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ABSTRACT 
 
 This thesis describes a method of gaining better 

performance from the Blowfish cryptographic algorit hm using 

GPU acceleration via CUDA (Compute Unified Device 

Architecture).  It is an attempt to resolve the iss ue of 

the cryptographic process taking up time and resour ces.  

Reducing or eliminating one or both of these issues  would 

perhaps lead to more widespread use of algorithms s uch as 

Blowfish to secure individuals’ data by making 

cryptographic security less costly in terms of time  and 

resources.  It is further noted that this method or  similar 

could be used in the case of other algorithms espec ially 

those closely related to Blowfish, such as the fami ly of 

block ciphers. 
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CHAPTER I 
 

  INTRODUCTION 
 
 The purpose of this thesis is to investigate the 

possibility and effectiveness of efficiently using the 

large number of computing cores in a GPU for enhanc ing the 

speed and performance of the Blowfish encryption al gorithm, 

specifically using Nvidia’s CUDA.  In many instance s 

encryption and decryption of data are time consumin g and 

computationally intensive procedures.  CUDA is spec ifically 

designed to use the power of the many small cores i n a GPU 

to improve performance and speed of computationally  

intensive operations via threading and using true 

concurrence of these threads.  Many have made effor ts to 

accelerate cryptographic algorithms by using CUDA e nabled 

GPUs.  These attempts do not, however, use the arch itecture 

to its fullest potential.  Rather, they simply run CPU code 

on the CUDA device.  This approach only attempts to  use the 

GPU to out-number the CPU in terms of number of cor es.  It 

does not take into account efficient use of availab le 

memory and device architecture to improve the perfo rmance.  

This thesis attempts to demonstrate a method to tak e steps 

to more efficiently code the Blowfish cryptographic  

algorithm for CUDA and achieve a much less time con suming 

process than currently exists. 
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 The remainder of this paper describes the process used 

to improve the coding of the algorithm.  First, Cha pter II 

GPGPU AND CUDA contains a description of GPGPU, CUD A, and 

equipment used in setting up this experiment. This includes 

hardware and software utilities, as well as a gener al 

description of CUDA as a processor architecture.  C hapter 

III IMPLEMENTAION OF BLOWFISH ENCRYPTION outlines t he 

Blowfish encryption algorithm and identifies areas of 

parallelism within the algorithm that can be exploi ted to 

get good use of the architecture of the GPU.  This portion 

involves the main work and research involved in the  

experiment.  Next Chapter IV RESULTS AND DISCUSSION  OF 

RESULTS presents the results obtained from this exp eriment, 

and briefly discusses the meanings of the measureme nts from 

each of the experiment’s iterations for different s izes of 

data.  Finally, Chapter V CONCLUSIONS AND FUTURE WO RKS 

gives conclusions based on the results obtained, an d offers 

recommendations for possible improvements and paths  for 

further research and experimentation. 
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CHAPTER II 
   

GPGPU AND CUDA 
 
A. GPGPU 

 This research is an extension of the idea of GPGPU .  

The experiment itself pursues the main focus presen ted by 

GPGPU.org[1]: 

“GPGPU stands for General-Purpose computation on 
Graphics Processing Units, also known as GPU 
Computing. Graphics Processing Units (GPUs) are hig h-
performance many-core processors capable of very hi gh 
computation and data throughput.  Once specially 
designed for computer graphics and difficult to 
program, today’s GPUs are general-purpose parallel 
processors with support for accessible programming 
interfaces and industry-standard languages such as C.  
Developers who port their applications to GPUs ofte n 
achieve speedups of orders of magnitude vs. optimiz ed 
CPU implementations.” 
 

 The difference between a GPU and CPU is shown in 

FIGURE 1, below.  Notice that in the same area the GPU has 

more transistors that are devoted to computation [2 ].  This 

means that the GPU has greater aptitude for computa tion 

than the CPU.  It can also be inferred from the fig ure that 

because of the larger ALU size in the CPU that each  ALU is 

more powerful.  This is the largest difference betw een the 

CPU and GPU.  The CPU is made up of a small number of 

large, powerful cores while the GPU is constructed from a 

large number of small, less powerful cores.  This m eans 

that the CPU can do a few more involved computation al 
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tasks, whereas the GPU can do many more, smaller op eration 

tasks at the same time. 

 

 

FIGURE 1 – Illustrated Differences Between CPU and GPU [3] 
 

B. CUDA 

 This experiment employs GPGPU through CUDA.  CUDA 

stands for Nvidia’s Compute Unified Device Architec ture.  

CUDA refers to the architecture of the GPU, drivers  and 

interfaces, as well as the language used for progra mming.  

Nvidia GPUs have two modes.  One is the usual displ ay mode 

that interacts with a computer monitor.  The second  is a 

compute or CUDA mode used for general purpose proce ssing.  

Below is a block diagram of an Nvidia G80 series GP U in 

CUDA mode: 
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FIGURE 2 – Physical Layout of Nvidia G80 Series GPU  [4] 
 

It should be noted that a GPU has its own dedicated  

global device memory (see FIGURE 2).  For each GPU 

application or kernel that is launched this memory must be 

allocated and the data to be processed must be tran sferred 

from the host memory.  This is normally the step th at takes 

the time not required for CPU computing (thus one o f the 

GPGPU overheads vs. CPU computing).  Which means tr ansfer 

must be factored into the speedup calculation.  In other 

words the time consuming procedure of transferring data 

between the host and the device must be justified b efore an 

actual speedup is produced. 

 FIGURE 3 below gives a little bit closer look at a  

portion of FIGURE 2.  It indicates two of the most 

important parts of the GPU in CUDA mode to consider  for 
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proper program design.  The Streaming Multi-Process or(SM) 

processes at the thread-block level and is made up of 

Streaming Processors (SPs).  SPs process data at th e thread 

level.  The basic processing unit is a thread.  A t hread-

block is made up of many different threads, and mul tiple 

blocks are arranged in a grid.  A grid could also b e 

thought of as a kernel, because when a kernel funct ion made 

of device code (code for the GPU) is launched the e ntire 

context of the function on the GPU is a grid.   

 

FIGURE 3 – Streaming Multi-Processor(SM) Made Up of  
Streaming Processor(SP) “Cluster”[5] 

 

To effectively program in CUDA it is necessary to k now 

GPU limitations as far as memory, grid size, thread -block 

size, and the number of concurrent threads that can  be 

handled.  For instance this experiment is programme d for an 

Nvidia GeForce 8800 GTX GPU.  This GPU has 768 MB o f device 

memory, a maximum of 512 threads allowed per thread -block, 
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and 768 concurrent threads on one SM.  These number s are 

totally dependent upon the specific model of GPU us ed. 

 Another important idea behind CUDA not explored fu lly 

in this experiment is shared memory.  This memory r esides 

within each SM.  It is shared between all threads i n a 

thread-block and allows much faster access than glo bal 

device memory.  Shared memory can greatly decrease 

computation time by limiting the number of costly a ccesses 

to global memory.  Shared memory is discussed somew hat 

further in Chapter V CONCLUSIONS AND FUTURE WORKS. 

 Now that the reader has some understanding of CUDA  

basics, here is a brief discussion of the setup of the 

environment.  It is necessary to have a CUDA 2.2 en abled 

GPU from Nvidia.  After this has been confirmed, do wnload 

and install CUDA 2.2 from Nvidia’s website followin g the 

instructions provided on the web site in the form o f the 

Quick Start Guide. 
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CHAPTER III  

IMPLEMENTAION OF BLOWFISH ENCRYPTION 

A. BLOWFISH ALGORITHM 
 

Blowfish is well documented and is described by Bru ce 

Schneier [6], its creator in the steps below: 

“Blowfish is a variable-length key, 64-bit block 
cipher. The algorithm consists of two parts: a 
key-expansion part and a data- encryption part. 
Key expansion converts a key of at most 448 bits 
into several subkey arrays totaling 4168 bytes.  
Data encryption occurs via a 16-round Feistel 
network. Each round consists of a key-dependent 
permutation, and a key- and data-dependent 
substitution. All operations are XORs and 
additions on 32-bit words. The only additional 
operations are four indexed array data lookups 
per round.  
Subkeys:  
Blowfish uses a large number of subkeys. These 
keys must be precomputed before any data 
encryption or decryption.  
 
1. The P-array consists of 18 32-bit subkeys: 
P1, P2,..., P18.  
 
2. There are four 32-bit S-boxes with 256 entries 
each: 
S1,0, S1,1,..., S1,255; 
S2,0, S2,1,..,, S2,255; 
S3,0, S3,1,..., S3,255; 
S4,0, S4,1,..,, S4,255.  
The exact method used to calculate these subkeys 
will be described later.  
 
Encryption:  
Blowfish is a Feistel network consisting of 16 
rounds (see Figure 4). The input is a 64-bit data 
element, x.  
Divide x into two 32-bit halves: xL, xR 
For i = 1 to 16: 
xL = xL XOR Pi 
xR = F(xL) XOR xR 
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Swap xL and xR 
Next i 
Swap xL and xR (Undo the last swap.) 
xR = xR XOR P17 
xL = xL XOR P18 
Recombine xL and xR 
Function F (see Figure 5): 
Divide xL into four eight-bit quarters: a, b, c, 
and d 
F(xL) = ((S1,a + S2,b mod 2 32) XOR S3,c) + S4,d 
mod 2 32 
 
Decryption is exactly the same as encryption, 
except that P1, P2,..., P18 are used in the 
reverse order.  
Implementations of Blowfish that require the 
fastest speeds should unroll the loop and ensure 
that all subkeys are stored in cache.  
 
Generating the Subkeys:  
The subkeys are calculated using the Blowfish 
algorithm. The exact method is as follows:  
 
1. Initialize first the P-array and then the four 
S-boxes, in order, with a fixed string. This 
string consists of the hexadecimal digits of pi 
(less the initial 3). For example:  
P1 = 0x243f6a88 
P2 = 0x85a308d3 
P3 = 0x13198a2e 
P4 = 0x03707344 
 
2. XOR P1 with the first 32 bits of the key, XOR 
P2 with the second 32-bits of the key, and so on 
for all bits of the key (possibly up to P14). 
Repeatedly cycle through the key bits until the 
entire P-array has been XORed with key bits. (For 
every short key, there is at least one equivalent 
longer key; for example, if A is a 64-bit key, 
then AA, AAA, etc., are equivalent keys.)  
 
3. Encrypt the all-zero string with the Blowfish 
algorithm, using the subkeys described in steps 
(1) and (2).  
 
4. Replace P1 and P2 with the output of step (3).  
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5. Encrypt the output of step (3) using the 
Blowfish algorithm with the modified subkeys.  
 
6. Replace P3 and P4 with the output of step (5).  
 
7. Continue the process, replacing all entries of t he 
P- array, and then all four S-boxes in order, with the 
output of the continuously-changing Blowfish 
algorithm.” 
 

 Below are two figures that demonstrate the Feistel  

network that Blowfish uses as well as the operation s 

performed with in the Feistel or F-Function. 

 

FIGURE 4 – Illustration Of Blowfish Feistel Network  
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FIGURE 5 – Illustration Of Feistel Function In Blow fish 

 

B. CPU IMPLEMENTATION 
 
Below is C# code for the implementation of Blowfish  

used for this experiment.  It deviates from the alg orithm 

described in the above section in a few ways that m ay 

compromise security, but do not impact the runtime of the 

encryption process.  First, the S-Box and P-Array v alues 

are randomly generated rather than derived from the  

hexadecimal digits of pi and computed with respect to the 

key.  This decision was made simply to create neate r code.  

Second, the plaintext data is pre-processed into an  array 

of 32-bit integer values.  Rather than taking 64 bi ts of 

data and splitting it into two 32-bit halves, this 

implementation takes two 32-bit entries from an arr ay.  
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This is to allow the use of a simple data structure .  

Third, only Blowfish encryption has been implemente d.  

Decryption was not implemented because it uses the same 

algorithm with reversed application of the P-Array.  

 
Program.cs 
 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
using GASS.CUDA; 
using GASS.CUDA.Types; 
using System.IO; 
 
namespace Blowfish_CUDA 
{ 
    class Program 
    { 
        const int BLOCK_SIZE = 512; 
        static Random rand = new Random(DateTime.To day.Millisecond); 
 
        static void Main(string[] args) 
        { 
            string tStr,rStr; 
            Console.WriteLine("This Program will co mpare the runtime of 
CPU implementation of Blowfish with CUDA implementa tion of the same 
algorithm"); 
             
            //Test to make sure CPU and GPU obtain the same result 
            Console.WriteLine("Test to make sure CP U and GPU obtain 
same result:  "); 
            TestBlfsh(); 
 
            //Random data or Real data 
            for(int l = 0;l<Int32.MaxValue;l++){ 
       Console.WriteLine("Enter Number of blocks to  use 
between 0 and 65535:  "); 
             tStr = Console.ReadLine(); 
             uint t = UInt32.Parse(tStr); 
       Console.WriteLine("Enter the number of times  to 
use this size data:  "); 
       rStr = Console.ReadLine(); 
       uint r = UInt32.Parse(rStr); 
       for(int x = 0;x<r;x++){ 
                    string type; 
                    Console.WriteLine("For real dat a enter 1.  Enter 
anything else for random data."); 
                    type = Console.ReadLine(); 
                    if (type == "1") 



 

13 
 

                    { 
                        RealBlowfishCompare(t); 
                    } 
                    else 
                    { 
                        BlowfishCompare(t); 
                    } 
       } 
      } 
             
        } 
 
        //Populate random data of the specified siz e 
        static uint[] GetData(uint i) 
        { 
            i = 2 * i; 
            uint[] retD = new uint[i]; 
            for (int k = 0; k < i; k++) 
            { 
                retD[k] = (uint)rand.Next(); 
            } 
            return (retD); 
        } 
 
        static uint[] GetEmptyData(uint i) 
        { 
            i = 2 * i; 
            uint fourBytes = 0; 
            uint[] retD = new uint[i]; 
            for (int k = 0; k < i; k++) 
            { 
                retD[k] = fourBytes; 
            } 
            return (retD); 
        } 
 
        // Random SBoxes 
        static uint[,] fillSBoxes() 
        { 
            uint[,] s = new uint[4,256]; 
            for (uint x = 0; x < 4; x++) 
            { 
                for (uint y = 0; y < 256; y++) 
                { 
                    s[x, y] = (uint)rand.Next(); 
                } 
            } 
            return (s); 
        } 
 
        //2D Array for CUDA 
        static uint[] fillSBoxes(uint r) 
        { 
            uint[] s = new uint[1040]; 
            for (int i = 0; i < 1040; i++) 
            { 
                s[i] = (uint)rand.Next(); 
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            } 
            return (s); 
        } 
 
        static uint[] fillPArray() 
        { 
            uint[] p = new uint[18]; 
            for (int i = 0; i < 18; i++) 
            { 
                p[i] = (uint)rand.Next(); 
            } 
            return (p); 
        } 
 
        static void RealBlowfishCompare(uint t) 
        { 
            FileStream file = new 
FileStream(@"C:\CUDA2_2\sdk\CUDA.NET\JAFEIS01\Blowf ish_CUDA\eightbytes.
txt", FileMode.Open); 
            uint s = 1024 * t; //65535 is the max n umber accepted for 
number of blocks by cuda.Launch() and so the max va lue for t 
            uint[] PlainText = new uint[s]; 
            try 
            { 
                byte[] eight = new byte[8]; 
                 
                //Get the selected amount of data 
                for (int y = 0; y < s; y += 2) 
                { 
                    for (int v = 0; v < 8; v++) 
                    { 
                        eight[v] = (byte)file.ReadB yte(); 
                    } 
 
                    file.Position = 0; 
 
                    uint Left = (uint)(eight[0] << 24 | eight[1] << 16 
| eight[2] << 8 | eight[3]); 
                    uint Right = (uint)(eight[4] <<  24 | eight[5] << 16 
| eight[6] << 8 | eight[7]); 
                    PlainText[y] = Left; 
                    PlainText[y + 1] = Right; 
                } 
            } 
            finally 
            { 
                file.Close(); 
            } 
          
            uint[] sArr = new uint[2]; 
            sArr[0] = s; sArr[1] = 0; 
            //uint[] hP = PlainText; 
            uint[] hC = GetEmptyData(s/2); 
            uint[] returnedC = GetEmptyData(s/2); 
            uint[,] SBoxes = new uint[4, 256]; 
            uint[] SBoxesC = new uint[1040]; 
            uint[] PArray = new uint[18]; 
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            SBoxes = fillSBoxes(); 
            SBoxesC = fillSBoxes(s); 
            PArray = fillPArray(); 
 
            //Initialize CUDA using first device 
            CUDA cuda = new CUDA(0, true); 
 
            //Get kernel functions 
            cuda.LoadModule(Path.Combine(Environmen t.CurrentDirectory, 
"blfsh_kernel.cubin")); 
            CUfunction Blowfish = 
cuda.GetModuleFunction("Blowfish_Encrypt"); 
 
            CUdeviceptr dP, dC, pArr, sBox, ds; 
 
            // Create events for performance timing  using GPU clock 
            CUevent start = cuda.CreateEvent(); 
            CUevent end = cuda.CreateEvent(); 
            CUevent cstart = cuda.CreateEvent(); 
            CUevent cend = cuda.CreateEvent(); 
            cuda.RecordEvent(start); 
 
            // Allocate device memory and copy host  memory to device      
            dP = cuda.CopyHostToDevice<uint>(PlainT ext); 
            //dC = cuda.CopyHostToDevice<uint>(hC);  
            pArr = cuda.CopyHostToDevice<uint>(PArr ay); 
            sBox = cuda.CopyHostToDevice<uint>(SBox esC); 
            ds = cuda.CopyHostToDevice<uint>(sArr);  
 
            // Set kernel function execution parame ters 
            int offset = 0; 
            cuda.SetParameter(Blowfish, offset, (ui nt)dP.Pointer); 
offset += IntPtr.Size; 
            //cuda.SetParameter(Blowfish, offset, ( uint)dC.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)pArr.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)sBox.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)ds.Pointer); 
 
            // Launch kernel function 
            cuda.SetFunctionBlockShape(Blowfish, BL OCK_SIZE, 1, 1); 
 
            cuda.RecordEvent(cstart); 
            cuda.Launch(Blowfish, (int)(s / (2*BLOC K_SIZE)), 1); 
            cuda.RecordEvent(cend); 
 
            // Copy device (GPU) result to host (CP U) memory 
            cuda.CopyDeviceToHost<uint>(dP, returne dC); 
 
            cuda.RecordEvent(end); 
            cuda.SynchronizeContext(); 
 
 
            // Calculate GPU runtime 
            float GpuTime = cuda.ElapsedTime(start,  end); 
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            Console.WriteLine("GPU time:\t\t\t{0} m s\n", GpuTime); 
 
            float GpuCompTime = cuda.ElapsedTime(cs tart, cend); 
            Console.WriteLine("GPU Computation time :\t\t{0} ms\n", 
GpuCompTime); 
 
            float GpuTTime = GpuTime - GpuCompTime;  
            Console.WriteLine("GPU Transfer time:\t \t{0} ms\n", 
GpuTTime); 
 
            //Time CPU runtime 
            System.Diagnostics.Stopwatch CpuTime = 
System.Diagnostics.Stopwatch.StartNew(); 
 
            hC = BlowfishCPU(PlainText, hC, PArray,  SBoxes); 
 
            Console.WriteLine("CPU time:\t\t\t{0} m s\n", 
CpuTime.Elapsed.TotalMilliseconds); 
 
            // Free device (GPU) resources 
            cuda.UnloadModule(); 
            cuda.Free(dP); 
            cuda.Free(pArr); 
            cuda.Free(sBox); 
            cuda.Free(ds); 
        } 
         
        static void BlowfishCompare(uint t) 
        { 
                       
            //Generate data (eight bytes X s) s wil l be total number of 
threads 
            uint s = 512*t; //65535 is the max numb er accepted for 
number of blocks by cuda.Launch() and so the max va lue for t 
            uint[] sArr = new uint[2]; 
            sArr[0] = s; sArr[1] = 0; 
            uint[] hP = GetData(s); 
            uint[] hC = GetEmptyData(s); 
            uint[] returnedC = GetEmptyData(s); 
            uint[,] SBoxes = new uint[4, 256]; 
            uint[] SBoxesC = new uint[1040]; 
            uint[] PArray = new uint[18]; 
            SBoxes = fillSBoxes(); 
            SBoxesC = fillSBoxes(s); 
            PArray = fillPArray(); 
   
            //Initialize CUDA using first device 
            CUDA cuda = new CUDA(0, true); 
 
            //Get kernel functions 
            cuda.LoadModule(Path.Combine(Environmen t.CurrentDirectory, 
"blfsh_kernel.cubin")); 
            CUfunction Blowfish = 
cuda.GetModuleFunction("Blowfish_Encrypt"); 
             
            CUdeviceptr dP, dC, pArr, sBox, ds; 
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            // Create events for performance timing  using GPU clock 
            CUevent start = cuda.CreateEvent(); 
            CUevent end = cuda.CreateEvent(); 
            CUevent cstart = cuda.CreateEvent(); 
            CUevent cend = cuda.CreateEvent(); 
            cuda.RecordEvent(start); 
 
            // Allocate device memory and copy host  memory to device      
            dP = cuda.CopyHostToDevice<uint>(hP); 
            dC = cuda.CopyHostToDevice<uint>(hC); 
            pArr = cuda.CopyHostToDevice<uint>(PArr ay); 
            sBox = cuda.CopyHostToDevice<uint>(SBox esC); 
            ds = cuda.CopyHostToDevice<uint>(sArr);  
 
            // Set kernel function execution parame ters 
            int offset = 0; 
            cuda.SetParameter(Blowfish, offset, (ui nt)dP.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)dC.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)pArr.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)sBox.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)ds.Pointer); 
 
            // Launch kernel function 
            cuda.SetFunctionBlockShape(Blowfish, BL OCK_SIZE, 1, 1); 
 
            cuda.RecordEvent(cstart); 
            cuda.Launch(Blowfish, (int)(s/BLOCK_SIZ E), 1); 
            cuda.RecordEvent(cend); 
 
            // Copy device (GPU) result to host (CP U) memory 
            cuda.CopyDeviceToHost<uint>(dC, returne dC); 
 
            cuda.RecordEvent(end); 
            cuda.SynchronizeContext(); 
 
             
            // Calculate GPU runtime 
            float GpuTime = cuda.ElapsedTime(start,  end); 
            Console.WriteLine("GPU time:\t\t\t{0} m s\n", GpuTime); 
 
            float GpuCompTime = cuda.ElapsedTime(cs tart, cend); 
            Console.WriteLine("GPU Computation time :\t\t{0} ms\n", 
GpuCompTime); 
 
            float GpuTTime = GpuTime - GpuCompTime;  
            Console.WriteLine("GPU Transfer time:\t \t{0} ms\n", 
GpuTTime); 
 
            //Time CPU runtime 
            System.Diagnostics.Stopwatch CpuTime = 
System.Diagnostics.Stopwatch.StartNew(); 
             
            hC = BlowfishCPU(hP,hC,PArray,SBoxes); 
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            Console.WriteLine("CPU time:\t\t\t{0} m s\n", 
CpuTime.Elapsed.TotalMilliseconds); 
             
            // Free device (GPU) resources 
            cuda.UnloadModule(); 
            cuda.Free(dP); 
            cuda.Free(pArr); 
            cuda.Free(sBox); 
            cuda.Free(ds); 
        } 
 
        static uint[] BlowfishCPU(uint[] plain, uin t[] crypt, uint[] p, 
uint[,] s) 
        { 
            int plnSize = plain.Length; 
            Console.WriteLine(plnSize); 
            int N = 16; //N defines the number of r ounds 
 
            //Iterate through each block of plainte xt 
            for (int i = 0; i < plnSize; i+=2) 
            { 
                //64 bit block split into left and right halves 
                uint Xl = plain[i]; 
                uint Xr = plain[i+1]; 
                uint temp = 0; 
 
                //Iterate through each round of Blo wfish 
                for (int k = 0; k < N; k++) 
                { 
                    Xl = Xl ^ p[k]; 
    
                    //Function F start 
                    uint a, b, c, d; 
                    uint  y; 
    
                    d = (uint)(Xl & 0xFF); 
                    Xl >>= 8; 
                    c = (uint)(Xl & 0xFF); 
                    Xl >>= 8; 
                    b = (uint)(Xl & 0xFF); 
                    Xl >>= 8; 
                    a = (uint)(Xl & 0xFF); 
                    y = s[0,a] + s[1,b]; 
                    y = y ^ s[2,c]; 
                    y = y + s[3,d]; 
                    //function F end 
     
                    // y is the result from functio n F 
                    Xr = y ^ Xr; 
 
                    temp = Xl; 
                    Xl = Xr; 
                    Xr = temp; 
                } 
 
                temp = Xl; 



 

19 
 

                Xl = Xr; 
                Xr = temp; 
 
                Xr = Xr ^ p[N]; 
                Xl = Xl ^ p[N + 1]; 
 
                crypt[i] = Xl; 
                crypt[i + 1] = Xr; 
            } 
            return (crypt); 
        } 
 
        static void TestBlfsh() 
        { 
            //Generate data (eight bytes X s) s wil l be total number of 
threads 
            uint s = 1; //65535 is the max number a ccepted for number 
of blocks by cuda.Launch() and so the max value for  t 
            uint[] sArr = new uint[2]; 
            sArr[0] = s; sArr[1] = 0; 
            uint[] hP = GetData(s); 
            uint[] hC = GetEmptyData(s); 
            uint[] returnedC = GetEmptyData(s); 
            uint[,] SBoxes = new uint[4, 256]; 
            uint[] SBoxesC = new uint[1040]; 
            uint[] PArray = new uint[18]; 
            SBoxes = fillSBoxes(); 
            SBoxesC = fillSBoxes(s); 
            PArray = fillPArray(); 
 
            hP = BlowfishCPU(hP, hC, PArray, SBoxes ); 
 
            //Initialize CUDA using first device 
            CUDA cuda = new CUDA(0, true); 
 
            //Get kernel functions 
            cuda.LoadModule(Path.Combine(Environmen t.CurrentDirectory, 
"blfsh_kernel.cubin")); 
            CUfunction Blowfish = 
cuda.GetModuleFunction("Test_Blowfish_Encrypt"); 
 
            CUdeviceptr dP, dC, pArr, sBox, ds; 
 
            // Allocate device memory and copy host  memory to device      
            dP = cuda.CopyHostToDevice<uint>(hP); 
            dC = cuda.CopyHostToDevice<uint>(hC); 
            pArr = cuda.CopyHostToDevice<uint>(PArr ay); 
            sBox = cuda.CopyHostToDevice<uint>(SBox esC); 
            ds = cuda.CopyHostToDevice<uint>(sArr);  
            //dC = cuda.Allocate<uint>(hC); 
 
            // Set kernel function execution parame ters 
            int offset = 0; 
            cuda.SetParameter(Blowfish, offset, (ui nt)dP.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)dC.Pointer); 
offset += IntPtr.Size; 
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            cuda.SetParameter(Blowfish, offset, (ui nt)pArr.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)sBox.Pointer); 
offset += IntPtr.Size; 
            cuda.SetParameter(Blowfish, offset, (ui nt)ds.Pointer); 
 
            // Launch kernel function 
            cuda.SetFunctionBlockShape(Blowfish, 8,  1, 1); 
            cuda.Launch(Blowfish, 1, 1); 
 
            // Copy device (GPU) result to host (CP U) memory 
            cuda.CopyDeviceToHost<uint>(dC, returne dC); 
            cuda.SynchronizeContext(); 
 
            // CPU version test run 
            //hC = BlowfishCPU(hP, hC, PArray, SBox es); 
 
            // Make sure the GPU and CPU results ag ree 
            bool flagit = true; 
            for (int g = 0; g < s; g++) 
            { 
                if (hC[g] != returnedC[g]) 
                { 
                    flagit = false; 
                    Console.WriteLine("FAIL"); 
                    break; 
                } 
            } 
 
            if (flagit) 
            { 
                Console.WriteLine("PASS"); 
            } 
 
            //Free CUDA resources 
            cuda.UnloadModule(); 
            cuda.Free(dP); 
            cuda.Free(dC); 
            cuda.Free(pArr); 
            cuda.Free(sBox); 
            cuda.Free(ds); 
        } 
    } 
}  

 
C. CUDA IMPLEMENTATION 
 
 Knowing how CUDA allows a programmer to fully use a 

GPU to the fullest possible extent for computation is 

necessary to grasp how to program a serial algorith m as a 

parallel algorithm and then to improve the code.  F irst, it 
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is productive to note that there is a possibility t hat a 

certain algorithm may not exhibit characteristics t hat 

allow it to be programmed in a very parallel manner .  In 

this case it may be that there are pieces that coul d be 

considered parallel.  Even if this is not the case it is 

possible that a translated version of the CPU code may be 

accelerated simply by use of the GPU.  However, usi ng 

knowledge of CUDA, it is normally possible to see l arge, 

particularly computationally intensive, or repetiti ve 

pieces of code.  If the complexity of these portion s is 

great enough there is a high chance that parallelis m 

exists.  Even if it is not immediately obvious, som e 

perspective will allow a programmer to find the 

parallelism. 

Identifying parallelism is the first step in 

programming properly for CUDA.  Blowfish, like othe r 

block ciphers, exhibits parallelism.  Certainly the re 

are parts that cannot be made parallel.  For one, t he 

16 rounds in the encryption and decryption itself m ust 

be done in a specific, sequential order.  If a sing le 

round of the cipher is to be completed by one threa d, 

then 16 threads would each work on a single block o f 

data.  This does not exhibit parallelism in the sen se 

that it is a MISD (Multiple Instruction Single Data ) 
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operation.  To exhibit the type of parallelism that  

can be exploited by the GPU architecture it would b e 

beneficial to find a SIMD (Single Instruction Multi ple 

Data) operation.  Blowfish does exhibit parallelism  of 

this form by block of data.  Because each block goe s 

through the same process in a sequential order (a 

single sequential set of instructions for each of t he 

many blocks of data) it is possible to write a 

parallel algorithm where each block of data would b e 

encrypted by a single thread.  This experiment 

exploits the data-level parallelism exhibited in 

Blowfish.  Other instances of parallelism may exist  

within the Blowfish algorithm; however, this is the  

first attempt at finding an area exhibiting paralle l 

traits to exploit in this manner.  Future attempts may 

bring more promising results.  Some ideas drawn fro m 

this experiment are noted in the Chapter V CONCLUSI ONS 

AND FUTURE WORKS of this thesis as possible paths f or 

future research.  

The second step to properly program an algorithm fo r 

CUDA is deciding how to divide the workload, by def ining 

what is to be done by each thread.  It is best in t his 

instance to allow each thread to do all operations on one 

entire block of data.  There are two major factors that 
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influence this decision; first, the size of the dat a being 

operated upon, second, the types of operations bein g done 

to the data.  It is appropriate that a single threa d do all 

work for one block of data because the data size is  small 

at 64 bits, and each operation done to the data is 

efficiently executed by the GPU(most operations are  AND, 

OR, or XOR). 

Because each thread does all of the work for one bl ock 

of data the third step, coding, is simplified somew hat.  

Due to this fact most of the CPU Blowfish function code can 

be recycled.  The only decision left at this point is 

thread-block size.  Because each SM (Streaming 

Multiprocessor) works on one thread-block of data a t one 

time and contains eight SP (Streaming Processors) a  thread-

block containing eight threads will occupy the enti re SM, 

albeit for a short time before moving onto the next  thread-

block.  This experiment has revealed that a small t hread-

block size severely limits the size of the data tha t can be 

processed.  Therefore, it uses thread-blocks contai ning 512 

threads, the maximum number allowable for the GPU u sed.  

These settings are issued in the following two line s of 

code taken from the CPU BlowfishCompare function.  Both are 

determined before computation begins on the GPU and  

therefore are set in CPU code.  Cuda.SetFunctionBlo ckShape 
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accepts the number of threads per thread-block as t he 

second parameter and cuda.Launch accepts the total number 

of thread-blocks used to process all data. 

1)  cuda.SetFunctionBlockShape(Blowfish, BLOCK_SIZE , 
1, 1); 

2)  cuda.Launch(Blowfish, ( int )(s/BLOCK_SIZE), 1); 
As discussed earlier, CUDA is implemented as an 

extension of the C programming language.  Below is the 

kernel function implementation of Blowfish used in this 

experiment.  It is important to note that all acces ses to 

kernel function parameters are global memory access es.  

Chapter V CONCLUSIONS AND FUTURE WORKS discusses ch anges to 

this, including the use of shared memory.  In gener al this 

works in the same way as the CPU implementation exc ept for 

the fact that in the CUDA code a thread takes the p lace of 

an iteration through the outer for loop in the CPU code.  

Another small difference is the transformation of t he two-

dimensional S-Box configuration in CPU code to its one-

dimensional CUDA counterpart.  This decision was ma de for a 

simpler transfer of the S-Boxes to GPU memory. 

blfsh_kernel.cu 
 
// Blowfish Kernel function 
 
#ifndef _BLOWFISH_KERNEL_H_  
#define _BLOWFISH_KERNEL_H_  
 
#include <stdio.h> 
 
__device__ unsigned long cipher[]; 
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extern "C" __global__ void Blowfish_Encrypt(unsigne d long* plain, 
unsigned long* P, unsigned long* S, unsigned long s ize){ 
  //block index 
    int bx = blockIdx.x; 
    int by = blockIdx.y; 
   
  //thread index 
    int tx = threadIdx.x; 
    int ty = threadIdx.y; 
     
  //right and left halves' indeces 
 int idxl = bx*16 + tx*2; 
 int idxr = bx*16 + tx*2 + 1; 
  
  //N number of rounds 
 int N = 16; 
  
    unsigned long Xl; 
    unsigned long Xr; 
    unsigned long temp; 
    short i; 
    
    Xl = *(plain + idxl); 
    Xr = *(plain + idxr); 
 //Synchronize so that data is loaded 
 __syncthreads(); 
  
  for (i = 0; i < 16; ++i) { 
   Xl = Xl ^ P[i]; 
    
   //Function F start 
   unsigned short a, b, c, d; 
   unsigned int y; 
    
   d = (unsigned short)(Xl & 0xFF); 
   Xl >>= 8; 
   c = (unsigned short)(Xl & 0xFF); 
   Xl >>= 8; 
   b = (unsigned short)(Xl & 0xFF); 
   Xl >>= 8; 
   a = (unsigned short)(Xl & 0xFF); 
   y = S[a] + S[256+b]; 
   y = y ^ S[512+c]; 
   y = y + S[768+d];//function F end 
     
   // y in place of function F 
   Xr = y ^ Xr; 
 
   temp = Xl; 
   Xl = Xr; 
   Xr = temp; 
  } 
   
  temp = Xl; 
  Xl = Xr; 
  Xr = temp; 
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  Xr = Xr ^ P[N]; 
  Xl = Xl ^ P[N + 1]; 
  __syncthreads(); 
} 
 
 
extern "C" __global__ void Test_Blowfish_Encrypt(un signed long* plain, 
unsigned long* cipher,unsigned long* P, unsigned lo ng* S, unsigned long 
size){ 
  //block index 
    int bx = blockIdx.x; 
    int by = blockIdx.y; 
   
  //thread index 
    int tx = threadIdx.x; 
    int ty = threadIdx.y; 
     
  //right and left halves' indeces 
 int idxl = bx*16 + tx*2; 
 int idxr = bx*16 + tx*2 + 1; 
  
  //N number of rounds 
 int N = 16; 
  
    unsigned long Xl; 
    unsigned long Xr; 
    unsigned long temp; 
    short i; 
    
    Xl = *(plain + idxl); 
    Xr = *(plain + idxr); 
 //Synchronize so that data is loaded 
 __syncthreads(); 
  
  for (i = 0; i < 16; ++i) { 
   Xl = Xl ^ P[i]; 
    
   //Function F start 
   unsigned short a, b, c, d; 
   unsigned int y; 
    
   d = (unsigned short)(Xl & 0xFF); 
   Xl >>= 8; 
   c = (unsigned short)(Xl & 0xFF); 
   Xl >>= 8; 
   b = (unsigned short)(Xl & 0xFF); 
   Xl >>= 8; 
   a = (unsigned short)(Xl & 0xFF); 
   y = S[a] + S[256+b]; 
   y = y ^ S[512+c]; 
   y = y + S[768+d];//function F end 
     
   // y in place of function F 
   Xr = y ^ Xr; 
 
   temp = Xl; 
   Xl = Xr; 
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   Xr = temp; 
  } 
   
  temp = Xl; 
  Xl = Xr; 
  Xr = temp; 
 
  Xr = Xr ^ P[N]; 
  Xl = Xl ^ P[N + 1]; 
  __syncthreads(); 
} 
 
#endif  

 

The following are steps to execute this experiment 

using Visual studio 2008 and CUDA 2.2: 

1) Create a C# project in Visual Studio 2008. 

2) Copy Source Code found earlier in this chapter i nto 

the project. 

3) Match all project references shown in FIGURE 6 

below.  This must be done for the CUDA.NET “using” 

statements in Program.cs. 

4) Locate the C/C++ compiler executable on your 

system.  Click on Project in the Visual Studio 

Menubar and then click on ProjectName 

Properties(probably the last entry in the list). 

5) Go to the Pre/Post-build events tab and in the 

Post-Build events text box type the following: nvcc 

blfsh_kernel.cu --cubin --compiler-bindir="C:\Progr am 

Files\Microsoft Visual Studio 9.0\VC\bin"  

6) Match the Directory Structure of the project sho wn 

in FIGURE 7 below. 
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7) Now build and execute the program. 

 

 
 

FIGURE 6 - Blowfish_CUDA References 
 
 

 
 

FIGURE 7 - Blowfish_CUDA Project Directory Structur e 
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FIGURE 8 - Post-Build Event Visual 

 



 

30 
 

CHAPTER IV 

  RESULTS AND DISCUSSION OF RESULTS 

TABLE I 

CPU AND GPU RUNTIME FOR VARIOUS DATA SIZES 
 

Number 
of 

Thread 
Blocks 

Size 
(KB) 

GPU 
Transfer 
Time (ms) 

GPU 
Computation 
Time (ms) 

GPU 
Runtime 
(ms) 

CPU 
Runtime 
(ms) 

Speed Up 
Factor 

65535 262140 209.055 0.513056 209.5681 21218.35 101 .248 

32000 128000 104.1726 0.25872 104.4313 10432.79 99. 90099 

16000 64000 52.39123 0.131168 52.5224 5092.851 96.9 6531 

8000 32000 41.41222 0.082688 41.49491 2435.688 58.6 9849 

4000 16000 22.30045 0.03872 22.33917 1259.037 56.36 008 

2000 8000 12.43674 0.022752 12.45949 606.6368 48.68 873 

1000 4000 7.630848 0.015232 7.64608 305.3618 39.937 04 

500 2000 5.157984 0.011456 5.16944 162.2104 31.3787 2 

100 400 2.422176 0.008064 2.43024 33.189 13.65668 

50 200 2.127232 0.008384 2.135616 16.2128 7.591627 

25 100 1.92288 0.007808 1.930688 7.7382 4.008001 

1 4 1.688256 0.007232 1.695488 0.4038 0.238162 

 
TABLE II 

PERFORMANCE MEASURES FOR 65535 THREAD-BLOCKS 
 

Run # 
GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 216.9714 0.606336 217.577736 21096.2671 96.959677 44 

2 209.055 0.513056 209.568056 21218.3452 101.247993 6 

3 209.5557 0.513024 210.068724 23566.2291 112.18342 57 

4 209.0928 0.513088 209.605888 20995.928 100.168598 3 

5 209.6069 0.513216 210.120116 20873.2834 99.339767 16 

6 209.4368 0.513248 209.950048 20991.7223 99.984365 33 

7 209.2536 0.51296 209.76656 21077.3445 100.4800026  

8 209.1368 0.51408 209.65088 20987.6839 100.1077787  

9 209.3771 0.513952 209.891052 20996.2555 100.03406 67 

10 209.1601 0.512992 209.673092 21025.8293 100.2791 016 
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TABLE III 
PERFORMANCE MEASURES FOR 32000 THREAD-BLOCKS 

 
Run # 

GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 111.237 0.347104 111.584104 11369.3434 101.89035 

2 103.9436 0.254336 104.197936 10888.8625 104.50171  

3 103.3067 0.254144 103.560844 13232.3277 127.77346 3 

4 103.5707 0.254368 103.825068 12050.6759 116.06711 3 

5 103.2256 0.25456 103.48016 12047.9979 116.428095 

6 104.1726 0.25872 104.43132 10432.7921 99.9009885 

7 103.7636 0.254176 104.017776 10446.5671 100.43059 5 

8 103.1958 0.25536 103.45116 12291.4898 118.814422 

9 103.0238 0.25552 103.27932 12768.6121 123.631837 

10 103.6873 0.25424 103.94154 13000.4769 125.074892  

 
TABLE IV 

PERFORMANCE MEASURES FOR 16000 THREAD-BLOCKS 
 

Run # 
GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 60.60598 0.224576 60.830556 5680.6046 93.3840651 

2 52.71184 0.130752 52.842592 6131.1593 116.026846 

3 52.48378 0.130816 52.614596 6367.2855 121.017474 

4 52.96282 0.13088 53.0937 6127.8728 115.416194 

5 52.52346 0.131232 52.654692 6011.1833 114.162349 

6 52.39123 0.131168 52.522398 5092.8507 96.9653118 

7 52.98938 0.13168 53.12106 5223.4985 98.3319704 

8 52.42531 0.132096 52.557406 5991.0949 113.99145 

9 52.39341 0.132 52.52541 5570.661 106.056497 

10 52.95222 0.131008 53.083228 6513.1562 122.697064  
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TABLE V 
PERFORMANCE MEASURES FOR 8000 THREAD-BLOCKS 

 
Run # 

GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 49.01427 0.16464 49.17891 2430.0354 49.4121444 

2 40.79958 0.069024 40.868604 2506.2436 61.324424 

3 40.78259 0.068928 40.851518 2618.539 64.09894 

4 41.36323 0.069248 41.432478 2509.1531 60.5600539 

5 40.79446 0.06928 40.86374 2507.107 61.3528522 

6 40.92758 0.069216 40.996796 2637.9763 64.3459138 

7 41.41222 0.082688 41.494908 2435.6884 58.698489 

8 40.84682 0.07008 40.9169 2435.2913 59.5179816 

9 42.37037 0.07024 42.44061 2754.5848 64.9044583 

10 41.41485 0.06896 41.48381 2443.9241 58.9127204 

 

    

   
TABLE VI 

PERFORMANCE MEASURES FOR 4000 THREAD-BLOCKS 
 

Run # 
GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 29.95341 0.133152 30.086562 1245.0502 41.3822689 

2 21.7072 0.038272 21.745472 1248.33925 57.4068592 

3 22.05629 0.0384 22.09469 1297.9654 58.745581 

4 22.30045 0.03872 22.33917 1259.0373 56.3600752 

5 21.84291 0.03808 21.88099 1255.9943 57.4011642 

6 21.62851 0.038016 21.666526 1347.2964 62.1833145 

7 22.25155 0.038016 22.289566 1209.424 54.2596478 

8 21.73011 0.038016 21.768126 1211.9089 55.6735522 

9 21.69107 0.038048 21.729118 1337.3598 61.5468976 

10 22.50925 0.038496 22.547746 1217.0087 53.9747388  
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TABLE VII 
PERFORMANCE MEASURES FOR 2000 THREAD-BLOCKS 

 
Run # 

GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 20.0951 0.121664 20.216764 611.8345 30.2637207 

2 12.13632 0.022656 12.158976 603.9169 49.6684014 

3 11.89958 0.022624 11.922204 658.9251 55.2687322 

4 12.46518 0.02288 12.48806 628.9473 50.3638916 

5 12.25766 0.0232 12.28086 625.9028 50.9657141 

6 12.00963 0.023246 12.032876 655.4972 54.4755219 

7 12.43674 0.022752 12.459492 606.6368 48.6887266 

8 12.09114 0.023648 12.114788 605.1907 49.9547082 

9 11.91776 0.024032 11.941792 657.904 55.092569 

10 12.46051 0.023968 12.484478 609.8583 48.8493231 

 
 
 

TABLE VIII 
PERFORMANCE MEASURES FOR 1000 THREAD-BLOCKS 

 
Run # 

GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 14.9841 0.107456 15.091556 305.5179 20.2442942 

2 6.93904 0.014848 6.953888 303.6866 43.6714828 

3 6.981312 0.014976 6.996288 333.2804 47.6367468 

4 7.630848 0.015232 7.64608 305.3618 39.9370396 

5 6.983072 0.0152 6.998272 303.3122 43.3410133 

6 7.048288 0.015232 7.06352 3317594 469679.99 

7 7.499008 0.015872 7.51488 304.5999 40.5329027 

8 6.940768 0.016096 6.956864 304.6862 43.7964865 

9 7.095968 0.016256 7.112224 330.2393 46.4326349 

10 7.620416 0.015136 7.635552 301.563 39.4945906 
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TABLE IX 
PERFORMANCE MEASURES FOR 500 THREAD-BLOCKS 

 
Run # 

GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 12.46422 0.102112 12.566332 163.0478 12.9749715 

2 4.541376 0.01104 4.552416 155.9118 34.2481443 

3 5.041824 0.011072 5.052896 167.5094 33.1511672 

4 4.521344 0.013152 4.534496 170.4574 37.591256 

5 4.614592 0.011232 4.625824 153.0522 33.0864728 

6 4.579616 0.011072 4.590688 154.5119 33.6576783 

7 5.157984 0.011456 5.16944 162.2104 31.378718 

8 4.423072 0.011264 4.434336 171.4318 38.6600835 

9 4.543968 0.01104 4.555008 152.8975 33.5669004 

10 4.467648 0.011296 4.478944 154.8735 34.5781282 

 
TABLE X 

PERFORMANCE MEASURES FOR 100 THREAD-BLOCKS 
 

Run # 
GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 10.3657 0.099872 10.465572 32.4576 3.10136895 

2 2.376192 0.00816 2.384352 33.1286 13.8941733 

3 2.37952 0.008256 2.387776 34.0425 14.2569906 

4 2.430464 0.008128 2.438592 33.029 13.5442911 

5 2.410528 0.008032 2.41856 33.5599 13.8759841 

6 2.3888 0.008448 2.397248 32.8621 13.7082605 

7 2.391296 0.00816 2.399456 41.4784 17.286585 

8 2.422176 0.008064 2.43024 33.189 13.6566759 

9 2.387456 0.008256 2.395712 33.162 13.8422315 

10 2.391488 0.008224 2.399712 33.5271 13.9713016 
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TABLE XI 
PERFORMANCE MEASURES FOR 50 THREAD-BLOCKS 

 
Run # 

GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 10.0415 0.09952 10.14102 16.644 1.64125502 

2 2.087296 0.007712 2.095008 16.5233 7.88698659 

3 2.084992 0.007904 2.092896 16.7076 7.98300537 

4 2.064128 0.008 2.072128 16.3162 7.87412747 

5 2.099616 0.007744 2.10736 19.4423 9.2259035 

6 2.074048 0.00784 2.081888 16.3739 7.86492837 

7 2.110336 0.008128 2.118464 20.4599 9.65789364 

8 2.127232 0.008384 2.135616 16.2128 7.59162696 

9 2.084128 0.007872 2.092 16.0113 7.65358509 

10 2.125344 0.011456 2.1368 16.3656 7.65892924 

 
TABLE XII 

PERFORMANCE MEASURES FOR 25 THREAD-BLOCKS 
 

Run # 
GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 9.872128 0.102592 9.97472 8.3416 0.8362741 

2 1.885152 0.007552 1.892704 8.3234 4.39762372 

3 1.895328 0.007744 1.903072 8.6326 4.53613946 

4 1.92288 0.007808 1.930688 7.7382 4.00800129 

5 1.8984 0.007648 1.906048 8.5171 4.4684604 

6 1.917888 0.007968 1.925856 8.2932 4.30624097 

7 1.88992 0.008032 1.897952 8.6742 4.57029472 

8 1.940064 0.007712 1.947776 8.2256 4.22307288 

9 1.90576 0.007712 1.913472 8.2335 4.30291115 

10 1.94544 0.007488 1.952928 8.3534 4.27737223 

 
 
 
 
 

 
 
 
 
 
 
 



 

36 
 

TABLE XIII 
PERFORMANCE MEASURES FOR ONE THREAD-BLOCK 

 
Run # 

GPU Transfer 
Time (ms) 

GPU Computation 
Time (ms) 

GPU Runtime 
(ms) 

CPU Runtime 
(ms) 

Speed Up Factor 

1 9.84352 0.100512 9.944032 0.6385 0.06420937 

2 1.682272 0.007232 1.689504 0.3348 0.19816467 

3 1.696768 0.007296 1.704064 0.3151 0.1849109 

4 1.69152 0.007232 1.698752 0.3298 0.19414252 

5 1.9824 0.0072 1.9896 0.3398 0.1707881 

6 1.688256 0.007232 1.695488 0.4038 0.23816152 

7 1.727008 0.007264 1.734272 0.3188 0.18382353 

8 1.717472 0.007232 1.724704 0.3424 0.19852682 

9 1.692544 0.007232 1.699776 0.344 0.20237961 

10 1.773824 0.00736 1.781184 0.3905 0.21923619 

 
*All tables reflect values obtained using the follo wing 
hardware: CPU: AMD Phenom II X3 720 2.80 GHz clock 

GPU: Nvidia Tesla C1060 240 cores 1.296 GHz core 
clock 

 
TABLE I shows a sample run of CPU and GPU runtimes for 

different data sizes.  The speed up factor, determi ned by 

the quotient of CPU runtime and GPU runtime, is the  most 

important metric to show improvement through the us e of 

CUDA.  Other metrics may show information more valu able for 

determining efficiency and usage data.  This is not  the 

goal of this experiment, and would be more importan t with 

larger data sets where occupancy would play a role in the 

runtime. 

 There are two very important patterns to note in T ABLE 

I.  First, notice that the speed up is directly rel ated to 

the size of the data being processed.  Second, noti ce that 
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most of the time the GPU spends is in data transfer  or 

preprocessing.  Actual GPU computation times are ve ry 

small.  Perhaps this gives a clue to the programmer  where 

improvement is possible.  However, it is possible t hat the 

programmer cannot control this metric.  More analys is needs 

to be done to be certain. 

 TABLE I shows the maximum data size that can be 

processed by this implementation.  This size limit is due 

to restrictions of CUDA based on hardware constrain ts as 

well as numerical representation limits in C.  For the 

model of GPU used during programming and data colle ction 

thread-block size is limited to 512 threads.  In 

combination with this the software function that la unches a 

CUDA kernel accepts a thread-block size parameter o f type 

int, which is limited to a maximum value of 65,535 in C, 

the main interface language for CUDA.  This results  in a 

maximum number of 33,553,920 threads (512 threads p er 

thread-block times 65,535).  Because each thread pr ocesses 

64 bits (eight bytes) of data, a maximum number of 262,140 

Kilobytes of data can be processed on this particul ar GPU.  

More advanced GPUs may have higher limits on thread -block 

size.  Therefore, larger datasets could be processe d, 

probably yielding even higher degrees of speedup. 
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 Each of the TABLES II through XIII shows the resul ts 

from multiple runs for the same size of randomly ge nerated 

data.  Notice that each of the first runs yields so mewhat 

higher GPU times than subsequent iterations.  This shows 

that there is a certain “warm-up” time associated w ith the 

GPU.  For large data sets this time is fairly negli gible, 

but it remains constant and is therefore more conse quential 

for transfer of smaller data. 

 FIGURE 9 shown below illustrates the main result o f 

this experiment.  Speed-up is heavily impacted by t he size 

of the data processed.  It is not a linear relation ship.  

As the size of the data doubles the percentage incr ease in 

the speed-up factor is decreasing in a shallow expo nential 

pattern. 

 
FIGURE 9 – Relationship Between Speed-Up Factor And  Number 

Of Thread-Blocks 
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FIGURE 10 below is a plot of the GPU and CPU runtim es 

from TABLE I versus the number of thread-blocks use d.  This 

is a great visualization of the amount of time that  is 

actually saved using the parallel processing of CUD A and 

the GPU. 
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FIGURE 10 – CPU And GPU Runtimes Vs. Thread-Block N umbers
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CHAPTER V 
 

  CONCLUSIONS AND FUTURE WORKS 
 
   A.  CONCLUSIONS 

Overall this experiment was successful.  It shows 

that, specifically Blowfish, but potentially other related 

algorithms can be accelerated using a GPU and CUDA.   It is 

apparent that even more can be done to expand and e xtend 

this experiment.  Greater acceleration is possible.   It is 

necessary to do more analysis in order to work towa rd the 

optimum setup to obtain the best results.  The rest  of this 

section focuses on possibilities for obtaining a be tter 

result.  These have not been attempted for this exp eriment, 

but would be good ideas for beginning further resea rch. 

   B.  SHARED MEMORY 

Chapter II GPGPU AND CUDA mentioned the use of shar ed 

memory.  The implementation used in this analysis d oes not 

make use of shared memory.  Integrating shared memo ry usage 

into this project should incur few changes.  Using shared 

memory decreases computation time because it cuts o ut 

expensive transfers from global memory.  Shared mem ory 

exhibits transfer speeds similar to registers.  Glo bal 

memory transfers can take many more clock cycles. 
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   C.  THREAD-BLOCK SIZE CONSIDERATIONS 

Another area that shows promise for improvement is 

thread-block size.  The explanation given for choos ing a 

thread-block size of 512 threads was made in order to 

process the largest possible size data.  This decis ion gave 

little consideration to efficient hardware usage ot her than 

the general truth that the more data transferred fr om host 

to device at one time saves on transfer time.   

D. CONSTANT MEMORY 

CUDA also allows the use of a special memory space 

within global device memory called constant memory.   

Although this is located within global memory after  the 

first use it is cached.  In this specific experimen t 

constant memory could be used to store the P-Array and S-

Boxes.  Both the P-Array and S-Boxes are accessed m ultiple 

times from global memory for each block of data tha t is 

encrypted.  Therefore using constant memory in this  way 

could further accelerate computation times. 

E. DEVICE MEMORY TRANSFER AND ALLOCATION 

At this time there is very little to do with the 

transfer of data from the host to device or allocat ion of 

device memory that is under the programmer’s contro l.  

However, it is obvious that for this experiment thi s cannot 

be ignored.  CUDA and GPUs are growing and changing  often 
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so it is a possibility that at a later time even th is could 

be coded in such a way as to accelerate transfer an d 

allocation.  It is obvious from the results of this  

experiment that the bulk of time spent with the GPU  is 

derived from the transfer of data.  So for this and  other 

applications like it development of a less time con suming 

data transfer would be critical in creating an opti mized 

parallel version. 
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