
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2009

Increasing performance of blowfish encryption using CUDA. Increasing performance of blowfish encryption using CUDA.

Joseph Anthony Feist
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Feist, Joseph Anthony, "Increasing performance of blowfish encryption using CUDA." (2009). Electronic
Theses and Dissertations. Paper 431.
https://doi.org/10.18297/etd/431

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/431
mailto:thinkir@louisville.edu

INCREASING PERFORMANCE OF BLOWFISH ENCRYPTION USING CUDA

By

Joseph Anthony Feist

A Thesis
Submitted to the Faculty of the

University of Louisville
Speed School of Engineering

As Partial Fulfillment of the Requirements
For the Professional Degree of

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Sci ence

December 2009

i

TABLE OF CONTENTS

Page

APPROVAL PAGE...................................... ... ii

ACKNOWLEDGMENTS.................................... ... iii

ABSTRACT... ... iv

LIST OF TABLES..................................... ... v

LIST OF FIGURES.................................... ... vi

I. INTRODUCTION.................................. 1

II. GPGPU AND CUDA............................... 3

A. GPGPU.................................... 3

B. CUDA..................................... 4

III. IMPLEMENTATION OF BLOWFISH ENCRYPTION....... 8

A. BLOWFISH................................. 8

B. CPU IMPLEMENTATION....................... 11

C. CUDA IMPLEMENTATION...................... 20

IV. RESULTS AND DISCUSSION OF RESULTS............ 3 0

V. CONCLUSIONS AND FUTURE WORKS.................. 4 0

 A. CONCLUSIONS.............................. 40

 B. SHARED MEMORY............................ 40

 C. THREAD-BLOCK SIZE CONSIDERATIONS......... 41

D. CONSTANT MEMORY.......................... 41

E. DEVICE MEMORY TRANSFER AND ALLOCATION.... 41

REFERENCES... ... 43

VITA... ... 44

ii

INCREASING PERFORMANCE OF BLOWFISH ENCRYPTION USING CUDA

Submitted by: __________________________________
Joseph A. Feist

A Thesis Approved On

(Date)

by the Following Reading and Examination Committee

Dr. Dar-Jen Chang, Thesis Co-director

Dr. Ahmed Desoky, Thesis Co-director

Dr. John F. Naber

iii

ACKNOWLEDGEMENTS

 Thanks to Dr. Chang and Dr. Desoky for serving as co-

directors and to Dr. Naber for serving in the commi ttee.

iv

ABSTRACT

 This thesis describes a method of gaining better

performance from the Blowfish cryptographic algorit hm using

GPU acceleration via CUDA (Compute Unified Device

Architecture). It is an attempt to resolve the iss ue of

the cryptographic process taking up time and resour ces.

Reducing or eliminating one or both of these issues would

perhaps lead to more widespread use of algorithms s uch as

Blowfish to secure individuals’ data by making

cryptographic security less costly in terms of time and

resources. It is further noted that this method or similar

could be used in the case of other algorithms espec ially

those closely related to Blowfish, such as the fami ly of

block ciphers.

v

LIST OF TABLES

[TABLE I] - CPU AND GPU RUNTIME FOR VARIOUS DATA SI ZES

[TABLE II] - PERFORMANCE MEASURES FOR 65535 THREAD- BLOCKS

[TABLE III] - PERFORMANCE MEASURES FOR 32000 THREAD -BLOCKS

[TABLE IV] - PERFORMANCE MEASURES FOR 16000 THREAD- BLOCKS

[TABLE V] - PERFORMANCE MEASURES FOR 8000 THREAD-BL OCKS

[TABLE VI] - PERFORMANCE MEASURES FOR 4000 THREAD-B LOCKS

[TABLE VII] - PERFORMANCE MEASURES FOR 2000 THREAD- BLOCKS

[TABLE VIII] - PERFORMANCE MEASURES FOR 1000 THREAD -BLOCKS

[TABLE IX] - PERFORMANCE MEASURES FOR 500 THREAD-BL OCKS

[TABLE X] - PERFORMANCE MEASURES FOR 100 THREAD-BLO CKS

[TABLE XI] - PERFORMANCE MEASURES FOR 50 THREAD-BLO CKS

[TABLE XII] - PERFORMANCE MEASURES FOR 25 THREAD-BL OCKS

[TABLE XIII] - PERFORMANCE MEASURES FOR ONE THREAD- BLOCK

vi

LIST OF FIGURES

[FIGURE 1] – Illustrated Differences Between CPU An d GPU

[FIGURE 2] – Physical Layout Of Nvidia G80 Series G PU

[FIGURE 3] - Streaming Multi-Processor(SM) Made Up Of
Streaming Processor(SP) “Cluster”

[FIGURE 4] – Illustration Of Blowfish Feistel Netwo rk

[FIGURE 5] – Illustration Of Feistel Function In Bl owfish

[FIGURE 6] - Blowfish_CUDA References

[FIGURE 7] - Blowfish_CUDA Project Directory Struct ure

[FIGURE 8] - Post-Build Event Visual

[FIGURE 9] – Relationship Between Speed-Up Factor A nd
Number Of Thread-Blocks

[FIGURE 10] - CPU And GPU Runtimes Vs. Thread-Block Numbers

1

CHAPTER I

 INTRODUCTION

 The purpose of this thesis is to investigate the

possibility and effectiveness of efficiently using the

large number of computing cores in a GPU for enhanc ing the

speed and performance of the Blowfish encryption al gorithm,

specifically using Nvidia’s CUDA. In many instance s

encryption and decryption of data are time consumin g and

computationally intensive procedures. CUDA is spec ifically

designed to use the power of the many small cores i n a GPU

to improve performance and speed of computationally

intensive operations via threading and using true

concurrence of these threads. Many have made effor ts to

accelerate cryptographic algorithms by using CUDA e nabled

GPUs. These attempts do not, however, use the arch itecture

to its fullest potential. Rather, they simply run CPU code

on the CUDA device. This approach only attempts to use the

GPU to out-number the CPU in terms of number of cor es. It

does not take into account efficient use of availab le

memory and device architecture to improve the perfo rmance.

This thesis attempts to demonstrate a method to tak e steps

to more efficiently code the Blowfish cryptographic

algorithm for CUDA and achieve a much less time con suming

process than currently exists.

2

 The remainder of this paper describes the process used

to improve the coding of the algorithm. First, Cha pter II

GPGPU AND CUDA contains a description of GPGPU, CUD A, and

equipment used in setting up this experiment. This includes

hardware and software utilities, as well as a gener al

description of CUDA as a processor architecture. C hapter

III IMPLEMENTAION OF BLOWFISH ENCRYPTION outlines t he

Blowfish encryption algorithm and identifies areas of

parallelism within the algorithm that can be exploi ted to

get good use of the architecture of the GPU. This portion

involves the main work and research involved in the

experiment. Next Chapter IV RESULTS AND DISCUSSION OF

RESULTS presents the results obtained from this exp eriment,

and briefly discusses the meanings of the measureme nts from

each of the experiment’s iterations for different s izes of

data. Finally, Chapter V CONCLUSIONS AND FUTURE WO RKS

gives conclusions based on the results obtained, an d offers

recommendations for possible improvements and paths for

further research and experimentation.

3

CHAPTER II

GPGPU AND CUDA

A. GPGPU

 This research is an extension of the idea of GPGPU .

The experiment itself pursues the main focus presen ted by

GPGPU.org[1]:

“GPGPU stands for General-Purpose computation on
Graphics Processing Units, also known as GPU
Computing. Graphics Processing Units (GPUs) are hig h-
performance many-core processors capable of very hi gh
computation and data throughput. Once specially
designed for computer graphics and difficult to
program, today’s GPUs are general-purpose parallel
processors with support for accessible programming
interfaces and industry-standard languages such as C.
Developers who port their applications to GPUs ofte n
achieve speedups of orders of magnitude vs. optimiz ed
CPU implementations.”

 The difference between a GPU and CPU is shown in

FIGURE 1, below. Notice that in the same area the GPU has

more transistors that are devoted to computation [2]. This

means that the GPU has greater aptitude for computa tion

than the CPU. It can also be inferred from the fig ure that

because of the larger ALU size in the CPU that each ALU is

more powerful. This is the largest difference betw een the

CPU and GPU. The CPU is made up of a small number of

large, powerful cores while the GPU is constructed from a

large number of small, less powerful cores. This m eans

that the CPU can do a few more involved computation al

4

tasks, whereas the GPU can do many more, smaller op eration

tasks at the same time.

FIGURE 1 – Illustrated Differences Between CPU and GPU [3]

B. CUDA

 This experiment employs GPGPU through CUDA. CUDA

stands for Nvidia’s Compute Unified Device Architec ture.

CUDA refers to the architecture of the GPU, drivers and

interfaces, as well as the language used for progra mming.

Nvidia GPUs have two modes. One is the usual displ ay mode

that interacts with a computer monitor. The second is a

compute or CUDA mode used for general purpose proce ssing.

Below is a block diagram of an Nvidia G80 series GP U in

CUDA mode:

5

FIGURE 2 – Physical Layout of Nvidia G80 Series GPU [4]

It should be noted that a GPU has its own dedicated

global device memory (see FIGURE 2). For each GPU

application or kernel that is launched this memory must be

allocated and the data to be processed must be tran sferred

from the host memory. This is normally the step th at takes

the time not required for CPU computing (thus one o f the

GPGPU overheads vs. CPU computing). Which means tr ansfer

must be factored into the speedup calculation. In other

words the time consuming procedure of transferring data

between the host and the device must be justified b efore an

actual speedup is produced.

 FIGURE 3 below gives a little bit closer look at a

portion of FIGURE 2. It indicates two of the most

important parts of the GPU in CUDA mode to consider for

6

proper program design. The Streaming Multi-Process or(SM)

processes at the thread-block level and is made up of

Streaming Processors (SPs). SPs process data at th e thread

level. The basic processing unit is a thread. A t hread-

block is made up of many different threads, and mul tiple

blocks are arranged in a grid. A grid could also b e

thought of as a kernel, because when a kernel funct ion made

of device code (code for the GPU) is launched the e ntire

context of the function on the GPU is a grid.

FIGURE 3 – Streaming Multi-Processor(SM) Made Up of
Streaming Processor(SP) “Cluster”[5]

To effectively program in CUDA it is necessary to k now

GPU limitations as far as memory, grid size, thread -block

size, and the number of concurrent threads that can be

handled. For instance this experiment is programme d for an

Nvidia GeForce 8800 GTX GPU. This GPU has 768 MB o f device

memory, a maximum of 512 threads allowed per thread -block,

7

and 768 concurrent threads on one SM. These number s are

totally dependent upon the specific model of GPU us ed.

 Another important idea behind CUDA not explored fu lly

in this experiment is shared memory. This memory r esides

within each SM. It is shared between all threads i n a

thread-block and allows much faster access than glo bal

device memory. Shared memory can greatly decrease

computation time by limiting the number of costly a ccesses

to global memory. Shared memory is discussed somew hat

further in Chapter V CONCLUSIONS AND FUTURE WORKS.

 Now that the reader has some understanding of CUDA

basics, here is a brief discussion of the setup of the

environment. It is necessary to have a CUDA 2.2 en abled

GPU from Nvidia. After this has been confirmed, do wnload

and install CUDA 2.2 from Nvidia’s website followin g the

instructions provided on the web site in the form o f the

Quick Start Guide.

8

CHAPTER III

IMPLEMENTAION OF BLOWFISH ENCRYPTION

A. BLOWFISH ALGORITHM

Blowfish is well documented and is described by Bru ce

Schneier [6], its creator in the steps below:

“Blowfish is a variable-length key, 64-bit block
cipher. The algorithm consists of two parts: a
key-expansion part and a data- encryption part.
Key expansion converts a key of at most 448 bits
into several subkey arrays totaling 4168 bytes.
Data encryption occurs via a 16-round Feistel
network. Each round consists of a key-dependent
permutation, and a key- and data-dependent
substitution. All operations are XORs and
additions on 32-bit words. The only additional
operations are four indexed array data lookups
per round.
Subkeys:
Blowfish uses a large number of subkeys. These
keys must be precomputed before any data
encryption or decryption.

1. The P-array consists of 18 32-bit subkeys:
P1, P2,..., P18.

2. There are four 32-bit S-boxes with 256 entries
each:
S1,0, S1,1,..., S1,255;
S2,0, S2,1,..,, S2,255;
S3,0, S3,1,..., S3,255;
S4,0, S4,1,..,, S4,255.
The exact method used to calculate these subkeys
will be described later.

Encryption:
Blowfish is a Feistel network consisting of 16
rounds (see Figure 4). The input is a 64-bit data
element, x.
Divide x into two 32-bit halves: xL, xR
For i = 1 to 16:
xL = xL XOR Pi
xR = F(xL) XOR xR

9

Swap xL and xR
Next i
Swap xL and xR (Undo the last swap.)
xR = xR XOR P17
xL = xL XOR P18
Recombine xL and xR
Function F (see Figure 5):
Divide xL into four eight-bit quarters: a, b, c,
and d
F(xL) = ((S1,a + S2,b mod 2 32) XOR S3,c) + S4,d
mod 2 32

Decryption is exactly the same as encryption,
except that P1, P2,..., P18 are used in the
reverse order.
Implementations of Blowfish that require the
fastest speeds should unroll the loop and ensure
that all subkeys are stored in cache.

Generating the Subkeys:
The subkeys are calculated using the Blowfish
algorithm. The exact method is as follows:

1. Initialize first the P-array and then the four
S-boxes, in order, with a fixed string. This
string consists of the hexadecimal digits of pi
(less the initial 3). For example:
P1 = 0x243f6a88
P2 = 0x85a308d3
P3 = 0x13198a2e
P4 = 0x03707344

2. XOR P1 with the first 32 bits of the key, XOR
P2 with the second 32-bits of the key, and so on
for all bits of the key (possibly up to P14).
Repeatedly cycle through the key bits until the
entire P-array has been XORed with key bits. (For
every short key, there is at least one equivalent
longer key; for example, if A is a 64-bit key,
then AA, AAA, etc., are equivalent keys.)

3. Encrypt the all-zero string with the Blowfish
algorithm, using the subkeys described in steps
(1) and (2).

4. Replace P1 and P2 with the output of step (3).

10

5. Encrypt the output of step (3) using the
Blowfish algorithm with the modified subkeys.

6. Replace P3 and P4 with the output of step (5).

7. Continue the process, replacing all entries of t he
P- array, and then all four S-boxes in order, with the
output of the continuously-changing Blowfish
algorithm.”

 Below are two figures that demonstrate the Feistel

network that Blowfish uses as well as the operation s

performed with in the Feistel or F-Function.

FIGURE 4 – Illustration Of Blowfish Feistel Network

11

FIGURE 5 – Illustration Of Feistel Function In Blow fish

B. CPU IMPLEMENTATION

Below is C# code for the implementation of Blowfish

used for this experiment. It deviates from the alg orithm

described in the above section in a few ways that m ay

compromise security, but do not impact the runtime of the

encryption process. First, the S-Box and P-Array v alues

are randomly generated rather than derived from the

hexadecimal digits of pi and computed with respect to the

key. This decision was made simply to create neate r code.

Second, the plaintext data is pre-processed into an array

of 32-bit integer values. Rather than taking 64 bi ts of

data and splitting it into two 32-bit halves, this

implementation takes two 32-bit entries from an arr ay.

12

This is to allow the use of a simple data structure .

Third, only Blowfish encryption has been implemente d.

Decryption was not implemented because it uses the same

algorithm with reversed application of the P-Array.

Program.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using GASS.CUDA;
using GASS.CUDA.Types;
using System.IO;

namespace Blowfish_CUDA
{
 class Program
 {
 const int BLOCK_SIZE = 512;
 static Random rand = new Random(DateTime.To day.Millisecond);

 static void Main(string[] args)
 {
 string tStr,rStr;
 Console.WriteLine("This Program will co mpare the runtime of
CPU implementation of Blowfish with CUDA implementa tion of the same
algorithm");

 //Test to make sure CPU and GPU obtain the same result
 Console.WriteLine("Test to make sure CP U and GPU obtain
same result: ");
 TestBlfsh();

 //Random data or Real data
 for(int l = 0;l<Int32.MaxValue;l++){
 Console.WriteLine("Enter Number of blocks to use
between 0 and 65535: ");
 tStr = Console.ReadLine();
 uint t = UInt32.Parse(tStr);
 Console.WriteLine("Enter the number of times to
use this size data: ");
 rStr = Console.ReadLine();
 uint r = UInt32.Parse(rStr);
 for(int x = 0;x<r;x++){
 string type;
 Console.WriteLine("For real dat a enter 1. Enter
anything else for random data.");
 type = Console.ReadLine();
 if (type == "1")

13

 {
 RealBlowfishCompare(t);
 }
 else
 {
 BlowfishCompare(t);
 }
 }
 }

 }

 //Populate random data of the specified siz e
 static uint[] GetData(uint i)
 {
 i = 2 * i;
 uint[] retD = new uint[i];
 for (int k = 0; k < i; k++)
 {
 retD[k] = (uint)rand.Next();
 }
 return (retD);
 }

 static uint[] GetEmptyData(uint i)
 {
 i = 2 * i;
 uint fourBytes = 0;
 uint[] retD = new uint[i];
 for (int k = 0; k < i; k++)
 {
 retD[k] = fourBytes;
 }
 return (retD);
 }

 // Random SBoxes
 static uint[,] fillSBoxes()
 {
 uint[,] s = new uint[4,256];
 for (uint x = 0; x < 4; x++)
 {
 for (uint y = 0; y < 256; y++)
 {
 s[x, y] = (uint)rand.Next();
 }
 }
 return (s);
 }

 //2D Array for CUDA
 static uint[] fillSBoxes(uint r)
 {
 uint[] s = new uint[1040];
 for (int i = 0; i < 1040; i++)
 {
 s[i] = (uint)rand.Next();

14

 }
 return (s);
 }

 static uint[] fillPArray()
 {
 uint[] p = new uint[18];
 for (int i = 0; i < 18; i++)
 {
 p[i] = (uint)rand.Next();
 }
 return (p);
 }

 static void RealBlowfishCompare(uint t)
 {
 FileStream file = new
FileStream(@"C:\CUDA2_2\sdk\CUDA.NET\JAFEIS01\Blowf ish_CUDA\eightbytes.
txt", FileMode.Open);
 uint s = 1024 * t; //65535 is the max n umber accepted for
number of blocks by cuda.Launch() and so the max va lue for t
 uint[] PlainText = new uint[s];
 try
 {
 byte[] eight = new byte[8];

 //Get the selected amount of data
 for (int y = 0; y < s; y += 2)
 {
 for (int v = 0; v < 8; v++)
 {
 eight[v] = (byte)file.ReadB yte();
 }

 file.Position = 0;

 uint Left = (uint)(eight[0] << 24 | eight[1] << 16
| eight[2] << 8 | eight[3]);
 uint Right = (uint)(eight[4] << 24 | eight[5] << 16
| eight[6] << 8 | eight[7]);
 PlainText[y] = Left;
 PlainText[y + 1] = Right;
 }
 }
 finally
 {
 file.Close();
 }

 uint[] sArr = new uint[2];
 sArr[0] = s; sArr[1] = 0;
 //uint[] hP = PlainText;
 uint[] hC = GetEmptyData(s/2);
 uint[] returnedC = GetEmptyData(s/2);
 uint[,] SBoxes = new uint[4, 256];
 uint[] SBoxesC = new uint[1040];
 uint[] PArray = new uint[18];

15

 SBoxes = fillSBoxes();
 SBoxesC = fillSBoxes(s);
 PArray = fillPArray();

 //Initialize CUDA using first device
 CUDA cuda = new CUDA(0, true);

 //Get kernel functions
 cuda.LoadModule(Path.Combine(Environmen t.CurrentDirectory,
"blfsh_kernel.cubin"));
 CUfunction Blowfish =
cuda.GetModuleFunction("Blowfish_Encrypt");

 CUdeviceptr dP, dC, pArr, sBox, ds;

 // Create events for performance timing using GPU clock
 CUevent start = cuda.CreateEvent();
 CUevent end = cuda.CreateEvent();
 CUevent cstart = cuda.CreateEvent();
 CUevent cend = cuda.CreateEvent();
 cuda.RecordEvent(start);

 // Allocate device memory and copy host memory to device
 dP = cuda.CopyHostToDevice<uint>(PlainT ext);
 //dC = cuda.CopyHostToDevice<uint>(hC);
 pArr = cuda.CopyHostToDevice<uint>(PArr ay);
 sBox = cuda.CopyHostToDevice<uint>(SBox esC);
 ds = cuda.CopyHostToDevice<uint>(sArr);

 // Set kernel function execution parame ters
 int offset = 0;
 cuda.SetParameter(Blowfish, offset, (ui nt)dP.Pointer);
offset += IntPtr.Size;
 //cuda.SetParameter(Blowfish, offset, (uint)dC.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)pArr.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)sBox.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)ds.Pointer);

 // Launch kernel function
 cuda.SetFunctionBlockShape(Blowfish, BL OCK_SIZE, 1, 1);

 cuda.RecordEvent(cstart);
 cuda.Launch(Blowfish, (int)(s / (2*BLOC K_SIZE)), 1);
 cuda.RecordEvent(cend);

 // Copy device (GPU) result to host (CP U) memory
 cuda.CopyDeviceToHost<uint>(dP, returne dC);

 cuda.RecordEvent(end);
 cuda.SynchronizeContext();

 // Calculate GPU runtime
 float GpuTime = cuda.ElapsedTime(start, end);

16

 Console.WriteLine("GPU time:\t\t\t{0} m s\n", GpuTime);

 float GpuCompTime = cuda.ElapsedTime(cs tart, cend);
 Console.WriteLine("GPU Computation time :\t\t{0} ms\n",
GpuCompTime);

 float GpuTTime = GpuTime - GpuCompTime;
 Console.WriteLine("GPU Transfer time:\t \t{0} ms\n",
GpuTTime);

 //Time CPU runtime
 System.Diagnostics.Stopwatch CpuTime =
System.Diagnostics.Stopwatch.StartNew();

 hC = BlowfishCPU(PlainText, hC, PArray, SBoxes);

 Console.WriteLine("CPU time:\t\t\t{0} m s\n",
CpuTime.Elapsed.TotalMilliseconds);

 // Free device (GPU) resources
 cuda.UnloadModule();
 cuda.Free(dP);
 cuda.Free(pArr);
 cuda.Free(sBox);
 cuda.Free(ds);
 }

 static void BlowfishCompare(uint t)
 {

 //Generate data (eight bytes X s) s wil l be total number of
threads
 uint s = 512*t; //65535 is the max numb er accepted for
number of blocks by cuda.Launch() and so the max va lue for t
 uint[] sArr = new uint[2];
 sArr[0] = s; sArr[1] = 0;
 uint[] hP = GetData(s);
 uint[] hC = GetEmptyData(s);
 uint[] returnedC = GetEmptyData(s);
 uint[,] SBoxes = new uint[4, 256];
 uint[] SBoxesC = new uint[1040];
 uint[] PArray = new uint[18];
 SBoxes = fillSBoxes();
 SBoxesC = fillSBoxes(s);
 PArray = fillPArray();

 //Initialize CUDA using first device
 CUDA cuda = new CUDA(0, true);

 //Get kernel functions
 cuda.LoadModule(Path.Combine(Environmen t.CurrentDirectory,
"blfsh_kernel.cubin"));
 CUfunction Blowfish =
cuda.GetModuleFunction("Blowfish_Encrypt");

 CUdeviceptr dP, dC, pArr, sBox, ds;

17

 // Create events for performance timing using GPU clock
 CUevent start = cuda.CreateEvent();
 CUevent end = cuda.CreateEvent();
 CUevent cstart = cuda.CreateEvent();
 CUevent cend = cuda.CreateEvent();
 cuda.RecordEvent(start);

 // Allocate device memory and copy host memory to device
 dP = cuda.CopyHostToDevice<uint>(hP);
 dC = cuda.CopyHostToDevice<uint>(hC);
 pArr = cuda.CopyHostToDevice<uint>(PArr ay);
 sBox = cuda.CopyHostToDevice<uint>(SBox esC);
 ds = cuda.CopyHostToDevice<uint>(sArr);

 // Set kernel function execution parame ters
 int offset = 0;
 cuda.SetParameter(Blowfish, offset, (ui nt)dP.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)dC.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)pArr.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)sBox.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)ds.Pointer);

 // Launch kernel function
 cuda.SetFunctionBlockShape(Blowfish, BL OCK_SIZE, 1, 1);

 cuda.RecordEvent(cstart);
 cuda.Launch(Blowfish, (int)(s/BLOCK_SIZ E), 1);
 cuda.RecordEvent(cend);

 // Copy device (GPU) result to host (CP U) memory
 cuda.CopyDeviceToHost<uint>(dC, returne dC);

 cuda.RecordEvent(end);
 cuda.SynchronizeContext();

 // Calculate GPU runtime
 float GpuTime = cuda.ElapsedTime(start, end);
 Console.WriteLine("GPU time:\t\t\t{0} m s\n", GpuTime);

 float GpuCompTime = cuda.ElapsedTime(cs tart, cend);
 Console.WriteLine("GPU Computation time :\t\t{0} ms\n",
GpuCompTime);

 float GpuTTime = GpuTime - GpuCompTime;
 Console.WriteLine("GPU Transfer time:\t \t{0} ms\n",
GpuTTime);

 //Time CPU runtime
 System.Diagnostics.Stopwatch CpuTime =
System.Diagnostics.Stopwatch.StartNew();

 hC = BlowfishCPU(hP,hC,PArray,SBoxes);

18

 Console.WriteLine("CPU time:\t\t\t{0} m s\n",
CpuTime.Elapsed.TotalMilliseconds);

 // Free device (GPU) resources
 cuda.UnloadModule();
 cuda.Free(dP);
 cuda.Free(pArr);
 cuda.Free(sBox);
 cuda.Free(ds);
 }

 static uint[] BlowfishCPU(uint[] plain, uin t[] crypt, uint[] p,
uint[,] s)
 {
 int plnSize = plain.Length;
 Console.WriteLine(plnSize);
 int N = 16; //N defines the number of r ounds

 //Iterate through each block of plainte xt
 for (int i = 0; i < plnSize; i+=2)
 {
 //64 bit block split into left and right halves
 uint Xl = plain[i];
 uint Xr = plain[i+1];
 uint temp = 0;

 //Iterate through each round of Blo wfish
 for (int k = 0; k < N; k++)
 {
 Xl = Xl ^ p[k];

 //Function F start
 uint a, b, c, d;
 uint y;

 d = (uint)(Xl & 0xFF);
 Xl >>= 8;
 c = (uint)(Xl & 0xFF);
 Xl >>= 8;
 b = (uint)(Xl & 0xFF);
 Xl >>= 8;
 a = (uint)(Xl & 0xFF);
 y = s[0,a] + s[1,b];
 y = y ^ s[2,c];
 y = y + s[3,d];
 //function F end

 // y is the result from functio n F
 Xr = y ^ Xr;

 temp = Xl;
 Xl = Xr;
 Xr = temp;
 }

 temp = Xl;

19

 Xl = Xr;
 Xr = temp;

 Xr = Xr ^ p[N];
 Xl = Xl ^ p[N + 1];

 crypt[i] = Xl;
 crypt[i + 1] = Xr;
 }
 return (crypt);
 }

 static void TestBlfsh()
 {
 //Generate data (eight bytes X s) s wil l be total number of
threads
 uint s = 1; //65535 is the max number a ccepted for number
of blocks by cuda.Launch() and so the max value for t
 uint[] sArr = new uint[2];
 sArr[0] = s; sArr[1] = 0;
 uint[] hP = GetData(s);
 uint[] hC = GetEmptyData(s);
 uint[] returnedC = GetEmptyData(s);
 uint[,] SBoxes = new uint[4, 256];
 uint[] SBoxesC = new uint[1040];
 uint[] PArray = new uint[18];
 SBoxes = fillSBoxes();
 SBoxesC = fillSBoxes(s);
 PArray = fillPArray();

 hP = BlowfishCPU(hP, hC, PArray, SBoxes);

 //Initialize CUDA using first device
 CUDA cuda = new CUDA(0, true);

 //Get kernel functions
 cuda.LoadModule(Path.Combine(Environmen t.CurrentDirectory,
"blfsh_kernel.cubin"));
 CUfunction Blowfish =
cuda.GetModuleFunction("Test_Blowfish_Encrypt");

 CUdeviceptr dP, dC, pArr, sBox, ds;

 // Allocate device memory and copy host memory to device
 dP = cuda.CopyHostToDevice<uint>(hP);
 dC = cuda.CopyHostToDevice<uint>(hC);
 pArr = cuda.CopyHostToDevice<uint>(PArr ay);
 sBox = cuda.CopyHostToDevice<uint>(SBox esC);
 ds = cuda.CopyHostToDevice<uint>(sArr);
 //dC = cuda.Allocate<uint>(hC);

 // Set kernel function execution parame ters
 int offset = 0;
 cuda.SetParameter(Blowfish, offset, (ui nt)dP.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)dC.Pointer);
offset += IntPtr.Size;

20

 cuda.SetParameter(Blowfish, offset, (ui nt)pArr.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)sBox.Pointer);
offset += IntPtr.Size;
 cuda.SetParameter(Blowfish, offset, (ui nt)ds.Pointer);

 // Launch kernel function
 cuda.SetFunctionBlockShape(Blowfish, 8, 1, 1);
 cuda.Launch(Blowfish, 1, 1);

 // Copy device (GPU) result to host (CP U) memory
 cuda.CopyDeviceToHost<uint>(dC, returne dC);
 cuda.SynchronizeContext();

 // CPU version test run
 //hC = BlowfishCPU(hP, hC, PArray, SBox es);

 // Make sure the GPU and CPU results ag ree
 bool flagit = true;
 for (int g = 0; g < s; g++)
 {
 if (hC[g] != returnedC[g])
 {
 flagit = false;
 Console.WriteLine("FAIL");
 break;
 }
 }

 if (flagit)
 {
 Console.WriteLine("PASS");
 }

 //Free CUDA resources
 cuda.UnloadModule();
 cuda.Free(dP);
 cuda.Free(dC);
 cuda.Free(pArr);
 cuda.Free(sBox);
 cuda.Free(ds);
 }
 }
}

C. CUDA IMPLEMENTATION

 Knowing how CUDA allows a programmer to fully use a

GPU to the fullest possible extent for computation is

necessary to grasp how to program a serial algorith m as a

parallel algorithm and then to improve the code. F irst, it

21

is productive to note that there is a possibility t hat a

certain algorithm may not exhibit characteristics t hat

allow it to be programmed in a very parallel manner . In

this case it may be that there are pieces that coul d be

considered parallel. Even if this is not the case it is

possible that a translated version of the CPU code may be

accelerated simply by use of the GPU. However, usi ng

knowledge of CUDA, it is normally possible to see l arge,

particularly computationally intensive, or repetiti ve

pieces of code. If the complexity of these portion s is

great enough there is a high chance that parallelis m

exists. Even if it is not immediately obvious, som e

perspective will allow a programmer to find the

parallelism.

Identifying parallelism is the first step in

programming properly for CUDA. Blowfish, like othe r

block ciphers, exhibits parallelism. Certainly the re

are parts that cannot be made parallel. For one, t he

16 rounds in the encryption and decryption itself m ust

be done in a specific, sequential order. If a sing le

round of the cipher is to be completed by one threa d,

then 16 threads would each work on a single block o f

data. This does not exhibit parallelism in the sen se

that it is a MISD (Multiple Instruction Single Data)

22

operation. To exhibit the type of parallelism that

can be exploited by the GPU architecture it would b e

beneficial to find a SIMD (Single Instruction Multi ple

Data) operation. Blowfish does exhibit parallelism of

this form by block of data. Because each block goe s

through the same process in a sequential order (a

single sequential set of instructions for each of t he

many blocks of data) it is possible to write a

parallel algorithm where each block of data would b e

encrypted by a single thread. This experiment

exploits the data-level parallelism exhibited in

Blowfish. Other instances of parallelism may exist

within the Blowfish algorithm; however, this is the

first attempt at finding an area exhibiting paralle l

traits to exploit in this manner. Future attempts may

bring more promising results. Some ideas drawn fro m

this experiment are noted in the Chapter V CONCLUSI ONS

AND FUTURE WORKS of this thesis as possible paths f or

future research.

The second step to properly program an algorithm fo r

CUDA is deciding how to divide the workload, by def ining

what is to be done by each thread. It is best in t his

instance to allow each thread to do all operations on one

entire block of data. There are two major factors that

23

influence this decision; first, the size of the dat a being

operated upon, second, the types of operations bein g done

to the data. It is appropriate that a single threa d do all

work for one block of data because the data size is small

at 64 bits, and each operation done to the data is

efficiently executed by the GPU(most operations are AND,

OR, or XOR).

Because each thread does all of the work for one bl ock

of data the third step, coding, is simplified somew hat.

Due to this fact most of the CPU Blowfish function code can

be recycled. The only decision left at this point is

thread-block size. Because each SM (Streaming

Multiprocessor) works on one thread-block of data a t one

time and contains eight SP (Streaming Processors) a thread-

block containing eight threads will occupy the enti re SM,

albeit for a short time before moving onto the next thread-

block. This experiment has revealed that a small t hread-

block size severely limits the size of the data tha t can be

processed. Therefore, it uses thread-blocks contai ning 512

threads, the maximum number allowable for the GPU u sed.

These settings are issued in the following two line s of

code taken from the CPU BlowfishCompare function. Both are

determined before computation begins on the GPU and

therefore are set in CPU code. Cuda.SetFunctionBlo ckShape

24

accepts the number of threads per thread-block as t he

second parameter and cuda.Launch accepts the total number

of thread-blocks used to process all data.

1) cuda.SetFunctionBlockShape(Blowfish, BLOCK_SIZE ,
1, 1);

2) cuda.Launch(Blowfish, (int)(s/BLOCK_SIZE), 1);
As discussed earlier, CUDA is implemented as an

extension of the C programming language. Below is the

kernel function implementation of Blowfish used in this

experiment. It is important to note that all acces ses to

kernel function parameters are global memory access es.

Chapter V CONCLUSIONS AND FUTURE WORKS discusses ch anges to

this, including the use of shared memory. In gener al this

works in the same way as the CPU implementation exc ept for

the fact that in the CUDA code a thread takes the p lace of

an iteration through the outer for loop in the CPU code.

Another small difference is the transformation of t he two-

dimensional S-Box configuration in CPU code to its one-

dimensional CUDA counterpart. This decision was ma de for a

simpler transfer of the S-Boxes to GPU memory.

blfsh_kernel.cu

// Blowfish Kernel function

#ifndef _BLOWFISH_KERNEL_H_
#define _BLOWFISH_KERNEL_H_

#include <stdio.h>

__device__ unsigned long cipher[];

25

extern "C" __global__ void Blowfish_Encrypt(unsigne d long* plain,
unsigned long* P, unsigned long* S, unsigned long s ize){
 //block index
 int bx = blockIdx.x;
 int by = blockIdx.y;

 //thread index
 int tx = threadIdx.x;
 int ty = threadIdx.y;

 //right and left halves' indeces
 int idxl = bx*16 + tx*2;
 int idxr = bx*16 + tx*2 + 1;

 //N number of rounds
 int N = 16;

 unsigned long Xl;
 unsigned long Xr;
 unsigned long temp;
 short i;

 Xl = *(plain + idxl);
 Xr = *(plain + idxr);
 //Synchronize so that data is loaded
 __syncthreads();

 for (i = 0; i < 16; ++i) {
 Xl = Xl ^ P[i];

 //Function F start
 unsigned short a, b, c, d;
 unsigned int y;

 d = (unsigned short)(Xl & 0xFF);
 Xl >>= 8;
 c = (unsigned short)(Xl & 0xFF);
 Xl >>= 8;
 b = (unsigned short)(Xl & 0xFF);
 Xl >>= 8;
 a = (unsigned short)(Xl & 0xFF);
 y = S[a] + S[256+b];
 y = y ^ S[512+c];
 y = y + S[768+d];//function F end

 // y in place of function F
 Xr = y ^ Xr;

 temp = Xl;
 Xl = Xr;
 Xr = temp;
 }

 temp = Xl;
 Xl = Xr;
 Xr = temp;

26

 Xr = Xr ^ P[N];
 Xl = Xl ^ P[N + 1];
 __syncthreads();
}

extern "C" __global__ void Test_Blowfish_Encrypt(un signed long* plain,
unsigned long* cipher,unsigned long* P, unsigned lo ng* S, unsigned long
size){
 //block index
 int bx = blockIdx.x;
 int by = blockIdx.y;

 //thread index
 int tx = threadIdx.x;
 int ty = threadIdx.y;

 //right and left halves' indeces
 int idxl = bx*16 + tx*2;
 int idxr = bx*16 + tx*2 + 1;

 //N number of rounds
 int N = 16;

 unsigned long Xl;
 unsigned long Xr;
 unsigned long temp;
 short i;

 Xl = *(plain + idxl);
 Xr = *(plain + idxr);
 //Synchronize so that data is loaded
 __syncthreads();

 for (i = 0; i < 16; ++i) {
 Xl = Xl ^ P[i];

 //Function F start
 unsigned short a, b, c, d;
 unsigned int y;

 d = (unsigned short)(Xl & 0xFF);
 Xl >>= 8;
 c = (unsigned short)(Xl & 0xFF);
 Xl >>= 8;
 b = (unsigned short)(Xl & 0xFF);
 Xl >>= 8;
 a = (unsigned short)(Xl & 0xFF);
 y = S[a] + S[256+b];
 y = y ^ S[512+c];
 y = y + S[768+d];//function F end

 // y in place of function F
 Xr = y ^ Xr;

 temp = Xl;
 Xl = Xr;

27

 Xr = temp;
 }

 temp = Xl;
 Xl = Xr;
 Xr = temp;

 Xr = Xr ^ P[N];
 Xl = Xl ^ P[N + 1];
 __syncthreads();
}

#endif

The following are steps to execute this experiment

using Visual studio 2008 and CUDA 2.2:

1) Create a C# project in Visual Studio 2008.

2) Copy Source Code found earlier in this chapter i nto

the project.

3) Match all project references shown in FIGURE 6

below. This must be done for the CUDA.NET “using”

statements in Program.cs.

4) Locate the C/C++ compiler executable on your

system. Click on Project in the Visual Studio

Menubar and then click on ProjectName

Properties(probably the last entry in the list).

5) Go to the Pre/Post-build events tab and in the

Post-Build events text box type the following: nvcc

blfsh_kernel.cu --cubin --compiler-bindir="C:\Progr am

Files\Microsoft Visual Studio 9.0\VC\bin"

6) Match the Directory Structure of the project sho wn

in FIGURE 7 below.

28

7) Now build and execute the program.

FIGURE 6 - Blowfish_CUDA References

FIGURE 7 - Blowfish_CUDA Project Directory Structur e

29

FIGURE 8 - Post-Build Event Visual

30

CHAPTER IV

 RESULTS AND DISCUSSION OF RESULTS

TABLE I

CPU AND GPU RUNTIME FOR VARIOUS DATA SIZES

Number
of

Thread
Blocks

Size
(KB)

GPU
Transfer
Time (ms)

GPU
Computation
Time (ms)

GPU
Runtime
(ms)

CPU
Runtime
(ms)

Speed Up
Factor

65535 262140 209.055 0.513056 209.5681 21218.35 101 .248

32000 128000 104.1726 0.25872 104.4313 10432.79 99. 90099

16000 64000 52.39123 0.131168 52.5224 5092.851 96.9 6531

8000 32000 41.41222 0.082688 41.49491 2435.688 58.6 9849

4000 16000 22.30045 0.03872 22.33917 1259.037 56.36 008

2000 8000 12.43674 0.022752 12.45949 606.6368 48.68 873

1000 4000 7.630848 0.015232 7.64608 305.3618 39.937 04

500 2000 5.157984 0.011456 5.16944 162.2104 31.3787 2

100 400 2.422176 0.008064 2.43024 33.189 13.65668

50 200 2.127232 0.008384 2.135616 16.2128 7.591627

25 100 1.92288 0.007808 1.930688 7.7382 4.008001

1 4 1.688256 0.007232 1.695488 0.4038 0.238162

TABLE II

PERFORMANCE MEASURES FOR 65535 THREAD-BLOCKS

Run #
GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 216.9714 0.606336 217.577736 21096.2671 96.959677 44

2 209.055 0.513056 209.568056 21218.3452 101.247993 6

3 209.5557 0.513024 210.068724 23566.2291 112.18342 57

4 209.0928 0.513088 209.605888 20995.928 100.168598 3

5 209.6069 0.513216 210.120116 20873.2834 99.339767 16

6 209.4368 0.513248 209.950048 20991.7223 99.984365 33

7 209.2536 0.51296 209.76656 21077.3445 100.4800026

8 209.1368 0.51408 209.65088 20987.6839 100.1077787

9 209.3771 0.513952 209.891052 20996.2555 100.03406 67

10 209.1601 0.512992 209.673092 21025.8293 100.2791 016

31

TABLE III
PERFORMANCE MEASURES FOR 32000 THREAD-BLOCKS

Run #

GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 111.237 0.347104 111.584104 11369.3434 101.89035

2 103.9436 0.254336 104.197936 10888.8625 104.50171

3 103.3067 0.254144 103.560844 13232.3277 127.77346 3

4 103.5707 0.254368 103.825068 12050.6759 116.06711 3

5 103.2256 0.25456 103.48016 12047.9979 116.428095

6 104.1726 0.25872 104.43132 10432.7921 99.9009885

7 103.7636 0.254176 104.017776 10446.5671 100.43059 5

8 103.1958 0.25536 103.45116 12291.4898 118.814422

9 103.0238 0.25552 103.27932 12768.6121 123.631837

10 103.6873 0.25424 103.94154 13000.4769 125.074892

TABLE IV

PERFORMANCE MEASURES FOR 16000 THREAD-BLOCKS

Run #
GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 60.60598 0.224576 60.830556 5680.6046 93.3840651

2 52.71184 0.130752 52.842592 6131.1593 116.026846

3 52.48378 0.130816 52.614596 6367.2855 121.017474

4 52.96282 0.13088 53.0937 6127.8728 115.416194

5 52.52346 0.131232 52.654692 6011.1833 114.162349

6 52.39123 0.131168 52.522398 5092.8507 96.9653118

7 52.98938 0.13168 53.12106 5223.4985 98.3319704

8 52.42531 0.132096 52.557406 5991.0949 113.99145

9 52.39341 0.132 52.52541 5570.661 106.056497

10 52.95222 0.131008 53.083228 6513.1562 122.697064

32

TABLE V
PERFORMANCE MEASURES FOR 8000 THREAD-BLOCKS

Run #

GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 49.01427 0.16464 49.17891 2430.0354 49.4121444

2 40.79958 0.069024 40.868604 2506.2436 61.324424

3 40.78259 0.068928 40.851518 2618.539 64.09894

4 41.36323 0.069248 41.432478 2509.1531 60.5600539

5 40.79446 0.06928 40.86374 2507.107 61.3528522

6 40.92758 0.069216 40.996796 2637.9763 64.3459138

7 41.41222 0.082688 41.494908 2435.6884 58.698489

8 40.84682 0.07008 40.9169 2435.2913 59.5179816

9 42.37037 0.07024 42.44061 2754.5848 64.9044583

10 41.41485 0.06896 41.48381 2443.9241 58.9127204

TABLE VI

PERFORMANCE MEASURES FOR 4000 THREAD-BLOCKS

Run #
GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 29.95341 0.133152 30.086562 1245.0502 41.3822689

2 21.7072 0.038272 21.745472 1248.33925 57.4068592

3 22.05629 0.0384 22.09469 1297.9654 58.745581

4 22.30045 0.03872 22.33917 1259.0373 56.3600752

5 21.84291 0.03808 21.88099 1255.9943 57.4011642

6 21.62851 0.038016 21.666526 1347.2964 62.1833145

7 22.25155 0.038016 22.289566 1209.424 54.2596478

8 21.73011 0.038016 21.768126 1211.9089 55.6735522

9 21.69107 0.038048 21.729118 1337.3598 61.5468976

10 22.50925 0.038496 22.547746 1217.0087 53.9747388

33

TABLE VII
PERFORMANCE MEASURES FOR 2000 THREAD-BLOCKS

Run #

GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 20.0951 0.121664 20.216764 611.8345 30.2637207

2 12.13632 0.022656 12.158976 603.9169 49.6684014

3 11.89958 0.022624 11.922204 658.9251 55.2687322

4 12.46518 0.02288 12.48806 628.9473 50.3638916

5 12.25766 0.0232 12.28086 625.9028 50.9657141

6 12.00963 0.023246 12.032876 655.4972 54.4755219

7 12.43674 0.022752 12.459492 606.6368 48.6887266

8 12.09114 0.023648 12.114788 605.1907 49.9547082

9 11.91776 0.024032 11.941792 657.904 55.092569

10 12.46051 0.023968 12.484478 609.8583 48.8493231

TABLE VIII
PERFORMANCE MEASURES FOR 1000 THREAD-BLOCKS

Run #

GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 14.9841 0.107456 15.091556 305.5179 20.2442942

2 6.93904 0.014848 6.953888 303.6866 43.6714828

3 6.981312 0.014976 6.996288 333.2804 47.6367468

4 7.630848 0.015232 7.64608 305.3618 39.9370396

5 6.983072 0.0152 6.998272 303.3122 43.3410133

6 7.048288 0.015232 7.06352 3317594 469679.99

7 7.499008 0.015872 7.51488 304.5999 40.5329027

8 6.940768 0.016096 6.956864 304.6862 43.7964865

9 7.095968 0.016256 7.112224 330.2393 46.4326349

10 7.620416 0.015136 7.635552 301.563 39.4945906

34

TABLE IX
PERFORMANCE MEASURES FOR 500 THREAD-BLOCKS

Run #

GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 12.46422 0.102112 12.566332 163.0478 12.9749715

2 4.541376 0.01104 4.552416 155.9118 34.2481443

3 5.041824 0.011072 5.052896 167.5094 33.1511672

4 4.521344 0.013152 4.534496 170.4574 37.591256

5 4.614592 0.011232 4.625824 153.0522 33.0864728

6 4.579616 0.011072 4.590688 154.5119 33.6576783

7 5.157984 0.011456 5.16944 162.2104 31.378718

8 4.423072 0.011264 4.434336 171.4318 38.6600835

9 4.543968 0.01104 4.555008 152.8975 33.5669004

10 4.467648 0.011296 4.478944 154.8735 34.5781282

TABLE X

PERFORMANCE MEASURES FOR 100 THREAD-BLOCKS

Run #
GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 10.3657 0.099872 10.465572 32.4576 3.10136895

2 2.376192 0.00816 2.384352 33.1286 13.8941733

3 2.37952 0.008256 2.387776 34.0425 14.2569906

4 2.430464 0.008128 2.438592 33.029 13.5442911

5 2.410528 0.008032 2.41856 33.5599 13.8759841

6 2.3888 0.008448 2.397248 32.8621 13.7082605

7 2.391296 0.00816 2.399456 41.4784 17.286585

8 2.422176 0.008064 2.43024 33.189 13.6566759

9 2.387456 0.008256 2.395712 33.162 13.8422315

10 2.391488 0.008224 2.399712 33.5271 13.9713016

35

TABLE XI
PERFORMANCE MEASURES FOR 50 THREAD-BLOCKS

Run #

GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 10.0415 0.09952 10.14102 16.644 1.64125502

2 2.087296 0.007712 2.095008 16.5233 7.88698659

3 2.084992 0.007904 2.092896 16.7076 7.98300537

4 2.064128 0.008 2.072128 16.3162 7.87412747

5 2.099616 0.007744 2.10736 19.4423 9.2259035

6 2.074048 0.00784 2.081888 16.3739 7.86492837

7 2.110336 0.008128 2.118464 20.4599 9.65789364

8 2.127232 0.008384 2.135616 16.2128 7.59162696

9 2.084128 0.007872 2.092 16.0113 7.65358509

10 2.125344 0.011456 2.1368 16.3656 7.65892924

TABLE XII

PERFORMANCE MEASURES FOR 25 THREAD-BLOCKS

Run #
GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 9.872128 0.102592 9.97472 8.3416 0.8362741

2 1.885152 0.007552 1.892704 8.3234 4.39762372

3 1.895328 0.007744 1.903072 8.6326 4.53613946

4 1.92288 0.007808 1.930688 7.7382 4.00800129

5 1.8984 0.007648 1.906048 8.5171 4.4684604

6 1.917888 0.007968 1.925856 8.2932 4.30624097

7 1.88992 0.008032 1.897952 8.6742 4.57029472

8 1.940064 0.007712 1.947776 8.2256 4.22307288

9 1.90576 0.007712 1.913472 8.2335 4.30291115

10 1.94544 0.007488 1.952928 8.3534 4.27737223

36

TABLE XIII
PERFORMANCE MEASURES FOR ONE THREAD-BLOCK

Run #

GPU Transfer
Time (ms)

GPU Computation
Time (ms)

GPU Runtime
(ms)

CPU Runtime
(ms)

Speed Up Factor

1 9.84352 0.100512 9.944032 0.6385 0.06420937

2 1.682272 0.007232 1.689504 0.3348 0.19816467

3 1.696768 0.007296 1.704064 0.3151 0.1849109

4 1.69152 0.007232 1.698752 0.3298 0.19414252

5 1.9824 0.0072 1.9896 0.3398 0.1707881

6 1.688256 0.007232 1.695488 0.4038 0.23816152

7 1.727008 0.007264 1.734272 0.3188 0.18382353

8 1.717472 0.007232 1.724704 0.3424 0.19852682

9 1.692544 0.007232 1.699776 0.344 0.20237961

10 1.773824 0.00736 1.781184 0.3905 0.21923619

*All tables reflect values obtained using the follo wing
hardware: CPU: AMD Phenom II X3 720 2.80 GHz clock

GPU: Nvidia Tesla C1060 240 cores 1.296 GHz core
clock

TABLE I shows a sample run of CPU and GPU runtimes for

different data sizes. The speed up factor, determi ned by

the quotient of CPU runtime and GPU runtime, is the most

important metric to show improvement through the us e of

CUDA. Other metrics may show information more valu able for

determining efficiency and usage data. This is not the

goal of this experiment, and would be more importan t with

larger data sets where occupancy would play a role in the

runtime.

 There are two very important patterns to note in T ABLE

I. First, notice that the speed up is directly rel ated to

the size of the data being processed. Second, noti ce that

37

most of the time the GPU spends is in data transfer or

preprocessing. Actual GPU computation times are ve ry

small. Perhaps this gives a clue to the programmer where

improvement is possible. However, it is possible t hat the

programmer cannot control this metric. More analys is needs

to be done to be certain.

 TABLE I shows the maximum data size that can be

processed by this implementation. This size limit is due

to restrictions of CUDA based on hardware constrain ts as

well as numerical representation limits in C. For the

model of GPU used during programming and data colle ction

thread-block size is limited to 512 threads. In

combination with this the software function that la unches a

CUDA kernel accepts a thread-block size parameter o f type

int, which is limited to a maximum value of 65,535 in C,

the main interface language for CUDA. This results in a

maximum number of 33,553,920 threads (512 threads p er

thread-block times 65,535). Because each thread pr ocesses

64 bits (eight bytes) of data, a maximum number of 262,140

Kilobytes of data can be processed on this particul ar GPU.

More advanced GPUs may have higher limits on thread -block

size. Therefore, larger datasets could be processe d,

probably yielding even higher degrees of speedup.

38

 Each of the TABLES II through XIII shows the resul ts

from multiple runs for the same size of randomly ge nerated

data. Notice that each of the first runs yields so mewhat

higher GPU times than subsequent iterations. This shows

that there is a certain “warm-up” time associated w ith the

GPU. For large data sets this time is fairly negli gible,

but it remains constant and is therefore more conse quential

for transfer of smaller data.

 FIGURE 9 shown below illustrates the main result o f

this experiment. Speed-up is heavily impacted by t he size

of the data processed. It is not a linear relation ship.

As the size of the data doubles the percentage incr ease in

the speed-up factor is decreasing in a shallow expo nential

pattern.

FIGURE 9 – Relationship Between Speed-Up Factor And Number

Of Thread-Blocks

39

FIGURE 10 below is a plot of the GPU and CPU runtim es

from TABLE I versus the number of thread-blocks use d. This

is a great visualization of the amount of time that is

actually saved using the parallel processing of CUD A and

the GPU.

0

5000

10000

15000

20000

25000

1 25 50 10
0

50
0

10
00

20
00

40
00

80
00

16
00

0

32
00

0

65
53

5

GPU Runtime

CPU Runtime

FIGURE 10 – CPU And GPU Runtimes Vs. Thread-Block N umbers

40

CHAPTER V

 CONCLUSIONS AND FUTURE WORKS

 A. CONCLUSIONS

Overall this experiment was successful. It shows

that, specifically Blowfish, but potentially other related

algorithms can be accelerated using a GPU and CUDA. It is

apparent that even more can be done to expand and e xtend

this experiment. Greater acceleration is possible. It is

necessary to do more analysis in order to work towa rd the

optimum setup to obtain the best results. The rest of this

section focuses on possibilities for obtaining a be tter

result. These have not been attempted for this exp eriment,

but would be good ideas for beginning further resea rch.

 B. SHARED MEMORY

Chapter II GPGPU AND CUDA mentioned the use of shar ed

memory. The implementation used in this analysis d oes not

make use of shared memory. Integrating shared memo ry usage

into this project should incur few changes. Using shared

memory decreases computation time because it cuts o ut

expensive transfers from global memory. Shared mem ory

exhibits transfer speeds similar to registers. Glo bal

memory transfers can take many more clock cycles.

41

 C. THREAD-BLOCK SIZE CONSIDERATIONS

Another area that shows promise for improvement is

thread-block size. The explanation given for choos ing a

thread-block size of 512 threads was made in order to

process the largest possible size data. This decis ion gave

little consideration to efficient hardware usage ot her than

the general truth that the more data transferred fr om host

to device at one time saves on transfer time.

D. CONSTANT MEMORY

CUDA also allows the use of a special memory space

within global device memory called constant memory.

Although this is located within global memory after the

first use it is cached. In this specific experimen t

constant memory could be used to store the P-Array and S-

Boxes. Both the P-Array and S-Boxes are accessed m ultiple

times from global memory for each block of data tha t is

encrypted. Therefore using constant memory in this way

could further accelerate computation times.

E. DEVICE MEMORY TRANSFER AND ALLOCATION

At this time there is very little to do with the

transfer of data from the host to device or allocat ion of

device memory that is under the programmer’s contro l.

However, it is obvious that for this experiment thi s cannot

be ignored. CUDA and GPUs are growing and changing often

42

so it is a possibility that at a later time even th is could

be coded in such a way as to accelerate transfer an d

allocation. It is obvious from the results of this

experiment that the bulk of time spent with the GPU is

derived from the transfer of data. So for this and other

applications like it development of a less time con suming

data transfer would be critical in creating an opti mized

parallel version.

43

REFERENCES

[1] About GPGPU.org, http://gpgpu.org/about/, accessed on 10

December 2009.

[2] NVIDIA CUDA Programming Guide, version 2.2.1, available

online from http://developer.download.nvidia.com/
compute/cuda/2_21/toolkit/docs/NVIDIA_CUDA_Programm ing
_Guide_2.2.1.pdf (26 May 2009), accessed on 20
November 2009, p. 3.

[3]Ibid.

[4]Diagram from ECE498AL UIUC, Lecture 2 CUDA Spring

2009,available online from
http://courses.ece.illinois.edu/ece498/al/Syllabus. htm
l, accessed 20 November 2009, p. 11.

[5]Ibid.

[6] Fast Software Encryption, Cambridge Security Workshop

Proceedings, available online from
http://www.schneier.com/paper-blowfish-fse.html
(December 1993), Springer-Verlag, 1994, pp. 191-204,
accessed on 07 December 2009.

44

VITA

Joe Feist

1800 S. 2 nd St. A7 joefeist@gmail.com
Louisville, KY 40208

EDUCATION

Masters of Engineering, Computer Engineering and
Computer Science, expected December 2009.
University of Louisville, Louisville, Kentucky.

Thesis: INCREASING PERFORMANCE OF BLOWFISH ENCRYPTION
USING CUDA

Directors: Dr. Dar-jen Chang and Dr. Ahmed Desoky
Committee Member: Dr. John F. Naber

Bachelor of Science, Computer Engineering and Computer

Science, May 2009. University of Louisville,
Louisville, Kentucky.

HONORS & AWARDS

Trustees Presidential Scholarship, August 2004 – May
2009.

National S.M.A.R.T. Grant, 2006 – 2008.

INTERESTS

Web Application Development

General Purpose GPU Programming

	Increasing performance of blowfish encryption using CUDA.
	Recommended Citation

	Untitled

