
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

7-2009

A hybrid genetic-greedy approach to the skills management A hybrid genetic-greedy approach to the skills management

problem. problem.

Daniel Grieshaber 1986-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Grieshaber, Daniel 1986-, "A hybrid genetic-greedy approach to the skills management problem." (2009).
Electronic Theses and Dissertations. Paper 532.
https://doi.org/10.18297/etd/532

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/532
mailto:thinkir@louisville.edu

A HYBRID GENETIC-GREEDY APPROACH TO THE

 SKILLS MANAGEMENT PROBLEM

By

Daniel Grieshaber

B.S., University of Louisville, 2008

A Thesis

Submitted to the Faculty of the

University of Louisville

J. B. Speed School of Engineering

in Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science

July 2009

A HYBRID GENETIC-GREEDY APPROACH TO THE

SKILLS MANAGEMENT PROBLEM

Submitted by:__________________________________

Daniel Grieshaber

A Thesis Approved on

(Date)

by the Following Reading and Examination Committee:

Dr. C. Tim Hardin, Thesis Director

Dr. Gail DePuy

Dr. Ming Ouyang

ii

ACKNOWLEDGEMENTS

I would like to acknowledge Thesis Director Dr. Tim Hardin for posing the initial

challenge: applying a genetic approach to the skills management problem. I also

recognize all other students of Dr. Hardin's Artificial Intelligence class who provided

ideas during brainstorming sessions. Finally, I appreciate the previous work done by Dr.

Gail DePuy on the skills management problem which provided a basis for the work in

this thesis.

iii

ABSTRACT

The Naval Surface Warfare Center wishes to create a task assignment schedule

with a minimal training cost for workers to raise their skills to the required levels. As the

number of workers, skills, and tasks increase, the problem quickly becomes too large to

solve through brute force. Already several greedy heuristics have been produced, though

their performance degrades for larger data sets.

As Genetic Algorithms (GA) are effective for large combinatorial problems, their

application to the task assignment problem may prove successful. The innovation in

applying a GA to this problem is the utilization of existing greedy heuristics in the

crossover operator. As the population begins to converge in the GA, the greedy algorithm

benefits by having fewer tasks to assign. Likewise, the GA benefits from the addition of

the greedy heuristic by increasing the likelihood of good valid solutions within the

population.

To explore the effectiveness of the proposed method, several different crossover

operators are defined. The first method is purely random to act as a control, as the only

improvements will be due to the genetic algorithm. The second method provides a basic

heuristic to improve upon the random crossover operator, while still primarily stochastic

and therefore relying on the GA for convergent behavior. The final two techniques

iv

incorporate existing greedy heuristics.

The four crossover operators are tested against several data sets of varying sizes to

ascertain their relative performance. Crossover methods are compared based on the best

score found over all runs. In addition, the evolution and convergence of populations for

the different operators are examined, offering further insight into their performance.

The combination of a greedy heuristic and genetic algorithm proves to be an

effective method for approaching the task assignment problem. This method compares

favorably to existing techniques, as well as a purely genetic approach. While the greedy-

genetic approach suffers some shortcomings, the success of the combined algorithm

warrants further development of this methodology.

v

TABLE OF CONTENTS

Page

APPROVAL PAGE... ii

ACHKNOWLEDGEMENTS... iii

ABSTRACT.. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

I. BACKGROUND .. 1

A. Problem Description ... 1

B. Existing Techniques.. 3

1. Meta-RaPS Greedy Algorithm.. 3

2. Meta-RaPS Regret Algorithm... 8

C. Genetic Algorithms... 11

D. Motivation... 13

II. HYBRID GENETIC-GREEDY ALGORITHM..................................... 15

A. High Low Fit Selection... 15

B. Greedy Algorithms as Crossover Operators 16

C. Crossover Algorithms Analyzed... 18

1. Random... 18

2. Roulette Wheel.. 19

3. Meta-RaPS Regret .. 19

4. Meta-RaPS Greedy.. 20

D. Culling The Population... 21

E. Testing Proposed Crossover Operators... 22

III. IMPLEMENTATION.. 24

A. Input Data.. 24

B. Greedy Scheduler Interface... 25

IV. RESULTS.. 27

A. Comparison of Solution Quality... 27

B. Comparison of Convergence... 30

1. Random... 31

2. Roulette Wheel.. 32

3. Meta-RaPS Regret .. 33

4. Meta-RaPS Greedy.. 35

V. CONCLUSIONS... 37

REFERENCES.. 39

CURRICULUM VITAE.. 40

vi

LIST OF TABLES

Page

TABLE I. PARAMETERS OF META-RAPS REGRET ALGORITHM 20

TABLE II. PARAMETERS FOR META-RAPS GREEDY ALGORITHM...... 21

TABLE III. DATA SETS TESTED... 23

TABLE IV. BEST SOLUTION FOUND

FOR EACH CROSSOVER METHOD... 28

TABLE V. DISTRIBUTION OF TRAINING COSTS

AFTER 26 RUNS ON DATA SET 1... 28

TABLE VI. DISTRIBUTION OF TRAINING COSTS

AFTER 8 RUNS ON DATA SET 2... 29

TABLE VII. COMPARISON OF META-RAPS

GREEDY AND GENETIC ALGORITHHMS....................................... 30

vii

LIST OF FIGURES

Page

FIGURE 1 - Formal Description of the Skills Management Problem................ 2

FIGURE 2 - Pseudocode for Meta-RaPS Greedy Algorithm Phase 1................ 5

FIGURE 3 - Pseudocode for Meta-RaPS Greedy Algorithm Phase 2................ 7

FIGURE 4 - Pseudocode for Meta-RaPS Regret Algorithm Phase 1................. 9

FIGURE 5 - Pseudocode for Meta-RaPS Regret Algorithm Phase 2................. 11

FIGURE 6 - Pseudocode for a Generic Genetic Algorithm................................ 13

FIGURE 7 - Performance of Random Crossover Operator on Data Set 5.......... 31

FIGURE 8 - Performance of Roulette Wheel

Crossover Operator on Data Set 5... 32

FIGURE 9 - Performance of Meta-RaPS Regret

Crossover Operator on Data Set 5... 33

FIGURE 10 - Performance of Meta-RaPS Greedy Algorithm on Data Set 5..... 35

FIGURE 11 - Performance of Meta-RaPS Greedy

Crossover Operator for First Hour.. 36

viii

I. BACKGROUND

As discussed in [3], the Crane Division, Naval Surface Warfare Center (NSWC)

employs a large workforce to acquire and support a variety of electronic warfare devices

and systems. In general NSWC wishes to retain its current workforce, so when making

bids for work the cost to train current employees must be considered. While several

greedy algorithms have been developed for minimizing this training cost [5], as the size

of the problem increases, these methods prove inadequate. Genetic algorithms (GA) are a

general technique used to solve large combinatorial problems, such as minimizing the

cost of the NSWC workforce training schedule. This thesis work focuses on the

implementation and analysis of a genetic algorithm that incorporates preexisting greedy

algorithms to produce higher quality solutions to the workforce scheduling problem.

A. Problem Description

The NSWC scheduling problem is based around workers, tasks, and the skills

possessed or required by each. For each skill, the competency of each worker is assessed.

Likewise, the skill levels required by each task to complete it are also determined. When

a worker is assigned a task, that worker must have an equal or greater skill level than

2

required by the task for each skill. If a worker is not qualified to complete the task

assigned to it, the worker must undergo training, with an associated training cost. The

goal is to assign all tasks such that this training cost is minimized. A formal description of

the NSWC task assignment problem was originally developed by DePuy et al [3] and is

presented here in Figure 1. The total training cost that is being minimized is listed as

equation 1.

FIGURE 1 - Formal Description of the Skills Management Problem

3

Parameters

{j} = set of skills needed to perform task j

Sik = worker i’s skill level for skill k

Rjk = required skill level for task j’s skill k

Tj = length (# hrs) of task j

Ai = capacity (# hrs) of worker i

Cklm = cost associated with raising a worker’s skill level on skill k from level l to level m

Eklm = time required (# hrs) to raise a worker’s skill level on skill k from level l to level m

Decision Variables

Xij = 1 if worker i assigned to task j

Z
ikS ik m = 1 if worker i receives training on skill k to raise skill level from Sik to m

Nik = 1 if worker i does not need further training in skill k

Objective Function

Minimize Training Cost Minimize !
i

!
k

!
m

CkS
ik

m Z ikS
ik

m (1)

Constraints

Determine Needed Training Sik N ik"!
m>S

ik

5

mZikS
ik

m#R jk X ij $ i,j,k %{ j } (2)

N
ik
" !

m>S
ik

5

Z
ikS

ik
m
=1 $ i,k (3)

All tasks assigned !
i

X
ij
=1 $ j (4)

Worker Capacity !
j

T j X ij"!
k

!
m

EkS
ik

m Z ikS
ik

m&Ai $ i (5)

Binary Variables X
ij
%{0,1 } , Z

ikS ik m
%{0,1 } , N

ik
%{0,1 } $ i,j,k,m (6)

There are several constraints for the task assignment problem. First, NSWC

wishes to retain its current workforce, thus requiring each worker to be assigned at least

one task. The second constraint limits how much time is available for a worker to train

and perform tasks, denoted by a worker's capacity. Note that the time needed to train for a

task is subtracted from a worker's total capacity, but is not relevant to the total training

cost being minimized. The final constraint requires all tasks to be assigned to a worker.

B. Existing Techniques

1. Meta-RaPS Greedy Algorithm

As discussed by DePuy et al. in [2], Meta-RaPS (Meta-heuristic for Randomized

Priority Search) is a high-level, stochastic technique used to improve greedy algorithms

for combinatorial problems. By randomly allowing some less-than-optimal decisions in

the execution of an algorithm, this heuristic helps avoid local optima and enables better

solutions to be found. The Meta-RaPS technique has since been applied to the NSWC

task assignment problem, where a greedy assignment algorithm is enhanced by the meta-

heuristic [5]. The details of this algorithm are discussed below.

Since NSWC wishes to retain all current employees, the Meta-RaPS greedy

algorithm first ensures each worker is assigned at least one task. During this first phase,

the algorithm identifies the least skilled worker and assigns to it the least difficult task. A

worker's skill is determined by summing the total training cost for all tasks, while the

difficulty of a task is the total cost for all workers to train for that task. Until all workers

4

have a task, the worker with the maximum total training cost is assigned the task with the

minimum training cost. The Meta-RaPS heuristic alters this phase of the greedy

algorithm by enabling a more skilled worker to be assigned its minimum cost task. This is

done through the use of an available list: any worker/task pairing whose training costs are

within a certain range of the next greedy assignment are added to the list. A worker and

task are then selected at random from the available list.

5

FIGURE 2 - Pseudocode for Meta-RaPS Greedy Algorithm Phase 1

The second phase of the Meta-RaPS greedy algorithm assigns the remaining tasks.

In phase 2, the hardest task, i.e. the task with the greatest total training cost, is assigned to

the worker that needs the least training for that task. As in phase 1, these greedy

assignments are subject to randomization by Meta-RaPS. Again, this involves the

6

Calculate training cost for each worker over all tasks (total_worker_cost)

While (there are unassigned workers) {

Find the worker with maximum total_worker_cost (max_cost_worker)

Find task with minimum training cost for max_cost_worker (min_cost_task)

P = Rand(1, 100)

If (P <= %priority) {

Assign min_cost_task to max_cost_worker

}

Else {

Form available list of worker-task pairs such that the worker's

total_training_cost is within %restriction of the max_cost_worker's cost

and the cost of the associated minimum cost task is within %restriction of

min_cost_task

Randomly select a worker-task pair from the available list for the next

assignment

}

Update skill set and capacity for worker based on requirements for the assigned

task

Update total_worker_cost

Update total training cost for the solution

}

creation of an available list containing worker/task pairs within a percentage restriction of

the next greedy assignment. By running many iterations of the Meta-RaPS algorithm, the

randomizing elements provides basic search behavior, locating better solutions than the

purely greedy algorithm [5].

7

FIGURE 3 - Pseudocode for Meta-RaPS Greedy Algorithm Phase 2

8

Calculate training cost for each task over all workers (total_task_cost)

While (there are unassigned tasks) {

Find task with maximum total_task_cost (max_cost_task)

Find worker with minimum training cost and sufficient capacity for

max_cost_worker (min_cost_worker)

P = Rand(1, 100)

If (P <= %priority) {

Assign max_cost_task to min_cost_worker

}

Else {

Form available list of worker-task pairs such that the task's

total_task_cost is within %restriction of the max_cost_task's cost and the

cost of the associated minimum cost worker is within %restriction of

min_cost_worker

Randomly select a worker-task pair from the available list for the next

assignment

}

Update skill set and capacity for worker based on requirements for the assigned

task

Update total_worker_cost

Update total training cost for the solution

}

2. Meta-RaPS Regret Algorithm

Like the Meta-RaPS greedy algorithm, the modified Regret algorithm [7]

incorporates randomized elements to provide search behavior. It is also a two phase

algorithm, first ensuring all workers are assigned at least one task, then assigning all

remaining tasks. The innovation of the algorithm is the concept of “regret”: the difference

in cost for a task being assigned to the worker with the minimal training cost for that task

and the worker with the third lowest cost. Having a low regret factor, a task may be

deferred assignment for several iterations without negatively impacting the overall score.

However a high regret task would significantly degrade the solution if not assigned

quickly. The overall solution may therefore be optimized by giving priority to tasks with

higher regret factors. This is the motivation for the Regret algorithm.

The first phase of the algorithm ensures all workers are assigned one task, and

begins by forming a list of possible tasks to assign. The tasks that have a minimal training

cost over all unassigned workers are considered for the list, with the size equal to the

number of unassigned workers, as well as any tasks whose cost is within %restriction.

This list is randomly culled so that there is a task for each unassigned worker. The tasks

are then ordered by regret, so that the highest regret tasks are assigned to their lowest cost

workers first. As in the previous algorithm, this greedy selection is augmented by the

Meta-RaPS heuristic: some iterations the highest regret task is not assigned. Instead a list

of tasks within %restriction of the highest regret task are randomly sampled for the next

assignment. This can be seen in the pseudocode for the first phase below.

9

FIGURE 4 - Pseudocode for Meta-RaPS Regret Algorithm Phase 1

10

n = number of unassigned workers

Calculate training cost for each task over all workers (total_task_cost)

Order tasks from smallest to largest total_task_cost

Form available list of tasks within %restriction of nth smallest total_task_cost

Randomly choose n tasks from available task list (phase1_task_list)

While (there are unassigned workers) {

For Each (task in phase1_task_list) {

Find 3 smallest smallest cost unassigned workers with sufficient capacity

for task

Calculate regret as the difference between the training cost for the smallest

cost worker and the third smallest cost worker

}

Find task with maximum regret (max_regret_task)

P = Rand(1, 100)

If (P <= %priority) {

Assign max_regret_task to its minimum cost worker

}

Else {

Form available list of tasks with a regret within %restriction of

max_regret_task

Randomly select task from available list and assign to its minimum cost

worker

}

Update skill set and capacity for worker based on requirements for the assigned

task

Update worker_task_costs

Update total training cost for the solution

}

After assigning all workers a task, the algorithm enters the second phase. All

remaining tasks are ordered by regret, with the highest regret task being assigned first.

Like phase 1, this task is assigned its lowest cost worker. Again, this selection is subject

to randomization by Meta-RaPS. The details of the second phase of the regret algorithm

are presented as pseudocode below.

11

FIGURE 5 - Pseudocode for Meta-RaPS Regret Algorithm Phase 2

C. Genetic Algorithms

Genetic Algorithms are a category of stochastic search techniques that emulate

biological evolution [1]. Possible solutions are abstracted as members of a population,

12

While (there are unassigned tasks) {

For Each (unassigned task) {

Find 3 smallest smallest cost unassigned workers with sufficient capacity for

task

Calculate regret as the difference between the training cost for the smallest

cost worker and the third smallest cost worker

}

Find task with maximum regret (max_regret_task)

P = Rand(1, 100)

If (P <= %priority) {

Assign max_regret_task to its minimum cost worker

}

Else {

Form available list of tasks with a regret within %restriction of

max_regret_task

Randomly select task from available list and assign to its minimum cost

worker

}

Update skill set and capacity for worker based on requirements for the assigned task

Update worker_task_costs

Update total training cost for the solution

}

where individuals compete for reproduction as well as survival to future generations. The

probability of these events is determined by an individual's fitness: fitter individuals are

favored for reproduction and are more likely remain in the population. This selective

pressure tends the population toward better solutions, while the stochastic component

counteracts the tendency toward local optima.

Once created, the population within a GA is refined through several basic steps.

First pairs of individuals are selected for reproduction. While higher fitness is favored,

stochastic selection techniques allow less fit individuals to reproduce, thus promoting

diversity in the population and avoiding convergence on local optima. Second, children

are produced through crossovers, i.e. components from each parent are recombined to

form novel solutions. Additionally some implementations introduce random mutations at

this stage to promote population diversity. Finally, the children are introduced into the

population, and the least fit individuals are removed to maintain a constant population

size. These steps are repeated until some termination condition is met (e.g. predefined

running time or limited number of generations). Pseudocode for this generic genetic

algorithm is listed below.

13

FIGURE 6 - Pseudocode for a Generic Genetic Algorithm

D. Motivation

Though current methods perform well for smaller data sets, performance degrades

as the number of workers, skills, and tasks increase. Indeed even a small increase in

problem size causes an exponential increase in the search space. This is typical for

problems that fall into the NP-complete category, i.e. problems that cannot be solved in

polynomial time. However, genetic algorithms are known to perform well with NP-hard

problems, assuming the problem can easily be abstracted into the GA framework [6].

Additionally, the current greedy algorithms rely on many iterations to produce

good solutions. As the problem size increases, so does the time for each iteration, limiting

the number of solutions that can be produced. In contrast, genetic algorithms produce

new solutions by simply recombining elements from two existing individuals. Since not

all of the tasks are reassigned when two parents are crossed, the time to create the new

14

Create initial population

While (termination conditions are not met) {

Select pairs of individuals for reproduction (parents)

Cross parents to produce new solutions (children)

Add children to the population

Remove excess individuals from the population

}

solution is significantly less. By producing more possible solutions, a genetic algorithm

could search more of the problem space.

An obstacle for using a purely genetic approach is the small ratio of valid to

invalid solutions. There are many combinations of workers and tasks that violate the

constraints of the problem. Without a heuristic to provide some guidance, a genetic

algorithm may run without finding a single viable solution. In contrast, the Meta-RaPS

and Regret algorithms ensure viable, if not optimal, solutions.

To benefit from the advantages of both possible approaches, a greedy algorithm is

incorporated into the framework of a genetic algorithm as the crossover operator. This

technique hopes to combine the reliable and effective local search of the current greedy

algorithms with the robust global search capabilities of a genetic algorithm. The problem

of inviable solutions in the genetic population is removed by using the greedy algorithm

to initialize the population and create new individuals. Likewise, solutions created using

crossovers inherit some of their assignments, reducing the computations required by the

greedy algorithm.

15

II. HYBRID GENETIC-GREEDY ALGORITHM

As mentioned in the previous section, genetic algorithms are comprised of three

basic steps: (1) selecting individuals from the population to reproduce, (2) generating

new solutions through crossover and mutation operations, and (3) removing excess

individuals from the population. The specific implementations for each of these

components is discussed in detail below.

A. High Low Fit Selection

Several different parent selection methods were explored during the initial

development of the genetic algorithm, including common techniques such as roulette-

wheel and tournament selection. These methods proved inadequate, as population

diversity collapsed quickly, perturbing the search behavior of the algorithm. Maintaining

population diversity became a primary motivator for electing a selection method. As

mentioned in [1], the HighLowFit selection method preserves population diversity over

successive generations better than other common techniques. For this reason,

HighLowFit is used to select parents.

The HighLowFit algorithm maintains population diversity by ensuring one of the

parents has a relatively low level of fitness. This is accomplished by first ordering the

16

population based on fitness, i.e. training cost. The sorted population is then partitioned

into two groups, representing individuals with high and low fitness levels. The separation

point between these groups is defined using a percentage value, which can be varied to

alter the selection pressure of the algorithm. A parent is then chosen at random,

uniformly, from each partition. The simplicity of this algorithm ensures fast execution as

an added benefit to the superior performance compared to other selection methods.

The division point, as already mention, affects the performance of the

HighLowFit selection method. Lower values reduces the number of highly fit individuals,

increasing the frequency that these solutions are selected for reproduction. This causes

the population to converge, as genes from fit individuals are represented more. So while

convergence is improved by lowering the partition percentage, it is done so at the cost of

population diversity. Therefore the high-low division point must be carefully selected to

balance convergent behavior and preservation of population diversity. Experimentation

found that a division point of 15% worked best to strike this balance for the task

assignment problem.

B. Greedy Algorithms as Crossover Operators

Crossover operations recombine genes from the selected parents to create new

solutions. By inheriting genes, children benefit from the collective advancement of the

population. For the task assignment problem, a worker-task pairing is considered a gene,

as it is the most basic component of a solution. The crossover operation begins by first

17

comparing parent solutions to find worker-task pairings occurring in both. These genes

are preserved in the child, providing the basis for a new solution. A greedy algorithm can

then be used to complete the remaining task assignments.

Previously developed algorithms for the task assignment problem rely on many

iterations to take advantage of the randomizing elements in finding better solutions. Each

iteration of the algorithm makes every assignment and does not benefit from information

learned in previous iterations. By incorporating these algorithms in a crossover operator,

inherited genes allow some “memory” of previous generations. These genes act as fixed

assignments, meaning each crossover operation does not require all tasks to be assigned

as in each iteration of the original algorithms. In fact, as the population converges, the

number of new assignments made during crossover operations decreases as successful

worker-task pairings begin to dominate the population.

While this crossover method reduces the number of new assignments per iteration,

and therefore reduces execution time, it can easily become stuck at local optima.

Successful worker-task pairings quickly spread through the population causing

population diversity to collapse. This behavior is counteracted through the use of a

mutation operator. A mutation simply removes some inherited genes from a child,

allowing the greedy algorithm to reassign those tasks. A sufficient mutation rate ensures

genes cannot completely dominate the population, promoting diversity.

The proposed crossover operator is flexible in that any greedy algorithm may be

used to fill in missing task assignments. Indeed, the algorithm need not even be greedy.

Exploring the use of different algorithms within the crossover operator is the primary

18

focus of this thesis. Does a genetic approach to the task assignment problem benefit from

using existing greedy algorithms, or do stochastic methods provide better results? Four

different assignment algorithms are considered for this analysis and their details are

provided below.

C. Crossover Algorithms Analyzed

1. Random

To provide a baseline for comparing the other methods, a purely random

algorithm is implemented. Like all the algorithms used, the random algorithm consists of

two phases: the first phase ensures each worker is assigned at least one task, while the

second phase assigns all the remaining tasks. Without a two phase process, the

performance of the algorithm is greatly inhibited as most solutions produced are invalid.

In both phases, an unassigned worker (phase 1) or an unassigned task (phase 2) is chosen

uniformly at random. An accompanying task/worker is then randomly selected, allowing

for several attempts to find a matching where the worker's capacity is not exceeded. As

this is the fastest of the four crossover methods, even allowing for a very large number of

attempts does not negatively impact running time.

This method may produce invalid solutions, so the genetic algorithm must

compensate by applying a penalty for any workers exceeding their capacity. Since no

heuristic is used by this assignment algorithm, any improvements to solutions are the

19

result of the genetic algorithm, thus providing a control to measure the effectiveness of

the other methods.

2. Roulette Wheel

The second algorithm incorporates a simple heuristic to improve upon the purely

random method. During the first phase, a worker is randomly selected as before. But

instead of randomly selecting a task, a list is created with all tasks that will not exceed the

worker's capacity. A roulette wheel based on training cost is then used to select a task.

This favors lower cost assignments, but allows for suboptimal assignments to be made,

possibly leading to a better overall solution. Similarly, after randomly selecting an

unassigned task in the second phase, workers with sufficient capacity are ordered based

on training cost for the task, and one is chosen with a roulette wheel. If the available list

is empty in either phase (i.e. no task can be assigned without exceeding the worker's

capacity), a worker or task is selected uniformly at random. Use of the roulette-wheel

provides a better heuristic for making assignments than the purely random approach and

is therefore expected to have better performance.

3. Meta-RaPS Regret

The regret algorithm is the first of the greedy algorithms adapted for use within

the crossover operator, which required several changes to the original algorithm. First, the

regret calculation is altered. Instead of always using the third best assignment, a

percentage value is translated into an index into the available worker list. The regret can

20

then be calculated by finding the difference between this worker and the lowest cost

worker. Using a percentage value allows the algorithm to adapt as the number of fixed

assignments changes during the evolution of the population. Preliminary tests found that

this method, using a percentage value of 50%, worked better within the GA than the

original regret calculation.

The second change to the regret algorithm is how the tasks are initially ordered.

The original algorithm sorts unassigned tasks based on the total cost for all workers to

train for each task. The implementation for the crossover operator only considers the least

cost worker for this ordering. This change does not reduce the performance of the

algorithm within the GA, but reduces the complexity and execution time.

TABLE I

PARAMETERS OF META-RAPS REGRET ALGORITHM

Phase 1 Phase 2

%priority 50% 70%

%restriction 30% 70%

4. Meta-RaPS Greedy

The second greedy algorithm adapted for use in the crossover operator is the

Meta-RaPS algorithm. In the first phase of the original Meta-RaPS, workers are ordered

based on the total training cost over all tasks. Like the regret algorithm, only the

maximum training cost is used to order the workers. Similarly, during the second phase,

tasks are ordered by the maximum cost worker, rather than summing the cost of all

21

workers. As in the regret algorithm, these changes were not found to reduce the quality of

solutions produced by the GA, but improved the running time. The %priority and

%restriction parameters used for each phase within the crossover operator are included

below.

TABLE II

PARAMETERS FOR META-RAPS GREEDY ALGORITHM

Phase 1 Phase 2

%priority 75% 95%

%restriction 58% 25%

D. Culling the Population

The final component of the genetic algorithm removes excess individuals to

maintain a constant population size across generations. A common technique for doing so

is discussed in [1]: after adding the newly created solutions, the population is sorted

based on fitness. By simply discarding the tail (i.e. the least fit individuals), the

population size is maintained. Applied to the task assignment problem, this method

applies too much selection pressure for the fittest individuals and population diversity

quickly suffers. To reduce this selection pressure, not all individuals are removed from

the end of the sorted population. A percentage of all removals are done at uniformly at

random. This change allows some unfit solutions to remain, preserving diversity, without

substantially increasing execution speed. Note that this culling methodology is not unlike

the Meta-RaPS heuristic: a purely greedy removal technique is subject to randomization

22

to improve performance, though during this randomization, no priority is given to lower

cost solutions.

E. Testing Proposed Crossover Operators

The four crossover methods are tested against several data sets of varying sizes, as

indicated by the number of workers, skills, and tasks. This is reflected by the allowable

running time for each data sets, as the smallest data set is stopped after only 15 minutes

while the largest data set continues for 10 hours. Additionally, since smaller data sets

require less run time, several iterations are completed to better ascertain the relative

performance of the different methods. The stochastic nature of these algorithms leads to

varying performance. These iterations help to eliminate this variability. While time did

not permit multiple iterations for the largest data sets, differences in performance for the

algorithms tested become more pronounced as the problem size increases. Therefore

reasonable conclusions can be reached for these larger data sets without the benefit of

multiple runs. The size, run time, and number of iterations for the data sets tested are

presented in the table below.

23

TABLE III

DATA SETS TESTED

Data Set Number of

Workers

Number of

Skills

Number of

Tasks

Run Time

(hours)

Number of

Runs

1 9 11 13 0.25 26

2 11 13 44 2 8

3 30 20 100 5 5

4 50 50 100 6 4

5 50 50 220 8 1

6 100 40 400 10 1

24

III. IMPLEMENTATION

The algorithms discussed in this thesis were implemented using the Java

programming language. The Eclipse integrated development environment provided a

multi-platform tool for building and testing the Java program.

A. Input Data

The task assignment Java program provides a command line interface that accepts

a single argument: the name of the execution configuration file. This file contains an

“execution set”. Included are the directory to store output files, the directory and file

names containing data sets, run times for each data set, and the crossover operators to be

tested. This enables multiple runs to be initialized and then left to run overnight. As most

data sets were run for several hours, the run times represent hours of execution time.

However, these values are read as floating point numbers, enabling shorter run times for

small data sets. The crossover operator names are read as strings, which are then used to

dynamically create class instances using reflection. The file format for data sets is

discussed below. The name of the crossover operators, as well as the data set, are used to

create unique file names for all runs.

The first three lines of an input data file identify the number of workers, skills,

25

and tasks for the data set. This is followed by two skill level matrices: each row of the

first matrix corresponds to a worker while the second matrix lists the requisite skill levels

to complete each task. These matrices are followed by the time required for each task,

then the total capacity for each worker. The final two matrices specify the cost and time

to train to increase each skill for all skill levels. All data is delimited by whitespace

making input data files easily human-readable, while remaining simple to parse using

regular expressions.

The input data files are read in by the ProblemSet class. By storing the problem

data in a single static class, the memory required is minimized. The matrices are stored in

arrays which enable access to problem data in constant time. Interfacing with the

ProblemSet class is done primarily by the Worker and Task classes, which are

responsible for calculating training cost, remaining worker capacity, and so on. The

impetus for using a global data store is clear considering the number of workers and tasks

for larger data sets. If each contained all necessary data, the memory requirement would

grow quickly as the number of tasks and workers increases.

B. Greedy Scheduler Interface

The four crossover operators inherit from a base class, GreedyScheduler (so

named for the original algorithms which scheduled tasks in a greedy manner). This base

class provides two benefits. The first is the inclusion of common functionality used by all

the crossover techniques. For example, before beginning any of the two-phase

assignment algorithms, all unassigned workers and tasks must first be identified. A

26

method for doing so is provided by the base class. Another example is the need to copy

the list of workers passed in so that the original is unmodified. Again a method is

supplied to do so.

The second benefit to the use of the GreedyScheduler base class is to provide a

common interface for use inside the genetic algorithm. All subclasses must implement

the schedule() method, which accepts a list of workers and returns a complete

solution. The workers may already have some tasks assigned to them, thus acting as fixed

assignments. This enables the scheduling algorithms to “fill out” the remaining

assignments after a child solution inherits some worker-task pairs from its parents. A

getName() method is also required, enabling different crossover techniques to be

identified dynamically in filenames, etc. By providing a common interface, use of a base

class enables the crossover technique to easily be changed.

27

IV. RESULTS

A. Comparison of Solution Quality

After testing each crossover technique against all data sets, the best solutions

found are recorded and presented in the table below. As hypothesized, the random

crossover method has the worst performance overall, while the roulette wheel method

had the second worst performance. These results indicate that the task assignment

problem greatly benefits from a problem-centric heuristic. Of the two pre-existing

techniques, the Meta-RaPS algorithm performed best as a crossover operator. Note that

for the largest data set, the regret algorithm could not be run due to memory limitations of

the Java Virtual Machine.

28

TABLE IV

BEST SOLUTION FOUND FOR EACH CROSSOVER METHOD

(*KNOWN OPTIMAL SOLUTION)

Data Set Random GA Roulette Wheel

GA

Meta-RaPS

Regret GA

Meta-RaPS

Greedy GA

1 552 555 551* 551*

2 1411 1387 1268 1262

3 6712 5173 3416 2825

4 23784 22260 20533 18217

5 33529 25499 19448 16755

6 52226 35167 – 19041

While the random crossover technique generally performed poorly compared to

other methods, it did manage to surpass the roulette wheel algorithm on the smallest data

set. In fact, the best solution found by the random method is only one more than the

optimal solution. Analyzing the mean and standard deviation for the best solutions from

all runs further highlights the unusually good performance of the random crossover

method on the smallest data set. These results are presented in the table below.

TABLE V

DISTRIBUTION OF TRAINING COSTS AFTER 26 RUNS ON DATA SET 1

Mean Standard Deviation

Random GA 554.35 1.70

Roulette Wheel GA 560.65 5.40

Meta-RaPS Regret GA 560.85 7.52

Meta-RaPS Greedy GA 551.00 0.00

Notice that the mean score for the random method is better than both the roulette

29

wheel and regret algorithms. Additionally, the random method had a much lower

variability in solution quality compared to those other techniques. The reason for this

may be due to the small problem size: using a purely random crossover technique allows

for a much broader search of the solution space. This would explain why the initially

reasonable performance quickly degrades with increasing problem size.

Also of note is the performance of the two pre-existing algorithms as crossover

methods. While both found the optimal solution, their overall performance is hardly

comparable. The regret algorithm had the worst average performance overall, as well as

the largest variability in solution quality. In contrast, the Meta-RaPS algorithm located

the optimal solution every run, giving it the best average performance and lowest

variability.

Although the regret algorithm performed inconsistently for the smallest data set,

as the problem size increases, so does the relative performance of the algorithm. The

distribution of results for the second data set bears this out, as is evident in the table

below. Already the average relative performance of the four crossover methods begin to

differentiate, a trend that continues with increasing problem sizes.

TABLE VI

DISTRIBUTION OF TRAINING COSTS AFTER 8 RUNS ON DATA SET 2

Mean Standard Deviation

Random GA 1457.86 29.55

Roulette Wheel GA 1439.50 48.77

Meta-RaPS Regret GA 1305.13 25.96

Meta-RaPS Greedy GA 1273.50 8.50

30

The Meta-RaPS crossover operator consistently found better solutions than any

other method. To provide a broader view of the algorithm's performance, the results for

the original Meta-RaPS greedy algorithm are provided below [5]. Again, the Meta-RaPS

crossover operator provides smaller training costs for all data sets. Clearly the

combination of a genetic algorithm with a greedy heuristic proves more successful than

either individually.

TABLE VII

COMPARISON OF META-RAPS GREEDY AND GENETIC ALGORITHHMS

Data Set MR Greedy MR Greedy GA

1 558 551

2 1462 1262

3 3202 2825

4 19436 18217

5 18799 16755

6 20510 19041

B. Comparison of Convergence

The previous section analyzed the relative performance of the four crossover

methods by comparing the best solutions found for each data set. The performance of

these algorithms may also be compared based on the convergence of their population.

Observing the evolution of a population's fitness for each method provides further insight

into the performance of these algorithms. Tracking the best, worst, and median solutions

31

in the population over time provides a visual indication of the distribution of population

fitness.

1. Random

FIGURE 7 - Performance of Random Crossover Operator on Data Set 5

The first crossover method considered is the random algorithm, as seen in the

preceding graph. Compared to the other methods discussed below, the random algorithm

stands out by failing to exhibit any convergent behavior. The worst, median, and best

solutions in the population stay well differentiated during the execution of the genetic

algorithm, a likely cause for the lackluster performance of this crossover method. These

32

results are somewhat unexpected, as the genetic algorithm exerts some selection pressure,

though the population never begins to converge. This is further indication that a purely

genetic approach to the task assignment problem is inadequate for producing high quality

solutions.

2. Roulette Wheel

FIGURE 8 - Performance of Roulette Wheel Crossover Operator on Data Set 5

The roulette wheel crossover method is analyzed next. At first the best, worst, and

median solutions remain well differentiated like the random method. However, once the

fitness of the best solution crosses a certain threshold after approximately 100 minutes,

33

the population rapidly converges. After roughly 2 hours of run time, the diversity of the

population collapses as the majority of individuals are duplications of the best solution.

The worst solution in the population continues to fluctuate past this point, but it is not

enough to encourage further diversity. Collapse of population diversity is the primary

shortcoming of the techniques tested: once this occurs, the algorithms have difficulty

finding better solutions, and often become permanently stuck at the local optima. Indeed,

for the roulette wheel crossover method, no improvements are made to the best solution

after the collapse of diversity.

3. Meta-RaPS Regret

FIGURE 9 - Performance of Meta-RaPS Regret Crossover Operator on Data Set 5

34

The convergent behavior of the regret algorithm is now examined. In contrast to

the previous crossover methods, the regret algorithm exhibits convergent behavior from

the beginning. The best and median cost solutions do not fluctuate, but have a clear

downward trend as the population tends toward better solutions. Like the roulette wheel

method, the population diversity collapses less than two hours after initialization.

However, the regret algorithm continues to make some improvements to solution quality

without the benefit of a diverse population. This is likely the result of having a problem-

centric heuristic in the crossover operator, which is capable of search behavior relatively

independent of the genetic algorithm.

35

4. Meta-RaPS Greedy

FIGURE 10 - Performance of Meta-RaPS Greedy Algorithm on Data Set 5

Finally, the Meta-RaPS crossover method is analyzed. As with the regret

algorithm, Meta-RaPS causes the population to begin converging immediately, though

this convergence is much more rapid than any other method. While the roulette wheel and

regret algorithms took over an hour to decimate population diversity, the Meta-RaPS

algorithm reaches this collapse after only five minutes of run time, as seen in the

truncated graph below. Even so, the algorithm continues to find better solutions, with the

last best solution found seven and half hours after beginning. Again this is likely the

result of utilizing a problem-centric heuristic in the crossover algorithm.

36

FIGURE 11 - Performance of Meta-RaPS Greedy Crossover Operator for First Hour

37

V. CONCLUSIONS

The proposed combination of a greedy heuristic with a genetic algorithm led to

the development of several crossover operators. A purely random method acts as a

control, providing a basis of comparison. The roulette wheel technique incorporates a

limited stochastic heuristic, while the final two methods utilize the Meta-RaPS and

Regret greedy algorithms.

Comparison of these crossover operators proved that the combination of a greedy

heuristic and genetic algorithm provides better solutions than merely a genetic approach.

Additionally, the top-performing Meta-RaPS genetic algorithm consistently produced

lower training costs than the original Meta-RaPS greedy algorithm. These results indicate

that the combination of a greedy heuristic and genetic algorithm is a better approach than

either technique used individually.

In addition to comparing solution quality, the convergent behavior of each

crossover operator is analyzed. The best, median, and worst cost solutions within the

population are graphed over time. The random operator lacked any convergent behavior,

but maintained population diversity. The roulette wheel did not initially exhibit

convergence. Once started, though, the population quickly succumbed to collapse of

diversity, halting further improvements to the best solution. The greedy heuristics began

38

converging immediately and also suffered from diversity collapse. However, the greedy

methods continued to improve solution quality despite little diversity in the population.

The collapse in population diversity is the primary shortcoming of the combined

algorithm. After the collapse of population diversity, improvements upon the best

solution are greatly perturbed. Further investigation into maintaining this diversity may

lead to better performance with a more robust search that is less likely to become stuck at

local optima.

Another shortcoming of this implementation is the use of static values for the

%priority and %restriction values. The setting of these parameters greatly affects the

performance of the Meta-RaPS crossover operator, with the optimal values dependent on

the problem size. Therefore it may be beneficial to set these values dynamically, based on

the number of fixed assignments. Stricter parameters could be used to initialize the

population of the genetic algorithm, ensuring reasonably good starting solutions, while

looser parameters would allow for more search behavior once the population had

sufficiently converged. Defining the %priority and %restriction values as a function of

the population diversity or number of inherited genes would be a possible avenue of

further research.

39

REFERENCES

1. Ali, E.E.E., 2006. “A Proposed Genetic Algorithm Selection Method.”

King Saud University, ccis.

http://docs.ksu.edu.sa/PDF/Articles44/Article440965.pdf. Last Accessed

26 January 2009.

2. DePuy, G.W., G.E. Whitehouse, and R.J. Moraga, 2002. “Using The

Meta-Raps Approach to Solve Combinatorial Problems,” CD-ROM

Proceedings of the 2002 Industrial Engineering Research Conference,

May 19-21, Orlando, Florida, 6 pages.

3. DePuy G.W., J.S. Usher, B. Arterburn, R. Walker, and M. Fredrick, 2006.

“Workforce training schedule for logistics skills,” CD-ROM Proceedings

of the 2006 Industrial Engineering Research Conference, May 20-24,

Orlando, Florida, 6 pages.

4. DePuy, G.W., D. Grieshaber, and C.T. Hardin, 2009. “Skills Management

Assignment Problem with Dynamic Costs,” Proceedings of the 2009

Industrial Engineering Research Conference, May 30-June 3, 2009,

Miami, Florida, 6 pages.

5. Jackson, E., G.W. DePuy, and G.W. Evans, 2008. “Logistics Skills

Management Heuristics,” CD-ROM Proceedings of the 2008 Industrial

Engineering Research Conference, May 17-21, 2008, Vancouver, British

Columbia, Canada, 6 pages.

6. K.A. De Jong, W.M. Spears. “Using Genetic Algorithms to Solve NP-

Complete Problems.” Proceedings of the 3rd International Conference on

Genetic Algorithms. June 4-7, 1989, Morgan Kaufmann, Publishers.

7. S. Martello, P. Toth (1981c). An algorithm for the generalized assignment

problem. In J.P. Brans (ed.), Operational Research '81, North-Holland,

Amsterdam, 589-603.

40

CURRICULUM VITAE

Daniel Grieshaber

Date of Birth February 8, 1986

Place of Birth Kingston, NY

Undergraduate Study University of Louisville

B.S. in Computer Engineering and Computer Science

2004 – 2008

Graduate Study University of Louisville

M. Eng. in Computer Engineering and Computer

Science

2008 – 2009

Experience Course Lecturer, University of Louisville

(May 2009 – July 2009)

Teaching Assistant, University of Louisville

(January 2009 – April 2009)

Junior Software Developer Co-op

Stonestreet One – Louisville, KY and Carlsbad CA

(January 2005 – August 2007)

41

	A hybrid genetic-greedy approach to the skills management problem.
	Recommended Citation

	tmp.1423685735.pdf.3dqHk

