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ABSTRACT

Mining Sequences in Distributed Sensors Data for Energy Production

John D. Gant

September 28, 2006

Brief Overview of the Problem

The Environmental Protection Agency (EPA), a government funded agency, provides
both legislative and judicial powers for emissions monitoring in the United States. The
agency crafts laws based on self-made regulations to enforce companies to operate within
the limits of the law resulting in environmentally safe operation. Specifically, power
companies operate electric generating facilities under guidelines drawn-up and enforced
by the EPA. Acid rain and other harmful factors require that electric generating facilities
report hourly emissions recorded via a Supervisory Control and Data Acquisition
(SCADA) system. SCADA is a control and reporting system that is present in all power
plants consisting of sensors and control mechanisms that monitor all equipment within
the plants. The data recorded by a SCADA system is collected by the EPA and allows
them to enforce proper plant operation relating to emissions. This data includes a lot of
generating unit and power plant specific details, including hourly generation. This hourly
generation (termed grossunitload by the EPA) is the actual hourly average output of the
generator on a per unit basis. The questions to be answered are do any of these units
operate in tandem and do any of the units start, stop, or change operation as a result of

another’s change in generation? These types of questions will be answered for the years
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of April 2002 through April 2003 for facilities that operate pipeline natural-gas-fired

generating units.

Purpose of Research

The research conducted has dual uses if fruitful. First, the use of a local modeling
between generating units would be highly profitable among energy traders. Betting that a
plant will operate a unit based on another’s current characteristics would be sensationally
profitable to energy traders. This profitability is variable due to fuel type. For instance, if
the price of coal is extremely high due to shortages, the value of knowing a semi-
operating characteristic of two generating units is highly valuable. Second, this known
characteristic can also be used in regulation and operational modeling. The second use is
of great importance to government agencies. If regulatory committees can be aware of
past (or current) similarities between power producers, they may be able to avoid a power
struggle in a region caused by greedy traders or companies. Not considering profitable
motives, the Department of Energy may use something similar to generate a model of

power grid generation availability based on previous data for reliability purposes.

Type of Problem

The problem tackled within this Master’s thesis is of multiple time series pattern
recognition. This field is expansive and well studied, therefore the research performed
will benefit from previously known techniques. The author has chosen to experiment
with conventional techniques such as correlation, principal component analysis, and k-

means clustering for feature and eventually pattern extraction. For the primary analysis
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performed, the author chose to use a conventional sequence discovery algorithm. The
sequence discovery algorithm has no prior knowledge of space limitations, therefore it
searches over the entire space resulting in an expense but complete process. Prior to
sequence discovery the author applies a uniform coding schema to the raw data, which is
an adaption of a coding schema presented by Keogh. This coding and discovery process
is deemed USD, or Uniform Sequence Discovery. The data is highly dimensional along
with being extremely dynamic and sporadic with regards to magnitude. The energy
market that demands power generation is profit and somewhat reliability driven. The
obvious factors are more reliability based, for instance to keep system frequency at 60Hz,
units may operate in an idle state resulting in a constant or very low value for a period of
time (idle time). Also to avoid large frequency swings on the power grid, companies are

required to be able to ramp-up a generator quickly using its spinning reserve.

Brief Review of Results

The results of this research identify common characteristics between generating units for
the data tested. These characteristics are extremely obvious and useful on a generating
unit level. Even though there were characteristics discovered, the data tested were very
sparse. After looking at the testing dataset, the author feels that the distribution of data
will follow a similar pattern regardless of the quarter examined. Regardless of the
distribution, it is essential to process new data once released. If newer data are tested, as
it should be for each new dataset released, the author is confident that the discovery of
new characteristics is foreseeable. These updated characteristics along with historical

patterns will allow traders to foresee high confidence electricity generation.
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INTRODUCTION

Problem Explanation

As noted earlier, the research for this Master’s thesis is based on a time series of data
from the Environmental Protection Agency. Each generating unit that has a capacity, or
the theoretical maximum output, greater than 25 MWH must report to the EPA. The data
reported are via a SCADA system. A SCADA system is a large-scale distributed
measurement and control system [19]. SCADA consists of measurement and reporting
devices that monitor operation of the generating units. The EPA uses SCADA data when
assessing penalties against power companies based on emissions violations. This data are
publicly available and are the source data for the research conducted within this Master’s
thesis. The data consist of many emissions-related factors but of importance is average
hourly power generation on a per unit basis. This data are averages of all power generated
for the observed hour via the generating unit. The objective is to discover characteristics
between generating units while in normal operation. Normal operation includes daily
cyclic patterns and ramp-up and ramp-down periods. A more basic approach is to see the
analysis as a pattern-matching problem in a highly dimensional domain. Each pair of
characteristic generation patterns in tandem will allow the researcher to construct an

association rule that would be used by analysts in creating power modeling scenarios.

Applicability of Solution
The real-world data used in this Master’s thesis, a discrete time series, are typical data

faced by researchers. Specifically here the author attempts to discover common
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sequences between electric generating units to be used in the field of power generation or
commodity trading and find matching sequences. Along with sequence mining, the
author identifies a coding schema that fits the target dataset more reliably than other
proposed schemas for time series. Many researchers have studied the topic of sequence
mining as it is of interest in many fields including DNA sequencing, and weather
modeling [23,37,38,21,39,16,17,18,40]. With respect to coding schemas, many
researchers have custom coding schemas and this thesis was no different. Coding
Schemas are used to allow for normalization and abstraction of the data; moreover, they
allow the algorithms to discover similarities between sequences that do not obviously
exist using raw data. The most common schemas are those based loosely on Gaussian and
Uniform Populations. Lastly sequence matching is attacked by a majority of time series
researchers. Sequence matching can be performed on streams or historical data. Some
researchers focus more on stream mining, or real-time sequence discovery, and spend
most of their time researching more practical implementations that are intended to run in

optimal time [23,17].

Previously Implemented Methodologies

Researchers at Harvard [21], the University of California at Riverside & Irvine
[16,17,18,40], the University of California at Los Angeles [39], the University of Applied
Sciences in Wolfenbiittel, Germany [38], the Université¢ Neuchatel [37], and the
Universities of Maryland & Virginia & Michigan & Carnegie Mellon along with AT&T

[23] have studied discovery of temporal sequences along with coding schemas. Many of
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these researchers have novel ideas involving implementation of coding and statistical

discovery.

The team at Harvard expanded the technique presented by Bussemaker [41], deemed the
Moby Dick motif discovery method. The Moby Dick motif discovery method can be
expressed simply as determining probabilities of sequence based on their subsequence
counterparts via a dictionary. These probabilities are created based on the number of
possibilities for construction of the sequence based on the current contents of the
dictionary, the product of probabilities of the sequence’s subsequences, and the number
of times the sequence has been used. Their contribution included the use of a stochastic
dictionary and data augmentation. The stochastic dictionary is based loosely on the
probability that a letter will occur in a word, or code, in a sequence. For each sequence
there is a probability matrix, termed PWM, constructed. Each code has a derived

probability based upon its location in the sequence.

The team from the University of California at Riverside have expanded on their
previously released theory of discovering gene sequences based upon their codes deriving
from a normal distribution, termed K-Motifs [40]. Before the introduction of the current
additions, one must review the previously released material. This included the
introduction of motifs and statistical representations of a time series dataset. The
introduction of motifs and then K-Motifs allowed for the probabilistic coding of time
series. This coding is essential is discovering useful and frequent sequences, or K-Motifs.

The research in this Master’s thesis is based highly on the theory introduced by this group
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at University of California at Riverside. The group’s current addition is one that
accommodates for missing data, termed “don’t cares” [16]. This discovery algorithm is
novel in that is has the ability to overlook noise in data and can therefore discover based
on bad data. It has advantages over the other more sophisticated algorithms, in that in

does not need prior knowledge of the data nor does it use dictionary methods.

The team at the University of California at Los Angeles studied the evolution of DNA
sequences built from binary matrices converted into tree structures. As a sequence is
constructed it traverses the tree based upon a likelihood function. This likelihood function
is based upon a probability, which comes from unvisited parents within the tree. The
main premise for this theory is that the sequences are created via an immigration-death

model.

The researcher at the University of Applied Sciences uses a novel technique to discover
important sequences. Although he does not discover every sequence, as most do, he
intends to only discover useful sequences using derivatives (as he considers sequences as
changes in both the first and second derivative). Prior to calculating the derivatives of the
signal a smoothing process is used to reduce noise, which could be responsible for false
zero-crossings. Using a sliding window approach the researcher attempts to derive

association rules.

At the Université Neuchatel researchers discretize the raw data into coded values. After

discretization they generate classification trees using the C.45 algorithm. To perform the
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coding schema, the researchers use difference measures between sequences. The
sequences are generated from fixed length intervals, and therefore lack knowledge of

sequence creation.

Finally the group consisting of researchers from AT&T, and the Universities of Maryland
& Virginia & Michigan and Carnegie Mellon developed an algorithm, deemed
MUSCLES, to discover correlations, outliers, and corrupt data via linear techniques.
Although the authors perform their analyses on sequences, it may be classified as work
over a discrete time series and not sub-sequences as most have chosen previously. Their
work is directed at prediction of next values delivered by an evolving sequence or data

stream.
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REVIEW OF TIME SERIES ANALY SIS METHODOLOGIES

Foundation of Analysis

There must be a goal for an analysis, which usually starts out as a question. This question
is formulated into a hypothesis, or a proposed answer to this question. To perform an
efficient data mining operation, a hypothesis must be the main driver. Usually hypothesis
creation is domain specific. Sometimes, in a business setting, the hypothesis is not
necessarily scientifically motivated. Nevertheless the analyst must, with the help of the
domain expert (which could be one in the same), from some previous observations create
the hypothesis. This hypothesis is a component of the scientific process. The scientific

process is defined as follows:

1. Develop a hypothesis. The hypothesis is the question that drives analysis. It is
the why or how that is the sole reason for experimentation.

2. Conduct the experiment. Within this document, conducting the experiment
refers to sampling data from power plants. Since this is already done, via
SCADA, the only step left is to decode of the data in preparation for the
analysis

3. Analyze the data. The majority of this document is centered on analysis of
data. Analysis can include some as simple as aggregate processing up to
complex pattern recognition processes. This section should be embarked upon

with care as performing hastily during analysis will flaw the entire outcome.
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4. Compare the results. Either the domain expert or the analyst can perform this
step. It should include common-sense checks of the data against facts or
unwritten truths. Results that are abnormal should be suspect and examined
carefully. Abnormal data does not confirm faulty analysis, but could indicate
distinct features that need to be recognized.

5. Determine a conclusion. With the help of a domain expert, the researcher may

report his or her conclusion for future use.

The Time Series Domain
A time series can be defined as a set of values keyed uniquely by timestamp. If a time

series, X , 18

X =TV (T V)T, V,0)} (3.1)

then T represents the distinct timestamp that corresponds to the value V_ and n identifies
the length of the time series. Time series data are values recorded at some point in time.
Time series analysis is mathematical processing of the time series data to obtain a
conclusion concerning a hypothesis. The most common time series analysis is stock
market analysis. The changes associated with stock prices are recorded at tick intervals
and used by traders to predict characteristics of given stocks. The ability to identify
characteristics of stock prices allows traders to model, or predict, the future outcome of

prices and gain a profit from this knowledge.
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Time series data sets typically consist of a set of two-dimensional data pairs. This data
are keyed, or uniquely sorted, by a timestamp value. The value of the pair can be either a
categorical or numerical value. Categorical values are typically nouns. For example the
color of the sky on a particular day is a categorical value, keyed by day. Numerical data
are also a value and can consist of any of the basic numerical representations. Some
examples of numerical data are fractional, imaginary, and whole numbers. Time series
data are usually collected from some process that is sampled at precise time intervals.
Sampling is an important concept, and can be described as listening for data over a
medium and recording these values for later processing. This can be accomplished by
storing data in memory, writing values down on paper, or by other means that allow
someone to record values that happen at an instant in time. Most time series data sets are
sampled using a rate that are generally the same for all data points sampled, resulting in a
common unit of time. The elapsed time, or interval, of sampling with relation to the

amount sampled is regarded as the sampling rate, or S that is defined as
Vv
S=— 3.2
v (3.2)

where V is the number of samples taken (or points captured) and, At the time elapsed

between the start and end of the sampling process.

For example, if a heart monitor samples a heartbeat 1000 times in a one second interval,
it can be said that this monitor has a thousand samples per second sampling rate. Use of

historic time series data provide researchers the ability to view trends, or the general
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direction of movement of a value. Time series data are always analyzed after sampling.
Although this document concerns itself with data that was sampled years ago, that is not
always the case. For instance a real time operating system might analyze data that are
sampled by a sensor on an aircraft wing virtually instantaneously, allowing the operating
system to adjust flight controls for autopilot. Many researchers [14,15] investigate these
complex issues, and real-time data sets are considered to be data streams, i.e. continuous

sampling systems.

Although a simple time series is an important concept, most likely in mining and
modeling problems the researcher will be faced with multiple time series. A multiple time
series matrix, X, is defined as

(%) || (T%) |

(TO’VH—I) - (7:1—1"/”-1)

where each column vector of X represents a single time series. This is a typical
representation for multiple time series when using linear algebra to calculate values. A

linear algebra approach is common in least square calculation of linear regression.

Time series data can become stale. The meaning of stale is domain dependent, but
basically refers to the length of time the data are useful after sampling. The usefulness of

data can be a few seconds or decades. Storage of stale data is a great concern in business
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applications. Large network storage devices handle this duty. Large data warehouses
store either aggregates, mathematical summaries, of the data or the raw data itself.
Storing the raw, or sampled, data are very costly and further scrutinizes the mark set for
staleness. For the most part data warehouses store aggregates of the raw data. Data
mining can be described as locating similarities, and drawing likeness conclusion about
data. Usually, mining is performed aggregated data. If the miner has access to pre-
aggregated data, as in a large warehouse and the aggregates are sufficient for the mining
goal, the mining task is much easier. Choosing these aggregates is a complicated task that
requires domain knowledge. Efficient storage of historic time series data is a challenging

research interest, and a practical challenge for business applications.

Although time series data are easy to comprehend in small sections, most time series data
are only useful when compared over large spans of time. Spotting patterns in small data
sets is trivial for humans, and easy for computers. But when time series data are analyzed
in extremely large sets, it becomes all but impossible for humans and challenging for
computers to complete in a reasonable amount of time. The field of data mining takes this

challenge upon itself.

The Frequency Domain

We have previously discussed the time series domain as the prominent domain for
statistical analysis. Although the time series domain is the most common, the field of
signal processing offers the frequency domain as an option for data analysis. The

frequency domain allows a signal’s components to be exposed. Most signals are a
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combination of many small signals, which vary in power. To observe these signals one
must transform the data to the frequency domain. Transforming data from one domain to
another can be accomplished with both data streams (continuous) and finite data sets
(discrete). Once transformed the data are no longer in a coordinate system described by
unit of time and value, but now represented by coordinates in the complex plane. These
coordinates consist of a phase angle and a magnitude, which are calculated via

transforms.

Im
r cos(0)
y /__A—\; Z=X+1y
r s11(0)
: Re
X

Figure 3.1 Components of the Complex Plane:
There are many transforms that exist to convert between domains, but the most common

are the Laplace, Z, and Fourier transforms. The Complex Unilateral Laplace transform is

defined as

L0} = [Te f(tyar (3.4)

S=0+Iiw
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where s represents a combination of both the real and imaginary portions of the signal.
The Continuous Fourier transform otherwise known, as the Fourier transform, is similar

to the Laplace transform by the fact that if for
§=0+iw

Sigma is set to zero, o =0, meaning there are no real components only complex. From
this it is evident that the Fourier transform takes the shape of the Laplace transform

including normalization constant. The Fourier transform is defined as

1

F(t) =
) 21

je-m f(t)dw (3.5)

vl

where e represents the exponential function. Although the Fourier transform is
continuous, its popularity eventually gave way to approximations of a discrete nature:
specifically the Discrete Fourier transform, DFT, is used in frequency domain analyses.
The DFT is a heavily optimized transform with years of software optimizations to
improve calculation speed resulting in the Fast Fourier transform and its counterparts.

The Discrete Fourier transform is defined as

i27nk

X, =%§)f(t)e v (3.6)
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where n = 0...N-1. A discrete version of a transformation function, which is very similar
to the Unilateral Laplace transform, is the Z transform. The Z transform is defined by the

following equation:

X{fy=Y f)z" (3.7)
z=re"

or

z=re””

For the purpose of discrete analysis, choice of the Z and Discrete Fourier Transforms are
appropriate. A typical representation of the Fourier transform is via a Power Density plot,

i.e. Spectral Analysis.

Domain-Based Classification of Methodologies

Both the frequency and time series domains are valuable tools for the researcher. There
are many methodologies for each domain, but the review below will limit itself to the
most commonly used and most beneficial. Table 3.1 specifies the domain for each

methodology reviewed.

Table 3.1 - Methodologies and their Corresponding Domains

Methodology Domain

Spectral Analysis Frequency
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Wavelet Analysis Frequency and Time
Pearson Correlation Time
Spearman Correlation Time
Artificial Neural Networks Time
Regression Analysis Time
Principal Component Analysis Time
K-Means Clustering Time
Spectral Analysis

To use the Fourier transform one must begin with the Discrete Fourier transform, DFT, as
time series (not signals) are discrete by nature. If the researcher were concerned with the
theory of continuous signals, they would ignore the DFT and focus on calculations based
around the Continuous Fourier transform. Although there is many implementations of the
Discrete Fourier transform, the Fast Fourier transform is the most widely used. A
stipulation to using the Fast Fourier transform is the discrete data set involved must be of
a power of two in size. For example if the series were of length 60 it would have to be
padded, or centered by adding zeros, to a data window up to a size of 64. For more
information on windowing please refer to Masters[11]. One result of this padding is that
the signal at lower (left side of spectral diagram) and higher (right side of spectral
diagram) will be affected. The effect is a decrease in power of the frequency represented
in the spectrum. There are guidelines, which are cautionary indicators that indicate the

frequency range that has been affected by the padding. Torrence and Compo [25] refer to
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this restriction as the e-folding time, 7. The result of a DFT provides us with a listing of
complex numbers. Each complex number in this listing must transformed into its

hypotenuse by

hyp = \/real2 + complex® (3.8)

And from a listing of hypotenuses one may calculate the power for each frequency, or
iteration in the list. The equations 3.9 allow the researcher to calculate the power for each

frequency band.

(3.9)

With power values, one may scatter plot the power against their frequency counterparts.
Another effect of using Fourier analysis is the reflection of the signal. The signal
reflection is observed at half of the period of the signal. To observe this power spectrum,
one uses a Power Density plot. Using this power density plot a researcher may discern the
dominating frequencies from the time series. Noting these dominant frequencies are

crucial to removing all continuous patterns from the series, thus allowing the real data to
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show. Careful note must be taken when interpreting these plots, and experience is of great

value. Figure 3.2 is an example Spectral plot.

3000000

2500000 I
2000000 | .

1500000 ‘ |

Speciral Power

:
:

500000 - [

Q T~ _— [ S —
0 01 02 03 04 0.5
Frequency (cycles per observation)

LEW.DAT

Figure 3.2 — Spectral Plot Example

The y-axis consists of spectral power values, as defined above. The x-axis represents the
corresponding frequencies observed within the signal. A large value for power indicates a
significant frequency present in the signal. In this example at 0.3 there seems to be a
dominant component. There should be further study of the signal, including removal of

the offending frequency and retesting to assure the correct frequency was identified.

Wavelet Analysis and the Wavelet Transform
The Fourier transform is essential to signal analysis, but is flawed when used with time
series data sets. This difficulty is due to the inability, using DFT, to pinpoint a

frequency’s component in time. Having the knowledge that a 40Hz component is very
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strong in a signal has no relation to its presence in time. To accomplish mapping of
frequency to time, one should use wavelet analysis. Alfred Haar introduced the first
wavelet in the early 20™ century [26]. The noted father of wavelet theory, Morlet, in 1983
introduced the Morlet wavelet and wavelet transforms [27]. Wavelet analysis consists of
using either the Continuous Wavelet transform or the Discrete Wavelet transform to
decompose a time series represented as a signal. The mother wavelet defines the daughter
wavelet which is the essential wavelet used during the analysis. Wavelet analysis
includes choosing a mother wavelet and a real signal to represent the time series. Once a
signal has been chosen, a researcher must choose a mother wavelet from which the
daughter wavelets can be calculated. A mother wavelet is chosen by analysis of the base
signal. Specifically, if one has a smooth signal then choosing a wavelet that resembles a
pulse or spike would result in poor decomposition. The discrete wavelet transform is used
only with orthogonal mother wavelets; therefore, all other mother wavelets are used via
the continuous wavelet transform. Both continuous and discrete versions of the wavelet
transform use daughter wavelets, which are based directly on mother wavelets. The

continuous wavelet transform, y(s,7), is defined as

y(s.t)= [ fow u(dt (3.10)

Where 1", = Complex Conjugate of the daughter wavelet.

Its corresponding daughter wavelet (non-orthogonal) is expressed as
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%m=%ﬁ%ﬂ 3.11)

Where
f(t) = Continuous Signal
s = Scale
T = Position

1 = Mother wavelet

For orthogonal-based wavelets one uses the Discrete Wavelet transform, which is defined

as

-3 Saw!
7 ,Z_mkz_m Vi (3.12)

df = [ f ] wdu
And its counterpart the daughter wavelet (Orthogonal)
Y, (D) =92°t-7) (3.13)

The topics of orthogonal and non-orthogonal daughter wavelets are directly related to the
mother wavelets. A mother wavelet is deemed orthogonal when it can be proven that the
function has an orthogonal basis, or those dot products of the vectors that make up the
base which equate to scalar values. A special case of an orthogonal basis is one that

equates to one and this case is deemed orthonormal. Typically orthogonal wavelets are
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not used in time series analysis due to their representation, a pulse or spike, which is
unlikely in a typical time series. For example the Haar wavelet is a representation of a
step function. Most time series are smooth, relative to a pulse, and would not be

accurately (with low residual error) represented using a Haar wavelet.

There are many mother wavelets that may be used and are defined by the admissibility

and regularity conditions. The admissibility condition is defined as

ool
C= f -
y(w) = FT(y(1))

(3.14)

where FT is the Fourier transform of the function v(7), a function that is tested as a

mother wavelet. The implication of the admissibility condition is that the value of the
Fourier transform, of the mother wavelet, disappears at zero frequency, which means
there is a cutoff and no data is lost. The admissibility condition also implies that the

function must act like a wave with mean zero [29].
[w(dr=y(1)=0 (3.15)

The regularity condition implies that for n-1 values produced by the signal, they also

average to a mean of zero [29]. In literature this is described as “vanishing moments”.
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[ xhyp(tydr =0 fork=0.n-1 (3.16)

kaw(t)dt =0 fork=n

If a wavelet satisfies both conditions it can be considered to be a mother wavelet and will

perform correctly using wavelet transformation. Table 3.2 contains a listing of common

mother wavelets.

Table 3.2 - Commonly Used Mother Wavelets

Wavelet Name Description

=

Haar | 0<r<t
2

P(t)=1-1 %st<0

0 otherwise

Hermitian o (2 )_ﬁc y ( t ) _2L,z
= n) 2 — e "
w n"“n ’\/;
1, 1 _lz
C,=|n? F(n+—)
2
where F(n) = (n - 1)‘
. x? d" i
H =(-1)e? 2
n ( ) e dxne
Morlet L _1p
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Before the daughter wavelet can be used within the wavelet transform, it must be scaled.
Scaling is useful for its ability to transform non-orthogonal wavelets into wavelets with
an orthogonal base. The energy of a daughter wavelet must be scaled, so that it may be
compared to other wavelets. For more information on scaling of wavelet refer to Torrence

and Compo [25] and Mallat[42].

In practice wavelet transformation allows a researcher the ability to pinpoint in time the
location of frequency components, or localization of the frequency components. Fourier
analysis gives a global overview of composing frequencies, but Wavelet transforms allow
the researcher the ability to view both global and local characteristics. Wavelet
transformations are used heavily in geophysics, image processing, and audio processing.
Figure 3.3 is a typical representation from a wavelet transform in the form of a wavelet

map.
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Figure 3.3 - Wavelet Map Example

Pearson Correlation: Simple Parametric Cluster Recognition

Within the field of statistical inference there exist two domains, hypothesis testing and
point estimation. This Master’s thesis is primarily concerned with point estimation. The
author recognizes that hypothesis testing is an element within model validation along
with being a subfield of statistical inference. To estimate a point, usually a statistical
model is developed on previous data. Statistical model construction will be discussed
later but now it must be stated that there are independent elements within a statistical
model, and clustering allows a researcher the ability to ‘identify’ these elements. As said
previously, pattern recognition, and in the context of this document, clustering is an easy
task for the human eye. Although the human eye does an excellent job of spotting clusters

in two-dimensional space, in spaces greater than two-dimensions algorithms provide a
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more thorough and trustworthy source for cluster recognition. It must be stated that even
though the human eye does not perform as well as algorithms in highly dimensional
space, it is the trustworthy tool used to check the accuracy of algorithms.

Simple numerical clustering can be tackled by techniques borrowed from the field of
statistics. The sum of squares is a measure of error. The sum of squares is used due to its
ease of derivation, which makes for cleaner mathematics. There are multiple forms of the
sum of squares operation, but in general using the arithmetic mean is most common.
Arbitrary list, L, of points

L=ApyPisDyeees D}

Sum of squares of L,
$S, = > (p;-p) (3.17)
i=0

Where the sample arithmetic mean,

=0 (3.18)
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Simply put, the sum of squares is a measure of variability within a list. An important note
is that an outlier can easily skew the error function. An outlier can be classified as a data
point that is ‘abnormal’ with respect to the data list as a whole. An outlier is usually
domain specific, but can be associated with the list’s sample standard deviation. Simply it
can be any data point that falls outside a multiple of the list’s sample standard deviation.
Outliers result in a misleading sum of squares for a particular list of data that contains the
large outlier. The sum of squares is a common measure used in many areas of statistics,
including Analysis of Variance (ANOVA) and correlation analysis. When analyzing data
for similarities a simple measure is the sample correlation, also known as the Pearson

Correlation coefficient.

SSX\'
,o - (3.19)

55.55,

Where appropriate sum of squares are defined by
Sy =D (X, =0y, -y)  SS, =) (x-x)" S, =D(y-y’ (320
i=0 i=0 i=0

Pearson Correlation coefficient is a linear measurement of likeness. A linear
measurement of likeness is one that attempts to fit a line through a set of points based
upon the mean. Typically the square value of the correlation coefficient is used in
measuring likeness between series. This coefficient, P, is referred to as r-squared and is

defined by:

40



Regardless of the type of correlation used, it is still bounded by lower and upper limits.
There are many types of likeness measures and from that many types of correlations. The
types of correlation include parametric, where the data comes from a know probability
distribution, and non-parametric, where the distribution of that data is unknown.
Correlation is easily abused, when the assumption of a known distribution is either
assumed or ignored entirely. Correlation is used to establish likeness between data lists.
A correlation of positive one, establishes an exact likeness, conversely a correlation of

negative one identifies an exact inverse likeness.
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Figure 3.5 - Exact Inverse Likeness, exhibits High Inverse Correlation
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As shown in figures 3.4 and 3.5, correlation is not an absolute measure of exactness. The
figures above display two time series plotted on the same X and Y-axis. As can bee seen,
they are not exact matches but the r-squared value of the Pearson correlation between the
series is 0.99. This is almost an exact match, and suffices as an excellent correlation. If
the sample set is large, two lists may correlate highly even if they contain outliers. This is
possible due to the mean staying close enough to the median, of the time series, to keep
the correlation close to one. This is a benefit of correlation, where values do not need to

be exactly alike to have likeness.

Spearman Correlation: Simple Non-Parametric Cluster Recognition

The Pearson correlation coefficient is a parametric ranking statistic. As mentioned earlier,
being parametric requires that the data come from a known probability distribution.
Another assumption of the Pearson correlation coefficient is that the data come from the
same domain, and are of the same type. This means that the data to be compared must be
of the same units or category. These assumptions are often abused, and result in

untrustworthy results.

Non-parametric ranking measures exist to allow likeness comparisons between cross-
domain and distribution less data. Often the distance measures are similar to likeness
measures. A list of ranks, R, is defined as a list of the ranks for a corresponding set of
raw values. The rank may be defined in many ways, and a simple numerical ranking is a

typical route. Ranking becomes complicated when ties exist. Ties can be defined by
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r, =r, . A through understanding of the domain from which the data points are sampled

from is essential to choosing the correct ranking algorithm. Many algorithms have been

developed to handle ties within data lists, and a few are reviewed.

Simple ties equivalent rank is a simple, yet intuitive ranking algorithm. The following

steps, with an example, define the algorithm.

1. Sort list of values by numerical order, either lowest as highest rank or highest as

highest rank.

2. Ties are handled by assigning an equivalent rank to each tie.

The following example is a sample where highest value is assigned the highest rank. For

a set of raw values V, R represents the corresponding ranks in appropriate position.

Example of simple ties equivalent rank

vV ={1112,1313,14,15}
R={12,334,5}

Ties shift rank is another simple numerical ranking algorithm. Again the following steps,

along with an example, define the algorithm.

1. Sort list of values by numerical order, either lowest assigned highest rank or

highest assigned highest rank.
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2. Ties are assigned an equivalent rank, where the value following a tie is assigned a

rank equal to the rank of the tie plus the number of matches within the tie.

The following is an example where highest value is assigned the highest rank. Again V

represents the raw value set and the set R contains the appropriate rankings.

Example of ties shift rank

vV ={1112,1313,14,15}
R={1,2,3,35,6}

Disregard ties rank, is an algorithm that basically ignores ties altogether. This algorithm

1s defined as follows:

1. Sort list of values by numerical order, either lowest assigned highest rank or
highest assigned highest rank.

2. Ignore ties, assigning ranks in order once the sort has been made.

Again the example below illustrates the disregard ties rank algorithm. The set V contains

raw values and R is the corresponding set of ranks.

Example of disregard ties rank

V ={11,12,13,13,14,15}
R=1{1,2,3,4,5,6}
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6i(rank(X,.) - mnk(Yl.))2

SRO=1-—E! D (3.21)

Spearman rank order, SRO, correlation has the advantage of being non-parametric, along
with lacking any restraints on the domain of the data. Correlation along with partitioning
is an elementary method of clustering. Performing a cross correlation, regardless of
correlation type, upon a set of time series can identify sets with some commonality. This
likeness exists due to high correlation, or high inverse correlation between time series.
This allows grouping of similar series into a cluster with similar characteristics. For

example, having a set of time series represented as a matrix, M, where:

A typical cross correlation matrix, C, is of the form,

corr(t,,t;)  corr(t;t;)

- corr(t;,t;) corr(t ,t ;)

Where corr(z,,t,) represent the cross correlation value for a comparison of time series X
and Y. It must be noted that if corr(z,,t,) =1 then corr(z,,t,) = corr(t,t,) . By viewing

only rows or columns, not a mixture, looking for highly correlated pairs allows a

researcher to spot clusters of numerically like pairs.
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Introduction to Learning Techniques

Learning is the basic process of gaining knowledge from data. Learning techniques can
be classified by being supervised or unsupervised. Supervised techniques, quite simply,
require intervention from the teacher during the learning process. This intervention
allows the learning technique to correct its mistakes by using input from the teacher. To
accomplish this training of the model, the assumption of independence between inputs
must be made. The statistical models discussed within this document assume
independence, and therefore are unsaturated. Saturation refers to the inclusion of normal
factors along with factors that represent dependencies between input variables. Building a
model with this setup will reduce the reliability of the model to make consistently
accurate predictions. As stated previously assuming independence is typical of statistical

model construction that takes the form:

y = /30 + /J)IxO + /52x1"'+ /3;1+1‘xn (322)

Where (3, represents the intercept of the x-axis, and S, ,, represents the weight of the

n+l
corresponding independent input x, . Supervised techniques are classified as so due to the
‘training set’ that is used to construct the model. Supervised model construction involves

feeding data to a learning machine while using the errors between the expected output

(original value), O,, and the actual output, O,. These errors, or residuals, are used to
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tighten the accuracy of the model for the entirety of the training set. Some examples of

supervised learning techniques are statistical regression, and artificial neural networks.

Unsupervised Learning Techniques

Unsupervised learning techniques are those that analyze the data without previous
knowledge of patterns or trends that do not require a training data set. Unsupervised
techniques are typically hands-free algorithms, meaning all of the results must be
scrutinized after the machine has interpreted the data. This is unlike supervised learning
where, if unhappy with the results or the size of the residuals, the researcher may either
retrain on a different training set or use the same data and attempt to gain further
knowledge prior to prediction by retraining the machine on more data. In doing so, this
leaves the prediction data window smaller, due to an increased size of training data. An
important note when using unsupervised learning is to expose the system to the majority
of features during training. If new features arrive during testing or production use, the
residual error will increase and can be high enough to make future predictions unreliable.
Some examples of unsupervised learning are artificial neural networks, and Expert
Systems. From the examples above you’ll see that artificial neural networks fall into both

categories, and this is so due to the learning algorithm implemented within the network.

Artificial Neural Networks
As noted artificial neural networks are both supervised and unsupervised. Table 3.3 lists

the paradigms of artificial neural networks.
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Table 3.3 — Paradigms of Artificial Neural Networks

Unsupervised Supervised
Hebbian Learning Error-Correction Learning
Competitive Learning Stochastic Learning

Reinforcement Learning

Some of the benefits of unsupervised learning techniques over their supervised

counterparts are:

1. The ability to adapt itself to non-linear problems, for which basic statistical
techniques are too weak to predict accurately.

2. ANNSs have the ability to learn and control its outputs in real-time, by adjusting
weights of the outputs of error functions.

3. Uniformity, where it has the ability to ignore restrictions of contemporary

modeling techniques such as distribution dependencies.

Unsupervised learning has many restrictions, which limits their use mainly to non-linear

problems, some of which are:

1. Computationally expensive in comparison to contemporary modeling techniques.

ANN s require a lot of iteration of error calculations to achieve a good fitting

model.
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2. Unsupervised learning techniques are of black-box design, due to architecture.
The limited configuration is in the node weighting and choice of error function. A

design of this type requires that the researcher trust the network.

The goal of supervised learning is to guess the weight matrix so that the network can
minimize the resulting residual error. Supervised ANNs require that training be

performed prior to prediction. Figure 3.6 illustrates a simple neuron, or node, setup.

Input Weight

Input Weight ——= Activity Function Output Weight
. L /-"

Input Weight

Figure 3.6 — Simple Neuron, Component of Artificial Neural Network

Neural network classifications include feedforward and recurrent. Within each of these

there includes subclasses. Figure 3.7 illustrates a simple feedforward network with one

layer of hidden nodes, which perform the activity calculation.
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Input Layer

Hidden Layer Output Layer

S

Figure 3.7 — Simple Feedforward Neural Network

An adaptation to the simple feed forward involves looping within the network, which are
represented by recurrent networks. Figure 3.8 illustrates an example adapted from figure

3.7 to represent a typical recurrent network.

Input Layer
Hidden Layer Output Layer

S
;g Outputs
g

Loop

Figure 3.8 — Example of a Recurrent Network

There are multiple classifications for neural networks but they all perform the same basic
operation. This operation is to minimize an output error function. In a supervised error-

correction network calculating residuals from known and network-calculated outputs
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does minimization. One of the most well known error-correction algorithms is known as
backward propagation. This involves correcting an error function in two steps. The first
step in a traditional weight calculation is the use of the activity functions. The second is a
backward propagation of the error correction being applied to the originally calculated
weights. The error correction function for backward propagation is typically the average

squared error energy, which is calculated by
n 1 J
Eo =E”*(5*E(dj(n)—y,(n))) (3.23)
1 1

Where d; = trained output, and y; = calculated output. For more information, and a full

derivation, on the error function and weight deltas please refer to Kantardzic [12]. After
multiple backward propagations, the error function is intended to converge. This
convergence allows for the best possible, i.e. lowest, error across the network. At this

point the network is ready for testing of its predictive capability.

Supervised Learning Techniques

This classification of learning techniques involves human interaction. They require the
researcher feed the learning algorithms data, and perform interpretation of the results.
Of the known supervised learning techniques, statistical regression is the most popular
method for predictive analysis and k-means clustering for clustering analysis. This type
of learning is the easiest to use, and therefore are a good starting place for attempting to

apply learning to a dataset.
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Linear Regression
To predict based in a linear combination of other values, a researcher has linear
regression as the tool of choice. Regression stems from the problem of determining the

sample mean of a joint distribution, where the mean is expressed as u,, . Formally linear
regression can be expressed as u,, = B, + B,x. The basic expression for linear regression,

expressed in terms of a dependent variable y, isy = 3, + B,x. There are two popular forms
of basic linear regression, linear and logistic regression. These two are separated by their
classification of input variables. Logistic regression is used to predict the logarithmic
value of a dependent variable, using probabilities as independent variables. Logistic
regression is represented formally as log(y) = B, + B, Pr,. These probabilities are of
categorical variables. Linear regression, as stated previously uses numerical independent
values as inputs to predict a numerical value as an output. In these simple forms
regression is easily understood, but in practice typically there are many independent
inputs. This multivariate designation is referred to as multivariate linear regression. To
solve multivariate linear regression, the method of Least Squares is applied. The method
of least squares hinges on the fact that for a linear fit, a straight line centered among the

data is the best fit for prediction.
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Linear Regression

20
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14

10

Figure 3.9 — Example of a Linear Regression Fit

Minimizing Ay by achieving the lowest average error, from figure 3.9, is the premise for

least squares approximation. To solve the regression equation,

y=/30+ﬁ1x7

Where (3, is the x-intercept and

SS,,
Bi=™ (3.24)

XX

where, from the previous equation, values SS, and SS,, are the sum of square values for

x and y respectively. Multivariate regression requires that the methodology of least

squares be extended to more than one input variable. To accomplish this the researcher
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uses the matrix notation of least squares defined from the previous equation y = f3, + 3,x,
and more generally y = fx. Originally x was a list of data, and this can be viewed as a

vector. To expand on this, using multiple lists, i.e. multiple independent inputs.

And to solve for y, and expose the weights 8 of y = fBx, a researcher uses the matrix

form below.

B=(xx"y"(x'y) (3.25)

where the factors (xx') and (x'y) square the dependent and independent matrices. This

methodology can be used assuming the matrix x has an inverse i.e. is non-singular.

Logistic regression may also be used by researches to predict variables. More specifically
it is used to predict the probability that an event will occur based on the input

probabilities. Logistic regression can be expressed formally as,

Pr(x)

10g(1 - Pr(x)

) =B, + Bx (3.26)
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Again statistical regression is one of the most popular supervised learning techniques.
Although ANNS can produce a similar output for line fitting, regression is far more
practical for its one-pass use. As noted, when using ANNSs, the typical error calculation is
a back propagation that involves a recursive procedure that costs more than a simple one-

time least squares calculation.

Clustering Techniques

Clustering is also another popular supervised learning technique, and is of importance
within this thesis. The human eye can easily perform clustering in less than three
dimensions. As space size increases it becomes numerically complex and virtually
impossible for the human to recognize existing relationships. Clustering can be best
defined as numerical (logical or ordinal) relationships that exist between objects (and
dimensions). These numerical relationships are usually defined by the minimization of an

error function, for instance mean square error. Mean square error, or MSE, is defined as

E(x —mean,)’ (3.27)

Where x = data value within cluster, and m = the cluster mean. The author is aware of the
ability to heavily skew this calculation with outlier values. From this the author

recommends the use of median square error, which is defined by

E(x - mea’ianc)2 (3.28)
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Clustering is a very simple methodology, and the (x — mean_) within the MSE can be
replaced by many other distance functions. Table 3.4 lists other distance functions that

are popular.

Table 3.4 — Distance Measures

Distance Measure Formula
Euclidean ) %
((Ex - meanL) )
City-Block E|x — mean,
Minkowski o\
((Ex - meanc) )

For more distance measures please refer to Statsoft and Kantardzic [9,12]. The most
common clustering technique is the k-means clustering method. It has been used in

research that is contained within this document and is defined as

1. Select an initial set of clusters.

2. Assign each value to the closet cluster center.

3. Compute the new cluster centers, or centroids.

4. Go to steps 2 and 3 until the cross cluster error converges.

The cross cluster errors is defined as
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Y MSE, (3.29)

Once the cross cluster error converges, or reaches a user-defined limit, the clustering
process terminates. As expected this process can be computationally expensive, and
software packages allow you to limit the number of iterations of steps two and three. The
clustering that takes places within this document has limited iterations to lower total

analysis time.

Clustering’s tough challenge is to determine the number of distinct features, i.e. the
number of clusters. To do so may require domain knowledge or, conventionally the use
of Principal Components analysis. Principal Components analysis (PCA) is loosely
defined as finding the features in a multi-dimensional space that account for a large
portion of the data set’s variance. More technically PCA is defined as a process, not just
an equation. It is a transformation process on original data allowing exposure of high

variance components. The following steps accomplish the process:

1. Calculate the mean deviance residuals, R.
Where R, = x,- x and x, € X (3.30)

2. Calculate the covariance matrix, C, of mean deviance residuals.

C= LR *RT real values only (3.31)

n-1
3. Find eigenvectors, EV, and eigenvalues, E, for the covariance matrix.
C*E=E*EV (3.32)

4. Sort eigenvalues in decreasing order based of magnitude.
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5. Choose the most significant eigenvalues to be used as a representation of the

variance associated with the data set.

The PCA is a key process to use in determining unique features in the data set. PCA’s
functionality derives from its ability to find linear projections of the variance of the data
set. The most distinct of these projections is a useful feature within the data. PCA is used
in this document to identify the number of clusters that should be assumed prior to the

clustering process.

59



POWER GRID DATA ANALYSIS

Characteristics of the System

An explanation of the data set’s history is essential to obtain a full understanding of the
goal of the research and the complications that were discovered during the research. The
US Environmental Protection Agency, established on December 2, 1970, is charged with
the job of drafting and enforcing environmental laws enacted by the Congress of the
United States. A subsection of this enforcement includes collecting data from power
plants and monitoring the levels of environmental pollutants emitted during the
generation of electricity. The data used in the analysis are in the public domain, and have
been for many years, which allow access to historic data. The data contain many factors
that affect our environment, and the power industry. They include things such as the level
of oxides of nitrogen, fuel type, and generation in megawatt-hour per generator, etc.
Many factors are measured by, or are reported to the EPA. This research is only
interested in mining a small subset of the data, specifically generation unit average
production (generation) per hour (MWH). Although this generation is reported hourly on
a generating unit by generating unit basis, these values can be summed to obtain the
desired plant-wide generation. The generation is compared to the maximum theoretical
output, or capacity, of the generating unit. Plant capacity is calculated by summing each
generating unit’s individual capacity. A generating unit’s capacity is defined as the
maximum electrical energy that can be generated. For those readers not familiar with
power plant design, a brief explanation is in order. There are two types of energy, kinetic

and potential. Generation fuels contain potential energy and those include coal, natural

60



gas, uranium, bio-fuels, etc. To extract this potential energy the process uses a boiler. A
boiler is lined with metal tubes, and these tubes are filled with water. This boiler transfers
the potential energy from the fuel by creating a large repository of heat from burning fuel.
The kinetic energy, in the form of heat, in the flame front is transferred into water, via
conduction through the boiler tubes, which is then pressurized and heated resulting in
steam. Kinetic energy in the form of pressurized steam turns the turbine shaft, which is
connected directly to the generator. The rotation of the generator shaft causes repetitious
generation and degradation of the magnetic field that converts this rotational, although
kinetic, energy into potential energy. This potential energy is in the form of voltage due
to induction of a current into a winding within the generator after the magnetic field has
degraded completely. The output of the generator is a unit of energy referred to as a watt.
Typically the unit used in the Power Industry is the megawatt, which is 1,000,000 watts,

where a watt is defined as:

joul
watt = -T2 _ yolr ampere 4.1)
second

Goal

This document, and the research behind its construction, is based on analyzing data
looking for patterns. The goal of this research is to discover characteristics within
electricity generation between power plants who use natural gas as their primary fuel so
that they may be applied to modeling system values. If known clusters of generating units
exist, a researcher may be able to minimize the inputs to a global statistical model with

this information. This is driven by known factors that effect the generation of gas plants.
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Existing contractual stipulations, an example of a physical characteristics that dictates
plant operation, should be apparent after characteristic discovery. Although this goal is
narrow in the sense of the power industry, it can be broadened to encompass all power
plants globally. Solving a problem of this magnitude is not feasible for this study. With
these characteristics, a miner may generate some association rules that result in semi-
predictable operational characteristics or even the ability to reliably predict output via a
generation model. Although this research is performed solely for educational purposes, it
has a direct impact within the power industry. This impact leaves the author to believe
that a nationwide mining process would likely yield fruitful results and would be an

exceptional addition to this document.

Type of Data

The Environmental Protection Agency monitors many factors including emissions of
power plants. Many of these factors are focused solely on emissions, but the generation
data are also included in the historic data [1,2]. The data for this research is extracted
from the Environmental Protection Agency’s Electronic Data Registry [1]. The data used
within this document are primarily generating unit output data of natural gas-fired power
plants, which are recorded hourly. EPA records show that there are over 1700 gas-fired
generating units nationwide. From these facts it can be concluded that the dataset size is
greater than 14,892,200 hourly generation values. Boundaries for the generation values
are zero up to plant capacity. This data are typically hard to pre-aggregate, unless it has a
direct implementation. A miner maybe interested in daily, hourly, monthly, or even

yearly generation values. There is also a possibility to aggregate the values with respect
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to NERC region, state, or zip code. As you can see it would be hard to pre-aggregate the
raw data. Although the data are cumbersome, once stored in a data warehouse, they
become easier to manipulate into usable aggregates. The research for which this
document exists, is concerned with granularity at the hourly level. Therefore all statistical
analysis will be done on an hourly basis, and all data stored are hourly in raw form.
Another caveat of this data set is the existence of nulls. Nulls are typically in place due to
the lack of the correct data, and this is the case for the data in the EPA’s Electronic Data
Registry. Although the null data can be ignored, or even cast to zero, it must be
recognized that missing data are different from data that have a magnitude of zero.
Therefore casting to zero is a bad idea, leading to false relationships as a result of mining.
Specifically the data comes from forms submitted to the EPA, as mentioned previously.
The forms defined by a reference guide [4] allow the researcher to extrapolate the

information from its cryptic form. Once extrapolated, the data can be examined.

The data used in this analysis are not the only publicly available data for power plant
electricity generation. The EPA, EIA, and NRC organizations supply the market with
generation information. The EPA dataset used, from the EPA’s Acid Rain Program, are
the data recorded in compliance with Title IV of the Clean Air Act of 1990 [5]. The Acid
Rain Program was instituted to allow for continuous monitoring and reporting of power
plants. A limitation was placed upon the monitoring to include only generating units of
capacity greater than 25 MWh. There is a plethora of emissions reporting that is done by
plants to comply with the act, but this document is only concerned with the generation

data. The data reported in compliance with the Clean Air Act are on an hourly basis; this
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is an important fact when comparing data sources. The Energy Information
Administration, or the EIA, is another branch of the Government that monitors power
generation. The EIA only requires plant operators to report monthly. The generation data
must be reported if the generating unit is connected to the electric power grid and has a
capacity greater than 1 MWH [6]. The agencies previously mentioned require reporting
for units regardless of fuel type. The Nuclear Regulatory Committee, NRC, regulates
generation from nuclear powered units only. Due to the hazardous nature of nuclear fuel,
the regulations for its use must be tighter. Due to the granularity of the sampling, the EPA
dataset has been chosen for analysis. Although the EIA dataset contain more generation

values, due to containing more units, the smaller generating units are of little concern.
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DATA COLLECTION AND PREPROCESSING

Introduction

As mentioned earlier the analysis has been performed on hourly average generation
values. The EPA collects these values from SCADA systems that reside in the Power
Plants. This data are sent to the EPA in an encoded format that must be extracted via the
explode.exe [3] program offered by the EPA as a downloadable tool. The program is a
Disk Operating System (DOS) utility that must be ran within Microsoft Windows. The
data used in this analysis was not in the raw form and must be decoded. Once decoded
the data can be stored into a relational database and processed further. The output of the
software is an ASCII file that is readable. But from this raw ASCII file, there must be
further processing to obtain the data. The explanation of the format for the raw ASCII file
is located in the EPA EDR reference [4], and is left as an exercise for the reader. Scripts,
not written by the author, were run to remove, from ASCII files, and insert the data into
appropriate tables. The data are published quarterly and require that the parsing scripts be
ran quarterly to accumulate historical data for analysis. Although the data are now in
tables and can be accessed via SQL, the data are still coded in the format required by the
EPA. Aggregate tables are then created to allow a researcher, who has a grasp of the
domain, the ability to retrieve the historical data with the EPA reference as a guide. The
author took it upon himself to create these aggregate tables for the data that is analyzed
within this thesis. As said previously, the data examined within this document are
generation data. There is a large amount of data that comes from the EPA, and this

research is focused on a small percentage of that data. Therefore the database that
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contains the data is small and the structure is more scrutinized allowing for quicker
access to data. To fill these tables, the author retrieved a subset of this larger EPA data set

from another database.

Discussion of Observations

Overall the data itself are somewhat sparse. An example of the sparseness is a missing
hour for a unit’s average hourly generation. This is typical of the data problems seen
within this data set. To overcome this, the researcher accepted the data as missing and
flagged, as “don’t cares”. To forecast this missing value, could result in serious error. The
data used represents generation, which is very dynamic and is driven by supply and price.
If supply decreases and the current market price of the energy is higher than the costs of
generation, the generating unit output is increased if possible. These decisions are not
made at the plant level and usually come from a corporate load center. Although the
aforementioned councils oversee the generation, for the most part, the corporations run
the units primarily for profit. With this in mind one can understand the dynamic operation
of the units, during normal operation. To predict the output of a generating unit is
possible with high degree of accuracy if the unit is stable. Specifically, within this thesis,
we are concerned with patterns that are connected with change. Therefore the missing
values, representing hourly average generation, were flagged as “don’t cares” during the
coding procedure. Flagging the missing values as so, requires that the researcher must not

ignore their significance.
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Generation, as said previously, must stay within the constraints of capacity. Another
skewing element, of generation data, is false reporting. This may include inflated or
deflated generation values, due to malfunctioning equipment that is responsible for
reporting. To accommodate this a researcher may handle this is many ways and one way
to handle this is to remove the outlier generation values. Obviously if the generation is
above capacity this is an easy task. But what happens if the reporting unit is
malfunctioning and the unit is operating below capacity? The generation values are
wrong and hard to identify as incorrect. To compensate, the researcher must only
disregard the true outliers. Malfunctioning equipment is reporting error and cannot be
controlled. The data analyzed in this document was cleaned using the methodology
described above of removing obvious outliers. Obviously the missing values allow for
uneven lengths of data sets. This is corrected by using a flag as a placeholder for the
missing timestamp’s value. Again this is accommodated in the data set that has been
analyzed for the research in this document. Another way to repair skewed generation
values are to replace the missing value with the generation from the previous day’s hour.
This methodology works well if the unit is stable. Stability is loosely defined as a non-
peaking unit. Peaking units, although not clearly defined, are those that do not obey
cyclic patterns. Nor do these units operate monthly in a band of generation that equates to
a low sample standard deviation of generation values. Most generating units have cyclic
generation output patterns. This cyclic pattern is defined by ‘on-peak’ and ‘off-peak’
hours. Although these hours are not defined clearly, one can estimate these empirically.
To estimate these hours, a researcher must average the daily minimums for weekday data.

Weekend data must have a separate model due to different load requirements. Basically
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load changes around 07:00 EST, increasing to a level that is appropriate for business
operation. Again the load changes around 22:00 EST, decreasing to accommodate home
usage. The cyclic pattern is explained in this manner. This argument solidifies the
solution to replace with the previous day’s hour. Moving farther back in time for
generation replacement, like the same hour from the last week, could result in error due
to load changes. Load changes are a result of temperature, seasonality, population
density, etc. There are many ways to approximate missing values and all will result in
some error. Due to this assurance, the researcher chose to keep the missing values as

missing. All patterns found with large numbers of missing values will be suspect.

Data Population

To populate the data into a separate database, aside from the warehouse, the researcher
must create SQL to retrieve and move the data. Movement of the data was easy, requiring
the use of importing software. The DBMS used for the research was PostgreSQL. The
software used to import the data, database-populator, is provided by numericaljava.org.
This software will allow a user to import data, in most any form. Prior to loading data, the
researcher contemplated on a way to repair the data while still in a manageable form (a
relational database). To accomplish this repair of missing values, using the flagging
methodology, one can use advanced SQL to complete the repair and allow a researcher to
load the data intact and repaired, ready for analysis. To repair the data with SQL, the use
of packages created by someone other than the author were used. This package allows a
query to create a resultset of appropriate timestamps. These timestamps represent all

valid timestamps over the range of data. For the learning data used in this research, the
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range was all hourly values from April of 2002 till April of 2003. The researcher was not
able to obtain data for the full year of 2002. The data for that year was not complete, and
offered many more errors that would require estimation and repair prior to use. The
choice of a staggered year was best for the analysis. Once the timestamps are correct,
using the left outer join operation in SQL will allow the researcher the ability to create
values where there are no values. The left outer join operation is used to associate one
column to another based upon the identifier from the first column. If table A contains a
list of timestamps that are complete, and table B contains a list of time stamped data, the
left outer join operator will connect data with its appropriate timestamp. If there are
missing data for specific timestamps, in table A, the operator will return a NULL value
for this data form table B. This is extremely useful in the creation of missing data. Also to
accomplish the flagging of missing values, the researcher may use the NVL function
(Oracle specific) or COALESCE (general SQL) to cast NULL values to any desired
value. Once a result set is obtained from the creation SQL, the data may be loaded via the

database-populator software.

Discussion of Dimensionality

The data, analyzed by this document, are from the Environmental Protection Agency’s
Acid Rain/OTC Hourly Emission Data. The data represent expelled emissions by
generating units who burn natural gas as the primary fuel. As of 2005 there were 1439
power plants, 849 of which burn pipeline natural gas that report to the EPA in EDR
format. Each plant may contain multiple units. In total there are 4752 generating units

that report hourly emissions, and of that there exist 2437 pipeline natural gas-fired units.
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For a single unit there are 8760 hourly reports made for a year (non-leap). This equates to
21,348,120 hourly generation values that must be processed. Each unit level set of hourly
values must be coded. This requires computing basic statistics, as mentioned previously,

on every unit for the time period analyzed. For instance to compute a simple Pearson

2
n —n

cross correlation matrix, a researcher must instruct a computer to make calls to

the Pearson correlation calculation. This is fully optimized avoiding diagonal and lower
triangular calls, which may be performed once prior to calling the Pearson correlation
calculation method. For the data analyzed, that would equate to 2,968,266 calls to the
correlation calculation method. Along with the high number of calls to the method, the
ability to view these results, of this dimension, are questionable. Most mining and data
analysis is accompanied by a GUI representation of the data allowing the researcher to
confirm the results. This visual representation of the data is truly essential, and for a data
set with high dimensionality introduces complications. To effectively view and store
correlation, clustering, and motif-discovery results from a data set this large there must be
database integration. Using a database to store results allow easy manageability but
require special software to load and display the data. To avoid these issues, the author
chose to use the aforementioned data set, while narrowing the scope of the analysis.
Specifically the analysis was performed on the first 50 generating units of the overall set.
The idea that associations can be made from successful discovery in a subset should
imply that in a larger subset the same associations would hold true. When moving to the
full set, the restrictions placed on pattern discovery may be tightened resulting in more
dependable relationships. This is due to the requirement of a higher number of matching

patterns.
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Does the data exhibit normality?

After the data has been loaded, and is full with regards to timestamps, the data are ready
to be analyzed. Generation data are very sporadic and diverse, as previously mentioned.
The diversity of the data set makes it almost impossible to compare the output of two
generating units. To mend this diversity, a domain expert, chooses to normalize the data
with regards to unit capacity. This is a logical step, as the unit cannot operate above unit
capacity. There are many other methods to achieve normalization, and a typical example
is to assume a normal distribution [16]. The reference refers to time series as very often
originating from a normal distribution. The author’s domain experience can confirm how
this property does not hold to energy data. Since the analysis is performed on energy
data, and since the energy domain is a fruitful field of study, this classification cannot be
universally applied. Below is an analysis concerned with disproving this assumption.
Initially one must understand the state of the available data. Please refer to Table 5.1 for a
summary of basic statistics for the natural gas units analyzed for the calendar year of
4/2002 through 3/2003. The included statistics are the minimum average-hourly
generation, maximum average-hourly generation, sample standard deviation of average-
hourly generation, arithmetic mean of average-hourly generation, and the count of
average-hourly generation values that are not null (otherwise included in the other
calculations). This table is included in the appendices to allow the reader to further
examine the sparsity of the data. The generating unit chosen was unit 6A at the James M.
Barry Generating Station located in Bucks, Alabama connected to the Mobile River [36].

This unit was chosen due to its high non-null value count and high average generation
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values. A large standard deviation, as this unit posse, of generation is an indicator of a

flattened normal distribution (which leads to a uniform distribution).

Hypothesis:

H : Generation data isn’t sampled from a Normal Distribution

H,: Generation data is sampled from a Normal Distribution

The author chose the Chi-Square test statistic, X* and its “Goodness of Fit” test to

validate the hypothesis. The Goodness of Fit, using the Chi-Square test statistic is defined

as

“(0.-EY
X§=E% (5.1)

i=1

Where H, is accepted when
Xo <X,
df = Number of degrees of freedom

o = Tolerance

k = Number of bins

Table 5.1 contains the results from the test and some basic statistics for the unit tested.
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Table 5.1 - Goodness of Fit

Data Set Statistics
n 8759
Arithmetic Mean 152.15
Sample Variance 8133.68
Sample Standard Deviation 90.19
Range Minimum 0
Range Maximum 312
Number of Bins 10
Bin Width 31.2
(01. - Ei)z
Bin Min | Bin Max | Pr 0, E, E;

0.0 31.2 0.0900 2112 788.3100 2222.6728
31.2 62.4 0.0698 22 611.3782 568.1699
62.4 93.6 0.0983 40 861.0097 782.8680
93.6 124.8 0.1228 20 1075.6052 1035.9771

124.8 156.0 0.1983 15 1736.9097 1707.0392
156.0 187.2 0.0720 3124 630.6480 9857.8037
187.2 218.4 0.1175 2077 1029.1825 1066.7899
218.4 249.6 0.0913 587 799.6967 56.5713
249.6 280.8 0.0631 497 552.6929 5.6120
280.8 312.0 0.0769 265 673.5671 247.8255

X 17551.33

a =0.95
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df =10-2+1=9
2 2
KXi-adr) = X0.059) = 23.59

Xo > Xioos Therefore reject Hyand accept H,

Relative Frequency Distribution
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Figure 5.1 — Relative Frequency Distribution for Unit 6A at Barry Generating

Station

The results of the test show that indeed this set of energy data, represented by a unit
displaying typical operation, does not originate from a normal population. Viewing the
relative frequency distribution was a good indicator that the sample was not of a normal

population, but the test statistic proves it with certainty.
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MODIFIED K-MOTIF DISCOVERY APPLIED TO THE

POWER DOMAIN

Review of Theory

The focus of the research was to discover sequences of coded generation values. There
are two steps to this process, coding and discovery. Before discussing implementation, a
review of the theory is required. Many researchers have worked in the area of sequence
discovery but Eamonn Keogh, of the University of California at Riverside, focused
specifically on formalizing the problem of sequence discovery in the time domain. In [18]
he talks about the issue of coding values, or as he calls it segmentation. His idea of
segmentation is based upon j predicted constant values, hence segments, where each

prediction is representative of multiple points.

_ s,
y-y=

Y
2
X

(x - x) (6.1)

His schema of segmentation is based on normalized error between actual data and
predicted data,

j
2
e, =" 6.2)

J

where d’ represents a distance measure between a predicted value and the actual value.
The segmentation is repeated until there is only one segment, in which all segments are
merged by choosing a minimum error value. This idea, although valuable, wouldn’t work

well for power data due to the unpredictable sequence of values associated with the

demand of power. Dr. Keogh has another paper [40] that also brings up the idea of
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coding. In this document he explains that all time series are normally distributed, that is
to say that the probability of values are based on a normal distribution. Dr. Keogh and his
colleagues also introduced the idea of K-Motifs, or sequences with large counts within a
subset of data, and “don’t cares” which are values that represent noise and should be
avoided [40,16]. Formally a K-Motif can be defined as a subsequence, S, which contains
a significant instance count that does not intersect (or minimally) with other motifs. Both
of these ideas are used to create a custom methodology to discover useful knowledge
from the power generation data set. Along with coding, Dr. Keogh is focused on optimal
discovery algorithms for locating useful K-Motifs. His team offers an optimal algorithm
K-Motif discovery algorithm, deemed EMMA [40]. To avoid non-computational
complexity the author developed a trivial brute-force implementation. As proven in the
earlier section, the assumption of normality is false and will be ignored; therefore, a new
methodology, USD, Uniform Sequence Discovery is proposed and applied. USD is based
on the idea that, with no other knowledge, a uniform distribution must be assumed in data
that originated from a demand-oriented situation (i.e. a market). USD can be defined as a

process consisting of three steps.

The expected result from the analysis performed within this Master’s thesis is a set of
association rules for both unit-level and plant-level data sets. This rule list is used as a
local, non-global, set of rules that can be applied to future data as it is processed. A rule
can be used as a predictor of operation (in this case). For instance, if plant A has an

operation that can be described by the pattern {0,3,2,1} with a support of 125, and with a
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confidence of 0.75, plant F will also exhibit the same operational pattern. The rule

statistics, support and confidence are defined by:

sup porty,,.. ,(pattern) = Count(pattern)p,,, . (6.3)

1 Patt N t Part
confidence(Plant _F | Plant _A) = SUP POrtpyy_s(Pattern) (1Sup portp,, p(Pattern) (6.4)

sup porty,,,, ,(Pattern)

The support value is nothing more than a count of instances of a given pattern within the
set of patterns for plant A. A support exists for each pattern instance, for each plant (or
unit). The confidence is a ratio. The numerator is a count of patterns that are in the
intersection of the sets of patterns for plant F and plant A. The denominator is nothing
more than the support for plant A for the sought pattern. The confidences can be related
to conditional probability although not a true probability, as the probabilities nor

distributions been calculated.

The Coding Process

The first step involved coding of the raw data using a schema based on a uniform
probability. This coding schema takes into account the idea of “don’t cares” as data that
should be avoided during the coding process. As mentioned previously there are missing
data points, within the power generation data set, and these are identified by negative
one. These were avoided during the coding process, i.e. not coded, and avoided during
discovery. Specifically these “don’t cares” are tolerated to an level set by the user of the
discovery software. For instance if the user will tolerate at most two “don’t cares”, the

software will sequence match as long as this limit is not exceeded. Since the software
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seeks all possible sequences (searches entire space defined by the alphabet), this limit is
desirable. Ignoring all possible sequences containing “don’t cares” would be foolish as
they might give insight and allow predictability. As can be seen below, the number of
bins is critical to the coding process. The analysis performed within this Master’s thesis is
based upon four bins with values. With this said, the alphabet contain the symbols {-1,0,
1, 2, 3}. As mentioned earlier, if one were to look at the coded data it would be obvious
that another code exists. This other code is the negative one, -1, which represents a “don’t
care” and cannot be changed nor overlooked. This “don’t care” is attended to in the
discovery process. The number of bins was chosen arbitrarily, with no real logic. Below

is the simple coding schema based on a uniform distribution.

) . local _maximum — local _minimum
bin _deviation = = - (6.5)
number _of _bins

actual _ generation

code = (6.6)

bin _deviation

The pseudocode that follows explains the coding process.

Algorithm: Coding Schema

1. for each unit in 1istOfUnits

2. do

3. minimumUnitValue <« getMinimumValueForUnit(unit)

4, maximumUnitValue < getMaximumValueForUnit(unit)

5. binDeviation & (maximumUnitValue - minimumUnitValue) / numberOfBins
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6. codedValues []

7. for each timestamp in listOfUnitTimestamps

8. do

9. actualValue <« getValueFromUnit(timestamp)
10. codedValue ¢ -1

11. if actualValue == maximumValue then

12. codedValue ¢ numberOfBins -1

13. else if actualValue != codedValue then
14. codedValue « floor(actualValue / binDeviation)
15. end if

16. codedValues[timestamp] <« codedValue

18. end do

19. end do

K-Motif Discovery Algorithm

The second step was to perform a brute-force discovery of K-Motifs, based on a search of
the entire alphabet of codes. This involved development of a custom software
implementation to perform a full alphabet discovery based on restrictions set in place
prior to execution. Many other researchers have spent time studying optimized ways to
search a space of all patterns [17,18]. Although the author admits that the brute-force
algorithm is the most expensive when judged by complexity, but it must be noted that
every optimization possible while staying in an Object Oriented Programming
Methodology were performed and allow for fast execution. The K-Motif discovery
algorithm is a trivial pattern-matching algorithm, and this type of procedure seems simple

but becomes interesting when observing the sequences found using the current coding
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schema. Trivial pattern discovery, or K-Motif discovery, can be described as the process
by which one searches for every possible pattern in a list of patterns. For example one
should find three matches of the pattern {1,1,1} in the listing {1,1,1,1,1}. This shows that
patterns may intersect, and therefore are not mutually exclusive. There is no explicit
requirement that demands nor contradicts this condition; therefore, it was assumed valid.
Implementation of software was a major piece of the analysis and work behind this
document. The software is a simple recursive call to a trivial pattern matching routine. A

pseudocode implementation is shown below.

Algorithm: Sequence Discovery

1. listOfCodes « {-1, 0, 1, 2, 3}
2. maximumPatternLength < input from user

3. minimumPatternLength ¢ input from user

5. for each unit in 1istOfUnits

6. do

7. listOfCodedValues <« getCodedValuesForUnit(unit)

8. for code in 1listOfCodes

9. do

10. foundAPattern < lookForPattern(listOfCodedValues, code)
11. if foundAPattern then

12. storePattern(code)

13. end if

14. end do
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15. end do

16.

17. function

18. lookForPattern(dataset, pattern)

19. newPattern < appendNewCodeToPattern(pattern)

20. if lengthOfPattern(newPattern) < maxPatternLength then

21. lookForPattern(newPattern) //recursive call
22. else

23. if newPattern.existsIn(dataset) then

24 . return true //found a valid pattern
25. end if

26. return false

27. end function

The procedure of searching all possible patterns in a given data set is very expensive.
This intentional complexity allows the researcher the ability to search the entire pattern
space. Once sets of patterns have been discovered for a specific unit, they may be

crosschecked with other units, and rules may be created.

Rule Creation

The third and final step is rule creation. After all of the counts of matching patterns
between units have been accumulated, the researcher can determine useful K-Motifs.
This set of matching patterns is extensive and those deemed useful exhibit high support,

and confidences. Since the problem was to create rules based on relationships between
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generating units and power plants based on operating characteristics, a typical rule will

take the form of:

G1: Generating Unit 1
S1: Support for Unit 1
S2: Support for Unit 2
M: Sample Motif, for instance {1,1,1,2}

CONF: Confidence Value for G2 with G1 present.

Rule: 1f M and G1 with S1, then G2 with a confidence of CONF.
Explanation of Rule:
If the sequence M appears at generating unit 1 then the sequence will also appear

at generating unit 2 with a confidence of CONF.

Example of Coding, and Motif Discovery

The entire purpose of using the proposed algorithm was to identify exact sequence
matches across multiple time series. This is done via coding the data and brute-force
discovery. Simple put, matching sequences are those that are included in the intersection
between the two sets of sequences available between two time series. The may be many

instances of the motif in both sets, and therefore is deemed a K-Motif.
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{1,224}
( {122,411} )

Set of sequences for Unit 2 Set of sequences for Unit 34

Figure 6.1 — Sequence Discovery over Sets

Motifs are nothing more than temporal sequences. Using raw, decoded, data makes it
challenging to discriminate using distance measures. Coding does nothing more than
normalization of data. This is crucial to comparing time series when amplitudes of raw
data vary between series. Below is a complete example between two time series. It
includes representation of raw data, normalization, sequence discovery, and rule

presentation.

Example Raw Time Series
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Avg Hourly Generation (MWH)

—+— Unit 4 Raw Data —#— Unit 3 Raw Data

Figure 6.2 — Example of Two Time Series in Raw Form
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Avg Hourly Generation (MWH)

Coding of Unit 3 Raw Data
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Figure 6.3 — Unit 3 Coding
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Figure 6.4 — Unit 4 Coding
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Example of Motif Discovery
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Figure 6.5 —Motif Discovery
Table 6.1 — Coding of Raw Data
unit 4 unit 3
raw value coded value raw value coded value
9/12/02 7:00 258 3 0 0
9/12/02 8:00 257 3 0 0
9/12/02 9:00 254 3 0 0
9/12/02 10:00 253 3 0 0
9/12/02 11:00 252 3 0 0
9/12/02 12:00 252 3 0 0
9/12/02 13:00 252 3 52 0
9/12/02 14:00 252 3 78 0
9/12/02 15:00 241 2 191 2
9/12/02 16:00 209 2 210 2
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9/12/02 17:00 235 2 236
9/12/02 18:00 255 3 256
9/12/02 19:00 256 3 258
9/12/02 20:00 222 2 222
9/12/02 21:00 191 2 193
9/12/02 22:00 191 2 191
9/12/02 23:00 242 2 47
9/13/02 0:00 256 3 0
9/13/02 1:00 256 3 31
9/13/02 2:00 244 2 120
9/13/02 3:00 191 2 191
9/13/02 4:00 192 2 192
9/13/02 5:00 196 2 196
9/13/02 6:00 191 2 192
9/13/02 7:00 193 2 193
9/13/02 8:00 216 2 217
9/13/02 9:00 197 2 197
Rule I:

If the current sequence is {2,2,2,3,3,2,2,2} and the generating is unit 4,

Then the sequence will be present at generating unit 3 with a confidence of 1.0.

Rule 2:
If the current sequence is {2,2,2,3,3,2,2,2} and the generating is unit 3

Then the sequence will be present at generating unit 4 with a confidence of 0.6.
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Note: There are actually two matching sequences in the dataset reviewed, but the
variance in the second dataset is zero. A change in sequence values, resulting in a

variance greater than zero is desired.
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EXPERIMENTAL RESULTS

Discussion of Data Analyzed

As mentioned throughout the document, the data that had been analyzed is power
generation data. The data are only generation data from pipeline-natural-gas units. An
analysis was performed over both plants and units. Since the data are sampled on a unit-
level, each plant is constructed by summing the hourly values for the units within the
plant. This data are very sporadic and at time are missing. If the data are missing it is
deemed a “don’t care” and flagged with a negative one. The Cross Correlation analysis,
Principal Component analysis, and Clustering analysis were performed over raw values.
The K-Motif discovery was performed over coded data. USD was the coding process,
which is a uniform normalization. Each unit or plant’s maximum and minimum
generation value, non-negative, are used in calculating the bin width and the correct code

for each timestamped generation value.

Introduction to Results

The simple description of the analysis is pattern discovery in a highly dimensional data
set. Specifically, the idea was to create a global model to reflect power generation by
natural gas plants. This global model is intended to include the minimal number of
distinct number of characteristics needed to represent power generation from natural gas
fired generating units on the power grid. This model is exceptionally useful, but difficult
to estimate. The first step to creating the global model is to identify the groups that

contain the distinct characteristics. A simple approach to this grouping, or clustering, is to
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do a simple overview of the data and assess the possibility of a global model. This
research is based on two data sets. The first data set is an average hourly generation data
set on a unit-level basis, meaning there exists a generation value for every unit (present at
the time) for every timestamp during the dates provided. The second data set is a plant
based set, which was computed by summing the output of the generating units within the
plant. To grasp the size of this problem one must see the size of the space from which
possible patterns can reside. The size of the space is encompassed by N” where N is the
length of the pattern, and P the alphabet size. This is highly advantageous for pattern
discovery due, to a larger space from which patterns may be recognized. For instance,
there can be 1024 patterns of length four from the alphabet {-1, 0, 1, 2, 3}. Patterns of all
the same symbols are interesting, they however add to the total number of patterns to be
examined. The total number of possible patterns is worth restricting due to time
constraints of a brute-force pattern-matching algorithm. Which is basically a full search
of all patterns possible, based upon the codes within alphabet (and any user-defined

restrictions). To calculate the total number of searches performed, one may use

U* (C b CFowin ); where U represents the number of units or plants, C the number of

possible codes, L, is the maximum length of the sequence, and L_; is the minimum
sequence length. For the years of 2002 through 2003, this search space can be over 1631
units or 724 plants. From the previous example this could result in 452,500 searches for
patterns of length four for plants, and 1,019,375 searches for patterns of length four for
units. Obviously this seems to be a time consuming process, and to reduce the time spent
a few eliminations were made. First, patterns with reoccurring symbols that have a

frequency greater than 80% were eliminated. Also patterns containing the symbol ‘-1’
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were also excluded. All of the parameters for exclusion mentioned were a configurable

component of the software.

Unit Raw Data

The data are, as said earlier, generation data on a per generator basis. This data can be
very sparse and especially so with natural gas fired units. So it is common to see long
stretches of a signal of zero magnitude, which indicate that a generator is reporting and
not producing electricity. There are learning (2002-2003) and testing (2003-2004) data
sets. The learning data set contains values for 281 generating units, or 17.2% of the 1631
total units. Of these 281 units the data reported are sparse. Each unit does not necessarily
report for every hour of the year. The percentage reported is displayed in figure 7.1 by

percentage and the count, or number of units that report with this percentage.

Values Reported in Unit Dataset for 2002-2003
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Figure 7.1 — Unit-Level Plot of Learning Data Set Percentages of Values Reported
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As is obvious, this data set is very sparse and will present a tough discovery data set. The
testing data set contains values for 341 generating units, or 20.8 % of the 1631 total units.

The plot, in figure 7.2, is a similar plot for the test data set.

Values Reported in Unit Dataset for 2003-2004
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Figure 7.2 — Unit-Level Plot of Testing Data Set Percentages of Values Reported

The author initially thought that the learning data set was a bad data set to start with, but
during analysis of the testing data set it was observed that both sets were similar
statistically. With this kind of scarcity a Cross Correlation matrix from the entire set will
contain many null values, where null values represent missing correlation values. Initially
to reduce dimensionality and to aid in cluster recognition, a simple Pearson Cross-
Correlation matrix was assembled. Table 7.1 contains the correlations grouped by value

(rounded to nearest tenth).
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Table 7.1 — Summary of Unit-Level Cross-Correlations

2

r count

0 2652000
0.01 6362
0.02 150
0.03 8
0.04 8
0.05 2

1 1631

From the raw data, it can be drawn that these statistics from the correlation matrix are
feasible. These basic statistics show there exists extreme diversity in the data set where
comparing units. With this data one can estimate that finding useful rules may be
impossible or at best difficult. These values can be attributed to the market demand. To
understand the demand and scarcity of generation values understand the scarcity one
must understand that the operation of gas-fired generating units is very unpredictable and

is heavily (almost entirely) market controlled.

Principal Component Analysis for Units

It is obvious from the Cross Correlation values above that grouping based on raw value
will be challenging. From this point, the researcher attempted to extract useful features
from the data set allowing for reduction to aid in an attempt at clustering. Principal
Components analysis was performed on the raw data and Figure 7.3 represents the
normalized variance of the data set corresponding to each feature, typically called a

Screeplot.
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Screeplot For 1631 Units
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Figure 7.3 — Screeplot for Unit-Level Learning Data Set

At first glance the Screeplot is a bit confusing, and identifying the estimated

dimensionality of the data set is best left to Eigenvalue analysis. The Eigenvalues of the

result are in fact the variance associated with that dimension, or feature. For this data set

a feature represents a unit. To achieve an accurate measure of the maximum number of

required dimensions involves identifying the dimensions that encompass 90% of the

variance in the data set, according to Kantardzic [12]. For each dimension, a researcher

must calculate the percentage of variation represented. For each dimension the percentage

variance is calculated as
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V = (7.1)

where V, is the variance associated with cluster k, and the denominator is nothing more
than a summation of the variances associated with all features. As noted previously, a
typical measure used to identify useful distinct features when analyzing via Principal
Component Analysis, is to describe 90% of the variance with the distinct features. To
account for 90% of the variance in the learning data set, it would require 1159 units. 1159
Units represents 71% of the total number of units. Obviously this is unfathomable for
global modeling, and further leads to a belief that clustering with the learning data set

would result in a practically useless model.

K-Means Clustering Analysis for Units

With the PCA results in mind it can be expected that finding the correct number of
clusters to operate with would be difficult. To further the clustering concept, the author
performed a K-Means clustering analysis with a reduced size from the results of the PCA.
Obviously there is no good way to identify features, and as said before a global model
with 1159 units is unreasonable. Figure 7.4 displays the within-cluster variation for a
clustering analysis using 100 clusters. 100 Clusters was chosen as a random round value
that might give an indication of likeness allowing for a large number of clusters. One
could reason that allowing more clusters than needed would do nothing more than over-
cluster the data. Over-clustering would do nothing more than waste computational time,
resulting in many clusters with very low overall errors (wouldn’t this be a nice problem

to solve!). Since this is not a real time process, wasting computational time can be

94



dismissed. Low overall cluster error can be easily remedied by reclustering with a low

number of clusters. A low overall cluster error for the clusters gives the researcher an

optimistic outlook that the clustering analysis is working and can be optimized.

Within-Cluster Errors for 100 Clusters
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Figure 7.4 — Within-Cluster Error for the Unit-Level Learning Data Set

Table 7.2 contains the basic statistics for the cluster creation.

Table 7.2 — Summary of Within-Cluster Error Statistics for Unit-Level Clustering

Minimum 2,715,492
Maximum 2,471,214,401
Median 4,202,800
Sample Mean 148,377,543
Sample Standard Deviation 422,559,223
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Within-cluster variation can be computed via,
n-1
wev = Y d; (7.2)
i=0

Where n represents the number of values in the cluster and d, represents the distance
measure used at the specified index. The distance metric used for the clustering was,
typical, Euclidean distance. From the plot above it is easy to see that there are some
clusters, of the 100, that have almost no commonness (due to large errors). Furthermore,
the mean error of the group is 148,377,543 and the median is 4,202,800. These errors are
large when compared to the range of the raw values used to cluster. To conclude, with the
results from K-Means clustering analysis along with further confirmation from the
principal component analysis, it can be solidified that no reasonable global model is

possible from this data set regardless of cluster size or the number of clusters sought.

K-Motif Discovery for Units

The initial focus of this research was to apply pattern recognition techniques and
clustering to the problem of energy modeling. From the results of the analysis above, it
can be declared that a global model describing the units as a whole would be infeasible.
Using the techniques described in the previous section, K-Motifs have been discovered in
the energy data. Since the size of the data set would result in a long execution time, due
to discovery algorithm choice, a subset of the first 50 units were chosen. The raw data
was uniformly encoded prior to the sequence discovery process. The table below is a

sample of the full table that is included in the reference that shows the K-Motifs that are
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common among units. The table displays the pattern, its support, and the confidence
between the two units who share the K-Motif. Large support and confidence values
indicate a strong relationship existing between the units. A pattern of large variance is of
most importance, but due to operational characteristics of a natural gas-fired generating

unit is an unlikely find.

Table 7.3 — Sample of Discovered Sequences Including Support and Confidence

Values
unit_1 | support_unit_1 | unit_2 | pattern conf(unit_2 | unit_1)
1 133 21(2,2,2,2,2,2,3,3 0.8
1 136 2|2,2,2,2,2,3,3 0.79
1 36 21|2,2,2,2,2,3,3,2 0.81
1 99 212,2,2,2,2,3,3,3 0.78
1 228 2|2,2,2,2,3 0.82
1 9 2|2,2,2,2,3,2,3 0.67
1 138 21|2,2,2,2,3,3 0.8
1 36 22,222,332 0.81
1 33 21|2,2,2,2,3,3,2,2 0.76
1 100 2|2,2,2,2,3,3,3 0.78
1 17 21|2,2,2,2,3,3,3,2 0.65
1 83 21|2,2,2,2,3,3,3,3 0.77
1 241 212,223 0.84
1 93 2|2,2,2,3,2 0.76
1 7 212,2,2,3,2,2,2,3 1
1 10 21|2,2,2,3,2,3 0.6
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1 144 212,2,2,3,3 0.81

1 39 212,2,2,3,3,2 0.85
1 35 212,2,2,3,3,2,2 0.77
1 29 212,2,2,3,3,2,2,2 0.79

Once the patterns have been discovered they must be tested on a different set of data. The
discovery, or learning, of these patterns was performed on data between 04/01/2002
through 03/31/2003. And the rules were tested over a period between 04/01/2003 and
03/31/2004. The testing results show that K-Motifs exist between many of the tested
units. The K-Motifs of interest are those that occur over a long period of time and have
some change, and some K-Motifs fitting this requirement have been discovered. If the
raw data are analyzed carefully, it is somewhat obvious that interesting K-Motifs will be
hard to find in such data. To give an overall description of the success and reliability of
the rules the author chose to set a confidence level and require that both learning and
testing confidences be greater than or equal to this value. For the unit-level data set, the
author required that both confidences be greater than or equal to 0.60, which resulted in
159 rules. Each rule has a confidence value and a support value and high confidences
along with high corresponding support values indicate a strong relationship. This
relationship and its corresponding rule can be considered the local model for these
generating units for this pattern of the K-Motif discovered. The full list of unit-level rules

can be found in Appendix 5.
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Plant Raw Data

The data for this set is an accumulation of unit hourly data. The accumulation is nothing
more than summing all the unit generation values that exist, for a plant and deeming the
plant’s generation as this summation for the specific timestamp. Unlike the unit data set,
the plant data set contains more useful (non-zero) data. 100% of the plants have values,
which result in no sparse series. This is due to the fact that for every plant, a unit is
operational for every hour during the time sampled. A typical plant series will look little
like a unit series, unless there is a single unit in a plant. A plant generation value is all
units’ generation values summed, and usually has a smaller variance than the units that
make up the plant. This will lead to more sequence discoveries (relatively), due to a
smoother timeseries, and could allow for more positive and useful results. Table 7.4 lists

the cross correlations between plants in a summarized form.

Table 7.4 — Summary of Plant-Level Cross Correlations

Correlation Count
0 490644

0.1 30670

0.2 1530

0.3 604

0.4 4

1 724

In comparison with the unit-level cross correlation summary, the plant analysis could

yield more promise. It is obvious from both Correlation matrices that the data are not
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smooth and will only yield results when sequence discovery is performed. Although the
plant analysis looks promising by the cross correlation matrix, it does not contain enough

correlation clusters to use correlation alone to classify like plants.

Principal Component Analysis for Plants

The same procedure that was used to analyze the unit analysis was also executed for plant
data. Unlike the unit-level data set, the plant-level data has a value in both learning and
testing data sets for every timestamp expected. The variance was normalized to allow
comparison between analyses. As can be seen below the same situation is present in the
plant data. There is no definitive “knee”, that is usually present is a Screeplot. The “knee”
represents a drastic change in variance covered by features. The “knee” is the point at
which the number of significant features, and in this case the number of clusters, would

be determined.
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Screeplot for 724 Plants
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Figure 7.5 — Screeplot for Plant-Level Learning Data Set

As mentioned above the objective of Principal Components analysis is to find the
minimum number of features that represent 90% of the variance of the data set. This can
be done via the “knee” method or a more precise calculation (formula above). The plant
data set requires 580, or 80% of the 724 plants to absorb 90% of the variance. Again a
global model with 580 independent variables is cumbersome and useless. The cross
dependencies that could arise would hinder the predictive ability of the function if used to

form a global model.
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K-Means Clustering Analysis for Plants
As in the unit-level clustering analysis, 100 clusters were used due to ambiguity of the
Screeplot. From the correlation analysis, one should expect lower within-cluster errors

for the plant analysis. Figure 7.6 contains a plot of within-cluster errors.

Within-Cluster Error for 100 Clusters
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Figure 7.6 — Within-Cluster Error for the Plant-Level Learning Data Set

Table 7.5 lists the basic statistics for within-cluster error for the plant K-Means cluster

analysis.

Table 7.5 — Summary of Within-Cluster Error Statistics for Plant-Level Clustering

Minimum 13,490,579
Maximum 4,802,590,406
Median 134,094,691
Sample Mean 288,076,122
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Sample Standard Deviation 548,524,774

Although the correlation looked more optimistic the within-cluster error is worse. The
median within-cluster error is 33 '% times larger than the unit median error. All of the
basic statistics indicate that the plant analysis is worse for predictive capabilities using K-

Means clustering.

K-Motif Discovery for Plants

The K-Motif discovery should allow the researcher to discover any relationships that
cannot be observed via means comparison and correlation techniques. The object of
diversifying the discovery to include plant level sequences is that with this knowledge a
trader can spot plant-level interruptions in power flow and respond using a plant with a
matching sequence if appropriate. The plant data set resulted in very few K-Motifs that
appeared in both discovery and testing data sets with high confidences. Also the unit
analysis standards that were set for the confidence and support values could not be
applied to the plant analysis. The support values were extremely low, and resulted in very
low confidences in comparison to the unit analysis. The confidence level set for plant-
level rules was 0.25, which resulted in 24 valid rules. All association rules for plant-level

discoveries can be found in Appendix 6.

Results Discussion
According to the results it can be inferred that unit-level rules provide insight into
existing relationships. It is obvious that simple correlation provides no benefit in terms of

extracting relationships. With correlations so polarized, values either having very low
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correlation or perfect correlation, is shows that little partial similarity exists. The
correlation algorithm does not justify matching sequences of large sets where few
matches exist. Principal component analysis was proposed as a preliminary to clustering
for relationship extraction. The idea was that PCA would amplify the existing
relationships and dependencies. Those idealistic relationships weren’t obvious as can be
seen in the screeplots, which lack the “knee” representation that is common with
successful feature extraction analyses; therefore, there are no outstanding features that
can be used to create a reasonable number of clusters. From the within-cluster errors
displayed in tables 7.5 and 7.2 it can be seen that there exist no useful clusters with the
current coding schema. Since neither techniques highlighted features that would be useful
in creating a global model to represent power generation, a local model was the next step.
The sequence matching performed via K-Motif Brute Force discovery resulted in many
relationships that do exist on a local level for a short time. These results can be used to
create rules that allow a trader or analyst to predict operation of a unit or plant based on a
counterpart of the same type. A full list of the rules associated with plant-level and unit-

level analyses reside in Appendices 11 & III.
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CONCLUSION

The problem can be categorized as temporal sequence discovery, meaning discovery of
patterns in a timeseries data set. Initially the idea was to propose a global model, one
equation defining generation at a specific time for nationwide unit-level generation. This
generation was restricted to Pipeline Natural Gas generating units that report to the EPA,
which is defined as units that have a capacity greater than 25 MWH. As was discovered a
global model was infeasible due to the lack of numerical similarity. This dissimilarity
resulted in the creation of a local model consisting of association rules that describe
generation based on a subset of the total data. The driver behind the research was to give
energy traders the ability to invest in companies with some confidence. The confidence
would be based on the high probability that generation patterns will be exhibited by
plants or units and are defined by the association rules of the local model. The results of
this research are a set of rules that define the local model for Pipeline Natural Gas

generating units.

There exist volumes of research dating as far back as the 1970s that are based on the idea
of coding and temporal sequence discovery. This allows the researcher to choose
techniques that cover a broad range of domains. The domain may however define the
proper technique. The group at the University of California at Riverside was inspirational
in the research conducted within this Master’s thesis. Although the techniques they
presented are directed at a specific type of data, they can be adjusted and theories

implemented. Eamonn Keogh, at the University of California at Riverside, has introduced
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the idea of K-Motifs and “don’t cares”. K-Motifs are motifs that exist in high number that
are shared between two sets of timeseries sequences. These sets of timeseries sequences
consist of sequences of coded values. The coding of temporal (and non-temporal)
sequences has been studied for decades, and are of severe importance when mining
sequences. Keogh’s group has contributed to this field, and offer the idea that most
timeseries exhibit normality. After being proven false, with relation to this data set, a
uniform coding schema has been applied, deemed USD. Once coded, the data was mined
for K-Motifs. Once the sequences were discovered their support and confidences were
calculated. After having these statistics calculated, the author was able to generate
association rules based upon generation patterns. There were no preconceived notions
about generation, other than known cycles (in Coal-Fired units); therefore, no patterns
were removed from the subset searched other than user-specified flagged patterns. This
involved searching the entire space for every possible pattern, which required using a
brute-force searching algorithm. Although the software was multi-threaded and optimized
for the target language, Java, the software still performed an enormous amount of

searches.

There were two simultaneous analyses performed within this Master’s thesis. The first
analysis was performed on a unit-level data set where there exists an hourly average
generation for every generating unit responsible for reporting to the EPA. The second
data set was generated by the author and consists of aggregate values (summations) for
all units within a power plant. The original intent of this analysis was to discover unit-

level characteristics that would be beneficial, but with further thought it seemed that
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traders would possibly be concerned with plant-level characteristics. There were two
preliminary steps taken prior to sequence mining, these included Cross Correlation
analysis and K-Means clustering Analysis accompanied by Principal Component
analysis. The preliminary steps were performed to show that the data was not easily
modeled globally. The Cross Correlation analysis was intended to expose the possibility
of clustering and to aid in discovery of the number of clusters present in the data set. Both
the plant-level and unit-level correlation analyses resulted in very low correlations, which
began to confirm that global modeling was infeasible. To aid in choosing the number of
clusters to use in K-Means clustering the author performed Principal Components
analysis on both data sets. Using a metric provided by Mehmed Kantardzic, which
choose the features that represent 90% of the variance, the author was able to gather a
minimal feature set from either data set. From the unit-level data, 71% of the total units
represented 90% of the variance associated with the unit-level data set. 80% of the plants
represented 90% of the variance among the plant-level data set. Both of these values are
too large to be used in global modeling, and provide no benefit to clustering analysis. The
clustering analysis was performed over 100 features, whether that is plants or units. The
idea was to gain insight to see if it was possible to represent the total output using fewer
than the entire feature set. From the within-cluster errors above, it can be seen that
clustering is fruitless with these data sets. With this information, the author can confirm
his previous idea that global modeling is infeasible and inaccurate for this data. To
accomplish the local modeling the author performed a K-Motif brute-force discovery
over the entire space. To gauge usefulness of the association rules discovered the author

set confidence minimums for each rule. For the unit-level data this confidence metric was
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set to 0.60, which resulted in 159 rules. The plant-level confidence metric was set to 0.25,
which resulted in 24 rules created. All association rules are located in Appendices II and
1.

From the previous analysis, it can be drawn that the discovery was a success.
There were rules created from discovered K-Motifs that could be used with high
confidence. Coding of the data is extremely sensitive to domain and should be studied
further. There should be testing performed to find an optimal coding schema for power
generation data. A study of this topic would yield fruitful results, which could be applied
to coding and other analyses in the power domain. The power domain is extremely
interesting as it involves predicting a market that is sensationally dynamic. Smooth
timeseries will not be commonly found, and if found of little interest, in power data. For
point-wise prediction it seems obvious to apply neural networks to predict this type of
highly nonlinear data. The author believes linear techniques along with smoothing and
coding would be as effective in prediction of trends, which are of more value to 