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ABSTRACT

VARIATIONAL METHODS FOR SHAPE AND IMAGE REGISTRATIONS

Rachid Fahmi

April 30, 2008

Estimating and analysis of deformation, either rigid or non-rigid, is an active area

of research in various medical imaging and computer vision applications. Its importance

stems from the inherent inter- and intra-variability in biological and biomedical object

shapes and from the dynamic nature of the scenes usually dealt with in computer vision

research. For instance, quantifying the growth of a tumor, recognizing a person’s face,

tracking a facial expression, or retrieving an object inside a data base require the estimation

of some sort of motion or deformation undergone by the object of interest. To solve these

problems, and other similar problems, registration comes into play. This is the process

of bringing into correspondences two or more data sets. Depending on the application at

hand, these data sets can be for instance gray scale/color images or objects’ outlines. In

the latter case, one talks about shape registration while in the former case, one talks about

image/volume registration. In some situations, the combinations of different types of data

can be used complementarily to establish point correspondences.

One of most important image analysis tools that greatly benefits from the process

of registration, and which will be addressed in this dissertation, is the image segmentation.

This process consists of localizing objects in images. Several challenges are encountered in

image segmentation, including noise, gray scale inhomogeneities, and occlusions. To cope

with such issues, the shape information is often incorporated as a statistical model into

the segmentation process. Building such statistical models requires a good and accurate
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shape alignment approach. In addition, segmenting anatomical structures can be accurately

solved through the registration of the input data set with a predefined anatomical atlas.

Variational approaches for shape/image registration and segmentation have received

huge interest in the past few years. Unlike traditional discrete approaches, the variational

methods are based on continuous modelling of the input data through the use of Partial

Differential Equations (PDE). This brings into benefit the extensive literature on theory

and numerical methods proposed to solve PDEs.

This dissertation addresses the registration problem from a variational point of view,

with more focus on shape registration.

First, a novel variational framework for global-to-local shape registration is proposed. The

input shapes are implicitly represented through their signed distance maps. A new Sum-

of-Squared-Differences (SSD) criterion which measures the disparity between the implicit

representations of the input shapes, is introduced to recover the global alignment param-

eters. This new criteria has the advantages over some existing ones in accurately han-

dling scale variations. In addition, the proposed alignment model is less expensive com-

putationally. Complementary to the global registration field, the local deformation field

is explicitly established between the two globally aligned shapes, by minimizing a new

energy functional. This functional incrementally and simultaneously updates the displace-

ment field while keeping the corresponding implicit representation of the globally warped

source shape as close to a signed distance function as possible. This is done under some

regularization constraints that enforce the smoothness of the recovered deformations. The

overall process leads to a set of coupled set of equations that are simultaneously solved

through a gradient descent scheme. Several applications, where the developed tools play a

major role, are addressed throughout this dissertation. For instance, some insight is given

as to how one can solve the challenging problem of three dimensional face recognition in

the presence of facial expressions. Statistical modelling of shapes will be presented as a

way of benefiting from the proposed shape registration framework.

Second, this dissertation will visit the shape-based segmentation problem. The

piece-wise constant Chan and Vese segmentation models [1] are chosen as the underly-
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ing segmentation models and it will be shown how the proposed global shape registration

technique can serve in enhancing the segmentation results of an input image when some

prior knowledge of shapes is integrated in the underlying segmentation framework. The

resulting paradigm allows the recovery of a segmentation map that is in accordance with

the shape prior model as well as an affine transformation between this map and the model.

Furthermore, it can deal with noisy, occluded and missing or corrupted data. The classi-

cal way of solving the shape-based segmentation problems within a level set framework

is by directly solving the underlying Euler-Lagrange equations using a gradient descent

scheme. This is very computationally expensive given the non-linear parabolic nature of

the corresponding PDE’s. To overcome these difficulties, a fast algorithm is designed and

implemented to solve both the two-phase and the multi-phase shape-based segmentation

problem. This algorithm exploits the fact that only the sign of the level set function, not its

value, is needed to evolve the segmenting interface. The integration of multiple selective

shape priors and the segmentation into multiple regions has never been addressed before.

Third, a new image/volume non-rigid registration approach based on scale space

and level set theories, will be introduced. This contribution is the fruit of a collaborative

effort with two other members of the CVIP Lab. New feature descriptors are built as voxel

signatures using scale space theory. These descriptors are used to capture the global mo-

tion of the imaged object. Local deformations are modelled through an evolution process

of equi-spaced closed curves/surfaces (iso-contours/surfaces) which are generated using

fast marching level sets and are matched based on a cross correlation measure between

neighboring voxels.

A novel Finite Element (FE)-based approach is developed to validate the perfor-

mance of the proposed image registration techniques. Both two and three dimensional

tissue deformations are simulated using the FE method. The registration accuracy with

respect to the FE simulations is assessed by co-registering the deformed images with the

original ones and comparing the recovered displacement field with the bio-mechanically

simulated ones.
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CHAPTER I

INTRODUCTION

The problem of establishing point correspondences between two or more data sets is

known as the process of registration. Depending on the application at hand, this data can be

either gray scale/color images or outlines of objects of interest occupying a certain image

domain. In the latter case, the alignment process is referred to as shape registration while in

the former case, one talks about image/volume registration. In both cases, the registration

process is a very challenging problem with direct applications in various fields, including

computer vision, data fusion, medical imaging, motion tracking, etc. These examples of ap-

plications are all based upon the ability to automatically map points between the respective

domains of the images. Reconstructing a 3D scene from two or more views or calibrating

a camera are other applications that require the ability to establish point correspondences

between two images.

Numerous approaches have been developed to solve registration problems. Each

of these approaches has its strengths and limitations. For shape registration, the existing

techniques can be categorized based on three main aspects: the selected model to represent

the shapes, the transformation model, and the mathematical framework chosen to recover

the registration parameters. In the case of registering images, the developed approaches are

categorized into two main families: feature-based and area-based techniques. The feature-

based methods rely on extracting and matching salient anatomical structures from images

(closed-boundary regions, edges, contours, line intersections, corners, etc.). The area-based

methods, also known as correlation-like methods, are used directly to match image inten-

sities without any attempt to detect distinctive objects. This chapter presents an overview

of the the main ingredients of both shape and image registrations starting with a variational

formulation of the matching problem.
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A. A Generic Registration Problem

The registration problem in general can be formulated as follows. Given are two

images referred to as template, T , and reference, R, of the same object acquired using the

same or different sensors (possibly from a sequence). The task of image registration is

to find homologuous (corresponding) points in both images. Assume that in continuous

variables, the two images can be represented by two compactly supported functions, R :

Ω ⊆ Rn → Rp and T : Ω → Rp, with n = 2, 3 and p ≤ n. This means that the functions

R and T assign to each point x, in a domain Ω, its intensities T (x) and R(x) (note that

here, it is meant by intensities any image representing feature such as gray scale values, the

edge map, a distance transform with respect to a locus of points, etc.). The image domain

Ω is supposed to be a bounded region of Rn whose boundary, ∂Ω, fulfills some regularity

constraints. The goal of matching the images, T and R, is to find a displacement filed

u = (u1, · · · , un)T : Ω → Rn such that the transformed template T ◦ g(u) matches the

reference R, where the deformation g is given by

g(u)(.) : Rn → Rn (1)

x 7→ g(u)(x)
.
= x + u(x).

Generally, the displacement field u is searched for in a space of admissible functions, X ,

whose definition depends on how much is known about the relation between the two im-

ages and what regularity constraints can be imposed on the unknown u. For instance, for

some camera calibration problems, it is known that corresponding points should belong to

epipolar lines, and hence the mapping transformation is a homography.

The matching score is usually measured by a disparity functional D(R, T,u) which is de-

fined in terms of statistical measures on the intensities of the images R and T ◦ g(u).

Different measures, depending on the nature of the data, have been proposed to map cor-

responding points to each other. For example, if the intensities of the given images are

comparable (i.e., the images have been acquired by the same sensors), then a reasonable

way of matching the two images is by finding a geometric transformation which minimizes
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the Sum of Squared Differences (SSD)

DSSD(R, T,u) =

∫

Ω

(T (x + u(x))−R(x))2dx. (2)

However, if the two images have different intensity maps, the so-called multi-modal reg-

istration, this simple way of measuring their similarity is no longer considered. Consider

for example, the tracking problem under different illumination conditions, or the problem

of registering different medical image modalities (see Fig. 1), etc. In such a case, more

general measures have to be considered. This is the role of statistical and information-

theoretic-based similarity measures, such as the maximization of the Mutual Information

(MI) [10, 11],

DMI(R, T,u) = H(R) +H(T ◦ g(u))−H(R, T ◦ g(u)), (3)

where, g(u) is given by Eq. (1), H(I) is the Shannon entropy of the image I , computed

on the probability distribution of the grey values, pI(·), and H(I1, I2) is the joint entropy

between I1 and I2. Maximizing DMI(.) with respect to u is equivalent to maximizing

the Kulback-Leibler distance between the joint distribution pR,T◦g(u)(·, ·) and the product

distribution pR(·) · pT◦g(u)(·), given by:

DMI(R, T,u) =

∫

Ω

pR,T◦g(u)(l1, l2) log(
pR,T◦g(u)(l1, l2)

pR(l1) · pT◦g(l2)
)dl1dl2. (4)

Other measures exist, including the Correlation Ratio (CR) [12], which have been also

used to cope with the difficulty of registering images with different modalities.

Image registration is usually performed by optimizing one of these criteria over a class of

deformations,

Find u ∈ X s.t., D(R, T,u) is optimal. (5)

Mathematically, this problem is ill-posed in the sense of Hadamard. That is, the solution,

if it exists, is neither unique nor stable. To cope with this problem, a regularization term,

R(u), which measures the irregularity of the displacement field u, is usually added to the

registration criterion to guarantee the well-posedness of the problem. This leads to solving

the following optimization problem:

Find u ∈ X s.t., D(R, T,u) + αR(u) is optimal, (6)
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FIGURE 1 – Examples of different medical images modalities of the human brain. (a) T1-
weighted MR image. (b) T2-weighted MR image. (c) Proton-Density MR image. (d) CT
image.

4



where, α > 0 is a regularization parameter that balances the contribution of the two terms.

A simple example of R(.) is the Tikhonov model [13] which was the first regularization

model to be used to solve image matching problems [14]. This regularization model is

defined as follows:

R(u) =
1

2

∫

Ω

‖Du(x)‖2dx, (7)

where Du denotes the Jacobian matrix of u. Other regularization models have been pro-

posed to deal with the ill-poseness of the problem (5). These models are physically-based

functionals relying on elasticity or fluid theory [15–17].

Note that the choice of the regularization term, R, contributes to the definition of the space

X where the solution is to be sought. For instance, for the Tikonov model (Eq. 7), the set

of admissible transformations, X , is contained in [H1(Ω)]n, with H1(Ω) being the Sobolev

space of order 1 on Ω [18].

In summary, the matching problem can be casted as the following minimization problem:

u∗ = arg min
u∈X

[D(R, T,u) + αR(u)]. (8)

Under sufficient regularity conditions of the functionals D and R, and by assuming that

the set of admissible solutions, X , is a Hilbert space, one can derive the Euler-Lagrange

equations associated with the minimization problem (8) as:




d
dt
u = −[∇uD(R, T,u) + α∇uR(u)],

u(0, ·) = u0(·),
(9)

where, ∇ denotes the gradient operator on X , and u0 ∈ X is an initial field. This problem

can be solved using a gradient descent scheme.

The registration work flow is illustrated in Fig. 2. Starting from an initial estimate of the de-

formation field, the target image is transformed and the similarity/dissimilarity between the

transformed target and the source is iteratively measured while the transformation param-

eters are updated through an optimization scenario. The process stops when the difference

between the transformed target and the source is below a certain threshold or if a maximum

number of iterations is attained.
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FIGURE 2 – Registration work flow. Only the main components of the registration process
are shown.

A totally different approach for solving the image matching problem can be achieved

through an interface evolution scenario expressed in a level set framework. Such an ap-

proach was independently adopted by Bertalmı́o et al. [19] for image segmentation and

tracking, and by Vemuri et al. [20] for image registration. The main idea of registering

two images within this framework is to evolve one image (the source), by letting the level

sets of its intensity map evolve along their respective normals, towards the level-sets of the

intensity map of the other image (the target). The evolution speed is proportional to the

difference between the intensity values of the target and the evolving source. This leads

to an intensity morphing model, but does not provide a geometric mapping between the

two images. A different evolution model, expressed in vector form, is proposed in [19, 20]

to explicitly recover a dense displacement field between the two images. The derivation

of this equation is as follows. Let C(p, t) : R × [0, T ) → R2 denote a family of closed

planar curves. Assume that these curves deform in time according to the following general
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evolution equation:
∂C
∂t

= βN, with C(p, t0) = C0(p), (10)

where β, which does not depend on the parametrization of the curve, is the normal com-

ponent of the velocity and N is the inward unit normal to C(p, t). Note that the tangential

velocity was removed from the flow equation (10) since it does not affect the geometry of

the deformation as shown by Epstein and Gage in 1987. Now, let C(p, t) be represented by

the zero level set of a function φ : R2 × [0, T ) → R. That is, C(p, t) satisfies φ(C, t) = 0.

Differentiating this equation leads to the following level set representation of the flow, as

proposed by Osher and Sethian [21]:

∂φ

∂t
= F ‖ ∇φ ‖, (11)

where F is the evolution speed. This equation, compared to a direct discretization of

Eq. (10), offers many advantages such as the handling of topological changes. Note that

this formulation has been successfully used in various 2D/3D applications, including seg-

mentation, tracking, shape from shading, and shape registration [22].

B. Shape Registration

The process of registering shapes is based on three main components, namely 1)

the way to represent the shapes, 2) the transformation model, and 3) the mathematical

framework selected to recover the registration parameters. The following section briefly

reviews each of these components.

1. Shape Representation

Shape representation is handled differently in each application. For instance, in [5],

the authors choose to represent the shapes to be registered as the zero level sets of distance

functions in a higher dimensional space. This implicit representation is known to be invari-

ant to translation and rotation, and can efficiently handle the isotropic scaling case. Hong

et al. [23] have proposed a new shape representation algorithm and showed its potential
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in image matching and segmentation. This new algorithm is based on integral kernels and

represents a shape as the area of intersection between the kernel and the inside and outside

of the shape. The kernel scale has a major effect on the method performance, however its

appropriate selection was not discussed. In [24], a new approach was proposed to solve the

shape registration problem by using a volumetric representation of shapes through vector

level sets. The authors claimed that this representation is more suitable for scale variations.

In [25], the authors use the point-set representation for shapes in order to solve the problem

of non-rigid registration of shapes. This representation, also known as clouds of points

representation, was used in [26], where the authors proposed to describe each sample point

by a ”shape context”, and use this new descriptor to match shapes for object recognition

purposes. These and other shape descriptors, such as medial axis [27] and Fourier descrip-

tors [28] will be reviewed in more detail in the next chapter.

2. Transformation Models

Transformation models can be divided into two classes: global and local. The global

transformation models are usually defined by a small set of parameters. These models in-

clude, among others, the rigid transformations (translations and rotations), the similarity

transformations (translations, rotations, and isotropic scalings), the affine transformations,

which in addition to translations and rotations, account for anisotropic scaling and/or shear-

ing. In some cases, such transformations can be used alone to efficiently align two shapes.

However, in the case of non-rigid deformations, more complex transformations are required

in order to establish dense correspondences between the two given shapes.

3. Related Works on Shape Registration

Different techniques have been developed to solve the non-rigid registration prob-

lem of shapes [5, 7, 17, 29, 30]. In [31], the authors presented an algorithm, known as the

Thin Plate Spline-Robust Point Matching (TPS-RPM) algorithm, to jointly estimate the

rigid and non-rigid transformations between two clouds of points that may be of different
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(a) (b)

FIGURE 3 – Example of registration of a subcortical shape. (a) Initial positions of the
source shape (blue) and target (red); (b) Established shape correspondences after local
registration. The green curve represents the locally deformed source.

sizes. Thin plate splines were also adopted in [26] where corresponding points are deter-

mined by iteratively minimizing the overall shape context distances, and the TPS trans-

formation is re-estimated at each iteration to recover the local transformation maps. More

recently, Chen and Bhanu [30] introduced a global-to-local procedure to align non-rigid

shapes. The shape context descriptors are used to recover a global similarity transfor-

mation, while the local deformation is performed within an optimization formulation, in

which the bending energy of TPS transformation is incorporated as a regularization term.

Zheng and Doermann [29] proposed a relaxation labeling-based point matching algorithm

for nonrigid shapes. The authors formulated point matching as a graph matching prob-

lem and used the shape context distance to initialize the matching of graphs, followed by

relaxation labeling updates. Huang et al. [5] introduced a hierarchical shape registration

algorithm using a B-spline-based-Incremental Free Form Deformations (IFFD) model to

recover the local registration field between two globally aligned shapes.

Broadly speaking, given the transformation model and the selected shape represen-

tation model, most existing techniques that have been developed to recover the registration
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parameters are based on the optimization of a disparity measure between the two shapes.

For instance, the Sum of Squared Differences (SSD) is a popular criterion that is mostly

appropriate, as mentioned above, when the two data sets have comparable values (e.g.,

mono-modal images) or when matching shapes with no scale variations, while the Mutual

Information (MI) is a stochastic measure that is more appropriate for registering images

with different modalities or matching shapes under scale variations [5].

Smoothness constraints, using physically based functionals relying on elasticity or fluid

theory [15–18], are often be introduced to guarantee the well posedness of the problem and

to retain some smoothness properties of the recovered displacement field.

An example of registering two dimensional shapes is illustrated on Fig. 3. Note that these

results are obtained by the proposed registration approach (see chapter VI).

C. Shape-based segmentation

A very important image processing tool that may greatly benefit from shape reg-

istration is the segmentation of a given image into its semantically significant parts. This

is one of the most fundamental problems in several application areas, including computer

vision, medical imaging, etc. This problem presents several challenges that are mainly

related to image noise and inhomogeneities, etc. Consequently, segmentation approaches

that primarily rely on low level image cues, such as color information and/or texture may

not output accurate results. One way to overcome this difficulty is to exploit the prior

knowledge of shapes and other properties of the imaged structures in order to constrain the

segmentation process. The incorporation of such priors into the segmentation framework

becomes even more necessary in the presence of occlusion, corruption, shadows, etc.

The integration of shape priors into level sets-based segmentation methods has at-

tracted the attention of several researchers in the past years. The basic idea consists of

incorporating the prior knowledge into the interface evolution in order to recover the ob-

ject(s) of interest. The segmenting interface propagates by implicitly evolving an embed-

ding higher dimensional function according to an energy minimization formalism. Some
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(a) (b) (c)

FIGURE 4 – Example of shape-based segmentation using an active contour model. (a)
Initial positions of the evolving contour. (b) An intermediate evolution step. (c) Final
segmentation result.

of the existing level set-based segmentation approaches with shape prior allow the recov-

ery of a familiar object, whose shape is analogous to the shape prior, but suppress the

“unfamiliar” image objects [32, 33]. Other methods, e.g., [34], permit the simultaneous

segmentation of both familiar and unfamiliar objects. This is done through the introduc-

tion of a “labeling” function which indicates the image regions where the shape prior is

to be enforced. Moreover, some methods, e.g., [34], assume the pose and position of the

object of interest to be known and in accordance with the localization of the shape prior,

while other approaches (e.g., [32, 33, 35]) assume the existence of a global transformation

between the object of interest and the shape prior. The parameters of this transformation

are iteratively updated during the course of evolution of the segmenting interface. This

allows to segment familiar objects without knowing their pose nor their orientation in the

image scene. Raviv et al. [33] presented a novel approach which accounts for projective

transformations between the shape prior and the object to be segmented. However, all of

these approaches are limited to segmenting a single known object in a given 2-phase image.

The key question to be asked is: what if multiple known objects are present in the image

scene and need to be segmented? Several attempts have been made to answer this ques-

tion. For instance, in [35], the authors proposed a framework which handles an arbitrary

number of regions and multiple competing shape priors by expanding the split and merge
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level set based segmentation approach by Brox and Weickert [36] to deal with multiple re-

gions. Cremers et al [37] introduced a framework which allows the integration of multiple

selective shape priors into the 2-phase Chan-Vese model. The authors introduced a dy-

namic vector-valued labeling function to indicate where to enforce which prior. In both of

these studies, the shape prior is represented by a fixed template. However, in other studies,

statistical shape priors were considered. For instance, Leventon et al. [38] proposed to per-

form the Principal Component Analysis (PCA) on a collection of signed distance functions

of the training shapes. The accuracy of such representation depends greatly on accurately

aligning the shapes in the training set. The derived shape statistics are then used, along

the gradient force of the image, to guide the evolution of the segmenting geodesic active

contour. This statistical approach was adopted in other studies (see e.g., [32, 39]). Such a

scenario is illustrated on Fig. 4 where both shape and image information are used to evolve

the segmenting contour towards the object of interest.

D. Contributions

The main contributions of this work can be summarized as follows.

• In this dissertation, the shapes are implicitly embedded as the zero level set of a

distance function in a higher dimensional space. The powerful distance transform is used

as the embedding function. A new variational framework for a dense global to local shape

registration in the implicit space is proposed. First, a new dissimilarity measure is intro-

duced to recover the transformation parameters that globally align the two input shapes

(source and target). This new measure can deal efficiently with rigid and similarity mo-

tion and leads to accurate results in the presence of anisotropic scaling. Complementary

to the global registration field, the local coordinate transformation between the two glob-

ally aligned shapes is explicitly estimated by minimizing a new energy functional. This

functional consists of three terms, the first of which is a discrepancy measure between the

two shape representations. The second term penalizes the deviation of the distance map

representation of the globally warped source shape from a signed distance function, while
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the local displacement field, which aims at aligning it with the target shape, is being up-

dated. The last term is a regularization term that enforces the smoothness of the recovered

deformations. This leads to a set of coupled equations that are simultaneously minimized

through a gradient descent scheme.

The proposed registration framework has many advantages over existing techniques. First,

the shape representation using signed distance transform, as used in this work, provides a

feature space in which minimization of energy functionals using gradient descent schemes

can be used effectively. This representation has also the advantage of being relatively

simple compared to other descriptors, since it is based on simple geometrical definitions.

In addition, the signed distance representation is invariant to rigid transformations and is

less expensive computationally compared to other representations such as the vector dis-

tance transform. This is a huge advantage especially when dealing with three dimensional

shapes. Huang et al. [5] have also used the distance transform and proposed a global align-

ment model for shapes by maximizing mutual information. In that work, the probability

density functions are approximated using Gaussian kernels with empirical width values

which may lead to inaccurate results if these values are not chosen carefully. Moreover,

the proposed non-rigid registration model in this dissertation has the advantage of accu-

rately dealing with highly local deformations. This is due to the introduction of the new

penalizing energy term. In [5], the authors had to use a feature-based energy term to cope

with such situations. This introduces the burden of extracting corresponding features. Both

in [5] and [40], the authors chose to model the displacement field using B-splines. No such

restriction is imposed on the displacement field in this work. In [5, 40], the registration field

is recovered by iteratively minimizing a regularized energy with respect to each component

of each control point which may greatly increase the likelihood of their algorithms to be

trapped in local optima, and may increase the computational complexities as well.

• A fast algorithm to solve the challenging problem of shape-based segmentation

within the level set framework is proposed. Inspired by the work of Cremers et al. [34]

and that of Song and Chan [6], the piece-wise constant Chan-Vese model is considered as

the underlying level set formalism and it is assumed that the considered shape priors are
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represented by fixed templates. The core idea of the proposed algorithm, which was also

used in [41], is to exploit the fact that only the sign of the level set function, not its value,

is needed to evolve the segmenting contour. Hence, instead of solving the Euler-Lagrange

equations of the underlying variational problem, as was done for instance in [34], one di-

rectly computes the segmentation energy and checks its changes when moving image points

from positive to negative regions of the level set function and vice-versa. This algorithm

is extended to allow the integration of multiple selective shape priors into the multi-phase

Chan-Vese segmentation model [1]. The resulting framework can handle multiple familiar

objects without affecting the correct segmentation of other unknown objects. Unlike [37],

more than one level set function is used, each of which is associated with a shape prior and

a labelling function indicating where in the image domain each prior is to be active. This

framework can deal better with multi-phase images. This is the first attempt of handling

more than one shape prior within the multi-phase Chan-Vese segmentation model. More-

over, the proposed global shape registration dissimilarity measure is used to address the

problem of pose invariance in the case when the object(s) of interest do not share the same

location and orientation as the the shape prior(s). The advantage of the proposed global

registration method in building statistical shape models and using them in a simultaneous

segmentation and registration framework will be highlighted. It will be shown, through

comparisons with other global registration methods, that a good alignment is required to

build an accurate shape model and to output accurate segmentation results.

• A novel and accurate approach for image and volume registration is presented.

The technique is the fruit of a collaborative effort with two ex-colleagues at the CVIP lab-

oratory. New feature descriptors are built as voxel signatures using scale space theory.

These descriptors are used to capture the global motion of the imaged object. Local defor-

mations are modelled through an evolution process of equi-spaced closed curves/surfaces

(iso-contours/surfaces) which are generated using fast marching level sets and are matched

using the built feature descriptors.

• The performance of the proposed image registration method is validated using a

novel technique based on the finite element method. Several 2D and 3D biomechanical

14



tissue deformations cases are simulated, and the registration accuracy is quantified by co-

registering the deformed shapes/images with the original ones and comparing the recovered

mesh point displacements with the simulated ones.

E. Dissertation Summary and Organization

This manuscript is presented in nine chapters. In the following, a detailed summary

for each chapter is given.

CHAPTER 2

In this chapter, a non-exhaustive overview of the existing shape representation models is

presented. Some of the strengths and limitations of each of these models in the context

of shape registration are highlighted. The choice of the implicit representation in terms of

signed distance transforms is justified.

CHAPTER 3

In this chapter, a new dissimilarity measure is proposed to recover the affine matching

parameters between two given shapes. The performance of this measure is compared to

two other techniques, namely, the isotropic scales-based measure and the one expressed in

the embedding space of vector distance functions. In addition, an empirical evaluation of

the proposed criterion is presented to show the well behavior of the resulting optimization

algorithm. The chapter ends by showing the potential of the proposed registration criterion

in building statistical shape models.

CHAPTER 4

This chapter is devoted to discussing the proposed variational framework to solve the non-

rigid shape matching problem. The chapter introduces an energy formulation that takes into

account the re-initialization of the signed distance representation of the source shape while

it is being deformed. The chosen regularization energy used to preserve the regularity of

the solution is introduced and the overall numerical implementation is explained both in

2D and 3D cases. The chapter is ended with a novel validation technique based on the

finite element method, followed by a comparison with some results that have been reported
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recently in the literature. Various 2D/3D registration examples are presented to show the

potential of the proposed registration model.

CHAPTER 5

This chapter shows the potential of the proposed global-to-local registration framework to

dealing with three dimensional face registration. This chapters shows on several 3D face

range scans that the proposed registration framework can efficiently reduce the highly local

distortions caused by facial expressions, such as smiling and cheek inflating. This moti-

vates the application of the proposed registration approach to solve the 3D face recognition

problem in the presence of face expressions. The results are very encouraging.

CHAPTER 6

This chapter addresses the level set-based segmentation with shape priors. The chapter

starts by a quick review of the piece-wise constant Chan and Vese segmentation models,

and then shows how the shape prior as well as the “labelling” function are added to the

segmentation functional. The chapter continues by introducing a fast algorithm and show-

ing how it can be applied within the 2-phase and the n-phase Chan and Vese segmentation

models with selective shape prior(s). The chapter ends with the introduction of a new pose

invariance formulation using the global shape registration of chapter III.

CHAPTER 7

This chapter introduces a new registration method for images in two and three dimensional

spaces. Level set theory is used to generate equi-spaced iso-contours/surfaces of the imaged

object/organ in the two images and scale space theory is used to build feature descriptors

that will subsequently be used to match these iso-contours. The chapter continues by us-

ing the FEM-based validation technique introduced in chapter IV, in order to validate the

proposed image registration approach. Comparisons with an existing registration method

is also presented.

CHAPTER 8

This chapter summarizes the main components of the proposed work, and presents a plan

for future directions.
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CHAPTER II

WHAT IS A SHAPE AND HOW CAN IT BE DESCRIBED?

The way of describing or representing a shape is a core component of any exist-

ing shape registration algorithm. This chapter reviews some existing shape description

techniques and highlights their properties relevant to the registration process as it will be

formulated in this dissertation.

Generally speaking, the shape of a geometrical figure (or object) is understood to refer

to those geometrical attributes that are invariant to Euclidean similarity transformations,

that is those attributes that remain unchanged when the object is rotated, translated and

scaled [42]. This is reflected in Fig. 5. Two objects are said to have the same shape if

one is a transformed version of the other under a similarity transformation. A shape can

be classified either as static or dynamic. A static shape, also referred to as rigid shape, is

a shape that does not change over time by deformation. An example of such a shape is a

car model. A dynamic shape deforms over time, such as a human face which undergoes

changes when speaking or smiling for example.

Various techniques have been designed to describe shapes. Each has its strengths and

its limitations vis-a-vis the application for which the representation is being used. These

techniques aim at providing a simplified representation of the considered shape while pre-

serving its main characteristics. The purpose of this chapter is to provide a non-exhaustive

overview of existing shape representations and a necessary background for the chosen de-

scriptor throughout this work, namely the “distance transform”.

A. Existing Shape Representation Techniques

The literature is rich with shape representation techniques. These techniques can

generally be categorized as parametric, such as Fourier descriptors and spherical harmon-
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FIGURE 5 – Four copies of the same shape, but under different Euclidean transformations.
Image is courtesy of [2].

ics, or non-parametric, such as landmark-based techniques, medial axes, and distance trans-

form. In many applications, in particular in image-based morphological studies in the field

of medical imaging, the analysis starts with the extraction of a quantitative description of

the anatomical shapes of interest from the input images. The following section overviews

some existing techniques to describe or represent shapes and explains how some of these

descriptors are extracted from the images.

1. Parametric Representations

Within this family, the techniques fit a parametric model to a curve outline in a 2D

image or a bounding surface in a 3D image. The model parameters are typically derived

from segmented images and are used to describe the considered shape. This family of

descriptors include, among others, the following:

• Geometric Moments: The mathematical concept of moments has been around for

many years and has been utilized in several fields, including mechanics, statistics,

pattern recognition and image understanding. Historically, the first significant work

considering moments for pattern recognition was introduced by Hu [43]. In general,
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the three-dimensional (p+q+r)th geometric moment,Mpqr, of a function f(x, y, z)

(an image intensity or a density distribution function) is defined as

Mpqr =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
xpyqzrf(x, y, z)dxdydz, (12)

where, p, q, r ∈ N. Geometric moments are not orthogonal since their basis func-

tions, namely the monomials xpyqzr are not orthogonal. Moreover, according to the

uniqueness theorem, the moment set (Mpqr)pqr is uniquely determined for a given

image function f , and the existence theorem states that the moments of all orders

exist [43]. These two theorems give rise to the reconstruction property of moments.

Finally, note that in case the function f is a binary function with a value one inside

the region enclosed by the shape, and zero outside, then the zeroth order moment is

equal to the area enclosed by the shape.

Hu [43] derived a set of seven moment invariants, using non-linear combinations of

geometric moments. These invariants remain the same under image translation, ro-

tation and scaling. A number of such moments invariants can be put into a feature

vector and used for matching purposes as was done for instance in [44, 45]. Recently,

matching two shapes using moments was proposed in [46] in the context of affine-

invariant shape-based segmentation. Mathematically, moments have the advantage

of being concise, however, it is difficult to correlate high order moments with shape

features.

• Spherical Harmonics (SPHARM): Surfaces in 3D can be represented by a series ex-

pansion of parametric coordinate functions in 2D parameter space. Popular among

the basis functions are the spherical harmonics which were used, for instance, in [47,

48]. The surface voxels are projected onto the unit sphere, S2, with its origin located

at the center of mass of the object and the surface, v(θ, φ) = (v1(θ, φ), v2(θ, φ), v3(θ, φ))

is expressed as a linear combination of its harmonics as follows:

vi(θ, φ) =
∑

l≥0

∑

|m|≤l

Ci
lmY m

l (θ, φ), with θ ∈ [0, π], and φ ∈ [0, 2φ]. (13)
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FIGURE 6 – Parametrization of cortical surface using the spherical coordinate system.. Im-
age is courtesy of [3].

where, Ci
lm are the expansion coefficients given by

Ci
lm =

∫

S2

vi(θ, φ)Y m
l (θ, φ) sin θdθdφ,

and Y m
l (θ, φ) are the harmonic of degree l and order m, which are defined as so-

lutions to the normal Laplace equation in spherical coordinates. Truncating this ex-

pansion at a given frequency l allows the reconstruction of the original surface at the

different levels. Figure. 6 illustrates the parametrization of a cortical surface using

spherical harmonics.

Recently, a new mathematical tool, based on spherical harmonics, for obtaining

rotation-invariant representations of 3D shapes was proposed in [48], and was used

for 3D shape matching scenarios. In addition, a variant of the spherical harmonics

representation, known as weighted spherical harmonics was introduced by Chung

et al. (see e.g., [49, 50]) for the purpose of voxel-based morphometry (VBM) 1 and

1Voxel-based morphometry (VBM) is a fully automated image analysis technique allowing identification

of regional differences in gray matter and white matter between groups of subjects without a prior region of
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FIGURE 7 – Weighted SPHARM representation of a cortical surface at different scales.
Image is courtesy of [4].

for the tensor-based cortical morphometry. The new representation generalizes the

traditional SPHARM by weighting each spherical harmonic basis such that the result-

ing representation becomes the solution of an isotropic diffusion equation on a unit

sphere. This is a multiscale representation that results in a smooth and explicit rep-

resentation of unknown cortical boundary. The weighted SPHARM representation of

v(θ, φ) at different scales, σ, is given by

vi(θ, φ) =
∑

l≥0

l∑

m=−l

el(l+1)σCi
lmY m

l (θ, φ). (14)

Note that the weighted SPHARM corresponds to the traditional SPHARM for the

particular case σ = 0. Figure 7 shows the weighted SPHARM representation of

a cortical surface at different scales. This representation, as well as the weighted

Fourier Series [4] were further used by the authors to normalize brain surfaces into

a common stereotaxic space using affine transformation. The displacement field was

obtained by minimizing the integral of the squared errors between the two input

surfaces. The authors showed that, unlike other surface registration techniques, the

optimal displacement field in the least square sense is obtained by simply taking the

interest in brain magnetic resonance imaging [49].
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FIGURE 8 – Example of landmark representation of a shape.

difference between the two surface representations. This leads to proper alignment

of sulcal folding patterns between subjects and across hemispheres within a subject.

This was used as a tool for comparing the gray matter and the cortical thickness

across subjects in an autism study [4].

2. Landmark-Based Representation

The boundary of a shape (a curve in 2D or surface in 3D) can be represented by a set

of points known as landmarks. Figure 8 illustrates this type of description. A landmark can

be defined as a point of correspondence on each object that matches between and within

populations. Such points can be manually placed by a knowledgeable user of the underlying

anatomy to determine “special locations”, or can be detected automatically using some

geometric features of the boundary, such as curvature [51–53]. Both manual and automatic

landmarks can be extracted either from gray scale or segmented images. Landmarks were

extensively used to match shapes (see for example, [51–53]). This representation was also
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used in conjunction with Procrustes analysis 2 for statistical shape analysis [2] or to build a

point distribution model and use it to segment brain structures in MR images [54]. However,

it is worth mentioning that this representation suffers from problems such as the need for

point correspondences, numerical instabilities, and inability to handle topological changes.

3. Medial Axes Representation

A medial axis or skeleton of a shape was initially defined by Blum [55] as the

locus of centers of a disc in 2D or sphere in 3D of maximal size that fits in the domain

occupied by the shape (see Fig. 9-a). Since then, medial axes have been used extensively

in various computer vision and medical imaging applications. Each point on the medial

axis has a least two closest points on the shape boundary, and is associated with a radius of

its corresponding maximal disc or sphere. This allows the representation of the considered

shape using less information. A shape can be fully recovered from its medial axis. Note that

in 3D cases, the skeleton can be a medial surface or, in case of tubular structures, a set of

medial curves as shown on Fig. 9-b. This dimension reduction plays a major role in several

applications, such as shape matching and retrieval [56–59], segmentation of tubular-like

structures [60], and virtual endoscopy [61]. Several techniques have been proposed for

medial axis extraction, most of which require a segmented image with the exception of

the algorithm proposed in [62, 63] which simultaneously estimates the boundary and the

medial axis from the input gray scale image. These algorithms include, among others,

the thinning methods which are based on the idea of iteratively peeling off the object’s

boundary without altering its topology (see e.g., [64]).

2As a curiosity Procrustes was the nickname of a robber in Greek mythology called Damastes, who lived

by the road from Eleusis to Athens. He offered travelers hospitality on a magical bed that would fit any guest.

His humor was to stretch the ones who were too short to fit the bed until they died or, if they were too tall, to

cut off as much of their limbs as would make them short enough. This rather unpleasant practice continued

until Damastes was killed by Theseus, son of Æthra and the Athenian king geus. Another nickname for

Damastes was The one who stretches [2].
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(a)

(b)

FIGURE 9 – (a) Two dimensional illustration of the maximal discs to define medial axis.
(b) Curve skeleton of a synthetic 3D shape. Images are courtesy of Dr. M. Sabry Hassouna.
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4. Implicit Representation Using Vector Distance Function (VDF)

A shape representation (in vector form) was proposed by Faugeras and Gomes [65].

This representation was used to evolve manifolds [66], and has been popular in various im-

age analysis applications. The method, called the Vector Distance Function (VDF) method,

uses the vector that connects any point in space to its closest point on the object of interest.

Given a manifold M in Rn, (n = 2, 3), let δ(x) := dist(x,M) denote the distance from

a point x ∈ Rn to M. That is, δ(x) = ‖x − x0‖ with x0 being the closet point to x on

M. The function δ(x) is Lipschitz continuous and hence it is almost everywhere (a.e.)

differentiable, and so is the squared distance function defined by

η(x) :=
1

2
δ2(x).

The vector distance function V (x) is defined as the derivative of η(.). That is,

V (x) := ∇η(x) = δ(x)∇δ(x).

The VDF, V (.), is is an implicit representation of the manifold M, with M = V −1(0),

and for each x ∈ Rn, V (x) is a vector of length δ(x) since δ(.) satisfies a.e. the Eikonal

equation ‖∇δ(x)‖ = 1.

In addition, let x be a point where δ is differentiable, and let x0 = PM(x) be the unique

projection of x onto M, i.e., δ(x) = ‖x − x0‖. If M is smooth at x, then the VDF to M
at x is given by (see [65] for more details)

V (x) = x− x0 = x− PM(x).

Figure 10 shows a few examples of the x- and y-components of the VDF’s corresponding

to different 2D shapes. The VDF representation was recently used for shape registration

in [22, 40].

5. Implicit Representation Using Distance Transform

The distance transform, or the distance map, of a given shape assigns to each point

x in the image its minimal Euclidean distance, D(x), from the shape boundary. Some
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(1)

(2)

(3)

(4)

(a) (b)

FIGURE 10 – Shape Representation Using the VDF. (a) Hand. (b) Rabbit. (c) Tooth. (d)
Hippocampus. (a) the x-component of the VDF; (b) the y-component of the VDF.
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two dimensional examples of such representations are shown on Fig. 14. The boundary is

modelled as the zero-level set of the distance transform. In many applications, including

the present work, a signed variant of the distance transform is considered. This variant

negates the values of the distance transform either inside or outside the region enclosed by

the shape. Indeed, let S denote an imaged shape in Rn which defines a partition of the

image domain Ω into two regions: the region enclosed by S, ΩS , and its complement in Ω,

Ω\ΩS . The shape S can be implicitly defined by the following signed distance transform

ΦS(x) =





0, if x ∈ S,

+dist(x, S), if x ∈ ΩS,

−dist(x, S), if x ∈ Ω\ΩS,

(15)

where, dist(x, S) refers to the minimum Euclidean distance between an image point x and

the shape S.

Examples of such representation are presented on Fig. 12 for various 2D shapes, and on

Fig. 13 for a 3D example. The signed variant has the advantage of eliminating the singular-

ities at the shape outline and leads to a linear transition as one crosses the object boundary.

Note that the distance transform was used as a way of computing the medial axis of shapes.

In fact, the singularity ridges of the distance transform, which are defined as the locus of

points that lie inside the shape and have at least two closet points on the boundary, form the

shape skeleton (see e.g., [67–69]).

The distance transform is computed from a binary segmentation of the object be-

ing considered. An exact computation of the distance transform is very time consuming,

especially for large data sets and for higher dimensions. Early discrete techniques to ap-

proximate the distance transform can be found in the work by Danielson [70] and that

by Borgefors [71]. Other algorithms have been designed to continuously approximate the

distance transform by solving a special first order non-linear partial differential equation

(PDE), known as the Eikonal equation, using the Fast Marching Method (FMM) (see ap-

pendix I).

In this work, direct computations of the distance transform were carried out for two dimen-
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(a) (b)

(c) (d)

FIGURE 11 – Examples of the distance map inside of 2D shapes. (a) Hand. (b) Rabbit. (c)
Tooth. (d) Hippocampus.
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(a) (b)

(c) (d)

FIGURE 12 – Examples of the signed distance representation of 2D shapes by negating the
distance outside the shapes. (a) Hand. (b) Rabbit. (c) Tooth. (d) Hippocampus.
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(a)

(b)

(c)

(d)

FIGURE 13 – Volumetric signed distance map of the human head by negating the distance
inside the region occupied by the shape. The data correspond to an MRI scan of size
256× 256× 124. (a) Three different views of the surface model. Distance transform slices
corresponding to the beginning (b), middle (c), and end (d) of the scan with the zero-level
contour in red.
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sional shapes with moderate sizes, while, the distance maps of large 2D shapes and those

of 3D shapes are approximated using the Fast Marching Method (FMM).

The implicit representation using distance transforms has been used previously in

several shape registration techniques [5, 22]. In this work, the signed distance transform

is chosen to represent shapes for different reasons. First and foremost, this representation

provides a feature space in which the registration energy functionals that can be optimized

using gradient descent can be conveniently and efficiently used. Indeed, Huang et al. [5]

stated that this representation satisfies a sufficient condition for the convergence of gradient

descent methods. Second, the signed distance representation is invariant to rotations and

translations. Third, in the context of shape based segmentation, since this representation is

set in an Eulerian framework, it does not require point correspondences during the phase

of building a shape model from a set of training samples. In addition, it has the ability of

handling topological changes, such as merging and breaking. This ability is of great value

for segmenting medical images where some organs or lesions can present as one confluent

object or as a union of disconnected islands.

The only concern of the implicit signed distance representation is that it has one dimension

higher than the original shapes. This problem has been addressed thoroughly in the level

set segmentation literature using a narrow band implementation. In the context of shape

registration, one can reduce the sample domain for registration to a narrow band around the

input shape in the embedding space.

B. Summary

In this chapter, several existing shape representation techniques were reviewed.

These techniques are generally categorized as parametric and non-parametric. Different

aspects of each of these representations, in the context of shape registration, are high-

lighted. The computation of each of these descriptors from gray scale or binary images are

discussed. Finally, the choice of signed distance transform to implicitly represent shapes in

this dissertation is justified.
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CHAPTER III

GLOBAL REGISTRATION OF SHAPES IN IMPLICIT SPACES

A. Introduction

As was seen in the previous chapter, shape representation plays a crucial role in

many areas of computer vision, pattern recognition, contour matching for medical imaging,

etc. This is a very vast and complex problem, which was addressed in Chapter II.

This chapter focuses on the specific implicit representation of shapes using signed

distance transforms (see Fig. 14) and how this representation can be used for global shape

alignment. The implicit representation of shapes using the signed distance map was em-

ployed in some existing works to achieve global alignment of shapes [5, 7]. This represen-

tation is proven to be invariant to rotations and translations, and can be efficiently used in

the case of homogeneous scaling. In this chapter, a new cost function which measures the

disparity between the implicit representations of the two input shapes is proposed. This

measure leads to accurate results even when dealing with anisotropic scales. Comparisons

with existing techniques will be presented to show the potential of the proposed measure.

FIGURE 14 – Implicit shape representation using the signed distance function.
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B. Global Registration of Shapes

Global transformation models are usually defined by a small set of parameters.

These models include, among others, the rigid transformation (translations and rotations),

the similarity transformation (translations, rotations, and isotropic scaling), the affine trans-

formation, which in addition to translations and rotations, accounts for anisotropic scaling

and/or shearing. Such a transformation can be used alone to efficiently align two shapes,

or it can be used as a pre-step for a local matching algorithm. Several techniques have

been proposed to achieve global alignment between shapes. Some of these techniques are

feature-based [72]. Such a technique proceeds by extracting salient features and uses them

to match a set of corresponding points. Finally, the matched points are used to recover the

transformation parameters. Other methods, on the other hand, recover these parameters by

directly optimizing a similarity/dissimilarity criterion between the two shape representa-

tions. For instance, in [5], the authors proposed to achieve global registration of shapes by

maximizing the MI between the SDF representation of the input shapes.

In this work, a new SSD criterion expressed in the space of signed distance transforms is

introduced to globally align shapes. As it will be shown, this new criterion can handle

both rigid and affine transformations and leads to more accurate results when compared to

other criteria. Two different types of transformations will be considered to achieve shape

alignment.

C. Similarity Alignment

To simplify the presentation, the discussion will be limited in this section to the

two dimensional case. Consider two shapes, S and T , that are implicitly represented by

their corresponding signed distance maps, ΦS and ΦT , respectively. Assume that the target

shape, T , is a deformed version of the source shape S, according to a similarity transfor-
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mation A .
= A(s,R, T ), given by

Ax = sR.x + T ,

= s




cos θ sin θ

− sin θ cos θ


 ·




x

y


 +



Tx

Ty


 ,

where, s a scaling factor, R = R(θ) is a rotation matrix, and T = [Tx, Ty]
T a translation

vector. The question is how to recover these parameters and then align the two given

shapes?

First, note that if Φ̂S denotes the transformed level set function ΦS by A, then one could

show that the zero crossing of Φ̂S gives a new shape, Ŝ, that corresponds, up to the scale s,

to the transformation of the original shape S by A. Indeed, let x be an image point, and let

x̂ denote its image by A, i.e., x̂ = Ax. Then, one has,

dist(x̂, Ŝ) = minby∈bS ‖x̂− ŷ‖ = min
y∈S

‖(sRx + T )− (sRy + T )‖

= min
y∈S

s‖x− y‖ = s.dist(x, S).¤

Considering this property of the signed distance function under similarity transformation,

one way of recovering the parameters of the transformation A, is by minimizing the fol-

lowing SSD similarity criterion as was proposed in [7]:

D(s,R, T ) =
1

2

∫

Ω

(sΦS(x)− ΦT (Ax))2dx. (16)

This criterion measures the dissimilarity between the distance values of image points on

one image and that of the transformed points by A on the other image.

Note that, in some cases, the two input shapes may not produce signed distance representa-

tions that are equally defined in a fixed image domain. In addition, the implicit representa-

tion has one dimension higher than the original shapes and then its efficiency in registration

is of big concern. To cope with these two issues, one can consider a narrow band formed of

points that are a distance ε away from the source shape and their projections on the target,

D(s,R, T ) =
1

2

∫

Ω

δε(ΦS(x), ΦT (Ax)) · [sΦS(x)− ΦT (Ax)]2dx, (17)
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where,

δε(a, b) =





0, if min(|a|, |b|) > ε,

1, otherwise.

The corresponding Euler-Lagrange equations to each transformation parameter are given

by:

d

dt
s =

∫

Ω

δε(ΦS, ΦT ) · [ΦS(x)−∇ΦT
T (Ax)




x cos θ + y sin θ

−x sin θ + y cos θ


] · rdx, (18)

d

dt
θ =

∫

Ω

δε(ΦS, ΦT ) · [s∇ΦT
T (Ax)



−x sin θ + y cos θ

−x cos θ − y sin θ


] · rdx,

d

dt
Tx =

∫

Ω

δε(ΦS, ΦT )
∂ΦT

∂x
(Ax) · rdx,

d

dt
Ty =

∫

Ω

δε(ΦS, ΦT )
∂ΦT

∂y
(Ax) · rdx,

where r(x) = sΦS(x) − ΦT (Ax). A gradient descent scheme can be used to solve these

equations. Fig. 17(b) and 16(b) show few examples of global alignment of different shapes

using this model.

D. Affine Alignment

Consider a more general transformation (to be recovered)A .
= A(S,R, T ), defined

by:

Ax = S.R.x + T (19)

=




sx 0

0 sy


 .




cos θ sin θ

− sin θ cos θ


 ·




x

y


 +



Tx

Ty


 . (20)

The minimization of the cost function given by Eq. (17) fails to produce accurate results in

this case because of the anisotropic scales (different scales in the x− and y−directions).

One way of coping with this issue is to represent the input shapes using the VDF represen-

tation (see chapter II).

In this work, a different way of dealing with scale variations using the signed distance
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representation is proposed. A new dissimilarity criterion is introduced and its potential is

shown when compared to the homogeneous scale-based and the VDF-based criteria (see

Eq. (17) and Eq. (24), respectively).

1. VDF-Based Dissimilarity Measure

Let VS and VT be the VDF representations of the shapes, S and T , respectively.

First, it is clear that the VDF representation is invariant to translation. Now, let V̂S denote

the VDF obtained after transforming VS byA. The set V̂ −1
S (0) implicitly represents a shape

Ŝ which corresponds to the warped shape A(S), up to a rotation and some scale effects.

Given an image point x ∈ ΩS on the source shape, let x̂ be its transform byA, i.e., x̂ = Ax,

and let x0 = VS(x) be the closet point to x on S. One can easily show that

VT (A(x)) = VT (x̂) = x̂− x̂0 (21)

= S.R(x− x0) = S.R.VS(x). (22)

Based on this property of the VDF representation under affine transformation, one can

consider the following SSD criterion to achieve global alignment of the two input shapes:

D(S,R, T ) =
1

2

∫

Ω

‖ S.R.VS(x)− VT (Ax) ‖2 dx. (23)

To reduce the computational complexity of minimizing this criterion, one can limit the

matching space to a narrow band around the two given shapes. This leads to

D(S,R, T ) =
1

2

∫

Ω

δε(VS(x), VT (Ax))· ‖ S.R.VS(x)− VT (Ax) ‖2 dx, (24)

where δε is given by

δε(a,b) =





0, if min(‖a‖, ‖b‖) > ε,

1, if min(‖a‖, ‖b‖) ≤ ε.
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The corresponding Euler-Lagrange equations to each parameter of the transformation A

are given by:

d

dt
s =

∫

Ω

δε(VS, VT ).rT · [∇sS.R.VS(x)−∇V T
T (Ax)∇s(Ax)], (25)

d

dt
θ =

∫

Ω

δε(VS, VT ).rT · [S∇θRVS(x)−∇V T
T (Ax)∇θ(Ax)],

d

dt
t =

∫

Ω

δε(VS, VT ).rT · [∇V T
T (Ax)∇t(Ax)],

where, r(x) = S.R.VS(x) − VT (Ax), s ∈ {sx, sy}, and t ∈ {Tx, Ty}. Each of these

equations is solved using the gradient method.

2. Proposed SDF-Based Dissimilarity Measure

Let ΦS and ΦT be the signed distance representations of the shapes, S and T , re-

spectively. Let’s denote by Φ̂S the transformed level set function ΦS byA, the zero crossing

of Φ̂S corresponds to a new shape that will be denoted Ŝ.

Now, let x be an image point, and let x̂ = Ax denote its image by A. Then, one has,

Φ̂S(x̂) = dist(x̂, Ŝ) = minby∈bS ‖x̂− ŷ‖ = min
y∈S

‖SR(x− y)‖,

≤ min
y∈S

‖S‖.‖x− y‖ = ‖S‖.dist(x, S),

where, ‖S‖ = max(|sx|, |sy|) is the infinity norm of the diagonal matrix S . Hence, we

have the following inequality:

Φ̂S(x̂) ≤ ‖S‖.ΦS(x). (26)

In order to align the two input shapes, one could seek a transformation A that minimizes

the following cost function:

D̂(S,R, T ) =
1

2

∫

Ω

(Φ̂S(Ax)− ΦT (Ax))2dx.

Based on the inequality derived in (26), one can easily show that

∫

Ω

(Φ̂S(Ax)− ΦT (Ax))2dx ≤
∫

Ω

(‖S‖ΦS(x)− ΦT (Ax))2dx.
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Hence, we propose to minimize the following new cost function in order to recover the

parameters of the transformation A,

D(S,R, T ) =
1

2

∫

Ω

(‖S‖ΦS(x)− ΦT (Ax))2dx, (27)

Again, one can restrict the registration space to a narrow band formed of points that are a

distance ε away from the source shape and their projections on the target shape,

D(S,R, T ) =
1

2

∫

Ω

δε(ΦS(x), ΦT (Ax))[‖S‖ΦS(x)− ΦT (Ax)]2dx, (28)

where,

δε(a, b) =





0, if min(|a|, |b|) > ε,

1, otherwise.

Each parameter of the transformation A is recovered by solving its corresponding

Euler-Lagrange equations using a gradient descent scheme:

dsx

dt
=

∫

Ω

[
d‖S‖
dsx

ΦS(x)−∇ΦT
T (Ax)




x cos θ + y sin θ

0


].r(x)dx, (29)

dsy

dt
=

∫

Ω

[
d‖S‖
dsy

ΦS(x)−∇ΦT
T (Ax)




0

−x sin θ + y cos θ


].r(x)dx,

dθ

dt
=

∫

Ω

[∇ΦT
T .




sx(−x sin θ + y cos θ)

sy(−x cos θ − y sin θ)


].r(x)dx,

dTx

dt
=

∫

Ω

∂ΦT

∂x
(Ax).r(x)dx,

dTy

dt
=

∫

Ω

∂ΦT

∂y
(Ax).r(x)dx,

where

r(x) = δε(ΦS(x), ΦT (x))(‖S‖ΦS(x)− ΦT (Ax)),

and ∇ denotes the gradient operator. Note that, since only positive scale values are consid-

ered, the terms d‖S‖
dsx;y

equal either 0 or 1.
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Three Dimensional Case The proposed SSD criterion given by (28) is generalized in a

straightforward manner to the three dimensional case. In this case, the similarity transform

A is defined by:

Ax = S.R.x + T ,

where,

S =




sx 0 0

0 sy 0

0 0 sz




, T =




Tx

Ty

Tz




.

and

R = R(θx, θy, θz) = Rx · Ry · Rz,

with

Rx =




1 0 0

0 cos θx sin θx

0 − sin θx cos θx


 ,Ry =




cos θy 0 − sin θy

0 1 0

sin θy 0 cos θy


 ,Rz =




cos θz sin θz 0

− sin θy cos θz 0

0 0 1


 .

In this case, the cost function, to be minimized in order to recover the nine parameters of

the transformation A, is given as in Eq. (28) by:

D(S,R, T ) =
1

2

∫

Ω

(‖S‖ΦS(x)− ΦT (Ax))2dx,

where, ‖S‖ = max(|sx|, |sy|, |sy|) is the infinity norm of the matrix S .

As was done in the 2D case, one can consider a narrow band formed of points that are

a distance ε away from the source shape and their projections on the target shape (see

Eq.(28)), and solve the following Euler-Lagrange equations for each of the nine parameters
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of A using a gradient descent scheme:

dsx

dt
=

∫

Ω

[
d‖S‖
dsx

ΦS(x)−∇ΦT
T (Ax)




R11x + R12y + R13z

0

0




].r(x)dx, (30)

dsy

dt
=

∫

Ω

[
d‖S‖
dsy

ΦS(x)−∇ΦT
T (Ax)




0

R21x + R22y + R23z

0




].r(x)dx,

dsz

dt
=

∫

Ω

[
d‖S‖
dsx

ΦS(x)−∇ΦT
T (Ax)




0

0

R31x + R32y + R33z




].r(x)dx,

dθx

dt
=

∫

Ω

[∇ΦT
T (Ax).S.R′

x.Ry.Rz.x].r(x)dx,

dθy

dt
=

∫

Ω

[∇ΦT
T (Ax).S.Rx.R′

y.Rz.x].r(x)dx,

dθz

dt
=

∫

Ω

[∇ΦT
T (Ax).S.Rx.Ry.R′

z.x].r(x)dx,

dTx

dt
=

∫

Ω

∂ΦT

∂x
(Ax).r(x)dx,

dTy

dt
=

∫

Ω

∂ΦT

∂y
(Ax).r(x)dx,

dTz

dt
=

∫

Ω

∂ΦT

∂z
(Ax).r(x)dx,

where r(x) = δε(ΦS(x), ΦT (x))(‖S‖ΦS(x) − ΦT (Ax)), ∇ denotes the gradient operator,

and

R′
x =




0 0 0

0 − sin θx cos θx

0 − cos θx − sin θx


 ,R′

y =




− sin θy 0 − cos θy

0 0 0

cos θy 0 − sin θy


 ,R′

z =




− sin θz cos θz 0

− cos θy − sin θz 0

0 0 0


 .

Note that, since only positive scale values are allowed, the terms d‖S‖
dsx;y;z

equal either 0 or 1.

E. 2D Empirical Evaluation of the Proposed Global Alignment Model

As mentioned earlier, each parameter of the global transformation is recovered by

solving its corresponding evolution equation (Eqn. 29) using a gradient descent scheme.
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TABLE 1
COMPARISON OF RECOVERED PARAMETERS WHEN USING THE PROPOSED

MODEL (M1) (EQ. 27) VS. THE VDF-BASED MODEL (EQ. 24) (M2) AND THE
ISOTROPIC SCALE-BASED MODEL (M3) (EQ. 17) FOR THE EXAMPLES

PRESENTED ON THE 2ND, 3RD, AND LAST ROWS OF FIG. 16; GT STANDS FOR
GROUND TRUTH.

Corpus Callosum Fish #1 Bunny #3

GT M1 M2 M3 GT M1 M2 M3 GT M1 M2 M3

sx 1.5 1.50 1.42 0.99 0.6 0.60 0.61 0.71 1.0 1.01 0.90 0.622

sy 0.9 0.90 0.89 — 1.0 1.00 1.0 — 0.45 0.45 0.51 —

θ◦ 10 10 10 22.75 60 60 60 52.03 -45 -44.69 -44.9 -16.47

tx 2.5 1.61 -1.70 0.14 -3.5 -4.17 -4.62 -5.82 10 9.12 -2.28 -0.15

ty 0.0 -0.6 -2.72 2.50 -5 -5.16 -4.42 -7.52 5 4.78 -2.80 0.01

This type of optimization methodology is very sensitive to initial conditions. The convexity

of the proposed objective function (Eqn. 28) is not guaranteed and hard to prove in the space

of the five parameters. However, we propose to analyze the characteristics of this function

in the space of two parameters while the remaining parameters are fixed. To this end,

we consider two instances of the “Hand” shape shown in the 3rd column of Fig. 14. The

exact parameters that transform one instance towards the other are obviously unity scales,

zero rotation, and zero translations. Once at a time, we fix three of these parameters and

study the behavior of the registration criterion in terms of the remaining two parameters.

Different combinations were tested, some of which are presented in Fig. 15. We have

considered the following ranges for each parameter: θ ∈ [−π
3
, π

3
], sx, sy ∈ [0.5, 2.0],

and Tx, Ty ∈ [−50, 50]. For each test, the unknown parameter ranges were quantized

using uniform sampling. The corresponding results (Fig. 15) show that, for each case, the

proposed cost function exhibits nice smoothness and convexity properties. In addition, for

each of the shown combinations, the energy is smooth and has a single global minimum that

is attained at the optimal point in the space of the two unknown parameters. This gives a

good indication on the well-behaved minimization criterion and its convergence properties.
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FIGURE 15 – Empirical evaluation of the proposed criterion (Eq. 28). Unknowns are: (a)
Tx and Ty; (b) sx and sy; (c) θ and sy; (d) θ and Ty.

42



(a) (b) (c) (d)

FIGURE 16 – Global registration. (a) Input Shapes (blue:source; red: target). (b) Regis-
tration results using the isotropic-scale based model 17. (c) Registration results using the
VDF-based model (Eq. 24). (d) Registration using the proposed model (Eq. 28). Note how
accurate the registration results are when using the proposed model; see Table. 1 for some
comparisons of recovered vs. ground truth parameters using both criteria.
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TABLE 2
EXECUTION TIME COMPARISONS BETWEEN THE PROPOSED ALIGNMENT

MODEL AND THE VDF-BASED ALIGNMENT MODEL FOR THE REGISTRATION
EXAMPLES PRESENTED IN FIG. 16. NOTE THAT, FOR EACH CASE, THE

REPORTED TIMES CORRESPOND TO THE COMPUTATION OF THE IMPLICIT
REPRESENTATION AND THE ITERATION PROCESS. THE TIMES ARE IN

SECONDS.

The proposed Alignment Model The VDF-based Model

Circle 139.67 208.67

Corpus callosum 206.82 300.57

Fish #1 102.23 141.26

Fish #2 180.68 221.35

Fish #3 169.77 263.69

Bunny #1 147.20 271.57

Bunny #2 157.76 219.87

Bunny #3 296.67 538.67

F. Experimental Results

To quantitatively validate the proposed model (Eq. 28), several 2D registration ex-

periments were performed. For each trial, the source shape is fixed and the target shape is

generated by deforming the source using a known transformation A = A(S,R, T ) which

will be considered as the Ground Truth (GT). Then, the proposed model is used to recover

the optimal alignment parameters. The recovered parameters are then compared to the GT

and to those obtained when using the homogeneous scale-based measure (17) [7] and to

those obtained using the VDF-based model (24). In each case, the proposed algorithm

leads to more accurate results and one can see that the isotropic scale-based criterion com-

pletely fails when the difference between sx and sy is large (see e.g., first and last two rows

of Fig. 16). In addition, even though the VDF-based model did lead to relatively good

results in some of the considered cases, this model executes slower compared to the the

proposed model (28) as reported in table 2. For some of the presented examples, such as

the examples on the 5th and that on the last rows of Fig. 16, the VDF-based criterion failed
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(a) (b) (c)

FIGURE 17 – More global registration results. (a) Input Shapes. (b) Registration using
homogeneous scale-based measure. (c) Registration using the proposed registration model
(Eq. 28).
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FIGURE 18 – Convergence of the new SSD measure (Eq. 28) and comparison to rigid
matching case for the examples shown on the 1st row of Fig. 17. History of D(S, R, T ) for
both cases: the proposed measure (red) and isotropic scale-based measure (blue).

to accurately align the two shapes. For these specific cases, many trials were ran for the

VDF representation, but none did lead to better result. Comparisons between the recovered

parameters when using these three registration models are summarized on table 1.

Another set of experiments was carried out to compare the registration performance of

the proposed criterion with the other two criteria by registering pairs of arbitrary shapes

that belong to the same class. Some of these results are presented on Fig. 17 and Fig. 19

respectively. On can easily notice from these figures that the proposed method outperforms

the other two models.

Figure 18 stresses the out-performance of the proposed criterion over the isotropic scale-

based one. This figure shows the history of the proposed SSD measure and that of the

isotropic scale-based measure vs. iteration for the example shown on the 1st row of Fig. 17.

One can clearly see that the value of the proposed distance functional drops faster at each

iteration step. In addition, contrary to the proposed SSD measure, the isotropic scale-based

measure stops decreasing at a value far from the ideal minimum leading to less accurate

results when compared to ours.

Finally, several three dimensional experiments were carried out to test the proposed
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(a)

(b)

(c)

FIGURE 19 – Global registration: Proposed Signed Distance-based vs. VDF-based affine
registrations. (a) Input Shapes. (b) Affine Registration using the VDF representation
(Eq. 24). (c) Affine Registration using the new SSD criterion (Eq. 28).

global alignment algorithm. A 3D tooth shape of size 117× 117× 125 is used as the target

shape. This shape is used to generate various deformed instances by randomly assigning

different values to the transformation parameters (sx, sy, sz, θx, θy, θz, tx, ty, and tz).

For each trial, the generated deformed shape is used as the source and is registered to the

target shape using the proposed algorithm. Some of the corresponding results are shown in

Fig. 20. For each trial, one can notice the high accuracy of the registration results.

G. Application: Statistical Modelling of Shapes

A major application that may greatly benefit from the proposed registration model

consists of building compact representations of anatomical structures from a set of training

samples using the Principal Component Analysis (PCA) [73]. This application is a critical

component of various medical image analyzes including statistical modelling of anatom-

ical structures, and shape prior learning which can be used to devise robust segmentation

algorithms (e.g., see [39]).

The alignment process allows one to capture shape variations in the databases without
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(1)

(2)

(3)

(4)

(5)

(6)

(a) (b) (c)

FIGURE 20 – Global registration of 3D shapes of five tooth shapes. (a) Input Shapes. (b)
An intermediate state. (c) Final registration result using the proposed registration model
(Eq. 28).
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FIGURE 21 – Training data. Twelve 2D shape models of the fighter jet before alignment.

FIGURE 22 – Training data. Twelve 2D shape models of the fighter jet after alignment.

(a) (b)

FIGURE 23 – Shape overlap before (a) and after (b) alignment in the fighter data base.

49

rl DO 
D a 

... '*" '*" * • • 
• • ... • • .. 



FIGURE 24 – Training data. Twelve 2D shape models of the digit four before alignment.

FIGURE 25 – Training data. Twelve 2D shape models of the digit four after alignment
using the proposed alignment process (28).

(a) (b)

FIGURE 26 – Shape overlap before (a) and after (b) alignments in the digit four data base.
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FIGURE 27 – Correlation coefficients before and after alignments for (a) the fighter jet data
base and (b) the number four data base. Note that the sample number starts from 2 to 12
for each data base.

interference from pose variations. This problem is addressed using the proposed global

registration model. As an example, the statistical modelling of two different shapes: a

fighter jet shape and the digit four shape are presented. A training set consisting of twelve

binary representation of each of these two shapes are presented in Fig. 21 and Fig. 24 re-

spectively. The proposed global registration approach is first applied to align the shapes in

each of these training sets. To this end, the first shape, within each data base, is chosen as

reference. The alignment results are shown on Fig. 22 and Fig. 25 for both training data

sets.

To qualitatively assess the accuracy of the alignment results, the overlap images before and

after alignments for each of these shapes are shown in Fig. 23 and Fig. 26 respectively.

These overlap images are generated by stacking together all the binary images within each

group and adding them together in a pixel wise fashion. The clear increase in the amount

of overlap between the after and before alignment images illustrates the effectiveness of

the proposed alignment process. Quantitatively, the correlation coefficient is computed as

a measure of similarity between these shapes before and after alignments. This measure is

given by

γ =
E[(Φ1 − µ1)(Φ2 − µ2)]

σ1σ2

, (31)
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where, Φ1 and Φ2 are the implicit representations of the input shapes to be compared and

µi and σi denote the mean and standard deviations of each of these representations over the

image domain occupied by the shapes. Finally, E(·) stands for the mathematical expec-

tation. The closet the correlation coefficient is to one, the more accurate is the alignment

result.

For each data base, the correlation coefficients before and after alignments are plotted and

shown on Fig. 27(a-b). Note how the proposed registration algorithm leads to accurate

alignments.

1. Modelling Shape Variations

For each training data set, let Ψ1, Ψ2, . . . , ΨN denote the signed distance repre-

sentations of the N aligned shapes. These representation form a distribution in the Nd

dimensional space in which they reside, where d = r × c is the size of the image do-

main occupied by each shape. Modelling this distribution allows one to generate new and

plausible shapes “similar” to those in the original training set. To this end, the Principal

Component Analysis (PCA)3 plays a major role. The PCA reduces the dimensionality of

the data by computing the main axes of the cloud of points represented by each point in

the training set. By convention, the first principal component accounts for as much of the

variability in the data as possible. The PCA approach can be summarized in the following

steps:

1. Compute the mean of the data

Φ =
1

N

N∑
i=1

Ψi. (32)

2. Compute the mean-offsets, Ψ̃i’s, to capture the shape variabilities

Ψ̃ = Ψi − Φ. (33)
3Principal component analysis also known as Karhunen-Loéve Transform (KLT) was originally intro-

duced in 1933 by Harold Hotelling [74] as a method of dealing with redundancy in multivariate data.
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3. Represent each mean-offset, Ψ̃i, as a column vector, ψ̃i, by stocking its column vec-

tors on top of one another (recall that Ψ̃i are 2D matrices of size d = r × c). Then,

form the shape variability matrix as follows:

S = [ψ̃1ψ̃2 · · · ψ̃N ]. (34)

Note that S is of size d×N .

4. Perform an eigenvalue decomposition to factor the following covariance matrix of

the data
1

N
SST = U.Σ.UT , (35)

where, U is an d×N matrix whose columns are the d orthogonal modes of variations

in the shape and Σ is an d × d diagonal matrix whose entries are the corresponding

eigenvalues.

The ith principal mode, also known as the ith eigenshape, and denoted by Υi, can be de-

termined by rearranging the column vectors of the matrix U back into the structure of a

r-by-c rectangular grid. A maximum of N such eigenshapes are then generated, and will

be denoted Φ1, Φ2, · · · , ΦN

From a computational view point, the eigenvalues and eigenvectors of the covariance ma-

trix, 1
N

SST , can be efficiently computed from the following smaller matrix of size N ×N

T =
1

N
ST S. (36)

One can easily show that if Xi is an eigenvector of T corresponding to the eigenvalue λi,

then Yi = S.Xi is an eigenvector of 1
N

SST associated with the same eigenvalue λi. Indeed,

1

N
SST .Yi =

1

N
SST .(S.Xi) (37)

= S(
1

N
ST S.Xi)

= S(λi.Xi) = λi.S.Xi

= λ.Yi ¥

Remarks:

53



• The eigenvector associated with the largest eigenvalue has the same direction as the

first principal component; the eigenvector associated with the second largest eigen-

value determines the direction of the second principal component and so forth [75].

• Each eigenvalue λi reflects the amount of variance of shape variability associated

with the corresponding eignenshape.

• The number of models, k, to be used to capture the prominent shape variations

present in the training set can be chosen in different ways, but there is no univer-

sal number k that can be set in advance. The most common way of choosing k is as

follows: Let ϑT =
∑

i λi denote the total variance of the data about the mean shape

in the direction of the corresponding eigenshapes. Then, if one wishes to retain a

proportion, pv, of the total variance ϑT , the number k can be chosen such that

k∑
i

λi ≥ pv.ϑT . (38)

• Once the number of modes to be retained for the shape representation, new shapes

can be generated. The signed distance representation of such a shape is expressed as:

Φ(x) = Φ(x) +
k∑

i=1

ωiΦi(x), (39)

where w = (ωi)i is the weight vector. By varying the elements of w, various in-

stances of the model represented by the training shapes can be generated. This can

be seen on figures 28 and 29, where three modes are shown with a variation from

−2λi to 2λi.

To illustrate the encoding of the shape variability for both data sets, Fig. 28 and Fig. 29

show the mean shape and its shape variations based on varying the first four principal

modes from −2
√

λi to −2
√

λi for i = 1, · · · , 4 for the fighter jet and the number four data

sets respectively. One can see that the model captures the variations in each training set

very well and new plausible shapes similar to the ones in the training sets are generated.

This is due mainly to the effectiveness of the proposed registration model.
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FIGURE 28 – Illustration of the shape variabilities in the fighter jet data base. The first four
modes are shown from top to bottom w.r.t. to the average shape shown in red. For each
mode, from left to right shows the mode changing from −2

√
λi to −2

√
λi.

55



−2
√

λi −1
√

λi 0
√

λi 1
√

λi 2
√

λi

(a) (b) (c) (d) (e)

FIGURE 29 – Illustration of the shape variabilities in the number four data base. The first
four modes are shown from top to bottom w.r.t. to the average shape shown in red. For
each mode, from left to right shows the mode changing from −2

√
λi to −2

√
λi.
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H. Conclusion

In this chapter, a new global registration technique of shapes was presented. The

shapes are implicitly represented in higher dimensional space through their sign distance

maps. This representation is either computed directly for moderate size shape or approx-

imated using the FMM for large and 3D shapes. A new criterion, measuring the disparity

between the two representations, was proposed and optimized using a gradient descent

scheme to globally align the input shapes. This criterion supports both rigid/similarity and

affine transformations. Various experiments were presented to show the effectiveness of the

proposed criterion, and comparisons with the isotropic-based alignment proposed in [7] and

the VDF-based alignment used in [22, 40] were performed showing the out-performance of

the proposed model.

The three dimensional version of the proposed registration technique was implemented in

C/C++ language and a graphical user interface was designed for an interactive use of the

proposed approach.
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CHAPTER IV

LOCAL SHAPE REGISTRATION

A. Introduction

In many applications, the global matching has to be completed by dense one-to-one

displacement field in the presence of local deformations [76]. Explicitly determining the

displacement field plays a key role in various medical applications. For instance, the statis-

tics of such a field over a set of subjects can help in classifying normals versus abnormal

subjects as was done in a research work dedicated to classifying autistic vs. typically de-

veloping brains [77]. Complementary to the global registration field, the local coordinate

transformation between the two globally aligned shapes is explicitly estimated by minimiz-

ing a new energy functional. This functional consists of three terms, the first of which is

a discrepancy measure between the two shape representations. The second term penalizes

the deviation of the distance map representation of the globally warped source shape from a

signed distance function, while the local displacement field, which aims at aligning it with

the target shape, is being updated. The last term is a regularization term that enforces the

smoothness of the recovered deformations. This leads to a set of coupled equations that are

simultaneously minimized through a gradient descent scheme.

B. Local Alignment

Various applications may benefit from explicitly establishing dense point correspon-

dences between two or more shapes. For instance, given a training set of anatomical shapes,

the established point correspondences can be used to build a Point Distribution Model

(PDM) [78] to capture the statistics of the corresponding elements across the training data.
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Many techniques have also been published using shape-priors for the segmentation of med-

ical imagery. A major component in learning such priors is the alignment of the training

shapes (see for instance [38, 39, 78]).

In this section, a new variational framework to recover a dense local displacement field

between two globally aligned shapes is proposed.

1. Proposed Variational Formulation

Given are two shapes, a source S and a target T , and assume that these two shapes

are globally aligned according to an affine transformation model A recovered as explained

in chapter IV. Let Ŝ = A(S) denote the corresponding transformed source shape. To com-

plement the global matching model, one should recover a pixel-wise displacement field

u = [u1, · · · , un]T : Rn → Rn, with n = 2, 3 in practice, in such a way that the trans-

formed representation ΦT ◦ g matches ΦbS , where ΦbS and ΦT are the implicit distance map

representations of Ŝ and T , respectively, and where g(x) = x + u(x) is the geometric

deformation. The most common way of solving this problem is through the minimization

of the following functional with respect to u:

E1(u) =

∫

Ω

(ΦbS(x)− ΦT (g(x)))2dx. (40)

This measure, known as the Sum of Squared Differences (SSD) or the L2 measure has

been extensively used for image and shape matching. Its limitations are well established,

especially when dealing with images with different modalities and other criteria have been

proposed to cope with this issue. When dealing with shapes, the registration in presence

of scale variations is analogous to aligning different modality images [5]. However, it was

already shown that the proposed global alignment model (see chapter IV) yields accurate

results in the presence of scale variations. Hence, in order to recover the local displacement

field, the SSD criterion (40) is adopted in this work, but in a different setting. Instead of

directly minimizing the functional E1(.) with respect to u, a function Φ(.) is initialized to

be the signed distance representation of the globally aligned source shape, Ŝ, when there

is no displacement (i.e., when u = 0). Then, once u starts being updated u, we propose to
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simultaneously penalize the deviation of the corresponding deformed shape representation,

Φ(g(.)), from a signed distance function.

2. Re-initialization of a Signed Distance Function

In most scenarios of moving interface-based methods, it is impossible to maintain

the level set function as a signed distance function to the moving front. As the interface

moves, flat and/or step regions develop which introduces computational inaccuracies. For

this practical reason, as well as for theoretical reasons (see [79]), one needs to keep the

level set function close to a signed distance function (i.e., |∇Φ| ≈ 1)4 from time to time

during the course of its evolution. This process is known as the distance reinitialization of

the level set function. Note that it remains theoretically unclear when and how to apply the

reinitialization [79, 81].

The standard reinitialization method is to compute the embedding function, Φ(·), as

the steady state of the following PDE equation:




Φt = sign(Φ0)(1− |∇Φ|),

Φ(x, 0) = Φ0(x),

(41)

where Φ0 is the function to be reinitialized and sign(·) is the sign function. The idea of

using this equation is that at steady state, the solution will correspond to a signed distance

function (i.e., |∇Φ| = 1) with the same zero-level set as the initial function Φ0. Hence, ev-

ery few steps of the evolution process, the embedding function Φ is rebuilt with the above

equation. However, as was reported in various works, such as [81–83], if the initial con-

dition Φ0 is not smooth or if it is much steeper on one side of the embedded interface,

the resulting function, Φ, can be moved incorrectly from that of the original function. In

addition, this reinitialization may fail if the level set function is initially far from a signed

distance function. Several other reinitialization approaches have been proposed (see for in-

stance [81, 84, 85]). Most of these approaches are variants of the equation (41). Practically,
4A signed distance function satisfies the desirable property |∇Φ| = 1. Conversely, any function Φ satis-

fying |∇Φ| = 1 is a signed distance function plus a constant [80].
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the reinitialization process can be very complicated, expensive and have subtle side effects.

Recently, Li et al. [83] have proposed a new variational level set formulation that

forces the level set function to be close to a signed distance and hence eliminates the need

of the reinitialization process. This was done in the context of level set based segmentation,

by incorporating the following internal energy term into their segmentation energy,

I(Φ) =
1

2

∫

Ω

(|∇Φ(x)| − 1)2dx. (42)

Due to this energy, the level set function is automatically kept close to a signed distance

function during the evolution process. The numerical advantages of this new reinitialization

technique were highlighted in [83].

In this work, this same reinitialization approach is chosen and a new variational formulation

for non-rigid registration of shapes is proposed.

3. Energy Formulation

Instead of directly minimizing the functional E1(.) (see Eq. (40)) with respect to

the unknown displacement field u, a function Φ(.) is initialized as the signed distance

representation of the globally aligned source shape, Ŝ, when there is no displacement (i.e.,

when u = 0). Then, once u starts being updated, the deviation of the corresponding

deformed shape representation, Φ(g(.)) is simultaneously penalized from a signed distance

function following the same idea proposed in [83] and expressed by Eq. (42). To this end,

it is proposed to add the following energy term into the functional E1:

E2(Φ,u) =

∫

Ω

(|∇Φ(g(x))| − 1)2dx. (43)

This new term is simultaneously minimized w.r.t. both Φ and u. This will ensure that the

source shape is kept implicitly represented by a signed distance function while it is being

warped by the updated displacement field u. One of the advantages of this new energy

term is illustrated in Fig. 30. It is clear from these examples that adding the penalizing

term helps guide the transformed shape towards the right direction even in the presence of

large deformations.
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With the aforementioned two functionals, E1 and E2, the following data-driven energy is

minimized in order to explicitly determine the geometric transformation between the two

shapes,

Edata(Φ,u) = E1(Φ,u) + αE2(Φ,u),

.
=

∫

Ω

(Φ(x)− ΦT (g(x)))2dx + α

∫

Ω

(|∇Φ(g(x))| − 1)2dx,

where α > 0 is a real parameter controlling the effect of the penalizing term (43).

To further measure and constrain the “irregularity” of u, a regularization term in-

spired from the equilibrium equations of linearized elasticity is added (the interested reader

is referred to [18] for a formal study of three dimensional elasticity theory). Indeed, if one

assumes that the geometric deformation g(x) = x + u(x) corresponds to the strain of an

elastic and isotropic material, then the strain energy is given by:

Esmoothness(u) =

∫

Ω

{λ

2
(divu)2 + µ

n∑
i,j=1

(εij(u))2}dx,

where µ, λ are the Lamé coefficients [18] of the material, and

εij(u) =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

)

is the deformation tensor. Such a regularization term is chosen over others for the flexibility

gained by the relative weight which one can give to the operators ∆u and ∇(∇u) (diver-

gence of Jacobian of u) (see e.g., [16] for in depth studies of this and other regularization

operators).

The integration of all the above defined energy functionals lead to minimizing the following

total energy in order to recover u:

Etotal(Φ,u) = Edata(Φ,u) + βEsmoothness(u), (44)

where β is a constant controlling the contribution of the smoothness term. In our experi-

ments, β was chosen equal to one.

C. Gradient Descent Flows and Numerical Implementation
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In order to recover the displacement field u, the total energy Etotal (see Eq. 44)

is simultaneously minimized with respect to u and Φ. The standard gradient descent (or

steepest descent) method is used to minimize this energy.

By calculus of variations, the Gâteaux derivatives of the functional Etotal w.r.t. Φ and to

the displacement field u can be found as detailed below.

1. Gradient Flow w.r.t. Φ

Finding a minimizer Φ of Etotal is equivalent to numerically solving the following

PDE:

Φt = −∂Etotal

∂Φ
,

with a given initial data Φ0.

The derivatives of the total energy w.r.t. Φ, ∂Etotal

∂Φ
, can be written as follows:

∂Etotal

∂Φ
=

∂E1

∂Φ
+ α

∂E2

∂Φ
+ β

∂Esmoothness

∂Φ
, (45)

where,

∂E1

∂Φ
= 2(Φ(x)− ΦT (g(x))),

∂E2

∂Φ
= 2[∆Φ(g(x))− div(

∇Φ(g(x))

|Φ(g(x))| )],
∂Esmoothness

∂Φ
= 0.

2. Gradient Flow w.r.t. u

Similarly, finding a minimizer u of Etotal is equivalent to numerically solving the

following PDE:

ut = −∂Etotal

∂u
,

with a given initial data u0.

The derivatives of the total energy w.r.t. u, ∂Etotal

∂u
, can be written as follows

∂Etotal

∂u
=

∂E1

∂u
+ α

∂E2

∂u
+ β

∂Esmoothness

∂u
. (46)
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each of these terms will be derived separately.

First,
∂E1

∂u
= 2(Φ(x)− ΦT (g(x))) · ∇ΦT (g(x)). (47)

Second,
∂E2

∂u
= 2(|∇Φ(g(x))| − 1) · ∂

∂u
(|∇Φ(g(x))|). (48)

The term
∂

∂u
|∇Φ(g(x))| = [

∂

∂u1

(|∇Φ(g(x))|) · · · ∂

∂un

(|∇Φ(g(x))|)]T ,

in the last equation can be evaluated as follows.

Let x = (x1, · · · , xn), u(x) = (u1(x), · · · , un(x)), and let

∇Φ(g(x)) = [
∂

∂x1

Φ(x + u(x)), · · · ,
∂

∂xn

Φ(x + u(x))]T .

With these notations, one has

|∇Φ(g(x))| =
√√√√

n∑
i=1

(
∂

∂xi

Φ(x + u(x)))2

Hence, the derivative of |∇Φ(g(x))| with respect to the jth component, uj , of the displace-

ment field u, is given by

∂

∂uj

|∇Φ(g(x))| =
1

2
|∇Φ(g(x))|−1

n∑
i=1

2
∂

∂xi

Φ(x + u(x)) · ∂

∂uj

(
∂

∂xi

Φ(x + u(x)))

= |∇Φ(g(x))|−1

n∑
i=1

∂

∂xi

Φ(x + u(x)) · ∂

∂xi

(
∂

∂uj

Φ(x + u(x))).

If one notes that ∂
∂uj

Φ(x + u(x))) = ∂
∂xj

Φ(x + u(x))), then

∂

∂uj

(|∇Φ(g(x))|) = |∇Φ(g(x))|−1

n∑
i=1

∂

∂xi

Φ(x + u(x)) · ∂

∂xi

(
∂

∂xj

Φ(x + u(x)))

= |∇Φ(g(x))|−1

n∑
i=1

∂

∂xi

Φ(g(x)) · ∂2

∂xi∂xj

Φ(g(x)). (49)
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The equations (Eq. 49) can be put together in a matrix form as

∂

∂u
|∇Φ(g(x))| = [

∂

∂ui

|∇Φ(g(x))|, · · · ∂

∂un

|∇Φ(g(x))|)]T ,

= |∇Φ(g(x))|−1




∂2Φ◦g
∂x1∂x1

(x) · · · ∂2Φ◦g
∂x1∂xn

(x)

... . . . ...

∂2v
∂xn∂x1

(x) · · · ∂2Φ◦g
∂xn∂xn

(x)



·




∂Φ◦g
∂x1

(x)

...

∂Φ◦g
∂xn

(x)




= |∇Φ(g(x))|−1H(Φ ◦ g)(x) · ∇Φ(g(x)). (50)

Then, the derivative of the energy term E2 w.r.t. u (see Eq. 48) can be written as

∂E2

∂u
= 2(|∇Φ(g(x))| − 1)|∇Φ(g(x))|−1H(Φ ◦ g)(x) · ∇Φ(g(x))

= 2(1− 1

|∇Φ(g(x))|)H(Φ ◦ g)(x) · ∇Φ(g(x)), (51)

where, H(Φ ◦ g)(x) is the Hessian matrix of Φ ◦ g as defined in equation (50).

Finally, the derivative of the smoothness energy, Esmoothness, w.r.t. u lead to the following

operator

∂

∂u
Esmoothness

.
= R(u) = 2.




µ∆u1(x) + (λ + µ)
∑n

i=1
∂2

∂x1∂xi
ui(x)

...

µ∆un(x) + (λ + µ)
∑n

i=1
∂2

∂xn∂xi
ui(x)




, (52)

where, ∆ =
∑n

i=1
∂2

∂x2
i

denotes the Laplace operator.

Assembling equations (45) and (46) results in the following set of (n + 1) coupled

evolution equations:




∂Φ
∂t

= −∂Etotal

∂Φ
= −2[(Φ(x)− ΦT (g(x)) + α(∆Φ(g(x))− div( ∇Φ(g(x))

|∇Φ(g(x))|))],

∂u
∂t

= −∂Etotal

∂u
= −2[(Φ(x)− ΦT (g(x))) · ∇ΦT (g(x)

− α(1− 1
|∇Φ(g(x))|) ·H(Φ ◦ g)(x) · ∇Φ(g(x)) + βR(u)],

Φ(x, 0) = ΦbS(x),

u(x, 0) = 0.

(53)
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3. Numerical Implementation

The following finite difference schemes were used to discretize the continuous non-

rigid matching equations (53) (more details can be found in the Appendix II):

• The gradient terms are approximated using central differences.

• Standard second-order approximations are used to compute ∂2u
∂x2

i
.

• The 4-point approximation with truncation order of δ2 is used to approximate ∂2u
∂xi∂xj

,

with δ being the isotropic grid spacing in each direction.

• Bilinear interpolation schemes(for 2D cases) and trilinear interpolation schemes (for

3D cases) are used to estimate data values (such as distance maps of transformed

shapes) at positions other than grid points.

Finally, the Lamé constants were set to µ = 1
2

and λ = 0 for all experiments.

D. Two Dimensional Experiments

First, several experiments were carried out to analyze the effect of energy term in

Eq. (44) on the registration performance. If only the dissimilarity measure between the

representations of the two input shapes is minimized. That is, if only the energy term E1(·)
is minimized, which is equivalent to choosing α = 1, β = 0, and dropping the smoothness

energy Esmoothness(·) in equation (44), then as one would expect numerical instabilities are

encountered and the algorithm diverges. This is because no constraints are imposed on the

displacement field u which makes the registration problem ill-posed. Second, the effect of

the penalizing term, E2(·), is studied. In this case, it was noticed on most examples, espe-

cially when local deformations between the two input shapes are high, that the registration

accuracy is better when E2(·) is used. Indeed, this penalizing energy E2(·) guides the de-

formed shape towards right directions even where the deformations are large and it allowed

for larger time steps and then faster convergence. This effect is qualitatively illustrated in

Figs. 30 (2). In contrary, more iterations were used with less accurate results for the results
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(1)

(2)

FIGURE 30 – Established point-wise correspondences after local registration: source shape
(blue); Locally deformed source (green) and target (red). (1) Without penalizing energy
E2(.). (2) Using the new model (Eq. 53).
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(1)

(2)

(3)

(4)

(5)

(a) (b) (c) (d) (e)

FIGURE 31 – Proposed Registration Framework. (1) Digit 3, (2-3) Fish, (4) Rabbit, (5)
Tooth. (a) Initial positions of the source shape (blue) and target (red); (b) Global alignment
using our new global matching model. (c) Established shape correspondences after local
matching. (d) Locally deformed source (green) overlaid on target (red). (e) Space warping
with globally deformed source (blue), locally deformed source (green), and target (red).
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(6)

(7)

(8)

(9)

(10)

(a) (b) (c) (d) (e)

FIGURE 32 – More elastic registration. (6) Hand, (7-10) Brain Structures. (a) Initial po-
sitions of the source shape (blue) and target (red). (b) Global alignment using our new
global matching model. (c) Established shape correspondences after local matching; (d)
Locally deformed source (green) overlaid on target (red). (e) Space warping with globally
deformed source (blue), locally deformed source (green), and target (red).
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(a) (b)

(c) (d)

FIGURE 33 – Example of registration in presence of large deformations. (a) Initial pose
of source relative to target shape. (b) Point correspondences using the ICP algorithm.
(c) Point correspondences using the proposed registration method. (d) Deformation field
corresponding to results in (c).
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(1)

(2)

(a) (b) (c) (d)

FIGURE 34 – Comparison with the Iterative Free Form Deformation (IFFD) algorithm pro-
posed in [5]. (1) Results obtained using the proposed method. (2) Results reported in [5].
Initial shapes are shown on Fig. 17(4-a). (1-a) Results after global alignment using our the
proposed new SSD measure (see Chap. III), and (2-a) using MI-based measure in [5]. (b)
Established shape correspondences; (c) Locally deformed source shape (green) overlaid on
the target (green). (d) Displacement vector field depicting the space warping, with source
shape after global alignment (blue), source shape after local deformation (green), and target
(red).

shown in Fig. 30(1), when the penalization term E2(·) is dropped.

More 2D examples are shown in Fig. 32 to demonstrate the overall performance of the

proposed non-rigid registration framework.

Finally, Fig. 33 shows how accurate are the registration results even in the presence of very

large deformations. The shown results are compared to those obtained using the Iterative

Closet Point (ICP) method [86, 87]. A multi-resolution B-spline model is used to recover

the non-rigid deformations based on correspondences established by the ICP algorithm.

The proposed approach clearly outperforms the ICP. Finally, the accuracy of our algorithm

is compared to that presented in [5], which also uses the signed distance-based implicit

representation for shape registration. The first row in Fig. (34) corresponds to the results

obtained using the proposed registration model (44), while the results from the method

in [5] are shown in the second row of the same figure. It is clear from this figure that,

for this specific case, both methods lead to favorably comparable results with subtle dif-
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ferences. These differences are in part due to the difference between the global alignment

models used in each work. In [5], the authors maximize the mutual information between

the two implicit representations, where the probability density functions are approximated

using non-parametric Gaussian kernels with empirical width value. Regarding the local de-

formation (Fig. 34(d)), the method used in [5] recovers the registration field by iteratively

minimizing a regularized energy with respect to each component of each control point,

using the gradient descent method.

E. Three Dimensional Experiments

Several elastic registration experiments are conducted on face range scans of two

subjects. These data are acquired using the the 3D laser scanner “CyberWare3030”5 at

the Computer Vision and Image Processing Lab (more details about this type of data and

image acquisition and preprocessing will be given in the next chapter).

For each subject, data for three different facial expressions were collected: a neutral ex-

pression, a smiling expression, and cheeks inflation expression. Example of the generated

3D facial surfaces of two subjects are shown on Fig. 35. Finally, the distance maps of each

data set is approximated using the fast marching method (see Appendix III..3).

1. Experiments

A set of intra-subject alignments are carried out to show the potential of the pro-

posed registration framework in accurately aligning 3D surfaces. Qualitatively, three dif-

ferent views of both, the initial pose of the target face relative to the source, the global and

the local registration results are shown (see Fig. 36, and Fig. 38 for subject#1 and Fig. 40,

and Fig. 41 for subject#2).

As a quantitative evaluation of both the global and the local registration models on these

data sets, the root-mean-square error (RMS) is computed between the implicit representa-

tions of the two input shapes before and after global and local alignments. The RMS error

5http://cyberware.com
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FIGURE 35 – Examples of the generated face surfaces corresponding to two different sub-
jects. First row: subject#1 with neutral, inflate and smile expressions. Second row: sub-
ject#2 with neutral, inflate, and smile expressions.
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(a)

(b)

(c)

(d)

FIGURE 36 – 1st Experiment: Global-to-local registration Inflate-to-Neutral face of sub-
ject#1. (a) The 2 input faces: neutral face (light blue) and inflate face (dark blue). Shown
are 3 different views of (b) initial pose of the source shape relative to the target, (c) the
globally registered source overlaid on the target, and (d) the locally deformed source shape
overlaid on the target.
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FIGURE 37 – Registration energies vs. iteration corresponding to the experiments shown
on Fig. 36. (a) Global registration energy. (b) Local registration energy.
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is denoted as ζ and is given by:

ζ =

√∑
(Φ2

1(xi)− Φ2
2(xi))

N
, (54)

where Φi, i = 1, 2, refer to the implicit representation of the two shape being registered, xi

are the image voxels, and N is the total number of voxels.

For the first subject, this error was equal to ζ = 8.0285 between the original inflate face

model and the neutral face model, and reduces to ζ = 1.5432 after performing global

alignment. After local registration, the matching error was reduced to ζ = 0.8952. For

the second experiment (see Fig. 38), this error dropped from ζ = 2.0416 before alignment

to ζ = 1.7813 after global registration, and then was reduced to ζ = 1.1432 after local

alignment.

For the second subject, where only local registration was performed between the original

neutral face and the two non-neutral face surfaces, this error was equal to ζ = 1.5347

between the original inflate face model and the neutral face model, and reduces to ζ =

1.0235 after performing local registration. For the second experiment (see Fig. 41), this

error dropped from ζ = 2.6392 before alignment to ζ = 1.1976 local alignment.

These errors are summarized in table. 4 as well as those corresponding to the registration

cases for the first subject.

The registration energies corresponding to the global and local alignments performed for

the first subject (see Fig. 36 and 38)) are shown in Fig. 37 and Fig. 39. Note how these

energies drop versus iterations. The registration energies corresponding to the alignments

performed for the second subject (see Fig. 40 and 41)) are plotted in Fig. 42. Note how

these energies drop after each iteration.
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(a)

(b)

(c)

(d)

FIGURE 38 – 2nd Experiment: Global-to-local registration of Smile-to-Neutral face of sub-
ject#1. (a) The 2 input faces: neutral face (dark blue) and smile face (light blue). Shown
are 3 different views of (b) initial pose of the source shape relative to the target, (c) the
globally registered source overlaid on the target, and (d) the locally deformed source shape
overlaid on the target.
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FIGURE 39 – Registration energies vs. iteration corresponding to the experiments shown
on Fig. 38. (a) Global registration energy. (b) Local registration energy.
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1st Experiment: Inflate-to-Neutral

(1)

(2)

(a) (b) (c)

FIGURE 40 – Local registration of 3D face shapes generated from face range scans. Non-
rigid registration of face with inflated expression to neutral face of the subject#2. (1-a)
Target shape (neutral expression). (1-b) Original source shape (inflate expression). (1-c)
Deformed source shape. (2-a,b,c) Three different views of the locally deformed source
shape overlaid on the target shape.
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2nd Experiment: Smile-to-Neutral

(1)

(2)

FIGURE 41 – Local registration of 3D face shapes generated from face range scans. Non-
rigid registration of inflate face to neutral face of subject#2. (1-a) Target shape (neutral
expression). (1-b) Original source shape (smile expression). (1-c) Deformed source shape.
(2-a,b,c) Three different views of the locally deformed source shape overlaid on the target
shape.
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FIGURE 42 – Registration energies vs. iteration corresponding to the experiments shown
in Fig. 40 and Fig. 41 respectively.
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TABLE 3
ROOT-MEAN-SQUARE ERROR BETWEEN THE SIGNED DISTANCE MAPS OF

THE REGISTERED NON-NEUTRAL FACE MODELS WITH THE NEUTRAL FACE
MODELS FOR THE TWO SUBJECTS. FOR EACH SUBJECT, THE NON-NEUTRAL
FACE ARE THE SOURCES AND ARE REGISTERED WITH THE NEUTRAL FACE

OF THE SAME SUBJECT. S STANDS FOR SMILE AND I FOR INFLATE
EXPRESSIONS. NOTICE HOW THE RMS ERROR IS DROPPING AFTER EACH

ALIGNMENT STEP.

Subject1 Subject2

I S I S

Initial 8.0284 2.0446 1.5347 2.6392

After global registration 1.5433 1.7813 · · · · · ·
After local registration 0.8952 1.1432 1.0235 1.1976
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F. Conclusion

In this chapter, a new variational framework for local registration of shapes is pro-

posed. The shapes are implicitly represented through their signed distance maps. The local

deformation field is explicitly established between the two globally aligned shapes, by min-

imizing a new energy functional that incrementally and simultaneously update the displace-

ment field while keeping the corresponding distance map representation of the globally

warped source shape as close to a signed distance function as possible. Various experi-

ments were presented to show the effectiveness of the proposed framework.

Both the 2D and the 3D versions of the proposed non-rigid registration technique was im-

plemented in C/C++ language and a graphical user interface was designed for an interactive

use of the proposed approach.
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CHAPTER V

3D FACE REGISTRATION:
AN ATTEMPT TO SOLVING THE FACE RECOGNITION PROBLEM

In this chapter, some insight is given as to how the proposed global-to-local shape

registration framework can be employed to solve the problem of three dimensional face

recognition in the presence of facial expressions. A data base of twenty one face scans

of seven different subjects is acquired using the 3D laser scanner at the CVIP Lab.. Each

subject is scanned with a neutral and two non-neutral facial expressions. The neutral face

models will be used as gallery faces (enrollment), while the non-neutral face models will be

used as probe faces (test against gallery). The goal is to devise a way to be able to recognize

a non-neutral face by registering it to the existing neutral face models in the gallery.

A. 3D Face Registration and Face Recognition

The face recognition problem has received significant attention over the past decade

for its wide range of commercial and law enforcement applications. Three dimensional reg-

istration of faces can serve greatly in solving this problem and can be employed as well to

tackle the problems of facial expression tracking and face modelling.

Earlier efforts in this area of research were dedicated to solving the face recognition prob-

lem in two dimensional space. However, recent technological advances in 3D digitizing

techniques have made the acquisition of 3D human face data much easier and cheaper.

This type of data offers more clues and makes recognition using 3D models feasible. The

recognition problem becomes more challenging in the presence of facial expressions, which

cause shape distortions and hence weaken the performance of any rigid matching approach.

Several methods have been developed to solve the 3D facial recognition problem using rigid

matching approaches. The basic idea is to align the input facial surfaces and measure the
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similarity between the aligned surfaces using, for example, the Hausdorff distance [88, 89],

or the root-of-mean-squared (RMS) distance [90]. However, these methods lead to inac-

curate results in the presence of facial expressions which introduce non-rigid distortions.

Hence, 3D face recognition should be approached as a non-rigid surface matching prob-

lem. Few approaches have already been proposed to tackle this problem. Most of these

approaches extract rigid parts of facial surfaces and use them for matching [91, 92].

This chapter aims at showing the potential of the proposed surface registration framework

in addressing the 3D face recognition in the presence of facial expressions. It will be shown

how the proposed registration approach can be used to reduce the local shape distortions

induced by the expressions and that it can also be employed to tackle the problem of facial

expression tracking.

Following is a description of how the 3D face recognition problem can be solved using

the proposed shape registration approach. Assume that the gallery contains a neutral face

model for each subject (which is the case for the available data sets). Given a probe face

to be recognized, it is registered to every neutral face model in the gallery and then the

amount of deformation undergone by the probe is estimated for each registration case and

then a match score is returned. The probe face is recognized as the gallery subject whose

neutral face corresponds to the smallest amount of deformation when registered with the

probe.

B. Data Acquisition and Preprocessing

The presented experiments are conducted on face scans of seven subjects. These

data are acquired using the 3D laser scanner “CyberWare3030”6 at the Computer Vision

and Image Processing Lab (see Fig 43). This scanner provides head structure data in a

cylindrical representation, with radii of surface points sampled at 512 equally-spaced an-

gles, and at 450 equally spaced vertical distances. Figure 44 shows a sample cyclograph

image of the scanned face and a 3D view of the corresponding scan respectively. For each

6http://cyberware.com
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(a) (b)

FIGURE 43 – (a) Laser scanner “CyberWare3030”. (b) Scanning set up.

(a) (b)

FIGURE 44 – (a) Cyclograph image of a scanned face. (b) Corresponding 3D view.
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subject, data corresponding to three different facial expressions were collected: a neutral

expression, a smiling expression, and cheeks inflation expression (see Fig 45 for some ex-

amples of facial expressions). A total of 21 face data sets are generated by the scanner.

These data contain large missing regions and holes, in particular on the hairy areas (see

Fig. 44-b). Various techniques have been proposed to fill holes by interpolation between

the borders (see e.g., [93]). In these experiments, the scanned faces undergo a series of

preprocessing steps. First, a preliminary cropping is performed to separate the background

from the facial region. The facial region is defined by a binary mask image whose compu-

tation involves thresholding the histogram of the depth coordinates. Morphological opera-

tions are then applied to the mask in order to remove non-connected regions and isolate the

facial region as a single object. Holes inside the facial contour are closed by morphological

closing. The final masked face regions are used to build 3D closed surfaces enclosing the

facial region of interest. Examples of the these generated surfaces are shown on Fig. 45.

Finally, the distance maps of each data set is approximated using the fast marching method

(see Appendix I).

C. Experiments

A set of inter- and intra-subject alignments are carried out. For each subject, the

non-neutral face models (i.e., faces with smile and inflate expressions) are registered, using

the proposed surface registration technique, to every gallery face. That is, the probe faces

are registered to every face model with neutral expression. A total of seven registration

cases are performed for each probe face: one intra-subject registration and six inter-subject

registrations.

The basic idea for the recognition process is to “measure” the amount of deformation

undergone by the probe face during each of these registration cases. The probe is then

recognized as the subject whose gallery face corresponds to the smallest measure of de-

formation. It is assumed that the gallery contains a neutral face model for each subject to

be recognized. The following section summarizes the inter- and intra-subject registration
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FIGURE 45 – Examples of generated face surfaces. Top row: examples of face models with
non-neutral expressions. Bottom row: example of face models with neutral expression.

performances.

1. Some Registration Results

This section illustrates the inter and intra-subject registration results. For each sub-

ject, the face models with smiling and inflated expressions are locally registered with the

neutral face model.

Qualitatively, some of the within-subject registration results can be seen in Figs. 46-52.

The overlap between the input face models before and after registration are shown to visu-

ally highlight the registration accuracy. Moreover, for each registration case, the probe face

is shown before registration and after being warped to match the gallery face. Note how

accurate the results are.

Figure 53 and Fig. 54 illustrate couple of examples of the inter-subject registrations.

Recall that the probe faces (faces with non-neutral expressions) of each subject are locally

registered to the neutral faces of all other subjects. For instance, in Fig. 53, the face with
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Inflate Expression

Smile Expression

FIGURE 46 – Intra-subject registrations for subject#1. For each non-neutral expression are
shown: Top: the original neutral face (blue), the original non-neutral face (yellow) and the
locally deformed probe (yellow). Bottom: the overlap between original faces before and
after registrations respectively.
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Inflate Expression

Smile Expression

FIGURE 47 – Intra-subject registrations for subject#2. For each non-neutral expression are
shown: Top: the original neutral face (blue), the original non-neutral face (yellow) and the
locally deformed probe (yellow). Bottom: the overlap between original faces before and
after registrations respectively.

90



Inflate Expression

Smile Expression

FIGURE 48 – Intra-subject registrations for subject#3. For each non-neutral expression are
shown: Top: the original neutral face (blue), the original non-neutral face (yellow) and the
locally deformed probe (yellow). Bottom: the overlap between original faces before and
after registrations respectively.
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Inflate Expression

Smile Expression

FIGURE 49 – Intra-subject registrations for subject#4. For each non-neutral expression are
shown: Top: the original neutral face (blue), the original non-neutral face (yellow) and the
locally deformed probe (yellow). Bottom: the overlap between original faces before and
after registrations respectively.
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Inflate Expression

Smile Expression

FIGURE 50 – Intra-subject registrations for subject#5. For each non-neutral expression are
shown: Top: the original neutral face (blue), the original non-neutral face (yellow) and the
locally deformed probe (yellow). Bottom: the overlap between original faces before and
after registrations respectively.
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Inflate Expression

Smile Expression

FIGURE 51 – Intra-subject registrations for subject#6. For each non-neutral expression are
shown: Top: the original neutral face (blue), the original non-neutral face (yellow) and the
locally deformed probe (yellow). Bottom: the overlap between original faces before and
after registrations respectively.
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Inflate Expression

Smile Expression

FIGURE 52 – Intra-subject registrations for subject#7. For each non-neutral expression are
shown: Top: the original neutral face (blue), the original non-neutral face (yellow) and the
locally deformed probe (yellow). Bottom: the overlap between original faces before and
after registrations respectively.
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FIGURE 53 – Example of inter-subject registration. The smile face corresponding to sub-
ject#1 (probe) is locally registered to the neutral face of subject#7 (gallery). Top: the
original neutral face (blue), the original non-neutral face (yellow) and the locally deformed
probe (yellow). Bottom: the overlap between original faces before and after registrations
respectively.

the smile expression of subject#1 is registered to the neutral face of subject#7. while in

Fig. 54, the inflate face of subject#2 is locally registered to the neutral face of subject#1.

The warped faces as well as the overlap between the input faces before and after registration

are shown to appreciate the registration performance.

2. Face Recognition Results

To be able to recognize a probe face, a quantitative measure of the amount of de-

formation undergone by the probe after being registered to each and every galley face,

is computed. The root of-mean-squared distance RMS is chosen for this purpose. More

precisely, the RMS is computed between the established pairs of correspondences after reg-
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FIGURE 54 – Example of inter-subject registration. The inflate face corresponding to sub-
ject#2 (probe) is locally registered to the neutral face of subject#1 (gallery). Top: the
original neutral face (blue), the original non-neutral face (yellow) and the locally deformed
probe (yellow). Bottom: the overlap between original faces before and after registrations
respectively.
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TABLE 4
RECOGNITION RESULTS. GIVEN ARE THE RMS ERRORS BETWEEN THE

PROBE FACES ((S):SMILE AND (I):INFLATE) AND THEIR REGISTERED
VERSIONS WITH THE GALLERY FACES (NEUTRAL FACE MODELS). GREEN
MEANS THAT THE PROBE IS SUCCESSFULLY IDENTIFIED AND RED MEANS

OPPOSITE.

Subj#1 Subj#2 Subj#3 Subj#4 Subj#5 Subj#6 Subj#7

Subj#1
I 0.019842 0.047931 0.038348 0.030126 0.051036 0.063783 0.035250

S 0.024153 0.045304 0.029947 0.027911 0.045726 0.025520 0.023644

Subj#2
I 0.058390 0.030468 0.059906 0.047755 0.044904 0.079048 0.04707

S 0.052777 0.019161 0.051331 0.040372 0.038069 0.131241 0.039805

Subj#3
I 0.065677 0.055352 0.056455 0.174547 0.057972 0.064426 0.049933

S 0.061880 0.047181 0.037325 0.045390 0.047848 0.048107 0.038857

Subj#4
I 0.056424 0.044011 0.050895 0.037237 0.058062 0.048336 0.042773

S 0.032214 0.033183 0.029455 0.003868 0.046452 0.082621 0.026098

Subj#5
I 0.059639 0.030813 0.050174 0.049932 0.023717 0.046663 0.041166

S 0.054103 0.027181 0.04552 0.045998 0.021597 0.043586 0.037639

Subj#6
I 0.041413 0.052403 0.039734 0.043313 0.045754 0.220750 0.023194

S 0.044355 0.060526 0.037331 0.127140 0.050012 0.021756 0.022223

Subj#7
I 0.038112 0.053220 0.033626 0.037286 0.052911 0.034526 0.020590

S 0.039640 0.053394 0.032698 0.142636 0.043597 0.027711 0.021188

istering the given probe expression model with each neutral face models. The RMS distance

is computed as follows:

ζ =

√∑N
i ‖xi − xi‖2

N
, (55)

where N corresponds to the number of voxels on the non-neutral face surface. Note that

this error (Eq. 55) corresponds to the root-mean-square of the displacement field magnitude

over the probe surface. Indeed, for each given voxel xi on the probe surface, its correspond-

ing voxel after registration is given by xi = xi+u(xi), with u being the displacement field.

Ideally, this error is smaller when the probe is registered to the galley face corresponding

to the same subject.
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The RMS values corresponding to the two probe faces of each subject (smile and inflate)

are summarized on Tables 4 where the green color means that a successful “rank-1” recog-

nition and the red color means that the rank-1 match is incorrect. The probe is said to be

rank-1 successfully recognized if the RMS distance obtained when registering it with its

corresponding neutral model is the smallest compared to that obtained when it is registered

to the remaining neutral models in the gallery.

Seven subjects were tested, each of which has two non-neutral expression models

that needs to be recognized (total of 14 probes). If the recognition performance is only

based on the smallest RMS value, which is known as the “rank-1” match, eleven out of

the fourteen probes were successfully recognized, which corresponds to 78.6% success

rate. However, results of facial identification or recognition are usually displayed using

a Cumulative Rank Curve (CRC). Such a curve gives the recognition probability if the

top K match results are returned. In this study, these match results correspond to the top

K smallest RMS distances. The CRC gives an indication of how close one may get the

correct match if the rank-1 match is not correct. The CRC corresponding to the presented

experiments is illustrated in Fig. 55. One can notice that the proposed face recognition idea

using the proposed surface registration has a rank-2 recognition rate of 93%.

D. Remarks and Possible Improvements

This chapter showed the potential of the proposed shape registration framework in

registering three dimensional face data acquired from range scanners. Several inter and

intra-subject registration cases were performed and the accuracy of the results was high-

lighted. These results showed that the proposed registration models are capable of han-

dling the local distortions caused by facial expressions. This motivated this first attempt

in applying the proposed surface registration technique for 3D face recognition. The root-

mean-squared distance was used as a matching measure and a way of recognizing a probe

face. Fourteen models were tested and eleven of them were successfully rank-1 recognized.

Measures, other than the RMS, such as the surface interpenetration measure [94] are to be
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FIGURE 55 – Cumulative Rank Curve (CRC) corresponding to the recognition experiments
summarized in table 4.

tested. Currently, the displacement fields generated from each of the intra- and inter-subject

registrations are analyzed to improve the recognition accuracy.

The results obtained on the available small data base are encouraging and show that the

proposed shape registration approach can be integrated in a face verification system. Such

system manages the access control scenario where an authorized subject presents his or her

identity to gain access to a secure facility. In such a scenario, an immediate acquisition

of the subject face is performed and matched to its corresponding enrollment face (gallery

face). Access is then granted if the matching score exceeds a certain threshold that is set

through statistical examination of the probability of correct verification, or false reject rate,

against false accept rate. Such threshold is set to guarantee that unauthorized individuals

cannot get access to the facility.

The accuracy of the proposed idea for face recognition can be improved if a tech-

nique can be devised to deform the probe face in such a way that the within-class discrimi-

native information is preserved. Following the ideas by Wang et al. [92], this can be done
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by introducing some constraints while performing inter-subject registrations. The authors

proposed to identify some face regions that nearly do not undergo any or small deforma-

tions when performing intra-subject alignments. They referred to these regions as “nearly

rigid” components. A learning process is employed on a set of 60 training samples to

build a rigid template that denotes the nearly rigid components. The Poisson-based mesh

deformation technique is finally used to guide the deformation so that the nearly rigid com-

ponents of the probe remain unchanged during registrations. This will guarantee that these

registrations will make face models from the same subject more similar while maintaining

the discrimination between different subjects which would improve the recognition scores.
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CHAPTER VI

MULTI-REGION LEVEL SET SEGMENTATION WITH SELECTIVE SHAPE PRIORS
AND POSE INVARIANCE

A. Introduction

Segmenting an image into its semantically significant parts plays a fundamental role

in various computer vision and medical imaging applications. Yet, the segmentation pro-

cess presents several challenges that are mainly related to image noise, poor contrast, weak

or missing boundaries between imaged objects, and inhomogeneities, etc. Consequently,

segmentation approaches that primarily rely on low level image cues, such as color infor-

mation and/or texture may not output accurate results. One way to overcome this difficulty

is to exploit the prior knowledge of shapes and other properties of the imaged structures

in order to constrain the segmentation process. The incorporation of such priors into the

segmentation framework becomes even more necessary in the presence of occlusion, cor-

ruption, shadows, etc.

The integration of shape priors into level set based segmentation approaches has

become a major focus in the field of medical imaging as well as other computer vision ap-

plications. In this chapter, the particular piece-wise constant Chan and Vese segmentation

models with shape priors are addressed, and a fast algorithm to solve the 2-phase Chan-

Vese model with shape prior is first proposed. This algorithm is motivated, in part, by the

work of Song and Chan [6]. Instead of directly solving the underlying PDE’s, the segmen-

tation energy is calculated and its changes are checked when image points are moved from

inside the region enclosed by the evolving interface to the outside region and vice-versa.

This algorithm is then generalized to the multi-phase Vese-Chan model with multiple se-

lective shape priors and a corresponding labelling function for each prior. This makes the
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proposed algorithm different from that in [34] and other similar works in different aspects.

On one hand, the proposed algorithm is not restricted to two regions, but allows segmenta-

tion into several regions. On the other hand, more than one shape prior can be taken into

account by this algorithm. In addition, the proposed algorithm improves dramatically the

computational speed. Finally, the new dissimilarity measure introduced in chapter (III.C)

is used to address the pose invariance problem and to recover the registration parameters

between the shape prior(s) and the evolving interface(s). Experimental results, on both

synthetic and real images, demonstrate the performance of the proposed algorithm and the

computational improvements it offers.

B. Chan and Vese Segmentation Models

Chan and Vese first proposed a two-region active contour model without edges for

image segmentation as a generalization of the Mumford-Shah functional [95]. The same

authors extended their formalism to deal with multiple regions. This extension enforces an

efficient domain partition up to 2m regions with no gaps and overlaps, using m level-set

functions (see [1]). In this chapter, only the piece-wise constant versions of these models

are considered.

1. Two-Phase Model

Given are an image f : Ω → R with two gray level values f+ and f−, a curve

C = ∂ω, with ω ⊆ Ω, and two unknown constants c1 and c2. Chan and Vese used a level set

function φ to represent the curve C, i.e., C = {x ∈ Ω/φ(x) = 0} and proposed to minimize

the following energy with respect to φ, c1 and c2 in order to segment f into object and

background [1]:

E2CV (φ, c1, c2) =
∫

Ω
[(f − c1)

2H(φ) + (f − c2)
2H(−φ)]dx + ν

∫
Ω
|∇H(φ)|dx, (56)

where H(a) denotes the Heaviside function which equals 1 if a ≥ 0 and vanishes else-

where. The scalars c1 and c2 are iteratively updated with φ and take on the average gray
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values in the regions A = {x ∈ Ω/φ(x) > 0} and B = {x ∈ Ω/φ(x) < 0} respectively,

c1 =

∫
Ω

f(x)H(φ(x))dx∫
Ω

H(φ(x))dx
, c2 =

∫
Ω

f(x)H(−φ(x))dx∫
Ω

H(−φ(x))dx
.

Minimizing ( 56) leads to a 2-phase segmentation of the image given by f̃(x) = c1H(φ(x))+

c2(H(−φ(x))).

2. Multi-Phase Model

Within the multi-phase model proposed by Vese and Chan [1], m level set functions,

φ1, . . . , φm, are used to segment the domain Ω up to n = 2m regions or phases with no

vacuums or overlaps between them. Each phase is defined as the set of image points x

such that the vector function H(Φ(x))
.
= (H(φ1(x)), . . . , H(φm(x))) is constant. In the

particular case of using two level set functions (i.e., n = 22 = 4), the piece-wise constant

energy, E4CV , can be written as:

E4CV =
∫

Ω
[(f − c11)

2H(φ1)H(φ2) + (f − c10)
2H(φ1)H(−φ2) + (f − c01)

2H(−φ1)H(φ2)+

(f − c00)
2H(−φ1)H(−φ2)]dx + ν

∫
Ω
[|∇H(φ1)|dx + |∇H(φ2)|]dx,

(57)

where the constants cij are updated at each iteration as the mean gray values of the sets

A = {φ1 > 0, φ2 > 0}, B = {φ1 > 0, φ2 < 0}, C = {φ1 < 0, φ2 > 0}, and D = {φ1 <

0, φ2 < 0}.

To minimize the energies given by (56) or (57), the classical way of proceeding is to

use a gradient descent scheme to implement the corresponding Euler-Lagrange equations.

Adequate smooth approximations of the Heaviside function and its derivative are to be used

for such implementation. Such minimization procedure requires the energy functional to

be differentiable with respect to the level set functions, which may not be always the case.

Moreover, this algorithm is computationally expensive given the nonlinear parabolic nature

of the underlying PDEs. To overcome this difficulties, Song and Chan [6] proposed a new

algorithm which does not necessitate to solve the Euler-Lagrange equations, but instead it

directly computes the segmentation energy and checks if it decreases or not when a point
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is moved from one region to another. A different algorithm was proposed by Gibou and

Fedkiw [41] to reduce the computational effort required to solve the Chan-Vese segmen-

tation model. Both of these techniques exploit the fact that one only needs to know the

sign of the level set function and not its value in order to evolve the segmenting contour.

The technique proposed in [41] differs from that in [6] in the sense that the former solves

a simplified Euler-Lagrange version of the Chan-Vese model by dropping the length term

and allowing for large time steps. The regularization length term is re-introduced through

a separate non-linear diffusion process. In [6], the length term is generally ignored. How-

ever, this term can be easily considered when checking the change of energy as needed to

regularize the contour evolution.

C. Segmentation Using Shape Priors and Labelling Functions

Incorporating shape priors into the Chan-Vese model was considered in several pre-

vious works. A single training prior (or an inferred statistical model from a set of training

shapes) is embedded by its signed distance function, φ̃, and a shape energy term, measuring

the distance between the evolving level set φ and φ̃, is added for instance to the functional

(56):

E = E2CV + α

∫

Ω

(φ(x)− φ̃(x))2dx, (58)

where α ≥ 0 determines the weight of the prior. The pose invariance of the prior with

respect to the evolving shape can be incorporated into this energy as will be seen in a

subsequent section. However, at this point, the discussion is limited to the case where

each object of interest and its corresponding shape prior share the same pose and same

orientation. Note that for large values of α, only the image object with a shape form similar

to the prior shape will be segmented and all unfamiliar structures will be suppressed when

minimizing (58). This is illustrated in Fig. 56(c). In order to segment the known object, or

any of its corrupted versions, without affecting the segmentation of the unknown objects,

Cremers et al. [34] proposed to add a labeling function L : Ω → R which takes on the

value ±1 to indicate the image regions where the shape prior should be active. The shape
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energy is then changed to the following form:

Eshape =

∫

Ω

(φ(x)− φ̃(x))2(L(x) + 1)2dx.

Figs. 56(d) show some results when using the labelling function. Note that only the case

of static labelling is considered by assuming the localization of the learned object to be

known.

In this chapter, these ideas are also extended to the multi-phase Chan and Vese model, and

one shape prior and one labelling function is used for each level set. The labelling functions

indicate where to enforce which prior. For the purpose of simplicity, the presentation is

limited to the 4-phase case with two level set functions.

Let φ̃1 and φ̃2 denote the implicit representation of two different shape priors, and let L1

and L2 be their corresponding labeling functions. The proposed functional to be minimized

is,

E = E4CV +α1

∫

Ω

(φ1(x)−φ̃1(x))2(L1(x)+1)2dx+α2

∫

Ω

(φ2(x)−φ̃2(x))2(L2(x)+1)2dx,

(59)

where E4CV is given by (57),

D. Proposed Algorithm

Instead of minimizing the functional given by (Eq. 58) or (Eq. 59) by directly solv-

ing the corresponding Euler-Lagrange equations which is computationally expensive, the

work of Song et al. [6] is followed and the following algorithms are proposed. The length

terms are left out and only the sign of the level set functions counts.

1. 2-Phase Model

(1) Initialize φ by partitioning the image into two regions: A = {x ∈ Ω/φ(x) = 1}
and B = {x ∈ Ω/φ(x) = −1}.

(2) Let a = |A| and b = |B| denote the number of pixels in each region, and c1 and c2 the

average gray values in A and B resp.. Let x0 be the current pixel, if x0 ∈ A (resp. x0 ∈ B),
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then compute the change in energy if the point x0 is moved to B (resp. to A), as:

• ∆EAB = (f(x0)− c2)
2 b

b + 1
− (f(x0)− c1)

2 a

a + 1
+ 4αφ̃(x0)(L(x0) + 1)2,

• ∆EBA = (f(x0)− c1)
2 a

a + 1
− (f(x0)− c2)

2 b

b− 1
− 4αφ̃(x0)(L(x0) + 1)2. (60)

If ∆EAB < 0 (resp. ∆EBA < 0) then move x0 to B (resp. to A).

(3) Repeat step 2 until the energy E remains unchanged.

2. 4-Phase Model

(1) Initialize φ1 and φ2 by partitioning the image into 4 regions: A = {φ1 = 1, φ2 =

1}, B = {φ1 = 1, φ2 = −1}, C = {φ1 = −1, φ2 = 1}, and D = {φ1 = −1, φ2 = −1}.

(2) Let a = |A|, b = |B|, c = |C|, and d = |D| denote the number of pixels in each

region, and let c11, c10, c01, and c00 be the average gray values in A, B, C, and D, resp..

For each pixel x0, check how the energy changes when moving x0 from its current region

to each one of the other three regions, and then update x0 by assigning it to the region that

corresponds to the largest decrease of energy. For instance, if x0 ∈ B, then move it one

at a time to the remaining three regions and compute the corresponding energy changes as

follows:

• ∆EBA = (f(x0)− c11)
2 a

a + 1
− (f(x0)− c10)

2 b

b− 1
− 4α2φ̃2(x0)(L2(x0) + 1)2,

• ∆EBC = (f(x0)− c01)
2 c

c + 1
− (f(x0)− c10)

2 b

b− 1
+ 4α1φ̃1(x0)(L1(x0) + 1)2

−4α2φ̃2(x0)(L2(x0) + 1)2,

• ∆EBD = (f(x0)− c00)
2 d

d + 1
− (f(x0)− c10)

2 b

b− 1
+ 4α1φ̃1(x0)(L1(x0) + 1)2.

(61)

Move x0 to the region corresponding to the smallest negative difference in energy.

(3) Repeat step 2 until the energy remains unchanged.
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3. Remarks

? The derivation of the equations giving the difference of energies (∆E??) can be

found in the appendix IV.

? In order to segment only the familiar objects, one can drop the terms (Li + 1)2, i = 1, 2,

in the expressions given by (60) and (61).

? The sign of the prior terms in (60) and (61) depends on whether the prior function φ̃(x0)

is changing from +1 to −1 or vice-versa when moving x0 between phases.

? In steps (2), one can sweep the pixels row by row, using either the Jacobi or Gauss-Seidel

iteration in each sweep.

E. Experimental Results

All of the presented experiments were run on a 2.99GHz Pentium4 PC with 2GB

RAM. First, the proposed algorithms are tested on several 2-phase images of size 150×150

as shown in Fig. 56. The proposed algorithm is applied on these images without using

shape prior (Fig. 56(b)), with shape prior (Fig. 56(c)), and with prior and a static labelling

function (Fig. 56(d)). In each case, Jacobi iteration is used and the algorithm converges in

one quick sweep (≤ 0.1sec). In Figs. 56(c-d), the used shape prior, φ̃, encodes the shape

of the corrupted object in the image scene.

In order to demonstrate the speed and robustness of the proposed algorithm, two

synthetic images with synthetic noise are used and the standard Chan-Vese model with

prior is applied by solving the underlying PDE (see [1, 34]) and compared the results (see

Figs. 57(b)) to those obtained when using the proposed algorithm (see Fig. 57(c)). For the

top image, which is of size 100 × 100, the introduced algorithm converges in 4 sweeps

(0.125sec) to the exact solution without using the length term, while after 200 iterations

(6.36sec), the standard Chan-Vese implementation leads to less satisfactory results. The

bottom image is of size 176× 176. For this image, convergence of the proposed algorithm

is achieved in 6 sweeps (0.21sec) compared to 140 iterations and 25.85sec for the standard

CV implementation with less accurate results. The normalized energy is plotted vs. the
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iteration for both implementations as shown in Figs. 57(d). Note how fast the introcuded

algorithm executes.

In Fig. 58, multi-phase cases are considered. For these experiments, only the results

corresponding to the fast implementation are presented. The input images are all 4-phase

images with two familiar objects being corrupted. For the top two images (Figs. 58(1-

2)), which are of size 176 × 176, the two corrupted objects are the Lenticular Nucleus

(LN) and Ventricle, and the Caudate Nucleus and the LN, respectively. For the bottom

two images (Figs. 58(3-4)), which are of size 200× 200, the two corrupted objects are the

left and right dudes, and the plus sign and the triangle, respectively. Figs. 58(a) show the

purely intensity-based segmentations. The use of two shape priors, encoding the shapes

of the corrupted familiar objects, allows the recovery of these objects and suppressed the

unfamiliar ones as shown on Figs. 58(c). Finally, a labelling function is assigned to each

prior (as shown on Figs. 58(b)), in order to segment both familiar and unfamiliar objects as

shown on Figs. 58(d). Four sweeps (0.25sec) were needed for the results on Figs. 58(1,2-

d) while only one sweep (0.125sec) was sufficient for the results shown on Figs. 58(1,2-

a,b,c). For the bottom images, the results on Figs. 58(3,4-d) took ≈ 0.5sec in 4 sweeps,

and only one sweep (0.23sec) was enough for the results shown on Figs. 58(3,4-a,b,c). The

proposed algorithm was also tested on real images with only shape priors and no labelling

functions. Figure 59 and Fig. 60 show the results on two multi-phase images with and

without partial occlusion. In both cases, the proposed algorithm converges to the exact

solution (recovery of the two known objects: Rabbit and Mug for Fig. 59 and ventricle and

gray matter for Fig. 60) in one sweep. For the MR brain image, which is of size 256× 256,

the shape-based segmentation result was obtained in 0.234sec (Fig. 60(c)) and 0.984sec

for the fast purely intensity based segmentation (Fig. 60(b)). Note that when using the

standard implementation, about 200 iterations (35.45sec) were required to duplicate the

segmentation result shown on Figs. 59(b). More experiments on real images are shown

on Fig. 61 to illustrate how fast and robust the proposed method is to noise and partial

occlusion. Note that the length term was not considered in neither of these experiments.
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(a) (b) (c) (d)

FIGURE 56 – The 2-phase segmentation results. (a) Input images with initial level set and
labeling function around the corrupted object. (b) Results when using pure fast Chan-Vese
model [6]. (c) Results when adding shape prior. Only the familiar object is recovered while
other objects are suppressed. (d) Results when using shape prior with labeling function, in
this case the segmentation of unfamiliar objects is not affected.
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(a) (b) (c) (d)

FIGURE 57 – (a) Initial conditions of the level set function φ (big circles), and a static
labelling function around the corrupted objects (small circles). (b) Standard Chan-Vese
model (some noise is kept at steady state). (c) Result using the proposed algorithm. (d)
Normalized energy vs. iteration for both cases.

F. An Affine Invariant Formulation

Up to this point, the pose and orientation of the object(s) of interest are supposed

known and in accordance with the pose of the shape prior(s). However, this is not the

case in a realistic segmentation problem. If an object of interest is no longer located with

the same scale and orientation on the image scene as the shape prior φ̃, the segmentation

formalism presented in Sec. VI.E will fail. To solve this problem, the proposed global

alignment model (see Chap.III) is used to recover the transformation, A = A(S,R, T ),

between the evolving level set function φ and the prior φ̃, where S = diag(sx, sy) is a

diagonal matrix whose entries are the scale factors in each direction, R = R(θ) is a 2D

rotation matrix, and T = [Tx, Ty]
T is a translation vector. The following shape energy is

proposed

Eshape =

∫

Ω

(‖S‖φ(x)− φ̃(Ax))2dx, (62)

and is simultaneously minimized with respect to φ and the transformation parameters, with
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(1)

(2)

(3)

(4)

(a) (b) (c) (d)

FIGURE 58 – Multi-phase segmentation results with 2 shape priors. (a) Data-driven seg-
mentation. (b) Labelling functions around the familiar corrupted objects that are to be re-
covered. (c) Results using shape priors; the familiar objects are successfully reconstructed
but the unfamiliar ones are suppressed. (d) Results when adding the labelling functions;
in this case the correct segmentation of the unfamiliar objects is not affected (see text for
details).
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(a) (b)

(c) (d)

FIGURE 59 – Application to real images. (a) Initial level sets. (b) Purely intensity-based
segmentation. (c) Integration of shape priors which allows to recover the 2 objects of
interest (Rabbit and Mug). (d) The object of interest are successfully segmented even in
the presence of partial occlusion using the same initial conditions as in (a).

‖S‖ = max(|sx|, |sy|) denoting the infinity norm of the diagonal matrix S. As was shown

in Chapter III , the proposed SSD handles accurately the case of anisotropic scales. For

computational considerations and better performance, the functional given by Eq. (62) is

minimized within a narrow band around the zero-crossing of the level set function. The

calculus of variations leads to the following evolution equations for each parameter of the

transformation A:

ds

dt
= 2

∫

Ω

r(x) · [d‖S‖
dsx

φ(x)−∇φ̃(Ax)T · ∇sAx],

da

dt
= 2

∫

Ω

r(x) · ∇φ̃(Ax)T · ∇aAx,

where s ∈ {sx, sy}, a ∈ {θ, Tx, Tx} and r(x) = δ(φ(x))(‖S‖φ(x) − φ̃(Ax)), with δ(.)

being the derivative of H(.), and ∇ denotes the gradient operator.

The shape energy (62) is combined with the 2-phase and the 4-phase Chan and Vese seg-

mentation models (see Eqs. 63, and 64-65 resp.). In this case, each evolving interface, φ, is

updated through a gradient descent scheme using its “actual” value not only its sign:
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(a) (b)

(c) (d)

FIGURE 60 – Application to real images. (a) Initial level sets. (b) Purely intensity-based
segmentation. (c) Integration of shape priors which allows to recover the 2 objects of
interest (Gray matter and ventricle). (d) The object of interest are successfully segmented
even in the presence of partial occlusion using the same initial conditions as in (a).
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(1)

(2)

(3)

(4)

(a) (b)

FIGURE 61 – Robustness to noise and partial occlusion. (a) Initial Level set(s). (b) Seg-
mentation results using the proposed algorithm with no labelling functions. (1-a): 2 shape
priors are used, one for the Rabbit and one for the Mug; The algorithm converges in 3
sweeps. (2,3,4-a) one shape prior is used to recover the corpus callosum, and kidneys in
one sweep, resp.
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2-PHASE CASE:

(a) (b)

(c) (d)

4-PHASE CASE:

(a) (b)

(c) (d)

FIGURE 62 – Pose Invariance Formulation for the 2-phase (Top) and 4-phase (Bottom)
cases. (a) Initial level set(s) (Top: yellow; Bottom: yellow & red) considering displaced
shape priors (Top: light blue; Bottom: green & blue). (b) Intermediate step. (c) Result
without simultaneous pose optimization; the familiar objects appear at the wrong location.
(d) Result with simultaneous optimization of the pose parameters; the familiar objects and
the priors correspond.
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2-PHASE CASE:

Only one shape prior is used and one transformation matrix is to be recovered:

• ∂φ

∂t
= δ(φ)[νdiv

∇φ

|∇φ| − (f − c1)
2 + (f − c2)

2 − 2α(‖S‖φ(x)− φ̃(Ax))], (63)

4-PHASE CASE:

Two shape priors are used and two transformation matrices are to be recovered:

• ∂φ1

∂t
= δ(φ1){νdiv(

∇φ1

|∇φ1|)− [((f − c11)
2 − (f − c01)

2)H(φ2) + ((f − c10)
2 − (64)

(f − c00)
2)H(−φ2)]− 2α1(‖S1‖φ1(x)− φ̃1(A1x))},

• ∂φ2

∂t
= δ(φ2){νdiv(

∇φ2

|∇φ2|)− [((f − c11)
2 − (f − c10)

2)H(φ1) + ((f − c01)
2 − (65)

(f − c00)
2)H(−φ1)]− 2α2(‖S2‖φ2(x)− φ̃2(A2x))}.

The pose parameters as well as the scalars ci (i ∈ {1, 2}), and cij (i, j ∈ {0, 1}) are simul-

taneously updated during the course of evolution of the level set functions φi’s.

Figure 62 shows the resulting segmentation of familiar objects with and without the pose in-

variance formulation for the 2-phase and the 4-phase case. Figure 62(Top-d) corresponds to

the recovery of a single familiar object by solving equation (63), while in Fig. 62(Bottom-

d) two familiar objects are recovered using the multi-phase segmentation model with two

shape priors and simultaneous pose estimations (see Eqs. (64) & 65). Without simultaneous

pose parameters optimization, the familiar objects are forced to appear at wrong locations

as shown on Fig. 62(c).

Finally, when the shape prior is statistically learned from a set of aligned training

shapes using the PCA method (see section F of chapter III), then the shape prior, denoted

above by φ̃ and now called active shape model (ASM) [39], could be implicitly expressed

as

Φ[w] = Φ +
k∑

i=1

wiΦi, (66)

where, Φi, i = 1, · · · , k, are the first k principal modes of variations or eignenshapes, and

Φ is the average of the aligned training shapes.

To address the pose variations in the context of shape-based segmentation, the ASM is
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(1)

(2)

(a) (b) (c)

FIGURE 63 – Example of shape-based segmentation using a statistical shape model. Com-
parison between the proposed shape alignment model with the scale-based one [7] in the
context of shape-based segmentation. model. (1) The results corresponding to the proposed
alignment model. (2) The results when using the model in [7]. (a) Initial positions of the
evolving contour. This corresponds to initializing the parameters w and p (see text). (b)
An intermediate evolution step. (c) Final segmentation result.
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(1)

(2)

(a) (b) (c)

FIGURE 64 – Example of shape-based segmentation using a statistical shape model. Com-
parison between the proposed shape alignment model with the scale-based one [7] in the
context of shape-based segmentation. model. (1) The results corresponding to the proposed
alignment model. (2) The results when using the model in [7]. (a) Initial positions of the
evolving contour. This corresponds to initializing the parameters w and p (see text). (b)
An intermediate evolution step. (c) Final segmentation result.
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changed to account for the pose parameters, p,

Φ[w,p](x) = Φ(x) +
k∑

i=1

wiΦi(x), (67)

with x = A[p](x) and p refers to the transformation parameters S, R, T .

The shape-based segmentation using the ASM given by Eq. (67) is performed by calcu-

lating the parameters w and p that optimize the segmentation energy functional. Several

experiments were carried out to extract objects in noisy and cluttered images using the

ASM. Few of the corresponding results are shown in Fig. 63 and Fig. 64. Also are shown

in these figures the results obtained when the isotropic scale-based alignment model [7]

is used to build the statistical shape model and to perform simultaneous segmentation and

registration. It is clear from these figures that the proposed shape alignment model leads to

more accurate results.

G. Conclusion

This chapter addressed several aspects of the level set segmentation problem with

shape priors, with a particular focus on the piece-wise constant Chan and Vese models.

First a new and fast method to solve the 2-phase model with a selective shape prior was

proposed. The key idea is inspired by the works presented in [6] [41]. The computa-

tional cost is decreased dramatically by directly computing the energy and checking how

it changes when a pixel is moved from one phase to another instead of solving the corre-

sponding Euler-Lagrange equations. The speed and robustness to noise of this algorithm

was first shown on 2-phase images.

Secondly, these ideas were extended to the multi-phase model which allows the

integration of multiple selective shape priors and can handle the segmentation into multiple

regions. The power and effectiveness of the resulting paradigm are demonstrated on several

synthetic and real images with/without noise and with/without partial occlusions. Note that

in the multi-phase case, the results depend on an appropriate choice of the initial conditions.

Finally, a new pose invariance formulation was introduced. The transformation

parameters that align the evolving level set function and the shape prior are dynamically
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updated by minimizing a new dissimilarity measure expressed in the space of distance

functions. Contrary to previous works, e.g., [37], the proposed pose invariance formula-

tion allows the integration of multiple selective prior shapes using more than one level set

function. Note that attempts were made to solve the pose invariance problem using the

proposed fast algorithm, but the results were not very convincing. This problem will be

solved in future works.

In this chapter, the labelling functions, which indicate where to enforce the shape

priors, were specified beforehand. To overcome this limitation one can consider dynamic

labelling functions as in [34, 37]. An extension to statistical shape priors is also conceiv-

able.
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CHAPTER VII

IMAGE REGISTRATION USING SCALE SPACE AND LEVEL SET THEORIES

A. Introduction

Image registration is a major component in many medical image analysis appli-

cations. In particular, it is used in motion correction, spatial normalization of functional

images, multi-modal fusion, etc. Image-guided neurosurgery is certainly one of the med-

ical areas where deformable registration plays a vital role by offering the surgeon a better

visualization. This helps, for instance, in removing a tumor without damaging the nearby

healthy tissues. Many registration techniques have therefore been developed to tackle each

one of these issues. These techniques can be categorized into two main families: feature-

based and area-based techniques. The feature-based methods rely on extracting and match-

ing salient anatomical structures from images (closed-boundary regions, edges, contours,

line intersections, corners, etc.). The area-based methods, also known as correlation-like

methods, are used directly to match image intensities without any attempt to detect distinc-

tive objects. A major disadvantage of such methods is their sensitivity to intensity changes

introduced by noise, illumination variations, etc. Another limitation of area-based meth-

ods is their inability to directly solve the problem of anatomical correspondences, as image

similarity does not necessarily imply accurate registration of the underlying anatomy. This

may be the case when registering brain images where large areas (e.g. gray matter) have

practically uniform intensity which makes it hard to define correspondence and then results

in false alignment. To cope with this issue, Shen and Davatzikos [96] proposed a new de-

formable registration for brain images, known as “HAMMER”. This method utilizes an

attribute vector, which reflects the geometric characteristics of the underlying anatomical

structures, as a signature for each point instead of using only the image intensity. Part of
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each attribute vector is a number of geometric moment invariants (GMIs) calculated locally

around each point. Considering all brain voxels for descriptor buildings using identical

neighborhood size may fail in obtaining distinctive GMIs [96]. Another elastic registration

technique, applicable to brain images, was introduced by Vemuri et al. [20]. This tech-

niques is based on evolution of level sets moving along their respective normals to achieve

image intensity morphing.

In the context of preoperative planning and enhanced visualization in support of

image-guided neurosurgery, Warfield et al. [97] proposed an elastic registration technique

based on an active surface model to match the segmented regions in both brain volumes.

The corresponding surface displacements serve as boundary conditions for the 3D finite

element (FE) model to estimate the volumetric deformation field. The obtained field is

finally applied to preoperative data sets for intraoperative visualization. The accuracy of

this technique relies strongly on the segmentation quality and on the bio-mechanical model

adopted for the brain tissues.

In this chapter, a new approach for two and three dimensional image registration is

presented. The global motion of the imaged object is modelled by an affine transformation,

while equi-spaced closed surfaces (iso-surfaces) are evolved to handle the local deforma-

tions. These iso-surfaces are generated using fast marching level sets. Local invariant

feature descriptors are used as a signature for each point. A novel approach for building

robust and efficient 3D local invariant feature descriptors is used [98]. The obtained re-

sults are compared to those obtained using our own implementation of the B-spline based

free deformation approach [8]. This shows the potential of the proposed method over the

spline-based deformation technique. To validate the proposed approach, this study pro-

poses to simulate a 2D kidney deformation case and three 3D physically plausible brain

deformation cases using the FE method. The registration accuracy with respect to the FE

simulations is assessed by co-registering the deformed images with the original ones and

comparing the recovered displacement fields with the bio-mechanically simulated ones.

The obtained results are very promising and show that the proposed method outperforms

the spline-based deformation technique.
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The following sections present a description of the main components of the pro-

posed non-rigid registration technique.

B. Local Invariant Features for Voxel-Based Similarity Measure

Building a good invariant feature descriptor starts from the selection of the points

that are less affected by geometrical variations. Hence, distinct characteristics, which also

should be invariant to different imaging changes, are carefully collected to build the feature

descriptor. Finally, matching these feature descriptors is performed to find the correspon-

dent pairs of control points. The following sections introduce a brief overview of the scale

space theory and how it is used to build stable feature descriptors. The presentation is made

in the general three dimensional case (one can see for example [98, 99] for more details).

1. Interest Point Detection

Interest points are usually selected in highly informative locations such as edges,

corners, or textured regions. In the context of feature invariance, interest points should be

selected so that they achieve the maximum possible repeatability under different imaging

conditions.

The most challenging point is the invariance w.r.t. scale changes. Scale-space the-

ory offers the main tools for selecting the most robust feature locations, or the interest

points, against scale variations.

Indeed, given a signal f : RN → R, N = 3 in the case of volumetric data, the scale-space

representation L : RN × R+ → R is defined as the following convolution:

L(~x, t) = g(~x, t) ∗ f(~x), (68)

where L(~x, 0) = f(~x) ∀~x ∈ RN , and g(~x, t) denotes the scale-space kernel which is proven

to be Gaussian with t = σ2 [100]. Note that as t increases, the scale-space representation

L(~x, t) of the signal tends to coarser scales [100].

The normalization of the Laplacian of Gaussian, ∇2g, with factor σ2 = t is nec-
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essary for true scale invariance, as proven by Lindeberg [100]. Later, Mikolajczyk and

Schmid [99] proved experimentally that the extrema (maxima and minima) of σ2∇2g pro-

duces the most stable image features. In other words, the locations of the extrema in the

difference-of-Gaussian (DoG) hyper pyramid, i.e. scale-space levels, correspond to the

most stable features with respect to scale changes.

In this work, the scale-space representation of an input 3D signal f is generated as

follows. First, let’s define

L0 = g(~x, t0) ∗ f(~x), and L1 = g(~x, t1) ∗ f(~x), t1 = C.t0, (69)

where C > 1 is a real number, and g(~x, t) = 1

(2πt)
3
2
e
−~xT ~x

2t . The first level of the DoG hyper

pyramid is obtained by subtracting L0 from L1. Then, L1 is sub-sampled to a smaller scale

(1
2

of L1 is used). The convolution and subtraction process is repeated for L1 to generate

the second level of the hyper pyramid. The whole procedure is repeated recursively to

generated the consecutive levels.

The interest points are detected at the local extrema of the DoG hyper pyramid. This

is performed by checking every voxel in the current level. If the checked voxel is a local

extremum, then it is compared with its neighbors in the upper and the lower levels. The

location of the voxel is selected as an interest point if it is also an extremum w.r.t. its local

neighborhood in the upper and the lower levels of the DoG hyper pyramid.

2. Descriptor Building and Matching

According to [98], the feature descriptor in 3D space is built using gradient orien-

tations histograms with 2D polar-coordinate bins for neighboring cells which consist of

voxels in the current level-neighborhood of every interest point. This method was previ-

ously used in [98] for 2D medical applications and was proven to be efficient with respect

to rotation and affine transformations in other applications [101, 102]. The gradient magni-

tude of each voxel in the neighborhood of an interest point is calculated as

r =
√

G2
x + G2

y + G2
z, (70)
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where Gx, Gy and Gz are the gradient components in x, y and z directions, respectively.

The gradient orientations in the polar coordinate system are given by

θ = tan−1 Gy

Gx

, and φ = sin−1

√
G2

x + G2
y

r
= cos−1 Gz

r
. (71)

To successfully describe the neighborhood of an interest point, the closer voxel should have

a larger influence on the descriptor’s entries. Therefore, Gaussian weights are assigned

to every voxel in the neighborhood of the interest point, and are used with mean at the

interest point itself to guarantee a distance-weighted contribution to the gradient orientation

histogram. Moreover, this gives the built descriptor a robustness with respect to skew

distortions [100].

According to [100, 101], one way to achieve rotation invariance is to describe all

the descriptor entries relative to a canonical orientation. This orientation can be set to the

dominant gradient orientation in the interest point neighborhood, which corresponds to the

histogram bin with the maximum value. Therefore, the 2D histogram bin (φi, θi) for the

ith feature is updated by adding the term r(xi) · g(xi, σ
2). The considered bin for update

is calculated as θr = θ − θc, and φr = φ − φc, where θc, φc are the components of the

canonical orientation of the interest point, and θ, φ are the components of the gradient

orientation referred to the zero-axes of the coordinate system, as calculated above. The

final descriptor is built as shown in Fig. 65. This vector is normalized to reduce the effect

of linear intensity changes [101]. In this work, neighborhoods of 8×8×8 for both canonical

gradient orientation and descriptor’s entries and cells of 4 × 4 × 4 are used which means

that eight cells are used for building the entries of the descriptor. For each cell, eight and

four histogram bins for φ and θ, respectively are used. Hence, the descriptor is of size

8× 8× 4 = 256 and after adding the overhead of the original location, pyramid level, and

the canonical orientation, the total descriptor size becomes 256 + 6 = 262.

Finally, given a descriptor feature F1 in the first image, its match, F2, in the second image

is found when the following condition is satisfied:

D(F1, F2)

min(D(F1, F ′
2))

< Threshold < 1, ∀F ′
2 6= F1, and F ′

2 6= F2, (72)

where, D(·, ·) is the Euclidean distance. Other distances may be used as well.
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FIGURE 65 – The structure of the 3D feature descriptor. Only eight samples of neighboring
cells and six histogram bins are shown in the figure for illustration purposes. Image is
courtesy of Dr. Alaa E. Abdel-Hakim

3. Global Registration

To model the global motion between the two images It(·) and Is(·), the feature

descriptors are built as described in Section VII.B, and then the features of the reference

image are matched with those of the target image. The matched pairs are used to estimate

a global transformation through the gradient descent minimization of the mean squared

positional error between the corresponding points. In this dissertation, a 5-parameter trans-

formation in 2D cases and a 9-parameter transformation matrix in 3D cases are adopted.

That is, the estimated transformation parameters include scales in each direction, rotations,

and translations.

4. Local Registration

To handle local deformations undergone by the imaged organ, a new approach is

proposed. This approach is based on deforming the organ over evolving closed and equi-

spaced surfaces (iso-surfaces) to closely match the prototype. The evolution of the iso-

surfaces is guided by an exponential speed function in the directions minimizing distances

between corresponding voxel pairs on the iso-surfaces on both images.

The first step of the introduced approach is to generate the distance map inside the
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(a) (b)

(c) (d)

FIGURE 66 – Cross sectional views of generated distance map and iso-surfaces before (a)
and after (b,c) deformation. (d) The evolution scenario.
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imaged object as shown in Fig. 66(a). The second step is to use this distance map to gen-

erate and sample iso-contours/surfaces as shown in Fig. 66(b-c). Note that the number

of iso-surfaces, which is not necessarily the same for both input images, depends on the

accuracy and the speed required by the user. The third step consists in finding the corre-

spondences between the iso-surfaces. The final step is the evolution of the iso-surfaces.

Here, the goal is to deform the iso-surfaces in the first data set (target image It(·)) to match

the iso-surfaces in the second data set (source image Is(·)). Before stating the evolution

equation, let us define the following:

1. φIt
niso

(·, ν) are the iso-surfaces on the target image It(·), with niso = 1, . . . , Niso the

index of the iso-surfaces, and ν the iteration step.

2. φIs
miso

(·) are the iso-surfaces on the source image Is(·), where miso = 1, . . . ,Miso is

the index of the iso-surfaces.

3. S(x,xc) denotes the Euclidean distance between a iso-surface voxel x on It(·) and

its corresponding iso-surface voxel xc on Is(·). The point xc is searched for within

a local window, W , centered at x’s position in Is(·) by minimizing the normalized

cross correlation between the center ofW and all the iso-surface points that lie within

W . Note that xc may be the same for different x’s.

4. SIt
niso,niso−1(x) is the Euclidian distance between φIt

niso
(x, ν) and φIt

niso−1(x, ν) at each

iteration ν.

5. V (·) is the propagation speed function.

One major step in the propagation model is the selection of the propagation speed function

V . This selection must satisfy the following conditions:

V (x) = 0, if S(x,xc) = 0, (73)

V (x) ≤ min(S(x,xc), S
It
niso,niso−1(x), SIt

niso,niso+1(x)), if S(x,xc) 6= 0. (74)

The latter condition, known as the smoothness constraint, prevents the current point from
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cross-passing the closest neighbor surfaces as shown in Fig. 66(d). Note that the function

V (x) = exp(β(x) · S(x,xc))− 1, (75)

satisfies the above conditions, where β(x) is the propagation term such that, at each iso-

surface point x ∈ It,

β(x) ¹ ln[min(S(x,xc), S
It
niso,niso−1(x), SIt

niso,niso+1(x)) + 1]

S(x,xc)
. (76)

Finally, when the corresponding point, xc, of the current voxel x is determined as explained

in the step#3 above, and based on the speed function given by Eq. 75, the current point is

moved along the ray that connects it with its corresponding point. This evolution process

is governed by following equation:

φIt
niso

(x, ν + 1) =
V (x)

S(x,xc)
φIs

miso
(xc) +

S(x,xc)− V (h)

S(x,xc)
φIt

niso
(x, ν), (77)

where x denotes a sample iso-surface point on image It(·), and xc its corresponding iso-

surface point on Is(·).

C. Experimental Results

The proposed deformable registration technique is tested on various 2D and 3D

medical images (e.g., kidney, lung, brain, etc). In this section, some results corresponding

to the application of the proposed registration technique on two T1-weighted brain MRIs

of the same patient acquired at different times (≈ one year apart) are presented. Each of

the two data sets is of size 256× 256× 200 with a voxel size of 1× 1× 1 mm3.

The performance of the proposed approach was assessed qualitatively and compared to our

own implementation of the free form deformation technique [8]. To visually assess the

quality of the introduced approach, the two registered volumes are fused in a checkerboard

visualization as shown in Fig. 67. One can clearly see that when applying the proposed

registration approach, the connectivity between the two volumes is smoother both at the

edges as well as inside the brain region.

For a quantitative assessment of accuracy of the introduced image registration method, a
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(1)

(2)

(3)

FIGURE 67 – Rigid and non-rigid registration results. (1) Proposed rigid alignment.
(2) Proposed non-rigid registration. (3) Non-rigid registration using the free form tech-
nique [8].
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novel framework using the finite element methods [72] is proposed as will be shown in the

next section.

D. Validation Using the Finite Element Method

In this section, a novel method using the FEM is proposed to validate the proposed

non-rigid registration approach . Both 2D and 3D validation results are presented on med-

ical data.

1. 2D Case: Kidney Images

Given a 2D image of the kidney, a deformation is simulated using a biomechanical

model of the kidney tissue. The pair of images (deformed and non deformed ones) is used

to test the proposed elastic registration method. The Abaqus/CAE (Ver. 6.5) 7 environment

was used to generate a cubic spline fit to the points representing the outer contour of the

kidney object and then a 2D FE model was built from it. Fig. 68(a) and (b) show the 2D

mesh before and after deformation, and the overlay of these two meshes, respectively. For

the sake of generating a deformed shape only, the kidney tissue is assumed to be isotropic

and homogeneous elastic material with a Young Modulus E = 2500Pa and a Poisson Ra-

tio ν = 0.4. Note that this model does not reflect the results of any rheological experiments

conducted on the kidney tissue. A uniformly distributed pressure P = 100N was applied

normal to the boundary of the kidney. The points on this boundary are allowed to move

freely in the x and y directions, but are constrained to rotate around the z direction. The

mesh consists of 1253 3-node linear plane stress angular elements. The average displace-

ment of the induced deformation is 4.75mm, the minimum is 1.19mm, and the maximum

is 6.9mm. The accuracy of the registration method is assessed by registering the simulated

deformed image to the original one and comparing the recovered point displacements with

the bio-mechanically simulated ones. The average registration error is about 1.54mm, with

a maximum of 2.7458mm, a minimum of 0.0221mm, and a standard deviation of 0.5517.
7www.abaqus.com
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(a) (b) (c)

(d) (e) (f)

FIGURE 68 – Validation of the proposed non-rigid registration technique in 2D case. (a)
Mesh before deformation. (b) Overlay of deformed and non-deformed (green) meshes.
(c) New locations of some mesh nodes as simulated by the FEM software and (d) their
locations after applying the proposed registration approach and (e) their Overlay. (f) De-
formation field showing the smoothness of the results.

To illustrate these results, Fig. 68 shows a set of ground truth locations (Abaqus simu-

lated)(c), the corresponding recovered ones using the proposed technique (d), and their

overlay (e). The corresponding displacement field (see Fig. 68(f) shows the smoothness

of the registration results. This proves the accuracy of the proposed non-rigid registration

technique in 2D cases.

2. 3D Case: Validation on Brain MRIs

In this section, the performance of the proposed non-rigid registration approach on

real 3D brain MR data using the FEM. Two deformation types, characteristics for real

patient-specific acquisitions, are simulated: gravity-induced deformation and ventricles

contraction. For the first type of deformations, two biomechanical models for the brain
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tissues are used separately: the linear elastic model (case 1) and the hyperelastic model

(case 2). The latter model is also chosen for the ventricle contraction case (case 3). The

choice to simulate these deformation types is motivated by the findings in the literature.

Indeed, it has been reported in various studies (e.g., [103]) that the gravity-induced defor-

mation is one of the primary sources of intraoperative movements. In addition, the change

of volume of the lateral ventricles was pointed out as a consequence of tumor mass-effect

simulations [104]. These deformations compromise the registration between the pre- and

intraoperative position of important brain structures. Taking into consideration such defor-

mations results in more accurate alignment between pre- and intraoperative images.

Model Construction: For the construction of the FE models for the three cases, the same

T1-weighted MRIs of a normal brain of size 256× 256× 198 and a voxel size of 1× 1×
1mm3 is used as input data. Firstly, the brain volume is skull-stripped (i.e., non brain tissue

removed) and segmented into white matter (WM), gray matter (GM), and CSF ventricles

using the FSL package8. Secondly, the segmented images are input into the TetSplit [105]

program to generate 3D tetrahedral meshes. The quality of the output meshes conforms

to the quality measure used by the FE commercial package Abaqus. The built meshes

consist of 102, 301 linear tetrahedra (Fig. 69(a, b)) each of which is labelled corresponding

to the underlying tissue type. Then, material properties for different tissue types were

carefully chosen from the literature. Several rheological experiments have been performed

on the brain tissue (e.g., see [106–108]). In the simulations that use the hyperelastic model

(cases 2 and 3), the isotropic and homogeneous hyperelastic model proposed by Miller and

Chinzei [106] is adopted. This models neglects viscous effects. Such a material model

can be described in terms of a strain energy potential W defined as a function of the strain

at each point. Several forms of the energy W are available in Abaqus, among which the

Ogden model was chosen (see [109]):

W =
2µ1

α2
(λ

α

1 + λ
α

2 + λ
α

3 − 3) +
1

D1

(
J

J t
− 1)2 (78)

8Free package at http://www.fmrib.ox.ac.uk/fsl/
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(a) (b)

(c)

FIGURE 69 – (a) 3D finite element mesh. (b) Deformed mesh. (c) Z-plane cut of overlayed
meshes before (red) and after (white) deformation.
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TABLE 5
MATERIAL PARAMETERS FOR OGDEN AND FOAM MODELS. VALUES TAKEN

FROM [3]

α µ1(Pa) D1(Pa)

Brain −4.7 842 7.2× 10−5

Ventricles 2.5 150 0.0

where, λi = J−
1
3 ·λi, with λi, i = 1, 2, 3 are the principal stretches and J is the total defor-

mation ratio; µ1 and D1 are temperature-dependent material parameters, and J t = (1 + εt)

denotes the thermal volume ratio with εt being the linear thermal expansion strain. For the

linear elastic model (case 2), the Young modulus and Poisson ratio were set to E = 1200Pa

and ν = 0.45 [110] for the white matter and the gray matter [111]. A density ρ = 1000.0 kg
m3

was set for the entire brain in the two gravity-induced deformation cases (cases 1 & 2)

[110].

As boundary conditions and according to Miga [107] and Warfield et al. [97], the points

of the brain where the falx meets the skull are fixed and the falx is considered to have the

same material parameters as those assigned to the brain. The remaining points on the brain

outer surface were allowed to slide freely in the direction tangent to the brain surface only.

According to [112], these types of boundary conditions produce more realistic deforma-

tions. Finally, to anticipate the contact between the ventricle walls during the simulations,

the ventricles are modelled with hyperfoam material [109]. Such a material differs, in part,

from hyperelastic materials in that it is highly compressible. The following values were

chosen from the literature [106]: µ1 = 842Pa, D1 = 7.2 × 10−5Pa, α = −4.7 for the

Ogden model, and µ1 = 150Pa, D1 = 0.0Pa, α = 2.5 for the hyperfoam model. These pa-

rameters are summarized in Tab. 5. An example of simulated deformation (case 2) is shown

in Fig. 69(c) as a z-plane cut of the overlapped meshes before and after deformation.

Generation of Gray-Scale Deformed Images: To be used in the registration process,

the original images are deformed using the dense displacement field obtained from each
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simulation. Within the FE framework, the displacement ~u of any voxel ~x lying within an

element el in the model, is defined as a weighted interpolation of the node displacements

u(x) =
4∑

j=1

hel
j (x)uel

j , (79)

where hel
j (.), j = 1, · · · , 4, are the element shape functions [113]. Using this interpolator

to generate deformed images overcomes the problem of residual errors at the FE node

locations that may appear when using, for example, B-spline based interpolation [114].

The simulated deformed images are used as the target images for the registration process,

while the original images are the source.

Validation Results: For each one of the simulated deformation cases, both the proposed

registration method and our independent implementation of the registration method pro-

posed in [8] have been tested. The accuracy of the proposed technique has been quan-

titatively assessed at the finite element node positions by comparing the recovered voxel

displacements with the simulated ones. Table 6 summarizes the error statistics for the three

cases using the two registration techniques. One can see that the proposed algorithm out-

performs the other one in all of the three cases, with an average accuracy almost five times

higher. Moreover, the proposed approach converges faster than the other method for all

considered cases with an average speed 3 to 4 times higher. Both algorithms were im-

plemented using Matlab, and were run on the same PIII-PC. To highlight this difference,

Fig. 70 shows a typical comparison between a set of 100 randomly selected finite element

nodes positions (case 3) and their corresponding recovered positions using both the pro-

posed method and the one presented in [8].

E. Conclusion

This chapter introduced a novel registration approach for 2D and 3D images. The

proposed approach uses fast marching level sets method to generate and sample iso-surfaces.

These iso-surfaces are evolved to handle the local deformations. A new approach was in-

troduced to build 3D local invariant feature descriptors using scale-space theory. These
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FIGURE 70 – Comparison between 100 randomly selected finite element node positions
corresponding to deformation case#3. (Red) Ground truth (Abaqus simulated positions).
(Green) Corresponding positions using the proposed method and (Blue) the ones obtained
with our own implementation of the FFD [8]. Note the closeness of the results obtained
using the proposed method to the ground truth.

138

160 

140 

120 

z 100 

80 

60 

40 

20 
200 

100 X 

y 



TABLE 6
QUANTITATIVE ASSESSMENT OF THE REGISTRATION ACCURACY.

COMPARISON WITH OUR OWN IMPLEMENTATION OF THE FREE-FORM
DEFORMATION (OWN FFD) METHOD. DISPLACEMENTS CORRESPOND TO

THE SIMULATED ONES. ALL UNITS ARE IN (MM).

Case 1 Case 2 Case 3

Max. Displacement 9.88 4.76 1.68

Mean Displacement
6.08± 1.06 2.25± 0.68 0.55± 0.38

± std. dev.

Max Error
Ours 2.08 2.36 0.63

Own FFD 9.18 7.46 4.03

Mean Error Ours 1.20± 1.58 1.32± 0.38 0.36± 0.31

± std. dev. Own FFD 5.15± 1.50 4.20± 1.26 2.29± 0.67

descriptors are used in the estimation of the global transformation parameters. The use

of these descriptors provides a robust matching under different geometrical and intensity

variations, which enhances the registration accuracy. The evaluation results show the high

accuracy of the proposed approach over free form deformation approaches. The perfor-

mance of the proposed non-rigid registration method was validated using a novel FE-based

approach. Both 2D and 3D deformation cases were simulated for quantitative assessment

of the registration accuracy. In all of these cases, the proposed method was faster and more

accurate than our independent implementation of the FFD method.
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CHAPTER VIII

SUMMARY

This dissertation introduced several contributions on shape and image registrations.

A novel global-to-local shape registration framework in implicit space was presented. The

potential of applying this framework to address the challenging problem of three dimen-

sional face recognition in the presence of facial expressions is demonstrated on real data

base of 3D face scans. The dissertation also presented a new image/volume registration

technique which was validated using a novel finite element-based method.

A. Conclusions and Future directions

In this work, a new variational framework for dense global-to-local registration of

shapes was presented. Implicit shape representation through signed distance function was

considered to represent the input shapes. A new SSD criterion, measuring the disparity

between the representations of the two input shapes, was proposed to globally align the

input shapes. This criterion supports both rigid and affine transformations. Various exper-

iments were presented to show the effectiveness of this new measure. Comparisons with

the isotropic scale-based SSD criterion and with the VDF-based criterion showed the out-

performance of the proposed dissimilarity measure.

The local deformation field is explicitly established between the two globally aligned

shapes by minimizing a new energy functional that incrementally and simultaneously up-

dates the displacement field while keeping the corresponding distance map representation

of the globally warped source shape as close to a signed distance function as possible.

Various experiments were presented to show the potential of the proposed framework, and

comparisons with the latest published results were presented. The potential of the proposed

surface registration to tackle the problem of 3D face recognition problem in presence of fa-
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cial expressions was demonstrated. Facial expressions are among the most critical factors

limiting face recognition performance, and this point was best addressed in this work with

3D models. It was shown how the proposed registration model reduces the local shape dis-

tortions induced by facial expressions. The amount of deformation undergone by a probe

face when registered to the gallery faces was estimated in order to recognize the probe. The

results are very encouraging.

Tracking facial expressions is another interesting area of research that may greatly benefit

from the proposed surface registration framework. Starting from a dynamic sequence of

range scan faces, the basic idea of tracking is to register a generic face mesh model with

the sequence frames in an ordered fashion. This will generate dense intraframe correspon-

dences between points that register with the same vertex on the common mesh model. This

would then help tracking and identifying the locations of important face landmarks, such

as mouth corners and cheeks, when an expression is performed.

Another possible direction of the proposed shape registration framework is its ex-

tension to image/volume registration. One way of achieving this goal is by looking at the

possibility of using contrast invariant features (e.g., the MI) in the intensity space and com-

bine it with the matching of shapes to achieve multi-modal image registration.

The use of the Gaussian curvature-based regularization model proposed in [15] is being in-

vestigated. This regularization model is proven not to penalize affine-linear displacements,

which may allow, if used, to do away with the global as a pre-alignment step for non-rigid

registrations.

As an application of the proposed global shape registration approach, the problem

of level set-based segmentation with shape priors was addressed. The shape prior is either

represented by a fixed template or learned from a set of training samples, and it is associated

with a set of pose parameters allowing for anisotropic scaling, rotation, and translation.

When a fixed template is used to represent the shape prior, a fast implementation of the

Chan-Vese level set based segmentation with shape priors is designed and implemented.

Both the two phase and the multi-phase cases were considered. Currently, the generaliza-

tion of this fast implementation to the case of statistical shape priors (learned by PCA) is
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being investigated. In addition, the labelling functions were specified beforehand. This

may be overcome by considering dynamic labelling functions as in [37].

This dissertation has also contributed to the problem of image/volume registra-

tion. The proposed approach uses fast marching level sets method to generate iso-surfaces.

These iso-surfaces are evolved to handle the local deformations. A new approach was in-

troduced to build 3D local invariant feature descriptors using scale-space theory. These

descriptors are used in the estimation of the global transformation parameters. A novel fi-

nite element (FE)-based technique was proposed to validate the introduced non-registration

method. Given an image, a FE deformation is simulated for the imaged organ and used the

generated deformed image as the target image. The simulated displacement field is used

as ground truth. The accuracy of the proposed non-rigid registration method is assessed by

registering the simulated deformed image with the original one, and comparing the recov-

ered displacement field with the bio-mechanically simulated one.

A possible extension of the proposed image registration approach is to build descriptors for

each sample point on the iso-contours, using scale space theory, and use them to deform

iso-contours on one image to match those on the other image.
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APPENDICES I
NOMENCLATURE

The following convention is used throughout the document.

x Point in 2D or 3D Cartesian space

R Set of real numbers

N Set of non-negative integers

Ω Open bounded subset of R

Ω \ Ω0 Complement of Ω0 in Ω

⊆ Subset of

| · | Absolute value in R

‖ · ‖ Euclidean norm in a vector space

C Curve or family of curves in R2

φ, Φ, Ψ Level set functions

ΦS Signed distance representation of a shape S

VS Vector distance function of a shape S

φ̃ implicit representation of a shape prior

L(.) Labelling function

A Rigid or affine transformation in Rn

S Scale matrix

R, θ, θx, θy, θz Rotation matrix and rotation angles in different directions

T Translation vector

u = (ui)1≤i≤n Displacement field in Rn

F Speed function

∇ Gradient operator

∆ Laplace operator

D(u) Jacobian of u
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div(.) Divergence of a vector field

H(f) Hessian matrix of a function f

◦ Composition operator between functions

D(.) Dissimilarity measure

DMI(.) Mutual information dissimilarity measure

DSSD(.) Sum of squared differences dissimilarity measure

R(.) Regularization term

M Manifold in Rn

δ(x) Distance from x ∈ Rn to a manifold M
δε(a, b) Indicator function to determine narrow band

η(x) Squared distance from x ∈ Rn to a manifold M
δ(.) Dirac function

H(.) Heaviside function

αi’s Weight of shape energy

wi’s Weight of active shape model

µ, λ Lamé coefficients of a material

εij Deformation tensor
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APPENDICES II

THE NUMERICAL SCHEMES

This chapter describes some of the numerical schemes employed in discretizing the

continuous evolution equations (see chapter IV). These evolution equations are given by:




Φt = −∂Etotal

∂Φ
= −2[(Φ(x)− ΦT (g(x)) + α(∆Φ(g(x))− div( ∇Φ(g(x))

|∇Φ(g(x))|))],

ut = −∂Etotal

∂u
= −2[(Φ(x)− ΦT (g(x))) · ∇ΦT (g(x))

− α(1− 1
|∇Φ(g(x))|) · H(Φ ◦ g)(x) · ∇Φ(g(x)) + βR(u)],

Φ(x, 0) = ΦbS(x),

u(x, 0) = 0.

(80)

First, the terms of the form Φ(g(x)) = Φ(x + u(x)) are numerically approximated

using the following interpolation schemes:

• 2D Case:

The value of a function f(·) at a point (x, y) (not necessarily a grid point) is com-

puted using a bilinear interpolation scheme as follows. Four neighboring points are

explored to lead to

f(x, y) ≈ (1−a)(1−b)f(i, j)+a(1−b)f(i+1, j)+(1−a)bf(i, j+1)+abf(i+1, j+1),

(81)

where,

i = floor(x), a = x− i,

j = floor(y), b = y − j.

• 3D case:

The value of f(·) at a point (x, y, z) is approximated using trilinear interpolation as
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follows. First, let:

i = floor(x), a = x− i,

j = floor(y), b = y − j,

k = floor(z), c = z − k,

and

V1 = f(i, j, k), V2 = f(i + 1, j, k),

V3 = f(i + 1, j + 1, k), V4 = f(i, j + 1, k),

V5 = f(i, j, k + 1), V6 = f(i + 1, j, k + 1),

V7 = f(i + 1, j + 1, k + 1), V8 = f(i, j + 1, k + 1).

Then, the value f(x, y, z) is estimated as

f(x, y, z) ≈ V1(1− a)(1− b)(1− c) + V2a(1− b)(1− c) +

V3ab(1− c) + V4(1− a)b(1− c) +

V5(1− a)(1− b)c + V6a(1− b)c +

V7abc + V8(1− a)bc.

Now, all the finite difference schemes necessary to implement the different terms in

equation (80) are introduced.

To begin with, if h(·) denotes the scalar function whose derivatives are to be approximated,

and if the same grid spacing is assumed in all directions, i.e., ∆x = ∆y = ∆z = δ, then

all the first derivatives at a grid point (i, j, k) are implemented using central differences as

follows (equations are given in the general case of a 3D space):

∂xhi,j,k =
hi+1,j,k − hi−1,j,k

2δ
,

∂yhi,j,k =
hi,j+1,k − hi,j−1,k

2δ
,

∂zhi,j,k =
hi,j,k+1 − hi,j,k−1

2δ
.

155



These schemes serve in implementing the gradient terms ∇hi,j,k =




∂xhi,j,k

∂yh
y
i,j,k

∂zhi,j,k




.

The second derivatives are approximated as follows:

• Standard second order approximation of ∂2
ααhi,j,k

.
= ( ∂2h

∂α2 )i,j,k, with α = x, y, z

∂2
xxhi,j,k =

hi+1,j,k − 2hi,j,k + hi−1,j,k

δ2
,

∂2
yyhi,j,k =

hi+1,j,k − 2hi,j,k + hi−1,j,k

δ2
,

∂2
zzhi,j,k =

hi+1,j,k − 2hi,j,k + hi−1,j,k

δ2
. (82)

• The 4-point schemes are used to approximate cross derivatives, such as ∂2h
∂α∂β

:

∂2
xyhi,j,k =

hi+1,j−1,k − hi+1,j−1,k − hi−1,j+1,k + hi−1,j−1,k

4δ2
,

∂2
xzhi,j,k =

hi+1,j,k−1 − hi+1,j,k−1 − hi−1,j,k+1 + hi−1,j,k−1

4δ2
,

∂2
yzhi,j,k =

hi,j+1,k−1 − hi,j+1,k−1 − hi,j−1,k+1 + hi,j−1,k−1

4δ2
. (83)

Note that These approximations do not change if we change the order of derivation, i.e.,

∂2h
∂x∂y

= ∂2h
∂y∂x

.

The above second order derivatives are used to implement the Laplacian term ∆Φ(), the

Hessian matrix, H, as well as the curvature term κ = div( ∇Φ
|∇Φ|), where in general, given

the level set representation of a given shape, φ(·), then

In 2D: κ =
φxxφ2

y−2φxφyφxy+φyyφ2
x

(φ2
x+φ2

y)
3
2

,

In 3D: κ =
(φyy+φzz)φ2

x+(φxx+φzz)φ2
y+(φxx+φyy)φ2

z−2φxφyφxy−2φxφzφxz−2φyφzφyz

(φ2
x+φ2

y+φ2
z)

3
2

Note that in the 3D case, the above expression of κ corresponds to the “mean curvture”.
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Finally, the regularization operator

In 2D: R(u) =



Ru

Rv


 =




µ∆u + (λ + µ)(∂xxu(x) + ∂xyv(x))

µ∆v + (λ + µ)(∂yxu(x) + ∂yyv(x))




In 3D: R(u) =




Ru

Rv

Rw




=




µ∆u(x) + (λ + µ)(∂xxu(x) + ∂xyv(x) + ∂xzw(x))

µ∆v(x) + (λ + µ)(∂yxu(x) + ∂yyv(x) + ∂yzw(x))

µ∆w(x) + (λ + µ)(∂zxu(x) + ∂zyv(x) + ∂zzw(x))




,

was approximated using the above second derivatives (see Eqs. 82 and Eqs. 83). This

lead to the following schematic expressions, where the tables represent the discrete grid

and contain the weights associated with each image point (pixel/voxel) with zero weight if

the voxel is empty. At the bottom of each table is written the function to which the grid

corresponds together with the corresponding global weight (for instance: µw means that

the grid corresponds to w weighted globally by µ). In each table, the index i is assumed

to increase from left to right and the index j increases from top to bottom. In the 3D case,

each of the three stacked tables corresponds to a different index k, increasing from bottom

to top. Note that each center voxel corresponds to the grid point (i, j) or (i, j, k).

• 2D case:

Ri,j
u ≈

1

1 -4 1

1

µu

+
1 -2 1

(λ + µ)u

+

1 -1

-1 1

1
4
(λ + µ)v

Ri,j
v ≈

1

1 -4 1

1

µv

+

1

-2

1

(λ + µ)v

+

1 -1

-1 1

1
4
(λ + µ)u
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• 3D case:

Ri,j,k
u ≈

1

1

1 -6 1

1

1

µu

+
1 -2 1

(λ + µ)u

+

1 -1

-1 1

1
4
(λ + µ)v

+

-1 1

1 -1

1
4
(λ + µ)w

Ri,j,k
v ≈

1

1

1 -6 1

1

1

µv

+

1

-2

1

(λ + µ)v

+

1 -1

-1 1

1
4
(λ + µ)u

+

1

-1

-1

1

1
4
(λ + µ)w

Ri,j,k
w ≈

1

1

1 -6 1

1

1

µw

+

1

-2

1

(λ + µ)w

+

-1 1

1 -1

1
4
(λ + µ)u

+

-1

1

1

-1

1
4
(λ + µ)v
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Note that in order to control the behavior of the regularization operator R(u), one can use

a single parameter ν with 1
2

< ν ≤ 1 as:

R(u) = ν∆u + (1− ν)∇(∇ · u).

To make the Laplacian operator dominant, one can chose ν close to 1, whereas the operator

∇(∇ · u) becomes dominant for ν close to zero.

In most of the presented experiments, an equal weight was given to each of these two

operators, i.e., ν was chosen as ν = 1
2
.
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APPENDICES III

FAST MARCHING METHOD

This appendix describes the numerical technique used to approximate the distance

map of a given shape. As was explained in Chap. III.H, the distance transform computes at

each voxel its minimum distance from the shape boundary. This function can be discretely

approximated using the Chamfer metric [71], or continuously computed using the Fast

Marching Methods (FMM).

Continuously approximating the distance transform, which we will denote by φ(x), can be

done by solving the following Eikonal 9 equation:




|∇φ(x)| = 1
F (x)

in Ω,

φ = 0 on Γ = ∂Ω,

(84)

where, ∇ is the gradient operator, and Γ is the shape boundary (a curve in 2D or a surface

in 3D). In this equation, the value of φ at each point x can be interpreted as the minimum

arrival time of a wave as it crosses the point x with a speed F = 1.

Several methods have been proposed to solve the Eikonal equation [115–117], the most

stable and consistent of which is the fast marching method (FMM), which is applicable to

both Cartesian [9, 116] and triangulated surfaces [118, 119]. The FMM combines entropy

satisfying upwind schemes and fast sorting techniques to find the solution in one pass al-

gorithm. The FMM was introduced by Sethian [116] as a way to solve equation (84). This

method is based on the upwinding nature of equation (84) and uses a fast sorting tech-

nique, in particular a heap-based sorting technique, to exploit the fact that the solution at

each point depends only on points closer to the interface, and finds the overall solution to
9The Eikonal equation is a non-linear PDE which was derived about 150 years ago by William R. Hamil-

ton. The word Eikonal comes from the Greek word for image, εικων. Such an equation can be derived from

Maxwell’s equations.
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equation 84 in linear time 10.

In order to get a feel of upwind schemes, consider the following standard finite difference

schemes in the x-direction, used to approximate the first derivatives of the unknown func-

tion φ, on a grid with a spacing ∆x in the x-direction.

D+x
i,j,kφ =

φi+1,j,k − φi,j,k

∆x
, (85)

D−x
i,j,kφ =

φi,j,k − φi−1,j,k

∆x
. (86)

The first expression, known as the forward difference scheme computes the solution at the

grid point (i, j, k) using the information at (i, j, k) and (i + 1, j, k). Therefore, the infor-

mation for the solution is propagating, say, from left to right, while in the second equation,

known as backward difference scheme, the information propagates in the opposite direction

(right to left). Choosing the correct finite difference scheme, also called the upwind scheme

depends on the information propagation, and there must be a specific criterion that allows

the switching from one finite difference scheme to another based on the correct direction

of information propagation.

1. Implementation of the FMM

The presentation is made for the general 3D case. The gradient ∇φ in the Eikonal

equation (84) is discretized such that the physically correct vanishing viscosity weak solu-

tion (see [21]). This leads to



max(D−x
i,j,kφ, 0)2 + min(D+x

i,j,kφ, 0)2+

max(D−y
i,j,kφ, 0)2 + min(D+y

i,j,kφ, 0)2+

max(D−z
i,j,kφ, 0)2 + min(D+z

i,j,kφ, 0)2




= 1. (87)

A more convenient upwind scheme was suggested by Sethian [116], namely,



max(D−x
i,j,kφ,−D+x

i,j,kφ, 0)2+

max(D−y
i,j,kφ,−D+y

i,j,kφ, 0)2+

max(D−z
i,j,kφ,D+z

i,j,kφ, 0)2




= 1. (88)

10Linear in number of visits to grid cells.
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where, the forward and backward finite differences in each direction, D±α
i,j,kφ with α =

x, y, z can be computed as shown on equation (85).Substuting these difference into equa-

tion (88) leads to



max(
φi,j,k−φi−1,j,k

∆x
,

φi,j,k−φi+1,j,k

∆x
, 0)2+

max(
φi,j,k−φi,j−1,k

∆y
,

φi,j,k−φi,j+1,k

∆y
, 0)2+

max(
φi,j,k−φi,j,k−1

∆z
,

φi,j,k−φi,j,k+1

∆z
, 0)2




= 1, (89)

which can be re-arranged as follows:



max(
φi,j,k−min(φi−1,j,k,φi+1,j,k)

∆x
, 0)2+

max(
φi,j,k−min(φi,j−1,k,φi,j+1,k)

∆y
, 0)2+

max(
φi,j,k−min(φi,j,k−1,φi,j,k+1)

∆z
, 0)2




= 1. (90)

Now, if one lets

A = φi,j,k, (91)

A1 = min(φi−1,j,k, φi+1,j,k),

A2 = min(φi,j−1,k, φi,j+1,k),

A3 = min(φi,j,k−1, φi,j,k+1), (92)

then, one gets the following second order equation

max(
A− A1

∆x
, 0)2 + max(

A− A2

∆y
, 0)2 + max(

A− A3

∆z
, 0)2 = 1. (93)

To solve this equation, the following cases must be considered:

• A > max(A1, A2, A3):

in this case, equation (93) cab be written as

(
A− A1

∆x
)2 + (

A− A2

∆y
)2 + (

A− A3

∆z
)2 = 1, (94)

which is a second order equation in A of the form aA2 + bA + c = 1, with

a = [
1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2
],

b = −2[
A1

(∆x)2
+

A2

(∆y)2
+

A3

(∆z)2
],

c = [
A2

1

(∆x)2
+

A2
2

(∆y)2
+

A2
3

(∆z)2
]− 1. (95)
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If there are two different roots, the largest one is picked as the solution.

• A < Aa and A > max(Ab, Ac, with a, b, c ∈ 1, 2, 3:

In this case, the addend corresponding to the index α in equation (93) is dropped and

one has

(
A− Ab

∆xb

)2 + (
A− Ac

∆xc

)2 = 1, (96)

where, ∆xb and ∆xc denote the grid spacing in the b and c directions. If there are

two different roots, the largest one is picked as the solution.

• A > Aa and A < min(Ab, Ac):

In this case, the addends that correspond the indices b and c in equation (93) are

dropped and

A = 1 +
∆xa

Aa

. (97)

The idea behind the FMM to solve the equation (93) is based on causality criteria

which states that the solution at any point depends only on the neighbors that have smaller

values (i.e, the information is propagated from smaller values of φ to larger values). The

FMM rests on building the solution of Eq. 93 outward from the smallest value, stepping

away from the boundary condition in a downwind direction.

The following summarizes how the FMM algorithm works. A thin zone, or a narrow band

of candidate points around the existing front is constructed. This zone is moved froward by

sweeping its points and freezing those points whose values can not be altered and bringing

new candidate points into the narrow band structure. Consider the 2D case illustrated by

Fig. 72 where the algorithm will start from the known value at the origin point which is

shown as dark black sphere, and is tagged as frozen. The light gray spheres represent the

points where the solution is still unknown. The solution at four of these points (4 neighbors

of the dark black sphere) is computed by solving equation (93). These points are then

tagged as trial and are shown as dark gray spheres in Fig. (72-b). These points are inserted

into the narrow band structure. Then, one of these neighboring points with the smallest φ
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FIGURE 71 – Progress of FMM (image taken from [9]).

value is frozen 11 and proceed with the algorithm as shown on the rest of Fig. 72. Hence, the

solution is marched outwards, always transforming the dark gray grid point with minimum

trial value for φ into a known value, and readjusting downwind neighbors as shown in

Fig. 71. Consequently, a point with a known value will never be revisited and its value

remains unchanged by all later calculations.

2. The Update Procedure for the FMM

The following steps summarize the FMM algorithm. Initially, all the boundary

points are tagged as frozen and the remaining points are tagged as unknown.

• Determine the neighboring points of the existing frozen points.

• Solve equation (88) at those neighbor points, tag them as trial, and insert them into

the narrow band.

• LOOP: From the narrow band, pick the trial point A with the smallest arrival time.

• Remove A from the narrow band and tag it as frozen.
11That is, we represent it with a black sphere and consider its value known.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 72 – Update procedure for FMM. (a) Find the four neighbors of the origin. (b)
Compute the arrival of the neighbors. (c) Chose the point with smallest value (for example
A). (d) Freeze value at A and update values at its neighboring points. (e) Chose the
point with smallest value (for example D). (f) Freeze value at A and update values at
its neighboring points. Images taken from [9]
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• Find the neighbors of A that are either narrow-band or unknown.

• Solve equation (88) at those neighbor points, tag them as trial, and insert them into

the narrow band.

• Go back to LOOP.

Note that in the fourth step of this process, either an unknown point is tagged as narrow-

band or a narrow-band point is assigned a new value smaller than its previous value.

3. Data Structure in FMM

The FMM uses a sorted min-heap 12 data structure to store the φ values in the narrow

band structure. These values are stored together with the indices which give the point

locations in the grid structure, with the root node having the smallest value in the narrow

band.

The marching algorithm proceeds as follows:

• Extract the top (smallest) element in the heap and freeze its value.

• Update and (possibly) insert its neighbors.

• Continue until heap is empty.

If a heap with M elements is assumed, the worst computational complexity of the FMM

algorithm is O(log M). For more details about the FMM and its implementation, the inter-

ested reader is referred to [9].

In this work, the FMM was implemented as described above using Multimap data

structure which is part of the Standard Template Library (STL).

12In an abstract sense, a min-heap is a complete binary tree with the property that the value at any given

node is less or equal to values at its children.
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APPENDICES IV

THE CHANGE OF ENERGY

In this appendix, the equations expressing the change of the segmentation energy

with shape prior are when moving point from one region to another are derived.

For simplicity, only the 2-phase Chan-Vese model with one shape prior is considered. Re-

call that the functional to be minimized in this case is given by:

E =

∫

Ω

[(f−c1)
2H(φ)+(f−c2)

2H(−φ)]dx+ν

∫

Ω

|∇H(φ)|dx+α

∫

Ω

(φ(x)− φ̃(x))2dx.

(98)

The length term can be ignored, i.e., ν = 0. Let A = {x ∈ Ω/φ(x) = 1} and B = {x ∈
Ω/φ(x) = −1}.

In a discrete form, the energy functional (98) can be written as:

E = EA + EB, (99)

where,

EA =
∑
x∈A

[(f − c1)
2 + α(φ(x)− φ̃(x))2],

EB =
∑
x∈B

[(f − c2)
2 + α(φ(x)− φ̃(x))2].

Now, let x0 be the current point during the sweeping process, if assume that x0 is moved

from A to B. The new grey level averages for each region become:

c̃1 = c1 +
c1 − f(x0)

a− 1
,

c̃2 = c2 − c2 − f(x0)

b + 1
.
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where, a = |A| and b = |B| before moving the point x0 from A to B.

One can then easily show that the new energies (for each region) are given by:

ẼA = EA − ((f(x0)− c1)
2 a

a− 1
+ α(1− φ̃(x0))

2),

ẼB = EB + ((f(x0)− c2)
2 b

b + 1
+ α(1 + φ̃(x0))

2).

The difference of energy corresponding to this move is

∆EAB = (ẼA + ẼB)− (EA + EB)

= ((f(x0)− c2)
2 b

b + 1
+ α(1 + φ̃(x0))

2)− ((f(x0)− c1)
2 a

a− 1
+ α(1− φ̃(x0))

2)

= (f(x0)− c2)
2 b

b + 1
− (f(x0)− c1)

2 a

a− 1
+ 4αφ̃(x0).¤

Similarly, we can derive the change of energy when moving a point from B to A. The
use of the labeling function does not introduce any change in the way these equations are
derived.
The generalization to the multi-phase case, when more than one prior shape is used is
straightforward.
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