonological rhyme judgment task, whereas the second subject exhibited

a normal level of activation in this region. In contrast, a decreased activation of the

parietal lobules was reported in the second subject during a visual categorization

task, whereas these regions were normally activated in the first subject. In spite

of the limited number of the tested subjects, the study provided insights about a

possible relation between distinct cognitive impairments and distinct brain dys-

functions in dyslexia.

The brain activation patterns in dyslexia have also been investigated during

working memory tasks [229, 230]. Wolf et al. [229] used fMRI to investigate the

functional neuroanatomy underlying cognitive dysfunction in dyslexia. To per-

form this task, the study analyzed the activation pattern of 12 dyslexic subjects and
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13 controls during verbal working memory task. The dyslexic subjects were slower

than the controls. In addition, they were less accurate as the demand of the work-

ing memory increased. During working memory subprocesses, the authors identi-

fied abnormal connectivity patterns in the dyslexic subjects in two brain networks:

a ”phonological” (associated with the recognition of verbal stimuli) network and

an ”executive” network (associated with the accuracy of the working memory task

and the number of errors during a spelling test). The dyslexic subjects exhibited an

increased connectivity pattern within the ”phonological” network in the left pre-

frontal and inferior parietal regions. Within the ”executive” network, the dyslexic

subjects showed an increased functional connectivity in the left angular gyrus, the

right superior parietal cortex, the left inferior frontal gyrus, the left hippocam-

pal gyrus, and the right thalamus whereas they exhibited a decreased functional

connectivity in the bilateral dorsolateral prefrontal cortex, the left cuneus, the left

insula, the right inferior parietal lobule, and the right precuneus. The authors

suggested that the working memory dysfunction in dyslexia may be due to an

abnormal functional connectivity in dissociable brain networks that are related

to ”phonological” and ”executive” working memory subprocesses. Beneventi et

al. [230] analyzed fMRI activation patterns of 11 dyslexic subjects and 13 controls

during a working memory task. Reduced activation was observed in the left su-

perior parietal lobule and the right inferior prefrontal gyrus in the dyslexic group.

As the working memory load increased, the control subjects, but not the dyslexic

subjects, exhibited increased activation in the working memory area, suggesting

abnormal deficit in the working memory in dyslexic brains.

Other fMRI studies have investigated the functional brain connectivity in

specific brain regions in response to different processing tasks [231, 232]. For ex-

ample, Pugh et al. [231] used fMRI to investigate the functional connectivity in

dyslexic brains around the angular gyrus in the left hemisphere during print tasks

that require phonological assembly. The study was conducted on 29 dyslexic and
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32 control subjects. The functional connectivity exhibited strong patterns in both

groups in print tasks that do not require phonological assembly. In tasks that de-

pend on assembly, disruption in functional connectivity was observed in the left

hemisphere in the dyslexic group, suggesting a neural deficit in dyslexia associated

with phonological-processing. Van der Mark et al. [232] used fMRI to analyze the

connectivity of the visual word form area (VWFA) [233], within the larger left oc-

cipitotemporal cortex, to its neighboring language regions. The study analyzed the

activation patterns in 18 dyslexic children and 24 matched controls during a con-

tinuous reading task. In the control group, the VWFA area was functionally con-

nected to the left frontal and parietal language areas, but not connected to adjacent

posterior and anterior regions. In contrast, the dyslexic group showed functional

disconnectivities between the VWFA area and left inferior frontal and left inferior

parietal language areas. The authors suggested that the deficits in the functional

connectivity between the VWFA area and major language areas may lead to prob-

lems in orthographic and phonological processing of visual word forms.

Several other studies have investigated the functional activation of dyslexic

subjects before and after treatment using fMRI [234–236]. For example, Temple

et al. [234] analyzed the functional activation of 20 dyslexic subjects and 12 nor-

mal subjects during phonological processing before and after a treatment program

that was based on auditory processing and oral language training. In associa-

tion with behavioral improvement in the oral language and reading performance

in the dyslexic group after the treatment, fMRI revealed improved activation in

the left temporo-parietal cortex and left inferior frontal gyrus such that it approx-

imated the normal group. In addition, the right-hemisphere frontal and tempo-

ral regions and the anterior cingulate gyrus exhibited increased activation in the

dyslexic group. The study reported a positive correlation between the ability of

the oral language with the magnitude of activation in the left temporo-parietal cor-

tex. Aylward et al. [235] analyzed the functional activation of 10 dyslexic subjects
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and 11 normal subjects before and after 28 hours of comprehensive reading in-

struction. The study analyzed the brain functionality during two different reading

tasks: a phoneme mapping task (i.e., mapping sounds to letters) and a morpheme

mapping tasks (i.e., understanding the relation between suffixed words and their

roots). Prior to instructional treatment, the left middle and inferior frontal gyri,

right superior frontal gyrus, left middle and inferior temporal gyri, and bilateral

superior parietal regions showed reduced activation in the dyslexic subjects during

the phoneme mapping task. In addition, left middle frontal gyrus, right superior

parietal, and fusiform/occipital region exhibited lower activation in the dyslexic

subjects during the initial morpheme mapping task. After instructional treatment,

the reading scores of the dyslexic subjects showed an improvement that was as-

sociated with an increase in the brain activation during both tasks whereas a de-

crease in the brain activation was observed in the normal group during both tasks

in a way that they approximated the dyslexics’ activation. The authors suggested

that comprehensive reading instruction can lead to behavioral gains that may be

evident on the brain activation patterns during reading tasks. Richards et al. [236]

investigated the functional activation of dyslexic subjects before and after treat-

ment using fMRI during a phoneme mapping task. After a three-week instruc-

tional treatment program, the regions that exhibited abnormal functional activa-

tion in the dyslexic subjects (i.e., in the left frontal gyrus) showed no differences

between the dyslexic and normal groups. The authors suggested that instructional

treatment may normalize the abnormal functional activation.

Other fMRI studies investigate abnormal neural systems of dyslexic brains

in non-English readers [237–239]. For example, Wimmer et al. [237] investigated

dyslexia among German readers using fMRI. During lexical route processes, under-

activation was reported in the left ventral occipitotemporal region of the dyslexic

subjects. During sublexical route processes, under-activation was reported in the

left inferior parietal region and in the left inferior frontal region in the dyslexic sub-
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jects. Over-activations was reported in visual occipital regions, premotor/motor

cortex, and subcortical caudate and putamen in the dyslexic subjects. Both the

dyslexic and the control subjects exhibited no activations in the posterior tem-

poral regions, which have shown abnormalities in fMRI studies on English read-

ers [240]. The authors suggested a possible different neural organization of reading

processes between German and English dyslexic readers. Seki et al. [238] inves-

tigated the functional abnormalities in dyslexic Japanese using fMRI. The study

analyzed the activation patterns of dyslexic subjects during a reading task of sen-

tences constructed from Japanese phonograms (kana). The left middle temporal

gyrus was significantly activated in the control subjects but was less activated in

dyslexic subjects. Other activated regions were detected in individual dyslexic

subjects. Two dyslexic subjects showed activation in the bilateral occipital cortex.

Two other dyslexic subjects showed activation in the inferior part of the frontal

regions. The last dyslexic subject exhibited activation in both the bilateral occip-

ital cortex and the inferior part of precentral gyrus. Since other fMRI studies on

readers of alphabetic languages showed activation in the superior and middle tem-

poral gyri during semantic tasks [241, 242], the authors suggested that functional

brain abnormality in dyslexia during reading tasks may not differ between lan-

guages [238]. Another study by Kita et al. [239] used fMRI to investigate abnormal

brain functionality in Japanese dyslexic children. The study analyzed the activa-

tion patterns of 14 dyslexic children, 15 control children, and 30 control adults

during a phonological manipulation task. The phonological task activated areas in

the left inferior and middle frontal gyrus, left superior temporal gyrus, and bilat-

eral basal ganglia. Among these areas, a hyperactivity and hypo-activity were ob-

served in the basal ganglia and the left superior temporal gyrus, respectively, in the

dyslexic group as compared to the two other groups. The authors suggested that

the abnormal brain activity may have similarities and differences between dyslexic

Japanese and other speaking alphabetical languages. Table 16 summarizes the cur-

rent fMRI-based systems for detecting functional abnormalities in dyslexia.
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TABLE 16: Image-based systems for the detection of dyslexia-associated functional

abnormalities using fMRI. For each study, the number of subjects, the method, and

the study outcomes are reported.

Study Data Method Findings

Eden et al. [224]

14 subjects: 8

dyslexic and 6

control

Analysis of fMRI ac-

tivation during vi-

sual motion process-

ing

• During the presen-

tation of stationary

patterns, both groups

show same activation

in the extrastriatal

cortex and V5/MT

area. During the pre-

sentation of moving

stimuli, the V5/MT

area was activated in

the control but not the

dyslexic group

Demb et

al. [225]

10 subjects: 5

dyslexic and 5

control

Analysis of fMRI ac-

tivation using a vi-

sual stimuli experi-

ment

• The primary visual

cortex and areas in

the extrastriatal cor-

tex showed reduced

activations in dyslexic

subjects
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Table 16: Continued.

Shaywitz et

al. [216]

49 subjects:

26 dyslexic

and 23 control

Analysis of fMRI

activation during

a phonological

analysis task

• Under-activations

were observed in

Wernicke’s area,

the angular gyrus,

and striate cortex.

Over-activation was

observed in the

inferior frontal gyrus

Pugh et

al. [231]

61 subjects:

29 dyslexic

and 32 control

Analysis of func-

tional connectivity

around the angular

gyrus in the left

hemisphere during

print tasks that re-

quire phonological

assembly

• The functional con-

nectivity exhibited

strong patterns in

both groups in print

tasks that do not

require phonological

assembly. In tasks

that depend on as-

sembly, disruption in

functional connectiv-

ity was observed in

the left hemisphere in

the dyslexic group
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Table 16: Continued.

Seki et al. [238]

10 subjects: 5

dyslexic and 5

control

Analysis of fMRI ac-

tivation of dyslexic

Japanese during a

reading task of sen-

tences constructed

from Japanese

phonograms (kana)

• The left middle tem-

poral gyrus was sig-

nificantly activated in

the control subjects

but was less activated

in the dyslexic sub-

jects. Other activated

regions were detected

in particular dyslexic

subjects

Georgiewa et

al. [218]

17 subjects: 9

dyslexic and 8

control

Analysis of fMRI ac-

tivation during non-

oral reading of Ger-

man words

• Compared to the

control group, fMRI

reported hyper-

activation in the left

inferior frontal gyrus

in dyslexic group.

The control subjects

exhibited activation

in the left middle

temporal gyrus area,

whereas this area

showed disturbance

activity in the dyslexic

subjects
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Table 16: Continued.

Shaywitz et

al. [217]

144 subjects:

70 dyslexic

and 74 control

Analysis of fMRI

cerebral and cerebel-

lar activation during

tasks that required

phonologic analysis

• The dyslexic subjects

reported deficits in

the posterior brai

regions. The activa-

tion magnitude in the

left occipitotemporal

region was positively

correlated with the

reading skill. Younger

dyslexic children

exhibited lower acti-

vation in the left and

right inferior frontal

compared with older

dyslexic children
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Table 16: Continued.

Temple et

al. [234]

32 subjects:

20 dyslexic

and 12 control

Analysis of fMRI ac-

tivation before and

after instructional

treatment using

a phonological

processing task

• fMRI, after treat-

ment, revealed an

improved activation

in the left temporo-

parietal cortex and

left inferior frontal

gyrus such that it get

close to the normal

group. In addition,

the right-hemisphere

frontal and tempo-

ral regions and the

anterior cingulate

gyrus exhibited an

increased activation

in the dyslexic group.

The study reported a

positive correlation

between the ability

of the oral language

with the magnitude

of activation in the

left temporo-parietal

cortex
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Table 16: Continued.

Aylward et

al. [235]

21 subjects:

10 dyslexic

and 11 control

Analysis of fMRI

activation before

and after 28 hours

of instructional

treatment using two

different reading

tasks: a phoneme

mapping task and a

morpheme mapping

tasks

• After instructional

treatment, the brain

activation during

both tasks increased

in the dyslexic group

and decreased in the

normal group such

that they get close to

each other

Richards et

al. [236]

39 subjects:

18 dyslexic

and 21 control

Analysis of fMRI

activation during a

phoneme mapping

task before and after

a 3-week instruc-

tional treatment

program

• After treatment, the

regions of abnormal

functional activa-

tion in the dyslexic

subjects (i.e., in the

left frontal gyrus)

showed no difference

between the dyslexic

and normal groups

Blau et al. [148]

39 subjects:

18 dyslexic

and 21 control

Analysis of fMRI ac-

tivation during four

conditions for read-

ing: visual, auditory,

audiovisual congru-

ent, and audiovisual

incongruent

• Under-activation was

observed in the supe-

rior temporal cortex

in the dyslexic group

when integrating let-

ter and speech sounds

162



Table 16: Continued.

Rimrodt et

al. [212]

29 subjects:

14 dyslexic

and 15 control

Analysis of fMRI

activation areas of

the brain during a

sentence compre-

hension and a word

recognition tasks

• Dyslexic group

showed more ac-

tivation than con-

trols in the left

middle/superior

temporal gyri (areas

associated with lin-

guistic processing),

and in the bilateral

insula, right cingulate

gyrus, right superior

frontal gyrus, and

right parietal lobe

(areas associated

with attention and

response selection)

Baillieux et

al. [213]

22 subjects: 15

dyslexic and 7

control

Analysis of fMRI

cerebral and cere-

bellar activation

during a semantic

association task

• Diffused activations

were reported on

the cerebral and

cerebellar regions

in the dyslexic sub-

jects, whereas these

areas showed focal

activation in the

controls
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Table 16: Continued.

Wimmer et

al. [237]

39 subjects:

20 dyslexic

and 19 control

Analysis of fMRI

activation among

dyslexic German

readers during lex-

ical and sublexical

route processes

• The authors reported

a different neural or-

ganization of reading

processes in German

dyslexic readers than

the reported one [240]

for English readers

Wolf et al. [229]

25 subjects:

12 dyslexic

and 13 control

Analysis of fMRI ac-

tivation during ver-

bal working mem-

ory task

• The authors identified

abnormal connectiv-

ity patterns in the

dyslexic subjects in

two brain networks:

a ”phonological”

(associated with the

recognition of verbal

stimuli) network

and an ”executive”

network (associated

with the accuracy of

the working memory

task and the number

of errors during a

spelling test)
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Table 16: Continued.

Beneventi et

al. [230]

24 subjects:

11 dyslexic

and 13 control

Analysis of fMRI

activation during a

working memory

task

• Reduced activations

were observed in the

left superior parietal

lobule and the right

inferior prefrontal

gyrus in the dyslexic

group. As the work-

ing memory load

increased, the control,

but not the dyslexic

subjects, exhibited in-

creased activation in

the working memory

area

Blau et al. [223]

34 subjects:

18 dyslexic

and 16 control

Analysis of fMRI ac-

tivation during four

conditions for read-

ing: visual, auditory,

audiovisual congru-

ent, and audiovisual

incongruent

• Reduced neural in-

tegration of letters

and speech sounds

was reported in

the planum tempo-

rale/Heschl sulcus

and the superior

temporal sulcus in the

dyslexic subjects
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Table 16: Continued.

Van der Mark

et al. [232]

42 subjects:

18 dyslexic

and 24 control

Analysis of fMRI

connectivity

around the vi-

sual word form

area (VWFA) [233]

during a continuous

reading task

• Deficits in the func-

tional connectivity be-

tween the VWFA area

and major language

areas were reported in

the dyslexic group

Groth et

al. [219]

40 subjects:

20 dyslexic

and 20 control

Analysis of fMRI

activation areas of

the brain during

auditory temporal

and phonological

processing

• Dyslexic subjects per-

formed worse than

controls in response

to temporal process-

ing, whereas they did

not differ in response

to the phonological

processing

Steinbrink et

al. [220]

40 subjects:

20 dyslexic

and 20 control

Analysis of fMRI

activation areas of

the brain during

auditory temporal

and phonological

processing

• In response to tem-

poral processing,

dyslexic subjects

performed low and

showed decreased ac-

tivation of the insular

cortices and the left

inferior frontal gyrus
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Table 16: Continued.

Peyrin et

al. [226]

2 dyslexic

subjects

Analysis of fMRI

activation dur-

ing two tasks:

a phonological

rhyme judgement

task and a visual

categorization task

• The fMRI of the two

dyslexic children re-

ported a dissociation

between phonological

and visual attention

span disorders

Reilhac et

al. [214]

24 subjects:

12 dyslexic

and 12 control

Analysis of fMRI ac-

tivation of dyslexic

children with vi-

sual attention span

disorder during a

letter-string compar-

ison task

• A lower accuracy

of detecting letter

identity substitutions

within strings was re-

ported in the dyslexic

subjects. Under-

activations were

detected in the left su-

perior parietal lobules

and the left ventral

occipito-temporal in

the dyslexic subjects

Dı́az et al. [221]

28 subjects:

14 dyslexic

and 14 control

Analysis of fMRI

activationduring a

phonological task

• The dyslexic subject

exhibited an abnor-

mal activation in the

medial geniculate

body of the auditory

sensory thalamus
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Table 16: Continued.

Olulade et

al. [215]

21 subjects: 9

dyslexic and

12 control

Analysis of fMRI

activation dur-

ing two spatial

problem solving

tasks: a word

reading-rhyming

task and a spatial

visualization-

rotation task

• Abnormal functional

neurology was re-

ported during spatial

problem solving tasks

Kovelman et

al. [222]

24 subjects:

12 dyslexic

and 12 control

Analysis of fMRI

activation dur-

ing an auditory

word-rhyming task

• Control subjects,

but not the dyslexic,

showed activations in

the left dorsolateral

prefrontal cortex

Kita et al. [239]

29 subjects:

14 dyslexic

and 45 control

Analysis of fMRI

activation during

a phonological

manipulation task

• The phonological task

activated areas in

the left inferior and

middle frontal gyrus,

left superior temporal

gyrus, and bilateral

basal ganglia. A

hyper-activity and

hypo-activity were

observed in the basal

ganglia and the left

superior temporal

gyrus, respectively, in

the dyslexic group
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E. DISCUSSION AND SUMMARY

Investigating dyslexia-associated brain abnormalities provides insights into

the possible pathophysiological mechanisms of the condition. In addition, dif-

ferent neuroimaging modalities offer noninvasive ways for the early detection of

dyslexia and for following the outcome of treatment interventions. In this chap-

ter, an overview of more than 110 articles that appeared in the field is presented

to address the methodologies and findings of the current MRI-based systems for

detecting brain abnormalities associated with dyslexia. This chapter addresses the

strengths and limitations of the current approaches as well as the current MRI-

based methods for dyslexia diagnosis. This final section summarizes this work by

addressing the correlation between the MRI findings in the literature and outlin-

ing the research challenges that face proposed MRI-based diagnostic methods. In

addition, the suggested trends to solve these challenges are presented.

Several studies have addressed the correlation between MRI findings in

dyslexia by using hybrid MRI techniques (e.g., fMRI supported with structural

MRI) or applying meta-analysis on the existing MRI findings in dyslexia. For ex-

ample, Menghini et al. [167] investigated possible correlation between fMRI and

structural MRI findings associated with the reading process on a group on 10

dyslexic and 10 control subjects. A VBM approach reported reduced grey mat-

ter volumes in the right posterior superior parietal lobule and precuneus and in

the right supplementary motor area in the brains of dyslexic individuals. The re-

ported structural abnormalities are consistent with the reported fMRI changes in

the activation areas of the brain during an implicit learning task. The results sup-

port that an impairment of implicit learning task might affect the ability of learning

to read. Hoeft et al. [166] used both fMRI and VBM analysis to compare the struc-

tural and functional findings on a dyslexic with two judgment control groups: an

age-matched group and a younger reading-matched group. They applied fMRI to
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report the activated areas of the brain during visual word rhyme judgment com-

pared with visual cross-hair fixation rest. Compared to the age-matched group,

the dyslexic group reported hypo-activation in left parietal and bilateral fusiform

cortices and hyper-activation in left inferior and middle frontal gyri, caudate, and

thalamus. Compared to the reading-matched group, the dyslexic group reported

hypo activation in left parietal and fusiform regions. The VBM analysis reported

reduced gray matter volume in the hypo-activated areas, i.e., only in the left pari-

etal region, suggesting the independence of this area on current reading ability.

The results also suggested that the areas of hyper-activation may relate to the level

of current reading ability and their independence of atypical brain morphology in

dyslexia.

In addition, the correlation between DTI and structural findings has been

investigated. Hoeft et al. [243] investigated the capabilities of integrating DTI

and fMRI findings to detect future long-term improvement in reading skills. The

study, conducted on 25 children with dyslexia, showed that the combination of

right inferior frontal gyri activation (observed using fMRI analysis) and right su-

perior longitudinal fasciculus white matter integrity (observed using DTI anal-

ysis) predicted with an accuracy of 72% which particular child would improve

his/her reading skills 2.5 years later. In addition, the activation patterns across the

whole brain during phonological processing has increased the prediction accuracy

over 90%. They suggested that MRI findings can predict future behavioral out-

comes. Steinbrink et al. [168] reported a decreased FA in bilateral fronto-temporal

and left temporo-parietal white matter regions (inferior and superior longitudinal

fasciculus) in German dyslexic individuals. A correlation between white matter

anisotropy and speed of pseudoword reading was observed.

Moreover, meta-analyses on fMRI findings were applied to assess the con-

sistency of reported findings [244, 245]. Maisog et al. [244] performed two activa-
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tion likelihood estimation (ALE) meta-analyses, one to reveal the over-activations

and the other to reveal the under-activations that are associated with dyslexia

using either fMRI or PET. The first meta-analysis on six studies showed hyper-

activity in right thalamus and anterior insula of dyslexic individuals. The sec-

ond meta-analysis on nine studies showed dyslexia-associated under-activation in

two left extrastriatal areas within the Brodmann area 37, precuneus, inferior pari-

etal cortex, superior temporal gyrus, thalamus, and left inferior frontal gyrus and

dyslexia-associated hypo-activity in the fusiform, postcentral, and superior tem-

poral gyri. The authors suggested that reading tasks are more associated with

the left-sided brain regions in control subjects and the right-sided brain regions

in dyslexic subjects. The analysis did not support dyslexia-associated abnormali-

ties in the cerebellum or the left frontal cortex, suggesting that these areas may be

varied according to the study’s design. Richlan et al. [245] performed an ALE

meta-analysis of 17 studies (12 fMRI and 5 PET). The lowest under-activations

were observed in inferior parietal, superior temporal, middle and inferior tempo-

ral, and fusiform regions of the dyslexics’ left hemisphere. Over-activation in the

primary motor cortex and the anterior insula in dyslexic subjects was associated

with under-activation in the inferior frontal gyrus.

Meta-analyses of structural MRI studies (VBM studies) has also been re-

ported, e.g., in [240, 246]. Richlan et al. [240] performed a coordinate-based meta-

analysis on nine VBM studies [160–168]. Reduced gray matter volume was found

in the right superior temporal gyrus and left superior temporal sulcus of dyslexic

brains, consistently across studies. Correlated reading-related under-activation us-

ing fMRI was reported in the left superior temporal sulcus on a previous meta-

analyses on functional brain abnormalities in dyslexic readers [247]. These re-

sults suggested a correlation between structural and functional MRI for imaging

the brain abnormalities in dyslexia. To identify the basis of this correlation and

possible overlaps between structural and functional abnormalities in the brains
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of dyslexic individuals, Linkersdorfer et al. [246] performed two types of meta-

analysis: an ALE meta-analysis on nine VBM studies [160–162, 164–166, 168, 174]

and an ALE meta-analyses of imaging studies reporting functional under-activations

(24 studies) or over-activations (11 studies) in dyslexia. The VBM meta-analysis re-

ported six significant clusters of altered grey matter volumes in bilateral temporo-

parietal and left occipito-temporal cortical regions and in the cerebellum bilat-

erally. Areas of overlap between the VBM meta-analysis results and the meta-

analyses of functional under-activations and over-activations were reported in the

fusiform and supramarginal gyri of the left hemisphere, and in the left cerebel-

lum, respectively. These results provided evidence for consistent structural brain

variations with functional abnormalities in left hemispheric regions. The rest of

this section outlines the research challenges that face the MRI-based systems for

detecting brain abnormalities associated with dyslexia and the suggested trends to

solve these challenges.

1. Research Challenges

Several challenges and aspects face MRI-based systems for detecting the

brain abnormalities associated with dyslexia. These challenges can be summarized

as follows:

• The findings of structural MRI-based systems face the following challenges:

– Volumetric approaches depend on the segmentation of anatomical struc-

tures (e.g., white matter, grey matter, corpus callosum, planum tempo-

rale, and cerebellum). The segmentation of these structures is challeng-

ing due to inhomogeneities of the named brain structures. This may

affect the accuracy of voxel-based measurements and may thus produce

inconsistent findings.
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– A limited number of studies have addressed the role of the planum tem-

porale and cerebellum in developmental dyslexia. More research work

should be investigated to provide more accurate findings regarding a

possible relation between these structures to developmental dyslexia.

– More sophisticated shape indexes should be developed to describe mor-

phological variability of brain structures.

– 3D and longitudinal analysis techniques of brain structures are challeng-

ing and but necessary to better describe some of the reported brain ab-

normalities.

• DTI-based systems’ findings face the following challenges:

– More accurate indexes should be investigated to describe the connectiv-

ity of the white matter microstructure.

– DTI-based approaches may help to determine the diffusion parameters

of the white matter structure. However, supported structural MRI may

be helpful to provide better insights regarding the white matter abnor-

malities.

– Longitudinal analysis techniques of DTI images are challenging. How-

ever, they may help to better understand the connectivity of the white

matter structure in dyslexia.

• The findings of fMRI-based systems face the following challenges:

– fMRI helps to determine the abnormal activation patterns in dyslexia

during different brain operations. However, supported structural MRI

is needed to reveal if this abnormal brain functionality is due to a phys-

ical structural abnormality or due to the study’s design.

– Longitudinal analysis of fMRI findings are challenging and may help to

better understand the abnormal functionality of dyslexic brains.
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Therefore, there is a need to develop more efficient systems for obtaining more

accurate findings about dyslexia.

2. Trends

To address the aforementioned challenges, recent trends for the detection of

dyslexia associated abnormalities involve the following aspects:

• More powerful, sophisticated shape features of brain structures need further

investigations. A recent trend describes the cortex shape by representing its

3D surface with a linear combination of spherical harmonics (SH) [5, 175,

248]. Another trend uses a cylindrical map to accurately detect the shape

variability between two 3D surfaces [9, 194, 195] (e.g., between CCs of nor-

mal and dyslexic subjects). Also, the 3D geometric characteristics of CWM

gyrifications between normal and dyslexic subjects has been recently em-

ployed [6–8, 179]. A suggested future work is to employ different types of

shape features from different brain structures to achieve better detection and

diagnosis of dyslexia

• Integrating the findings of different MRI techniques (e.g., fMRI, DTI, and

structural MRI) is very challenging. Studies should investigate the corre-

lation between these findings and the impact of fusing the information ob-

tained from these different types of images. The functional information from

fMRI, the shape and anatomical information from structural MRI, and the

connectivity information from DTI may lead to a better description of the

brain network in dyslexia and illustrate how it works.

• Analysis of MRI findings over long period of time throughout longitudinal

studies may give more consistent findings and better insights about dyslexia.
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In addition, longitudinal studies may help diagnose dyslexia at early stages

and provide outcome measures of treatment.

The clinical importance of the detection of dyslexia-associated abnormali-

ties in brain structures has been reflected upon over 110 publications. The chal-

lenges and trends presented in this section, suggest that investigating more effi-

cient MRI-based systems for the detection of dyslexia-associated abnormalities in

brain structures will remain a very active research area. Thus, more comprehen-

sive studies are necessary for establishing the state-of-the-art MRI-based systems

in this active research field.
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CHAPTER VII

DYSLEXIA DIAGNOSTICS BY 3D SHAPE ANALYSIS OF CORPUS
CALLOSUM

This chapter expands on the MRI findings presented in Chapter VI for early

detection of dyslexia and attempt to investigate the role of the corpus callosum

(CC) brain structure for dyslexia diagnosis. Here, a new approach is presented

for the quantitative analysis of three-dimensional (3D) magnetic resonance images

(MRI) of the brain that ensures a more accurate quantification of anatomical dif-

ferences between the CC of dyslexic and control subjects. The proposed approach

consists of three main processing steps: (i) segmenting the CC from a given 3D

MRI using the learned CC shape and visual appearance; (ii) extracting the center-

line of the CC; and (iii) cylindrical mapping of the CC surface for its comparative

analysis. Validation on 3D simulated phantoms demonstrates the ability of the

proposed approach to accurately detect the shape variability between two 3D sur-

faces. Experimental results revealed significant differences (at the 95% confidence

level) between 14 normal and 16 dyslexic subjects in all four anatomical divisions,

i.e., splenium, rostrum, genu and body of their CCs. Moreover, the initial classifica-

tion results based on the centerline length and thickness of the CC suggest that the

proposed CC shape analysis is a promising supplement to the current techniques

for diagnosing dyslexia.
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A. INTRODUCTION

Structural MRI studies revealed dyslexia-associated abnormalities in the

different structures inside the brain, e.g., a reduced brain volume, a decreased gyri-

fication, and an increased CC volume (see Chapter VI). This chapter expands on

these findings by analyzing and quantifying the variability of the 3D CC surface

in a group of dyslexic and control subjects. The CC is the largest fiber bundle con-

necting the left and right cerebral hemispheres in the human brain. The CC sur-

face variations relate to alterations of the intra-hemispheric connectivity and thus

provide a correlation to recent findings suggesting flaws in connectivity between

different brain regions in dyslexia [152].

Detection of dyslexia has been investigated in a number of studies. Ear-

lier works for dyslexia detection focused on the 2D analysis of the CC [23–26, 193],

please see section VI.B.4 in Chapter VI. However, 3D shape analysis methods were

considered for analyzing the shape differences between the CCs in other brain ap-

plications. To analyze shape differences between 3D surfaces, correspondences

should be established between a selected set of landmarks that represent these sur-

faces or between all surface points. Shape descriptors such as shape context [249]

or thin-plate spline (TPS) deforming energy [250] can be used to establish the cor-

respondence between two sets of landmarks. The shape context is the local his-

togram of edge points in polar coordinates and can be estimated for the selected

set of landmarks to match the reference template points of a similar shape con-

text. Alternatively, correspondences can be found by minimizing a shape corre-

spondence error, defined by the energy of deforming a target TPS to match the

reference object shape. The major problem with representing a shape with a set of

landmarks is that they may not sufficiently represent the surface shape, and finer

details can be missed. To avoid this problem, mapping the whole surface to a tem-

plate sphere or ellipsoid was considered using the minimum description length
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(MDL) [251] or spherical harmonic (SH) descriptors. The problem of these map-

pings is that they only work well for sphere-like shapes, which is not the case for

the CC. Other investigators used conformal mapping to flatten colon surface [252],

surface matching using geodesic and local geometry to locate correspondences be-

tween two surface points [253], harmonic shape images to map a 3D surface patch

with disc topology to a 2D domain and encode the shape information of the sur-

face patch into the 2D image [254], harmonics differentials to unfold colon wall

volume [255], and solving the Poisson equation to extract useful shape features of

a closed 2D object [256].

In regard to the study of the CC shape abnormalities, the work presented

in [257, 258] accounted not only for the midsagittal slice, but also for four adjacent

slices on both sides to locate differences between normal and autistic subjects. He

et al. [257] traced the CC from the nine slices using a semi-automated active con-

tour methodology. A contour stitching technique was applied to create the 3D CC

surfaces for each subject. The surfaces were aligned using 2D rigid-body registra-

tion on each 2D slice across subjects. A mean shape (template) was calculated from

the aligned surfaces, and a statistical difference analysis was applied to the signed

distance map from each subject surface to the template. Instead of using a signed

distance map metric, Vidal et al. [258] utilized the CC thickness–the distance be-

tween uniformly spaced points on the CC surface to the CC medial line (i.e., the

average curve between superior and inferior CC boundaries) –to localize regions

of callosal thinning in autism. He et al. [259] used a statistical shape analysis to

find the CC shape differences between patients with phenylketonuri and controls.

A set of landmarks was sampled on a template shape, and then an initial corre-

spondence between the template and the target shape is established based on the

similarity of locations and normal directions. The landmarks on the target are then

refined by an iterative TPS method. The corresponding set of landmarks was used

directly for statistical shape analysis.
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Current limitations and the proposed approach: To identify whether the

abnormal neural development of the CC is associated with dyslexia, the 3D sur-

faces of the CC for normal and dyslexic subjects are directly compared. Earlier

works have focused on analyzing a 2D midsagittal cross-section of the CC, al-

though this is insufficient for detecting the whole anatomic variability of the CC.

That the known approaches rely only on the 2D analysis of the CC is the main moti-

vation behind the proposed approach. To ensure a complete 3D analysis, the whole

CC surface (traced from all the slices in which the CC appears) is mapped onto a

cylinder, in such a way as to compare, more accurately, various dyslexic and nor-

mal CCs. The proposed cylindrical mapping has been inspired by the functional

conformal mapping [260], that was recently considered an efficient technique for

surface matching and anatomic structures visualization [252]. Similar to the con-

formal mapping, it is a bijective (one-to-one) transformation and preserves angular

relationships between the points.

The proposed framework consists of four steps (see Figure 74): (1) age cor-

rection using rigid registration, (2) 3D CC segmentation, (3) centerline extraction,

and (4) 3D shape analysis. The framework will address the following:

• Previous studies [23–26, 193] have shown significant localized increases or

decreases (dependent on region) in the midsagittal CC cross-section in dyslexic

patients. The focus of this study was on further establishing the morphome-

tric nature of this size variation, i.e., whether the reported size of variability

was the result of focal or generalized changes.

• The proposed method can be used to analyze the boundaries of the region of

interest while being invariant to translation, rotation, and scaling.

• Current shape analysis techniques based on a set of certain landmarks suffer

from missing finer shape details whereas mapping the whole surface to a
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template sphere or ellipsoid introduce extreme distortion for non-sphere-like

shapes (e.g., the CC).

• The proposed method can provide a point-to-point shape descriptor of the

CC through the cylindrical mapping.

• The length of the extracted centerline and the CC thickness, estimated as

the mean thickness for each CC cross-section perpendicular to the centerline,

can be used as discriminatory features to distinguish between normal and

dyslexic brains.

FIGURE 74: The proposed framework for analyzing 3D MR brain images.

Section VII.B briefly overviews the CC segmentation using a learned prior

CC shape model and an identifiable joint Markov-Gibbs random field (MGRF)

model of 3D registered MRI, and their 3D “object-background” region maps (step

1 and 2 of the proposed framework). Section VII.C illustrates the centerline extrac-

tion for the segmented CC by solving the Eikonal equation (step 3). In contrast

to the known 2D solutions (e.g., in [116–118]) the proposed process evolves in the

3D space in order to detect 3D points of the maximal curvature. The shape analy-

sis (step 4) including the cylindrical mapping of the CC after finding its centerline

is described in Section VII.D. Performance evaluation and experimental results

are presented in Section VII.E and Section VII.F. Discussion and conclusions are

presented in Section VII.H.
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B. 3D CORPUS CALLOSUM SEGMENTATION

The 3D CC segmentation is a challenging problem because it suffers from

the diffusion of the CC gray levels, especially in its lateral boundaries, and from

the sensitivity to image noise. Atlas based segmentation [261, 262] was utilized

for 3D segmentation of the CC and other brain structures. However, its accuracy

depends on the accuracy of the atlas-to-target registration. Accurate registration

usually involves a nonrigid registration step, which is time consuming and source

exhausting. Moreover, the atlas itself could suffer from possible insufficient repre-

sentation of the whole image population.

To overcome these problems, the CC is segmented in a way that can address

these shortcomings based on extending the joint MGRF model introduced in Sec-

tion III.A.1, Chapter III, to account for the 3D features of the CC (i.e., the object

appearance and shape). The object appearance is derived not only from the MRI

gray level distribution but also from the spatial interactions between the MRI vox-

els in order to ensure the homogeneity of the segmentation and overcome noise

effects (see Figure 75). The spatial interactions between the region labels are mod-

eled by a 2nd-order translation and rotation variant probabilistic random field, of

object / background labels, with analytical maximum likelihood estimates (MLE)

of potentials [100, 101]. For simplicity, the interaction structure is restricted to the

nearest voxels only, i.e., to the voxel’s 26-neighborhood as shown in Figure 76. By

symmetry considerations, the potentials are independent of relative orientation of

each voxel pair and depend only on intra- or inter-region position (i.e., whether

the labels are equal or not). Under these restrictions, it is the 3D extension of the

conventional auto-binomial, or Potts model, differing only in that the potentials

are estimated analytically.
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FIGURE 75: Joint Markov-Gibbs random field model of 3D MR images.

The 26-neighborhood has three types of symmetric pairwise interactions, as

shown in Figure 76, specified by the absolute distance a between two voxels in

the same and adjacent MRI slices (a = 1,
√
2, and

√
3, respectively): (i) the clos-

est pairs with the inter-voxel coordinate offsets N1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

(ii) the diagonal pairs with the offsets N√
2 = {(0, 1,±1), (1, 0,±1), (1,±1, 0)}, and

(iii) the farthest diagonal pairs with the offsets N√
3 = {(1,±1,±1)}. The Gibbs

potentials of each type are bi-valued because only label coincidence is accounted

for: Va = {Va,eq;Va,ne} where Va,eq = Va(l, l
′) if l = l′ and Va,ne = Va(l, l

′) if l ̸= l′;

a ∈ A = {1,
√
2,
√
3}.

To enforce accurate lateral boundaries for the CC, the segmentation is guided

by a probabilistic CC shape prior constructed from a set of rigid-aligned training

datasets. Similar techniques have already been successful in segmenting various

2D MRI and CT objects (see e.g., [100, 116]), and the current algorithm has been

modified to account for specific properties of the 3D CC. In this modification, a

3D shape is described by a probabilistic model rather than a more conventional

distance map representation. As illustrated in Figure 77, The probabilistic shape
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FIGURE 76: 3D 2nd order MRF neighborhood system. The reference voxel is

shown in red.

model is constructed by co-aligning the training set of MRI by a rigid 3D regis-

tration using mutual information as a similarity measure [113] (Figure 77(b)); seg-

menting the CCs by hand from the aligned set (Figure 77(c)); and counting how

many times each voxel was segmented as the CC (Figure 77(d)).

(a)

(b)

(c)

(d)

FIGURE 77: Shape reconstruction (2D illustrations): database samples (a), rigid

mutual information based registration (b), manual segmentation (c), and a sagittal

cross section in the estimated 3D voxel-wise probabilities of the CC shape.
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In addition, the visual appearance of the CC to be segmented is modeled

by approximating the 1D empirical marginal gray level distributions inside (ob-

ject) and outside (background) with a linear combinations of sign-alternate discrete

Gaussians (LCDG) [101–103]. The key steps for the CC segmentation are detailed

in Algorithm 8.

Algorithm 8 Segmentation of the Corpus Callosum (CC) Brain Structure

1. Perform a rigid alignment of a given 3D MRI to an arbitrary CC prototype

from the training set using mutual information as a similarity measure.

2. Estimate the conditional intensity model by identifying the bimodal LCDG.

3. Form an initial segmentation of the CC using the found conditional intensity

model and the learned prior shape model.

4. Identify the MGRF model from the initial segmentation and update the con-

ditional intensity model.

5. Perform the final Bayesian CC segmentation according to the updated joint

MGRF model.

C. CENTERLINE EXTRACTION FROM THE CC

The existing approaches for extracting the centerline from 3D objects can

be classified as distance transform methods [263, 264], topological thinning meth-

ods [265], and hybrid methods [266] for volumetric data and Voronoi-based meth-

ods [267] for polygonal data. Below, representative methods of each category are

overviewed.

184



Zhou and Toga [263] proposed a voxel coding technique in which a discrete

wave front propagates through the entire object starting from a manually selected

reference point. The wave divides the object into a set of clusters which are approx-

imately normal to the centerlines. Bitter et al. [264] proposed a penalized-distance

algorithm to extract centerlines. Bouix et al. [266] extracted centerlines by thin-

ning the object’s medial surface, which is computed by thresholding the negative

average outward flux of the gradient field of the distance map. Attali et al. [267]

computed the medial surface of an object from a finite set of points by sampling

its closed boundary and then pruning it based on geometric criteria to yield its

centerline. Unfortunately, the existing techniques for extracting centerlines suffer

from at least one of the following shortcomings: (i) their accuracy is dependent on

the extraction of the medial surface, which is usually done using pruning methods;

(ii) they are computationally expensive, (iii) suffer from lack of robustness, and (iv)

sensitive to boundary noise. To overcome these problems, an automated level-set-

based centerline extraction framework is presented to address those shortcomings.

The key idea is to propagate wave-fronts from the splenium with a fast speed.

Then, the trajectory of wavefront points that have the maximum positive curva-

ture and are located at the maximum distance from the object boundary represents

the extracted centerline.

Mathematically, the extraction of the centerline, connecting splenium (point

A in Figure 78(a)) with rostrum (pointB), is formulated in this work as a minimum-

cost problem of finding the path minimizing the cumulative cost of traveling from

the starting point A to the destination B. As defined in [268], if W (x, y, z) is a cost

function at any location (x, y, z) inside the CC, then the minimum cumulative cost

at B = (x′, y′, z′) is

T (B) = min
CAB

L∫
0

W (C(l))dl (12)

where L is the path length and CAB is a set of all possible paths linking A to B
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such that C(0) = A and C(L) = B are the starting and ending points of each

path C(l) ∈ CAB. The minimum cost path solving Equation (12) also satisfies the

solution of the Eikonal equation:

|∇T (x, y, z)|F (x, y, z) = 1 (13)

where T (x, y, z) is the time at which the front, evolving from the point A, crosses

the point (x, y, z), and F (x, y, z) is the speed function.

An approach to extract the centerline of the 3D CC is presented based on

solving Equation (13) [9, 194–196, 269–273]. The main steps of the centerline ex-

traction approach are detailed in Algorithm 9.

(a) (b)

(c) (d)

(e) (f)

FIGURE 78: 2D Illustration for the steps of the proposed centerline algorithm: (a)

a sagittal 2D cross-section on the 3D CC, (b) its estimated CC edges, (c) its normal-

ized distance map, (d) the orthogonal wave propagated from the extracted center-

line, (e) 2D extracted centerline, and (f) its 3D visualization.
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Algorithm 9 Extraction of the Centerline of the CC

1. Find the boundary of the segmented CC by estimating its 3D edges (see Fig-

ure 78(b)).

2. Find the normalized minimum Euclidian distanceD(x, y, z) from every inner

CC point (x, y, z) to the CC boundary (Figure 78(c)) by solving Equation (13)

using the fast marching level-set at the unit speed function, F (x, y, z) =

1 [119].

3. Pick any splenium point as a starting point, A.

4. Propagate a wave, orthogonal to the centerline, from point A by solv-

ing Equation (13) using the fast marching level-set at the speed function

F (x, y, z) = 1− exp(−D(x, y, z)) (Figure 78(d)).

5. For each propagating wave front, track the maximum curvature point (Fig-

ure 78(e,f)), which is considered at any time as the point corresponding to the

starting point A. In the case of multiple relative maximal curvature points,

select the one farthest from the CC boundary.

6. Terminate when the point of maximum curvature intersects the rostrum. This

will be point B, and the trajectory of the maximum curvature is the center-

line.

7. Repeat the process in the reverse direction, starting from B and terminating

in the splenium, so as to eliminate any dependence on the somewhat arbi-

trary choice of A.
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D. CYLINDRIC MAPPING TO EVALUATE CC VARIABILITY

The proposed method reveals differences between the dyslexic and normal

CC by using cylindrical transformation. Before applying the cylindrical transfor-

mation, the extracted 3D CC is re-sliced by generating planes that are orthogonal to

and equidistant along the CC centerline as shown in Figure 79(a,b). The re-slicing

transforms 3D coordinates (x, y, z) of the voxels associated with each slice k into

new coordinates (i, j, k), where (i, j) are the 2D coordinates on the corresponding

slicing plane k. A boundary point (i, j) of each slice k is related to the surface of

a cylinder with a fixed radius ρ as shown in Figure 80. The rectified centerline

of the CC is superimposed onto the cylinder axis. Each boundary point (i, j, k) is

superimposed to the corresponding polar angular location, θ, θ ∈ [0, 2π], on the

cylinder by its representative distance r to the slice center (i0, j0, k). To account for

the curvature of the CC surface, distances, r, are measured as the arc lengths of

electric field lines inside a CC-shaped conducting surface with a point charge on

the CC centerline axis (Figure 81).

(a) (b)

FIGURE 79: Illustrations of (a) 2D and (b) 3D re-slicing.

The proposed approach involves no parameterization, since the CC surface

is simply mapped onto the cylindrical one. First, the CC surface is sliced to cross-

sections, being perpendicular to the extracted centerline and having origins at the
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FIGURE 80: The proposed cylindric mapping: (a) a cross-section of the re-sliced

CC, (b) the CC cross-section mapped onto a circle, (c) placing the circle onto the

corresponding location in the cylinder.

points of the latter. All the surface points in each cross-section are mapped to

the corresponding points at the cylindrical surface using rays with the same polar

angles with respect to the origin. The mapping preserves the angular distances on

the contour, so that the half of the contour (e.g. points located between θ = 0 to

θ = 180) are always mapped to the half of the circle into locations with the same

angles θ as shown in Figure 81.

The transformed surfaces were aggregated pointwise to provide mean CC

shape maps rdyslexia and rcontrol. The difference ∆r = rdyslexia − rcontrol, divided point-

wise by their pooled standard error, yielded a statistical parametric map of un-

paired t-test statistics with 28 degrees of freedom3. Regions of statistical signifi-

cance were derived from the associated P -values using the method of Benjamini

and Hochberg [274] with a false discovery rate q∗ = 0.05 (95%-confidence level).

3The degree of freedom for the unpaired t-test is the total sample size (14 normal subjects + 16

dyslexic subjects) minus 2.
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FIGURE 81: Left: A cross-section of the corpus callosum (CC) perpendicular to the

centerline. Right: Mapping the cross section boundary points to the correspond-

ing circle on the cylinder. Each point on the boundary is superimposed to the

corresponding location on the circle, having the same angle θ, by its representative

distance r to the CC centerline axis. The distance, r, is measured as the arc length of

an electric field line inside the CC-shaped conducting surface with a point charge

on the axis.

E. PERFORMANCE EVALUATION

The proposed framework consists of two main processing steps, namely, the

centerline extraction and the cylindrical mapping by estimating the arc-lengths of

the electric field of a charged line located at the extracted centerline. To consider

the discrete nature of the mapping, for each charged point on the centerline the arc-

length of its electric field to the corresponding cross-section surface (containing the

point charge and perpendicular to the centerline) is estimated. In this section, per-

formance evaluations at each stage are illustrated, then the capability of the whole

framework to detect the shape variability between two 3D surfaces is investigated

using 3D simulated phantoms.
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1. Centerline Extraction Evaluation on Synthetic Phantom

To validate the proposed methodology for extracting the 3D centerline of

the CC, a simulated 3D phantom with a known centerline (known ground truth)

was constructed. Then the proposed method was used to extract the 3D centerline

and compared it to the known ground truth. Figure 82 shows two different views

of the constructed 3D phantom, its known ground truth centerline, the proposed

estimated centerline, and the proposed estimated centerline superimposed on the

ground truth. To determine the accuracy of estimating the centerline, the middle

slice that contains the centerline is analyzed; the percentage radial error is 0.466±

0.387% with respect to the CC thickness.

(a) (b) (c) (d)

FIGURE 82: Validation results of 3D centerline extraction on a simulated phantom

visualized on two different views (up and down rows): (a) the 3D phantom, (b) its

known ground truth centerline, (c) the proposed estimated centerline, and (d) the

proposed estimated centerline superimposed on the ground truth.
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FIGURE 83: Validation of electric field establishing and arc-length estimation for a

simulated phantom of a circle with a point charge at center.

2. Validation of Electric Field Establishing and Arc-length Estimation on a Syn-

thetic Phantom

The proposed approach for establishing the electric field and estimating

the arc-length was validated on a simulated phantom image of a circular cross-

section with a point charge at its center (see Figure 83). The exact electric field

(ground truth) for this problem is established as straight lines in the radial direc-

tion. The error is measured for each point on the circle as the percentage differ-

ence between the estimated arc-length and the exact radius of the circle, achieving

0.86%± 0.7815% (mean±standard deviation (SD)) over all circle points.
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3. Validation of Variability Detection between 3D Surfaces using Synthetic Phan-

toms

Since the preliminary results show a reduced length and a thicker body for

the CC of dyslexic subjects, three synthetic 3D phantoms were constructed: a refer-

ence phantom, and short and thin phantoms with respect to the reference phantom

(see Figure 84), in order to simulate the shape variability between the dyslexic and

normal subject. To investigate the ability of the proposed approach to detect the

shape variabilities between the dyslexic and normal CC shapes, it was tested on

these synthetic phantoms. The unfolded cylindrical mapped sheets for the three

phantoms (Figure 85) show that the proposed cylindrical mapping has success-

fully detected the shape variability between the reference and both the short and

thin phantoms.

(a) (b) (c)

FIGURE 84: 3D simulated phantoms to test the ability of the proposed approach in

detecting variability between 3D surfaces: (a) reference phantom, (b) short phan-

tom, and (c) thin phantom.

In order to quantify the accuracy of shape variability detection, the inverse

cylindrical mapping of the resulted sheets was applied. Let VRef, VShort, and VThin

denote the volumes of CC (number of voxels times the voxel volume) for the ref-

erence, short, and thin phantoms, respectively. Then, the volume of variability

between the reference and short phantoms is VRef−VShort
VRef

× 100%, and between the

reference and thin phantoms is VRef−VThin
VRef

× 100%. The volumes of variability before
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(a) (b) (c)

FIGURE 85: Unfolded cylindrical mapped sheets for (a) the reference, (b) short,

and (c) thin simulated phantoms presented in Figure 84; dotted black lines point

to the detected variability with respect to the reference phantom.

applying the cylindrical mapping (the ground truth) and after applying the cylin-

drical and inverse mapping (the detected volume) is callulated. Table 17 shows

that the percentage errors in the detected volumes of variability with respect to the

ground truth are less than 1%. Figures 86 and 87 visualize the errors in detecting

the variability between the reference phantom, and the short and thin phantoms,

respectively.

TABLE 17: The percentage error in the detected volumes of variability between the

short and reference phantoms and between the thin and the reference phantom.

Phantoms

Short and reference Thin and reference

Ground truth volume of variability 33.0% 4.5%

Detected volume of variability 32.2% 4.1%

Percentage error 0.8% 0.4%
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(a) (b) (c)

FIGURE 86: Accuracy of detecting the variability between the short and reference

phantoms: (a) the short phantom superimposed on the reference phantom, (b)

ground truth variability (blue) between the two phantoms, and (c) estimated vari-

ability using the proposed approach: blue represents the common detected area

with the ground truth (true positive), red represents the missed points that were

not detected (false negative), and green represents the introduced detected points

that were not on the ground truth (false positive).

(a) (b) (c)

FIGURE 87: Accuracy of detecting the variability between the thin and reference

phantoms: (a) the short phantom superimposed on the reference phantom, (b)

ground truth variability between the two phantoms, and (c) estimated variability

using the proposed approach: blue represents the common detected area with the

ground truth (true positive), red represents the missed points that were not de-

tected (false negative), and green represents the introduced detected points that

were not on the ground truth (false positive).
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F. EXPERIMENTAL RESULTS

The proposed approach has been tested on in-vivo data collected from 16

right-handed dyslexic subjects aged 18 to 40 years, and a group of 14 controls who

match for gender, age, educational level, socioeconomic background, handedness,

and general intelligence. All the subjects were physically healthy, with no history

of neurological diseases or head injury, and in brief have exactly the same psychi-

atric conditions. A summary of study participants is presented in Table 18. The

images with voxel resolution 0.9375 × 0.9375 × 1.5 mm3 were acquired with the

same GE 1.5T MRI scanner (Milwaukee, Wisconsin, USA) using a T1 weighted

imaging sequence protocol. The “ground truth” diagnosis to evaluate the classi-

fication accuracy for each patient was given by clinicians. The CC segmentation

results are illustrated in Figure 88. Comparative results with the known ground

truth for the 15 data sets, which are not used in the training (manually segmented

by an expert), have achieved a percentage error of 0.98± 0.73%.

1. 3D Detection of CC Abnormalities of Dyslexia

Figures 89(a) and (b) present the average cylindrical maps rdyslexia and rcontrol

for 14 normal subjects and 16 dyslexic subjects. The difference ∆r = rdyslexia−rcontrol

is represented in Figure 90(a). As shown in Figure 90(a), some locations in these

maps differ significantly for the normal and dyslexic subjects at the 95% confidence

level. The inverse cylindrical mapping outlines the significant areas on the aver-

age CC of normal subjects (Figure 90(b)). These areas show that these significant

differences (at the 95% confidence interval) exist in the four anatomical divisions

of the CC, namely, splenium, rostrum, genu, and body. As shown in Figure 90(b),

the white matter in dyslexic subjects was greater than controls, bilaterally along

the body of the CC (i.e, the CC body for the dyslexic subjects is thicker than for the
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TABLE 18: Summary of study participants. All participants were right handed,

male, and Caucasian. Values are given as mean±SD. GFW stands for Goldman-

Fristoe-Woodcock sound symbol test, GORT-3 stands for gray oral reading test, 3rd

edition, WAIS-R atands for Wechsler adult intelligence scale, revised, and WRAT-3

stands for wide range achievement test, third edition

Feature Dyslexic Subjects Control Subjects

Number of Subjects 16 14

Age (years), mean 28.2 25.1

Range 18.5–40.4 17.8–40.6

Education (years) 14±3 14±2

Social Class middle to upper middle middle to upper middle

WAIS-R IQ 113±7 111±12

GORT-3 Passage 4±2 13±2

Comprehension 13±2 11±2

GFW Reading 41±4 51±4

Spelling 43±8 51±8

WRAT-3 Reading 91±11 107±7

Spelling 74±14 106±7

Arithmetic 97±13 112±11

LAC total 80±12 96±5

normal ones). Where differences attained statistical significance, the ∆r achieved

values up to 6.4 mm on the right and 7.0 mm on the left. There was, however,

a reduction at the anterior and posterior extreme of the structure in dyslexia. In

particular, significant values of ∆r were observed as low as −6.5 mm in genu and

−4.7 mm in splenium. There was otherwise no significant difference around the

medial sagittal plane (Figure 90(b)).
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Normal Subjects Dyslexic Subjects

(a)

(b)

(c)

(d)

FIGURE 88: Automated 3D CC segmentation results projected onto the 2D (a)

axial, (b) coronal, (c) sagittal planes, and (d) their 3D visualization.

(a) (b)

FIGURE 89: Average cylindric maps of (a) normal and (b) dyslexic subjects
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(a) (b)

FIGURE 90: (a) Areas of the 95%-significant difference between normal and

dyslexic subjects, and (b) color-coded anatomical differences between the CC for

normal and dyslexic subjects: the common parts (gray), parts that exist in normal

and do not exist in dyslexic subjects (blue), and parts that exist in dyslexic and do

not exist in normal subjects (pink).

2. 3D Shape Analysis Diagnostic Results

Since the proposed results show a reduced length and a thicker body for the

CC of dyslexic subjects, two features were selected to classify dyslexic and normal

subjects, namely, the centerline length (CLL) and the CC thickness (CCT). The CCT

for each subject is estimated as the mean thickness for each CC cross-section per-

pendicular to the centerline (see Figure 91). The differences in the mean length of

the centerline of CCs and in the mean thickness of the CCs between dyslexic and

control subjects are statistically significant according to the unpaired t-test (the

two-tailed value P is less than 0.033 and 10−4, respectively) as shown in Table 19.

The training subset for classification (14 persons used in the training) was

arbitrarily selected among all the 30 subjects. The accuracy of classification based

on using the k-nearest neighbor classifier for the test subjects (16 persons: nine

dyslexic and seven control) was evaluated using the χ2-test at 95% confidence level

in order to examine significant differences in the Levy distances. Table 20 sum-

marizes the diagnostic results for the test subjects at the 95% confidence interval
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FIGURE 91: Features used to classify normal and dyslexic subject: the centerline

length (CLL) and the mean CC thickness (CCT).

TABLE 19: Statistical analysis for the centerline length and the CC thickness for 16

dyslexic subjects and 14 control subjects.

centerline length (CLL) CC thickness (CCT)

Dyslexia Control Dyslexia Control

Minimum (mm) 77.8 78.1 15.9 13.2

Maximum (mm) 90.9 105.4 57.3 50.0

Mean (mm) 86.4 90.6 37.6 27.9

Standard deviation 6.5 3.5 2.5 2.7

Significant difference, P-value 0.033 < 10−4

for the traditional white matter volumetric approach [11] and k-nearest neighbor

classifiers based on the CLL, the CCT, and both the CLL and CCT. As shown in

Table 20, the k-nearest neighbor classifier based on each of the two proposed ex-

tracted 3D shape features, i.e., CLL and CCT, achieves a higher accuracy than the

traditional white matter volume-based approach. Moreover, combining the two

features increases the accuracy from 75% (using the CLL alone)–88% (using CCT

alone) to 94%. These results highlight the advantage of the proposed diagnostic

approach and indicates that the CLL and CCT are promising supplements to cur-

rent metrics that discriminate between normal and dyslexic subjects.
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TABLE 20: Summary of diagnostic results for the test datasets (nine dyslexic sub-

jects and seven control subjects) at 95% confidence interval for white matter volu-

metric approach (WMVA), Centerline Length (CLL) based approach, CC Thickness

(CCT) based approach, and the combined CLL and CCT based approach.

Dyslexic subjects Control subjects All subjects

WMVA 4 out of 9 (44%) 4 out of 7 (57%) 8 out of 16 (50%)

CLL 7 out of 9 (78%) 5 out of 7 (71%) 12 out of 16 (75%)

CCT 9 out of 9 (100%) 5 out of 7 (71%) 14 out of 16 (88%)

CLL & CCT 9 out of 9 (100%) 6 out of 7 (86%) 15 out of 16 (94%)

Another metric to test the performance of the system is to compute the Re-

ceiver Operating Characteristic (ROC). The ROC curve tests the sensitivity of the

proposed diagnostic approach against the selection of the operating point (the clas-

sification threshold) by showing the relationship between the true positive and

false positive fractions at different operating points. Each point on the graph is

generated by using a different cut point (classification threshold). Figure 92 shows

the ROC of four approaches; white matter volumetric approach [11], CLL based

approach, CCT based approach, and the combined CLL and CCT diagnostic ap-

proach. Consistently, the combined CLL and CCT based classification approach

achieves the highest performance, evidenced by the largest area under its ROC

curve (Az=0.982, approaching the ideal value of 1).

G. DISCUSSION

Previous work has related dyslexia to a minicolumnopathy [155] and a bias

in corticocortical connectivity that emphasizes longer connections at the expense of

shorter ones [155, 179]. This is manifested as a decrease in the outer radiate white

matter compartment (short arcuate connections) and an increase in the size of the
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FIGURE 92: The ROC curves for white matter volumetric approach [11] (blue),

CLL based approach (red), CCT based approach (green), and the combined CLL

and CCT diagnostic approach (black). Note that ‘Az’ stands for the area under the

curve.

CC (long commissural fibers) [275]. Corresponding changes have been found in

gyral white matter depth when used as a proxy measurement for the gyral win-

dow [179].

The present study expands on previous findings by illustrating in a graph-

ical manner the nature of the CC disturbance in dyslexia. Preliminary attempts

at “conformal mapping” have measured straight-line distances from the axis to

the boundary of the region of interest as a function of polar angle. This is not a

conformal (angle-preserving) map, and more importantly, may not be invertible.

The cross sections of many anatomical structures are not perfectly convex, or even

star-shaped, so a ray from the axis may intersect the boundary at more than one

point. These discontinuities may provide for spurious shape distortions within

given segments of the analyzed outline.
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The proposed implemented method measures the distance from a point on

the boundary to the axis by the arc length of an electric field line, inside a CC-

shaped conducting surface, with a point charge on the axis. Besides avoiding the

problem of rays intersecting the boundary at more than one point, this approach

can be used directly on three-dimensional volumes by solving the Laplace equa-

tion with a line charge on the axis of the two-dimensional boundary surface at zero

potential. The point of intersection with the axis provides that point’s z-coordinate

in the projection space. Applying the method to the present series revealed abnor-

malities in CC size with an overall preservation of its general outline.

Previous studies suggest size differences of the CC in patients with dyslexia

(e.g., in the study by Hydn et al. [23]). The nature of this abnormality has been

variously ascribed to all major segments of this commissural tract [23, 193]. While

comments on CC size difference abound in the dyslexia literature, references as

to the shape of this structure are, by comparison, scant. A morphometric study

by Robichon and Habib [25] indicated that the CC of dyslexic patients was more

rounded and evenly thicker. The authors suggested that their finding, increased

size of the CC and a corresponding increase in commissural connections, could

explain reports of reduced cortical asymmetries in this condition [276]. Another

study by Robichon et al. [277] showed significant differences in the angulation of

the posterior segment of the CC. The finding was discussed in relation to parietal

asymmetries and possible hormonal effects occurring in utero or during the early

postnatal period in this patient population. The findings presented in this work are

in agreement with those of Robichon and Habib [25]. Shape reconstruction using

the proposed method indicates a generalized increase in size of the CC in patients

with dyslexia (Figure 90). Size reductions at both poles may help average out any

size increase and provide an explanation to negative studies of CC morphology in

dyslexia [278]. In this regard, shape analysis offers complementary information to

a real measurement in neuroimaging studies.
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The shorter length of CC of dyslexic subjects (as shown in Table 19) is cor-

related with the results in [23] and with the results in more recent studies [26, 193].

Moreover, the proposed 3D mapping approach has the capability to demonstrate

the whole anatomical differences (voxel-based) in the CC of normal and dyslexic

brains instead of only differences in the CC divisions (area-based) as done by pre-

vious groups. Thus, the existing differences in all anatomical divisions of the CC

(namely, splenium, rostrum, genu and body) were identified as shown in Figure 90.

H. SUMMARY

In total, the preliminary results in this chapter suggest that the proposed

approach can detect significant differences in the four anatomical divisions of the

CC. Moreover, it is able to demonstrate voxel-based anatomical differences be-

tween the CC of normal and dyslexic brains, rather than only area-based differ-

ences in the previous work. For evaluation, the proposed diagnostic system has

been tested over subjects of ages that have well-known ground truth diagnosis.

These experiments have confirmed that the 3D shape analysis of the CC, based

on the centerline length and the CC thickness, is able to accurately discriminate

between the dyslexic and normal subjects. These findings lead towards more effi-

cient non-invasive computer assisted systems for diagnosis of dyslexia. The work

presented in this chapter has been published in [9, 194–196]. Future work includes

investigating the reliability of the proposed approach on MRI data of children at

early ages, as well as infants, in order to investigate its usability in early dyslexia

diagnostics. In addition, different brain structures will be investigated in order

to quantitatively characterize the development and temporal changes of dyslexic

brains.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

Detecting abnormalities in medical structures is very challenging. This is

due to a large and constantly growing number of different objects of interest and

their associated abnormalities, large variations of their appearances and shapes in

images, different medical imaging modalities, and associated changes of signal ho-

mogeneity and noise for each object. In this work, comprehensive mathematical

models and novel advanced techniques are provided to analyze medical images

and to automatically detect abnormalities in medical structures. The proposed

models and techniques show promising results for solving difficult medical prob-

lems such as:

• Automatic segmentation of the left ventricle (LV) wall [122].

• Automatic delineation of the pathological tissues in the LV wall [132].

• Automatic quantification and follow-up of the LV dysfunction [127].

• Automatic estimation of the functional strain from cardiac images [146, 147].

• Automatic quantification of anatomical differences between the corpus cal-

losum (CC) of dyslexic and control subjects [194, 195].

• Automated diagnosis of dyslexia based on analyzing brain images [9, 196].

In the following section, a summary of the most important contributions in

this dissertation will be presented.
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A. CONTRIBUTIONS

• Three novel models for the segmentation of medical structures have been

proposed. The first model is a graph-cut optimization model that integrates

both the appearance and shape of the object of interest for the purpose of seg-

mentation. Experiments confirmed that this approach showed superior re-

sults in segmenting the cavity of the heart. The second model is a fast march-

ing level-set that evolves from an initial boundary with a speed function that

is formed based on the intensity, spatial interaction, and object shape. Exper-

iments confirmed the high capabilities of the proposed approach to evolve

from the heart cavity and stop by the outer border of the LV, providing an

accurate segmentation of the outer contour of the LV wall. The third seg-

mentation approach makes full use of the intensity and spatial interaction de-

scriptors, in a joint Markov-Gibbs random field (MGRF) model of the image

signals and their region map, to identify the pathological tissue in the LV wall

with high accuracy confirmed by both Dice similarity coefficient (DSC) and

Bland Altman analyses. The intensity, spatial interaction, and shape descrip-

tor are further extended to 3D to segment the corpus callosum (CC) structure

from the magnetic resonance images (MRI) of the brain. The preliminary re-

sults of the proposed segmentation approaches confirm the benefits of these

models and encourage applying them in other applications.

• An accurate model to estimate the transmural extent, an important metric

to quantify the myocardial wall of the heart, has been proposed. The model

is based on solving the partial differential equation (PDE) to collocate the

correspondence between two contours. Phantom validation showed that the

PDE Laplace-based method outperforms the current methods in estimating

the transmural extent, namely, the radial and centerline methods.
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• A novel method for strain estimation from cine cardiac MRI is proposed.

Unlike current methods that depend on the intensity and spatial information

to track the wall motion, the proposed method sticks to the geometry of the

heart to track its motion. To achieve this goal, the application of the proposed

PDE method is extended to track the LV wall points by solving the Laplace

equation between the LV contours of each two successive image frames over

the cardiac cycle. The main advantage of the proposed tracking method over

traditional texture-based methods is its ability to track the movement and ro-

tation of the LV wall based on tracking the geometrical features of the inner,

mid-, and outer walls of the LV. This overcomes noise sources that come from

heart motion and that are associated with the scanning process. In addition,

the proposed method showed accurate validation results on simulated phan-

toms with predefined point locations of the LV wall over the cardiac cycle.

• A novel mapping model to establish correspondences between two 3D sur-

faces is presented. Surfaces are mapped to a unified cylindrical domain for

analysis. Validation on 3D simulated phantoms demonstrates the ability of

the proposed approach to accurately detect the shape variability between two

3D surfaces. The model has been used to detect the abnormalities in the CC

brain structure between the dyslexic and normal brains by analyzing the CCs

in the cylindrical domain. This mapping leads to detect abnormalities in all

divisions of the corpus callosum (i.e., splenium, rostrum, genu and body)

and offers a whole 3D analysis of the CC abnormalities instead of only area

based as done by the previous groups.

• A novel diagnostic framework for dyslexia detection is proposed, based on

novel 3D features extracted by 3D shape analysis of the CC brain structure.

Experiments have confirmed that the 3D shape analysis of the CC, based on

the centerline length and the CC thickness, is able to accurately discrimi-

nate between the dyslexic and normal subjects. These findings lead toward
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more efficient non-invasive computer assisted systems for the diagnosis of

dyslexia.

B. DIRECTIONS FOR FUTURE RESEARCH

Several possibilities of future work to further enhance the approaches pro-

posed in this dissertation and to extend their use in other applications include, but

are not limited to, the following:

• The spatial interaction model, which is used in the segmentation, is limited

to pair-wise interactions. One of the trends is to develop higher-order MGRF

models to more accurately define the spatial interaction between voxels. Fu-

ture work includes investigating the powerful capabilities of these model to

increase the accuracy of the proposed segmentation models.

• The shape model used in this dissertation is a probabilistic shape model,

which may not be sufficient to describe complex shapes in case of limited

number of training datasets. Future work includes investigating other shape

models, such as a linear combinations of distance maps, in order to improve

the efficiency of describing the object shape.

• The segmentation model is based on intensity, spatial interaction, and shape.

One of the trends that is worth testing is the integration of the these features

with other image features (e.g., scale space features, derivatives, etc). This

might improve the segmentation accuracy.

• Since this dissertation proposed a method to estimates the functional strain

from cardiac cine MRI. Future work includes estimating the correlation co-

efficients between the strain index and other performance indexes derived
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from cine images, such as global (e.g., ejection fraction) and local (e.g., wall

thickening) indexes. This will avoid the inter-slice variability problem since

all these indexes will be derived from cardiac cine MRI data.

• The strain estimation method proposed in this dissertation is performed on

2D thick slices. Hence, a natural extension is to generalize the approach to be

used for 4D (3D+time).

• A future work of this dissertation is to apply the developed models in other

clinical applications such as the detection of cancerous cells in the prostate,

the second leading cause of death for males in the United States. Most prostate

images are often low contrast where the prostate boundaries are barely iden-

tified. To provide a more accurate segmentation of the prostate tissue and

the cancerous region, more advanced mathematical models to accurately de-

scribe the visual appearance of the prostate images will be developed (e.g.,

higher-order MGRF models to better define the spatial interaction between

the prostate voxels). The preliminary results of this work has been published

in many conference proceedings and journal articles [279–287].

• A future work of this dissertation is to investigate the integration of the pro-

posed work with the BioImaging lab work for the early detection of acute

renal rejection [128, 129, 288–302].

• A future work of this dissertation is to investigate the integration of the pro-

posed work with the BioImaging lab work for the early detection of lung

cancer [143, 303–335].

• A future work of this dissertation is to investigate the integration of the pro-

posed work with the BioImaging lab work for the detection of other brain

disorders such as autism [313, 336–343].
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[78] A. M. Beek, H. P. Kühl, O. Bondarenko, J. W. Twisk, M. B. Hofman, W. G. van
Dockum, C. A. Visser, and A. C. van Rossum. Delayed contrast-enhanced
magnetic resonance imaging for the prediction of regional functional im-
provement after acute myocardial infarction. Journal of the American College
of Cardiology, 42(5):895–901, 2003.

[79] E. E. van der Wall and J. J. Bax. Late contrast enhancement by CMR: More
than scar? The International Journal of Cardiovascular Imaging, 24(6):609–611,
2008.

[80] K. R. Hoffmann, D. P. Nazareth, L. Miskolczi, A. Gopal, Z. Wang, S. Rudin,
and D. R. Bednarek. Vessel size measurements in angiograms: A comparison
of techniques. Medical Physics, 29:1622–1633, 2002.

[81] N. Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9:62–66, 1979.

[82] F. h. Sheehan, F. L. Bolson, H. T. Dodge, D. G. Mathey, J. Schofer, and H. W.
Woo. Advantages and applications of the centerline method for characteriz-
ing regional ventricular function. Circulation, 74(2):293–305, 1986.

[83] M. J. McGillem, G. B. Mancini, S. F. DeBoe, and A. J. Buda. Modification of
the centerline method for assessment of echocardiographic wall thickening
and motion: A comparison with areas of risk. Journal of the American College
of Cardiology, 11(4):861–866, 1988.

[84] J. D. Schuijf, T. A. Kaandorp, H. J. Lamb, R. J. van der Geest, E. P. Viergever,
E. E. van der Wall, A. de Roos, and J. J. Bax. Quantification of myocardial in-
farct size and transmurality by contrast-enhanced magnetic resonance imag-
ing in men. American Journal of Cardiology, 94(3):284–288, 2004.

[85] F. P. van Rugge, E. E. van der Wall, S. J. Spanjersberg, A. de Roos, N. A.
Matheijssen, A. H. Zwinderman, P. R. van Dijkman, J. H. Reiber, and A. V. Br-
uschke. Magnetic resonance imaging during dobutamine stress for detection
and localization of coronary artery disease quantitative wall motion analy-
sis using a modification of the centerline method. Circulation, 90(1):127–138,
1994.

[86] M. J. Ledesma-Carbayo, J. Kybic, M. Desco, A. Santos, M. Suhling, P. Hun-
ziker, and M. Unser. Spatio-temporal nonrigid registration for ultrasound
cardiac motion estimation. IEEE Transactions on Medical Imaging, 24(9):1113–
1126, 2005.

[87] A. Elen, H. F. Choi, D. Loeckx, H. Gao, P. Claus, P. Suetens, F. Maes,
and J. D’hooge. Three-dimensional cardiac strain estimation using spatio-
temporal elastic registration of ultrasound images: A feasibility study. IEEE
Transactions on Medical Imaging, 27(11):1580–1591, 2008.

217



[88] T. S. Denney and J. L. Prince. Reconstruction of 3-D left ventricular motion
from planar tagged cardiac MR images: An estimation theoretic approach.
IEEE Transactions on Medical Imaging, 14(4):625–635, 1995.

[89] W. S. Kerwin and J. L. Prince. Cardiac material markers from tagged MR
images. Medical Image Analysis, 2:339–353, 1998.

[90] N. F. Osman and J. L. Prince. Visualizing myocardial function using HARP
MRI. Physics in Medicine and Biology, 45:1665–1682, 2000.

[91] N. F. Osman, E. R. McVeigh, and J. L. Prince. Imaging heart motion using
harmonic phase MRI. IEEE Transactions on Medical Imaging, 19(3):186–202,
2000.

[92] W. G. O’Dell, C. C. Moore, W. C. Hunter, E. A. Zerhouni, and E. R. McVeigh.
Three-dimensional myocardial deformations: Calculation with displace-
ment field fitting to tagged MR images. Radiology, 195:829–835, 1995.

[93] X. Liu and J. L. Prince. Shortest path refinement for motion estimation from
tagged MR images. IEEE Transactions on Medical Imaging, 29(8):1560–1572,
2010.

[94] E. Maret, T. Todt, L. Brudin, E. Nylander, E. Swahn, J. L. Ohlsson, and J. E.
Engvall. Functional measurements based on feature tracking of cine mag-
netic resonance images identify left ventricular segments with myocardial
scar. Cardiovascular Ultrasound, 7(53), 2009.

[95] K. N. Hor, W. M. Gottliebson, C. Carson, E. Wash, J. Cnota, R. Fleck,
J. Wansapura, P. Klimeczek, H. R. Al-Khalidi, E. S. Chung, W. Benson, and
W. Mazur. Comparison of magnetic resonance feature tracking for strain cal-
culation with harmonic phase imaging analysis. JACC: Cardiovascular Imag-
ing, 3(3):144–151, 2010.

[96] K. N. Hor, R. Baumann, G. Pedrizzetti, G. Tonti, W. M. Gottliebson, M. Taylor,
W. Benson, and W. Mazur. Magnetic resonance derived myocardial strain
assessment using feature tracking. Journal of Visualized Experiments, 48:144–
151, 2011.

[97] A. Schuster, S. Kutty, A. Padiyath, V. Parish, P. Gribben, D. A. Danford, M. R.
Makowski, B. Bigalke, P. Beerbaum, and E. Nage. Cardiovascular magnetic
resonance myocardial feature tracking detects quantitative wall motion dur-
ing dobutamine stress. Journal of Cardiovascular Magnetic Resonance, 13(58),
2011.

[98] R. C. Dubes and A. K. Jain. Random field models in image analysis. Journal
of Applied Statistics, 16:131–164, 1989.

[99] G. Gimel’farb. Image Textures and Gibbs Random Fields. Dordrecht: Kluwer
Academic, 1999.

[100] A. A. Farag, A. S. El-Baz, and G. Gimel’farb. Precise segmentation of multi-
modal images. IEEE Transactions on Image Processing, 15(4):952–968, 2006.

218



[101] A. El-Baz. Novel Stochastic Models for Medical Image Analysis. PhD thesis,
University of Louisville, Louisville, KY, USA, 2006.

[102] A. El-Baz and G. Gimel’farb. EM based approximation of empirical dis-
tributions with linear combinations of discrete Gaussians. In Proc. Interna-
tional Conference on Image Processing (ICIP’2007), pages 373–376, San Antonio,
Texas, 2007. IEEE.

[103] A. El-Baz, A. Elnakib, F. Khalifa, M. A. El-Ghar, R. Falk, and G. Gimel’farb.
Precise segmentation of 3-D magnetic resonance angiography. IEEE Transac-
tions on Biomedical Engineering, 59(7):2019–2029, 2012.

[104] A. Elnakib, G. Gimel’farb, T. Inanc, and A. El-Baz. Modified Akaike infor-
mation criterion for estimating the number of components in a probability
mixture model. In Proc. IEEE International Conference on Image Processing
(ICIP’2012), pages 2497–2500. IEEE, 2012.

[105] A. Elnakib, M. A. El-Ghar, G. Gimel’farb, R. Falk, J. Suri, and A. El-Baz. Mod-
ified Akaike information criterion for selecting the numbers of mixture com-
ponents: An application to initial lung segmentation. In L. Saba and J. Suri,
editors, Multi-Detector CT Imaging: Abdomen, Pelvis, and CAD Applications,
chapter 28, pages 609–620. CRC Press: Taylor and Francis Group, 2014.

[106] A. Webb. Statistical Pattern Recognition. New York: Wiley, 2002.

[107] G. Gimel’farb, A. Farag, and A. El-Baz. Expectation–maximization for a lin-
ear combination of Gaussians. In Proc. International Conference on Pattern
Recognition (ICPR’2004), pages 422–425, Cambridge, UK, August 2004.

[108] A. A. Farag, A. El-Baz, and G. Gimel’farb. Density estimation using modi-
fied expectation-maximization algorithm for a linear combination of Gaus-
sians. In Proc. International Conference on Image Processing (ICIP’2004), vol-
ume 3, pages 1871–1874. IEEE, 2004.

[109] A. Farag, A. El-Baz, and G. Gimel’farb. Precise image segmentation by it-
erative EM-based approximation of empirical grey level distributions with
linear combinations of Gaussians. In Computer Vision and Pattern Recogni-
tion Workshop (CVPRW’2004), pages 121–129, Washington, D.C., USA, 2004.
IEEE.

[110] A. A. Farag, A. El-Baz, and R. M. Mohamed. Density estimation using gen-
eralized linear model and a linear combination of Gaussians. International
Journal of Signal Processing, 1:76–79, 2005.

[111] A. El-Baz, R. M. Mohamed, A. A. Farag, and G. Gimel’farb. Unsupervised
segmentation of multi-modal images by a precise approximation of individ-
ual modes with linear combinations of discrete Gaussians. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition-Workshops
(CVPRW’2005), pages 54–54. IEEE, 2005.

219



[112] A. El-Baz, A. A. Farag, and G. Gimel’farb. Iterative approximation of empir-
ical grey-level distributions for precise segmentation of multimodal images.
EURASIP Journal on Applied Signal Processing, 2005:1969–1983, 2005.

[113] P. Viola and W. M. Wells. Alignment by maximization of mutual information.
In Proc. IEEE International Conference on Computer Vision (ICCV’1995), pages
16–23. IEEE, 1995.

[114] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flowalgorithms for energy minimization in vision. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 26(9):1124–1137, 2004.

[115] Y. Boykov and G. Funka-Lea. Graph cuts and efficient N-D image segmen-
tation. International Journal of Computer Vision, 69(2):109–131, 2006.

[116] A. El-Baz and G. Gimel’farb. Image segmentation with a parametric de-
formable model using shape and appearance priors. In Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR’2008), pages 1–8. IEEE,
2008.

[117] A. El-Baz and G. Gimel’farb. Robust medical images segmentation using
learned shape and appearance models. In Proc. International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI’2009),
pages 281–288. Springer, 2009.

[118] A. El-Baz and G. Gimel’farb. Robust image segmentation using learned pri-
ors. In Proc. IEEE International Conference on Computer Vision (ICCV’2009),
pages 857–864. IEEE, 2009.

[119] D. Adalsteinsson and J. Sethian. A fast level set method for propagating
interfaces. Journal of Computational Physics, 118(2):269–277, 1995.

[120] L. R. Dice. Measures of the amount of ecologic association between species.
Ecological society of America, 26:279–302, 1945.

[121] R. J. Kim, D. J. Shah, and R. M. Judd. How we perform delayed enhancement
imaging. Journal of Cardiovascular MR, 5:505–514, 2003.

[122] A. Elnakib, G. M. Beache, G. Gimel’farb, and A. El-Baz. A new framework
for automated segmentation of left ventricle wall from contrast enhanced
cardiac magnetic resonance images. In Proc. International Conference on Image
Processing (ICIP’2011), pages 2289–2292. IEEE, 2011.

[123] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society, pages 259–302, 1986.

[124] R. J. Kim, E. Wu, A. Rafael, E.-L. Chen, M. A. Parker, O. Simonetti, F. J.
Klocke, R. O. Bonow, and R. M. Judd. The use of contrast-enhanced mag-
netic resonance imaging to identify reversible myocardial dysfunction. The
New England Journal of Medicine, 43(20):1445–1453, 2000.

220



[125] K. M. Choi, R. J. Kim, G. Gubernikoff, J. D. Vargas, M. Parker, and R. M.
Judd. Transmural extent of acute myocardial infarction predicts long-term
improvement in contractile function. Circulation, 104(10):1101–1107, 2001.

[126] S. Jones, B. R. Buchbinder, and I. Aharon. Three-dimensional mapping of
cortical thickness using Laplace’s equation. Human Brain Mapping, 11, 2000.

[127] A. Elnakib, G. M. Beache, G. Gimel’farb, and A. El-Baz. New automated
Markov–Gibbs random field based framework for myocardial wall viability
quantification on agent enhanced cardiac magnetic resonance images. The
International Journal of Cardiovascular Imaging, 28(7):1683–1698, 2012.

[128] F. Khalifa, M. A. El-Ghar, B. Abdollahi, H. Frieboes, T. El-Diasty, and A. El-
Baz. A comprehensive non-invasive framework for automated evaluation
of acute renal transplant rejection using DCE-MRI. NMR in Biomedicine,
26(11):1460–1470, 2013.

[129] F. Khalifa, G. M. Beache, M. A. El-Ghar, T. El-Diasty, G. Gimel’farb, M. Kong,
and A. El-Baz. Dynamic contrast-enhanced MRI-based early detection
of acute renal transplant rejection. IEEE Transactions on Medical Imaging,
32(10):1910–1927, 2013.

[130] J. M. Bland and R. W. Martin. Statistical methods for assessing agreement
between two methods of clinical measurement. Lancet, 327(8476):307–310,
1986.

[131] A. El-Baz, G. Gimel’farb, R. Falk, M. A. El-Ghar, V. Kumar, and D. Heredia.
A novel 3D joint Markov–Gibbs model for extracting blood vessels from PC-
MRA images. In Proc. International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI’2009), pages 943–950, 2009.

[132] A. Elnakib, G. M. Beache, M. Nitzken, G. Gimel’farb, and A. El-Baz. A new
framework for automated identification of pathological tissues in contrast
enhanced cardiac magnetic resonance images. In Proc. IEEE International
Symposium on Biomedical Imaging: From Nano to Macro (ISBI’2011), pages
1272–1275. IEEE, 2011.

[133] R. Bolli, A. R. Chugh, D. D’Amario, J. H. Loughran, M. F. Stoddard, S. Ikram,
G. M. Beache, S. G. Wagner, A. Leri, T. Hosoda, F. Sanada, J. B. Elmore,
P. Goichberg, D. Cappetta, N. K. Solankhi, I. Fahsah, D. G. Rokosh, M. S.
Slaughter, J. Kajstura, and P. Anversa. Cardiac stem cells in patients with
ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1
trial. Lancet, 378(9806):1847–1857, 2011.

[134] F. Khalifa, G. M. Beache, G. Gimel’farb, G. A. Giridharan, and A. El-Baz.
Accurate automatic analysis of cardiac cine images. IEEE Transactions on
Biomedical Engineering, 59(2):445–455, 2012.

[135] F. Khalifa, G. Beache, A. El-Baz, and G. Gimel’farb. Deformable model
guided by stochastic speed with application in cine images segmentation.

221



In Proc. International Conference on Image Processing (ICIP’2010), pages 1725–
1728, Hong Kong, September 26–29, 2010.

[136] F. Khalifa, G. M. Beache, G. Gimel’farb, and A. El-Baz. A novel approach
for accurate estimation of left ventricle global indexes from short-axis cine
MRI. In Proc. International Conference on Image Processing (ICIP’2011), pages
2645–2649, Brussels, Belgium, September 11–14, 2011.

[137] F. Khalifa, G. M. Beache, M. Nitzken, G. Gimel’farb, G. A. Giridharan, and
A. El-Baz. Automatic analysis of left ventricle wall thickness using short-
axis cine CMR images. In Proc. IEEE International Symposium on Biomedical
Imaging: From Nano to Macro (ISBI’11), pages 1306–1309, Chicago, Illinois,
March 30–April 2, 2011.

[138] F. Khalifa, G. M. Beache, G. Gimel’farb, G. A. Giridharan, and A. El-Baz. A
new image-based framework for analyzing cine images. In A. El-Baz, U. R.
Acharya, M. Mirmedhdi, and J. S. Suri, editors, Handbook of Multi Modality
State-of-the-Art Medical Image Segmentation and Registration Methodologies, vol-
ume 2, chapter 3, pages 69–98. Springer, New York, 2011.

[139] J. Bonet and R. D. Wood. Nonlinear Continuum Mechanics for Finite Element
Analysis. Cambridge University Press, 1997.

[140] M. Nitkzen, G. Beache, A. Elnakib, F. Khalifa, G. Gimel’farb, and A. El-Baz.
Improving full-cardiac cycle strain estimation from tagged CMR by accurate
modeling of 3D image appearance characteristics. In Proc. IEEE International
Symposium on Biomedical Imaging: From Nano to Macro (ISBI’2012), pages 462–
465, Barcelona, Spain, 2012. IEEE.

[141] T. Arts, W. C. Hunter, A. Douglas, A. M. Muijtjens, and R. S. Reneman. De-
scription of the deformation of the left ventricle by a kinematic model. Jour-
nal of Biomechanics, 25:1119–1127, 1992.

[142] T. E. Waks, J. L. Prince, and A. S. Douglas. Cardiac motion simulator for
tagged MRI. In Proc. Workshop on Mathematical Methods in Biomedical Image
Analysis, pages 182–191, 1996.

[143] A. Soliman, F. Khalifa, A. Alansary, G. Gimel’farb, and A. El-Baz. Segmen-
tation of lung region based on using parallel implementation of joint MGRF:
Validation on 3D realistic lung phantoms. In Proc. IEEE International Sympo-
sium on Biomedical Imaging: From Nano to Macro (ISBI’2013), pages 852–855.
IEEE, 2013.

[144] G. M. Beache, S. F. Kulke, H. L. Kantor, P. Niemi, T. A. Campbell, D. A.
Chesler, H. Gewirtz, B. R. Rosen, T. J. Brady, and R. M. Weisskoff. Imag-
ing perfusion deficits in ischemic heart disease with susceptibility-enhanced
T2-weighted MRI: Preliminary human studies. Magnetic Resonance Imaging,
16(1):19–27, 1998.

222



[145] G. M. Beache, V. J. Wedeen, R. M. Weisskoff, P. T. O’Gara, B. P. Poncelet, D. A.
Chesler, T. J. Brady, B. R. Rosen, and R. E. Dinsmore. Intramural mechanics
in hypertrophic cardiomyopathy: Functional mapping with strain-rate MR
imaging. Radiology, 197(1):117–124, 1995.

[146] A. Elnakib, G. M. Beache, H. Sliman, G. Gimel’farb, T. Inanc, and A. El-Baz.
A novel laplace-based method to estimate the strain from cine cardiac mag-
netic resonance images. In Proc. International Conference on Image Processing
(ICIP’2013). IEEE, 2013. (In press).

[147] A. Elnakib, G. M. Beache, T. I. G. Gimel’farb, and A. El-Baz. Validating a
new methodology for strain estimation from cardiac cine MRI. In Proc. Inter-
national Symposium on Computational Models for Life Science (CMLS’13), pages
277–286, 2013.

[148] V. Blau, N. van Atteveldt, M. Ekkebus, R. Goebel, and L. Blomert. Reduced
neural integration of letters and speech sounds links phonological and read-
ing deficits in adult dyslexia. Current Biology, 19(6):503–508, 2009.

[149] K. Pugh, W. Mencl, A. Jenner, L. Katz, S. Frost, J. Lee, S. Shaywitz, and
B. Shaywitz. Functional neuroimaging studies of reading and reading dis-
ability (developmental dyslexia). Mental Retardation and Developmental Dis-
abilities Research Reviews, 6(3):61–79, 2000.

[150] F. Vellutino and D. Scanlon. Phonological coding, phonological awareness,
and reading ability: Evidence from a longitudinal and experimental study.
Merrill Palmer Quarterly, 33(3):321–363, 1987.

[151] J. Torgesen. Lessons learned from research on interventions for students who
experience difficulty learning to read. In P. McCardle and V. Chabra, editors,
The Voice of Evidence in Reading Research, pages 338–355. Paul H Brookes Pub-
lishing, Berlin, 1994.

[152] M. Wolf. Proust and the Squid: The Story and Science of the Reading Brain. New
York: Harper Collins, 2007.

[153] M. Casanova and C. R. Tillquist. Encephalization, emergent properties, and
psychiatry: A minicolumnar perspective. Merrill Palmer Quarterly, 14(1):101–
118, 2008.

[154] V. B. Mountcastle. Perpetual Neuroscience: The Cerebral Cortex. MA: Harvard
University Press, 1988.

[155] M. Casanova, D. P. Buxhoeveden, M. Cohen, A. E. Switala, and E. L. Roy.
Minicolumnar pathology in dyslexia. Annals of Neurology, 52(1):108–110,
2002.

[156] E. L. Williams and M. F. Casanova. Autism and dyslexia: A spectrum of cog-
nitive styles as defined by minicolumnar morphometry. Medical Hypotheses,
74(1):59–62, 2010.

223



[157] Y.-F. Sun, J.-S. Lee, and R. Kirby. Brain imaging findings in dyslexia. Pediatrics
& Neonatology, 51(2):89–96, 2010.

[158] M. Eckert. Neuroanatomical markers for dyslexia: A review of dyslexia
structural imaging studies. The Neuroscientist, 10(4):362–371, 2004.

[159] S. Eliez, J. M. Rumsey, J. N. Giedd, J. E. Schmitt, A. J. Patwardhan, and A. L.
Reiss. Morphological alteration of temporal lobe gray matter in dyslexia: An
MRI study. Journal of Child Psychology and Psychiatry, 41(5):637–644, 2000.

[160] M. Kronbichler, H. Wimmer, W. Staffen, F. Hutzler, A. Mair, and G. Ladurner.
Developmental dyslexia: Gray matter abnormalities in the occipitotemporal
cortex. Human Brain Mapping, 29(5):613–625, 2008.

[161] W. E. Brown, S. Eliez, V. Menon, J. M. Rumsey, C. D. White, and A. L. Reiss.
Preliminary evidence of widespread morphological variations of the brain
in dyslexia. Neurology, 56(6):781–783, 2001.

[162] S. M. Brambati, C. Termine, M. Ruffino, G. Stella, F. Fazio, S. F. Cappa, and
D. Perani. Regional reductions of gray matter volume in familial dyslexia.
Neurology, 63(4):742–745, 2004.

[163] G. Silani, U. Frith, J. F. Demonet, F. Fazio, D. Perani, C. Price, C. D. Frith, and
E. Paulesu. Brain abnormalities underlying altered activation in dyslexia: A
voxel based morphometry study. Brain, 128(10):2453–2461, 2005.

[164] M. A. Eckert, C. M. Leonard, M. Wilke, M. Eckert, T. Richards, A. Richards,
and V. Berninger. Anatomical signatures of dyslexia in children: Unique
information from manual and voxel based morphometry brain measures.
Cortex, 41(3):304–315, 2005.

[165] E. Vinckenbosch, F. Robichon, and S. Eliez. Gray matter alteration in
dyslexia: Converging evidence from volumetric and voxel-by-voxel MRI
analyses. Neuropsychologia, 43(3):324–331, 2005.

[166] F. Hoeft, A. Meyler, A. Hernandez, C. Juel, H. Taylor-Hill, J. L. Martindale,
G. McMillon, G. Kolchugina, J. M. Black, A. Faizi, G. K. Deutsch, W. T. Siok,
A. L. Reiss, S. Whitfield-Gabrieli, and J. D. E. Gabrieli. Functional and mor-
phometric brain dissociation between dyslexia and reading ability. Proc. Na-
tional Academy of Sciences, 104(10):4234–4239, 2007.

[167] D. Menghini, G. E. Hagberg, L. Petrosini, M. Bozzali, E. Macaluso, C. Cal-
tagirone, and S. Vicari. Structural correlates of implicit learning deficits in
subjects with developmental dyslexia. Annals of the New York Academy of Sci-
ences, 1145(1):212–221, 2008.

[168] C. Steinbrink, K. Vogt, A. Kastrup, H.-P. Müller, F. D. Juengling, J. Kassubek,
and A. Riecker. The contribution of white and gray matter differences to de-
velopmental dyslexia: Insights from DTI and VBM at 3.0 T. Neuropsychologia,
46(13):3170–3178, 2008.

224



[169] C. Pernet, J. Andersson, E. Paulesu, and J. F. Demonet. When all hypothe-
ses are right: A multifocal account of dyslexia. Human Brain Mapping,
30(7):2278–2292, 2009.

[170] R. T. Schultz, N. K. Cho, L. H. Staib, L. E. Kier, J. M. Fletcher, S. E. Shaywitz,
D. P. Shankweiler, L. Katz, J. C. Gore, J. S. Duncan, and B. A. Shaywitz. Brain
morphology in normal and dyslexic children: The influence of sex and age.
Annals of Neurology, 35(6):732–742, 1994.

[171] T. M. Evans, D. L. Flowers, E. M. Napoliello, and G. F. Eden. Sex-specific gray
matter volume differences in females with developmental dyslexia. Brain
Structure and Function, pages 1–14, 2013.

[172] K. Jednoróg, N. Gawron, A. Marchewka, S. Heim, and A. Grabowska. Cogni-
tive subtypes of dyslexia are characterized by distinct patterns of grey matter
volume. Brain Structure and Function, pages 1–11, 2013.

[173] A. J. Krafnick, D. L. Flowers, E. M. Napoliello, and G. F. Eden. Gray matter
volume changes following reading intervention in dyslexic children. Neu-
roimage, 57(3):733–741, 2011.

[174] N. M. Raschle, M. Chang, and N. Gaab. Structural brain alterations associ-
ated with dyslexia predate reading onset. Neuroimage, 57(3):742–749, 2011.

[175] E. L. Williams, A. El-Baz, M. Nitzken, A. E. Switala, and M. F. Casanova.
Spherical harmonic analysis of cortical complexity in autism and dyslexia.
Translational Neuroscience, 3(1):36–40, 2012.

[176] I. Altarelli, K. Monzalvo, S. Iannuzzi, J. Fluss, C. Billard, F. Ramus, and
G. Dehaene-Lambertz. A functionally guided approach to the morphom-
etry of occipitotemporal regions in developmental dyslexia: Evidence for
differential effects in boys and girls. The Journal of Neuroscience, 33(27):11296–
11301, 2013.

[177] A. M. Dale, B. Fischl, and M. I. Sereno. Cortical surface-based analysis: I.
segmentation and surface reconstruction. Neuroimage, 9(2):179–194, 1999.

[178] B. Fischl and A. M. Dale. Measuring the thickness of the human cerebral
cortex from magnetic resonance images. Proc. National Academy of Sciences,
97(20):11050–11055, 2000.

[179] M. F. Casanova, A. S. El-Baz, J. Giedd, J. M. Rumsey, and A. E. Switala. In-
creased white matter gyral depth in dyslexia: Implications for corticocortical
connectivity. Journal of Autism and Developmental Disorders, 40(1):21–29, 2010.

[180] A. A. Beaton. The relation of planum temporale asymmetry and morphology
of the corpus callosum to handedness, gender, and dyslexia: A review of the
evidence. Brain and Language, 60(2):255–322, 1997.

[181] M. A. Eckert and C. M. Leonard. Structural imaging in dyslexia: The planum
temporale. Mental Retardation and Developmental Disabilities Research Reviews,
6(3):198–206, 2000.

225



[182] C. Rae, J. A. Harasty, T. E. Dzendrowskyj, J. B. Talcott, J. M. Simpson, A. M.
Blamire, R. M. Dixon, M. A. Lee, C. H. Thompson, P. Styles, A. J. Richardson,
and J. F. Stein. Cerebellar morphology in developmental dyslexia. Neuropsy-
chologia, 40(8):1285–1292, 2002.

[183] C. J. Stoodley and J. F. Stein. Cerebellar function in developmental dyslexia.
The Cerebellum, pages 1–10, 2012.

[184] A. Kushch, K. Gross-Glenn, B. Jallad, H. Lubs, M. Rabin, E. Feldman, and
R. Duara. Temporal lobe surface area measurements on MRI in normal and
dyslexic readers. Neuropsychologia, 31(8):811–821, 1993.

[185] J. P. Larsen, T. Høien, I. Lundberg, and H. Ødegaard. MRI evaluation of the
size and symmetry of the planum temporale in adolescents with develop-
mental dyslexia. Brain and Language, 39(2):289–301, 1990.

[186] C. M. Leonard, K. K. S. Voeller, L. J. Lombardino, M. K. Morris, G. W. Hynd,
A. W. Alexander, H. G. Andersen, M. Garofalakis, J. C. Honeyman, J. Mao,
F. Agee, and E. V. Staab. Anomalous cerebral structure in dyslexia revealed
with magnetic resonance imaging. Archives of Neurology, 50(5):461–469, 1993.

[187] J. S. Bloom, M. A. Garcia-Barrera, C. J. Miller, S. R. Miller, and G. W. Hynd.
Planum temporale morphology in children with developmental dyslexia.
Neuropsychologia, 51(9):1684–1692, 2013.

[188] J. M. Rumsey, B. C. Donohue, D. R. Brady, K. Nace, J. N. Giedd, and
P. Andreason. A magnetic resonance imaging study of planum tempo-
rale asymmetry in men with developmental dyslexia. Archives of Neurology,
54(12):1481, 1997.

[189] J. M. Rumsey, K. Nace, B. Donohue, D. Wise, J. M. Maisog, and P. Andreason.
A positron emission tomographic study of impaired word recognition and
phonological processing in dyslexic men. Archives of Neurology, 54(5):562–
573, 1997.

[190] M. A. Eckert, C. M. Leonard, T. L. Richards, E. H. Aylward, J. Thomson, and
V. W. Berninger. Anatomical correlates of dyslexia: Frontal and cerebellar
findings. Brain, 126(2):482–494, 2003.

[191] V. G. Fernandez, K. Stuebing, J. Juranek, and J. M. Fletcher. Volumetric anal-
ysis of regional variability in the cerebellum of children with dyslexia. The
Cerebellum, pages 1–10, 2013.

[192] J. D. Schmahmann, J. Doyon, M. Petrides, A. C. Evans, and A. W. Toga. MRI
Atlas of the Human Cerebellum. Academic Press, 2000.

[193] K. von Plessen, A. Lundervold, N. Duta, E. Heiervang, F. Klauschen, A. I.
Smievoll, L. Ersland, and K. Hugdahl. Less developed corpus callosum
in dyslexic subjects – A structural MRI study. Neuropsychologia, 40(7):1035–
1044, 2002.

226



[194] M. F. Casanova, A. El-Baz, A. Elnakib, J. Giedd, J. M. Rumsey, E. L. Williams,
and A. E. Switala. Corpus callosum shape analysis with application to
dyslexia. Translational Neuroscience, 1(2):124–130, 2010.

[195] A. Elnakib, A. El-Baz, M. F. Casanova, G. Gimel’farb, and A. E. Switala.
Image-based detection of corpus callosum variability for more accurate dis-
crimination between dyslexic and normal brains. In Proc. IEEE International
Symposium on Biomedical Imaging: From Nano to Macro (ISBI’2010), pages 109–
112. IEEE, 2010.

[196] A. Elnakib, A. El-Baz, M. F. Casanova, and A. E. Switala. Dyslexia diagnos-
tics by centerline-based shape analysis of the corpus callosum. In Proc. Inter-
national Conference on Pattern Recognition (ICPR’2010), pages 261–264. IEEE,
2010.

[197] D. L. Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and
H. Chabriat. Diffusion tensor imaging: Concepts and applications. Journal of
Magnetic Resonance Imaging, 13(4):354–546, 2001.

[198] R. Bammer. Basic principles of diffusion-weighted imaging. European Journal
of Radiology, 45(23):169–184, 2003.

[199] P. C. Sundgren, Q. Dong, a. S. K. M. D. Gomez-Hassan, P. Maly, and R. Welsh.
Diffusion tensor imaging of the brain: Review of clinical applications. Neu-
roradiology, 46(5):339–250, 2004.

[200] T. Klingberg, M. Hedehus, E. Temple, T. Salz, J. D. Gabrieli, M. E. Moseley,
and R. A. Poldrack. Microstructure of temporo-parietal white matter as a
basis for reading ability: Evidence from diffusion tensor magnetic resonance
imaging. Neuron, 25(2):493–500, 2000.

[201] S. N. Niogi and B. D. McCandliss. Left lateralized white matter microstruc-
ture accounts for individual differences in reading ability and disability. Neu-
ropsychologia, 44(11):2178–2188, 2006.

[202] T. Richards, J. Stevenson, J. Crouch, L. C. Johnson, K. Maravilla, P. Stock,
R. Abbott, and V. Berninger. Tract-based spatial statistics of diffusion ten-
sor imaging in adults with dyslexia. American Journal of Neuroradiology,
29(6):1134–1139, 2008.

[203] J. C. Carter, D. C. Lanham, L. E. Cutting, A. M. Clements-Stephens, X. Chen,
M. Hadzipasic, J. Kim, M. B. Denckla, and W. E. Kaufmann. A dual DTI
approach to analyzing white matter in children with dyslexia. Psychiatry
Research: Neuroimaging, 172(3):215–219, 2009.

[204] T. N. Odegard, E. A. Farris, J. Ring, R. McColl, and J. Black. Brain connectiv-
ity in non-reading impaired children and children diagnosed with develop-
mental dyslexia. Neuropsychologia, 47(8):1972–1977, 2009.

227



[205] M. Vandermosten, B. Boets, H. Poelmans, S. Sunaert, J. Wouters, and P. Gh-
esquière. A tractography study in dyslexia: Neuroanatomic correlates of
orthographic, phonological and speech processing. Brain, 135(3):935–948,
2012.

[206] M. Vandermosten, B. Boets, H. Poelmans, S. Sunaert, P. Ghesquière, and
J. Wouters. White matter lateralization and interhemispheric coherence to
auditory modulations in normal reading and dyslexic adults. Neuropsycholo-
gia, 51(11):2087–2099, 2013.

[207] K. M. Hasan, D. L. Molfese, I. S. Walimuni, K. K. Stuebing, A. C. Papanico-
laou, P. A. Narayana, and J. M. Fletcher. Diffusion tensor quantification and
cognitive correlates of the macrostructure and microstructure of the corpus
callosum in typically developing and dyslexic children. NMR in Biomedicine,
25(11):1263–1270, 2012.

[208] C. Beaulieu, C. Plewes, L. A. Paulson, D. Roy, L. Snook, L. Concha, and
L. Phillips. Imaging brain connectivity in children with diverse reading abil-
ity. Neuroimage, 25(4):1266–1271, 2005.

[209] S. L. Rimrodt, D. J. Peterson, M. B. Denckla, W. E. Kaufmann, and L. E. Cut-
ting. White matter microstructural differences linked to left perisylvian lan-
guage network in children with dyslexia. Cortex, 46(6):739–749, 2010.

[210] S. Ogawa, T. M. Lee, A. S. Nayak, and P. Glynn. Oxygenation–sensitive
contrast in magnetic resonance image of rodent brain at high magnetic fields.
Magnetic Resonance in Medicine, 14(1):68–78, 1990.

[211] B. A. Shaywitz, G. R. Lyon, and S. E. S. E. Shaywitz. The role of functional
magnetic resonance imaging in understanding reading and dyslexia. Devel-
opmental Neuropsychology, 30(1):613–632, 2006.

[212] S. L. Rimrodt, A. M. Clements-Stephens, K. R. Pugh, S. M. Courtney, P. Gaur,
J. J. Pekar, and L. E. Cutting. Functional MRI of sentence comprehension in
children with dyslexia: Beyond word recognition. Cerebral Cortex, 19(2):402–
413, 2009.

[213] H. Baillieux, E. J. M. Vandervliet, M. Manto, P. M. Parizel, P. Deyn, and
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APPENDIX I

NOMENCLATURE

The following convention is used throughout the dissertation.

◦ Q is the number of gray levels.

◦ Q = {0, . . . , Q− 1} denote sets of gray levels q.

◦ L = {ob, bg} denote a set of region labels (i.e., object “ob” and background

“bg” labels).

◦ U = [0, 1] denote the unit interval [0, 1].

◦ (x, y) – 2D Cartesian coordinates of points (pixels) in the image plane.

◦ R = {(x, y) : 1 ≤ x ≤ X, 1 ≤ y ≤ Y } is a finite arithmetic grid supporting

gray level images g : R → Q and their region maps m : R → L.

◦ g = [gx,y : (x, y) ∈ R; gx,y ∈ Q] – a gray level digital image taking gray values

from a finite set Q = {0, . . . , Q− 1}.

◦ m = [mx,y : (x, y) ∈ R;mx,y ∈ L] – a region map taking labels from a finite set

L = {ob, bg}.

◦ s = [Smx,y : (x, y) ∈ R;Smx,y ∈ U] – a positive probabilistic shape for the

object and background region map taking values from the unit interval U =

[0, 1].

◦ P (g,m) is a joint MGRF model of the image g and its region map m.
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◦ P (g|m) is a conditional distribution of images, given the map (the lower level

of the model).

◦ P (m) is an unconditional Gibbs probability distribution of maps with shape

prior (the higher level).

◦ Ps(m) is a prior shape probability distribution of maps.

◦ Ph(m) is an unconditional Gibbs probability distribution of maps.

◦ Na is a neighborhood system of pixels (or voxels) at absolute distance a.

◦ A = [a : a ∈ {1,
√
2, ..}] is a set of the absolute distances a between the pixel

(or voxel) and its neighbors in the neighborhood system.

◦ Va = {Va,eq, Va,ne} denote the Gibbs potential values for pixels at distance a

with equal (i.e., Va,eq) or non equal (i.e., Va,ne) labels.

◦ ξ is the shift in x–direction.

◦ η is the shift in y–direction.

◦ fa,eq(m) denotes the relative frequency of the equal label pairs in the equiva-

lent pixel pairs {((x, y), (x+ξ, y+η)): (x, y) ∈ R; (x+ξ, y+η) ∈ R; (ξ, η) ∈ Na}.

◦ λ denotes an object (“ob”) or background (“bg”) region label (i.e., λ ∈ L).

◦ pλ = [pλ(q) : q ∈ Q; λ ∈ L] denote pixel-wise probability distributions for the

object and its background.

◦ pLCDG(q) is the estimated density for the mixed gray level distribution using

LCDG approximation.

◦ wp,. is the mixed weight of positive Gaussian kernel.

◦ wn,. is the mixed weight of negative Gaussian kernel.
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◦ Cn is the number of negative Gaussian kernel for the estimated mixed den-

sity.

◦ Cp is the number of positive Gaussian kernel for the estimated mixed density.

◦ µ denotes the mean of a population.

◦ σ denotes the standard deviation of a population.

◦ ρ ≡ (µ, σ2) shorthand notation for mean, µ, and variance, σ2.

◦ ψ(q|ρ) is a Gaussian density with ρ denoting its mean and variance.

◦ Φ(ρ) is a cumulative Gaussian probability function with ρ denoting its mean

and variance.

◦ Ψρ = (ψ(q|ρ) : q ∈ Q) is a Discrete Gaussian (DG) density distribution;

ψ(q|ρ) = Φρ(q + 0.5)−Φρ(q − 0.5) for q = 1, . . . , Q− 2, ψ(0|ρ) = Φρ(0.5), and

ψ(Q− 1|ρ) = 1− Φρ(Q− 1.5) [102].

◦ α ∈ {p, n} an index specifies whether the DG is positive or negative.

◦ E(.) is the Gibbs energy function.

◦ t is a discrete time instance, i.e., t ∈ {0, 1, ..}.

◦ ν denotes a point coordinates; in 2D ν = (x, y) and in 3D ν = (x, y, z).

◦ D(ν) is the normalized minimum Euclidian distance between every point

ν = (x, y) in the outer area of an object and the object edge.

◦ F (ν) is a speed function of a level set function.

◦ T (ν) is the time at which the level set front crosses the point (x, y).

◦ β is a constant to control the evolution of a level set function.

◦ |C|, |G|, and |g| denote areas (by the number of pixels) of the segmented

object C , its ground truth G, and the image data g.
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◦ Parea is the percentage area of the pathological tissue in the left ventricle wall

of the heart.

◦ Ai denotes the area of pathology of a segment i, i ∈ {1, 2, .., 17}, in the 17-

segment myocardial model [4] of the left ventricle wall of the heart.

◦ Bi denotes the area of a segment i, i ∈ {1, 2, .., 17}, in the 17-segment myocar-

dial model [4] of the left ventricle wall of the heart.

◦ Ppath is the transmural extent of the pathological tissue in the left ventricle

wall of the heart.

◦ Tj is the LV width in the line j.

◦ dj is the extent of pathology in the line j.

◦ Υ is a scaler potential field between two potential surfaces.

◦ Ba = [Ba1, Ba2, .., Bam] denote a potential surface a ofm pointsBa1, Ba2, .., andBam.

◦ Bb = [Bb1, Bb2, .., Bbn] denote a potential surface b of n pointsBb1, Bb2, .., andBbn.

◦ Ex, Ey denote the electrical filed vectors of the potential field Υ in x and y

directions, respectively.

◦ SL denotes the Lagrangian strain for finitely small displacement.

◦ X1, X2 denote the circumferential and radial directions for an element on the

left ventricle (LV) wall, respectively.

◦ x1, x2 denote the dimensions of an element on the LV wall.

◦ εx1 , εx2 denote the normal components of the strain SL in the circumferential

and radial directions, respectively.

◦ εx1x2 , εx2x1 denote the shearing components of the strain SL.
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◦ ∆x1,∆x2 denote the displacement of an element on the LV wall in the cir-

cumferential and radial directions, respectively.

◦ A,B denote a start point and an end point, respectively.

◦ r(GT) denote the correlation coefficient between a measurement ant its ground

truth (GT) value.

◦ CAB is a set of all possible paths linking A, and B.

◦ C(l) is a path in the set CAB.

◦ W (ν) is a cost point at the point ν inside the object of interest.

◦ L is the path length.

◦ (i, j, k) denotes an object boundary point in a 3D image.

◦ (i0, j0, k) denotes the center on the slicing plane k.

◦ (x, y, z) – Cartesian coordinates of points (voxels) for a 3D image.

◦ (r, θ, z) – Polar coordinates of points.

◦ rdyslexia, rnormal denote the mean corpus callosum shape maps for dyslexic and

normal subjects, respectively.

◦ ∆r = rdyslexia − rcontrol denotes the absolute difference between the mean cor-

pus callosum shape maps of dyslexic and normal subjects.

◦ q∗ denotes a false discovery rate.

◦ VRef, VShort, and VThin denote volumes of CC (number of voxels times the voxel

volume) for the reference, short, and thin phantoms, respectively.

◦ Az denotes the area under the curve.
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ment of Electrical and Computer Engineering (ECE), University of Louisville, April
2013.

• ECE Outstanding student, April 2012.

• Who’s Who Among Students in American Universities, 2011.

• Reviewer, IEEE International Symposium on Biomedical Imaging Conference.

• Reviewer, IEEE Transactions on Image processing.

• Reviewer, IEEE Transactions on Medical Imaging.

• Reviewer, International Journal of Biomedical Imaging.

• University Travel Awards in 2011 and 2012 to attend the ISBI and ICIP conferences.

• Sponsored Research Tuition Award in Summer 2012, Fall 2012, Spring 2013, Summer
2013, and Fall 2013.

Research Activities

• Image modeling, image segmentation algorithms, 2-D and 3-D registration,
and texture and shape analysis of human organs.

• Development of computer aided diagnosis (CAD) systems for prostate can-
cer, dyslexia, autism, and cardiac diseases.

• Analysis of cardiac images to follow up the treatment of cardiac diseases.

• Analysis of brain images to detect developmental brain disorders.

• Assisted in grants writing and preparing primary results for the Bioimaging
Lab, University of Louisville.

Class work Grade

A total of 34 credit hours in ECE, Math and CS subjects - GPA is 3.872. Particular course
concentration has been in statistical modeling, medical imaging, and machine learning.
Relevant courses include: digital image processing, intro to biometrics, foundation of opti-
mization, artificial intelligence, pattern recognition and machine intelligence, introduction
to medical imaging, graph cut algorithms, introduction to random process and estimation
theory, and medical image analysis.
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Skills

• Programming Language: C++, VHDL, Visual Basic, Java Script.

• Systems: Windows, Linux.

• Utilities: Matlab, Simulink, Pspice, L-Edit, Mentor Graphic Tools, MS Excel, MS
Word, Latex.

Publications

During the PhD (Fall 2008- Fall 2013), I have authored or co-authored 15 journal articles,
7 book chapters, and 30 peer-reviewed conference papers. The articles have appeared
in world-renown journals including The International Journal of Cardiovascular Imag-
ing (impact factor 2.648), Autism (5-years impact factor 3.166), Journal of Biotechnology
(5-years impact factor 3.34), Medical Physics (impact factor 2.83), IEEE Transactions on
Biomedical Engineering (impact factor 2.348), IEEE Transactions on Information Technol-
ogy in Biomedicine (impact factor 1.98), Journal of Medical Systems (impact factor 1.783),
and Pattern Recognition Letters (5-years impact factor 1.529). The conference papers were
reported as top-rank international conferences in image processing, and medical imaging,
e.g. MICCAI, ISBI, ICIP, and IPMI with acceptance rate less than 30%.

Journal Papers

1. M. F. Casanova, A. S. EL-Baz, S. S Kamat, B. A. Dombroski, F. Khalifa, A. Elnakib, A.
soliman, A. Allison-McNutt, and A. E. Switala, ”Focal Cortical Dysplasias in Autism
Spectrum Disorders,” Acta Neuropathologica Communications, vol. 1, issue 1, pp. 1-11,
October, 2013. DOI: 10.1186/2051-5960-1-67.

2. A. Alansary, A. Soliman, F. Khalifa, A. Elnakib, M. Mostapha, M. Nitzken, M. Casanova,
and A. El-Baz, ”MAP-Based Framework for Segmentation of MR Brain Images Based
on Visual Appearance and Prior Shape,” MIDAS Journal, vol. 1, pp. 1-13, Oct 2013.
Available: http://hdl.handle.net/10380/3440.

3. A. Firjani, A. Elnakib, F. Khalifa, G. Gimel’farb, M. Abou El-Ghar, A. Elmaghraby,
and A. El-Baz, ”A Diffusion-weighted Imaging Based diagnostic System for Early
Detection of Prostate Cancer,” J. Biomedical Science and Engineering (JBiSE), vol. 6, 99.
346-356, 2013.

4. H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, A. El-Baz, G. M. Beache, A. Elmaghraby,
and G. Gimel’farb. ”Myocardial Borders Segmentation from Cine MR Images using
Bidirectional Coupled Parametric Deformable Models,” Medical physics, vol. 40, no.
9:092302, 2013.
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5. A. El-Baz, A. Elnakib, M. Abou El-Ghar, G. Gimel’farb, and R. Falk, ”Automatic
Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans,” International Journal
of Biomedical Imaging, vol. 2013, Article ID 517632, 11 pages, 2013.

6. A. El-Baz, G. Beache, G. Gimel’farb, K. Suzuki, K. Okada, A. Elnakib, A.Soliman and
B. Abdollahi, ”Computer Aided Diagnosis Systems for Lung Cancer: Challenges
and Methodologies,” International Journal of Biomedical Imaging, vol. 2013, Article ID
942353, 46 pages, 2013.

7. A. Rudra, A. Chowdhury, A. Elnakib, F. Khalifa, A. Soliman, G. Beache, and A.
El-Baz, ”Kidney Segmentation using Graph Cuts and Pixel Connectivity,” Pattern
Recognition Letters, vol. 34, no. 13, pp. 170-1475, 2013.

8. A. Elnakib, M. F. Casanova, G. Gimel’farb, A. E. Switala, and A. El-Baz, ”Dyslexia
Diagnostics by 3D Shape Analysis of the Corpus Callosum,” IEEE Transactions on
Information Technology in Biomedicine (TITB), vol. 16, no. 4, pp. 700-708, July 2012.

9. A. Elnakib, G. M. Beache, G. Gimel’farb, and A. El-Baz, ”New Automated Markov-
Gibbs Random Field Framework for Myocardial Wall Viability Quantification in
Agent Contrast Enhanced Cardiac Magnetic Resonance Images,” The International
Journal of Cardiovascular Imaging, vol. 28, no. 7, pp. 1683-1698, October 2012.

10. A. El-Baz, A. Elnakib, F. Khalifa, M. Abou El-Ghar, R. Falk, and G. Gimel’farb,
”Precise Segmentation of 3D Magnetic Resonance Angiography,” IEEE Transaction
on Biomedical Engineering (TBME), vol. 59, no. 7, pp. 2019-2029, July 2012.

11. A. El-Baz, A. Elnakib, M. F. Casanova, G. Gimel’farb, A. E. Switala, D. Jordan, and
S. Rainey, ”Accurate Automated Detection of Autism Related Corpus Callosum Ab-
normalities,” International Journal of Medical Systems (JMS), vol. 35, no. 5, pp. 929-939,
October 2011.

12. A. Rudra, M. Sen, A. Chowdhury, A. Elnakib, and A. El-Baz, ”3D Graph Cut with
New Edge Weights for Cerebral White Matter Segmentation,” Pattern Recognition
Letters, vol. 32, no. 7, pp. 941–947, May 2011.

13. M. Casanova, A. El-Baz, A. Elnakib, J. Giedd, J. Rumsey, E. Williams, A. Switala,
”Quantitative Analysis of the Shape of the Corpus Callosum in Autistic Individu-
als,” Autism, vol. 15, no. 2, pp. 223-238, March 2011.

14. A. El-Baz, P. Sethu, G. Gimel’farb, F. Khalifa, A. Elnakib, R. Falk, and M. Abo El-
Ghar, ”Elastic Phantoms Generated by Microfluidics Technology: Validation of an
Imaged-Based Approach for Accurate Measurement of the Growth Rate of Lung
Nodules,” Biotechnology Journal, vol.6, no.2, pp.195-203, February 2011.

15. M. Casanova, A. El-Baz, A. Elnakib, J. Giedd, J. Rumsey, E. Williams, A. Switala,
”Corpus Callosum Shape Analysis with Application to Dyslexia,” Journal of Transla-
tional Neuroscience, vol. 1, no. 2, pp. 124-130, June 2010.
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Book Chapters

1. A. Elnakib, M. Abou El-Ghar, G. Gimel’farb, R. Falk, J. Suri, and A. El-Baz, ”Mod-
ified Akaike Information Criterion for Selecting the Numbers of Mixture Compo-
nents: An Application to Initial Lung Segmentation,” In Multi-Detector CT Imaging:
Abdomen, Pelvis, and CAD Applications (L. Saba and J. Suri, Editors), CRC Press: Taylor
and Francis Group, 2014, Chapter 28, pp. 609-620.

2. A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abou El-Ghar, A. Elmaghraby,
and A. El-Baz, ”A Novel Image-based Approach for Early Detection of Prostate Can-
cer using DCE-MRI,” In Handbook of Computational Intelligence in Biomedical Imaging,
(K. Suzuki Editor), Springer-Verlag, New York, 2014, Chapter 3, pp. 55-82.

3. A. Elnakib, M Casanova, G. Gimel’farb, A. Switala, and A. El-Baz, ”Autism Di-
agnostics by 3D Shape Analysis of the Corpus Callosum,” In Machine Learning in
Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis, IGI Global (Her-
shey, PA), 2011, Chapter 15, pp. 315-335.

4. A. Elnakib, A. El-Baz, G. Gimel’farb, and J. Suri, ”Medical Image Segmentation: A
Brief Survey,” In Handbook of Multi-Modality Medical Image Segmentation and Registra-
tion Techniques: Volume 2, (A. El-Baz, R. Acharya, M. Mirmedhdi, and J. Suri, Editors),
Springer-Verlag, New York, 2011, Chapter 1, pp. 1-39.

5. El-Baz, G. Gimel’farb, A. Elnakib, R. Falk, and M. Abou El-Ghar, ”Fast Accurate
Unsupervised Segmentation of 3D Magnetic Resonance Angiography,” In Handbook
of Atherosclerosis Disease Management, (J. S. Suri, Editor), Springer, 2011, Chapter 14,
pp. 411-432.

6. A. El-Baz, P. Sethu, G. Gimel’farb, F. Khalifa, A. Elnakib, R. Falk, M. Abo El-Ghar,
and J. Suri, ”Validation of a New Image-Based Approach for the Accurate Estimating
of the Growth Rate of Detected Lung Nodules Using Real Computed Tomography
Images and Elastic Phantoms Generated by State-of-the-Art Microfluidics Technol-
ogy,” In Handbook of Lung Imaging and Computer Aided Diagnosis, (A. El-Baz and J.
Suri, Editors), Taylor & Francis, October 2011, Chapter 18, pp. 405-420.

7. M. Sen, A. Rudra, A. Chowdhury, A. Elnakib, A. El-Baz, ”Cerebral White Matter
Segmentation using Probabilistic Graph Cut Algorithm,” In Handbook of Recent Ad-
vances in Medical Segmentation and Registration Technologies, (A. El-Baz, R. Acharya, M.
Mirmedhdi, and J. Suri, Editors), Springer-Verlag, New York, March 2011, Chapter
2, pp. 41-67.

Refereed Conference Papers

1. H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, G. M. Beache, A. Elmaghraby, and
A. El-Baz, ”A New Segmentation-Based Tracking Framework For Extracting The
Left Ventricle Cavity From Cine Cardiac MRI,” Proc. IEEE International Conference on
Image Processing (ICIP’13), Melbourne, Australia, September 15-18, 2013, (in press),
(selected for oral presentation).
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2. A. Elnakib, G. M. Beache, H. Sliman, G. Gimel’farb, T. Inanc, and A. El-Baz, ”A
Novel Laplace-Based Method to Estimate the Strain from Cine Cardiac Magnetic
Resonance Images,” Proc. IEEE International Conference on Image Processing (ICIP’13),
Melbourne, Australia, September 15-18, 2013, (in press), (selected for oral presenta-
tion).

3. A. Elnakib, G. M. Beache, G. Gimel’farb, T. Inanc, and A. El-Baz, ”Validating a New
Methodology for Strain Estimation from Cardiac Cine MRI,” Proc. International Sym-
posium on Computational Models for Life Science (CMLS’13), Sydney, Australia, Novem-
ber 27-29, 2013.

4. H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, G. M. Beache, G. Gimel’farb, A. Emam,
A. Elmaghraby, and A. El-Baz, ” Accurate Segmentation Framework for the Left Ven-
tricleWall from Cardiac Cine MRI,” Proc. International Symposium on Computational
Models for Life Science (CMLS’13), Sydney, Australia, November 27-29, 2013.

5. A. Elnakib, M. Nitzken, M. F. Casanova, H.-Y. Park, G. Gimel’farb, and A. El-Baz,
”Quantification of Age-related Brain Cortex Change using 3D Shape Analysis,” Proc.
IEEE International Conference on Pattern Recognition (ICPR’12), Tsukuba, Japan, Novem-
ber 11-15, 2012, pp.41-44.

6. A. Elnakib, G. Gimel’farb, T. Inanc, and A. El-Baz, ”Modified Akaike Information
Criterion for Estimating the Number of Components in a Probability Mixture Model,”
Proc. IEEE International Conference on Image Processing (ICIP’12), Orlando, Florida,
USA, September 30-October 3, 2012, pp. 2497-2500.

7. A. El-Baz, F. Khalifa, A. Elnakib, M. Nitkzen, A. Soliman, P. McClure, G. Gimel’farb,
and M. Abou El-Ghar, ”A Novel Approach for Global Lung Registration using 3D
Markov Gibbs Appearance Model,” Proc. International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI’12), Nice, France, October 1-
5, 2012, pp. 114-121.

8. M. Nitzken, G. Beache, A. Elnakib, F. Khalifa, G. Gimel’farb, and A. El-Baz, ”Ac-
curate Modeling of Tagged CMR 3D Image Appearance Characteristics to Improve
Cardiac Cycle Strain Estimation,” Proc. IEEE International Conference on Image Pro-
cessing (ICIP’12), Orlando, Florida, USA, September 30-October 3, 2012, pp. 521-524.

9. A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abou El-Ghar, A. Elmaghraby,
and A. El-Baz, ”A Novel Image-Based Approach for Early Detection of Prostate
Cancer,” Proc. IEEE International Conference on Image Processing (ICIP’12), Orlando,
Florida, USA, September 30-October 3, 2012, pp. 2849-2852.

10. M. Nitkzen, G. Beache, A. Elnakib, F. Khalifa, G. Gimel’farb, and A. El-Baz, ”Im-
proving Full-Cardiac Cycle Strain Estimation from Tagged CMR by Accurate Mod-
eling of 3D Image Appearance Characteristics,” Proc. IEEE International Symposium
on Biomedical Imaging: From Nano to Macro (ISBI’12), Barcelona, Spain, May 2-5, 2012,
pp. 462-465 (selected for oral presentation).

11. A. S. Chowdhury, R. Roy, S. K. Bose, F. Khalifa, A. Elnakib, and A. El-Baz, ”Non-
rigid Biomedical Image Registration using Graph Cuts with a Novel Data Term,”
Proc. IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’12),
Barcelona, Spain, May 2-5, 2012, pp. 446-449. (Selected for oral presentation).
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12. A. Elnakib, G. M. Beache, G. Gimel’farb, and A. El-Baz, ”A New Framework for
Automated Segmentation of Left Ventricle Wall from Contrast Enhanced Cardiac
Magnetic Resonance Images,” Proc. IEEE International Conference on Image Processing
(ICIP’11), Brussels, Belgium, September 11-14, 2011, pp. 2337-2340.

13. A. Elnakib, G. M. Beache, G. Gimel’farb, and A. El-Baz, ”A New Framework for Au-
tomated Identification of Pathological Tissues in Contrast Enhanced Cardiac Mag-
netic Resonance Images,” Proc. IEEE International Symposium on Biomedical Imaging:
From Nano to Macro (ISBI’11), Chicago, Illinois, USA, 30 March-2 April 2011, pp.
1272-1275.

14. A.Elnakib, M. Casanova, G. Gimel’farb, A. Switala, and A. El-Baz, ”Autism Diag-
nostics by Centerline-based Shape Analysis of the Corpus Callosum,” Proc. IEEE In-
ternational Symposium on Biomedical Imaging: From Nano to Macro (ISBI’11), Chicago,
Illinois, USA, 30 March- 2 April, 2011, pp. 1843-1846.

15. F. Khalifa, A. Elnakib, G. M. Beache, G. Gimel’farb, M. Abo El-Ghar, G. Sokhadze,
S. Manning, P. McClure, and A. El-Baz, ”3D Kidney Segmentation from CT Images
using a Level Set Approach Guided by a Novel Stochastic Speed Function,” Proc. In-
ternational Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI’11), Toronto, Canada, September 18-22, 2011, pp. 587-594.

16. A. Firjani, A. Elnakib, F. Khalifa, G. Gimel’farb, M. Abo El-Ghar, A. Elmaghraby, and
A. El-Baz, ” A New 3D Automatic Segmentation Framework for Accurate Extraction
of Prostate from Diffusion Imaging,” Proc. Biomedical Science and Engineering Confer-
ence - Image Informatics and Analytics in Biomedicine, Knoxville, Tennessee, March-
15-17, 2011, pp. 1-4.

17. A. Firjani, A. Elnakib, F. Khalifa, G. Gimel’farb, M. Abo El-Ghar, J. Suri, A. El-
maghraby, and A. El-Baz, ” A New 3D Automatic Segmentation Framework for Ac-
curate Extraction of Prostate from DCE-MRI,” Proc. IEEE International Symposium on
Biomedical Imaging: From Nano to Macro (ISBI’2011), Chicago, Illinois, USA, 30 March-
2 April, 2011, pp. 1476-1479.

18. A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abo El-Ghar, A. Elmaghraby,
and A. El-Baz, ”Non-Invasive Image-based Approach for Early Detection of Prostate
Cancer,” Proc. The Fourth International Conference on Developments in eSystems Engi-
neering (DeSE’11), Dubai, UAE, December 6-8, 2011.

19. A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abo El-Ghar, A. Elmaghraby,
and A. El-Baz, ”3D Automatic Approach for Precise Segmentation of the Prostate
from Diffusion-Weighted Magnetic Resonance Imaging,” Proc. IEEE International
Conference on Image Processing (ICIP’11), Brussels, Belgium, September 11-14, 2011,
pp. 2333-2337.

20. A. El-Baz, M. Nitzken, F. Khalifa, A. Elnakib, G. Gimel’farb, R. Falk, and M. Abo El-
Ghar, ”3D Shape Analysis for Early Diagnosis of Malignant Lung Nodules,” Proc. In-
ternational Conference on Information Processing)in Medical Imaging (IPMI’11), Monastery
Irsee, Germany (Bavaria), July 3-8, 2011, pp. 772-783. (Selected for oral presentation.
Oral acceptance rate is 5% and the overall acceptance rate is 20%).

21. A. El-Baz, M. Nitzken, F. Khalifa, A. Elnakib, G. Gimel’farb, R. Falk, and M. Abo
El-Ghar, ”3D Shape Analysis for Early diagnosis of Malignant Lung Nodules,” Proc.

254



International Conference on Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI’11), Toronto, Canada, September 18-22, 2011, pp. 175-182.

22. M. Nitzken, M. F. Casanova, G. Gimel’farb, A. Elnakib, F. Khalifa, A. Switala, and
A. El-Baz, ” 3D Shape Analysis of the Brain Cortex with Application to Dyslexia,”
Proc. IEEE International Conference on Image Processing (ICIP’11), Brussels, Belgium,
September 11-14, 2011, pp. 2713-2716. (Selected for oral presentation).

23. M. Nitzken, M. Casanova, G. Gimel’farb, F. Khalifa, A. Elnakib, A. Switala, and A.
El-Baz, ” 3D Shape Analysis of the Brain Cortex with Application to Autism,” Proc.
IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’11),
Chicago, Illinois, USA, 30 March- 2 April, 2011, pp. 1847-1850.

24. A. Elnakib, A. El-Baz, M. Casanova, G. Gimel’farb, A. Switala, ”Image-Based De-
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Autistic and Normal Brains,” Proc. IEEE International Conference on Image Processing
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Prior,” Proc. IEEE International Symposium on Signal Processing and Information Tech-
nology, Luxor, Egypt, December 15-18, 2010, pp. 137-143.
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”Novel Stochastic Framework for Accurate Segmentation of Prostate in Dynamic
Contrast Enhanced MRI,” Proc. The First International Workshop on Prostate Can-
cer Imaging: Computer Aided Diagnosis, Prognosis, and Intervention, Beijing, China,
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29. A. El-Baz, P. Sethu, G. Gimel’farb, F. Khalifa, A. Elnakib, R. Falk, and M. Abo El-
Ghar, ”A New Validation Approach for the Growth Rate Measurement using Elastic
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