
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

5-2013 

Real-time trajectory generation for dynamic systems with Real-time trajectory generation for dynamic systems with 

nonholonomic constraints using Player/Stage and NTG. nonholonomic constraints using Player/Stage and NTG. 

Ryan Frazier 1989- 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

Recommended Citation Recommended Citation 
Frazier, Ryan 1989-, "Real-time trajectory generation for dynamic systems with nonholonomic constraints 
using Player/Stage and NTG." (2013). Electronic Theses and Dissertations. Paper 455. 
https://doi.org/10.18297/etd/455 

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/455
mailto:thinkir@louisville.edu


REAL-TIME TRAJECTORY GENERATION FOR DYNAMIC SYSTEMS WITH 

NONHOLONOMIC CONSTRAINTS USING PLAYER/STAGE AND NTG 

 

 

 

 

 

 

By 

 

Ryan Frazier 

Bachelors of Science in Electrical Engineering, University of Louisville, May 2012 

 

 

 

 

 

A Thesis 

Submitted to the Faculty of the 

University of Louisville 

J. B. Speed School of Engineering 

as Partial Fulfillment of the Requirements 

for the Professional Degree 

 

 

 

 

 

MASTER OF ENGINEERING 

 

 

 

 

 

Department of Electrical Engineering 

 

 

 

May 2013 
  



 

 



ii 
 

 

REAL-TIME TRAJECTORY GENERATION FOR DYNAMIC SYSTEMS WITH 

NONHOLONOMIC CONSTRAINTS USING PLAYER/STAGE AND NTG 

 

 

Submitted by:  ___________________________________ 

John Ryan Frazier 

 

 

 

A Thesis Approved On 

 

 

 

___________________________________ 

(Date) 

 

 

 

 

by the Following Reading and Examination Committee: 

 

 

 

___________________________________ 

Dr. Tamer Inanc, Thesis Director 

 

 

 

___________________________________ 

Dr. Michael McIntyre 

 

 

 

___________________________________ 

Dr. Christopher Richards 

  



iii 
 

ACKNOWLEDGMENTS 

 

 Through Jesus, all things are possible, even this thesis.  Thank you to Chuck Sites, 

a Linux guru, who helped me through the installation of all programs and Operating 

Systems.  Thank you to Dr. Tamer Inanc for guiding me for the past year in a direction 

that would lead to a completed thesis, and for providing me with the tools to complete it.  

Thank you to Rick Paris, a fellow Electrical Engineering student at UofL, who helped me 

write text file code.  Thank you to Yinan Cui, who is defending his dissertation at UofL 

this year in Electrical Engineering.  He helped me learn how to program NTG.  Finally, 

thank you to Kristina Frazier, my wife, who has supported my work at school and home 

and has made thesis bearable for the past year. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

ABSTRACT 

 

This thesis will present various methods of trajectory generation for various types 

of mobile robots.  Then it will progress to evaluating Robot Operating Systems (ROS’s) 

that can be used to control and simulate mobile robots, and it will explain why 

Player/Stage was chosen as the ROS for this thesis.  It will then discuss Nonlinear 

Trajectory Generation as the main method for producing a path for mobile robots with 

dynamic and kinematic constraints.  Finally, it will combine Player, Stage, and NTG into 

a system that produces a trajectory in real-time for a mobile robot and simulates a 

differential drive robot being driven from the initial state to the goal state in the presence 

of obstacles. 

 Experiments will include the following:  Blobfinding for physical and simulated 

camera systems, position control of physical and simulated differential drive robots, wall 

following using simulated range sensors, trajectory generation for omnidirectional and 

differential drive robots, and a combination of blobfinding, position control, and 

trajectory generation.  Each experiment was a success, to varying degrees.  The 

culmination of the thesis will present a real-time trajectory generation and position 

control method for a differential drive robot in the presence of obstacles. 
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I. INTRODUCTION 

 The problem of designing routes for mobile robotics is as old as the field of 

mobile robotics itself.  It is a well-researched field with a basic underlying question:  

How can the robot move from point A to point B?  More formally, techniques focus on 

converting a rigid robot body into a point moving through its configuration space.  The 

configuration space includes all of the spatial points in which the robot can move [1].  In 

addition to developing paths, routes are also optimized to enhance energy, time, or other 

parameters.  The copious varieties of mobile robots, situations, and constraints each play 

a specific role in developing techniques to guide vehicular robots.  In an age when 

autonomous systems either aid or replace human work, path planning offers ample 

opportunities.    

 Autonomous driving, safety, combat, and recon are only a few of the major 

aspects mobile robot path planning can influence in modern life.  One of the best 

examples for modern research in autonomous driving is the DARPA Urban Challenge 

(DUC).  The DUC is hosted as an “autonomous vehicle research and development 

program, conducted as a series of qualification steps leading to a competitive final event” 

[2].  The most recent challenge was held on November 3, 2007 in Victorville, California.  

The DUC gave each vehicle that entered the responsibility to navigate in traffic and 

perform all of the tasks typical drivers must complete, such as “merging, passing, 

parking, and negotiating intersections” [3]. 

 As is clear in the DUC, safety is of the upmost importance for any realistic 

autonomous vehicle.  Vehicles would need to have the ability to classify images into 
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people, cars, debris, and so forth, and it would be necessary to recognize conditions such 

as four way stops, yielding, and erratic driver behavior.  Image classification and 

situational recognition aside, each autonomous mobile robot must be able to generate fast 

and safe planned trajectories.  A vehicle must not only plan the most efficient route to its 

destination, but must also be able to react, in real time, to obstacles such as pedestrians, 

road blocks, or crashes [4]. 

 Mobile robotics’ influence extends beyond civilian life into military and defense.  

“Application areas include grid searching by coordinating robots, surveillance using 

multiple unmanned air or ground vehicles, and synthetic aperture imaging with clusters 

of micro-satellites” [5].  Robots such as the Mars Curiosity can explore uninhabitable 

areas, while others may collect intelligence in war-zones.  However, each of the 

applications listed above must have an underlying trajectory generation algorithm. 

Researchers have studied various methodologies for path planning algorithms, 

and each has its benefits and disadvantages.  Much of the research focuses on trajectory 

generation for nonholonomic robots as opposed to holonomic robots.  In short, holonomic 

mobile robots have constraints that are integrable; therefore, any path that is allowed by 

the configuration space is also a feasible path.  However, nonholonomic robots’ 

constraints are nonintegrable.  The main consequence of this is that the paths these robots 

can follow do not correspond to arbitrary paths in the configuration space.  One attempt 

to remedy this situation is to plan a path using classical methods assuming a holonomic 

robot.  This path may not be feasible for nonholonomic robots.  However, feasible paths 

may be derived from the nonfeasible route [1]. 
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Accordingly, a control method for car-like vehicles has been developed [2].  The 

vehicle’s current geometry would be projected onto the desired trajectory such that its 

lateral dividing line was parallel to the tangent line of the path and the turning radius of 

the wheels would match the curvature of the path.  This control strategy gave the car the 

ability to track curves with errors that converge to zero. 

Another major research area focuses on multi-robot collaboration.  With 

cooperating robots, teams may be able to accomplish tasks that are impossible 

individually.  Such tasks include traversing inclined obstacles, forming world maps 

through image stitching, and data collection in physically separate locations.  There have 

been attempts at a method in which there is no leader in the multi-robot strategy, which 

allows for tasks to be completed in the face of individual robot malfunction [5]. 

In addition to new areas of research, classical methods are being improved upon.  

For instance, the potential field method has been applied using new potential field 

functions [6].  These nontraditional functions allow mobile robots to reach goals that are 

near obstacles using the “mathematical elegance and simplicity” of the potential field 

method.  

Two subjects under research form the building blocks of this thesis:  Robot 

Operating Systems and Nonlinear Trajectory Generation.  “A robot operating system 

(ROS) is a collection of programs which allow a user to easily control the mobile 

operations of a robot” [7].  Various ROS’s have been developed, and the right choice can 

make mobile robotic research quick and efficient.  Depending on the ROS, expensive 

robots and sensors can be simulated and/or physically controlled without the lower level 

knowledge of robotic hardware.  An ROS simplifies the experimentation process, and it 
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can allow for faster code/compile/test cycles for methods such as Nonlinear Trajectory 

Generation (NTG).  NTG is able to produce optimal trajectories numerically in real time 

for robots with dynamic constraints minimizing nonlinear cost functions [8].  Using the 

output spatial and temporal coordinates from NTG, a ROS may use a feedback controller 

to drive the mobile robot to those coordinates. 

 The previous situation is the main subject of this thesis.  First, in Section II, a 

literature review is presented of current areas of research, such as control strategies and 

trajectory generation for mobile robots.  Then, in Section III, the thesis will provide an 

overview of mobile robotic platforms.  Specifically, the ER-1 robot will be described in 

detail.  In Section IV, V, and VI, the software used in this thesis will be explained, 

including the ROS Player/Stage System and the NTG program. 

 The main purpose of this thesis is to present the results of using NTG as a 

trajectory generator in simulated and physical experiments in real time.  To that end, the 

procedure to install the software and program the experiment will be described in detail 

in Section VII and the appendices.  Finally, also in Section VII, the results will show that 

NTG is successful as a real time trajectory generator; Section VIII and IX will give future 

recommendations for this research to continue.  
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II. LITERATURE REVIEW 

 In order to familiarize oneself with current research in mobile robot control and 

trajectory generation, contemporary research articles should be studied.  The following 

literature review discusses general topics pertaining to path planning and control.  The 

most applicable articles will be reviewed in sections of this thesis covering Player/Stage 

and NTG. 

 The first article presents a novel function useful for potential field path planning 

[6].  Using the potential field method, an artificial potential field is simulated that will 

attract the robot to the goal.  The goal emanates an attractive potential field, which is 

usually represented by 

 

    ( )          (       )          (1) 

 

where ξ is a positive scaling factor, ρ is the distance between the robot and the goal, m is 

the order of the field, and   is an (x,y) position. The attractive field is proportional to the 

ρ
m

 distance.  Obstacles emanate repulsive potential fields, which typically take the form  
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where η is a positive constant, ρ is the distance between the robot and the obstacle, and ρo 

is the threshold at which the obstacle’s field loses affect.  This field grows strong as the 

robot drives closer to the obstacle, and it decreases to zero at ρo as the distance increases.  

Each field projects a force in the direction of the negative gradient of the field.  The 
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forces of each field are summed, and the resultant vector yields the direction the robot 

should travel. 

 While the fields generate path direction easily, there are a few disadvantages, 

including local minima traps, no passage between closely spaced obstacles, and 

oscillation between narrow passages and obstacles [6].  The problem that this article 

seeks to fix is “goals nonreachable with obstacles nearby,” (GNRON).  GNRON 

situations arise when a goal lies near an obstacle.  For the potential field method to work, 

the global minimum of the sum of fields must be at the goal.  However, with GNRON, 

the attractive force of the goal decreases, and the repulsive force of the obstacle increases 

such that the global minimum is not at the goal. 

 In order to solve this problem, the repulsive field is modified to decrease when the 

robot is near the goal. 
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)
 

 
   (       )              
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    (      )     
           (3) 

 

As long as n>0, a global minimum is guaranteed at the goal.  However, a local minimum 

may appear near the goal so that the robot will stop at this point.  To resolve this, proper 

choices of η and ξ will eliminate the local minimum due to a GNRON situation.  As long 

as ξ/η is greater than 
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there will be no local minima.  In the preceding equation, r is the distance between the 

robot and the obstacle and ρm  is a simplifying term 

 

    
   

  
 

 
 √(  

 

 
)
 
 

     

  

                  (5) 

 The results of simulating this updated repulsive equation were promising as can 

be seen in FIGURE 1 below.  Even though, the GNRON problem is solved, there are still 

disadvantages.  Local minima arising from other obstacles are still possible.  Most 

importantly however, the easiest application of the potential field method is to an 

omnidirectional robot.  In this case, the robot has no constraints and can follow any path 

generated by the method.  However, a nonholonomic robot would not benefit directly 

from the generated path because there is no guarantee the path is feasible.  For instance, a 

car-like robot can only move instantaneously in the direction that the wheels are pointing.  

 

FIGURE 1 - Simulation Results of the Conventional and Updated Potential Field Method 

[6] 
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 The second article discusses the Rapidly-Exploring Random Trees (RRT’s) path 

planner and presents an improvement called the Execution Extended RRT (ERRT) [4].  

RRT is a fast, continuous domain path planner that is designed to explore large state 

spaces efficiently.  Its output is the basis for a probabilistically complete, but non-

optimal, kinodynamic path planner.   

 A robot using the RRT method will begin a tree with a root at start and attempt to 

reach a goal through one of its branches.  With probability p, it will extend a branch 

towards the goal within its configuration space that maintains its current kinematic 

constraints.  With probability 1-p, it will extend a branch to a random state not 

necessarily towards the goal.  In this way, it combines random exploration with a bias 

towards the goal.  While planners such as potential field or motor schema do not have the 

ability to look ahead, the RRT method is able to scan potential states before it moves the 

robot through a branch. 

 The algorithm utilizes three general functions: Extend(), Distance(), and 

RandomState().  Extend() calculates the next state in which to move.  If an obstacle 

blocks the movement, then another branch is calculated.  Distance() uses the distance, 

time, or other parameter that the algorithm is trying to minimize to estimate the number 

of times Extend() would have to be called to reach the goal.  Finally, RandomState() is 

called with probability 1-p and returns a state uniformly chosen from all possible states. 

The improvement suggested in this article is the ERRT method.  It adds a 

waypoint cache and adaptive cost penalty search to the RRT planner.  With the time 

reduced by adding these revisions, the ERRT planner can be considered real time. When 

a state is chosen and planned, it is reasonable to search in the same area of states during 
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the next search cycle.  This is due to the fact that the world situation would not change 

much in incremental steps.  Each time a new state is chosen in the ERRT algorithm, the 

previous states are randomly placed in an array.  With probability p, a target state is 

chosen towards the goal.  With probability, r, a target state is chosen from the waypoint 

cache.  Finally, with probability 1-p-r, a random state is chosen.   

 In addition, the adaptive cost penalty search allows the ERRT method to keep 

track of the distance between the root of the search tree and the target goal as opposed to 

only the distance between the current location and the target.  A value, β, is initialized to 

0.  If a branch is extended, then β is incremented by .05, and if a branch is not found, then 

β is decremented by .05.  As β increases between 0 and .65, more weight is placed on the 

distance between the root of the tree and the goal. 

 FIGURE 2 below shows two simulations run on custom software to show the 

ERRT method.  The cached waypoints are modeled as black dots, and the best path is 

bolded. 

 

FIGURE 2 - Simulation Results of the ERRT Method [4] 

 The simulation results show that ERRT planner, minimizing time, is able to 

quickly plan paths, with knowledge of all obstacles at all times.  Through experiment, 
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“the best combination of parameters that we were able to find, trading off physical 

performance and success with execution time was the following: 500 nodes, 200 

waypoints, P[goal] = 0.1, P[waypoint] = 0.7, and a step size of 1/15sec” [4].   

This work used the ERRT for holonomic robots.  As used in the article, it ignores 

kinematic constraints until post processing can be done to modify the paths.  In addition, 

if kinematics are not ignored, the paths chosen are even less optimal, especially if fast 

computation times are required.  Finally, because the path tree is built with the 

knowledge of all obstacle locations (dynamic and static) in the world, the method can 

suffer from the frame problem.  This issue, which increases computation time due to the 

amount of data in a world, has the potential to make the method slower than real time. 

 While the first two articles focus their published work on holonomic robots, the 

next article, co-authored by Richard Murray, attempts specifically to develop a 

nonholonomic path planner for a car-like robot [1].  Murray has produced plentiful and 

various articles, presentations, and software concerning mobile robotics, and his work on 

NTG is utilized heavily in this thesis.   

When this article was published, most of the work of path planning had been 

completed for holonomic vehicles.  Configuration spaces can be made for these robots 

based on the geometric constraints alone.  Trajectory generation for a car-like robot adds 

the difficulty of a nonholonomic constraint and a curvature constraint (meaning that the 

robot has a minimal radius that it can track).  As previously stated, nonholonomic 

constraints cannot be integrated; in addition, these constraints cannot be removed by 

reducing the configuration space.  Therefore, a connected component within the 
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configuration space does not necessarily yield a path.  The goal of this article is to 

produce an exact and fast path planner for a car-like robot. 

In order for the presented algorithm to function, the robot must be locally 

controllable, and the shortest length paths must be characterized in terms of a car-like 

robot.  The local controllability is tested by the Lie algebra rank condition (LARC).  A 

system with r constraint equations and n derivatives can form the (n-r)-distribution Δ.  “If 

the rank of LA(Δ) [Lie Algebra Delta distribution] is full at a given configuration c, then 

there exists a neighborhood of c, all of whose points are reachable by the system from c.  

In this case, the system is said to be locally controllable” [1].  If this condition is satisfied, 

then the existence of a trajectory is guaranteed, but the actual trajectory is not produced. 

 A car-like robot configuration studied in this article is shown below in FIGURE 3. 

 

FIGURE 3 - Car-like Configuration with Parameters x, y, θ, ϕ, and v [1] 

This yields the system 
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In addition, v is upper bounded and there is a maximum ϕ (minimum turning radius).  

The system and constraints can be analyzed using the LARC, and the car-like robot is 

found to be locally controllable. 

 In the absence of obstacles, the shortest length path for a car-like robot is made of 

arcs of minimal radius and straight lines.  For robots that can move backwards and 

forwards, cusps can form; between two points, at most two cusps are necessary.  The 

shortest length path possible between two points not separated by an obstacle is denoted 

dRS.  By utilizing the local controllability and the knowledge of shortest length paths, a 

corollary is formed as the basis of the algorithm:  For the neighborhood N1 of a robot’s 

configuration, there exists another neighborhood N2 such that for any configuration in N2 

the path between the two configurations is in N1.  This implies that if points from a 

holonomic path are connected in this way, then a car can travel the points of the path, too. 

 The algorithm is as follows.  First, the minimum length path is determined from 

start to finish by a low level geometric planner that ignores constraints and obstacles.  

Second, if an obstacle is on the route, the path is divided in half.  This is continued until 

all paths are free of obstacles and the endpoints of subpaths are concatenated.  Finally, 

the paths that connect subpaths around obstacles are optimized using the minimal length 

path dRS.  In “big-O” notation, the algorithm runs on O(ρ/ε
2
), where ρ is the minimum 

turning radius and ε is the diameter containing the initial free space calculated by the 

geometric planner. 
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 There is much manipulation of the initial path in this algorithm, so the path is 

stored using an array.  Any changes to a subpath correspond to a replacement and/or 

modification of a section of the array.  In order to detect collisions along the subpaths, the 

  robot vertices and the   obstacle vertices on each subpath are checked based on the 

fact that the paths are made of straight lines and arcs.  These collision points provide 

locations in the array to subdivide.  At these points the paths are locally optimized.  

While a global minimum path cannot be guaranteed, the individual subpaths are 

converted to minimal length paths based on the dRS criteria. 

 The results of experimentation were promising.  FIGURE 4 below shows the 

classic case of parallel parking.  In all, the planning time took 2.5 seconds. 

 

FIGURE 4 - Parallel Parking-(a) Initial and final destinations, (b) Geometric planner 

(.2s), (c) Nonholonomic path (.8s), (d) Optimized path (1.5s), (e) Traveled path [1] 
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A more complicated case is shown below in FIGURE 5.  The total computation time was 

38 seconds. 

 

 

FIGURE 5 - Complicated Case-(a) Geometric planner (5s), (b) Nonholonomic path (23s), 

(c) Optimized path (10s), (d) Traveled path [1] 

 

 This work has potential to lead to path planning for other nonholonomic robots.  

Two problems are inherent, however.  The first is that the entire path is planned at the 

beginning of the run, meaning that the world must not be dynamic.  This, in addition to 

the possibility of the frame problem, increases the computation time.   

 While the previous article focused on trajectory generation, there have been other 

efforst to solve the other half of the problem: Controlling the robot to move about the 

desired trajectory [9].  The goal of the paper is: “Given a nonholonomic system, a 

feasible desired trajectory to follow, a known clearance between obstacles, and a measure 
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of accuracy of the sensors, find a control law which will stabilize the system to this path, 

avoiding the obstacles robustly in the face of disturbances.”  However, this work focuses 

only on finding a control law that smoothly and quickly converges to a given trajectory.  

The ability to integrate the sensor and spatial accuracy requirements was not completed 

numerically, but rather qualitatively. 

 At the time of this paper’s publishing, most of the research in controlling 

nonholonomic robots focused on stabilization about a point.  It has been shown that 

smooth static-feedback cannot do this.  This work uses a linear time-varying feedback 

law based on robust stability to control a system such as the following: 

 

 ̇   ( )   ( )      (7) 

             

             

  ( )                         

  ( )                     

 

The control law is developed, and proven to stabilize about a trajectory.  The main step in 

this development is to linearize the system about the trajectory using a Taylor series and 

then ignore higher order terms.  The following terms are defined: 
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where ɸ is the state transition matrix for A(t) and δ is chosen such that Hc is bounded 

away from singulairity.  The following is the control law: 

 

       ( )   ( )    ( )  (    )          (8) 

 

 This control law was applied to a differential drive and car-like robot.  The axle of 

the differential drive robot, named Hilare, crossed through its center of mass.  Its control 

inputs, u=[u1, u2]
T
 are the linear and angular velocities of the robot.  Its states, x=[x1, x2, 

x3], are the x-position, y-position, and orientation (θ), respectively.  Hilare is modeled as 

follows: 

 

  ̇     (  )    

  ̈     (  )    

  ̇    

           (9) 

 

Using α=.1 and δ=1 and a desired control input of u
0
=[1,1]

T
 (corresponding to a circle), 

the control law was applied to Hilare.  An initial error, (-.1, .2, .1) was given to Hilare.  

FIGURE 6 below shows the result of Hilare tracking this trajectory. 
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FIGURE 6 - Result of Control Law Applied to Hilare to Stabilize about a Circle [9] 

These results show that Hilare smoothly and quickly converged to the circular path. 

 The car-like robot has a more complex system model.  While u is the same, the 

states become x=[x1, x2, x3, x4], the x-position, y-position, angle of the front wheels from 

forwards, and the angle of the car from the x-axis, respectively.  The system model is as 

follows: 

  ̇     (  )    (  )    

  ̇     (  )    (  )    

           ̇         (10) 

  ̇  
 

 
   (  )    
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Using α=.1, δ=1, and u
0
=[sin(t), cos(t)]

T
 (corresponding to a parallel parking maneuver), 

the control law was applied to the car-like robot.  An initial error, (.1, -.1, .05, .2), was 

given to the robot.  FIGURE 7 below shows the tracking of the parallel parking 

maneuver. 

 

FIGURE 7 - Result of Control Law Applied to the Car-like Robot to Parallel Park [9] 

The results show that, as long as a trajectory can be generated, there is a way to control 

the robot to follow the path.  In addition, if α is increased, then faster convergence can be 

achieved.  This method is able to converge despite disturbances and sensor inaccuracies.  
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Because this work focuses on stabilizing about a trajectory, the ability to create 

trajectories becomes the problem to be solved. 
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III. ER-1 ROBOT REVIEW 

 Each form of research tends to focus on a specific type of mobile robot.  The vast 

majority of path planning research has been carried out with omnidirectional robots.  

Omnidirectional robots may travel in any direction instantly; thus, an omnidirectional 

robot is a holonomic robot.  The implications on research are that an omnidirectional 

robot may move from one point to another without rotating first, and it may rotate while 

it is moving so that its orientation is correct when arriving at its destination [10].  This 

ability allows for an easier implementation of path generation algorithms because the 

algorithm can strictly focus on the minimization parameter and not the constraints 

imposed by the robot. 

 While holonomic robots are useful for experimentation on more theoretical or 

proof-of-concept algorithms, nonholonomic mobile robots are useful for experimentation 

that will apply practically.  Cars, motorcycles, tricycles, and differential drive robots are 

all nonholonomic, so any trajectory generation algorithm that is to apply to these vehicles 

needs to take into account their nonholonomic nature.  Nonholonomic mobile robots have 

differential degrees of freedom (DDOF) that are less than three [11]; these robots have a 

DDOF of three, minus the number of sliding constraints.  This sliding constraint makes it 

impossible for nonholonomic robots to move sideways (without slipping), and, as stated 

before, feasible paths must take this constraint into account. 

 This thesis relies in part on the previous work and material procured by Dr. Tamer 

Inanc, Travis Riggs, and Derek Thomas.  Two differential drive robots considered were 

the ER-1 robot and the Pioneer P3-DX robot [12].  The Pioneer P3-DX is manufactured 

by Adept Mobile Robots.  This fully programmable robot is known for reliability, 
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versatility, and durability, and it is fully supported on the Player program.  It is purchased 

fully assembled with motors with 500-tick encoders, providing odometry measurements.  

The P3-DX also has 8 forward-facing sonar sensors, and it is powered by three, hot-

swappable batteries.  An internal computer or laptop must be supplied for the robot’s 

computation engine.  This robot is one of the most popular research robots in the world. 

The ER-1 is an out-of-production robot manufactured by Evolution Robotics, now 

owned by iRobot.  The robot’s base package was advertised to provide easy and quick 

behavioral programming based on “if-then” statements involving images, sounds, e-

mails, and sensors. While much of the institutional research has been focused on human 

robot interaction, compatibility has been built (but not necessarily maintained) for 

programs such as Player and Robotics4.net. 

 FIGURE 8 below shows a typical setup of the ER-1.  The base package comes 

with an iREZ Kritter Cam (320x240 pixels, 30 fps), a frame with two stepper motorized 

wheels and a front castor wheel, and aluminum core X-beams for customizing.  Similarly 

to the P3-DX, a laptop must be supplied as the robot “brain.” 

 

FIGURE 8 - Typical ER-1 Robot Build 
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The laptop communicates to the Robot Control Module via USB to Serial interface.  The 

Robot Control Module (RCM) controls the stepper motors.  It readily accepts commands 

of linear and angular velocity.  The RCM and motors are powered by a 12V rechargeable 

battery pack.  In addition to the base package, and IR sensor pack and gripper arm are 

also available.  Three robots were purchased with the extra IR sensors and gripper arms, 

and these robots have been controlled in Player 1.6.5 to test a robotic test-bed [13].  The 

availability of these robots is what caused the ER-1 to be chosen in this thesis rather than 

the Pioneer P3-DX. 
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IV. REVIEW ON ROBOT OPERATING SYSTEMS 

 To aid in the research of mobile robotics, robot operating systems (ROS’s) have 

been developed.  An ROS is a program or set of programs that allow for easy control of 

mobile robot functions.  An ROS is to a robot as an operating system (OS) is to computer 

memory and computation.  It should have a user-friendly environment that manages the 

“low-level details.”  In addition, code that is used to control robots should be written in a 

general language that does not make the code obsolete when there are (supported) 

hardware changes.   

Sixteen various ROS’s have been compared using four main criteria:  ease of use, 

capability, adaptability, and ease of installation and maintenance [7].  A robot operating 

system should provide functions that allow basic movement functions without worrying 

the user with lower level code.  In addition, the program should be well documented, and 

the documentation ought to provide examples.  The ease of use should not affect the 

capability, however.  The ROS must have the ability to simulate and control physical 

actuators, sensors, and robots.  In addition, this control code should be easily 

transferrable from one robot or sensor to another, in any software language.  Finally, the 

installation time must be kept to a minimum so that research is not hampered. 

 Microsoft Robotics Developer Studio (RDS) and Player/Stage scored highest [7].  

In addition, the Willow Garage Robot Operating System (WG-ROS) was considered 

because it seemed to be the most widely used.  RDS provides a simple user interface with 

various and meticulous tutorials.  It can control eight different robots, and it can simulate 

this control on Visual Simulation Environment (VSE).  Player/Stage on the other hand is 

not as simple, but its documentation is more copious and in depth.  There are fewer 
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tutorials, but it includes a more comprehensive function library.  In addition, it can 

control and simulate thirteen different robots.  WG-ROS uses the same simulator as 

Player/Stage, but it can control sixty different robots.  The largest disadvantage of WG-

ROS is its complexity.  The decision factor between these three systems was academic 

representation:  since Player/Stage was the most widely cited in academia, it was chosen 

as the best ROS for a college student. 
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V. DESCRIPTION OF PLAYER/STAGE 

The Player/Stage software system, originally developed at CalTech by Richard 

Vaughan et. al., is a useful way to solve the issues of the cost of research and the 

knowledge necessary for low level control of actuators and sensors.  Using Stage, 

virtually any number of robots can be simulated with any number of sensors, and, using 

Player, these simulated robots can be controlled through simple commands and 

interfaces. 

 One of the obstacles facing robotics researchers is the cost of mobile robots and 

sensors.  The Pioneer P3-DX is base-listed at $4918.03.  This price is without many of 

the sensors that could be necessary, such as range finders or gyroscopes.  3-axis 

gyroscopes range around $79.95; a 1mm temperature compensated sonar could cost 

$109.95, or a Hokuyo R311 laser-range finder could cost $3950.00.   Procuring the initial 

research material would therefore be difficult with a modest budget.  In addition, once the 

materials are bought, the researcher must have the knowledge of how to use them with 

the robot.  This could include creating customized drivers, designing software package 

interfaces, and learning how to control each device within a single program of control 

code.  Finally, if multi-robot cooperation is desired, a knowledge of wireless 

communications may be needed, which adds another level of complexity. 

 In 1998 and 1999, at the California Institute of Technology, many contributors 

under the leadership of B. P. Gerkey, R. T. Vaughan, and A. Howard created two 

programs named Player and Stage to be run in the Linux environment.  The programs 

were designed to aid in the research of mobile robotics.  Stage is a virtual robot simulator.  

In Stage, a virtual world with virtual objects is filled with almost any number of virtual 



26 
 

robots and sensors that can interact with the world and its objects.  Using Stage, the 

Pioneer P3-DX can be simulated with any number of sensors at no cost.  Rather than 

learning each new sensor, Stage provides models of robot sensors; to create a sensor, the 

user must only make an instance of that model.  These models include rangers 

(simulating sonars, lasers, and IR sensors), bumpers, position control, color-blob 

tracking, grippers, and WIFI [14].  In addition, unique models can be created and 

instanced any number of times.  For example, a “banana peel” [15] model could be 

created by using a picture in the shape of a banana, scaling the size, and making the color 

of the banana yellow.  Then these banana peels could be placed in various locations 

throughout the world. 

 Stage is a powerful tool, but it is computationally cheap.  In the initial paper about 

Player and Stage, R. T. Vaughan states that Stage is written under a “Good-Enough 

Fidelity” [16].  The “Good-Enough Fidelity” philosophy implies that each of the models 

in Stage provides an estimate that is good-enough to the real-world device, but not 

exactly like it.  In addition, the computational power increases linearly with the number 

of devices being simulated [16].  Because of this computationally cheap model, Stage can 

be run on personal computers.  Although this requires control code to be written robustly, 

this robust code aligns with good practices of programming for real-world robots [16]. 

 Stage utilizes two types of files, world and include files [15].  World files contain 

the virtual world and everything that is in it, including robots, sensors, and objects.  

Include files contain robots, sensors, and objects, and they can be included in the world 

file.  Whatever is instantiated in the include file can then be used and possibly customized 
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in the world file.  Using include files allows the user to refrain from retyping code 

multiple times.    

 Directly before Stage was developed, Player was created.  “Player is a network 

server for robot control.  It provides a clean and simple interface to the robot's sensors 

and actuators over the IP network” [17].  Each robot subscribes to Player as a client, and 

Player can control the client as a server.   Player is most useful because if a driver is 

written for a device, then the driver can be linked to Player; then, Player abstracts each 

driver into device proxies so that common commands can be used for each type of 

interface.  For example, any IR sensor can be controlled via common commands, such as 

“GetRange().”  Player takes the control code and translates it into a command that each 

individual driver can use.  Furthermore, Player provides copious pre-compiled drivers, 

such as various sonars, lasers, rangers, cameras, and motor drives.  Player can be used to 

control any number of robot clients with actuators and sensors using any programming 

language that supports TCP sockets [18]. 

 The process of Player controlling a robot is as follows.  Hardware devices have 

drivers that Player can access.  A robot containing these devices subscribes to Player.  

Proxies are formed, one for each device.  These proxies transmit information and 

commands between the drivers for the devices and Player.  Any device connected to 

Player has access to the information and commands of any other device.  Therefore, 

multiple robots can interact freely as long as they are connected to Player.  A block 

diagram of the Player system is presented below in FIGURE 9. 
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FIGURE 9 - Player System Block Diagram [15] 

 Player uses configuration files [15].  Each configuration file contains a driver 

(separate from the individual hardware driver) that contains information like device 

name, hardware driver plugin name, what interface the driver provides (such as camera, 

position2d, ranger), what interface the driver needs, and what the address of the device is.   

 Stage can provide simulated robots and drivers, and Player can control robots 

with hardware drivers linked to them.  This immediately gives rise to the Player/Stage 

system, in which Player can control Stage simulated robots by using Stage as a plugin for 

Player.  A block diagram of the Player/Stage system can be seen below in FIGURE 10. 

 

FIGURE 10- The Player/Stage System Block Diagram [15] 
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All that needs to be changed for a simulation of Player/Stage is to add Stage as a plugin 

in the configuration file.  

 The uses of Player/Stage are numerous.  One can create any type of robot, and 

any number of robots, with any number of robot sensors in Stage and situate these objects 

in a virtual world.  Player can then control these robots and sensors and communicate 

among all of the clients.  Best of all, simulations can be run again and again, making 

changes as necessary, at no cost.  Finally, if a robot is created in Stage that is modeled 

after an actual robot, the same control code that controlled the simulated robot can 

control the actual robot as well.  These benefits have made Player/Stage a common 

robotics research tool. 
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VI. REVIEW OF NONLINEAR TRAJECTORY GENERATION (NTG) 

 The program called Nonlinear Trajectory Generation (NTG) was developed by M. 

Milam, K. Mushambi, and R. Murray at Caltech [8], [19].  Its goal is to provide a 

trajectory that is feasible for a nonholonomic vehicle to follow.  Then, a feedback 

controller can be used to drive the vehicle along that trajectory.  This scheme, called two 

degree of freedom control, can be seen below in FIGURE 11.   

 

 

FIGURE 11 - Two Degree of Freedom Control [8] 

 The question of solving for the trajectory is a nonlinear optimal control problem.  

Using classical methods, solving this problem is too slow for real time use.  Rather than 

solving for the entire trajectory, the path is split into intervals, p, and each interval is 

approximated by lower order polynomials.  These polynomials are represented by B-

splines, 

 

   ∑     ( )     
 
       (11) 

 

where    is the variable being approximated, B is the B-Spline basis function with 

polynomial order k,   is the number of coefficients, and C are the coefficients of the 
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polynomials.  The coefficients of the B-spline functions are determined using the 

sequential quadratic program NPSOL.  In addition, the B-spline derivatives will match at 

the knot points based on some smoothness.  Furthermore, if the B-splines are calculated 

once, and then the output coefficients are used as initial guesses for a second B-spline 

calculation, then the second calculation is very quick.  This method is called a “warm 

start.” 

 The problem statement is usually given as follows.  Given a system (12) and 

initial, trajectory, and final cost functions (13) and constraints subject to boundary 

conditions (14), make a trajectory to minimize the cost function. 

 

 ̇   (   )      (12) 

  (  )   ∫  (   )  
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In general, the variables should be written in terms of the least number differentially flat 

outputs necessary to describe the system.  However, this only aids in the speed of the 

calculation, not the ability of NTG to function.  This translates into the vector variables x 

and u should be written in terms of z=z1, z2, …, zq.   

 There are both advantages and disadvantages of NTG [20].  It is very fast, 

especially under a warm start, it converges well, and it handles all nonholonomic 

constraints.  This means it can generate meaningful trajectories for all mobile robots in 
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real-time.  The disadvantages include that there is no convergence proof, and the 

constraints can only be guaranteed to be followed at each discretization point within each 

interval.  This means that there is an assumption that the robot can move from one point 

to another within the generated trajectory feasibly.  This is not an outlandish assumption, 

especially if the points are generated closely together. 
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VII. THESIS PROCEDURE 

A. Installation 

 The previous research provoked the thesis project to use the Player/Stage system 

as an ROS, the ER-1 as the test robot, and NTG as the trajectory generator.  The goal was 

to produce a system that provides a trajectory to a (nonholonomic) differential drive robot 

and drives the robot through the trajectory by combining Player/Stage and NTG in real 

time and using a receding horizon approach. 

 Since Player/Stage was developed for Linux, the free Mageia distribution of 

Linux was chosen.  For most of the thesis, a 64-bit architecture was used, but a 32-bit 

architecture was also used equally successfully.  However, the Ubuntu distribution 

provides much more documentation, aid, and tutorials for beginning users of Linux.  The 

newest version of Ubuntu, 12.10 LTS, was originally installed for the thesis, but it was 

later found (after about five weeks of attempts) that this newest version was not 

compatible with both Player and Stage.  The libraries for the Boost package could not be 

found in Ubuntu.  Mageia, however, allowed for a quick (approximately three days) 

installation of Player/Stage. 

 Installing Player and Stage is non-trivial.  Installation steps can be found in 

Appendix I.  The instructions for installing NTG can also be found in the same Appendix. 

B. ER-1 Preparation 

 At the beginning of this thesis, one complete ER-1 system with a 12VDC lead 

acid battery and power module, Robot Control Module (RCM), robot frame, gripper arm, 

digital camera, and a Dell Latitude laptop with the Robot Control Center (RCC) installed, 

was available for use.  The RCC allows for simple behavioral programming of the ER-1 
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robot [21].  These behaviors are built on the reactive paradigm of robotic programming.  

A behavior is formed as such:  If some combination of conditions occurs, then perform an 

action.  “If conditions” include viewing a color, object, or motion, hearing a phrase or a 

sound level, sensing with an IR sensor, and acting at a certain time.  Actions include 

moving, playing a sound, sending a message, or using the gripper arm.   

While the RCC GUI is powerfully simple, an Application Programming Interface 

(API) is also provided.  The API allows for Command Line arguments to be passed to the 

ER-1 robot either through its local laptop or through another laptop over the internet.  

Commands such as move, move rotate, set velocity, set angular velocity, close gripper 

arm, etc are available which give the user more access to lower level commands.  In 

addition, Java Scripts can be written and compiled for the ER-1.  Although the RCC 

gives complete access to the ER-1’s sensors and motors, and it uses the powerful ERSP 

vision system for object recognition, it is useful only for the ER-1 robot with a 32-bit 

laptop, and it is expensive.  Because of this, control of the robot was to be carried out 

with Player, which could control more types of robots and be written in more software 

languages. 

 Before the ER-1 could be used, however, it had to be able to move.  The robot 

was seven years old at the inception of the thesis, and it had not moved in at least two 

years.  While the RCC could connect to the RCM while the battery was charging, the 

RCC could not control the wheel motors.  Through troubleshooting and contacting 

Deltran Battery Tender, the battery’s manufacturer, it was found that the lead acid 

batteries had been completely depleted and needed to be replaced.  The battery charger 

supplied enough current (750mA) to the RCM to allow communication to the RCC, but it 
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could not supply the current required by the stepper motors of the wheels.  Upon battery 

replacement, the ER-1 moved easily, and the thesis could begin to move onto 

Player/Stage. 

C. Player/Stage Preparation 

 The Player/Stage system is, at first, a daunting program.  In order to become 

familiar with it, one must practice with each aspect of the system.  The tutorial on how to 

use Player and Stage 3.2.X by Jenny Owen [15] of York, UK is useful to learn the basics 

of the system.  The process of this thesis went through the tutorial and developed other 

programs in order to prepare to use Player/Stage with NTG.  

 According to the two-degree of freedom design depicted in FIGURE 11 above, 

the position of the robot must be measured in order to give feedback to the system.  This 

can be measured through internal odometry, which is highly inaccurate, range sensors, 

cameras, or GPS systems.  For this reason, most of the preparatory work on with Player 

and Stage was completed using range sensors, cameras, and blobfinders. 

1.  Wall Following with Player/Stage 

 The first program is an implementation of a wall following behavior.  Using a 

robot with a range sensor pointed to its right, the robot can follow a wall on its right.  The 

control program uses a three state control algorithm:  If the robot is too far away from the 

wall, veer to the right.  If the robot is too close to the wall, veer to the left.  If it is within a 

threshold, continue straight.  The Stage simulation window can be seen below in 

FIGURE 12.  The grey box with the nose is the simulated robot, the small sliver of grey 

to its right is the range sensor, and the gray trail behind it is its previous path. 
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FIGURE 12 - Wall Following using Player/Stage 

The code for this group of programs can be viewed in Appendix II.  This algorithm set a 

constant forward speed of .1 m/s.  The threshold used to determine if the robot is too far 

or too close to a wall is 3±.055 m. 

2.  Blobfinding with Player/Stage 

 While previous program shows the proof of concept of determining distances to 

obstacles through range sensing, the next program shows how the exact location of 

obstacles can be determined from blobfinders.  A blobfinder is an algorithm that 
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determines the location of a color blob in an image.  Stage allows the user to skip the 

camera image to blob conversion that would normally have to be computed and directly 

detect blobs.  A blobfinder will detect any of the colors that the user specifies.  In this 

program, the robot has a blobfinder that is set to find grey, green, and purple blobs.  Once 

a blob is found, it will display the number of blobs it finds, and the location and bounding 

box of the first blob in the set.  It should be noted that the source code of Stage had to be 

modified in order for the blobfinder to work.  In p_blobfinder.cc, a patch had to be 

implemented as can be found in [22]. 

 The world is set up initially with a purple robot facing a green robot in a cave-like 

world.  Once the control code is run, the purple robot sees three blobs-two gray blobs and 

one green blob representing the walls and the other robot.  This can be seen below in 

FIGURE 13. 

 

FIGURE 13 - Robot with Blobfinder in Stage Simulation 
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The output of the control code can be seen below in FIGURE 14.  There are three blobs 

in the purple robot’s field of view, and the blob that is being reported on is the right-most 

grey blob.  Its centroid location is at the point (57, 30) as referenced by the purple robot.  

The bounding box positions show the blob to have an area of 344 pixels at a range of 

4.233362 meters.  

 

FIGURE 14 - getblob.cc Terminal Output 

The uses of this type of program are clear:  Objects can be detected and the information 

gathered can be used to avoid it.  Furthermore, these objects can be dynamic in that no 

prior knowledge is necessary for blobfinders to function (other than the color of the 

object).  The code for this group of programs can be seen in Appendix II. 

3.  Position Control with Player/Stage  

 The next program uses a built in Player virtual driver called “Go To.”  This driver 

takes in a point in terms of (x,y,θ), and it moves the robot to that point [18].  Given a 

differential drive robot, it will simply rotate the robot towards the point, drive in a 

straight line to the point, and then rotate to the desired pose.  While this is good enough in 

some applications, the movements are not smooth and would not be easily transferrable 

to planes, bicycles or other vehicles that cannot hover in place.  FIGURE 15 below shows 

how a differential drive robot is moved from the point (0,0,0°) to the point (3,3, 135°) 

within a circular arena. 
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FIGURE 15 - Using Player’s “Go To” Driver to Move from (0,0,0°) to (3,3,135°) 

 Rather than using this driver, it would be better to use a proportional feedback 

controller that forces a smooth path for a differential drive robot.  According to [23], the 

kinematic model for a differential drive robot is: 
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The components of motion can be seen below in FIGURE 16. 
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FIGURE 16 - Differential Drive Components of Motion [23] 

Using the coordinate transformations, 
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Then the system is locally exponentially stable, and the error will be driven to zero. 

 Using these equations, a program that drives a differential drive robot to a point 

(x,y,θ) was written.  The simulation result of driving the robot to the point (3,3,135°) is 

shown below in FIGURE 17. 

 

FIGURE 17 - Using a Proportional Controller to Provide a Smooth Path to a Goal Point 
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The robot must approach the goal point at the final goal angle.  Therefore, rather than 

going in a straight line, it must overshoot the point in the x direction and curve up.  This 

is more desirable than the Player driver “Go To.”  This control model takes into account 

more constraints than is necessary.  A differential drive robot can move in place by 

spinning its wheels at equal speeds in opposite directions.  However, the model shows 

that, given a path to follow that is feasible for the differential drive robot, it can follow 

the path using a method that is considerate of the robot’s constraints.  The code for this 

group of programs can be seen in Appendix II. 

4.  Blobfinding with Player 

 The next group of programs this thesis focuses on is the code using Player to 

interface with hardware rather than Stage.  The first program uses a built-in HP Pavilion 

webcam and an algorithm to detect black blobs.  To do this, two Player drivers must be 

instantiated:  The physical driver “cvcam” and the virtual driver “CMVision” [18].  The 

driver “cvcam” uses the OpenCV framework to capture images using cameras like 

webcams that OpenCV can utilize.  While “cvcam” works with a physical device, 

“CMVision” works with an algorithm to act as a blobfinder.  “CMVision (Color Machine 

Vision) is a fast color-segmentation software library…The CMVision driver provides a 

stream of camera images to the CMVision code and assembles the resulting blob 

information into Player’s data format” [18].  To determine what color blobs CMVision 

attempts to find, a “colors” file must be included in the directory.  In this file, each color 

desired is listed in the following format [24]: 

 [colors] 

 (Red Value, Green Value, Blue Value) merge expected_number_of_blobs name 
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 [thresholds] 

 (Y_min:Y_max, U_min:U_max, V_min:V_max) 

where Y,U, and V values are from the YUV color spectrum. 

 In this program, black blobs were attempted to be discerned from an image.  The 

RGB color value of black was ascertained by capturing an image of a black t-shirt and 

analyzing it using Matlab.  The average value of the black t-shirt was found to be (27, 33, 

20).  In addition, the maximum and minimum values of the t-shirt were found, and these 

values were converted to YUV format using: 

 

                               (22) 

                               (23) 

                                (24) 

 

The final Colors.txt file can be seen in Appendix III.   

 Using this information, a single black blob was detected accurately.  In a short 

experiment, a square, black piece of felt was placed in the view of the camera in two 

locations.  Its blob’s center and area was tracked, and each time a blob was found, a 

picture was taken.  This code can be seen in Appendix III. 

 The following three figures show the two situations in which the blobfinder must 

find a black blob.  FIGURE 18 shows the same position of the felt, while FIGURE 19 

shows a lower location of the felt. 

 



43 
 

 

FIGURE 18 - A, B: First Felt Location 

 

 

FIGURE 19 - Second Felt Location 

The table below shows the output of the program for each blob. 

TABLE I 

RESULTS OF BLACK BLOBFINDING 

Picture Number 1 2 3 

Number of Blobs 1 1 1 

Centroid of Blob (311,211) (281,211) (261,291) 

Area of Blob (pixels
2
) 42 42 40 

 

As can be seen from the table, the first two blobs that were found correspond to almost 

the same blob:  each blob contains the same area, and the position of the blob differs by 
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only 30 pixels in the x-direction.  The third blob that was found had a similar area (40 

pixels
2
 instead of 42 pixels

2
), and its position was lower in the camera field of view (pixel 

locations are measured from (0,0) in the top left corner of the image).  This corresponds 

to a lower position of the blob. 

This blobfinding technique shows that an obstacle can be represented as a blob 

and its two dimensional shape can be analyzed as long as the blobfinder is searching for 

the object’s color.  This could provide two purposes. It could be an obstacle detection 

device in which a path could be planned around the object.  It could also be used as a 

localizer, in which a known object of known location could be used to judge the current 

position of the robot using the camera.  In addition, using the “cmcam” driver, pictures 

can be saved and analyzed using customized digital image processing algorithms that can 

yield more information. 

 The final Player program was the most important but the most disappointing.  The 

ER-1 robot must be controlled by Player in order to be used in experimentation for path 

planning.  However, it seemed that the ER-1 hardware driver which was developed in 

2006 for Linux distributions has lost functionality with the newest versions of Player.  

Using a laptop with the Mandriva Free 2006 operating system, Player version 1.6.5, and 

the same code described above in the proportional feedback control code, the ER-1 robot 

physically moved in the same way as in simulation.  It used internal odometry instead of 

GPS-like localization, which suffers from accumulated error over time.  In addition, the 

kinematic constraints of the vehicles are not ideal, in that slip of the wheels does occur.  

However, the same code used in Mageia with Player version 3.1.x did not move the 

robot.  In addition, while the camera and blobfinding code physically functioned with 
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Player 3.1.x, attempting to use any camera in Mandriva Free 2006 caused a kernel crash.  

Because of this, there was not a way to provide location feedback to the actual robot.  

The thesis continued using the Player/Stage control and simulation scheme under the 

knowledge that this code can be easily transferred to a physical robot and hardware 

assuming the hardware drivers are up to date.  

 

D. NTG Preparation 

 Because the Player/Stage system had been shown to be able to drive a robot to a 

given point (x,y,θ), the goal with NTG was to program it to produce a list of these points 

(called waypoints) for the robot to follow.  NTG as a program function updates the initial 

B-Spline coefficients into coefficients for B-Splines that would follow the desired path.  

Therefore, the first step to producing a list of waypoints was to utilize a function that 

converts coefficients of B-Splines into waypoints on those B-Splines. 

 The function SplineInterp, provided by the NTG system, provides the variable 

outputs (e.g.  ,  ̇, and  ̈) given the number of points on the entire path, the number of 

intervals, the coefficients of the B-Splines, the order of the B-Splines, and the smoothness 

of the knot points.  This result can then be printed to a file using the PrintVector 

command, also provided by the NTG system.  Much work has also been completed using 

MATLAB and NTG.  The example given with the NTG source code comes with a 

MATLAB file that takes the same information as SplineInterp and computes the 

variables.  MATLAB, however, cannot easily be used in real-time, and therefore 

SplineInterp was the better choice of B-Spline interpreters for this thesis. 

1.  An Intuitive Example 
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 As stated previously, NTG generates a trajectory given a cost function to be 

minimized, according to linear and nonlinear initial, trajectory, and final constraints.  As 

an example, consider an omnidirectional point mass robot (this example is based on the 

University of Louisville’s Yinan Cui’s NTG example with two UAV’s). In order to 

minimize its kinetic energy on a path, its linear velocity must be minimized, according to 

the following trajectory cost function 

 

       ∫ ( ̇   ̇ )  
  
 

.         (25)  

 

Therefore, between 0 seconds and the final time,  , over the course of a path, the square 

of the linear velocity, ( ̇   ̇ ), is minimized.  The robot is subject to linear constraints 

such as  

 

 Initial Linear Constraints:            (26) 

   ( )    

   ( )    

 Trajectory Linear Constraints:           (27) 

          

          

      ̇     

      ̇     

 Final Linear Constraints:            (28) 

      (  )      
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      (  )     . 

 

This constraint enforces the robot to start at (5,5) and move to around (97.5,97.5) while 

keeping its x-direction velocity and y-direction velocity less than 10 m/s and staying 

within a 100m x 100m square.  The robot is also subject to nonlinear constraints such as 

 Trajectory Nonlinear Constraint:           (29) 

     (    )
  (    )

    . 

 

This means that the robot must not share the same space as a circular obstacle at (xo,yo) 

with a radius of r, but it must not go outside the boundary from the center of the obstacle, 

B.  In this case, B should be large enough to encase the entire space in which the obstacle 

can move.  For this example, let (xo,yo) = (50,50), B = 100, and r=10m so that the robot 

must go around the obstacle to reach its goal, and let tf = 30 seconds.  The other 

parameters for programming NTG can be seen in Appendix VI. 

 

 The derivatives of the cost function and nonlinear trajectory constraint functions c 

are used by NTG, and are clculated in one of two ways.  The first way is by passing the 

function itself into NTG and letting NTG calculate the derivates.  The second way is by 

passing the gradients of the functions with respect to each variable and its derivative.  

While this is more complex from a programming perspective, it is quicker than the first 

method.  Therefore, the gradients were passed into NTG as follows 

 

 Unintegrated Cost Function Gradient:          (30) 
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 Nonlinear Trajectory Constraint Gradient:          (31) 

  
  

  
  (    ) 

  
  

  ̇
   

  
  

  ̈
   

  
  

  
  (    ) 

  
  

  ̇
   

  
  

  ̈
   

 

It should be noted that, depending on the Linux distribution and compiler, the 

differentials that are zero may or may not have to be initialized as such.  In this thesis, 

however, it was necessary for the differentials to be initialized at zero so that NTG 

functioned correctly. 
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 By calling NTG with these parameters, the following path, shown in FIGURE 20, 

is generated.  The figure shows how the robot avoids the obstacle while traveling in an 

energy saving pattern (two straight lines and an arc). 

 

FIGURE 20 - Path Generated for the Omnidirectional Robot 

2.  Differential Drive Robot Example 

The next example models a differential drive robot.  First, the robot has kinematic 

constraints, as shown in (15).  In order to minimize the kinetic energy as it travels from 

point to point, it must minimize the following cost function 

 

        ∫ ( ̇   ̇   ̇ )  
  
 

.        (32) 
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Therefore, between 0 seconds and the final time over the course of a path, the square of 

the linear velocity, ( ̇   ̇ ), and the square of the angular velocity,  ̇ , is minimized.  

The robot is subject to linear constraints such as  

 

 Initial Linear Constraints:            (33) 

   ( )    

   ( )    

   ( )    

 Trajectory Linear Constraints:           (34) 

          

          

         ̇      

 Final Linear Constraints:            (35) 

      (  )      

      (  )      

   (  )   . 

 

This means that the robot must stay within a 100m x 100m square as it travels from 

(5,5,0) to (97.5,97.5,0).  It must also keep its angular velocity within the limits of the ER-

1 robot.  It is also subject to nonlinear constraints such as 

 

 Trajectory Nonlinear Trajectory Constraints:          (36) 

     ̇   ̇      



51 
 

     (    )
  (    )

    . 

 

This means that the linear velocity must stay between 0 m/s and .5 m/s per the ER-1 robot 

specifications.  In addition, the robot must avoid an obstacle of radius r, but stay within a 

bounding circle, radius B.  For this example, let the r = 5m and let tf=300 seconds, 

holding the other constants the same as in the previous example.   

 While these constraints and kinematics accurately describe the differential drive 

robot scenario, it is not the most efficient in terms of NTG programming.  The previous 

setup yields three differentially flat outputs, (x,y,θ).  However, as shown elsewhere, 

fewer differentially flat outputs cause NTG to generate the trajectory more quickly [25], 

[26].  In addition, by using the kinematic and dynamic constraints, fewer output variables 

may be used.  From (15),   

 

      
 ̇

 ̇
          (37) 

 

This constraint states that the differential drive robot must be oriented tangent to the 

direction of motion.  From (37), the equation for the angular velocity in terms of x and y 

is 

 

 ̇  
 ̇ ̈  ̇ ̈

 ̇   ̇ 
          (38) 

Using (38), the cost function and constraints can be rewritten as 

 

 Trajectory Cost Function:            (39) 



52 
 

          ∫ ( ̇   ̇  {
 ̇ ̈   ̇ ̈

 ̇   ̇ 
}
 

)  
  

 

 

 Linear Initial Constraints:            (40) 

 ( )    

 ( )    

 Trajectory Linear Constraints:           (41) 

        

        

 Final Linear Constraints:            (42) 

    (  )      

    (  )      

 Trajectory Nonlinear Constraints:           (43) 

       ̇   ̇           (43 A) 

         
 ̇ ̈  ̇ ̈

 ̇   ̇           (43 B) 

      (    )
  (    )

    .     (43 C) 

 

This is equivalent as the previous constraints, except that it has only two flat outputs, x 

and y.  The parameters for programming NTG can be seen in Appendix VI.  Finally, the 

gradients of the cost function and the nonlinear constraints are as follows. 

 

Unintegrated Trajectory Cost Function Gradient:          (44) 
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Nonlinear Trajectory Constraint Gradients:           (45) 

 43 A: 
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43 C: 
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It should be noted that when programming, a small value ε=.00001, must be added to the 

denominators to ensure numerical stability. 

 By calling NTG with the parameters above, the following path, shown in 

FIGURE 21, was generated. 
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FIGURE 21 - Trajectory of the Differential Drive Scenario 

In addition, the linear and angular velocity constraints can be checked for consistency.  

The following two figures, FIGURE 22 and FIGURE 23, show the linear and angular 

velocities along this trajectory.  Note that the linear velocity is always between 0m/s and 

.5m/s and the angular velocity is well within the –π/2rads/sec and π/2rads/sec. 
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FIGURE 22 - Linear Velocity of the Differential Drive Robot 

 

FIGURE 23 - Angular Velocity of the Differential Drive Robot 

 These results show that a successful path was planned for a differential drive 

robot with constraints and an obstacle.  The NTG program for this trajectory can be seen 

in Appendix IV. 
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E. Interconnecting Player/Stage and NTG for a Real-Time Application 

 The previous examples show how trajectories can be generated that minimize 

kinetic energy, avoid obstacles, and are feasible for nonholonomic vehicles.  However, 

the examples are not real-time.  Indeed, the obstacle is pre-programmed into the 

trajectory generation, and the trajectory is not updated after the initial generation.  If an 

obstacle were to dynamically show up in the path of the robot, the previous examples 

would not have the capability to deal with it.   

 In order to develop this capability, the following scheme was implemented.  First, 

a simulated differential drive robot with a blobfinder is situated at the point (5,5,0).  The 

blobfinder specifications are:  Field of View=60°, image size=60x80 pixels, range=10m.  

The blobfinder gives the system the capability to discover obstacles that may appear 

within 10m of the robot.  Using the blobfinder functions from Player/Stage, the 

approximate location and size of the robot could be found without prior knowledge of the 

obstacles existence.  Then, a Player control program calls NTG to create a trajectory to 

move between any number of goal points.  The way points for each trajectory to a goal 

are read via a text file by the Player program.   

 For this example, the user chose a path from (5,5,0) to (50, 95, 0) to (95, 5, 0) 

with no assumptions about the existence of obstacles in the trajectory.  The Player control 

program drives the robot from point to point using the smooth path proportional 

controller program.  If the blobfinder senses a dynamic obstacle, the program calculates 

the size and position of the obstacle using 
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        (  )             (46) 

        (  )                         (47) 

       
         

  
          (48) 

where    is the x-center point of the obstacle,    is the y-center point of the obstacle, (  , 

  ,   ) is the current robot pose,   is the range to the object,      is the pixel length of 

the blob divided by 60 (the image x-size), and tan(30) is the tangent of half of the field of 

view angle (60).  Then, these seven pieces of information (   ,     radius,   ,   , 

           ) are fed into NTG via a text file, and NTG is called again, which generates 

the path around the obstacle.  FIGURE 24 below shows a flowchart for the software. 

 

FIGURE 24 - Player/Stage/NTG Software Flowchart 

 It should be noted that the NTG program only outputs x, y, and their derivatives.  

While θ could be calculated by the derivatives of x and y, computation time is saved by 

estimating θ using Euler’s forward approximation of a derivative 
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        (   )  ( )

 (   )  ( )
 .         (49) 

 

1.   Validation of the Approach 

 FIGURE 25 below shows the results of running this software system with an 

initial point (5,5), two goal points (50,95) and (95, 5), and two rectangular obstacles at 

(12, 20, 150) and (60, 75, 30) with a length of 5m.  Note the red trail is the past position 

of the robot.  The robot is equipped with a differential drive system, and a blobfinder, 

with the same specifications as above, that can view gray and green objects.  The robot 

calculates the initial paths to the goal points with no knowledge of the obstacles; the 

robot sees the obstacles at the points (7.75915, 10.6796, 60) and (54.9231, 83.9231, -30) 

and senses the obstacles’ locations to be (12.0342, 19.4781) and (58.9272, 74.9095) with 

a radii of about 2.9m each.  It then recalculates trajectories around the obstacles.  The 
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Player/Stage/NTG code can be seen in Appendix V.

 

FIGURE 25 - Player/Stage/NTG Simulation of Multi-obstacle Differential Drive 

Scenario 
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The path that the robot followed can be compared to the list of points given, shown in 

FIGURE 26 below.  

 

FIGURE 26 - NTG Waypoints Calculated for the Two Static Obstacle Problem 

It can be clearly seen that the paths are almost identical, except that the actual traveled 

path is smooth and does not contain the corner at (50,95).  This is due to the proportional 

feedback controller which drives the robot about smooth curves. 

     In contrast to this example, another example was run to generate a trajectory for 

the same initial and goal points without obstacles.  In the following, FIGURE 27 shows 

the results of such a simulation.  Note that the path generated moves completely through 

the obstacles’ original positions which shows that the first simulation was not a 

predetermined path. 
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FIGURE 27 - NTG Waypoints Calculated for No Observed Obstacles Scenario 

The previous two examples show that NTG can be used to generate a trajectory for a 

differential drive robot with dynamic obstacles in real time.  In addition, this data can be 

used by Player/Stage to simulate and control robots.  Furthermore, data that is captured 

through Player and Stage can be used by NTG to make accurate paths for dynamic 

situations.   
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VIII. DISCUSSIONS AND CONCLUSIONS 

The previous results presented in this thesis show many important facts in terms 

of the capabilities of Player, Stage, and NTG.  The work with Player showed the ability 

to easily capture information about blobs and control a physical robotic drive train.  The 

research concerning the Player/Stage system revealed that algorithms involving 

potentially expensive sensors and robots could be implemented and tested for free.  These 

algorithms, such as wall following with a range sensor, blobfinding, and proportional 

feedback position control were tested and shown to work on simulated systems (as well 

as blobfinding and position control with physical systems).  Work pertaining to NTG 

showed how trajectories could be generated for systems with the following aspects:  

linear and nonlinear constraints, such as initial positions or speed limitations; holonomic 

and nonholonomic constraints, such as an omnidirectional or differential drive robot; and 

dynamic constraints, such as obstacles or energy minimization requirements.  Finally a 

combination of Player, Stage, and NTG displayed the ability to generate real-time 

trajectories for a differential drive mobile robot.   

Because routing robots from one point to another in the presence of dynamic and 

systematic constraints is a common problem, this thesis aids the solution by providing a 

way to generate meaningful, feasible paths for nonholonomic mobile robots.  

Autonomous vehicles such as cars or planes could make use of the basic idea laid forth in 

this thesis.  Even though the culminating experiment of the thesis was simulation only, 

the other experiments revealed that all that is needed for a physical representation of the 

same experiment would be a machine and version of Player that would work with both 

the physical robot and the camera/blobfinding system, not just one or the other.  This 
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does assume, however, that a GPS-like localization (either from a GPS or overhead 

camera system) is available to give the robot its location.  If this is not the case, the 

software would have to be modified to localize the robot through some other means. 

This implementation does have limitations, however.  The first issue is the hard 

coded optimal time.  The culminating experiment used a fixed trajectory time; the same 

time is used no matter where the robot starts on the map as it heads to the goal.  In the 

example, 250 seconds would be allocated for the path from (5,5,0) to (50, 97.5, 0) as well 

as the recalculated path from (7.75915, 10.6796, 60) to (50, 97.5, 0).  Rather than doing 

this mission, time could be optimized as well [25], [26]  by letting  

 

                (50) 

 ( )     ( )                     (51)  

 ( )     ( )          (52) 

      .                (53) 

 

Then, in addition to calculating the optimal path, the optimal time would be calculated as 

well.  One of the most important problems with hard coded trajectory time is that it is 

possible to generate a trajectory that is feasible and starts and finishes at desired points, 

but it may have wasted movement, which is undesired according to the cost function.  

Rather than going in a straight line, the trajectory may take the “scenic route” and 

oscillate about the line on the way to a goal. 

 The second limitation pertained to obstacles.  The obstacle position is determined 

by comparing the length of a blob when it gets close to the robot.  However, this obstacle, 
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if long enough, would have a radius greater than that of the range of the blobfinder.  

Therefore, the robot could start within the region of the obstacle circle; NTG would then 

fail since there is no way to meet the constraints of the initial condition if the robot 

contradicts the constraints.  A better way to determine the obstacle shape is therefore 

necessary.  In addition, once an obstacle is found, a trajectory is generated.  However, the 

obstacle is still in the blobfinder’s field of view directly after the trajectory is generated.  

The program should not mistake this as a new obstacle and then recalculate a new 

trajectory.  Therefore, a way to handle multiple dynamic obstacles without creating new 

trajectories for the same obstacle is necessary.  In the culminating example, different 

obstacles are determined by color.  If an obstacle is a different color than the last obstacle 

the robot saw, then it is counted as a different obstacle.   
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IX. RECOMMENDATIONS 

 There are many ways in which this thesis can be improved upon for future 

research.  NTG and Player communicate to each other in the system presented through 

text files.  There is one text file created for the obstacle information, and there are two 

other files created for x and y points.  There are at least two possibilities that would lead 

to faster computation and less programming effort.  The first is to use the extern 

keyword.  By declaring variables in header files, and then using the variables in a c or 

c++ program, the variables can be shared rather than written to and read from a text file.  

A much more extensive project would be to try to build an NTG path planner driver for 

the path planner interface for Player.  Then, only control code would need to be written 

for a single robot situation.  It would save time, code, and memory during future 

implementations. 

In addition to the passing of variables between Player and NTG, a different 

control law could be used for driving the robot.  The first and easiest option would be to 

directly solve for the linear and angular velocities using the output of NTG and then set 

the speeds in Player for the duration of seconds between each waypoint.  In this way, 

NTG is the planner and the controller.  Secondly, another control law could be written 

using Player control code.  The control law developed elsewhere, [9], would be more 

useful than the proportional feedback controller used in this thesis.  The proportional 

feedback controller stabilizes the robot about a point, (x,y,θ) whereas this specific control 

law stabilizes the robot about a trajectory.  Using this control law would be more 

consistent with the generated trajectory. 
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Finally, the generated trajectory could be even more efficient than it was in this 

thesis.  By adding robot dynamic constraints, NTG could know exactly how much energy 

the robot is exerting under certain linear and angular velocities.  The dynamics in [27] 

would suffice, specific to a differential drive robot.  These dynamics would be 

programmed as two more nonlinear trajectory constraints. 

This thesis has only begun to provide a comprehensive real-time trajectory 

generator for nonholonomic robots.  However, it did succeed in doing so in a somewhat 

controlled environment using NTG and Player/Stage.  Much more work can be carried 

out using the recommendations presented previously, and through other research avenues.  

As each year passes, though, technology progresses more closely to more fully 

autonomous mobile robots. 
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APPENDIX I.  INSTALLING MAGEIA, PLAYER, STAGE, AND NTG 

 

A. Installing Mageia 

 Live DVD and CD iso's of Mageia can be found in many places.  Two options as 

of Sept. 2012 are http://www.mageia.org/en/ and 

http://distrowatch.com/table.php?distribution=mageia .  Use these (or similar) websites to 

download an iso and burn the image to a CD or DVD.  Users may install Mageia in 

parallel to an existing operating system (e.g. Windows and Mageia machine), or they may 

install Mageia by itself.  The installation instructions are fairly simple and Mageia will 

prompt the user for any actions necessary; the main warning is to not delete any part of 

your hard drive on accident during installation.   

When installing Mageia, the following notes should be followed: 

• The user should ensure the correct iso image is downloaded for each machine’s 

specifications (concerning 32-bit vs. 64-bit or i586 vs x86-64). 

• Once Mageia is installed, the user should make sure the machine is wired to the 

internet and go to the Mageia Control Center.  Then, under “Configure media sources for 

install and update”, all the lines should be removed and then the Mirror list Core, 

Nonfree, and Tainted (not Debug or Testing) should be added.  This will connect the 

machine to the online repositories and keep the user from having to insert the installation 

disc whenever updating is desired. 

• After installation, it may be helpful to configure the machine's hardware (such as 

Wireless cards).  The user should ensure that machine is wired to the internet during 

installation of Mageia.  Also, the Mageia Control Center (and the hardware tab) should be 

used to configure hardware. 

http://www.mageia.org/en/
http://distrowatch.com/table.php?distribution=mageia
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B. Installing Player/Stage 

 The main reason Player and Stage are so difficult to install is the amount of 

dependencies that are necessary to be installed before Player and Stage can be installed.  

As of Sept. 2012, a list of dependencies necessary for Player and Stage can be found on 

http://www.control.aau.dk/~tb/wiki/index.php/Installing_Player_and_Stage_in_Ubuntu.  

After Mageia is installed and is set to receive updates and packages from online 

repositories (see second bullet under Installing Mageia), the packages on this page should 

be available for installation.  These packages are CMAKE, CPP, FLTK, FREEGLUT, 

GDK, GNOMECANVAS, GSL0, GTK, JPEG, BOOST, LIBTOOL, LTDL, OPENCV, 

PNG, SWIG, XMU, AUTOTOOLS, and BUILD-ESSENTIAL. 

There are two options for installing these packages.  Those comfortable with the 

Command Line interface should use the urpmi command.  Beginners and those who like 

GUI's should use the Mageia Control Center.  After navigating to the Install and Remove 

Software within the Center, the user should search for each package (making sure there 

are no filters, i.e. the tabs say “All” and “All” in the top left corner).  The user should 

ensure to install the newest versions of each package and the packages that are for his/her 

system (x86-64 vs. I586).  In addition, with a x86-64 machine, the packages will be 

named with a “lib64” prefix, and not just a “lib” prefix.  The best way to search for each 

package is to search for the main body of the package name e.g. boost, gdk-pixbuf, etc.   

Note that as of Sept. 2012 autotools and build-essential were not found (they are 

mainly listed for Ubuntu users).  Finally, note that packages will require other packages 

to install.  When the user is prompted to install these additional packages, allow them. 

 The next step is to download the actual Player and Stage files.  The user should 

http://www.control.aau.dk/~tb/wiki/index.php/Installing_Player_and_Stage_in_Ubuntu
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follow these steps. 

1. Open a terminal (for the Command Line) and navigate (using the cd command) to 

the directory with Downloads, Videos, Documents, etc.  It should be the default directory.  

Then: 

 $  mkdir src      /*for source code 

 $  cd src 

 The above are commands for the terminal.  Do not type in the “$” or the 

comments listed  with /*. Then:   

 $  mkdir player-svn 

 $  cd player-svn 

2. To get the most up to date version (which is 3.1.0 as of Sept. 2012): 

$  svn co 

https://playerstage.svn.sourceforge.net/svnroot/playerstage/code/player/trunk 

 This will download the latest version into a file within player-svn, named “trunk”.  

3. Change directory to src again, and this time run: 

$  git clone git://github.com/rtv/Stage.git 

4. If these websites are out of date, then do not do 2 and 3.  Search for and download 

the tarballs (like a Windows zip file).  Then extract them to the directory src: 

 $  tar -xvf name_of_tarball.tar  path_to_file_src 

 In order to use Player with Stage, Player must be installed first (after installing all 

dependencies, including those for Stage).  Starting in the /trunk directory (or the file that 

contains the extracted Player files): 

 $  mkdir build 

https://playerstage.svn.sourceforge.net/svnroot/playerstage/code/player/trunk
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 $  cd build 

 $  ccmake .. 

 This last command will bring up a configuration screen.  Press “c” to configure.  

Then press 't” to bring up all options.  Find the option for cmake verbose mode and turn it 

on by pressing ENTER.  Then, find the install prefix and make sure it says either 

usr/local/lib or usr/local/lib64 (again, this depends on the user’s machine).  Press “c” 

again to configure, and then press “g” to generate the make files.  Then: 

 $  cmake .. 

 If it returns no errors, then continue; otherwise read the errors carefully.  Make 

sure they do not mention a missing package-if so, download and install the package using 

Mageia control Center.  If it is another error, the best advice is to search for the error on 

the internet.   

 $  make 

 If it returns no errors, then continue. 

 $  su 

 $  /*enter password 

 $  make install 

 If it returns no errors, Player has been successfully installed.   

 $  exit /*to get out of su 

 Once Player has been installed, Stage may be installed.  An important note here is 

to make sure Stage finds the installed version of Player.  Type: 

 $  which player 

 If it does not return a directory, then: 
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 $  export 

PKG_CONFIG_PATH=/usr/local/lib64/pkgconfig:$PKG_CONFIG_PATH 

 Again, if the machine is 32 bit, replace “lib64” with “lib”.  The user may want to 

run this command, even if “which player” returned a directory.  Then: 

 $  which player  /*just to check that it indeed returns a directory 

 Navigate into the rtv-Stage file.  Then: 

 $  mkdir build 

 $  cd build 

 $  ccmake .. 

 Again, press “c” to configure, press “t” to toggle options, turn on verbose mode, 

and press “c” to configure again.  Press “g” when it is ready to generate. 

 $  cmake .. 

 $  make  

 Directly after this command, make sure that Player version 3.1.0 is found, and 

that it does not say “Player not found”.  If it says this, make sure to stop and allow Stage 

to find Player.  There are many reasons that Stage may have not found Player.  One 

reason may just be the search path to libstageplugin is incorrect.  Another reason may be 

that Player did not install correctly, or that Player did not have the most up-to-date files 

when it was installed.  A re-install of Player may be necessary if it is not a file path issue.  

If so, delete the build files and restart the installation.  Without Stage finding Player, the 

stageplugin will not be built, and Stage will not be able to be used with Player.  Then: 

 $  su 

 $  /*enter password 
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 $  make install 

 $  exit 

If there were no errors, then Stage was installed successfully. 

Checking the Installation: 

 Many times the user may have thought his/her installation was successful, but it 

may not have been.  First, the user should update a file called ld.so.conf.  This may help 

errors in Stage not finding Player, and it is also necessary for running Player and Stage 

together.  Run: 

 $  cd / 

 $  cd etc 

 $  su 

 $  /*enter password 

 $  vi ld.so.conf 

Go to the end of the last line in the document that opens and press the INSERT key.  Then 

add a line that says: 

/usr/local/lib64 

And another that says: 

/usr/local/lib 

Then press the ESCAPE key, and type: 

:wq 

 In addition, run the following commands, and add them to the bashrc. 

 $  export LD_LIBRARY_PATH=/usr/local/lib64 

 $  export STAGEPATH=/usr/local/lib64 
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 $  export PLAYERPATH=/usr/local/lib64 

 Remember to replace “lib64” with “lib” if the user is on a 32-bit machine. 

 Finally: 

 $  player /usr/local/share/stage/worlds/simple.cfg 

This should open a window of a robot wandering (see below in FIGURE 28). 

FIGURE 28 - Player running simple.cfg with Stage 

 As a word of encouragement, the errors users may (probably) encounter by many 

encountered by many other users.  Search for them carefully on the internet to solve 

them.  However, this instruction set has been tested on a 64-bit and 32-bit machine with 

both Mageia 1 and 2, so these instructions should work. 
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C. Installing NTG 

 To install NTG2.2+, the tarbal should be downloaded from 

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html.  Then NTG should be 

extracted in the home directory.  The user should ensure that the folders named “doc,” 

“examples,” “lib,” “pgs,” and “src” exist within this extraction.  Before installing NTG, 

gcc-gfortran must be installed for Mageia using either the command line or Mageia 

Control Center.   

 PGS must be installed first: 

 $ cd NTG/pgs 

 $ make 

If there are no errors: 

 $ make install 

If there are errors, they will be listed as Fortran code errors.  Common errors that were 

encountered in this thesis included the files l2err.f, l2main.f, and setdatx3.f that were 

variable or array type errors.  After editing and reconciling the existing source code: 

$ make 

 $ make install 

Note that if the machine is 64 bit, the user will need to compile pgs in 32 bit 

mode.  This can be done by modifying the makefile within pgs to say -m32 where it says 

-O3. 

Next: 

 $cd .. 

 $make 

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html


76 
 

 $make install 

Again note that that if the machine is 64 bit, the user will need to compile pgs in 

32 bit mode.  This can be done by modifying the makefile within pgs to say -m32 where 

it says -O3. 

 Next, the user should check to make sure these four files are in the NTG/lib 

directory: libg2c.a, libnpsol.a, libpgs.a, and libntg.a .  libnpsol.a was given to the thesis 

by the thesis director.   

Next: 

$cd examples 

The user should modify the makefile and add “-lgfortran” to the line that contains 

“LIB= -lm -lntg -lpgs -lnpsol -lg2c”.  Then: 

$make vanderpol 

Run vanderpol by 

$./vanderpol 
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APPENDIX II.  PLAYER/STAGE PROGRAMS 

 

A. Wall Following 

 

WallFollow.cc: 

 
#include <libplayerc++/playerc++.h> 

#include <iostream> 

#include <stdio.h> 

#include <math.h> 

 

#include "args.h" 

 

int main (int argc, char **argv) { 

  parse_args(argc, argv); 

   

  try { 

    using namespace PlayerCc; 

 

    PlayerClient robot(gHostname, gPort); 

    Position2dProxy p2d(&robot, gIndex); 

    RangerProxy sr(&robot,gIndex); 

   

    p2d.SetMotorEnable (true); 

     

    double fSpeed, tSpeed; 

    double goal, range, thresh; 

     

    robot.Read(); 

    goal = .3; 

    thresh = .055; 

    p2d.SetSpeed(.1,0); 

    while (1) { 

      robot.Read(); 

      range=sr.GetRange(0); 

      if (range < goal -thresh) { 

 p2d.SetSpeed(.1, .17); 

      } 

      if (range > goal - thresh && range < goal + thresh) { 

 p2d.SetSpeed(.1,0); 

      } 

      if (range > goal + thresh) { 

 p2d.SetSpeed(.1,-.17); 

      } 

    } 

  

    return 0; 

  } 

  catch (PlayerCc::PlayerError & e) { 

    std::cerr << e << std::endl; 

    return -1; 

  } 

} 
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rink_er1_ranger.cfg: 

 
driver  

( 

  name "stage"   #there is a driver named stage 

  plugin "stageplugin"     #the driver is in the stageplugin library 

   

  provides ["simulation:0"] 

   

  #Load the named file into the simulator 

  worldfile "rink_er1_ranger.world"   

) 

 

driver ( 

  name "stage" 

  provides ["6665:position2d:0" "6665:ranger:0"] 

  model "erone1" 

) 

 

 

rink_er1_ranger.world 

 
include "/usr/local/share/stage/worlds/map.inc"  #this gets me the 

include file map 

include "erone_ranger.inc" 

 

#configure the GUI window 

window ( 

  size [700.000 700.000]    #size of the window in pixels 

  scale 46  #pixels/meter  this value is (window size)/(floorplan 

size) 

 

  show_data 1 

) 

 

#load an environment bitmap 

floorplan ( 

  bitmap "random.png"   #just a big circular room 

  size [15 15 1.5]    #size of the room [x y z] in meters 

) 

 

#make an instance of the er1 robot 

erone( 

  name "erone1" 

  pose [6.5 0 0 90]   #starts at origin on the floor facing right 

  color "grey" 

) 

 

 

 

 

 

 



79 
 

erone_ranger.inc 
 

#make the model for the er1 with a sonar (named erone) 

 

#make a position model for the er1 with wheels and shape 

define erone position ( 

  #actual size of the er1 robot (not trailer) 

  size [0.4064 0.381 0.6096]  #erone is scaled to fit in this box   

         #center is [.2032 .1905 .3048] 

  #shape of erone 

  block( 

    points 8 

    point[0] [0 10] 

    point[1] [15 10] 

    point[2] [15 7.5] 

    point[3] [17.5 7.5] 

    point[4] [17.5 2.5] 

    point[5] [15 2.5] 

    point[6] [15 0] 

    point[7] [0 0] 

    z [0 10] 

  ) 

 

  #positional descriptions for erone wheels 

  drive "diff"    #differential drive robot 

  localization "gps"  #knows its location perfectly 

  localization_origin [0 0 0 0] 

   

  #attach sensors 

  erone_sonar() 

   

  #what can erone sense 

  ranger_return 1 

  obstacle_return 1 

) 

 

 

define erone_sonar ranger ( 

  #eronesonar( pose [.25 -.25 -.25 -90] ) 

  #eronesonar( pose [.25 0 -.25 0] ) 

  sensor ( 

    size [0.1 0.1 0.1] 

    range [0 7.5] 

    fov 10 

    samples 1 

    color "gray" 

  ) 

  pose [.25 -.25 -.25 -90] 

) 
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B. Blobfinding 

 

getblob.cc: 

 
#include <stdio.h> 

#include <iostream> 

#include <time.h> 

#include <libplayerc++/playerc++.h> 

#include "args.h" 

 

 

int main(int argc, char **argv) { 

  parse_args(argc, argv); 

   

  try { 

  using namespace PlayerCc; 

   

  PlayerClient bug1(gHostname, gPort); 

   

  Position2dProxy p2d(&bug1, gIndex); 

  BlobfinderProxy blb(&bug1, gIndex); 

   

  int Depth, Width, Height; 

  int NumBlobs; 

  int xCent, yCent; 

  int left, right, top, bottom; 

  playerc_blobfinder_blob_t MyBlob; 

   

   

  bug1.Read(); 

 

  while(1) { 

    bug1.Read(); 

    if (blb.GetCount() > 0) { 

      MyBlob = blb.GetBlob(0); 

      xCent = MyBlob.x; 

      yCent = MyBlob.y; 

      printf("xcenter %d , ycenter %d, left %d  right %d  top %d  

bottom %d \n", xCent, yCent, MyBlob.left, MyBlob.right, MyBlob.top, 

MyBlob.bottom); 

      printf("  Range:  %f  \n", MyBlob.range); 

      std::cout << blb.GetCount() << std::endl; 

    } 

    else 

      std::cout << blb.GetCount() << std::endl; 

  } 

   

   

  return 0; 

  } 

  catch (PlayerCc::PlayerError & e) 

  { 

    std::cerr << e << std::endl; 

    return -1; 

  } 

} 
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Scenery.cfg 

 
driver   

( 

  name "stage"   #there is a driver named stage 

  plugin "stageplugin"     #the driver is in the stageplugin library 

   

  provides ["simulation:0"] 

   

  #Load the named file into the simulator 

  worldfile "scenery.world"   

) 

 

driver 

( 

  name "stage"   #there is a driver named stage 

  provides ["6665:position2d:0" "6665:blobfinder:0"]  #all the devices 

on the model 

  model "bug1"  #needed by Player/Stage to show that anything done with 

this drive will affect this model 

)  

 

driver 

( 

  name "stage"   #there is a driver named stage 

  provides ["6666:position2d:0" "6666:blobfinder:0"]  #all the devices 

on the model 

  model "bug2"  #needed by Player/Stage to show that anything done with 

this drive will affect this model 

) 

 

 

 

Scenery.world: 

 
include "/usr/local/share/stage/worlds/map.inc"  #this gets me the 

include file map 

include "photobug.inc" 

 

window ( 

  size [700.000 700.000] 

  scale 35 

 

  show_data 1 

) 

 

floorplan ( 

  bitmap "/usr/local/share/stage/worlds/bitmaps/cave.png" 

  size [15 15 1.5] 

  blob_return 1 

) 
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photobug ( 

  name "bug1" 

  pose [-4 -5 0 45] 

  color "purple" 

  blob_return 1 

) 

 

photobug ( 

  name "bug2" 

  pose [-3 -3 0 225] 

  color "green" 

  blob_return 1 

) 

 

 

 

Photobug.inc: 

 
#make the model for the photobug 

 

#position model 

define photobug position ( 

  size [.5 .5 .5] 

 

  #shape 

  block ( 

    points 8 

    point[0] [0 10] 

    point[1] [15 10] 

    point[2] [15 7.5] 

    point[3] [17.5 7.5] 

    point[4] [17.5 2.5] 

    point[5] [15 2.5] 

    point[6] [15 0] 

    point[7] [0 0] 

    z [0 10] 

  ) 

   

  drive "diff" 

  localization "gps" 

  localization_origin [0 0 0 0] 

 

  photobug_blob() 

  photobug_cam() 

  blob_return 1 

  obstacle_return 1 

) 

 

#blobfinder model 

 

define photobug_blob blobfinder ( 

    colors_count 3 

    colors ["gray30" "green" "purple"] 

    range 10.0 

    image [80 60] 

    size [0.1 0.07 0.05] 



83 
 

    color "black" 

    #alwayson 1 

) 

 

#camera model 

define photobug_cam camera( 

  resolution [32 32]   

  range [0.2 8.0] 

  fov [70.0 40.0] 

  pantilt [0.0 0.0]  #left right and down up 

   

  size [0.1 0.07 0.05] 

  color "black" 

  watts 100.0 

  #alwayson 1 

) 
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C. Proportional Feedback Control 

 

ProportionalGoTo.cc: 

 
#include <stdio.h> 

#include <iostream> 

#include <time.h> 

#include <math.h> 

#include <libplayerc++/playerc++.h> 

 

#include "args.h" 

 

#define RAYS 32 

#define pi 3.141592653589793238 

 

int main(int argc, char **argv) { 

  parse_args(argc, argv); 

   

  try { 

  using namespace PlayerCc; 

   

  PlayerClient er1(gHostname, gPort); 

   

  Position2dProxy p2d(&er1, gIndex); 

   

  p2d.SetMotorEnable(1); 

   

  float xerr, yerr, terr, perr, aerr, berr; 

  float Xg, Yg, Tg;   //goal vars 

  float Xc, Yc, Tc;   //current vars 

  float thresh = .1; 

  float offset = .2032; 

  float kp, ka, kb; 

  kp=.5; 

  ka=1; 

  kb=-.5;  //these values work!! 

  

   

  /*kp=.3; 

  ka=.5; 

  kb=-.15;   //these values work */ 

 

   

  double fSpeed, tSpeed; 

   

  printf("Enter the x coordinate "); 

  std::cin >> Xg; 

   printf("Enter the y coordinate "); 

  std::cin >> Yg; 

   printf("Enter the final angle in degrees "); 

  std::cin >> Tg; 

   

  Tg=Tg*3.14159/180;   //convert to radians 

  //Xg=Xg+offset*cos(Tg);   //cos and sin is in radians 

  //Yg=Yg+offset*sin(Tg); 
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  printf("Goal Pose is  (%f ,  %f ,  %f )", Xg, Yg, Tg); 

   

  while (1) { 

    er1.Read(); 

    Xc=p2d.GetXPos(); 

    Yc=p2d.GetYPos(); 

    Tc=p2d.GetYaw(); 

     

    xerr = Xg-Xc; 

    yerr = Yg-Yc; 

    terr = Tg-Tc; 

     

    if(abs(xerr/thresh) < 1) { 

      if(abs(yerr/thresh) < 1) { 

 if(abs(terr/thresh) < 1) { 

   break; 

 } 

      } 

    } 

     

    perr=sqrt(xerr*xerr+yerr*yerr); 

    aerr=atan2(yerr,xerr)-Tc; 

    berr=Tg-Tc-aerr; 

     

    if (aerr < -3.14159) 

      aerr=aerr+2*3.14159; 

    if (aerr > 3.14159) 

      aerr=aerr-2*3.14159; 

     

    if (berr < -3.14159) 

      berr=berr+2*3.14159; 

    if (berr > 3.14159) 

      berr=berr-2*3.14159; 

     

    fSpeed=kp*perr; 

    tSpeed=ka*aerr+kb*berr; 

     

    p2d.SetSpeed(fSpeed,tSpeed); 

     

  } 

  return 0; 

  } 

  catch (PlayerCc::PlayerError & e) 

  { 

    std::cerr << e << std::endl; 

    return -1; 

  } 

   

} 

 

 

 

rink_er1.cfg: 

 

driver  

( 

  name "stage"   #there is a driver named stage 
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  plugin "stageplugin"     #the driver is in the stageplugin library 

   

  provides ["simulation:0"] 

   

  #Load the named file into the simulator 

  worldfile "rink_er1.world"  #this is a world file stored in the same 

place as empty.cfg  

) 

 

driver ( 

  name "stage" 

  provides ["odometry::6665:position2d:0"] 

  model "erone1" 

) 

 

rink_er1.world: 

 
include "/usr/local/share/stage/worlds/map.inc"  #this gets me the 

include file map 

include "erone.inc" 

 

#configure the GUI window 

window ( 

  size [700.000 700.000]    #size of the window in pixels 

  scale 46  #pixels/meter   this value is (window 

size)/(floorplan size) 

 

  show_data 1 

) 

 

#load an environment bitmap 

floorplan ( 

  bitmap "/usr/local/share/stage/worlds/bitmaps/rink.png"   #just a big 

circular room 

  size [15 15 1.5]    #size of the room [x y z] in meters 

) 

 

#make an instance of the er1 robot 

erone( 

  name "erone1" 

  pose [0 0 0 0]   #starts at origin on the floor facing right 

  color "red" 

) 

 

 

 

erone.inc 

 
#make the model for the er1  (named erone) 

 

#make a position model for the er1 with wheels and shape 

define erone position ( 

  #actual size of the er1 robot (not trailer) 

  size [0.4064 0.381 0.6096]  #erone is scaled to fit in this box   

         #center is [.2032 .1905 .3048] 
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  #shape of erone 

  block( 

    points 4 

    point[3] [0 0] 

    point[2] [0 16] 

    point[1] [15 16] 

    point[0] [15 0] 

    z [0 24]  #how tall he is 

  ) 

 

  block ( 

    points 4 

    point[3] [15 7] 

    point[2] [18 7] 

    point[1] [18 9] 

    point[0] [15 9] 

    z [0 24]  #how tall he is 

  ) 

 

  #positional descriptions for erone wheels 

  drive "diff"    #differential drive robot 

  localization "gps"  #knows its location perfectly 

  localization_origin [0 0 0 0] 

   

  obstacle_return 1 

) 
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APPENDIX III.  PLAYER PROGRAMS 

 

CamAndBlob.cfg 

 
driver 

( 

  name "cvcam" 

  provides ["camera:0"] 

) 

 

driver 

( 

  name "cmvision" 

  provides ["blobfinder:0"] 

  requires ["camera:0"] 

  colorfile ["colors.txt"] 

  minblobarea 40  #min number of pixels to qualify as a blob 

  maxblobarea 400  #max number of pixels to qualify as a blob 

) 

 

 

 

 

Colors.txt: 

 
[Colors] 

(27,33,20)  0.00000 2 BlackShirt 

 

[Thresholds] 

(16:77,132:161,127:129) 

 

 

 

 

Getblob.cc: 

 
#include <stdio.h> 

#include <iostream> 

#include <time.h> 

#include <math.h> 

#include <libplayerc++/playerc++.h> 

 

#include "args.h" 

 

#define RAYS 32 

#define pi 3.141592653589793238 

 

int main(int argc, char **argv) { 

  parse_args(argc, argv); 

   

  try { 

  using namespace PlayerCc; 
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  PlayerClient robot(gHostname, gPort); 

   

  CameraProxy cam(&robot, gIndex); 

  BlobfinderProxy blb(&robot, gIndex); 

   

  int Depth, Width, Height; 

  int NumBlobs; 

  int xCent, yCent; 

  int area; 

  playerc_blobfinder_blob_t MyBlob; 

   

  robot.Read(); 

   

  Width=cam.GetWidth(); 

  Height=cam.GetHeight(); 

  Depth=cam.GetDepth(); 

  printf("Width %d ,Height %d , Depth %d \n",Width, Height, Depth); 

  while(1) { 

    robot.Read(); 

    if(blb.GetCount() > 0) { 

      MyBlob = blb.GetBlob(0); 

      xCent=MyBlob.x; 

      yCent=MyBlob.y; 

      area=MyBlob.area; 

    printf("Number of Blobs %d \n",blb.GetCount()); 

    printf("Blob 0 center is %d  %d \n Blob 0 Area is %d pixels 

\n",xCent,yCent,area); 

    sleep(5);   

    cam.SaveFrame("blob", 0); 

    } 

  } 

   

  /*for (int i=0; i<1; i++) { 

    robot.Read(); 

    cam.SaveFrame("camera"); 

  }*/ 

   

   

  return 0; 

  } 

  catch (PlayerCc::PlayerError & e) 

  { 

    std::cerr << e << std::endl; 

    return -1; 

  } 

   

} 
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APPENDIX IV.  NTG PROGRAM FOR DIFFERENTIAL DRIVE ROBOT 

 

#include <stdlib.h> 

#include <math.h> 

#include "ntg.h" 

 

#define NOUT  2 

#define nINTERV  10 

#define NINTERV         nINTERV, nINTERV   

#define mULT  4 

#define MULT            mULT, mULT 

#define oRDER  6 

#define ORDER           oRDER, oRDER 

#define mAXDERIV 3 

#define MAXDERIV        mAXDERIV, mAXDERIV    

 

#define nCOEF    24  //NINTERV * (ORDER - MULT) + MULT 

#define NCOEF    2 * nCOEF 

#define NBPS  (NCOEF + 6) //not a necessary relationship 

#define NVAR   3 * 2 * 1 

#define TIMESPAN  300       // time span of 300s 

 

// Label outputs and their derivatives 

 

                                    // active variable sequence 

#define x              zp[0][0]    // 0        horizontal location of 

robot 

#define xd             zp[0][1]    // 1 horizontal speed of robot 

#define xdd  zp[0][2]    // 2  

  

#define y              zp[1][0]    // 3 vertical location of robot 

#define yd             zp[1][1]    // 4 vertical speed of robot 

#define ydd  zp[1][2]    // 5 

 

 

/* number of linear constraints */ 

#define NLIC         2          // linear initial constraints                                                   

#define NLTC         2  // linear traj. constraints 

#define NLFC         2  // linear final constraints 

 

/* number of nonlinear constraints */ 

#define NNLIC         0  // nonlinear initial constraints 

#define NNLTC       3  // nonlinear trajectory constraints 

#define NNLFC         0  // nonlinear final constraints 

  

//nonlinear constraints function active variables 

#define NINITIALCONSTRAV     0  

#define NTRAJECTORYCONSTRAV  6     

#define NFINALCONSTRAV       0 

 

//number of cost functions 

#define NICF      0  // initial cost function 

#define NUCF      1  // unintegrated trajectory cost function 

#define NFCF      0  // final cost function 
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//active variables for cost function 

#define NINITIALCOSTAV     0 

#define NTRAJECTORYCOSTAV  4  

#define NFINALCOSTAV       0 

 

// enum x, y are used to divide the coefficients table into 2 portions 

enum {xx1 = nCOEF, yy1 = 2*nCOEF}; 

 

 

/* declare all of the active variables required for the nonlinear 

constraints and the cost functions */ 

static AV trajectoryconstrav[NTRAJECTORYCONSTRAV]={{0,0}, {0,1}, {0,2}, 

{1,0}, {1,1}, {1,2}}; // x, xd, xdd, y, yd, ydd 

static AV trajectorycostav[NTRAJECTORYCOSTAV]={{0,1}, {0,2}, {1,1}, 

{1,2}}; // xd, xdd, yd, ydd 

 

 

/* declare the function used to compute the unintegrated cost */ 

void ucf(int *mode, int *nstate, int *i, double *f, double *df, double 

**zp);   

 

/* declare nonlinear traj. constraint function */ 

void nltcf(int* mode, int* nstate, int* i, double* f, double** df, 

double** zp); 

 

// declare spline interp function, this function returns an ncps*3 

array 

double* callSplineInterp(int xxyy, double* coefficients, double** 

knots, 

  int* ninterv, int* order, int* mult, int* maxderiv, double* result, 

int ncps); 

 

 

  float xob = 50; 

  float yob = 50; 

  float radius = 5; 

int main(void) 

{ 

 

 

    double* knots[NOUT]; 

    int ninterv[NOUT] = {NINTERV}; 

    int mult[NOUT] = {MULT}; 

    int maxderiv[NOUT] = {MAXDERIV}; 

    int order[NOUT] = {ORDER}; 

 

    // result is used to store the interpretted splines results 

    int ncps = 100;      // 100 points per variable, e.g. 100 x1 values 

    double* result;      // global variable used to store interpretted 

splines 

    result = malloc(ncps * 3 * sizeof(double)); 

 

 

 

    int nbps;   // number of break points 

    double* bps; 
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    double** lic; 

    double** lfc; 

    double** ltc; 

 

    int ncoef; 

    double* coefficients; 

    int* istate; 

    double* clambda; 

    double* R; 

 

    // upper and lower bounds 

    double lowerb[NLIC + NLTC + NLFC + NNLIC + NNLTC + NNLFC]; 

    double upperb[NLIC + NLTC + NLFC + NNLIC + NNLTC + NNLFC]; 

    int inform =0; 

    double objective; 

 

    // allocate space and initialize the knot points 

    int index; 

    for(index = 0; index < NOUT; ++index){ 

        knots[index] = malloc((ninterv[index] + 1) * sizeof(double)); 

        linspace(knots[index], 0, TIMESPAN, ninterv[index] + 1); 

    } 

 

    // WARNING, specific for this case 

 

    ncoef = NCOEF; 

    coefficients = malloc(ncoef * sizeof(double)); 

 

    // initial guess for coefficients 

    linspace(coefficients, 1, 1, ncoef); 

 

    // allocate space for breakpoints and initialize 

    nbps = NBPS; 

    bps = malloc(nbps * sizeof(double)); 

    linspace(bps, 0, TIMESPAN, nbps);  // 300 is fixed optimal traj. 

time 

 

    /* 

     * ntg internal memory 

     * these calculations do not need to be changed 

     */ 

    

    istate = malloc((ncoef + NLIC + NLFC + NLTC * nbps 

            + NNLIC + NNLTC * nbps + NNLFC) * sizeof(int)); 

 

    clambda = malloc((ncoef + NLIC + NLFC + NLTC * nbps 

            + NNLIC + NNLTC * nbps + NNLFC) * sizeof(double)); 

 

    R = malloc((ncoef + 1) * (ncoef + 1) * sizeof(double)); 

 

     

     

     

    lic = DoubleMatrix(NLIC, NVAR);  

    ltc = DoubleMatrix(NLTC, NVAR); // 6 = 3 * 2 * number of robots 

    lfc = DoubleMatrix(NLFC, NVAR); 
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    /* define the constraints 

     * for linear constraints: 

     * indexed by the active variable number 

     * [constraint number][a.v. number] 

     */ 

    

    // 2 lic 

    lic[0][0] = 1;   // first 0 is the sequence number of the 

constraint 

                     // second 0 is the sequence number of the 

a.v.(x here) 

                     // 1 is the factor/coefficient of this 

a.v. 

    lowerb[0] = upperb[0] = 5;  // 5 is the boundary value of the 

constraint 

    lic[1][3] = 1; lowerb[1] = upperb[1] = 5; 

 

    // 2 ltc 

    ltc[0][0] = 1; lowerb[2] = 0; upperb[2] = 100; 

    ltc[1][3] = 1; lowerb[3] = 0; upperb[3] = 100; 

 

 

    // 2 lfc, location constraints on x1,y1 

    lfc[0][0] = 1; lowerb[4] = 95; upperb[4] = 100; 

    lfc[1][3] = 1; lowerb[5] = 95; upperb[5] = 100; 

 

 

    //Nonlinear Initial Constraints 

    //None 

 

    //Nonlinear Trajectory Constraints 

    lowerb[6] = 0; upperb[6] = .25; 

    lowerb[7] = -3.14/2; upperb[7] = 3.14/2; 

    lowerb[8] = pow(radius,2); upperb[8] = pow(100,2); 

 

 

    //Nonlinear Final Constraints 

    //None 

 

    // the ntg subroutine: 

 

 

    npsoloption("summary file = 0");                                                

     

 

          ntg(NOUT, bps, nbps, ninterv, knots, order, mult, maxderiv, 

            coefficients, 

            NLIC,                   lic, 

            NLTC,                   ltc, 

            NLFC,                   lfc, 

            NNLIC,                  NULL, 

            NNLTC,                  nltcf, 

            NNLFC,                  NULL, 

            NINITIALCONSTRAV,       NULL, 

            NTRAJECTORYCONSTRAV,      trajectoryconstrav, 

            NFINALCONSTRAV,         NULL, 
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            lowerb,                 upperb, 

            NICF,                   NULL, 

            NUCF,                   ucf, 

            NFCF,                   NULL, 

            NINITIALCOSTAV,         NULL, 

            NTRAJECTORYCOSTAV,      trajectorycostav, 

            NFINALCOSTAV,           NULL, 

            istate, clambda, R, &inform, &objective 

            ); 

     

 

 

 

    printf("Out from ntg call, now using the PrintVector \n"); 

    printf("Inform is %d \n", inform); 

 

    // call spline interp and print out to file for x and y 

    // e.g. the file x contains 100 x values followed by 100 xd 

    // followed by 100 xdd 

     

    PrintVector("x", callSplineInterp(xx1, coefficients, knots, 

    ninterv, order, mult, maxderiv, result, ncps), 3*ncps); 

 

    PrintVector("y", callSplineInterp(yy1, coefficients, knots, 

    ninterv, order, mult, maxderiv, result, ncps), 3*ncps); 

 

 

    // print coefficients table 

    PrintVector("coef1", coefficients, ncoef); 

 

 

    FreeDoubleMatrix(lic); 

    FreeDoubleMatrix(ltc); 

    FreeDoubleMatrix(lfc); 

    free(istate); 

    free(clambda); 

    free(R); 

    free(bps); 

    free(coefficients); 

    int index2; 

    for(index2 = 0; index2 < NOUT; ++index2) { 

        free(knots[index2]); 

    } 

    free(result); 

 

    return 0; 

} 

 

 

 

 

 

void ucf(int *mode, int *nstate, int *i, double *f, double *df, double 

**zp){ 

 float lit = .00001; 

    if (*mode == 0 || *mode == 2){ 
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        *f = pow(xd, 2.0) + pow(yd, 2.0) + pow((xd*ydd-

yd*xdd)/(pow(xd,2)+pow(yd,2) +lit),2); 

    } 

    if (*mode == 1 || *mode == 2){     

      

        df[0] = 0; 

        df[1] = 2*xd-2*(xdd*yd-xd*ydd)*((-

ydd)*(pow(xd,2))+2*xd*xdd*yd+pow(yd,2)*ydd)/(pow(pow(xd,2)+pow(yd,2),3)

+lit); // df/dx1d 

        df[2] = 2*yd*(xdd*yd-xd*ydd)/(pow(pow(xd,2)+pow(yd,2),2)+lit); 

 df[3] = 0; 

        df[4] = 2*yd+2*(xdd*yd-xd*ydd)*(xdd*pow(xd,2)+2*xd*yd*ydd-

xdd*pow(yd,2))/(pow(pow(xd,2)+pow(yd,2),3)+lit); // df/dy1d 

        df[5] = 2*xd*(xd*ydd-xdd*yd)/(pow(pow(xd,2)+pow(yd,2),2)+lit); 

    } 

} 

void nltcf(int* mode, int* nstate, int* i, double* f, double** df, 

double** zp){ 

    float lit = .00001; 

    if (*mode == 0 || *mode == 2){ 

        

       f[0] = pow(xd,2) + pow(yd,2); 

 f[1] = (xd*ydd-yd*xdd)/(pow(xd,2) + pow(yd,2)+lit); 

 f[2] = pow(x - xob, 2.0) + pow(y - yob, 2.0);      

 

    } 

    if (*mode == 1 || *mode == 2) { 

      

        df[0][0] = 0; 

        df[0][1] = 2*xd; 

 df[0][2] = 0; 

        df[0][3] = 0; 

        df[0][4] = 2*yd; 

 df[0][5] = 0; 

  

 df[1][0] = 0; 

        df[1][1] = ((-

ydd)*pow(xd,2)+2*xd*xdd*yd+pow(yd,2)*ydd)/(pow(pow(xd,2)+pow(yd,2),2)+l

it); 

 df[1][2] = (-yd)/(pow(xd,2)+pow(yd,2)+lit); 

        df[1][3] = 0; 

        df[1][4] = ((-xdd)*pow(xd,2)-

2*xd*yd*ydd+xdd*pow(yd,2))/(pow(pow(xd,2)+pow(yd,2),2)+lit); 

 df[1][5] = (xd)/(pow(xd,2)+pow(yd,2)+lit); 

       

 df[2][0] = 2 * x - 2 * xob; // /dx1 

        df[2][1] = 0; 

 df[2][2] = 0; 

        df[2][3] = 2 * y - 2 * yob; // /dy1 

        df[2][4] = 0; 

 df[2][5] = 0; 

  

 

 

    } 

} 
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double* callSplineInterp(int xxyy, double* coefficients, double** 

knots, 

    int* ninterv, int* order, int* mult, int* maxderiv, 

    double* result, int ncps) { 

 

    double coefs[nCOEF];  // array to contain 15 coefficients for one 

variable 

    int i1, i2; 

    double fz[3]; 

    double* time = malloc(ncps * sizeof(double)); 

 

 

    for (i1 = 0; i1 < nCOEF; ++i1) {            // take 15 coefficients 

        coefs[i1] = coefficients[i1 + xxyy - nCOEF]; 

    } 

 

    // calling the SplineInterp function 

    for (i2 = 0; i2 < ncps; ++i2) { 

 

        time[i2] = TIMESPAN * (double)(i2) / (double)(ncps - 1); 

        SplineInterp(fz, time[i2], knots[0], ninterv[0], coefs, nCOEF, 

order[0], 

        mult[0], maxderiv[0]);    // compute the values of interpretted 

outputs 

         

        // merging all outputs in one table 

        result[i2] = fz[0];                 // position values e.g. x 

        result[i2 + ncps] = fz[1];          // 1st derivative e.g. xd 

        result[i2 + ncps + ncps] = fz[2];   // 2nd derivative e.g. xdd 

    } 

 

    free(time); 

 

    return result;   

     

} 
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APPENDIX V.  PLAYER/STAGE/NTG DIFF. DRIVE ROBOT CODE 

Obstacles2.c 

 
#include <stdlib.h> 

#include <math.h> 

#include "ntg.h" 

 

#define NOUT  2 

#define nINTERV  10 

#define NINTERV         nINTERV, nINTERV   

#define mULT  4 

#define MULT            mULT, mULT 

#define oRDER  6 

#define ORDER           oRDER, oRDER 

#define mAXDERIV 3 

#define MAXDERIV        mAXDERIV, mAXDERIV    

 

#define nCOEF    24  //NINTERV * (ORDER - MULT) + MULT 

#define NCOEF    2 * nCOEF 

#define NBPS  (NCOEF + 6) 

#define NUAV  1  //number of robots 

#define NVAR   3 * 2 * NUAV 

 

// Label outputs and their derivatives 

 

                                    // active variable sequence 

#define x              zp[0][0]    // 0   horizontal pose of robot 

#define xd             zp[0][1]    // 1 horizontal speed of robot 

#define xdd  zp[0][2]    // 2  

  

#define y              zp[1][0]    // 3 vertical location of robot 

#define yd             zp[1][1]    // 4 vertical speed of robot 

#define ydd  zp[1][2]    // 5 

 

 

/* number of linear constraints */ 

#define NLIC         2          // linear initial constraints                                                   

#define NLTC         2  // linear traj. constraints 

#define NLFC         2  // linear final constraints 

 

/* number of nonlinear constraints */ 

#define NNLIC         0  // nonlinear initial constraints 

#define NNLTC       2 // no obstacle 

#define NNLTC_OB     3  // if an obstacle appears 

#define NNLFC         0  // nonlinear final constraints 

  

//nonlinear constraints function active variables 

#define NINITIALCONSTRAV     0  

#define NTRAJECTORYCONSTRAV  4    /* xd, xdd, yd, ydd*/ 

#define NTRAJECTORYCONSTRAV_OB  6 /* x, xd, xdd, y, yd, ydd*/ 

#define NFINALCONSTRAV       0 

 

//number of cost functions 

#define NICF      0  // initial cost function 
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#define NUCF      1  // unintegrated (trajectory) cost 

function 

#define NFCF      0  // final cost function 

 

//active variables for cost function 

#define NINITIALCOSTAV     0 

#define NTRAJECTORYCOSTAV  4   /* xd, xdd, yd, ydd */ 

#define NFINALCOSTAV       0 

 

// enum x, y are used to divide the coefficients table into 2 portions 

enum {xx1 = nCOEF, yy1 = 2*nCOEF}; 

 

 

 

/* declare all of the active variables required for the nonlinear 

constraints and the cost functions */ 

static AV trajectoryconstrav[NTRAJECTORYCONSTRAV]={{0,1}, {0,2}, {1,1}, 

{1,2}}; // xd, xdd, yd, ydd 

static AV trajectoryconstrav_OB[NTRAJECTORYCONSTRAV_OB]={{0,0}, {0,1}, 

{0,2}, {1,0}, {1,1}, {1,2}}; // x, xd, xdd, y, yd, ydd 

static AV trajectorycostav[NTRAJECTORYCOSTAV]={{0,1}, {0,2}, {1,1}, 

{1,2}}; // xd, xdd, yd, ydd 

 

 

/* declare the function used to compute the unintegrated cost */ 

void ucf(int *mode, int *nstate, int *i, double *f, double *df, double 

**zp);   

 

/* declare nonlinear traj. constraint function */ 

void nltcf(int* mode, int* nstate, int* i, double* f, double** df, 

double** zp); 

void nltcf_OB(int* mode, int* nstate, int* i, double* f, double** df, 

double** zp); 

 

// declare spline interp function, this function returns an ncps*3 

array 

double* callSplineInterp(int xxyy, double* coefficients, double** 

knots, 

  int* ninterv, int* order, int* mult, int* maxderiv, double* result, 

int ncps); 

 

 

  float xob = 0; 

  float yob = 0; 

  float radius = 0; 

  double goalxlow = 0; 

  double goalxhigh = 0; 

  double goalylow = 0; 

  double goalyhigh = 0; 

  double xStart = 0; 

  double yStart = 0; 

  int TIMESPAN = 250; 

  int TIMESPAN_OB = 250; 

int main(void) 

{ 
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/* get obstacle information*/ 

  int i; 

  char * file_name = 

"/home/ryanfrazier/Player_Stage_Projects/ER1Projects/Player_NTG/Dynamic

Dodge2/control/Obstacle_Info.txt"; 

  float ObsInfo[7]; 

  int IsObs; 

 

  FILE *fp; 

  fp=fopen(file_name,"r"); 

  if (fp == NULL) { 

    printf("Fail \n"); 

    exit(0); 

  } 

  //in the form xob, yob, radius, startx, starty 

  while (fscanf(fp, "%f %f %f %f %f %f %f\n", &ObsInfo[0], &ObsInfo[1], 

&ObsInfo[2], &ObsInfo[3], &ObsInfo[4], &ObsInfo[5], &ObsInfo[6]) ==7) 

  fclose(fp); 

    xStart = (double)(ObsInfo[3]); 

    yStart = (double)(ObsInfo[4]); 

    goalxlow = (double)(ObsInfo[5])-2.5; 

    goalxhigh = (double)(ObsInfo[5]) + 2.5; 

    goalylow = (double)(ObsInfo[6]) - 2.5; 

    goalyhigh = (double)(ObsInfo[6]) + 2.5; 

 

   

  IsObs = 1; 

  if (ObsInfo[2] == 0) {  //we know that if the radius of the obstacle 

is 0, there is no obstacle 

    IsObs = 0; 

  } 

  printf("Is there an Obs?  %d \n", IsObs); 

   

  if (IsObs) { 

    xob = ObsInfo[0]; 

    yob = ObsInfo[1]; 

    radius = ObsInfo[2]; 

  } 

     

 

 

    double* knots[NOUT]; 

    int ninterv[NOUT] = {NINTERV}; 

    int mult[NOUT] = {MULT}; 

    int maxderiv[NOUT] = {MAXDERIV}; 

    int order[NOUT] = {ORDER}; 

 

    // result is used to store the interpretted splines results 

    int ncps = 100;      // 100 points per variable, e.g. 100 x values 

    double* result;      // global variable used to store interpreted 

splines 

    result = malloc(ncps * 3 * sizeof(double)); 
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    int nbps;   // number of break points 

    double* bps; 

 

    double** lic; 

    double** lfc; 

    double** ltc; 

 

    int ncoef; 

    double* coefficients; 

    int* istate; 

    double* clambda; 

    double* R; 

     

    // upper and lower bounds 

    double lowerb[NLIC + NLTC + NLFC + NNLIC + NNLTC + NNLFC]; 

    double upperb[NLIC + NLTC + NLFC + NNLIC + NNLTC + NNLFC]; 

 

    double lowerb_OB[NLIC + NLTC + NLFC + NNLIC + NNLTC_OB + NNLFC]; 

    double upperb_OB[NLIC + NLTC + NLFC + NNLIC + NNLTC_OB + NNLFC];       

  

  

    int inform =0; 

    double objective; 

 

    // allocate space and initialize the knot points 

    int index; 

     

    if (!IsObs) { 

    for(index = 0; index < NOUT; ++index){ 

        knots[index] = malloc((ninterv[index] + 1) * sizeof(double)); 

        linspace(knots[index], 0, TIMESPAN, ninterv[index] + 1); 

    } 

    } 

     

    if (IsObs) { 

    for(index = 0; index < NOUT; ++index){ 

        knots[index] = malloc((ninterv[index] + 1) * sizeof(double)); 

        linspace(knots[index], 0, TIMESPAN_OB, ninterv[index] + 1); 

    } 

    } 

 

    // WARNING, specific for this case 

 

    ncoef = NCOEF; 

    coefficients = malloc(ncoef * sizeof(double)); 

 

    // initial guess for coefficients 

    linspace(coefficients, 1, 1, ncoef); 

 

    // allocate space for breakpoints and initialize 

    nbps = NBPS; 

    bps = malloc(nbps * sizeof(double)); 

     

    if (!IsObs) { 

    linspace(bps, 0, TIMESPAN, nbps);  // 20 is fixed optimal traj. 

time 

    } 



101 
 

     

    if (IsObs) { 

    linspace(bps, 0, TIMESPAN_OB, nbps);  // 20 is fixed optimal traj. 

time 

    } 

     

    /* 

     * ntg internal memory 

     * these calculations do not need to be changed 

     */ 

    

    if (!IsObs) { 

    istate = malloc((ncoef + NLIC + NLFC + NLTC * nbps 

            + NNLIC + NNLTC * nbps + NNLFC) * sizeof(int)); 

 

    clambda = malloc((ncoef + NLIC + NLFC + NLTC * nbps 

            + NNLIC + NNLTC * nbps + NNLFC) * sizeof(double)); 

    } 

     

    if (IsObs) { 

    istate = malloc((ncoef + NLIC + NLFC + NLTC * nbps 

            + NNLIC + NNLTC_OB * nbps + NNLFC) * sizeof(int)); 

 

    clambda = malloc((ncoef + NLIC + NLFC + NLTC * nbps 

            + NNLIC + NNLTC_OB * nbps + NNLFC) * sizeof(double)); 

    } 

 

    R = malloc((ncoef + 1) * (ncoef + 1) * sizeof(double)); 

 

     

     

     

    lic = DoubleMatrix(NLIC, NVAR);  

    ltc = DoubleMatrix(NLTC, NVAR); // 6 = 3 * 2 * number of uavs 

    lfc = DoubleMatrix(NLFC, NVAR); 

 

 

    /* define the constraints 

     * for linear constraints: 

     * indexed by the active variable number 

     * [constraint number][a.v. number] 

     */ 

   if (!IsObs) { 

    // 2 lic 

    lic[0][0] = 1;   // first 0 is the sequence number of the 

constraint 

                     // second 0 is the sequence number of the 

a.v.(x here) 

                     // 1 is the coefficient of this a.v. 

    lowerb[0] = upperb[0] = xStart;   

    lic[1][3] = 1; lowerb[1] = upperb[1] = yStart; 

 

    // 2 ltc 

    ltc[0][0] = 1; lowerb[2] = 0; upperb[2] = 100; 

    ltc[1][3] = 1; lowerb[3] = 0; upperb[3] = 100; 
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    // 2 lfc 

    lfc[0][0] = 1; lowerb[4] = goalxlow; upperb[4] = goalxhigh; 

    lfc[1][3] = 1; lowerb[5] = goalylow; upperb[5] = goalyhigh; 

 

 

    //Nonlinear Initial Constraints 

    //None 

 

    //Nonlinear Trajectory Constraints 

    lowerb[6] = 0; upperb[6] = .25; 

    lowerb[7] = -3.14/2; upperb[7] = 3.14/2; 

   } 

     

    if (IsObs) { 

        // 2 lic 

    lic[0][0] = 1;   // first 0 is the sequence number of the 

constraint 

                     // second 0 is the sequence number of the 

a.v.(x here) 

                     // 1 is the coefficient of this a.v. 

    lowerb_OB[0] = upperb_OB[0] = xStart;  value of the constraint 

    lic[1][3] = 1; lowerb_OB[1] = upperb_OB[1] = yStart; 

 

    // 2 ltc 

    ltc[0][0] = 1; lowerb_OB[2] = 0; upperb_OB[2] = 100; 

    ltc[1][3] = 1; lowerb_OB[3] = 0; upperb_OB[3] = 100; 

 

 

    // 2 lfc 

    lfc[0][0] = 1; lowerb_OB[4] = goalxlow; upperb_OB[4] = goalxhigh; 

    lfc[1][3] = 1; lowerb_OB[5] = goalylow; upperb_OB[5] = goalyhigh; 

 

 

    //Nonlinear Initial Constraints 

    //None 

 

    //Nonlinear Trajectory Constraints 

    lowerb_OB[6] = 0; upperb_OB[6] = .25; 

    lowerb_OB[7] = -3.14/2; upperb_OB[7] = 3.14/2;   

       

    lowerb_OB[8] = pow(radius,2); upperb_OB[8] = pow(100,2); 

    } 

 

 

    //Nonlinear Final Constraints 

    //None 

 

    //Nonlinear Final Constraints 

    //None 

 

     

     

 

    // the ntg subroutine: 

 

 

    npsoloption("summary file = 0");                                                
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    if (!IsObs) { 

    ntg(NOUT, bps, nbps, ninterv, knots, order, mult, maxderiv, 

            coefficients, 

            NLIC,                   lic, 

            NLTC,                   ltc, 

            NLFC,                   lfc, 

            NNLIC,                  NULL, 

            NNLTC,                  nltcf, 

            NNLFC,                  NULL, 

            NINITIALCONSTRAV,       NULL, 

            NTRAJECTORYCONSTRAV,      trajectoryconstrav, 

            NFINALCONSTRAV,         NULL, 

            lowerb,                 upperb, 

            NICF,                   NULL, 

            NUCF,                   ucf, 

            NFCF,                   NULL, 

            NINITIALCOSTAV,         NULL, 

            NTRAJECTORYCOSTAV,      trajectorycostav, 

            NFINALCOSTAV,           NULL, 

            istate, clambda, R, &inform, &objective 

            ); 

    } 

    if (IsObs) { 

          ntg(NOUT, bps, nbps, ninterv, knots, order, mult, maxderiv, 

            coefficients, 

            NLIC,                   lic, 

            NLTC,                   ltc, 

            NLFC,                   lfc, 

            NNLIC,                  NULL, 

            NNLTC_OB,                  nltcf_OB, 

            NNLFC,                  NULL, 

            NINITIALCONSTRAV,       NULL, 

            NTRAJECTORYCONSTRAV_OB,      trajectoryconstrav_OB, 

            NFINALCONSTRAV,         NULL, 

            lowerb_OB,                 upperb_OB, 

            NICF,                   NULL, 

            NUCF,                   ucf, 

            NFCF,                   NULL, 

            NINITIALCOSTAV,         NULL, 

            NTRAJECTORYCOSTAV,      trajectorycostav, 

            NFINALCOSTAV,           NULL, 

            istate, clambda, R, &inform, &objective 

            ); 

    } 

 

 

 

    printf("Out from ntg call, now using the PrintVector \n"); 

    printf("xStart:  %f, yStart:  %f,  xob:  %f,  yob:  %f, 

radius:  %f, xGoal: %f, yGoal:  %f \n",xStart, yStart, xob, yob, 

radius, goalxlow, goalylow); 

 

    // call spline interp and print out to file for x, y 

    // e.g. the file x contains 100 x values  

    PrintVector("x", callSplineInterp(xx1, coefficients, knots, 

    ninterv, order, mult, maxderiv, result, ncps), ncps); 
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    PrintVector("y", callSplineInterp(yy1, coefficients, knots, 

    ninterv, order, mult, maxderiv, result, ncps), ncps); 

 

 

    // print coefficients table 

    PrintVector("coef1", coefficients, ncoef); 

 

 

    FreeDoubleMatrix(lic); 

    FreeDoubleMatrix(ltc); 

    FreeDoubleMatrix(lfc); 

    free(istate); 

    free(clambda); 

    free(R); 

    free(bps); 

    free(coefficients); 

    int index2; 

    for(index2 = 0; index2 < NOUT; ++index2) { 

        free(knots[index2]); 

    } 

    free(result); 

 

    return 0; 

} 

 

 

 

 

 

void ucf(int *mode, int *nstate, int *i, double *f, double *df, double 

**zp){ 

 //printf("In the ucf loop, i = %i, nstate = %i \n", *i, *nstate); 

  

    float lit = .00001; 

    if (*mode == 0 || *mode == 2){ 

        *f = pow(xd, 2.0) + pow(yd, 2.0) + pow((xd*ydd-

yd*xdd)/(pow(xd,2)+pow(yd,2) +lit),2); 

    } 

    if (*mode == 1 || *mode == 2){     

         

 df[0] = 0; 

        df[1] = 2*xd-2*(xdd*yd-xd*ydd)*((-

ydd)*(pow(xd,2))+2*xd*xdd*yd+pow(yd,2)*ydd)/(pow(pow(xd,2)+pow(yd,2),3)

+lit); // df/dx1d 

        df[2] = 2*yd*(xdd*yd-xd*ydd)/(pow(pow(xd,2)+pow(yd,2),2)+lit); 

 df[3] = 0; 

        df[4] = 2*yd+2*(xdd*yd-xd*ydd)*(xdd*pow(xd,2)+2*xd*yd*ydd-

xdd*pow(yd,2))/(pow(pow(xd,2)+pow(yd,2),3)+lit); // df/dy1d 

        df[5] = 2*xd*(xd*ydd-xdd*yd)/(pow(pow(xd,2)+pow(yd,2),2)+lit); 

    } 

} 

 

void nltcf_OB(int* mode, int* nstate, int* i, double* f, double** df, 

double** zp){ 

    float lit = .00001; 

    if (*mode == 0 || *mode == 2){ 
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       f[0] = pow(xd,2) + pow(yd,2); 

 f[1] = (xd*ydd-yd*xdd)/(pow(xd,2) + pow(yd,2)+lit); 

 f[2] = pow(x - xob, 2.0) + pow(y - yob, 2.0);      

 

    } 

    if (*mode == 1 || *mode == 2) { 

      

        df[0][0] = 0; 

        df[0][1] = 2*xd; 

 df[0][2] = 0; 

        df[0][3] = 0; 

        df[0][4] = 2*yd; 

 df[0][5] = 0; 

  

 df[1][0] = 0; 

        df[1][1] = ((-

ydd)*pow(xd,2)+2*xd*xdd*yd+pow(yd,2)*ydd)/(pow(pow(xd,2)+pow(yd,2),2)+l

it); 

 df[1][2] = (-yd)/(pow(xd,2)+pow(yd,2)+lit); 

        df[1][3] = 0; 

        df[1][4] = ((-xdd)*pow(xd,2)-

2*xd*yd*ydd+xdd*pow(yd,2))/(pow(pow(xd,2)+pow(yd,2),2)+lit); 

 df[1][5] = (xd)/(pow(xd,2)+pow(yd,2)+lit); 

       

 df[2][0] = 2 * x - 2 * xob; // /dx1 

        df[2][1] = 0; 

 df[2][2] = 0; 

        df[2][3] = 2 * y - 2 * yob; // /dy1 

        df[2][4] = 0; 

 df[2][5] = 0; 

    } 

} 

 

void nltcf(int* mode, int* nstate, int* i, double* f, double** df, 

double** zp){ 

    float lit = .00001; 

    if (*mode == 0 || *mode == 2){ 

        

       f[0] = pow(xd,2) + pow(yd,2); 

 f[1] = (xd*ydd-yd*xdd)/(pow(xd,2) + pow(yd,2)+lit); 

 

    } 

    if (*mode == 1 || *mode == 2) { 

      

        df[0][0] = 0; 

        df[0][1] = 2*xd; 

 df[0][2] = 0; 

        df[0][3] = 0; 

        df[0][4] = 2*yd; 

 df[0][5] = 0; 

  

 df[1][0] = 0; 

        df[1][1] = ((-

ydd)*pow(xd,2)+2*xd*xdd*yd+pow(yd,2)*ydd)/(pow(pow(xd,2)+pow(yd,2),2)+l

it); 

 df[1][2] = (-yd)/(pow(xd,2)+pow(yd,2)+lit); 
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        df[1][3] = 0; 

        df[1][4] = ((-xdd)*pow(xd,2)-

2*xd*yd*ydd+xdd*pow(yd,2))/(pow(pow(xd,2)+pow(yd,2),2)+lit); 

 df[1][5] = (xd)/(pow(xd,2)+pow(yd,2)+lit); 

    } 

} 

 

double* callSplineInterp(int xxyy, double* coefficients, double** 

knots, 

    int* ninterv, int* order, int* mult, int* maxderiv, 

    double* result, int ncps) { 

 

    double coefs[nCOEF];  // array to contain 15 coefficients for one 

variable 

    int i1, i2; 

    double fz[3]; 

    double* time = malloc(ncps * sizeof(double)); 

 

 

    for (i1 = 0; i1 < nCOEF; ++i1) {            // take 15 coefficients 

        coefs[i1] = coefficients[i1 + xxyy - nCOEF]; 

    } 

 

    // calling the SplineInterp function 

    for (i2 = 0; i2 < ncps; ++i2) { 

 

        time[i2] = TIMESPAN * (double)(i2) / (double)(ncps - 1); 

        SplineInterp(fz, time[i2], knots[0], ninterv[0], coefs, nCOEF, 

order[0], 

        mult[0], maxderiv[0]);    // compute the values of interpretted 

outputs 

         

        // merging all outputs in one table 

        result[i2] = fz[0];                 // position values e.g. x1 

        result[i2 + ncps] = fz[1];          // 1st derivative e.g. x1d 

        result[i2 + ncps + ncps] = fz[2];   // 2nd derivative e.g. x1dd 

    } 

 

    free(time); 

 

    return result;   

     

} 
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DynamicDodge2.cc 

#include <stdio.h> 

#include <iostream> 

#include <time.h> 

#include <math.h> 

#include <fstream> 

#include <libplayerc++/playerc++.h> 

#include "/home/ryanfrazier/NTG2.2+/examples/globals.h" 

 

#include "args.h" 

 

#define RAYS 32 

#define pi 3.141592653589793238 

 

using namespace std; 

 

void ReadAndDisplay(char * file_name, int NCPS, int numLength, double * 

Result); 

void RecalculatePath( double * Resultx, double * Resulty, double * 

Resultth, int length, float range, float xc, float yc, float tc, int 

NCPS, int numLength, float xGoal, float yGoal); 

 

int main(int argc, char **argv) { 

  parse_args(argc, argv); 

   

  try { 

  using namespace PlayerCc; 

   

  PlayerClient er1(gHostname, gPort); 

  Position2dProxy p2d(&er1, gIndex); 

  BlobfinderProxy blb(&er1, gIndex); 

   

  p2d.SetMotorEnable(1); 

   

   

  //get points from user 

  int NumGoals; 

  int GoalIncrement = 0; 

  float InitialX, InitialY; 

  printf("Enter the number of goals (and press ENTER) "); 

  std::cin >> NumGoals; 

  printf("Enter the inital x position (and press ENTER) "); 

  std::cin >> InitialX; 

  printf("Enter the inital y position (and press ENTER) "); 

  std::cin >> InitialY; 

  float XGOALS[NumGoals]; 

  float YGOALS[NumGoals]; 

  for (GoalIncrement = 0; GoalIncrement < NumGoals; GoalIncrement++) { 

    printf("Enter the x coordinate of the %d  goal \n", GoalIncrement); 

    std::cin >> XGOALS[GoalIncrement]; 

    printf("Enter the y coordinate of the %d  goal \n", GoalIncrement); 

    std::cin >> YGOALS[GoalIncrement]; 

  } 

  GoalIncrement = 0; 

  //end initialization from user 
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  //make a file with xob, yob, radius, xccurrent, ycurrent, current x 

goal, current y goal 

  //initialize with no obstacle (0 0 0 * * * *) 

  char * file_name = "Obstacle_Info.txt"; 

  std::ofstream out(file_name); 

  out << 0 << " " << 0 << " " << 0 << " " << InitialX << " " << 

InitialY << " " << XGOALS[0] << " " << YGOALS[0] << endl; 

  system("(/home/ryanfrazier/NTG2.2+/examples/Obstacles2/multipoint)"); 

  //end calculating initial points 

   

   

  playerc_blobfinder_blob_t Obstacle; 

  int NCPS; 

  int i; //for counting through the file 

  int numLength; 

  numLength=25; 

  NCPS=100; 

  double Resultx[NCPS]; 

  double Resulty[NCPS]; 

  double Resultth[NCPS]; 

   

  //read in initial points 

  ReadAndDisplay("x", NCPS, numLength, Resultx); 

  ReadAndDisplay("y", NCPS, numLength, Resulty); 

  //Estimate Theta 

  for (i=0; i < NCPS; i++) { 

    Resultth[i]=atan2((Resulty[i+1]-Resulty[i]),(Resultx[i+1]-

Resultx[i])); 

  } 

  Resultth[0]=0; 

  //end reading inital points 

   

  

  //set up the proportional go to driver 

  float xerr, yerr, terr, perr, aerr, berr; 

  float Xg, Yg, Tg;   //goal vars 

  float Xc, Yc, Tc;   //current vars 

  float thresh = .1; 

  float offset = .2032; 

  float kp, ka, kb; 

  int color = 0; 

  kp=.5; 

  ka=1; 

  kb=-.5;  //these values work! 

   

  double fSpeed, tSpeed; 

  Xg=Resultx[0]; 

  Yg=Resulty[0]; 

  Tg=Resultth[0]; 

  //end set up 

   

   

  i=0; 

  while (1) { 

    er1.Read(); 
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    Xc=p2d.GetXPos(); 

    Yc=p2d.GetYPos(); 

    Tc=p2d.GetYaw(); 

     

     

    if (blb.GetCount() > 0 ) { 

      Obstacle = blb.GetBlob(0); 

      if (color != Obstacle.color && Obstacle.area > 200){ 

 color = Obstacle.color; 

   //sleep(1); 

   p2d.SetSpeed(0,0); 

   er1.Read(); 

   Xc=p2d.GetXPos(); 

   Yc=p2d.GetYPos(); 

   Tc=p2d.GetYaw(); 

   i = 0; 

   RecalculatePath(Resultx, Resulty, Resultth, Obstacle.bottom, 

Obstacle.range,Xc, Yc, Tc, NCPS, numLength, XGOALS[GoalIncrement], 

YGOALS[GoalIncrement]); 

      } 

    } 

     

 

     

    xerr = Xg-Xc; 

    yerr = Yg-Yc; 

    terr = Tg-Tc; 

     

    

    //if(abs(xerr/thresh) < 1) { 

      //if(abs(yerr/thresh) < 1) { 

 //if(abs(terr/thresh) < 1) { 

   //break; 

 //} 

      //} 

    //} 

     

    perr=sqrt(xerr*xerr+yerr*yerr); 

    aerr=atan2(yerr,xerr)-Tc; 

    berr=Tg-Tc-aerr; 

     

    if (aerr < -3.14159) 

      aerr=aerr+2*3.14159; 

    if (aerr > 3.14159) 

      aerr=aerr-2*3.14159; 

     

    if (berr < -3.14159) 

      berr=berr+2*3.14159; 

    if (berr > 3.14159) 

      berr=berr-2*3.14159; 

     

    fSpeed=kp*perr; 

    tSpeed=ka*aerr+kb*berr; 
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    if (fSpeed < .5) { 

      i++; 

      if (i == NCPS) { 

 GoalIncrement++; 

 if (GoalIncrement == NumGoals) { //break if there are no more 

goal points 

   printf("breaking"); 

   break; 

 } 

 std::ofstream out(file_name); 

 out << 0 << " " << 0 << " " << 0 << " " << XGOALS[GoalIncrement-

1] << " " << YGOALS[GoalIncrement-1] << " " << XGOALS[GoalIncrement] -

2.5 << " " << YGOALS[GoalIncrement] -2.5 << endl; //if there are more 

goal points, run NTG again with the new points 

 system("(/home/ryanfrazier/NTG2.2+/examples/Obstacles2/multipoint

)"); 

 ReadAndDisplay("x", NCPS, numLength, Resultx); 

 ReadAndDisplay("y", NCPS, numLength, Resulty); 

 //Estimate Theta 

 for (i=0; i < NCPS; i++) { 

   Resultth[i]=atan2((Resulty[i+1]-Resulty[i]),(Resultx[i+1]-

Resultx[i])); 

 } 

 Resultth[NCPS-1]=Resultth[NCPS-2]; 

 Resultth[0]=0; 

 i = 0; 

      } 

      Xg=Resultx[i]; 

      Yg=Resulty[i]; 

      Tg=Resultth[i]; 

       

      printf(" %f  %f  %f  \n",Xg, Yg, Tg); 

    } 

     

    p2d.SetSpeed(fSpeed,tSpeed); 

     

  } 

   

  return 0; 

  } 

  catch (PlayerCc::PlayerError & e) 

  { 

    std::cerr << e << std::endl; 

    return -1; 

  } 

   

} 

 

void ReadAndDisplay(char * file_name, int NCPS, int numLength, double * 

Result) { 

  int i; 

  int numChar; 

  char * pch; 

  numChar=NCPS*numLength; 

  char input_line[numChar]; 

   

  i=0; 
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  ifstream file_in(file_name); 

  file_in.getline(input_line,numChar); 

  file_in.close(); 

  pch = strtok (input_line," "); 

  while (pch != NULL) { 

    istringstream os(pch); 

    os >> Result[i]; 

    //printf("Result in loop %f \n",Result[i]); 

    pch = strtok (NULL, " "); 

    i++; 

  } 

   

} 

 

void RecalculatePath(double * Resultx, double * Resulty, double * 

Resultth, int length, float range, float xc, float yc, float tc, int 

NCPS, int numLength, float xGoal, float yGoal) { 

  float xob, yob, radius; 

  int i; 

  char * file_name = "Obstacle_Info.txt"; 

  int numChar = 9;  //change if each number is not just 2 digits 

  char * pch; 

  char input_line[numChar]; 

  float newInfo[3]; 

 

   

  //find the center and radius of the obstacle 

  xob=range*cos(tc)+xc; 

  yob = range*sin(tc) + yc; 

  /*FIGURE OUT A WAY TO FIND RADIUS!!!!*/ 

  radius = length*range*.57735/60; 

   

   

  //write to a file 

  std::ofstream out(file_name); 

  out << xob << " " << yob << " " << radius << " " << xc << " " << yc 

<< " " << xGoal << " " << yGoal << endl; 

   

  system("(/home/ryanfrazier/NTG2.2+/examples/Obstacles2/multipoint)"); 

     

  ReadAndDisplay("x", NCPS, numLength, Resultx); 

  ReadAndDisplay("y", NCPS, numLength, Resulty); 

   

   for (i=0; i < NCPS; i++) { 

 

    Resultth[i]=atan2((Resulty[i+1]-Resulty[i]),(Resultx[i+1]-

Resultx[i])); 

    //printf("(%f ,  %f ,  %f ) \n", Resultx[i], Resulty[i], 

Resultth[i]); 

    } 

    Resultth[NCPS-1] = Resultth[NCPS - 2]; 

    Resultth[0]=0; 

   

} 
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Configuration File 
driver  

( 

  name "stage"   #there is a driver named stage 

  plugin "stageplugin"     #the driver is in the stageplugin library 

   

  provides ["simulation:0"] 

   

  #Load the named file into the simulator 

  worldfile "rink_er1.world"  #this is a world file stored in the same 

place as empty.cfg  

) 

 

driver ( 

  name "stage" 

  provides ["odometry::6665:position2d:0" "6665:blobfinder:0"] 

  model "erone1" 

) 

 

 

World File 
include "/usr/local/share/stage/worlds/map.inc"  #this gets me the 

include file map 

include "erone.inc" 

 

#configure the GUI window 

window ( 

  size [700.000 700.000]    #size of the window in pixels 

  scale 7  #pixels/meter   this value is (window 

size)/(floorplan size) 

 

  show_data 1 

) 

 

obstacle( 

  pose [12 20 0 150] 

  #color "grey"   #so the robot can't see it 

  color "gray30"  # so that the robot can see it 

) 

obstacle( 

  pose [60 75 0 30] 

  color "green" 

  #color "grey" #so the robot won't see the obstacle 

) 

 

#make an instance of the er1 robot 

erone( 

  name "erone1" 

  pose [4 4 0 0]    

  color "red" 

) 

 

 

Inc file 
#make the model for the er1  (named erone) 
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#make a position model for the er1 with wheels and shape 

define erone position ( 

  #actual size of the er1 robot (not trailer) 

  size [0.4064 0.381 0.6096]  #erone is scaled to fit in this box   

         #center is [.2032 .1905 .3048] 

  #shape of erone 

  block( 

    points 4 

    point[3] [0 0] 

    point[2] [0 16] 

    point[1] [15 16] 

    point[0] [15 0] 

    z [0 24]  #how tall he is 

  ) 

 

  block ( 

    points 4 

    point[3] [15 7] 

    point[2] [18 7] 

    point[1] [18 9] 

    point[0] [15 9] 

    z [0 24]  #how tall he is 

  ) 

 

  #positional descriptions for erone wheels 

  drive "diff"    #differential drive robot 

  localization "gps"  #knows its location perfectly 

  localization_origin [0 0 0 0] 

 

  #attach sensors 

  erone_blob() 

   

  #what can erone sense 

 

  blob_return 1 

  #obstacle_return 1 

  obstacle_return 0 

) 

 

define erone_blob blobfinder ( 

    colors_count 2 

    colors ["gray30" "green"] 

    range 10.0 

    image [80 60] 

    size [0.1 0.07 0.05] 

    color "black" 

) 

 

 

define obstacle position ( 

size [5 1 1] 

block ( 

  points 4 

  point[3] [0 0] 

  point[2] [0 16] 

  point[1] [15 16] 

  point[0] [15 0] 
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  z [0 24] 

)   

) 

  



115 
 

APPENDIX VI.  NTG PROGRAMMING PARAMETERS 

TABLE II 

 NTG PARAMETERS FOR SIMPLE SCENARIO 

Parameter Value Meaning 

NOUT 2 Two Flat Outputs (x,y) = 

(z1,z2) 

NINTERV 10 Each interval is 3 seconds 

MULT 4 The derivatives of each B-

Spline at the intersection of 

the intervals must match to 

the 4
th

 order 

ORDER 6 6
th

 Order B-Splines are used 

MAXDERIV 3 At least the maximum 

derivative used (1) 

NCOEF 48 Number of coefficients used 

for the B-Splines.  This is 

equal to: 

NINTERV*(ORDER-

MULT)+MULT 

NBPS 54 Number of breakpoints over 

the course of 30 seconds 

NVAR 6 Number of variables 

possibly used (x, y, and their 

first and second derivatives) 

NLIC 2 Two linear initial constraints 

NLTC 4 Four linear trajectory 

constraints 

NLFC 2 Two linear final constraints 
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NNLIC 0 No nonlinear initial 

constraints 

NNLTC 1 One nonlinear trajectory 

constraint 

NNLFC 0 No nonlinear final 

constraints 

NINITIALCONSTRAV 0 No active variables for 

nonlinear initial constraints 

NTRAJECTORYCONSTRAV 2 Two active variables for 

nonlinear trajectory 

constraints (x and y) 

NICF 0 No initial cost function 

NUCF 1 One trajectory cost function 

NFCF 0 No final cost function 

NINITIALCOSTAV 0 No active variables for the 

initial cost function 

NTRAJECTORYCOSTAV 2 Two active variables for the 

trajectory cost function ( ̇ 

and  ̇) 

NFINALCOSTAV 0 No active variables for the 

final cost function 

NCPS 100 100 collocation points per 

variable 

 

 

TABLE III 

 NTG PARAMETERS FOR THE DIFFERENTIAL DRIVE EXAMPLE 

Parameter Value Meaning 

NOUT 2 Two Flat Outputs 

(x,y)=(z1,z2) 
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NINTERV 10 Number of intervals over 

the course of 300 seconds 

MULT 4 The derivatives of the B-

Spline functions must 

match to the fourth 

derivative at the interval 

points 

ORDER 6 The B-Spline polynomials 

are sixth order 

MAXDERIV 3 Must be at least the highest 

derivative used (2) 

NCOEF 48 Number of coefficients 

used for the B-Spline 

NBPS 54 Number of breakpoints in 

the course of 300 seconds 

NVAR 6 Number of variables (x, y, 

and their first and second 

derivatives) 

NLIC 2 Two linear initial 

constraints 

NLFC 2 Two linear trajectory 

constraints 

NLTC 2 Two linear final constraints 

NNLIC 0 No nonlinear initial 

constraints 

NNLTC 3 Three nonlinear trajectory 

constraints 

NNLFC 0 No nonlinear final 

constraints 

NINITIALCONSTRAV 0 No active variables for 

nonlinear initial constraints 
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NTRAJECTORYCONSTRAV 6 Six active variables for 

nonlinear trajectory 

constraints (all variables) 

NFINALCONSTRAV 0 No active variables for 

nonlinear final constraints 

NICF 0 No initial cost function 

NUCF 1 One trajectory cost 

function 

NFCF 0 No final cost function 

NINITIALCOSTAV 0 No active variables for 

initial cost function 

NTRAJECTORYCOSTAV 4 Four active variables for 

trajectory cost function 

( ̇  ̇  ̈  ̈) 

NFINALCOSTAV 0 No final cost function 

active variables 

NCPS 100 100 collocation points per 

variable 
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