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ABSTRACT 

A NON-INVASIVE METHOD FOR MEASURING BLOOD 
FLOW RATE IN SUPERFICIAL VEINS FROM A SINGLE 

THERMAL IMAGE 
 

 

 

By 

 

Heba E. Farag 

 

November 18
th

, 2013 

 

Computer vision is a field that includes methods for processing, analyzing, 

acquiring and understanding images to produce numerical or symbolic information to 

develop methodologies and solutions for many problems in many fields. Here the concept 

of computer vision is being used for understanding certain human physiology and 

behaviors using thermal imaging alone or in conjunction with other imaging modalities. 

The applications of this work span a wide range of studies in human-machine interfacing 

vis-à-vis feedback controls that can be used to remotely determine whether a patient is in 

need of medical assistance or to help integrate young children with learning challenges 

into a public classroom setting that can require monitoring vital signs and physiological 

cues without the need for contact-based sensors such as electrocardiogram (ECG) or 

electroencephalogram (EEG), which limit a subject’s physical capabilities during 

operational scenarios. 
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 In this thesis, a general framework is proposed to find an easy way to measure 

the blood flow using thermal camera to help detecting cots and vascular diseases (Venous 

disease, Arterial disease).   

In this thesis, a general framework is proposed to use a thermal image based 

measurement technique for the volumetric flow rate of a liquid inside a thin tube. This 

technique makes use of the convection heat transfer dependency between the flow rate 

and the temperature of the flowing liquid along the tube. The proposed method can be 

applied to diagnose superficial venous disease non-invasively by measuring the 

volumetric blood flow rate from a FLIR LWIR single thermal image (Mahmoud et al., 

13). 
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1. INTRODUCTION 

1.1. Arterial and venous diseases 

Venous disease refers to all conditions related to or caused by veins that become 

abnormal. Venous disease is quite common, about 15 percent of the adult population is 

affected. Mild venous disease is usually not a problem for patients but as it worsens, it 

become crippling chronic venous insufficiency. In normal circulation, arteries carry 

oxygen rich blood from the heart to all the organs of the body, and veins return the blood 

back to the heart. Veins have one-way valves along their length to keep the blood flowing 

to the heart. As muscles contrast, the blood is squeezed forward in the veins. When 

muscles relax, the valves shut to prevent blood from flowing backward. There are three 

types of veins in the body: superficial veins, communicating veins, and deep veins. For 

example superficial veins lie just under the skin and carry about 10 to 15 percent of the 

blood in the legs. Superficial veins drain into communicating veins, which drain into 

deep veins. Deep veins lie inside the muscles which are responsible for pumping the 

blood and carry around 85 to 90 percent of the blood back to the heart. If the vein walls 

become weak or damaged, or if the valves are stretched or injured, the system stops 

working normally and the blood begins to flow backward when the muscles relax. This 

creates unusually high pressure in the veins, resulting in even more stretching, twisting, 

and swelling of veins. The abnormal veins with their sluggish blood flow create disorders 

known as venous disease. Later proposed method for measuring the blood flow in the 

superficial veins is being explained. Venous diseases include: 
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Spider veins, Varicose veins, Leg Swelling and Leg Pain, Chronic venous 

insufficiency, Leg skin changes, Leg ulcers, Phlebitis, Vascular Malformations and 

Venous Malformations. Risk factors for venous disease include, Family history, Obesity, 

Pregnancy, Prolonged standing, Prior history of blood clot formation in the veins, 

Trauma, Illness, Surgery, Medications and Lifestyle. 

One of the diseases of the veins is called phlebitis which means inflammation of 

the vein. It can affect the superficial vein or the deep veins. Thrombus (clots) is almost 

always associated with phlebitis. If the clot is in a vein, it is causes stretching and 

inflammation of the vein. If the clot is in one of the superficial veins, it is called 

superficial Thrombophlebitis. 

Superficial Thrombophlebitis often develops in varicose vein where the blood 

flow has become sluggish. An ultrasound may be able to detect the clot in the vein. An 

idea of detecting the problem with the blood flow in the superficial vein using thermal 

camera is discussed later on the coming chapters.  

Another type of the diseases that that occurs due to the blood flow problems is 

arterial disease; Peripheral artery disease which is also called peripheral vascular disease 

refers to the liquid deposition and the resulting inflammation in the endothelium of the 

arteries outside the heart; mainly the arteries supplying the lower extremities. It is a 

common circulatory problem in which narrowed arteries reduce blood flow to the limbs. 

In case that the peripheral arterial disease (PAD) happened, the extremities specially the 

legs not receive enough blood flow to keep up with demand. This causes symptoms, most 

notably leg pain when walking (intermittent claudication).  

http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#SpiderVeins
http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#VaricoseVeins
http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#SwellingAndPain
http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#cvi
http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#cvi
http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#LegSkinChanges
http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#LegUlcers
http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#Phlebitis
http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#VascularMalformations
http://www.dukehealth.org/services/vein_clinic/about/what_is_venous_disease/#VenousMalformations
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Patients over the age of 70, or patients over age 50 who have diabetes or a history 

of smoking, are at high risk for peripheral vascular disease (PVD) but probably not know 

it. Arterial disease and venous disease are so common these days, early detection for 

them helps more in recovering it. In 2000, one in 16 adults aged 40 years and older in the 

United States was found to suffer from peripheral arterial disease (PAD). The initiation 

and the progression of atherosclerosis in PAD involve multiple factors such as Platelet 

activation, thrombosis, endothelial dysfunction and vascular smooth muscle activation 

[Faxon, Fuster et al., 2004]. One of the problems of the Atherosclerotic plaque formation 

is narrowing of the vessel lumen and blocks the circulation to the leg, muscles and feet. 

Contrast angiography is considered one of the best ways to evaluate patients with PAD of 

lower limbs and also provides information about the arterial anatomy. 

The most commonly employed techniques for the in vivo measurement of arterial 

blood flow to individual organs involve the use of flow probes or sensors. There are some 

common available systems for the measurement of in vivo blood flow which can be 

divided into two categories: ultrasonic and electromagnetic. Two types of ultrasonic 

probes are used. The first type of flow probe measures blood flow-mediated Doppler 

shifts (Doppler flowmetry) in a vessel. The second type of flow probe measures the 

transit time required by an emitted ultrasound wave to traverse the vessel. Measurement 

of blood flow in any vessel requires that the flow probe or sensor be highly accurate and 

exhibit signal linearity over the flow range in the vessel of interest. Moreover, additional 

desirable features include compact design, size, and weight. An additional important 

feature of flow probes is that they exhibit good biocompatibility, it is imperative for the 

sensor to behave in an inert manner towards the biological system. The purpose of 



4 

measuring blood flow is to determine the amount of blood delivered to a given region per 

unit of time (milliliters per minute) and it is desirable to achieve this goal by noninvasive 

methodologies. This, however, is not always possible. An overview of some of the 

techniques available for the assessment of regional blood flow in the vascular system is 

being discussed later.  

To early detect these kinds of diseases measurement of the blood flow rates needs 

to be made.  Measuring the blood flow rate plays an important role in many medical 

applications among which is vascular disease diagnosis. Vascular disease is a disorder 

that occurs in the blood vessels which can lead to improper human blood circulation. 

Among vascular diseases are arterial disease that affects arteries which carry oxygen-rich 

blood from the heart to the body organs, and venous disease that affects veins which 

carry blood back from the organs to the heart to be purified. Regarding the veins, 

superficial veins which are located near the skin surface can have a clot on it. There are 

some different techniques to diagnose superficial venous disease and one of them is to 

diagnose it using a thermal image.  

 

1.2. Thermal imaging  

Thermal imaging offers an exciting means for imaging humans to extract vital 

signs in clinical conditions.  One of the advantages to using thermal imaging is that 

subjects in the camera’s field of view are invariant to light, as the subjects act as the light 

source.  The radiated power per unit area (RPPA) can be calculated using Planck’s 

blackbody radiation law, which also aids in determining the imaging spectrum to use.  

With current advances in focal plane array (FPA) size and the development of multi-band 
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cameras, this field offers the potential for exciting possibilities in the future to diagnose 

vascular diseases with high efficiency. 

Some thermal cameras are capable of detecting minute changes in the temperature 

on the surface area of the skin, resulting from the circulation of blood through the 

cardiovascular system.  Cooling from the environment, metabolic processes, and the 

draining of venous pools create minor temperature variations on the skin of 200mK.  

These variations are primarily due to blood perfusion resulting from the vasculature and 

not the bone or core, which remain at a relatively constant temperature [Love80].   

A method for measuring the blood flow using the thermal camera is explained 

here through an experimental work. Understanding the anatomy of the body, the physics 

and the camera parameters is crucial to design the experiments to complete this work. 

Beyond spatial resolution and focal length, there are certain parameters that are of 

interest to the user of a thermal camera.   These parameters are the detectivity, contrast, 

thermal sensitivity, the noise equivalent temperature difference, and the minimum 

resolvable temperature difference. 

During diastole, the heart expands and the blood exits the capillary bed via the 

veins to the venous return channels.  As a result, the blood temperature in a vein 

represents the average temperature of the tissues drained by that vein.  The blood is 

reheated as the process repeats.  When the body attempts to maintain homeostasis, heat 

variations resulting from the underlying vasculature are conducted through soft tissues 

and measurable by an IR camera [Campbell97, Diastole10, Love80, and Systole10].   
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2.THERMAL IMAGING 

2.1. THERMAL RADIATION AND IMAGE FORMATION  

Transfer of Thermal energy happens through the means of conduction, 

convection, and radiation. A model of radiation is illustrated in (2.1). The rate (

   

˙ Q e) in 

which an object emits thermal energy depends on the body’s surface area (A), emissivity 

(ε), and the body’s (Tbody) temperature in Kelvin. Here, σ is the Stefan-Boltzmann 

constant which equals σ = 5.6703 × 10
-8

.   The emissivity of an object’s surface depends 

on an object’s surface composition and temperature and it has a domain of R]1,0[ . As a 

result, the power per unit area that radiated by a blackbody depends only on the object’s 

temperature and not on any other characteristic, such as material composition [Tipler03].   
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bodye ATQ   (2.1) 

It is known that all real sources reflect, transmit, and absorb radiant energy at 

different wavelengths, which equals the total radiant incident to the body.  This is 

illustrated in (2.2), where ρ, τ, and α represent the object’s reflectivity, transmissivity, and 

absorptivity, respectively; Kirchhoff’s law states that emissivity and absorptivity are 

equivalent.  Each of these three physical properties varies dependent on wavelength 

[Halliday01]. 

                  (2.2) 

A blackbody has a high emissivity because it is essentially an opaque object in the 

spectrum under consideration. Skin acts as a near-ideal blackbody, with an emissivity in 
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the range of 0.91-0.98 depending on sex and measurement location [Steketee73]; ideal 

black bodies have emissivity ε = 1 because it absorb all radiation incident on them. 

Similar to the rate of thermal energy emission, the blackbody radiation’s spectral 

distribution depends only on the absolute temperature of the blackbody [Infratec09].   

 



P(,T) 
8hc

5

1

ehc /kT 1
  [Watts / m2] (2.3) 

                          (2.4) 

Planck’s blackbody radiation law is known as the amplitude of the energy density 

spectral distribution function, it is used to find spectral regions where living humans emit 

the highest thermal energy. Wien’s Law (2.4) is used to determine the location of the 

maximum amplitude of Planck’s Law for a given temperature/wavelength pair.  Using 

these equations as illustrated in the bottom of Figure 2.4, one can easily determine the 

best wavelength to monitor human thermal radiation is between 9-10 µm, meaning that 

the Long Wave IR band is the most suitable for thermal imaging of the face. 

The maximum amplitude for the energy density spectral distribution function in 

(2.3) contains the spectral regions where living humans emit the highest thermal energy.  

Planck’s and Wien’s Laws clearly show the best wavelength to monitor human thermal 

radiation is between 9-10 µm under non-life threatening conditions.  

2.1.1. Measurement of thermal Radiation 

Unlike a traditional contact thermometer, which serves as the thermal sensor (to 

measure) and transducer (to quantify) the temperature, the radiant source itself acts as the 

sensor in a radiation thermometer’s measurement.  As a result, temperature is directly 
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transduced into intensity of radiation.  Thus, radiation measurements are directly 

thermodynamic, instead of analogs of thermodynamics [Sostmann95].  

 

 

Figure 2.1: The photoelectric effect, where incident light waves impact a clean 

metallic surface, emits electrons  

Thermal radiation is measured via the photoelectric effect, which is based on the 

principle that light incident on a clean metallic surface (acting as a cathode), emits 

electrons as in Figure 2.1, when the energy incident the surface exceeds a stopping 

potential, are explained below.  If an anode containing a slit is placed opposite the 

cathode, electric current is created when a few electrons travel from the cathode to the 

anode and through the slit.  The resulting current can be increased or decreased by 

changing the potential difference (V) between the anode and cathode such that positive V 

attracts electrons to the anode.  If the intensity of light is too low to provide electrons 

with the necessary energy to escape from the metal, no electrons are emitted.  This 

implies that the initial kinetic energy of the electrons (½mv
2
) must be greater than e|V| to 

travel to the anode, where e is the charge of an electron.  When V is sufficiently large, all 

emitted electrons reach the anode, implying that the current reaches a maximum value, 

which is proportional to the light intensity.  The potential V0 is called the stopping 
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potential and is related to the maximum kinetic energy of the emitted electrons by 

equation (2.5).  If the potential difference (V) is less than the negative of the stopping 

potential (-V0), no electrons reach the anode. 

    hfmveV
max

2

2

1
0  (2.5) 

However, the maximum kinetic energy of the emitted electrons does not increase 

when the rate of energy falling on the cathode increases, which contradicts classical 

mechanics. Einstein later defines a work function, ( ) that is a characteristic of the 

metal defining the energy necessary to remove an electron from the metal’s surface.  

Consequently, energy conservation requires that the maximum kinetic of the electrons 

leaving the metal’s surface will be ( hf ). Hence, the stopping potential, V0, can be 

defined by (2.5); this equation is referred to as the photoelectric effect [Tippler03].  

 

Figure 2.2:  Wavelengths of thermal energy.   
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The wavelength spectrum from 750 nm to 300 µm is the IR spectrum which is 

illustrated in Figure 2.2, and is often divided into three regions: near infrared (780-2500 

nm), mid-infrared (2.5-50 µm) and far infrared (50-1000µm).   The discontinuities 

between the spectral regions are all unassigned because the components that comprise the 

atmosphere (water, carbon dioxide, oxygen, ozone, etc…) absorb all IR radiation at these 

wavelengths (see Figure 2.3).  However, the mid-infrared region is of particular interest 

for thermal imaging applications and is divided into the short-wave, near-wave, mid-

wave, long-wave and extreme IR sub-bands as defined at the top of Figure 2.2. 

The wavelength at which molecules absorb IR radiation is dictated by the types of 

atoms composing a molecule, the molecular bond types, the locations of the atoms and 

molecular bonds, and their interactions within the molecule.  When a molecule absorbs 

IR radiation, the molecule’s energy increases and the radiation causes a change in the 

molecule’s vibration or rotational motions.  As a result, the net dipole moment of the 

molecule must change and the radiation energy must equal the difference between the 

molecule’s allowed energy transitions. The Homonuclear diatoms:  oxygen (O2), nitrogen 

(N2), and hydrogen (H2), are the only common molecules that do not absorb IR radiation, 

which means that their concentrations cannot be directly measured using IR spectroscopy 

[Barber05]. The radiation absorbed by the atmosphere is being illustrated in Figure 2.3. 
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Figure 2.3: Total radiation absorbed (top) by the atmosphere with a breakdown of 

contributions from major atmospheric components (bottom). 

2.1.2. Emissivity 

The degree to which a body can emit thermal radiation is called emissivity.  

Depending on the wavelength ideal blackbodies have an emittance of unity.  Conversely, 

real objects may show more or less dependence on wavelength. Material composition, 

oxide film on the surface, surface texture, angle incident the surface, temperature, and the 

degree of polarization are the parameters that affect emissivity. In the LWIR spectrum, 

many non-metallic materials show high and relatively constant emittance, regardless of 

the object’s surface structure.  Among these materials are coating paints, most mineral 

building materials, and human skin [Infratec09].   

 
)(

)(

Tq

Tq

body

surf





   (2.6) 

The hemispherical emissivity of the surface (  ) is formulated in (2.6) as the ratio 

of the emissive heat flux for the surface (qλsurf) to the emissive heat flux for the blackbody 
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(qλbb) at the same temperature (T) for a given wavelength [Wong04].  Planck’s blackbody 

radiation law from (2.3) is used as the basis for determining the skin emissivity.  For a 

blackbody at a known temperature T, at wavelengths λ1 and λ2, where λ1 < λ2, the emitted 

radiation power per unit area (RPPA) be calculated by using (2.7).  This calculation will 

also require the use of a radiometer that has been calibrated using two blackbody sources 

at different temperatures and has uniform sensitivity between λ1 and λ2.  If the radiometer 

is directed toward human skin with emissivity ε and temperature Tskin in a room with 

ambient temperature Tamb, then the RPPA at the temperature observed by the radiometer 

(Trad) is given by (2.8).  In this case, the reading from the radiometer and the RPPA for 

the skin serve as the values for the heat fluxes for the surface and blackbody in (2.45), 

respectively.  When the blackbody is ideal, the effect of the ambient temperature is 

removed completely [Togawa89].   

 



P(T)  P(,T) 
1

2


8hc

5

1

ehc /kT 1
d

1

2

  (2.7) 

 



P(Trad) P(Tskin) (1)P(Tamb) (2.8) 

It is necessary to remove the RPPA for the skin out of the equation.  This is done 

physically by changing the ambient temperature instantly during the measurement 

process.  If the RPPA is measured at wavelengths λ1 and λ2 at each ambient temperature, 

the system of equations in (2.9) can be solved in terms of the emissivity in (2.10).  

According to Wolff (2004), a conservative estimate for skin emissivity is 0.91 for the 

MWIR and 0.97 for the LWIR spectrums.  Togawa found that the overall average for 

skin emissivity for LWIR imaging is 0.971 ± 0.005% for males and females, and 0.969 

±0.004% specifically for the forehead region.  Thus, skin is a near-perfect radiator of 
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thermal radiation when imaging in the LWIR spectrum and consequently, skin 

reflectance is inconsequential [Steketee73].  

 



P(Tr 1 ) P(Ts1 ) (1)P(Ta1
)

P(Tr 2 ) P(Ts2 ) (1)P(Ta2
)




  (2.9) 

 



 1
P(Tr 2 )  P(Tr 1 )

P(Ta2
)  P(Ta1

)
 (2.10) 

2.1.3. Image Formation Process 

An image is formed basically using the same concept that the natural eye works 

with, where a light source is used to illuminate the 3D space which will be captured by 

the camera to form the captured image. Such image contains a set of pixels ordered in a 

rectangular grid, i.e. rows and columns, each pixel can be completely characterized by 

two aspects, its location and its intensity (gray level), where its location p (i.e. row and 

column indices) is directly related to the corresponding 3D world point P, while its gray 

level is obtained by the camera which measures the degree of light reflectance at that 3D 

point. It is  defined as a two-dimensional function, I(x,y), where x and y are spatial 

coordinates and the amplitude of I at any pair of x- any y-coordinates (x,y) is called the 

intensity or gray level of the image at that point.  When the x- and y-coordinates and the 

magnitude of I are all finite and discrete values, the image is digital [Gonzalez02]. A 

thermal image, then, is a digital image whereby the gray levels represent a thermal 

quantity.   

The process of creating a thermal image requires an object that emits thermal IR 

radiation which is placed in front of the IR camera lens. The IR lens focuses the radiation 

onto the focal plane array (FPA) of IR-sensitive detectors.  The FPA uses the 

photoelectric effect to generate electrical signal and these signals are multiplexed and 
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converted to a digital electrical signal, which is processed further to handle internal noise 

sources before being output to a video processor, this video processor converts the data 

into a 2D video frame, which is then captured via a frame-grabber in the computer.  

These images are returned as gray-levels and the intensity of the gray level is 

proportional to the temperature on the object’s surface. This process is illustrated in 

Figure (2.4). 

Some of the available thermal IR cameras are unit-color which means that their 

FPAs are sensitive to specific wavelength bands which depends on the composition of the 

detectors in the FPA. In this type of system, all photons incident to the FPA within the 

permissible spectrum contribute to the intensity level at that pixel location.  A color 

scheme is sometimes mapped to the intensity levels during visualization for visual effect; 

this is called false coloring [Gunapala06, Rosalski06ab]. 

There are a large variety of thermal detectors and camera types that are suitable 

for different applications.  The two main types of these detectors are thermal and 

quantum types.  The primary difference between the two is that with thermal types, a 

material with a temperature-dependent parameter is heated due to the absorption of 

thermal energy.  This is considered to be a two-step process because a material must be 

heated, then it is measured.  With quantum types, the photons emitted from infrared 

radiation directly generate electrical current as a result of the photoelectric effect.  

Consequently, quantum detector types are more sensitive than thermal types, but the 

tradeoff is that quantum types require cryogenic cooling and are far more expensive 

[NDT08]. 
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2.1.4. Camera Parameters 

Camera parameter is one of the factors that have a great effect on the process of 

the thermal image formation. Beyond spatial resolution and focal length, there are certain 

parameters that are of interest to the user of a thermal camera.   These parameters are the 

detectivity, contrast, thermal sensitivity, the noise equivalent temperature difference, and 

the minimum resolvable temperature difference. 

The detectivity, D* (D-star), is the primary parameter of interest for detectors and 

is a measure of the signal to noise of a detector when one watt of IR radiation is input 

through an optical chopper.  Formally, the detectivity is defined as the RMS signal-to-

noise ratio (SNR) in a 1 Hz bandwidth per unit RMS incident radiation power per square 

root of detector area, and is expressed in units of cmHz
½
 W

–1
 or “Jones”.  This parameter 

varies inversely with the square root of the both the electrical bandwidth (Δf) and the 

detector’s sensitive area (Ad). To simplify comparing between different detectors, this can 

happen using the Equation which is illustrated as (2.11), where Φε is the spectral radiant 

incident power.  The measurements for D* are expressed in the format of D*(A, B, C), 

where A is the temperature or wavelength of a radiation source, B is the chopping 

frequency and C is the bandwidth.  Larger values of D* indicate better detector elements 

[Hamamatsu04, Rosalski02]. 

  (2.11) 

Thermal images result from temperature differences in the objects in the camera’s 

field of view as well as the differences in emissivity for those objects. The emissivity is 

the dominant factor that affects the thermal image contrast in case that the objects have 
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the same temperature.  The thermal contrast is defined as the ratio of the derivative of 

spectral photon incidence to the spectral photon incidence which is illustrated in equation 

(2.12). The contrast in the MWIR band at 300 K is 3.54% compared to 1.6% for the 

LWIR band at the same temperature [Rosalski06]. 

 



C 
Q /T

Q
 (2.12) 

One of the factors that affect the thermal image quality is the Thermal sensitivity 

which essentially defines how well the camera will perform as the image contrast 

increases. Thermal sensitivity specifications typically range between 0.25°C (250mK) 

and 0.05°C (50mK).    Thermal sensitivity varies proportionally with object temperature, 

meaning that in the signal to noise ratio (SNR) calculation, the noise level remains fixed.  

Consequently, hotter objects are better for imaging, but in room temperature applications, 

the thermal contrast is too low for this to be advantageous.  However, the difference in 

sensitivity per gray-level value is more pronounced. The f-number of the camera lens 

(Focal ratio) affects the thermal sensitivity, where lower f-numbers increase thermal 

sensitivity [Electrophys08]. 

2.2. THERMAL IMAGING OF THE CARDIOVASCULAR SYSTEM 

2.2.1.  ANATOMICAL AND PHYSIOLOGICAL FACTS  

During systole, the heart contracts and the blood heated in the core of the body is 

circulated through the various tissue layers via the arterial network and eventually 

reaches the skin via the capillaries. The heart consists of four chambers, namely the left 

and right atria and ventricles, which work in unison acting as a two-stroke pump to 
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circulate the blood.   As blood passes through the capillary bed, the temperatures between 

the skin and blood equilibrate.  During diastole, the heart expands and the blood exits the 

capillary bed via the veins to the venous return channels.  As a result, the blood 

temperature in a vein represents the average temperature of the tissues drained by that 

vein.  The blood is reheated as the process repeats.  When the body attempts to maintain 

homeostasis, heat variations resulting from the underlying vasculature are conducted 

through soft tissues and measurable by an IR camera [Campbell97, Diastole10, Love80, 

and Systole10].  Figure 2.4 illustrates these processes. 

Some intrinsic physiological properties such as fatty deposits and hair can inhibit 

acquiring a strong signal. From a physiological standpoint, skin tissues and the fat of the 

subcutaneous tissues act as heat insulators, which effectively help maintain the body’s 

normal core temperature.  As the skin is exposed to the environment, it approaches the 

ambient temperature [Wu08]. While the typical anatomical structure involves a layer of 

fat between the muscle fascia and the skin, the thickness of this layer is extremely 

variable.  Fatty tissue decreases the amplitude of the signal since contrast between the 

vasculature and surrounding tissue diminishes due to thermodynamic processes.  Also, 

hair occludes the vasculature and blocks the signal acquisition completely [Atamaz06, 

Sun05]. Hence, for thermal measurements, a region of measurement should be selected in 

a physical region that is devoid of hair and has minimal fatty tissue deposits.  
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FIGURE 2.4: THERMAL FACIAL IMAGE FORMATION PROCESS WITH ASSOCIATED 

ANATOMICAL HEAT TRANSFER AND BLOOD PERFUSION MODELS. 

COURTESY, PHYSIOLOGY-AND WAVELET-BASED RECONSTRUCTION OF THE ARTERIAL 

PULSE WAVEFORMS FROM THERMAL VIDEO 
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2.3. Skin-heat transfer 

Skin-heat transfer (SHT) models account for the thermodynamic processes that 

contribute to the thermal quantity measured by the camera.  These models vary 

depending on the complexity of the internal and environmental processes included, using 

the skin and its boundaries as the thermodynamic system.  These models use heat fluxes 

originating from the blood, metabolism, and body’s core as inputs to the system and heat 

fluxes due to thermal radiation, air, and sweat evaporation that emanate from the system; 

the net transfer in and out of the system must be equivalent as in (2.13). Wu et al. (2008) 

show that using some basic assumptions and practical imaging conditions (i.e. indoor 

imaging at rest with air-conditioning), that the amount of heat transferred via blood 

perfusion alone can be calculated as a function of the temperature read from the thermal 

camera.  This important concept is the basis for determining the blood-pressure 

waveform from thermal imaging since the blood perfusion component is an integral part 

of the thermal video [Love80, Wu08]. 

 



Hout  Hin

Hout  Hrad Hevap Hair

Hin  Hcore Hblood Hmetab

 (2.13) 

Mathematically, the exchange of heat between the skin and the environment can 

be modeled using skin-heat transfer equations.  These equations will change depending 

on the state of the subject.  For example, a subject sitting at rest indoors will be affected 

less by evaporation due to sweat, than a subject that has just exercised. A few 

assumptions, based on the imaging environment and physiological state of the subject, 

are applied to simplify the model somewhat.  In particular, this SHT model by Wu et al. 

(2008) is derived using three assumptions about the state of the subject and environment.  
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Particularly, the ambient environment is assumed to be stable and lower than the body’s 

temperature (Tenv < Tskin) and subjects are in a steady state (Tcore constant) without the 

need for biological temperature regulation such as sweating.  Pathological conditions 

such as fever, headache, and inflammation, and psychological conditions such as anger or 

blush are not considered in their model.  However, the work of [Love80, Pennes48], in 

which this model is derived from, can also be adapted to account for sweat and metabolic 

increases, which are of relevance for any work involving monitoring subjects under 

stress. 

2.4. Summary 

Thermal imaging offers an exciting means for imaging humans to extract vital 

signs in clinical conditions.  Understanding the physics and camera parameters is crucial 

to design the experiments necessary to complete this work.  One of the advantages to 

using thermal imaging is that subjects in the camera’s field of view are invariant to light, 

as the subjects act as the light source. The complexity of the circulatory system is evident 

when modeling the transport of fluid and heat throughout. Fourier’s law implies that heat 

variations on the skin vary inversely to the distance—i.e. the thickness of the skin/fat 

layers in the tissue—from the heat source. The environment is responsible for convective 

sources of cooling which will have the greatest effect when there is the most airflow, i.e. 

around the air passages such as the nose/mouth. Sweat, or evaporative cooling, can also 

play a role in generating cooler areas on the skin and may need to be accounted for 

depending on the application. Most importantly, in areas devoid of hair and fatty tissue, 

such as the forehead, the primary contributions of heat originate from the minute 

temperature variations in the blood and core temperatures. 
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3.FLUID FLOW OVERVIEW 

3.1. Characteristics of the fluids 

Fluid mechanics is the branch of physics that studies fluids (liquids, gases, and 

plasmas) and the forces on them. It can be divided into fluid statics that study fluids at 

rest and fluid dynamics that study fluids in motion. 

A fluid can be defined as the substance that deforms and flows under the action of 

a net shear force, no matter how thick or viscous it is the ratio of the shear force to the 

area on which it acts is known as the shear stress (Massey, Ward Smith et al., 2006). 

Fluids can be liquids, gases and plasmas. A fixed amount of a liquid has a definite 

volume which varies only slightly with temperature and pressure. Fluid dynamics can 

deal with fluid flow from different scopes which are also the common fluid properties, 

several of these properties will be discussed here: 

Molecular structure:  

All substances consist of large numbers of molecules separated by empty space 

and these molecules have attraction for one another. The different characteristics between 

liquids, gases, and solid are resulted from the differences between their molecular 

structures (Massey, Ward-Smith et al., 2006). 

DENSITY: 

The basic definition of density of any substance means the ratio of the mass of a 

given amount of this substance to the volume it occupies .this definition can be applied 

on liquids, for example if we are talking about water then the density of the water means 
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the ratio of the mass of a given amount of the water to the volume it occupies (Massey, 

Ward-Smith et al., 2006).  Another definition called the mean density which is the ratio 

of the mass of a given amount of a substance to the volume that amount occupies. 

Pressure: 

Pressure that a fluid always has is resulted from the innumerable molecular 

collisions. Any part of the fluid must experience forces exerted on it by adjoining fluid or 

by adjoining solid boundaries (Massey, Ward-Smith et al., 2006). 

Compressible vs. incompressible flow: 

All fluids are compressible to some extent and that depends on the pressure and 

temperature which affects the density of the fluid .change of pressure applied to a certain 

amount of substance always produce some change in its volume. The inverse of the 

compressibility is called the bulk modulus which characterize the degree of 

compressibility of a substance, often denoted as, K, which is illustrated in (3.1). 

  
  

        
                               (3.1) 

Where    represents a small increase in pressure applied to the material and     

the corresponding small increase in the original volume V (Massey, Ward-Smith et al., 

2006). Although there is a wide variation in compressibility of different substances. As a 

liquid is compressed its molecules become closer together, so its resistance for further 

compression increases, that is, K increases. The bulk modulus of water, for example, 

roughly doubles as the pressure is raised from 105 Pa (1 atm) to 3.5×108 Pa (3500 atm). 

There is also a decrease of K with increase of temperature, which is illustrated in (3.1). 

When the change in the temperature and pressure are sufficiently small which leads to 
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small change in density, this small change in density can be neglected and in this case the 

flow can be modeled as an incompressible flow, otherwise it is compressible flow. 

Viscosity: 

There will be a resistance to any forces that tend to cause movement for any layer 

over another for all the fluids. Viscosity is a fluid property which is responsible for that 

resistance of the fluid layers to move over each other. Motion of layers requires shear 

forces to be applied , that is, forces parallel to the surfaces over which they act, the 

resisting forces must be applied on the opposite direction of the shear forces and also 

parallel to the surface .Under  some particular  conditions ,some fluids offer greater 

resistance to flow than another , such as treacle and glycerin which cannot be poured 

rapidly or easily stirred. viscosity is generally of high importance near solid boundaries 

because of the presence of a thin layer of high strain rate which is known as boundary 

layer .The fluid immediately adjacent to the boundary must move at the same speed as 

the boundary, which is called “no-slip” condition in fluid mechanics (Massey, Ward-

Smith et al., 2006). 

Inviscid fluid: 

Inviscid fluid can is a hypothetical fluid that has zero viscosity when it moves, 

which sometimes referred to ideal fluid (Massey, Ward-Smith et al., 2006). 

Steady vs. unsteady flow 

Steady flow is the flow in which the various parameters at any point don’t change 

with time. On the other hand, an unsteady flow or non-steady flow is the flow that  

various parameters change with time. In other words, when all the time derivatives of a 

flow field are zero, the flow is considered to be a steady flow. In practice, many problems 
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may be simplified and studied effectively by assuming that the flow is steady. Such flows 

are called quasi-steady. By definition, turbulent flows are unsteady (Massey, Ward-Smith 

et al., 2006). 

Laminar Vs. Turbulent flow 

When a fluid flows, it has been categorized into two different kinds, laminar flow 

which is also called streamline flow and turbulent flow. There are sharp differences 

between laminar and turbulent flow conditions. At law velocities, a few duct flows 

exhibit the laminar flow characteristics, where layers of adjacent fluid slide over each 

other in an ordered manner, exerting shear forces because of the relative movement. Fluid 

particle paths (streamlines) are straight, with fluid near stationary solid surfaces (pipe 

wall) moving more slowly than fluid away from solid surfaces. The velocity in the flow 

direction is constant and steady and does not vary with time. The velocity perpendicular 

to the flow direction is zero at all times. Compared to turbulent flow, this kind of flow 

occurs at the lower velocities.in the laminar boundary layers, fluid motion is highly 

ordered and it is possible to identify streamlines along which particles move. Fluid 

motion along a streamline is characterized by velocity components in both the x and y 

direction. 

FIG. 3.1 LAMINAR FLOW IS REPRESENTED IN (A) AND TURBULENT FLOW IS REPRESENTED IN (B). RISING 

SMOKE DEMONSTRATES THE TRANSITION BETWEEN LAMINAR AND TURBULENT FLOW. IMAGE COURTESY: 

THERMODYNAMICS & FLUIDS. 
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In contrast, in turbulent flow, the paths of fluid particles are no longer straight. If 

the velocity of a laminar flow is gradually increased there comes a point at which the 

nature of the flow changes. Particle paths become irregular and chaotic, leading to large 

scale mixing between adjacent layers. Fluid motion in the turbulent boundary layer is 

highly irregular and is characterized by velocity fluctuations. Fluid mixing that result 

from the fluctuations makes turbulent boundary layer thickness larger and boundary layer 

profiles (velocity, temperature, and concentration) flatter than in laminar flow (Massey, 

Ward-Smith et al., 2006). The two types of the flow are being illustrated in figure (3.1). 

 

To know the behavior of the boundary layer we calculate a dimensionless 

number, which called Reynolds number. The Reynolds number represents the ratio of the 

inertial to the viscous forces within the flow. 

 The Reynolds number (Re) is illustrated in equation (3.2) as: 

 

    
    

 
 

  

 
                                                                  

Where V, D,  ,   and   show the representative velocity , the characteristic 

length, the dynamic viscosity, the density, and the kinematic viscosity (  
 

 
 ) of the 

fluid, respectively. The term (    is the momentum per unit volume, so the higher it is 

the more likely there is spare energy in the flow for turbulent behavior. (Potter and 

Wiggert., 2009). 

To get the Reynolds number of a flow in a channel with circular cross section, the 

characteristic length is conventionally taken as the channel diameter and the 
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representative velocity is the mean velocity. The critical Re for pipe geometry is about 

2000. Below this, flow is laminar; above it, turbulence tends to start. Usually for fluid 

flowing through pipes, (Re) is less than 2000 may be considered laminar and if the (Re) 

is greater than 4000 it may be regarded as turbulent. It can be laminar flow or turbulent 

flow in the interval between 2000 and 4000, depending upon other factors, such as flow 

uniformity and pipe roughness (Massey, Ward-Smith et al., 2006). 

Womersley number: 

Womersley number (α) is another version of the Reynolds number which is also 

considered as the pulsatile version of it. It is also a dimensionless number. It is a 

dimensionless expression of the pulsatile inertia of the flow in relation to viscous effects 

.the Womersley number (α) , can be expressed as illustrated in Eq.(3.3): 

    
  

 
    =  

 

 
                                               (3.3) 

Where: 

R: a characteristic length scale (radius for a of a pipe),  

ω: angular frequency of the oscillations,  

υ: kinematic viscosity, 

 ρ: density, 

 μ: dynamic viscosity of the fluid (Gudbjartsson and Patz, 1995). 
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Both the Reynolds number and the Womersley number have been used to define 

the critical values for turbulence. Both of the Reynolds number and Womersley number 

are dimensionless numbers and being used on the development of turbulence (in-vitro) 

for physiological realistic pulsatile flow. 

Newtonian vs. non-Newtonian fluids  

The fluid said to be a Newtonian fluid if the shear stress of it is directly 

proportional to the velocity gradient, there are many fluids that considered as Newtonian 

fluids such as air, water And oil. 

In contrast, in the non-Newtonian whenever the relationship between shear stress 

and strain rate is non-linear. Non-Newtonian fluids usually have a complex molecular 

composition. Examples of non-Newtonian fluids are liquid plastics and blood (Potter and 

Wiggert, 2009). 

 

3.2. Summary  

The ability of quantify fluid and flow properties is helpful to solve many 

problems in different fields, one of these fields is the medicine field. For example, 

studying blood flow characteristics and properties helps in finding solutions and early 

detection for superficial venous disease, blood clots, hemolysis, platelet activation and 

thrombus formation. 
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4.MEASUREMENT TECHNIQUES FOR FLOW AND 

VOLUME OF BLOOD 

There are several methods for flow visualization and quantitative velocity 

measurements; also there are several methods that are used for blood flow and volume 

measurement. 

Measurement of blood flow is very important and it can help to detect many 

diseases earlier. Measurement of blood flow can be done by several methods and it can 

be categorized into several classes. The first class can be done by getting the 

concentration of O2 and other nutrients in the cell, which is can be difficult in some 

cases. The difficulties in class one leads the doctors to measure the blood flow and the 

changes in blood volume which usually correlate with the concentration of the nutrients. 

If the blood flow is difficult to measure, then the physician may settle for the 

measurement of the blood pressure which correlates adequately with the blood flow.  

Measurement of the blood flow reflects the primary measurement of the 

concentration of O2 in the cells. However, the measurement of the blood flow is usually 

difficult to make and also more invasive than the measurement of the blood pressure. 

 

There are some tools that were used to measure blood flow such as the orifice or 

turbine flow meter, but these methods were unsuitable because it requires cutting the 

vessel and can cause formation of clots. These methods have been developed and some of 

them will be illustrated here: 
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4.1. Measurement techniques of the blood 

The Indicator – Dilution 

The Indicator – Dilution, this method uses continuous infusion. This method finds 

the flow average over a number of heart beats. To find the concentration   of an indicator 

when a given quantity    of the indicator is added to a volume, this can be done by 

applying the equation which is illustrated in (4.1).   

  
  

 
                                    (4.1) 

If an additional amount of the quantity is added, then the incremental increase in 

the concentration is    (Donovan and Taylor, 2006). This is illustrated in equation (4.2).  

 

   
 

 
                        (4.2) 

Fick technique  

This method can be used to measure the cardiac output (blood flow from the 

heart), several methods for measuring the cardiac output is shown in figure (4.1). There is 

a difference in the concentration of the O2 between the blood that is returning to the heart 

from the upper half of the body and the lower half of the body because the amount of the 

O2 extracted by the brain is different from that extracted by the other organs. The 

measurement of the cardiac output can be done using the equation illustrated in (4.3) as 

follows (Capek and Roy, 1988): 

 

  
     

     
                                  (4.3)   

Where:  

 =blood flow, liter/min 
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  =arterial concentration of O2 liters/liter 

      =consumption of O2 

  =venous concentration of O2 liters/liter 

 

FIG. 4.1 SEVERAL METHODS FOR MEASURING THE CARDIAC OUTPUT .COURTESY, BLOOD 

FLOW MEASUREMENTS 

Dye Dilution method  

This method is used to measure the cardiac output by using a colored dye and 

Indocyanine green. The Dye is available as a liquid and that is dilated in a substance 

called isotonic saline and injected directly through a catheter, usually into the pulmonary 

artery.    

 

THERMODILUTION method  

This is the most common method to measure the cardiac output, this can be done 

by injecting a bolus of cold saline as an indicator. A special four-lumen catheter is floated 

through the brachial vein into a place in the pulmonary artery. In this method, the 

resulting drop in the temperature of the blood is detected by a thermistor located near the 

catheter tip in the pulmonary artery. 
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Electromagnetic Flowmeters method  

In this method, the electromagnetic Flowmeter measures instantaneous flow of 

blood. This method operates with any conductive liquid, such as blood or saline. The idea 

of generating the electricity by induction in the electric generator of the car uses copper 

wires which move through a magnetic field, cutting the lines of magnetic flux and 

inducing an emf in the wire. This idea has been applied here. A blood flowmeter has been 

used instead of the copper wire. Using the Faraday’s law of induction gives the formula 

for the induced emf. When the blood flows in the vessel with uniform velocity profile u 

and passes through a uniform magnetic field B, the induced emf is being calculated as 

shown in the equation (4.4), where these three components are orthogonal. 

                                                                             (4.4) 

 Laser Doppler blood flowmeter  

In this method a 5mW He-Ne laser beams 632.8 nm light through the fiber optics 

into the skin (Khaodhiar and Veves, 2006). Moving red blood cells in the skin frequency 

shift the light and cause spectral broadening. Reflected light is carried by fiber optics to a 

photodiode. Filtering, weighting, squaring, and dividing are necessary for signal 

processing [Capillary blood flow has been studied in the skin and many other organs.] 

 

Chamber plethysmography method 

This method measures the changes in the volume of the blood, it is considered an 

accurate way to measure the changes in the volumes of the blood noninvasively by using 

the chamber plethysmography. That can be done by timing these volume changes, 

measurement of the flow can be computed by f=dv/dt. A cuff is used to prevent venous 

blood from leaving the limb. (Seagar et al., 1984). 
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Also there are several techniques for measuring and visualization of the velocity 

of the flow and the blood, these methods are being illustrated here: 

 

Tracer methods  

The most common fluid velocity measurement techniques is the particle tracking. 

It is used to get the velocity of the fluid at a particular point and time from measurement 

of the motion of these small particles that is mixed with the fluid. Measurement system of 

the particle tracking consist of three components, these components are an illumination 

source, tracking particles and an observation system. Flow velocity could be measured 

assuming that the particles faithfully follow the streamline of the flow. There are two 

generic types of tracer methods such as Particle Image Velocimetry (PIV) and Laser 

Doppler Velocimetry (LDV), (Emirch, 1981). 

Particle Image Velocimetry (PIV) 

This method is a noninvasive tracer method for measuring flow velocity in a fluid 

field. In contrast to single point measurement techniques, PIV can concurrently acquire 

two-dimensional velocity information across an entire plane making it possible to detect 

in-plane two-dimensional flow structures with excellent spatial and temporal resolution. 

This makes it particularly valuable for time-dependent flows. The liquid is seeded with 

tracer particles which, because of their small size, are assumed to faithfully follow the 

flow streamlines. The fluid with entrained particles is illuminated usually by a laser light 

source in any desired plane so that particles are visible. The displacement of the particles 

is used to calculate speed and direction of the flow (Adrian, 2005). 

Two-component PIV (2C-PIV) 
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Based on the velocity definition which is the first derivative of the position, this 

method measures the displacement of the fluid (or particles which faithfully follow the 

streamline of the flow) over a known time interval to drive the velocity. The 

displacement of the fluid element is imaged through the light which is scattered by liquid 

or solid fluorescent particles illuminated by a laser light sheet. Such particles are not 

usually present in the fluid, the liquid has to be seeded with such tracer particles. These 

particles should be small enough and have the same density of the fluid to follow the 

local flow velocity patterns (Brossard, Monnier et al., 2009). 

Stereoscopic-PIV (SPIV) 

SPIV is a very well technique to measure all three components (3C) of the 

velocity vector in the plane of a laser sheet. The principle of this component is that out-

of-plan component of the velocity vector which is the component perpendicular to a laser 

light sheet can be measured by adding a second camera to the system, and also arranging 

both of the cameras at different viewing angle, each camera measure the displacement of 

the seeding particles perpendicular to its viewing angle. These two different projections 

of velocity, one from each camera can be combined to reconstruct the 3C velocity vector. 

The resulting system is called the Stereoscopic-PIV (SPIV). (Van Doorne and 

Westerweel, 2007). 

Prop methods 

There are several examples of these methods such as Pitot Prope, Propller, Vane 

anemometer, hot-wire and hot-film anemometers. These methods in contrast to tracer 

methods are invasive and less sensitive at low fluid velocities (Emirch, 1981). 

Doppler based methods 
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The idea of the Doppler Effect is based on transmitting an ultrasound beam with a 

certain frequency and a well-known angle through a liquid at which, the solid particles or 

the gas bubbles reflect a part of the ultrasound energy. Due to the movement of the 

particles, a frequency shift is being observed in the reflected beam. This frequency shift 

corresponds to the velocity of the particles. of the particles. Examples of these methods 

are Doppler ultrasound (Niederer, 2010), laser Doppler flowmetry (Rajan, Varghese et 

al., 2009) and optical Doppler tomography (Chen, Milner et al., 1997).  

Phase-Contrast Magnetic Resonance Imaging (MRI) 

This method is very prone to motion such that motion artifacts are the most 

common causes of image degradation. Here, blood and Cerebrospinal fluid (CSF) flows 

are among the involuntary movements, resulting in a variety of flow effects. Although 

methods such as “flow compensation” are used to eliminate the flow artifacts, the same 

concept can be used advantageously to develop non-invasive techniques to image the 

vascular anatomy and/or to measure the blood velocity. This technique is called Magnetic 

Resonance Angiography (MRA) and are classified into three major categories: Contrast 

enhanced angiography (anatomy), Time-of-flight (anatomy and flow velocity), and Phase 

contrast MR angiography (PC-MRI) (anatomy and flow velocity) (Hornak, 2008). 

Compared to nuclear medicine and radiographic techniques, MR based flow 

quantification does not involve use of ionizing radiation. Furthermore, contrast 

mechanisms independent of contrast agents are available for MRA. Compared to Doppler 

based methods, on the other hand, MRI can be used to measure the blood velocity using 

arbitrary image plane orientations without restrictions such as acoustic windows. More 

importantly, MR based flow quantification techniques can provide all three components 
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of the velocity vector, compared to the single component (in the direction of 

insonification) obtained from Doppler ultrasound.  

Phase contrast method relies on the fact that moving spins experience different 

magnetic field gradients compared to static spins. Consequently, their accumulated phase 

would be different from static spin. In addition the phase shift is proportional to the 

product of the flow velocity and the first moment of the magnetic field gradient in the 

direction of the flow. The velocity field obtained from this method can be used to drive 

other clinically useful hemodynamic parameters such as wall sheer stress and blood 

pressure gradient (Nasiraei-Moghaddam, Behrens et al, 2004; Frydrychowicz, Stalder et 

al., 2009; Harloff, Nussbaumer et al., 2010). PC-MRI has been applied in several clinical 

scenarios, such as evaluation of aortic coarctation and dissection, valvular heart 

abnormalities, peripheral arterial diseases and congenital shunt lesions, as well as 

quantification of cardiac function (Szolar, Sakuma et al., 1996; Srichai, lime r al, 2009). 

 

4.2. Summary   

Measuring the blood flow rate plays an important role in many medical 

applications among which is vascular disease diagnosis. Vascular disease is a disorder 

that occurs in the blood vessels which can lead to improper human blood circulation. 

Among vascular diseases are arterial disease that affects arteries which carry oxygen-rich 

blood from the heart to the body organs, and venous disease that affects veins which 

carry blood back from the organs to the heart to be purified. Regarding the veins, 

superficial veins which are located near the skin surface can have a clot on it. There are 
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some different techniques to diagnose superficial venous disease and one of them is to 

diagnose it using a thermal image, this method will be discussed in later chapters. 
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5. A NON-INVASIVE METHOD FOR MEASURING BLOOD 

FLOW RATE IN SUPERFICIAL VEINS FROM A SINGLE 

THERMAL IMAGE 

 

Measuring the blood flow rate plays an important role in many medical 

applications among which is vascular disease diagnosis. Vascular disease is a disorder 

that occurs in the blood vessels which can lead to improper human blood circulation. 

Among vascular diseases are arterial disease that affects arteries which carry oxygen-rich 

blood from the heart to the body organs, and venous disease that affects veins which 

carry blood back from the organs to the heart to be purified. Regarding the veins, they 

can be categorized into deep veins which are located deep away from the human skin 

surface, and superficial veins which are located near the skin surface. This thesis focuses 

superficial venous disease which can be practically diagnosed using a thermal image.  

Superficial veins can be affected by Thrombophlebitis [Bagavathiappan09] that is 

the development of a blood clot in the vein lowering the blood flow rate in it. And since 

superficial veins are responsible for transferring heat between the blood and the 

surrounding environment through the skin, a low blood flow rate in these veins can lead 

to an improper heat transfer process and improper temperature of the skin in the region of 

the affected vein. For instance, if it is supposed for warm blood in a certain superficial 

vein to give out a certain amount of heat, it can lose more amount due to low flow as the 

blood will flow for a longer time through its surrounding cooler tissues leading to more 

heat loss which rises the temperature of these tissues. This is clear through thermal 
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imaging as the temperature of the skin in an abnormal region appears higher than that in a 

normal region as illustrated by Bagavathiappan et al. [Bagavathiappan09]. Other related 

works are presented in [Ratovoson10, Boué07, and Ratovoson11]. In [Ratovoson10], 

Ratovoson et al. used thermal imaging to study the effect of strong thermal variations on 

Thermomechanical behavior of the skin which can be applied for body burns. They 

extended their work in [Ratovoson11] by presenting a numerical model to simulate the 

average blood velocity in veins under thermal stress in which metabolism and blood 

perfusion effects are negligible. Boué et al. [Boué07] presented a thermal model for the 

forearm and estimated the blood flow by using a heating source to stimulate a skin. 

In this chapter, The work of [Bagavathiappan09] is being interpreted in a quantitative 

manner in which a single thermal image of superficial veins can not only detect that 

abnormality but also can measure the blood flow rate through veins, pressure drop along 

the veins and the amount of heat lost due to the shear stress exerted by the viscosity of the 

blood. Throughout this work, blood assumed to be a Newtonian [Santos08] 

incompressible fluid whose flow is laminar. Blood vessels will be modeled as cylindrical 

tubes in which the flowing blood loses heat by convection to the surroundings. Moreover, 

time-average velocity is used to deal with pulsatile flow as steady state flow 

[Bourantas11]. This experiments will contain two parts: 1) validating this concept by 

building a setup that simulates superficial veins, and 2) vivo measurement validation for a 

human subject. 

5.1.1. LAMINAR FLOW INSIDE A TUBE 

 

In Laminar flow, the fluid streamlines are parallel [Post10] and orderly slide over 
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each other while in turbulent flow, irregularity occurs to the flow pattern as adjacent 

layers mix with each other. In order to determine the type of the flow inside a cylindrical 

tube, Reynold’s number    [Menon04] should be calculated as illustrated in equation 

(5.1): 

   
      

 
,                                                      (5.1) 

 

Where,   and   are the fluid dynamic viscosity and density respectively, and      

is the average fluid velocity inside the tube whose inner diameter is,  . If    <2000, the 

flow is laminar and if    >4000 the flow is turbulent. For values between 2000 and 4000, 

the flow can be either laminar or turbulent (critical flow [Menon04]). In this thesis, the 

work will be restricted only to the case of laminar flow i.e. we will deal only with flow 

with    <2000. This is why thin tubes are being used as lowering   means lowering  . 

5.1.2. FLOW RATE USING CONVECTION HEAT TRANSFER  

 

Forced convection [Incropera90] refers to the presence of heat transfer along with 

a fluid flow inside a solid (e.g. a tube) under the effect of an external influence (e.g. a 

pump) when the fluid and the solid are at different temperatures. For a tube, the heat 

transfer occurs from the fluid to the tube wall if the temperature of the fluid is higher than 

that of the tube wall and occurs from the tube wall to the fluid if the temperature of the 

tube wall is higher. There will be consideration for the later case in deriving the equations 

in this section. However, the obtained equations will be also valid for the other case. 

Although a fluid can be either a liquid or a gas, this thesis deals with liquids only. 
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Figure 5.1, Cylindrical tube in which fluid average temperature changes by        
 along 

an infinitesimal element of length    . 

 

The convection heat transfer is composed of two mechanisms [Incropera90]: heat transfer 

due to diffusion and heat transfer by the bulk motion of the liquid taking into account that 

the contribution in heat transfer due to bulk motion of the liquid is dominant over 

diffusion. Consider the cylindrical tube portion shown in Fig. (5.1) in which  , and   are 

the inner diameter, and length respectively. For an infinitesimal cylindrical element of 

length   , the rate of convection heat transfer per unit area of the surface of that element 

is known as the convection heat flux and is given by Newton’s law of cooling 

[Incropera90] as illustrated in equation (5.2):  

     
              

 ,      (5.2) 

 

Where,    is the local convection heat transfer coefficient and      
 is the liquid 

temperature averaged over the tube inner radius at an arbitrary point  . Applying the law 
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of conservation of energy, the rates of energy entering and exiting the mentioned 

infinitesimal volume should be equal. Thus the convection heat transfer rate should equal 

the sum of the rate of increase in the thermal energy of the liquid and the rate of the work 

done by the flow through the mentioned infinitesimal volume and hence the rate of 

convection heat transfer between   and        is given by equation (5.3): 

                 
,       (5.3) 

Where,    is the liquid specific heat at constant pressure and    is the mass flow 

rate which is related to the volumetric flow rate    given by equation (5.4):  

       .        (5.4) 

And from the definition mentioned above of the convection heat flux and having 

the surface area of the infinitesimal element     ,         can be written also as 

illustrated in equation (5.5): 

            
      .       (5.5) 

Equating Eq. (5.3) and Eq. (5.5), gives equation illustrated as (5.6): 

      
  

 
     

    

    
.       (5.6) 

Integrating Eq. (5.6) from   to   while assuming constant heat flux at the tube 

wall gives      
 varying linearly with   as illustrated in equation (5.7): 

     
      

 
     

    

    
 ,      (5.7) 

Where,      
 is the average temperature of the liquid at the entrance of the tube 

portion. And for laminar flow [Incropera90],        
 

 
 assuming fully developed 

thermal conditions, where,   is the thermal conductivity of the liquid. Thus substituting 
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for the values of      
   from Eq. (5.2) and    from Eq. (5.4), Eq. (5.7) is reduced to the 

equation illustrated in (5.8): 

     
      

 
              

  

     
 .    (5.8) 

Substituting for   by   in the previous equation and arranging it gives the liquid 

volumetric flow rate      as illustrated in equation (5.9):  

   
                

 

         
      

 
.       (5.9) 

5.1.3. PRESSURE DROP AND POWER LOSS DUE TO FRICTION 

 

Consider a portion of length   of the cylindrical tube as shown in Fig. (5.2). 

Assuming the motion of the liquid inside the tube to be frictionless i.e. neglecting the 

viscosity effect, Bernoulli’s principle [Rose04] implies that the sum of kinetic energy and 

potential energy along the stream tube remains constant, and hence, the sum of the static 

pressure, dynamic pressure, and gravitational pressure remains constant which is 

illustrated in equation (5.10): 

 

   

 
                       (5.10) 

 

Where,   is the liquid static pressure, 
 

 
    is the dynamic pressure, and     is the 

gravitational pressure with   ,   and   being the liquid velocity, gravitational acceleration 

and height with respect to a given reference level respectively. Considering point 1 and 

point 2 at the beginning and end of the tube portion respectively, Eq. (5.10) becomes the 

equation illustrated in (5.11): 

 

    

 
   

           

 
   

         (5.11) 
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Practically, the effect of liquid viscosity should be taken into account, as liquid 

viscosity is a measure of its resistance to shape change brought by shear stresses between 

liquid layers and between liquid and tube walls. 

 The shear stress between the liquid and the tube walls causes friction that is 

dissipated in the form of heat. That shear stress acts along the inner surface of the tube 

portion whose surface area is     and exerts a force in a direction opposing the flow. In 

order to overcome that force, a pressure drop    occurs inside the tube portion [Rose04, 

Warhaft98] which modifies Eq. (5.11) to the equation illustrated in (5.12): 

 

    

 
   

           

 
   

            (5.12) 

 

 

The pressure drop    can be interpreted into a force acting on the tube inner cross 

sectional area    

 
  This force is equal in magnitude to the force exerted by the shear stress 

[Post10]. The velocity profile across the tube for laminar flow is parabolic with 

maximum value at the centerline of the tube and zero values at the tube walls 

[Warhaft98] given by equation illustrated as (5.13): 

     

   
   
  

      

 
 
 
 ,      (5.13) 

Where,    is the pressure drop occurring along an infinitesimal cylindrical 

element of length    and height  , and coaxial with the centerline of the tube with the 

positive   direction being the direction of the flow as shown in Fig. (5.2). 
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Figure 5.2, parabolic velocity profile for a cylindrical tube with laminar flow 

 

 

Since the velocity is not uniform across the tube, integration should be used when 

calculating the volumetric flow rate   . Consider dealing with a thin shell of thickness    

at a distance   form the tube centerline. The shell cross sectional area          and 

the volumetric flow rate through that shell     is given by equation illustrated as (5.14): 

        .         (5.14) 

Substituting Eq. (5.13) into Eq. (5.14) and integrating r across the tube from   to  
 
 gives 

the equation illustrated as (5.15): 

      

    
   

  
             (5.15) 

 

Assuming uniform flow during the tube portion under consideration,   

  
  is a 

constant [Warhaft98] and thus can be replaced by    

 
  and hence Eq. (5.15) is simplified 

to the equation illustrated as (5.16): 

         

                (5.16) 
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From the first law of thermodynamics (conservation of energy) [Post10], the 

power loss       due to a pressure drop    is given by equation illustrated as (5.17): 

                     (5.17) 

Substituting for    from Eq. (5.16) gives equation illustrated as (5.18): 

           

       .        (5.18) 

From Eq. (5.16) and Eq. (5.18), it is clear that succeeding to measure the 

volumetric flow rate    leads directly to the knowledge of    and        . The liquid 

properties as the viscosity, density, thermal conductivity, and specific heat capacity are 

temperature dependent but can be practically found at the reference temperature 

[Incropera90] and then assumed to be constant along the tube. The reference temperature 

is found by averaging the mean temperatures of the liquid at the inlet and the outlet of the 

tube. 

 

5.2. Blood vessel convective heat transfer 

In this thesis, the focus is on superficial veins which can be practically seen in a 

thermal image. While blood flows in the veins, heat is exchanged between the blood and 

the surrounding tissues [Haemmerich03]. Penne [Pennes48] in 1948 showed that blood 

flow acts as a warming agent for the superficial veins while studying the forearm. He 

assumed that there are two main heat sources in the tissues, which are heat transfer from 

blood to the tissues and heat generated in the tissue by metabolism. The later occurs at a 

low rate near the surface of the forearm. He stated that the rate of heat transfer from the 

blood to the tissue at a certain location is proportional to the difference between the blood 

temperature and the tissue temperature.  
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The tissues surrounding blood veins can be modeled as solid [Ratovoson10]. Thus 

assuming a superficial blood vein to be a very thin cylindrical shell surrounded by these 

solid tissues, and assuming blood to be a Newtonian [Santos08] incompressible laminarly 

flowing fluid for which time-average velocity is used to deal with pulsatile flow -due to 

heart beating- as steady state flow [Bourantas11],  the heat transfer between the flowing 

blood and the surrounding tissues can be formulated  as a case of forced convection heat 

transfer in a cylindrical [Leeuwen97] tube under laminar flow. Thus, the equations 

presented in the previous section can be applied directly to this case. Analyzing Eq. (5.9), 

it is clear that the difference between the inlet and outlet blood temperatures of a certain 

vein is inversely proportional to volumetric blood flow rate. This quantitatively clarifies 

the reason for the improper heat transfer and improper temperature of the skin in the 

region of a superficial vein that is affected by thrombophlebitis [Bagavathiappan09], and 

hence increases the drop in the temperature of the blood exiting the vein with respective 

to its temperature at the inlet. In other words, superficial veins are responsible for 

transferring heat between the blood and the surrounding environment through the skin, so 

if it is supposed for warm blood in a certain superficial vein to give out a certain amount 

of heat, it can lose more amount due to low flow as the blood will flow for a longer time 

through its surrounding cooler tissues leading to more heat loss which rises the 

temperature of these tissues and decreases the temperature of the blood. 

In this work, there is a validation for this concept by observing the effect of 

varying the flow rate of a liquid flowing in a cylindrical tube on the difference in the 

temperatures of the liquid entering and exiting that tube. These temperatures will be fed 

into Eq. (5.9) to get an estimate of the volumetric flow rate and compare it with ground 
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truth. The estimated volumetric flow rate can then be fed into Eq. (5.16) and Eq. (5.18) to 

get an estimate for the pressure drop and power lost by the viscosity respectively. 

Another part of our experiments is to image the superficial veins in the forearm of a 

living human subject and see the effect of lowering the blood flow rate on the difference 

in the temperatures of the blood entering and exiting a superficial vein. The temperature 

in our experiments will be estimated using thermal imaging which is briefly discussed the 

next section. 

 

5.3. THERMAL imaging basics 

The concept of thermal imaging arose from studying the phenomenon of 

Blackbody radiation [Robert02]. A blackbody at a temperature   above 0 K continuously 

absorbs and then diffusely reemits photons (light quanta) of all possible wavelengths   (  

ranges from 0 to ∞). It was found that the number of photons emitted per unit wavelength 

at a certain wavelength is dependent on  . This is clear in Planck’s law which gives the 

radiation spectral intensity of a blackbody at temperature   as illustrated in equation 

(5.19) [Robert02]: 

      
    

  

 

 
  

     

,       (5.19) 

Where,                     (Planck’s constant),                      

(Boltzmann’s constant) and               (light speed). If the peak of Eq. (5.19) 

occurs at     , the product of      and   is a constant given by Wien displacement law  

[Lianxi09] as illustrated in equation (5.20): 

                    .     (5.20) 
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 As a result, the dominant emitted wavelength is in the visible light range for an 

extremely high temperature body (thousands of kelvins). As the body temperature gets 

lower, the dominant wavelength moves towards the infrared regions (NIR, SWIR, 

MWIR, LWIR).  Integrating Eq. (5.19) over a hemisphere for      , gives the 

power radiated per unit area of the emitting surface at temperature    as illustrated in 

equation (5.21) (Stefan-Boltzmann law [Robert02]): 

                  (5.21) 

Where,                      is the Stefan-Boltzman constant. 

 For a non-blackbody, beside the phenomenon of temperature based emission of 

photons, there is also reflection of photons incident from an external visible light source. 

Since the emitted photons carry information about the body temperature, succeeding in 

separating that portion of photons from the reflected portion gives the temperature of the 

body. Fortunately, at low temperature (few hundreds of kelvins), the dominant 

wavelength of the emitted photons lies in the infrared region, thus they are band 

separated from the reflected visible photons. Based on this, thermal infrared cameras can 

give the temperature of a body. An important surface property related to thermal imaging 

is the emissivity [Siegel81] which indicates how well a real object emits radiation 

compared to a blackbody at the same temperature and wavelength. Emissivity depends on 

the wavelength and the direction of emission. Taking into account averaged emissivity   

over all wavelengths and all directions, Eq. (5.21) is modified to equation illustrated as 

(5.22): 

         ,        (5.22) 
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Where, the averaged emissivity   takes values from 0 to 1. In the above 

discussion, we were assuming dealing with wavelengths from 0 to ∞. Practically, the 

used thermal camera wavelength band should be taken into consideration. 

 

5.4. Experimental results 

In this experiment, the blood flow will be estimated using thermal images 

captured by a FLIR LWIR thermal camera operating in the 7.5-13    wavelength range 

with a resolution of 640×480 pixels. The thermal sensitivity of the camera is 50 mK. The 

IR lens used with the camera has a 41.3 mm focal lens and a 17 micron pixel detector. 

The thermal camera is mounted vertically at a distance 1 meter from a horizontal tube (or 

vein).For this setup,  

1 pixel in the thermal image represents 396    x 396   . This spatial calibration was 

done by taking a thermal image for a hot rod with known length and at a known distance 

from the lens. 

In the first part of the experiment, two cylindrical tubes will be used to simulate 

superficial veins. One of them has a throttle that causes the liquid flow to be slower 

simulating a vein with stenosis while the other one has normal flow representing a 

healthy vein. The tubes will contain water flowing horizontally using a pump that is 

controlled by a generator to supply either continuous flow or pulsatile flow. The water 

temperature at the pump is kept at 37    while the container (where the tubes are 

mounted horizontally) contains ice at 0    as shown in Fig. (5.3). 

The temperature is being measured at the inlet and the outlet of the tubes which 

will show a drop due to the convection heat transfer from the hot water in the tubes to the 
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ice in the container. 

 This temperature drop is then used in Eq. (5.9) -which is repeated here for 

convenience- to calculate the volumetric flow rate in the two tubes as illustrated in 

equation (5.23): 

   
                

 

         
      

 
.        (5.23) 

The following values were used for the constants in the equation:        
 

     
, 

         
  

  
,         

 

    
 and        m. Hence the resulting volumetric flow rate 

should be in      which is equal to     mL/s. Fig. (5.4) shows the temperature profile 

along the cross sections of the tubes at the inputs and outputs where it is clear that the 

tube with the throttle reduced flow rate of the water leading to more heat loss. This leads 

to a temperature drop of 1    between the input and the output of the throttled tube 

compared to a temperature drop of 0.45    in the regular tube as shown in Fig. (5.4). For 

both cases, the difference between the wall temperature and the average temperature is 

4.3   , hence the flow can be calculated using Eq. (5.9) to be 2.1 and 4.7 mL/s in the 

tubes with and without the throttle respectively. The ground truth for these flow rates 

were measured to be 1.8 and 5.0 mL/s respectively by dividing the volume of water 

dispensed in each case by the time of the experiment. The target of this part of the 

experiment was just to validate the theory behind our approach in a setup where the 

ground truth can be easily measured. This experiment was repeated several times and 

similar results were obtained. These results show that the proposed method is reliable for 

estimating the flow. 
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FIGURE 5.3, A THERMAL IMAGE SHOWING THE FIRST PART OF THE EXPERIMENT WHERE THE 

UPPER TUBE HAS A THROTTLE WHILE THE LOWER TUBE IS REGULAR. 

Feeding the calculated    values into Eq (5.16) and Eq. (5.18), with a diameter 

      cm and viscosity             
   

   , leads directly to    and      . 

 

 

 

 

 

 

 

 

Figure 5.4, Temperature profiles along the cross sections of the tubes at the inputs 

and outputs for the tube with a throttle on right and without a throttle on left. 

 

  In the second part of the experiment, the same ideas will be applied of the first 

part to a human forearm. An ice pack is being used on the forearm so that the blood 

flowing in the veins will have a temperature drop due to the convection heat transfer. a 

thermal image is being captured  for the forearm after putting an ice pack on it as shown 

in Fig. (5.5). The temperature of the vein before and after the cold part will be used to 

calculate the blood flow rate using Eq. (5.9) as happened  in the first part of the 

experiment. 



52 

For validation, estimation for the blood flow needs to be done in a subject for a 

normal vein and compare it with the same subject and the same vein if it has a stenosis. 

To simulate that, a thermal image is being captured  for a subject and then we put a thin 

cuff around the forearm to lower blood flow and capture another thermal image as shown 

in Fig. (5.5). By comparing the results, it will give an estimation and a feeling of how the 

stenosis will reduce the blood flow. The following values were used for the blood at 

37   ,          
 

     
,        

  

  
, and         

 

    
.   from the input to the output 

was measured form the thermal image to be 0.053 m. 

 

 

 

  

  

Figure 5.5, Thermal images showing the right forearm after putting an ice pack 

over a vein with a cuff around the vein in the right image. 

The input and the output locations should be on the vein before and after the ice 

pack location respectively. These locations do not have to be in the same physical spots 

for different images taking into consideration that the distance between them is the length 

  which is part of Eq. (5.9). In Fig. (5.5), it is taken in the way such that the distance   is 

equal in both images but that was not necessary. Fig. (5.6) shows a temperature drop of 

0.7    between the input and the output of the healthy vein compared to a temperature 

drop of 0.95    in the throttled vein. For both cases, the difference between the wall 

temperature and the average temperature is 0.42   , leading to a blood flow rate of 0.06 

and 0.04      for the regular and stenotic case respectively.    
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FIGURE 5.6, TEMPERATURE PROFILES ALONG THE CROSS SECTIONS OF A VEIN AT THE 

INPUTS AND OUTPUTS FOR THE TUBE WITH A CUFF ON RIGHT AND WITHOUT A CUFF ON LEFT. 

 

5.5. Summary 

 Measurement of blood flow is usually more difficult to make and more invasive 

than measurement of blood pressure or of the ECG. There are several methods for the 

blood flow to individual organs and it involves the use of flow probes or sensors. There 

are common available systems for the measurement of in vivo blood flow which can be 

divided into two categories like: ultrasonic and electromagnetic. Another way of 

measuring the blood flow is presented here which measure the volumetric flow rate of a 

liquid inside a thin tube using thermal camera, applying this idea on a superficial veins 

can be helpful to diagnose superficial venous disease and earlier detection of them. 
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6.CONCLUSIONS AND FUTURE WORK 

 

The measurement of blood flow rate is important to identify, treat, and evaluate 

life-threatening conditions of patients. Thermal imaging is an efficient way for tracking 

the blood flow and detecting problems with it. This methodology now makes the task of 

monitoring vital signs possible without the need for sensor contact on the subject.  This 

process is aided when the physics and physiology of the systems are used to remove 

additional noise elements from the biological system and environment using biological 

skin-heat transfer modeling. Physical and computer modeling have revealed it is possible 

to conduct controlled experiments to evaluate thermal blood-flow-based experiments on 

demand, without the need for human subjects to test. 

 

In this thesis, the volumetric flow rate of a liquid inside a thin tube was estimated 

non-invasively using a single thermal image. This technique makes use of the difference 

in the liquid temperatures at the inlet and the outlet of the tube caused by convection heat 

transfer. That temperature difference was shown analytically and experimentally to be 

dependent on the volumetric flow rate and thus can be used to give a good estimate for 

the flow rate. A tested for this method is done with the superficial veins of a human 

subject forearm. The experiment was done once for the case of regular blood flow and 

once for stenotic blood flow.  Here there is a proposed work to use this technique to non-

invasively diagnose superficial venous disease that significantly affects the blood flow in 
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the veins. Although this research was done on normal subjects, there is an intention to 

test it in the future with patients having superficial venous disease. 
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APPENDIX I. MATHEMATICAL NOMENCLATURE 

 



   Absorptivity 

 



   Emissivity 

 



q  Heat transfer  

 



H   Heat flux 

 



T   Temperature (K, unless otherwise specified) 

 



  σ = 5.6703 × 10
-8

, Stefan-Boltzmann constant 

 



P(T)  Radiated power per unit area [W/m
2
] 

 



f   Frequency 

 



f (t)  Arbitrary Signal 

 



   Wavelength 

 



I(x,y)  Image intensity at pixel location (x,y) 

 



   Blood-perfusion data 

 



   Scaling function 

 



,   Wavelet function 

 



s  Wavelet scale factor 

 



   Wavelet translation factor 

 



W f   Wavelet coefficients for 

   

f (t) 
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APPENDIX II. ACRONYMNS 

ANOVA Analysis of variance 

A/D Analog to Digital 

BPM Beats per minute 

CVIP Computer Vision & Image Processing 

CWT  Continuous wavelet transform  

DAQ Data Acquisition 

DC Direct current 

DWT Discrete wavelet transform 

ECG/EKG Electrocardiogram  

FPA Focal plane array 

fps frames per second 

IR Infrared 

L/MWIR Long/mid wave IR 

MCT Mercury, cadmium, tellenium (HgCdTe) 

MRA Multi-resolution analysis 

MRTD Minimum resolvable temperature difference 

MWIR Mid wave IR  

NEDT Noise equivalent difference temperature 

QWIP Quantum well IR photodetector 

ROI Region of interest 
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ROM  Region of measurement 

RPPA Radiated power per unit area 

RMS Root mean squared 

ROIC  Readout integrated circuit 

SCA  Sensor chip assembly 

SHT Skin-heat transfer 

SNR Signal-to-noise ratio 

SO Supra orbital artery 

STA Superficial temporal artery 

TMP Thermal minutia point 

WFT Windowed Fourier transform 
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