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ABSTRACT

The Naval Surface Warfare Center wishes to create a task assignment schedule 

with a minimal  training cost for workers to raise their skills to the required levels. As the 

number of workers, skills, and tasks increase, the problem quickly becomes too large to 

solve through brute force. Already several greedy heuristics have been produced, though 

their performance degrades for larger data sets.

As Genetic Algorithms (GA) are effective for large combinatorial problems, their 

application  to  the  task  assignment  problem may  prove successful.  The  innovation  in 

applying  a  GA to  this  problem is  the  utilization  of  existing  greedy  heuristics  in  the 

crossover operator. As the population begins to converge in the GA, the greedy algorithm 

benefits by having fewer tasks to assign. Likewise, the GA benefits from the addition of 

the  greedy  heuristic  by  increasing  the  likelihood  of  good  valid  solutions  within  the 

population. 

To explore the effectiveness of the proposed method, several different crossover 

operators are defined. The first method is purely random to act as a control, as the only 

improvements will be due to the genetic algorithm. The second method provides a basic 

heuristic to improve upon the random crossover operator, while still primarily stochastic 

and  therefore  relying  on  the  GA for  convergent  behavior.  The  final  two  techniques 
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incorporate existing greedy heuristics.

The four crossover operators are tested against several data sets of varying sizes to 

ascertain their relative performance. Crossover methods are compared based on the best 

score found over all runs. In addition, the evolution and convergence of populations for 

the different operators are examined, offering further insight into their performance.

The combination  of  a  greedy heuristic  and  genetic  algorithm proves  to  be an 

effective method for approaching the task assignment problem. This method compares 

favorably to existing techniques, as well as a purely genetic approach. While the greedy-

genetic  approach  suffers  some  shortcomings,  the  success  of  the  combined  algorithm 

warrants further development of this methodology.
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I. BACKGROUND

As discussed in [3], the Crane Division, Naval Surface Warfare Center (NSWC) 

employs a large workforce to acquire and support a variety of electronic warfare devices 

and systems. In general NSWC wishes to retain its current workforce, so when making 

bids  for work the cost  to  train  current  employees must  be considered.  While  several 

greedy algorithms have been developed for minimizing this training cost [5], as the size 

of the problem increases, these methods prove inadequate. Genetic algorithms (GA) are a 

general technique used to solve large combinatorial problems, such as minimizing the 

cost  of  the  NSWC  workforce  training  schedule.  This  thesis  work  focuses  on  the 

implementation and analysis of a genetic algorithm that incorporates preexisting greedy 

algorithms to produce higher quality solutions to the workforce scheduling problem.

A. Problem Description

The NSWC scheduling problem is based around workers,  tasks, and the skills 

possessed or required by each. For each skill, the competency of each worker is assessed. 

Likewise, the skill levels required by each task to complete it are also determined. When 

a worker is assigned a task, that worker must have an equal or greater skill level than 
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required by the task for each skill.  If  a  worker  is  not  qualified to  complete  the task 

assigned to it, the worker must undergo training, with an associated training cost. The 

goal is to assign all tasks such that this training cost is minimized. A formal description of 

the NSWC task assignment problem was originally developed by DePuy et al [3] and is 

presented here in Figure 1. The total training cost that is being minimized is listed as 

equation 1.

FIGURE 1 - Formal Description of the Skills Management Problem
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There  are  several  constraints  for  the  task  assignment  problem.  First,  NSWC 

wishes to retain its current workforce, thus requiring each worker to be assigned at least 

one task. The second constraint limits how much time is available for a worker to train 

and perform tasks, denoted by a worker's capacity. Note that the time needed to train for a 

task is subtracted from a worker's total capacity, but is not relevant to the total training 

cost being minimized. The final constraint requires all tasks to be assigned to a worker.

B. Existing Techniques

1. Meta-RaPS Greedy Algorithm

As discussed by DePuy et al. in [2], Meta-RaPS (Meta-heuristic for Randomized 

Priority Search) is a high-level, stochastic technique used to improve greedy algorithms 

for combinatorial problems. By randomly allowing some less-than-optimal decisions in 

the execution of an algorithm, this heuristic helps avoid local optima and enables better 

solutions to be found. The Meta-RaPS technique has since been applied to the NSWC 

task assignment problem, where a greedy assignment algorithm is enhanced by the meta-

heuristic [5]. The details of this algorithm are discussed below.

Since  NSWC  wishes  to  retain  all  current  employees,  the  Meta-RaPS  greedy 

algorithm first ensures each worker is assigned at least one task. During this first phase, 

the algorithm identifies the least skilled worker and assigns to it the least difficult task. A 

worker's skill is determined by summing the total training cost for all tasks, while the 

difficulty of a task is the total cost for all workers to train for that task. Until all workers 
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have a task, the worker with the maximum total training cost is assigned the task with the 

minimum  training  cost.  The  Meta-RaPS  heuristic  alters  this  phase  of  the  greedy 

algorithm by enabling a more skilled worker to be assigned its minimum cost task. This is 

done through the use of an available list: any worker/task pairing whose training costs are 

within a certain range of the next greedy assignment are added to the list. A worker and 

task are then selected at random from the available list.
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FIGURE 2 - Pseudocode for Meta-RaPS Greedy Algorithm Phase 1

The second phase of the Meta-RaPS greedy algorithm assigns the remaining tasks. 

In phase 2, the hardest task, i.e. the task with the greatest total training cost, is assigned to 

the  worker  that  needs  the  least  training  for  that  task.  As  in  phase  1,  these  greedy 

assignments  are  subject  to  randomization  by  Meta-RaPS.  Again,  this  involves  the 
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Calculate training cost for each worker over all tasks (total_worker_cost)

While (there are unassigned workers) {

Find the worker with maximum total_worker_cost (max_cost_worker)

Find task with minimum training cost for max_cost_worker (min_cost_task)

P = Rand(1, 100)

If (P <= %priority) {

Assign min_cost_task to max_cost_worker

}

Else {

Form  available  list  of  worker-task  pairs  such  that  the  worker's 

total_training_cost  is  within  %restriction of  the  max_cost_worker's  cost 

and the cost of the associated minimum cost task is within %restriction of 

min_cost_task

Randomly  select  a  worker-task  pair  from the  available  list  for  the  next 

assignment

}

Update skill set and capacity for worker based on requirements for the assigned 

task

Update total_worker_cost

Update total training cost for the solution

}



creation of an available list containing worker/task pairs within a percentage restriction of 

the next greedy assignment. By running many iterations of the Meta-RaPS algorithm, the 

randomizing elements provides basic search behavior, locating better solutions than the 

purely greedy algorithm [5].
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FIGURE 3 - Pseudocode for Meta-RaPS Greedy Algorithm Phase 2
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Calculate training cost for each task over all workers (total_task_cost)

While (there are unassigned tasks) {

Find task with maximum total_task_cost (max_cost_task)

Find  worker  with  minimum  training  cost  and  sufficient  capacity  for 

max_cost_worker (min_cost_worker)

P = Rand(1, 100)

If (P <= %priority) {

Assign max_cost_task to min_cost_worker

}

Else {

Form  available  list  of  worker-task  pairs  such  that  the  task's 

total_task_cost is within %restriction of the max_cost_task's cost and the 

cost  of  the  associated minimum cost  worker  is  within  %restriction of 

min_cost_worker

Randomly select a worker-task pair from the available list for the next 

assignment

}

Update skill set and capacity for worker based on requirements for the assigned 

task

Update total_worker_cost

Update total training cost for the solution

}



2. Meta-RaPS Regret Algorithm

Like  the  Meta-RaPS  greedy  algorithm,  the  modified  Regret  algorithm  [7] 

incorporates  randomized  elements  to  provide  search  behavior.  It  is  also  a  two phase 

algorithm, first  ensuring all  workers are assigned at  least  one task,  then assigning all 

remaining tasks. The innovation of the algorithm is the concept of “regret”: the difference 

in cost for a task being assigned to the worker with the minimal training cost  for that task 

and the worker with the third lowest cost.  Having a low regret factor, a task may be 

deferred assignment for several iterations without negatively impacting the overall score. 

However  a  high  regret  task  would  significantly  degrade  the  solution  if  not  assigned 

quickly. The overall solution may therefore be optimized by giving priority to tasks with 

higher regret factors. This is the motivation for the Regret algorithm.

The first phase of the algorithm ensures all workers are assigned one task, and 

begins by forming a list of possible tasks to assign. The tasks that have a minimal training 

cost over all unassigned workers are considered for the list, with the size equal to the 

number of unassigned workers, as well as any tasks whose cost is within  %restriction. 

This list is randomly culled so that there is a task for each unassigned worker. The tasks 

are then ordered by regret, so that the highest regret tasks are assigned to their lowest cost 

workers first. As in the previous algorithm, this greedy selection is augmented by the 

Meta-RaPS heuristic: some iterations the highest regret task is not assigned. Instead a list 

of tasks within %restriction of the highest regret task are randomly sampled for the next 

assignment. This can be seen in the pseudocode for the first phase below.
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FIGURE 4 - Pseudocode for Meta-RaPS Regret Algorithm Phase 1

10

n = number of unassigned workers

Calculate training cost for each task over all workers (total_task_cost)

Order tasks from smallest to largest total_task_cost

Form available list of tasks within %restriction of nth smallest total_task_cost

Randomly choose n tasks from available task list (phase1_task_list)

While (there are unassigned workers) {

For Each (task in phase1_task_list) {

Find 3 smallest smallest cost unassigned workers with sufficient capacity 

for task

Calculate regret as the difference between the training cost for the smallest 

cost worker  and the third smallest cost worker

}

Find task with maximum regret (max_regret_task)

P = Rand(1, 100)

If (P <= %priority) {

Assign max_regret_task to its minimum cost worker

}

Else {

Form  available  list  of  tasks  with  a  regret  within  %restriction of 

max_regret_task

Randomly select task from available list and assign to its minimum cost 

worker

}

Update skill set and capacity for worker based on requirements for the assigned 

task

Update worker_task_costs

Update total training cost for the solution

}



After  assigning all  workers a  task,  the algorithm enters the second phase.  All 

remaining tasks are ordered by regret, with the highest regret task being assigned first. 

Like phase 1, this task is assigned its lowest cost worker. Again, this selection is subject 

to randomization by Meta-RaPS. The details of the second phase of the regret algorithm 

are presented as pseudocode below.
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FIGURE 5 - Pseudocode for Meta-RaPS Regret Algorithm Phase 2

C. Genetic Algorithms

Genetic Algorithms are a category of stochastic search techniques that emulate 

biological evolution [1]. Possible solutions are abstracted as members of a population, 
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While (there are unassigned tasks) {

For Each (unassigned task) {

Find 3 smallest smallest cost unassigned workers with sufficient capacity for 

task

Calculate regret as the difference between the training cost for the smallest 

cost worker  and the third smallest cost worker

}

Find task with maximum regret (max_regret_task)

P = Rand(1, 100)

If (P <= %priority) {

Assign max_regret_task to its minimum cost worker

}

Else {

Form  available  list  of  tasks  with  a  regret  within  %restriction of 

max_regret_task

Randomly select  task from available list  and assign to  its  minimum cost 

worker

}

Update skill set and capacity for worker based on requirements for the assigned task

Update worker_task_costs

Update total training cost for the solution

}



where individuals compete for reproduction as well as survival to future generations. The 

probability of these events is determined by an individual's fitness: fitter individuals are 

favored for reproduction and are more likely remain in the population.  This selective 

pressure tends the population toward better  solutions, while the stochastic component 

counteracts the tendency toward local optima.

Once created, the population within a GA is refined through several basic steps. 

First pairs of individuals are selected for reproduction. While higher fitness is favored, 

stochastic selection techniques allow less fit  individuals  to reproduce,  thus promoting 

diversity in the population and avoiding convergence on local optima. Second, children 

are produced through  crossovers,  i.e. components from each parent are recombined to 

form novel solutions. Additionally some implementations introduce random mutations at 

this stage to promote population diversity. Finally, the children are introduced into the 

population, and the least fit individuals are removed to maintain a constant population 

size. These steps are repeated until some termination condition is met (e.g. predefined 

running  time  or  limited  number  of  generations).  Pseudocode  for  this  generic  genetic 

algorithm is listed below.
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FIGURE 6 - Pseudocode for a Generic Genetic Algorithm

D. Motivation

Though current methods perform well for smaller data sets, performance degrades 

as the number of workers, skills,  and tasks increase.  Indeed even a small  increase in 

problem size  causes  an  exponential  increase  in  the  search  space.  This  is  typical  for 

problems that fall into the NP-complete category, i.e. problems that cannot be solved in 

polynomial time. However, genetic algorithms are known to perform well with NP-hard 

problems, assuming the problem can easily be abstracted into the GA framework [6]. 

Additionally,  the current greedy algorithms rely on many iterations to produce 

good solutions. As the problem size increases, so does the time for each iteration, limiting 

the number of solutions that can be produced. In contrast, genetic algorithms produce 

new solutions by simply recombining elements from two existing individuals. Since not 

all of the tasks are reassigned when two parents are crossed, the time to create the new 

14

Create initial population

While (termination conditions are not met) {

Select pairs of individuals for reproduction (parents)

Cross parents to produce new solutions (children)

Add children to the population 

Remove excess individuals from the population

}



solution is significantly less. By producing more possible solutions, a genetic algorithm 

could search more of the problem space.

An obstacle for using a purely genetic  approach is  the small  ratio of valid to 

invalid  solutions.  There are many combinations of workers and tasks that  violate  the 

constraints  of  the  problem.  Without  a  heuristic  to  provide  some guidance,  a  genetic 

algorithm may run without finding a single viable solution. In contrast, the Meta-RaPS 

and Regret algorithms ensure viable, if not optimal, solutions.

To benefit from the advantages of both possible approaches, a greedy algorithm is 

incorporated into the framework of a genetic algorithm as the crossover operator. This 

technique hopes to combine the reliable and effective local search of the current greedy 

algorithms with the robust global search capabilities of a genetic algorithm. The problem 

of inviable solutions in the genetic population is removed by using the greedy algorithm 

to initialize the population and create new individuals. Likewise, solutions created using 

crossovers inherit some of their assignments, reducing the computations required by the 

greedy algorithm.
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II. HYBRID GENETIC-GREEDY ALGORITHM

As mentioned in the previous section, genetic algorithms are comprised of three 

basic steps: (1) selecting individuals from the population to reproduce, (2) generating 

new  solutions  through  crossover  and  mutation  operations,  and  (3)  removing  excess 

individuals  from  the  population.  The  specific  implementations  for  each  of  these 

components is discussed in detail below.

A. High Low Fit Selection

Several  different  parent  selection  methods  were  explored  during  the  initial 

development of the genetic algorithm, including common techniques such as roulette-

wheel  and  tournament  selection.  These  methods  proved  inadequate,  as  population 

diversity collapsed quickly, perturbing the search behavior of the algorithm. Maintaining 

population  diversity  became a primary  motivator  for  electing a  selection  method.  As 

mentioned in [1], the HighLowFit selection method preserves population diversity over 

successive  generations  better  than  other  common  techniques.  For  this  reason, 

HighLowFit is used to select parents.

The HighLowFit algorithm maintains population diversity by ensuring one of the 

parents has a relatively low level of fitness. This is accomplished by first ordering the 

16



population based on fitness,  i.e.  training cost. The sorted population is then partitioned 

into two groups, representing individuals with high and low fitness levels. The separation 

point between these groups is defined using a percentage value, which can be varied to 

alter  the  selection  pressure  of  the  algorithm.  A parent  is  then  chosen  at  random, 

uniformly, from each partition. The simplicity of this algorithm ensures fast execution as 

an added benefit to the superior performance compared to other selection methods.

The  division  point,  as  already  mention,  affects  the  performance  of  the 

HighLowFit selection method. Lower values reduces the number of highly fit individuals, 

increasing the frequency that these solutions are selected for reproduction. This causes 

the population to converge, as genes from fit individuals are represented more. So while 

convergence is improved by lowering the partition percentage, it is done so at the cost of 

population diversity. Therefore the high-low division point must be carefully selected to 

balance convergent behavior and preservation of population diversity. Experimentation 

found  that  a  division  point  of  15%  worked  best  to  strike  this  balance  for  the  task 

assignment problem.

B. Greedy Algorithms as Crossover Operators

Crossover operations recombine genes from the selected parents to create new 

solutions. By inheriting genes, children benefit from the collective advancement of the 

population. For the task assignment problem, a worker-task pairing is considered a gene, 

as it is the most basic component of a solution. The crossover operation begins by first 
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comparing parent solutions to find worker-task pairings occurring in both. These genes 

are preserved in the child, providing the basis for a new solution. A greedy algorithm can 

then be used to complete the remaining task assignments.

Previously developed algorithms for the task assignment problem rely on many 

iterations to take advantage of the randomizing elements in finding better solutions. Each 

iteration of the algorithm makes every assignment and does not benefit from information 

learned in previous iterations. By incorporating these algorithms in a crossover operator, 

inherited genes allow some “memory” of previous generations. These genes act as fixed 

assignments, meaning each crossover operation does not require all tasks to be assigned 

as in each iteration of the original algorithms. In fact, as the population converges, the 

number of new assignments made during crossover operations decreases as successful 

worker-task pairings begin to dominate the population.

While this crossover method reduces the number of new assignments per iteration, 

and  therefore  reduces  execution  time,  it  can  easily  become  stuck  at  local  optima. 

Successful  worker-task  pairings  quickly  spread  through  the  population  causing 

population  diversity  to  collapse.  This  behavior  is  counteracted  through  the  use  of  a 

mutation  operator.  A mutation  simply  removes  some  inherited  genes  from  a  child, 

allowing the greedy algorithm to reassign those tasks. A sufficient mutation rate ensures 

genes cannot completely dominate the population, promoting diversity.

The proposed crossover operator is flexible in that any greedy algorithm may be 

used to fill in missing task assignments. Indeed, the algorithm need not even be greedy. 

Exploring the use of different algorithms within the crossover operator is the primary 
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focus of this thesis. Does a genetic approach to the task assignment problem benefit from 

using existing greedy algorithms, or do stochastic methods provide better results? Four 

different  assignment  algorithms  are  considered  for  this  analysis  and  their  details  are 

provided below.

C. Crossover Algorithms Analyzed

1. Random

To  provide  a  baseline  for  comparing  the  other  methods,  a  purely  random 

algorithm is implemented. Like all the algorithms used, the random algorithm consists of 

two phases: the first phase ensures each worker is assigned at least one task, while the 

second  phase  assigns  all  the  remaining  tasks.  Without  a  two  phase  process,  the 

performance of the algorithm is greatly inhibited as most solutions produced are invalid. 

In both phases, an unassigned worker (phase 1) or an unassigned task (phase 2) is chosen 

uniformly at random. An accompanying task/worker is then randomly selected, allowing 

for several attempts to find a matching where the worker's capacity is not exceeded. As 

this is the fastest of the four crossover methods, even allowing for a very large number of 

attempts does not negatively impact running time. 

This  method  may  produce  invalid  solutions,  so  the  genetic  algorithm  must 

compensate by applying a penalty for any workers exceeding their capacity. Since no 

heuristic is used by this assignment algorithm, any improvements to solutions are the 
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result of the genetic algorithm, thus providing a control to measure the effectiveness of 

the other methods.

2. Roulette Wheel

The second algorithm incorporates a simple heuristic to improve upon the purely 

random method. During the first  phase, a worker is randomly selected as before.  But 

instead of randomly selecting a task, a list is created with all tasks that will not exceed the 

worker's capacity. A roulette wheel based on training cost is then used to select a task. 

This favors lower cost assignments, but allows for suboptimal assignments to be made, 

possibly  leading  to  a  better  overall  solution.  Similarly,  after  randomly  selecting  an 

unassigned task in the second phase, workers with sufficient capacity are ordered based 

on training cost for the task, and one is chosen with a roulette wheel. If the available list 

is empty in either phase (i.e. no task can be assigned without exceeding the worker's 

capacity), a worker or task is selected uniformly at random. Use of the roulette-wheel 

provides a better heuristic for making assignments than the purely random approach and 

is therefore expected to have better performance.

3. Meta-RaPS Regret

The regret algorithm is the first of the greedy algorithms adapted for use within 

the crossover operator, which required several changes to the original algorithm. First, the 

regret  calculation  is  altered.  Instead  of  always  using  the  third  best  assignment,  a 

percentage value is translated into an index into the available worker list. The regret can 
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then be calculated by finding the difference between this  worker and the lowest cost 

worker. Using a percentage value allows the algorithm to adapt as the number of fixed 

assignments changes during the evolution of the population. Preliminary tests found that 

this  method, using a percentage value of 50%, worked better  within the GA than the 

original regret calculation.

The second change to the regret algorithm is how the tasks are initially ordered. 

The original algorithm sorts unassigned tasks based on the total cost for all workers to 

train for each task. The implementation for the crossover operator only considers the least 

cost  worker  for  this  ordering.  This  change  does  not  reduce  the  performance  of  the 

algorithm within the GA, but reduces the complexity and execution time.

TABLE I

PARAMETERS OF META-RAPS REGRET ALGORITHM

Phase 1 Phase 2

%priority 50% 70%

%restriction 30% 70%

4. Meta-RaPS Greedy

The second greedy algorithm adapted  for  use  in  the  crossover  operator  is  the 

Meta-RaPS algorithm. In the first phase of the original Meta-RaPS, workers are ordered 

based  on  the  total  training  cost  over  all  tasks.  Like  the  regret  algorithm,  only  the 

maximum training cost is used to order the workers. Similarly, during the second phase, 

tasks  are ordered by the  maximum cost  worker,  rather  than  summing the  cost  of  all 
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workers. As in the regret algorithm, these changes were not found to reduce the quality of 

solutions  produced  by  the  GA,  but  improved  the  running  time.  The  %priority and 

%restriction parameters used for each phase within the crossover operator are included 

below.

TABLE II

PARAMETERS FOR META-RAPS GREEDY ALGORITHM

Phase 1 Phase 2

%priority 75% 95%

%restriction 58% 25%

D. Culling the Population

The  final  component  of  the  genetic  algorithm  removes  excess  individuals  to 

maintain a constant population size across generations. A common technique for doing so 

is  discussed in [1]:  after  adding the newly created solutions,  the population is  sorted 

based  on  fitness.  By  simply  discarding  the  tail  (i.e. the  least  fit  individuals),  the 

population  size  is  maintained.  Applied  to  the  task  assignment  problem,  this  method 

applies too much selection pressure for the fittest individuals and population diversity 

quickly suffers. To reduce this selection pressure, not all individuals are removed from 

the end of the sorted population. A percentage of all removals are done at uniformly at 

random. This change allows some unfit solutions to remain, preserving diversity, without 

substantially increasing execution speed. Note that this culling methodology is not unlike 

the Meta-RaPS heuristic: a purely greedy removal technique is subject to randomization 
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to improve performance, though during this randomization, no priority is given to lower 

cost solutions.

E. Testing Proposed Crossover Operators

The four crossover methods are tested against several data sets of varying sizes, as 

indicated by the number of workers, skills, and tasks. This is reflected by the allowable 

running time for each data sets, as the smallest data set is stopped after only 15 minutes 

while the largest data set continues for 10 hours. Additionally, since smaller data sets 

require  less  run  time,  several  iterations  are  completed  to  better  ascertain  the  relative 

performance of the different methods. The stochastic nature of these algorithms leads to 

varying performance. These iterations help to eliminate this variability. While time did 

not permit multiple iterations for the largest data sets, differences in performance for the 

algorithms  tested  become more  pronounced  as  the  problem size  increases.  Therefore 

reasonable conclusions can be reached for these larger data sets without the benefit of 

multiple runs. The size, run time, and number of iterations for the data sets tested are 

presented in the table below.
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TABLE III

DATA SETS TESTED

Data Set Number of 

Workers

Number of 

Skills

Number of 

Tasks

Run Time 

(hours)

Number of 

Runs

1 9 11 13 0.25 26

2 11 13 44 2 8

3 30 20 100 5 5

4 50 50 100 6 4

5 50 50 220 8 1

6 100 40 400 10 1
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III. IMPLEMENTATION

The  algorithms  discussed  in  this  thesis  were  implemented  using  the  Java 

programming  language.  The  Eclipse  integrated  development  environment  provided  a 

multi-platform tool for building and testing the Java program.

A. Input Data

The task assignment Java program provides a command line interface that accepts 

a single argument: the name of the execution configuration file. This file contains an 

“execution set”. Included are the directory to store output files, the directory and file 

names containing data sets, run times for each data set, and the crossover operators to be 

tested. This enables multiple runs to be initialized and then left to run overnight. As most 

data sets were run for several hours, the run times represent hours of execution time. 

However, these values are read as floating point numbers, enabling shorter run times for 

small data sets. The crossover operator names are read as strings, which are then used to 

dynamically  create  class  instances  using  reflection.  The  file  format  for  data  sets  is 

discussed below. The name of the crossover operators, as well as the data set, are used to 

create unique file names for all runs.

The first three lines of an input data file identify the number of workers, skills, 
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and tasks for the data set. This is followed by two skill level matrices: each row of the 

first matrix corresponds to a worker while the second matrix lists the requisite skill levels 

to complete each task. These matrices are followed by the time required for each task, 

then the total capacity for each worker. The final two matrices specify the cost and time 

to train to increase each skill  for all  skill  levels.  All  data is delimited by whitespace 

making input data files easily human-readable, while remaining simple to parse using 

regular expressions.

The input data files are read in by the ProblemSet class. By storing the problem 

data in a single static class, the memory required is minimized. The matrices are stored in 

arrays  which  enable  access  to  problem  data  in  constant  time.  Interfacing  with  the 

ProblemSet class  is  done  primarily  by  the  Worker and  Task classes,  which  are 

responsible  for  calculating  training  cost,  remaining  worker  capacity,  and  so  on.  The 

impetus for using a global data store is clear considering the number of workers and tasks 

for larger data sets. If each contained all necessary data, the memory requirement would 

grow quickly as the number of tasks and workers increases.

B. Greedy Scheduler Interface

The four crossover operators inherit from a base class,  GreedyScheduler (so 

named for the original algorithms which scheduled tasks in a greedy manner). This base 

class provides two benefits. The first is the inclusion of common functionality used by all 

the  crossover  techniques.  For  example,  before  beginning  any  of  the  two-phase 

assignment  algorithms,  all  unassigned  workers  and  tasks  must  first  be  identified.  A 
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method for doing so is provided by the base class. Another example is the need to copy 

the  list  of  workers  passed  in  so  that  the  original  is  unmodified.  Again  a  method  is 

supplied to do so.

The second benefit to the use of the GreedyScheduler base class is to provide a 

common interface for use inside the genetic algorithm. All subclasses must implement 

the  schedule() method,  which  accepts  a  list  of  workers  and  returns  a  complete 

solution. The workers may already have some tasks assigned to them, thus acting as fixed 

assignments.  This  enables  the  scheduling  algorithms  to  “fill  out”  the  remaining 

assignments after a child solution inherits some worker-task pairs  from its parents. A 

getName() method  is  also  required,  enabling  different  crossover  techniques  to  be 

identified dynamically in filenames, etc. By providing a common interface, use of a base 

class enables the crossover technique to easily be changed.
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IV. RESULTS

A. Comparison of Solution Quality

After  testing each  crossover  technique against  all  data  sets,  the  best  solutions 

found  are  recorded  and  presented  in  the  table  below.  As  hypothesized,  the  random 

crossover method has the worst performance overall,  while the roulette wheel method 

had  the  second  worst  performance.  These  results  indicate  that  the  task  assignment 

problem  greatly  benefits  from  a  problem-centric  heuristic.  Of  the  two  pre-existing 

techniques, the Meta-RaPS algorithm performed best as a crossover operator. Note that 

for the largest data set, the regret algorithm could not be run due to memory limitations of 

the Java Virtual Machine.
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TABLE IV

BEST SOLUTION FOUND FOR EACH CROSSOVER METHOD

(*KNOWN OPTIMAL SOLUTION)

Data Set Random GA Roulette Wheel 

GA

Meta-RaPS 

Regret GA

Meta-RaPS 

Greedy GA

1 552 555 551* 551*

2 1411 1387 1268 1262

3 6712 5173 3416 2825

4 23784 22260 20533 18217

5 33529 25499 19448 16755

6 52226 35167 – 19041

While the random crossover technique generally performed poorly compared to 

other methods, it did manage to surpass the roulette wheel algorithm on the smallest data 

set.  In fact, the best solution found by the random method is only one more than the 

optimal solution. Analyzing the mean and standard deviation for the best solutions from 

all  runs  further  highlights  the  unusually  good  performance  of  the  random crossover 

method on the smallest data set. These results are presented in the table below.

TABLE V

DISTRIBUTION OF TRAINING COSTS AFTER 26 RUNS ON DATA SET 1

Mean Standard Deviation

Random GA 554.35 1.70

Roulette Wheel GA 560.65 5.40

Meta-RaPS Regret GA 560.85 7.52

Meta-RaPS Greedy GA 551.00 0.00

Notice that the mean score for the random method is better than both the roulette 
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wheel  and  regret  algorithms.  Additionally,  the  random  method  had  a  much  lower 

variability in solution quality compared to those other techniques. The reason for this 

may be due to the small problem size: using a purely random crossover technique allows 

for a much broader search of the solution space. This would explain why the initially 

reasonable performance quickly degrades with increasing problem size. 

Also of note is the performance of the two pre-existing algorithms as crossover 

methods.  While  both  found the  optimal  solution,  their  overall  performance is  hardly 

comparable. The regret algorithm had the worst average performance overall, as well as 

the largest variability in solution quality. In contrast, the Meta-RaPS algorithm located 

the  optimal  solution  every  run,  giving  it  the  best  average  performance  and  lowest 

variability.

Although the regret algorithm performed inconsistently for the smallest data set, 

as the problem size increases, so does the relative performance of the algorithm. The 

distribution of results for the second data set bears this out, as is evident in the table 

below. Already the average relative performance of the four crossover methods begin to 

differentiate, a trend that continues with increasing problem sizes.

TABLE VI

DISTRIBUTION OF TRAINING COSTS AFTER 8 RUNS ON DATA SET 2

Mean Standard Deviation

Random GA 1457.86 29.55

Roulette Wheel GA 1439.50 48.77

Meta-RaPS Regret GA 1305.13 25.96

Meta-RaPS Greedy GA 1273.50 8.50
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The Meta-RaPS crossover operator consistently found better solutions than any 

other method. To provide a broader view of the algorithm's performance, the results for 

the original Meta-RaPS greedy algorithm are provided below [5]. Again, the Meta-RaPS 

crossover  operator  provides  smaller  training  costs  for  all  data  sets.  Clearly  the 

combination of a genetic algorithm with a greedy heuristic proves more successful than 

either individually.

TABLE VII

COMPARISON OF META-RAPS GREEDY AND GENETIC ALGORITHHMS

Data Set MR Greedy MR Greedy GA

1 558 551

2 1462 1262

3 3202 2825

4 19436 18217

5 18799 16755

6 20510 19041

B. Comparison of Convergence

The  previous  section  analyzed  the  relative  performance  of  the  four  crossover 

methods by comparing the best solutions found for each data set. The performance of 

these algorithms may also be compared based on the convergence of their population. 

Observing the evolution of a population's fitness for each method provides further insight 

into the performance of these algorithms. Tracking the best, worst, and median solutions 
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in the population over time provides a visual indication of the distribution of population 

fitness.

1. Random

FIGURE 7 - Performance of Random Crossover Operator on Data Set 5

The first  crossover method considered is the random algorithm, as seen in the 

preceding graph. Compared to the other methods discussed below, the random algorithm 

stands out by failing to exhibit any convergent behavior. The worst, median, and best 

solutions in the population stay well differentiated during the execution of the genetic 

algorithm, a likely cause for the lackluster performance of this crossover method. These 
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results are somewhat unexpected, as the genetic algorithm exerts some selection pressure, 

though the population never begins to converge. This is further indication that a purely 

genetic approach to the task assignment problem is inadequate for producing high quality 

solutions.

2. Roulette Wheel

FIGURE 8 - Performance of Roulette Wheel Crossover Operator on Data Set 5

The roulette wheel crossover method is analyzed next. At first the best, worst, and 

median solutions remain well differentiated like the random method. However, once the 

fitness of the best solution crosses a certain threshold after approximately 100 minutes, 
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the population rapidly converges. After roughly 2 hours of run time, the diversity of the 

population collapses as the majority of individuals are duplications of the best solution. 

The worst solution in the population continues to fluctuate past this point, but it is not 

enough to encourage further diversity.  Collapse of population diversity is the primary 

shortcoming of the techniques tested: once this  occurs,  the algorithms have difficulty 

finding better solutions, and often become permanently stuck at the local optima. Indeed, 

for the roulette wheel crossover method, no improvements are made to the best solution 

after the collapse of diversity.

3. Meta-RaPS Regret

FIGURE 9 - Performance of Meta-RaPS Regret Crossover Operator on Data Set 5
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The convergent behavior of the regret algorithm is now examined. In contrast to 

the previous crossover methods, the regret algorithm exhibits convergent behavior from 

the beginning.  The best  and median cost  solutions  do not fluctuate,  but  have a clear 

downward trend as the population tends toward better solutions. Like the roulette wheel 

method,  the  population  diversity  collapses  less  than  two  hours  after  initialization. 

However, the regret algorithm continues to make some improvements to solution quality 

without the benefit of a diverse population. This is likely the result of having a problem-

centric heuristic in the crossover operator, which is capable of search behavior relatively 

independent of the genetic algorithm.
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4. Meta-RaPS Greedy

FIGURE 10 - Performance of Meta-RaPS Greedy Algorithm on Data Set 5

Finally,  the  Meta-RaPS  crossover  method  is  analyzed.  As  with  the  regret 

algorithm, Meta-RaPS causes the population to begin converging immediately, though 

this convergence is much more rapid than any other method. While the roulette wheel and 

regret  algorithms took over an hour  to  decimate population diversity,  the Meta-RaPS 

algorithm  reaches  this  collapse  after  only  five  minutes  of  run  time,  as  seen  in  the 

truncated graph below. Even so, the algorithm continues to find better solutions, with the 

last best solution found seven and half hours after beginning. Again this is likely the 

result of utilizing a problem-centric heuristic in the crossover algorithm.
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FIGURE 11 - Performance of Meta-RaPS Greedy Crossover Operator for First Hour

37



V. CONCLUSIONS

The proposed combination of a greedy heuristic with a genetic algorithm led to 

the  development  of  several  crossover  operators.  A purely  random  method  acts  as  a 

control,  providing a basis of comparison. The roulette wheel technique incorporates a 

limited  stochastic  heuristic,  while  the  final  two  methods  utilize  the  Meta-RaPS  and 

Regret greedy algorithms.

Comparison of these crossover operators proved that the combination of a greedy 

heuristic and genetic algorithm provides better solutions than merely a genetic approach. 

Additionally,  the  top-performing  Meta-RaPS  genetic  algorithm  consistently  produced 

lower training costs than the original Meta-RaPS greedy algorithm. These results indicate 

that the combination of a greedy heuristic and genetic algorithm is a better approach than 

either technique used individually. 

In  addition  to  comparing  solution  quality,  the  convergent  behavior  of  each 

crossover operator is analyzed.  The best,  median, and worst cost solutions within the 

population are graphed over time. The random operator lacked any convergent behavior, 

but  maintained  population  diversity.  The  roulette  wheel  did  not  initially  exhibit 

convergence.  Once  started,  though,  the  population  quickly  succumbed  to  collapse  of 

diversity, halting further improvements to the best solution. The greedy heuristics began 
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converging immediately and also suffered from diversity collapse. However, the greedy 

methods continued to improve solution quality despite little diversity in the population. 

The collapse in population diversity is the primary shortcoming of the combined 

algorithm.  After  the  collapse  of  population  diversity,  improvements  upon  the  best 

solution are greatly perturbed. Further investigation into maintaining this diversity may 

lead to better performance with a more robust search that is less likely to become stuck at 

local optima. 

Another shortcoming of this  implementation is  the use of static values for the 

%priority  and  %restriction values. The setting of these parameters greatly affects the 

performance of the Meta-RaPS crossover operator, with the optimal values dependent on 

the problem size. Therefore it may be beneficial to set these values dynamically, based on 

the  number  of  fixed  assignments.  Stricter  parameters  could  be  used  to  initialize  the 

population of the genetic algorithm, ensuring reasonably good starting solutions, while 

looser  parameters  would  allow  for  more  search  behavior  once  the  population  had 

sufficiently converged. Defining the %priority and  %restriction values as a function of 

the population diversity or number of inherited genes would be a possible avenue of 

further research. 
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