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Abstract. This paper presents a novel approach to the technical analysis of wire-

heading in intelligent agents. Inspired by the natural analogues of wireheading

and their prevalent manifestations, we propose the modeling of such phenomenon

in Reinforcement Learning (RL) agents as psychological disorders. In a prelimi-

nary step towards evaluating this proposal, we study the feasibility and dynamics

of emergent addictive policies in Q-learning agents in the tractable environment

of the game of Snake. We consider a slightly modified settings for this game, in

which the environment provides a “drug” seed alongside the original “healthy”

seed for the consumption of the snake. We adopt and extend an RL-based model

of natural addiction to Q-learning agents in this settings, and derive sufficient

parametric conditions for the emergence of addictive behaviors in such agents.

Furthermore, we evaluate our theoretical analysis with three sets of simulation-

based experiments. The results demonstrate the feasibility of addictive wirehead-

ing in RL agents, and provide promising venues of further research on the psy-

chopathological modeling of complex AI safety problems.

Keywords: AI Safety · Psychopathology · Reinforcement Learning · Addiction

· Wireheading.

1 Introduction

A necessary requirement for both current and emerging forms of Artificial Intelligence

(AI) is the need for robust specification of objectives to the AI agent. Currently, a promi-

nent framework for goal-based control of intelligent agents is Reinforcement Learning

(RL) [7]. At its core, the objective of an RL agent is to optimize its actions such that

an externally-generated reward signal is maximized. However, RL agents are prone to

various types of AI safety problems, among which wireheading is subject to growing

interest [8]. This problem is generally defined as the manifestation of behavioral traits

that pursue the maximization of rewards in ways that do not align with the long-term

objectives of the system [9]. Considering the roots of this paradigm in neuroscientific

literature, Yampolskiy [8] argues that wireheading is common in human behaviors, as

manifested in traits such as substance addiction [5]. This argument is also supplemented

with an investigation of wireheading in AI, leading to the conclusion that wireheading

in rational self-improving optimizers is a real and open problem. In recent years, various

http://arxiv.org/abs/1811.05590v1
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studies have emphasized on the vitality of this problem in the domain of AI safety (e.g.,

[1]), and some have proposed solutions for limited instances of wirehead in RL agents

(e.g., [3]). Yet, the growing complexity of current and emerging application settings

for RL gives rise to the need for tractable approaches to the analysis and mitigation of

wireheading in such agents.

In response to this growing complexity, a recent paper by the authors [2] presents

an analogy between AI safety problems and psychological disorders, and proposes the

adoption of a psychopathological abstraction to capture the problems arising from the

deleterious behaviors of AI agents in a tractable framework based on the available tools

and models of psychopathology. In particular, [2] mentions that the RL framework,

which itself is inspired by the neuroscientific models of the dopamine system [7], has

been adopted by neuroscientists to develop models of psychological disorders such as

schizophrenia and substance addiction [5]. Accordingly, the authors propose to exploit

this bidirectional relationship to investigate the complex problems of AI safety.

To study the feasibility of the proposals in [2], this paper adopts the RL-based model

of substance addiction in natural agents [6] to analyze the problem of wireheading in RL

agents. To this end, we investigate the emergence of addictive behaviors in a case study

of an RL agent training to play the well-known game of Snake [4] in an environment

that provides a “drug” fruit in addition to the typical, healthy seed for the snake. By

extending the formulation of [6] to Q-learning, we analyze the sufficient conditions for

the emergence of addictive behavior, and verify this theoretical analysis via simulation-

based experiments. The remainder of this paper provides the required background on

RL and RL-based modeling of addiction, details our theoretical analysis, and presents

the experimental results. The paper concludes with remarks on future extensions of our

findings.

2 Background

This section presents an overview of RL and the relevant terminology, as well as a

summary of the work by Redish [6] in modeling addiction within the RL framework.

Readers interested in further details of either topics may refer to [7] and [5].

2.1 Reinforcement Learning

Reinforcement learning is concerned with agents that interact with an environment and

exploit their experiences to optimize a decision-making policy. The generic RL problem

can be formally modeled as a Markov Decision Process (MDP), described by the tuple

MDP = (S,A,R, P ), where S is the set of reachable states in the process, A is the

set of available actions, R is the mapping of transitions to the immediate reward, and

P represents the transition probabilities (i.e., dynamics), which are initially unknown

to RL agents. At any given time-step t, the MDP is at a state st ∈ S. The RL agent’s

choice of action at time t, at ∈ A causes a transition from st to a state st+1 according

to the transition probability P at

st,st+1
. The agent receives a reward rt+1 for choosing

the action at at state st. Interactions of the agent with MDP are determined by the

policy π. When such interactions are deterministic, the policy π : S → A is a mapping
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between the states and their corresponding actions. A stochastic policy π(s) represents

the probability distribution of implementing any action a ∈ A at state s. The goal of

RL is to learn a policy that maximizes the expected discounted return E[Rt], where

Rt =
∑

∞

k=0 γ
krt+k; with rt denoting the instantaneous reward received at time t, and

γ is a discount factor γ ∈ [0, 1]. The value of a state st is defined as the expected

discounted return from st following a policy π, that is, V π(st) = E[Rt|st, π]. The

action-value (Q-value) Qπ(st, at) = E[Rt|st, at, π] is the value of state st after using

action at and following a policy π thereafter.

As a value function-based solution to the RL problem, the Q-learning method es-

timates the optimal action policies by using the Bellman formulation Qi+1(s, a) =
E[R+γmaxa Qi] as the iterative update of a value iteration technique. Practical imple-

mentation of Q-learning is commonly based on function approximation of the parametrized

Q-functionQ(s, a; θ) ≈ Q∗(s, a). A common technique for approximating the parametrized

non-linear Q-function is via neural network models whose weights correspond to the

parameter vector θ. Such neural networks, commonly referred to as Q-networks, are

trained such that at every iteration i, the following loss function is minimized:

Li(θi) = Es,a∼ρ(.)[(yi −Q(s, a, ; θi))
2] (1)

where yi = E[R + γmaxa′ Q(s′, a′; θi−1)|s, a], and ρ(s, a) is a probability distri-

bution over states s and actions a.

2.2 RL Model of Addiction

One of the earliest computational models of addiction is the seminal work of Redish in

[6]. In this paper, Redish assumes the hypothesis that addictive drugs access the same

neurophysiological mechanisms as natural learning systems, which can be modeled

through the Temporal-Difference RL (TDRL) algorithm [7]. TDRL learns to predict

rewards by minimizing a prediction error (i.e., reward-error signal), which, in the nat-

ural brain, is believed to be carried by dopamine. Many addictive substances, such as

cocaine, increases the dopamine levels. Redish hypothesizes that this noncompensable

drug-induced increase of dopamine may lead to incorrect optimizations in TDRL. Con-

sidering that the goal of TDRL is to correctly learn the value of each state (V (st)),
TDRL learns the value function by calculating two equations per each action taken by

the agent. If the agent leaves state st and enters state st+1 and received the reward rt+1,

then the corresponding reward-error signal, denoted by δ, is given by:

δ(t+ 1) = γ[R(st+1) + V (st+1)]− V (st) (2)

Then, V (st) is updates as:

V (st)← V (st) + νδ, (3)

where ν is a learning rate parameter. The TDRL algorithm stops when the value func-

tion correctly predicts the rewards. The value function can be seen as a compensation

for the reward, as the change in value in taking action at leading to the state transition

st → st+1 counter-balances the reward achieved on entering state st+1. This happens

when δ = 0. However, cocaine and other addictive drugs produce a transient surge in
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dopamine, which can be modeled by the assumption that the drug-induced surge in δ
cannot be compensated by changes in the value. In other words, the effect of addictive

drugs is to induce a positive reward-error signal regardless of the change in value func-

tion, thus making it impossible for the agent to learn a value function that cancels out

this positive error. As a result, the agent learns to assign more value to the states leading

to the dopamine surge, thus giving rise to the drug-seeking behavior of addicted agents.

3 Case Study : RL Addiction in Snake

To investigate the feasibility of addictive wireheading in RL agents, we consider the

game of Snake [4] for formal and experimental analysis. The most basic form of Snake

is played by one player who controls the direction of a constantly-moving snake in a

grid, with the goal of consuming as many seeds as possible by running into them with

the head of the snake. The seeds appear in random positions of the grid, and consump-

tion of each seed increases the length of the snake. Running into the grid walls or the

snake itself results in termination, thus maneuvering becomes progressively more diffi-

cult as the snake consumes more seeds.

In this study, the game is modified to include two types of edible items: one is the

classical seed that increases the length of snake Ls by 1 unit, and a “drug” fruit that

increases Ls by u units. The instantaneous reward values in this setting is defined by:

rt =











rc if agent consumes a seed,

k.rc if agent consumes a drug,

0 otherwise

(4)

The objective of the agent is to maximize the return, defined as R =
∑T

t=0 rt,
where T is the terminal time of an episode. We adopt the formalism of Q-learning as an

instance of the TD-learning approach.

The questions that we target in this study are two-fold: first is to analyze whether

addictive behaviors may emerge in a Q-learning agent training in this environment, and

second is to establish the parametric boundaries of the reward function for such behavior

to emerge. The following section presents a formal analysis of these two problems.

3.1 Analysis

First, we define addictive behavior as those that demonstrate compulsive pursuit of

trajectories that may maximize short-term rewards, but defy the core objective of maxi-

mizing the long-term cumulative reward of the agent. At a state sd where the agent can

take action am to consume a drug (i.e., move into a cell that contains a drug fruit), the

Q-value is given by:

Q(sd) = k.rc + γV (smd+1), (5)

where γ ∈ [0, 1] is the discount factor and V (smd+1) is the value of the resulting state

smd+1. Alternatively, if the agent takes any action ag other than am, the Q-value is given

by:

Q(sd, ag) = rc + γV (sgd+1) (6)
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The manifestation of addiction can be formulated as:

γV (smd+1) < γV (sgd+1) (7)

Q(sd, am) > Q(sd, ag) (8)

Eq. (7) can be reformulated as

V (smd+1) = V (sgd+1)/ld+1, (9)

where ld+1 > 1. From Eq. (8) we have:

k.rc + γV (sgd+1)/ld+1 > rc + γV (sgd+1) (10)

which can be rearranged as:

(k − 1).rc
γ(1− 1/ld+1)

> V (sgd+1) (11)

To obtain a sufficient upper bound for emergence of addiction, we find the maximum

possible value of V (sgd+1) as follows: in an n× n grid, the maximum possible score is

achieved when all elements of the grid are filled with the length of the agent. Consider-

ing the assumption in Eq. (7), an upper bound for the game score (and hence for state

value) is Vmax = rc(n
2 − L0), where L0 is the initial length of the snake. Therefore, a

sufficient condition on k, rc, and γ for manifestation of addiction is:

(k − 1)

γ
> n2 − L0. (12)

Also, for the condition of Eq. (7) to hold, it is necessary for k to be set such that:

k.rc(n
2 − L0)/u < rc(N

2 − L0)/1 =⇒ k/u < 1 (13)

4 Experimental Verification

To evaluate the validity of our analysis, we developed the environment of Snake ac-

cording to the previously discussed specifications. The environment is comprised of an

n = 8 × 8 grid, and the initial length of the snake is set to L0 = 4 grid cells. As illus-

trated in Figure 3.1, any given time the grid displays two randomly positioned objects,

one is the healthy seed (depicted in red), and the other is a drug (colored in blue).

Furthermore, we implemented a tabular Q-learning algorithm with iterative update

to train in this environment according to the reward function of Eq. (4). The exploration

mechanism used by our Q-learning implementation is ǫ−greedy, with the initial value

of ǫ = 0.99. We consider a constant discount factor γ = 0.9, and initialize the table of

Q-values to 0. We also consider the instantaneous reward of consuming healthy seeds

to be rc = 20. Based on the parametric boundaries derived in Eq. (12) and Eq. (13),

we performed three experiments. First, we considered the baseline case where the con-

sumption of drugs do not produce any rewards or length growth (i.e., k = u = 0). For
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Fig. 1. Modified environment of Snake with both healthy seed (red) and drug seed (blue)

the second experiment, we consider a small value of k = 1.5, which does not necessar-

ily abide by the sufficient condition of Eq. (12). Simultaneously, we set u = 4, which

does satisfy the condition of Eq. (13). In the third experiment, we chose k = 6 and

u = 8 to satisfy both of the derived conditions. To verify the statistical significance

of results, the training process of each experiment was repeated 20 times up to 22000
iterations, and the test-time experiments were repeated 100 times each.
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Fig. 2. Averaged results of the training process up to 22000 iterations for three experiments

Fig. 3. Test-time scores obtained from each experiment
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Fig. 4. Test-time consumption of healthy seeds and drugs in three experiments

Figure 4 demonstrates the training results obtained from the three experiments. It is

observed that the baseline case has achieved significantly higher average scores in the

same amount of time as the other two cases. Furthermore, the results indicate that the

agents training in an environment that includes drug-induced rewards fail to converge

towards optimal performance in the observed periods of training. It is also notewor-

thy that both of the drug-consuming agents reach relatively stable sub-optimal perfor-

mances in the same period in which the healthy agent enhances its cumulative perfor-

mance. Moreover, the better performance of the third experiment compared to the sec-

ond can be explained by the significantly higher instantaneous reward values produced

from consuming the drug objects, which noticeably enhance the average performance

in comparison to the second experiment with lower values of drug-induced rewards.

The test-time performance of the agents trained in aforementioned environments

is illustrated in Figure 4. These results are in agreement with those of Figure 4, as

the baseline agents demonstrate superior performance in gaining cumulative rewards,

as opposed to the agents trained under drug-induced rewards. Furthermore, Figure 4

presents a comparison between the number of healthy seeds and drugs consumed by

each agent at test-time. As expected, the baseline results demonstrate a significantly

higher consumption of healthy seeds, and the minor levels of drug consumption are due

to unintended collisions with the drug objects during game play. It is interesting to note

the similarity in the consumption levels of agents trained with drug-induced rewards. In
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both cases, the agents consume slightly more drugs than healthy seeds, which indicates

bias towards the short-term reward-surges of consuming drugs over pursuit of healthy

seeds. Although, the difference between the averaged levels of healthy and drug seed

consumption is not significant, which may indicate that the agents learned a balanced

sub-optimal policy, resulting in confinement within local optima. While this problem

can be resolved via enhanced randomization and exploration strategies, one shall con-

sider the effect of this deficiency on sample-efficiency and the consequent limitations

of real-world applications.

5 Conclusion

We studied the feasibility of adopting the RL-based model of substance addiction in nat-

ural agents in the analysis of wireheading in RL-based artificial agents. We presented an

analytical extension to a TD-learning based model of addiction, and established suffi-

cient parametric conditions on reward functions for the emergence of addictive behavior

in AI agents. To verify this extension, we presented experimental results obtained from

Q-learning agents learning to play the game of Snake, which is modified to include

drug-induced surges in instantaneous rewards. The results demonstrate the promising

potential of adopting the psychopathological models of mental disorders in the analysis

of complex AI safety problems.
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