
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Faculty Scholarship

11-1-2018

Why We Do Not Evolve Software? Analysis of Evolutionary Why We Do Not Evolve Software? Analysis of Evolutionary

Algorithms Algorithms

Roman V. Yampolskiy
University of Louisville, roman.yampolskiy@louisville.edu

Follow this and additional works at: https://ir.library.louisville.edu/faculty

 Part of the Computer Engineering Commons

Original Publication Information
Yampolskiy RV. Why We Do Not Evolve Software? Analysis of Evolutionary Algorithms. Evolutionary
Bioinformatics. January 2018. doi:10.1177/1176934318815906

ThinkIR Citation
Yampolskiy, Roman V., "Why We Do Not Evolve Software? Analysis of Evolutionary Algorithms" (2018).
Faculty Scholarship. 568.
https://ir.library.louisville.edu/faculty/568

This Article is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of ThinkIR: The
University of Louisville's Institutional Repository. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/faculty
https://ir.library.louisville.edu/faculty?utm_source=ir.library.louisville.edu%2Ffaculty%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Ffaculty%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/faculty/568?utm_source=ir.library.louisville.edu%2Ffaculty%2F568&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu

https://doi.org/10.1177/1176934318815906

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 14: 1–11
© The Author(s) 2018
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1176934318815906

We point out a curious philosophical implication of the algo-
rithmic perspective: if the origin of life is identified with the

transition from trivial to non-trivial information
processing – e.g. from something akin to a Turing machine
capable of a single (or limited set of) computation(s) to a

universal Turing machine capable of constructing any
computable object (within a universality class) – then a precise

point of transition from non-life to life may actually
be undecidable in the logical sense. This would

likely have very important philosophical
implications, particularly in our interpretation of life

as a predictable outcome of physical law.1

Introduction
On April 1, 2016, Dr Yampolskiy posted the following to his
social media accounts: “Google just announced major layoffs of
programmers. Future software development and updates will be
done mostly via recursive self-improvement by evolving deep
neural networks.” The joke got a number of “likes” but also,
interestingly, a few requests from journalists for interviews on
this “developing story.” To nonexperts, the joke was not obvious,
but why? Why don’t we evolve software? A quick search pro-
duced no definitive answers, and so this article was born.

In 1859, Charles Darwin2 and many scholars before him3,4
have proposed theories to explain the origins of complex life-
forms via natural selection and modification. Scientific theories
are algorithms which given as input starting conditions make
statistically accurate predictions of the future state of the sys-
tem. For example, computer simulations of continental drift
give us positions of continents at some time t. Yampolskiy
emphasizes importance of such simulations:

A scientific theory cannot be considered fully accepted until it can
be expressed as an algorithm and simulated on a computer. It should
produce observations consistent with measurements obtained in the
real world, perhaps adjusting for the relativity of time scale between
simulation and the real world. In other words, an unsimulatable
hypothesis should be considered significantly weaker than a

simulatable one. It is possible that the theory cannot be simulated
due to limits in our current computational capacity, hardware design,
or capability of programmers and that it will become simulatable in
the future, but until such time, it should have a tentative status.5

Simulations of Darwinian algorithm on a computer are known as
evolutionary algorithms (EAs) and have been around since the
early days of computer science,6,7 with popular sub-fields such as
genetic algorithms (GA), genetic programming (GP), evolutionary
strategy (ES), and artificial life (AL). Currently, the state of perfor-
mance in all of the above-mentioned areas is orders of magnitude
less complex than what we observe in the natural world, but why?

A number of seminal papers have been published attempting
to formalize Darwin’s biological theory from the point of view
of computational sciences. Such works essentially see biological
evolution as a computational process running on a carbon-based
substrate, but which can be run on other substrates. Valiant in
his work on evolvability8 treats Darwinian evolution as a learn-
ing process over mathematical functions and attempts to explain
quantitatively which artifacts can be evolved with given
resources, and which cannot. Likewise, Chaitin9,10 in his work
on metabiology attempts to develop an abstract fundamental
mathematical theory of evolution. Wolfram in his, “a New Kind
of Science,”11 attempts to show how rules of computational uni-
verse of simple programs can be used to explain some of the
biological complexity we observe. Livnat and Papadimitriou12
analyze sex as an algorithm, in their work on the theory of evo-
lution viewed through the lens of computation.

It is interesting to do a thought experiments and try to
imagine what testable predictions Charles Darwin would have
made, had he made his discovery today, with full knowledge of
modern bioinformatics and of computer science. His predic-
tions may have included the following: (1) simulations of evo-
lution will produce statistically similar results at least with
respect to complexity of artifacts produced and (2) if running
EAs for as long as possible continued to produce nontrivial

Why We Do Not Evolve Software? Analysis of
Evolutionary Algorithms

Roman V Yampolskiy
Department of Computer Engineering and Computer Science, J.B. Speed School of Engineering,
University of Louisville, Louisville, KY, USA.

ABSTRACT: In this article, we review the state-of-the-art results in evolutionary computation and observe that we do not evolve nontrivial
software from scratch and with no human intervention. A number of possible explanations are considered, but we conclude that computational
complexity of the problem prevents it from being solved as currently attempted. A detailed analysis of necessary and available computational
resources is provided to support our findings.

Keywords: Darwinian algorithm, genetic algorithm, genetic programming, optimization

RECEIVED: October 15, 2018. ACCEPTED: November 6, 2018.

Type: Algorithm Development for Evolutionary Biological Computation - Original
Research

Funding: The author(s) received no financial support for the research, authorship, and/or
publication of this article.

Declaration of conflicting interests: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Roman V Yampolskiy, Department of Computer Engineering
and Computer Science, J.B. Speed School of Engineering, University of Louisville, Duthie
Center for Engineering, 215, 222 Eastern Pkwy, Louisville, KY 40208, USA.
Email: roman.yampolskiy@louisville.edu

815906 EVB0010.1177/1176934318815906Evolutionary BioinformaticsYampolskiy
research-article2018

https://uk.sagepub.com/en-gb/journals-permissions
mailto:roman.yampolskiy@louisville.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1176934318815906&domain=pdf&date_stamp=2018-12-01

2	 Evolutionary Bioinformatics ﻿

outputs, scientists would run them forever. Likewise, he would
be able to make some predictions, which would be able to fal-
sify his theory, such as (1) representative simulations of evolu-
tion will not produce similar results to those observed in nature,
(2) researchers will not be able to evolve software or other com-
plex or novel artifacts, and (3) there will not be any projects
running EAs long term because their outputs would quickly
stop improving and stabilize. With respect to the public and
general cultural knowledge, it would be reasonable to predict
that educated people would know the longest-running EA and
the most complex evolved algorithm. Similarly, even school-
children would know the most complex digital organism ever
evolved.

In the rest of the article, we evaluate the state-of-the-art in
relevant published research to see how the above-mentioned
predictions and counterfactuals hold up and what we can say
about the foundational question of this article. We analyze
potential explanations for the current observations of progress
in the domain of EAs and look at computational resources,
required and available, as the main source of limitations and
future opportunities for evolving software.

Evolutionary Computation
Inspired by the Darwin’s theory2 of biological evolution, evolu-
tionary computation attempts to automate the process of opti-
mization and problem-solving by simulating differential
survival and reproduction of individual solutions. From the
early 1950s, multiple well-documented attempts to make
Darwin’s algorithm work on a computer have been published
under such names as Evolutionary Programming,13
Evolutionary Strategies,14 Genetic Algorithms,15 Genetic
Programming,16 Genetic Improvement,17 Gene Expression
Programming,18 Differential Evolution,19 Neuroevolution,20
and Artificial Embryogeny.21 Although numerous variants dif-
ferent in their problem representation and metaheuristics
exist,22-25 all can be reduced to just 2 main approaches—GA
and GP.

The GAs are used to evolve optimized solutions to a par-
ticular instance of a problem such as Shortest Total Path,26
Maximum Clique,27 Battleship,28 Sudoku,29 Mastermind,24
Light Up,30 Graph Coloring,31 integer factorization,32,33 or
efficient halftone patterns for printers34 and so are not the pri-
mary focus of this article. The purpose of GPs, from their
inception, was to automate programming by evolving an algo-
rithm or a program for solving a particular class of problems,
for example, an efficient35 search algorithm. Software design is
the type of application most frequently associated with GPs,36
but work in automated programming is also sometimes referred
to as “real programing,” “object-oriented GP,” “traditional pro-
gramming,” “Turing-equivalent (TE) programming,” or
“Turing-complete GP.”37,38

The subfield of computation, inspired by evolution in gen-
eral, and GP paradigm, established by John Koza in 1990s, in

particular, are thriving and growing exponentially as evidenced
both by the number of practitioners and of scientific publica-
tions. Petke et al17 observe “. . . enormous expansion of number
of publications with the Genetic Programming Bibliography
passing 10,000 entries . . . By 2016 there were nineteen GP
books including several intended for students . . .” Such tre-
mendous growth has been fueled, since early days, by belief in
capabilities of EAs and our ability to overcome obstacles of
limited compute or data as illustrated by the following quotes:

We will (before long) be able to run genetic algorithms on com-
puters that are sufficiently fast to recreate on a human timescale
the same amount of cumulative optimization power that the rele-
vant processes of natural selection instantiated throughout our
evolutionary past . . .39

As computational devices improve in speed, larger problem spaces
can be searched.40

“We believe that in about fifty years’ time it will be possible to pro-
gram computers by means of evolution. Not merely possible but
indeed prevalent.”41 “The relentless iteration of Moore’s law prom-
ises increased availability of computational resources in future years.
If available computer capacity continues to double approximately
every 18 months over the next decade or so, a computation requiring
80 h will require only about 1% as much computer time (i.e., about
48 min) a decade from now. That same computation will require
only about 0.01% as much computer time (i.e., about 48 seconds) in
two decades. Thus, looking forward, we believe that genetic pro-
gramming can be expected to be increasingly used to automatically
generate ever-more complex human-competitive results.”42

The production of human-competitive results as well as the
increased intricacy of the results are broadly correlated to increased
availability of computing power tracked by Moore’s law. The pro-
duction of human-competitive results using genetic programming
has been greatly facilitated by the fact that genetic algorithms and
other methods of evolutionary computation can be readily and
efficiently parallelized. . . . Additionally, the production of human-
competitive results using genetic programming has facilitated to
an even greater degree by the increased availability of computing
power, over a period of time, as tracked by Moore’s law. Indeed,
over the past two decades, the number and level of intricacy of the
human-competitive results has progressively grown. . . . there is,
nonetheless, data indicating that the production of human-com-
petitive results using genetic programming is broadly correlated
with the increased availability of computer power, from year to
year, as tracked by Moore’s Law.42

. . . powerful test data generation techniques, an abundance of
source code publicly available, and importance of nonfunctional
properties have combined to create a technical and scientific envi-
ronment ripe for the exploitation of genetic improvement.40

State-of-the-Art With Respect to Predictions
To establish the state-of-the-art in evolutionary computation
we examined a number of survey papers42,43 and seminal
results44-49 looking at produced human-competitive results, as
they are meant to represent the greatest accomplishments of
the field. Although, on the surface, the results may seem

Yampolskiy	 3

impressive, deeper analysis shows complete absence of success
in evolving nontrivial software from scratch and without
human assistance. It is of course necessary to be precise about
what it is we are trying to measure or detect, as to avoid disa-
greements resulting from ambiguity in terms being used.

It may be difficult to formally specify what makes a piece of
software nontrivial, but intuitively attractive measure of length
of the program expressed as the number of lines of code is not
a sufficient indicator of complexity, as it could have an extremely
low Kolmogorov50 complexity. Inspired by the Turing test,51,52
which is based on inability to distinguish output from a person
and a computer, we propose defining nontrivial software as
such which would take an average experienced human pro-
grammer at least a full hour of effort to produce if given the
same problem to solve. If the solution source code could be
produced with significantly less effort (eg, 1 minute), it may not
be sufficiently complex and the problem may be deemed trivial
for our purposes. Our approach to specifying triviality would
exclude “Hello World” and most other toy programs/problems
from consideration, which is exactly what we wanted to achieve
as the main benefit from being able to evolve software would
come from ability to replace full-time programmers.

Regarding the other 2 conditions, they are much easier to
specify. From “scratch” means that we are not starting with an
existing version of a program (but are happy to rely on existing
APIs, subject to the nontriviality of all newly produced code).
Without human assistance can be interpreted to mean that the
programmer is working alone, or a team of programmers is
working an equivalent amount of time, for example, 2 pro-
grammers would each need at least 40 minutes to solve the
problem, which implies a small communication overhead.

Reading early claims about capabilities of EA feels just like
reading early predictions from artificial intelligence (AI) litera-
ture.53 Some early success is projected into the future by assum-
ing that the same rate of progress continues and it is claimed
that complete success is just years away. However, just like with
early AI, the claims are inflated, unsupported, overly optimis-
tic, phrased in deceptive and metaphoric language, and the
solutions do not scale to the real-world problems. Perhaps, an
EA “winter” is long overdue. Here is how Koza presents the
state of the field in 1994:

. . . in this article, we will present a number of examples from vari-
ous fields supporting the surprising and counter-intuitive notion
that computers can indeed by programmed by means of natural
selection. We will show, via examples, that the recently developed
genetic programming paradigm provides a way to search the space
of all possible programs to find a function which solves, or approxi-
mately solves, a problem.16

After 16 years, he reports results of what he calls an “extraor-
dinary long experiment”:

An additional order-of-magnitude increase was achieved by mak-
ing extraordinarily long runs on the largest machine (the 1,000-
node machine). . . . The length of the run that produced the two

patentable inventions was 28.8 days—almost an order-of-magni-
tude increase (9.3 times) over the overall 3.4-day average for typi-
cal runs of genetic programming that our group had been making
at the time.42

One quickly realizes that most improvements in the field sim-
ply come from using more compute to search progressively
larger parts of the solutions space, a result similar to the one
expected for random search algorithm.

Here is an example of overhyped and ambiguous reporting
of results, from recent work on EA. Researchers Becker and
Gottschlich40 go from naming their paper—“AI Programmer:
Autonomously Creating Software Programs Using Genetic
Algorithms” to abstract “AI Programmer, that can automati-
cally generate full software programs requiring only minimal
human guidance.” To claiming that “Using AI Programmer, we
were able to generate numerous complete software programs.”
Finally, in experimental results they state what they managed to
produce “A generated program that outputs ‘hello’” or performs
addition operation.40 But even that is a bit of a hype, “Rather
than starting with ‘Hello World,’ we first had AI Programmer
create a more simplistic program that simply output ‘hi.’ It was
successfully after 5,700 generations . . .”40 Even this trivial
1-liner was not a clean success. “The generated program ful-
filled its requirement to output the target text, but interestingly
included subsequent random characters, which contained pars-
ing errors, including nonmatching brackets.”40 An identical
program but the one printing “I love all humans” took 6 057
200 generations.40

Perhaps, it is unfair to pick on this particular article, which
is only available as an unreviewed preprint, but we selected it
because it is highly representative of the type of work fre-
quently published in GP, and its extremeness makes problems
clear to identify. If its title was “Brute Forcing Strings,” it would
be a reasonable work on that subject, but like so many others,
authors claim to “Autonomously Creating Software Programs”
using evolutionary computation, a claim which is never sub-
stantiated in any published literature on this subject. We are
not alone in our skepticism; many others have arrived at exactly
the same conclusions:

We examine what has been achieved in the literature, and find a
worrying trend that largely small toy-problems been attempted
which require only a few line of code to solve by hand.38

“A literature review has revealed that only a small fraction of the
papers on GP deal with evolving TE computer programs, with the
ability to iterate and utilize memory, while the majority of papers
deal with evolving less expressive logical or arithmetic functions.”38
“We conclude that GP in its current form is fundamentally awed,
when applied to the space of TE programs.”38 “Computer code is
not as robust as genetic code, and therefore poorly suited to the
process of evolution, resulting in a insurmountable landscape
which cannot be navigated effectively with current syntax based
genetic operators. Crossover, has problems being adopted in a
computational setting, primarily due to a lack of context of
exchanged code. A review of the literature reveals that evolved

4	 Evolutionary Bioinformatics ﻿

programs contain at most two nested loops, indicating that a glass
ceiling to what can currently be accomplished.”38

A full understanding of open-ended evolutionary dynamics
remains elusive.54

There are many problems that traditional Genetic Programming
(GP) cannot solve, due to the theoretical limitations of its para-
digm. A Turing machine (TM) is a theoretical abstraction that
express the extent of the computational power of algorithms. Any
system that is Turing complete is sufficiently powerful to recognize
all possible algorithms. GP is not Turing complete.55

Even a survey of GP community itself produced the follow-
ing feedback regarding current problems being worked on:

“Far too many papers include results only on simple toy problems
which are often worse than meaningless: they can be misleading”;

“(we should exclude) irrelevant problems that are at least 20 years
old”;

“get rid of some outdated, too easy benchmarks”;

“the standard ‘easy’ Koza set should not be included”

“[it is] time to move on.”37

In practice, GPs are used in the same way as GAs, for optimi-
zation of solutions to particular problems or for function opti-
mization37,38,55–58 or for software improvement.59

Regarding Darwin’s hypothetical predictions raised in the
introduction, we can state the following:

Prediction. Simulations of evolution will produce statisti-
cally similar results at least with respect to complexity of
artifacts produced. Status. False as of 2018.

Prediction. If running EAs for as long as possible contin-
ued to produce nontrivial outputs, scientists would run them
forever. Status. False as of 2018.

Prediction. Representative simulations of evolution will not
produce similar results to those observed in nature. Status.
True as of 2018.

Prediction. Researchers will not be able to evolve software
or other complex or novel artifacts. Status. True as of 2018.

Prediction. There will not be any projects running EAs
long-term because their outputs would quickly stop improv-
ing and stabilize. Status. True as of 2018.

Prediction. With respect to the public and general cultural
knowledge, it would be reasonable to predict that educated
people would know the longest-running EA, and the most
complex evolved algorithm. Status. False as of 2018.

Prediction. Similarly, even schoolchildren would know the
most complex digital organism ever evolved. Status. False
as of 2018.

Looking at outcomes from the made predictions, we observe
that all predictions are false as of 2018 and all counterfactuals
are true as of the same year as long as we look only at nontrivial
products of evolutionary computations. We are not evolving
complex artifacts, we are not running EAs for as long as pos-
sible, we are not evolving software, and the public is unaware of
most complex products of evolutionary computation. On close
examination, all “human-competitive” results turn out to be
just optimizations, never fully autonomous programming lead-
ing to novel software being engineered.

Possible Explanations
A number of possible explanations for “Why we don’t evolve
software?” could be considered. We tried to be as comprehen-
sive as possible in this section, but it is possible that we have not
considered some plausible explanations:

•• Incompetent programmers—It is theoretically possible,
but is highly unlikely, that out of thousands of scientists
working on evolutionary computation, all failed to cor-
rectly implement the Darwinian algorithm.

•• Nonrepresentative algorithms—Some55 have suggested
that EAs do not accurately capture the theory of evolu-
tion, but of course that would imply that the theory itself
is not specified in sufficient detail to make falsifiable pre-
dictions. If, however, such more detailed specifications
are available to GP believers, it is up to them to imple-
ment them as computer simulations for testing purposes,
but no successful examples of such work are known and
the known ones have not been successful in evolving
software.

•• Inadequate fitness functions—Fitness function for a
complex software product is difficult to outline and spec-
ify and may be as complex (or even more complex) as the
software we want to evolve as it has to consider all the
possible use cases and pass all unit tests. This may be the
Achilles heel of GP, but it is also an objection to feasibil-
ity of programming in general and GP in particular, as
both have to convert software specification into the
source code. If human programmers and biological evo-
lution succeed with such constraints, so should Darwinian
simulations.

•• The Halting problem—Turing proved60 that it is impos-
sible to determine whether an arbitrary program halts,
but this is also a problem for human programmers and
could be easily addressed by placing time limits on con-
sidered solutions.

•• Program correctness—If we require evolved software to
be provably correct, this would present a problem as GP
does not verify produced designs but only tests them
against specific unit tests. Likewise, we cannot rely on
automated software verification as it is still an unsolved
problem5 in the general case. This is not really a problem

Yampolskiy	 5

as most of the human-written software is never proven to
be correct and only a small portion of software engineer-
ing process relies of formal specification and Test Driven
Development.

•• Inappropriate solutions—Literature on EA is full of
examples61 of surprising creativity of Darwinian algo-
rithm resulting in solutions which match the letter of
design specifications but not the spirit. This is similar to
human-produced software and numerous examples of
ways in which such software fails the goals of the initial
design.62

•• Insufficient complexity of the environment (not enough
data, poor fitness functions)—It is possible that the sim-
ulated environment is not complex enough to generate
high complexity outputs in evolutionary simulations.
This does not seem correct as Internet presents a highly
complex landscape in which many self-modifying com-
puter viruses roam.63 Likewise, virtual world such as
Second Life and many others present close approxima-
tions to the real world and are certainly more complex
than early Earth was:

A skeptic might insist that an abstract environment would be
inadequate for the evolution . . ., believing instead that the virtual
environment would need to closely resemble the actual biological
environment in which our ancestors evolved. Creating a physi-
cally realistic virtual world would require a far greater investment
of computational resources than the simulation of a simple toy
world or abstract problem domain (whereas evolution had access
to a physically realistic real world “for free”). In the limiting case,
if complete microphysical accuracy were insisted upon, the com-
putational requirements would balloon to utterly infeasible
proportions.39

Requiring more realistic environmental conditions may result
in an increase in necessary computational resources, a problem
addressed in the next bullet.

•• Insufficient resources (compute, memory)—From the
history of computer science, we know of many situations
(speech recognition, NN training), where we had a cor-
rect algorithm but insufficient computational resources
to run it to success. It is possible that we simply do not
have hardware powerful enough to emulate evolution.
We will address this possibility in section “Computational
Complexity of Biological Evolution and Available
Compute.”

•• Software design is not amenable to evolutionary meth-
ods—Space of software designs may be discreet with no
continues path via incremental fitness to the desired
solutions. This is possible, but this implies that original
goals of GP are unattainable and misguided. In addition,
because a clear mapping exists between solutions to
problems and animals as solutions to environmental
problems, this would also imply that current explanation
for the origin of the species is incorrect.64

•• Darwinian algorithm is incomplete or wrong—Finally,
we have to consider the possibility that the inspiration
behind evolutionary computation, the Darwinian algo-
rithm itself is wrong or at least partially incomplete. If
that was true, computer simulations of such algorithm
would fail to produce results comparable with observa-
tions we see in nature and a search for an alternative
algorithm would need to take place. This would be an
extraordinary claim and would require that we discard all
the other possible explanations from this list.

Perhaps, we can learn some answers from similar historical
conundrums. Earliest work on artificial neurons was done in
1943 by McCulloch and Pitts,65 and although research on
Artificial Neural Networks (ANN) continued,66 until 2010 it
would have been very logical to ask: “Why don’t artificial neu-
ral networks perform as well as natural ones?” Today, deep neu-
ral networks frequently outperform their human
counterparts,67,68 but it may still be helpful to answer this ques-
tion about NN, to see how it was resolved. Stuhlmüller suc-
cinctly summarizes answer given by Ghahramani:

Why does deep learning work now, but not 20 years ago, even
though many of the core ideas were there? In one sentence: We
have more data, more compute, better software engineering, and a
few algorithmic innovations . . .69

Consequently, the next section looks at this very likely explana-
tion in detail.

Computational Complexity of Biological Evolution
and Available Compute
In the biological world, evolution is a very time-consuming
process with estimates for the appearance of early life pointing
to some 4 billion years ago and each new generation taking
minutes for simple life-forms like bacteria and about 20 years
for more complex species, like Homo sapiens. Given the time-
scales involved, it is impossible to replicate full-scale evolution
in experimental settings, but it may be possible to do so in
computer simulations, by generating new offspring in matter of
milliseconds and by greatly expediting necessary fitness evalu-
ation time, potentially reducing a multibillion year natural pro-
cess to just a few years of simulation on a powerful
supercomputer. Others have thought about the same:

What algorithm could create all this in just 1012 steps? The number
1012—one trillion—comes up because this is believed to be the
number of generations since the dawn of life 3.5 ∙ 109 years ago
(notice that most of our ancestors could not have lived for much
more than a day).12

Hamiltonian complexity70 studies how hard is it to simulate a
physical system, where “hard” means that the computational
resources required to approximate behavior of the system grow
too quickly with the size of the system being simulated, so that
no computer can perform the task in reasonable time.70

6	 Evolutionary Bioinformatics ﻿

Specifically, in the context of EAs, research effort to establish
bounds and improve efficiency is known as evolutionary algo-
rithm theory (EAT).71 In this section, we will attempt to esti-
mate the computational power of evolution in biosphere,
analyze computational complexity of bioinspired EAs, and
finally compare our findings with the available and anticipated
computational resources; all in the hopes of understanding if it
is possible to replicate evolution on a computer, in practice.

Similar attempts have been made by others, for example,
Shulman and Bostrom wanted to figure out computational
requirements necessary to evolve AI:

The argument from evolutionary algorithms then needs one addi-
tional premise to deliver the conclusion that engineers will soon be
able to create machine intelligence, namely that we will soon have
computing power sufficient to recapitulate the relevant evolution-
ary processes that produced human intelligence. Whether this is
plausible depends both on what advances one might expect in
computing technology over the next decades and on how much
computing power would be required to run genetic algorithms
with the same optimization power as the evolutionary process of
natural selection that lies in our past. One might for example try to
estimate how many doublings in computational performance,
along the lines of Moore’s law, one would need in order to dupli-
cate the relevant evolutionary processes on computers.39

By looking at total number of generations, population sizes,
DNA storage72–75 and computation and involved neural infor-
mation processing it is possible to arrive at broad estimates of
computational power behind biological evolution.

In this way, the biosphere can be visualised as a large, parallel
supercomputer, with the information storage represented by the
total amount of DNA and the processing power symbolised by
transcription rates. In analogy with the Internet, all organisms on
Earth are individual containers of information connected through
interactions and biogeochemical cycles in a large, global, bottom-
up network.76

We have various methods available to begin to estimate the power
of evolutionary search on Earth: estimating the number of genera-
tions and population sizes available to human evolution, creating
mathematical models of evolutionary “speed limits” under various
conditions, and using genomics to measure past rates of evolution-
ary change.39

•• With respect to the estimates of the storage capabilities
of the biosphere we have: “The total amount of DNA
contained in all of the cells on Earth is estimated to be
about 5.3 x 1037 base pairs,76 equivalent to 1.325 x 1037
bytes of information.”77

Modern whole-organism genome analysis, in combination with
biomass estimates, allows us to estimate a lower bound on the total
information content in the biosphere: 5.3 × 1031 (±3.6 × 1031)
megabases (Mb) of DNA. Given conservative estimates regarding
DNA transcription rates, this information content suggests bio-
sphere processing speeds exceeding yottaNOPS values (1024
Nucleotide Operations Per Second).76

Finding the amount of DNA in the biosphere enables an esti-
mate of the computational speed of the biosphere, in terms of the
number of bases transcribed per second, or Nucleotide Opera-
tions Per Second (NOPS), analogous to the Floating-point
Operations Per Second (FLOPS) metric used in electronic com-
puting. A typical speed of DNA transcription is 18–42 bases per
second for RNA polymerase II to travel along chromatin tem-
plates . . . and elsewhere suggested as 100 bases per second
Precisely how much of the DNA on Earth is being transcribed at
any one time is unknown. The percentage of any given genome
being transcribed at any given time depends on the reproductive
and physiological state of organisms, and at the current time we
cannot reliably estimate this for all life on Earth. If all the DNA
in the biosphere was being transcribed at these reported rates,
taking an estimated transcription rate of 30 bases per second,
then the potential computational power of the biosphere would
be approximately 1015 yottaNOPS (yotta = 1024), about 1022
times more processing power than the Tianhe-2 supercomputer .
. ., which has a processing power on the order of 105 teraFLOPS
(tera = 1012).76

•• To estimate neural information processing of nature, we
need to look at the processing power of all neurons in the
biosphere:

There are some 4-6*1030 prokaryotes in the world today, but only
1019 insects, and fewer than 1010 human (pre-agricultural popula-
tions were orders of magnitude smaller). However, evolutionary
algorithms require not only variations to select among but a fitness
function to evaluate variants, typically the most computationally
expensive component. A fitness function for the evolution of arti-
ficial intelligence plausibly requires simulation of “brain develop-
ment,” learning, and cognition to evaluate fitness. We might thus
do better not to look at the raw number of organisms with complex
nervous systems, but instead to attend to the number of neurons in
biological organisms that we might simulate to mimic evolution’s
fitness function. We can make a crude estimate of that latter quan-
tity by considering insects, which dominate terrestrial biomass,
with ants alone estimated to contribute some 15-20% of terrestrial
animal biomass. Insect brain size varies substantially, with large
and social insects enjoying larger brains; e.g., a honeybee brain has
just under 106 neurons, while a fruit fly brain has 105 neurons, and
ants lie in between with 250,000 neurons. The majority of smaller
insects may have brains of only a few thousand neurons. Erring on
the side of conservatively high, if we assigned all 1019 insects fruit-
fly numbers of neurons the total would be 1024 insect neurons in
the world. This could be augmented with an additional order of
magnitude, to reflect aquatic copepods, birds, reptiles, mammals,
etc., to reach 1025. (By contrast, in pre-agricultural times there were
fewer than 107 humans, with under 1011 neurons each, fewer than
1018 total, although humans have a high number of synapses per
neuron.) The computational cost of simulating one neuron
depends on the level of detail that one wants to include in the
simulation. Extremely simple neuron models use about 1,000
floating-point operations per second (FLOPS) to simulate one
neuron (for one second of simulated time); an electrophysiologi-
cally realistic Hodgkin-Huxley model uses 1,200,000 FLOPS; a
more detailed multicompartmental model would add another 3-4
orders of magnitude, while higher-level models that abstract sys-
tems of neurons could subtract 2-3 orders of magnitude from the
simple models. If we were to simulate 1025 neurons over a billion
years of evolution (longer than the existence of nervous systems as

Yampolskiy	 7

we know them) in a year’s run time these figures would give us a
range of 1031-1044 FLOPS.39

As Darwinian algorithm is inherently probabilistic, it is likely
that many runs of the algorithm are required to have just one of
them succeed, just like in the case of biological evolution.78 The
number of such simultaneous runs can be estimated from the
total size of the search space divided by the average individual
computational resources of each run. In the special case of bio-
logical evolution, evolving intelligent beings:

The observation selection effect is that no matter how hard it is for
human-level intelligence to evolve, 100% of evolved civilizations
will find themselves originating from planets where it happened
anyway. . . . every newly evolved civilization will find that evolution
managed to produce its ancestors.39

So even a successful evolutionary run, with fixed computational
resources, does not indicate that used compute would be suffi-
cient in a similar experiment, as subsequent runs may not pro-
duce similar results. As Shulman and Bostrom39 put it,
“However, reliable creation of human-level intelligence through
evolution might require trials on many planets in parallel, with
Earth being one of the lucky few to succeed.” Conceivably,
“Evolution requires extraordinary luck to hit upon a design for
human-level intelligence, so that only 1 in 101000 planets with
life does so.”39 Hanson elaborates,

Many have recognized that the recent appearance of intelligent life
on Earth need not suggest a large chance that similarly intelligent
life appears after a similar duration on any planet like Earth. Since
Earth’s one data point has been subject to a selection effect, it is
consistent with any expected time for high intelligence to arise
beyond about a billion years. Few seem to have recognized, however,
that this same selection effect also allows the origin of life to be
much harder than life’s early appearance on Earth might suggest.79

Evolutionary algorithm theory attempts to estimate computa-
tional requirements theoretically necessary to run different
variants of the Darwinian algorithm. Such estimates are usu-
ally made with respect to the size of the input problem, which
is difficult to formalize with respect to software generation:

It is difficult to characterize the complexity of a problem specific to
a method of programming. Holding all things constant, you measure
what must change as the size of the input instance increases. It is
even more difficult to describe the complexity of a problem that can
be solved by a program that is itself the output of a program, as is the
case with the typical GP. In general, this type of question cannot be
answered. What can be done however, is to compare the information
content of a program with the information content of its output and
in this way provide a bound on the complexity of that output.36

Specifically, “Though it is impossible to classify the complexity of
a problem that can be solved by the output program in advance, it
is possible to relate the amount of information contained in the
output program to the GP itself. By applying the theorems from

Kolmogorov complexity, it can be shown that the complexity of
the output program of a GP using a pseudo random number gen-
erator (PRNG) can be bound above by the GP itself.

Theorem.  For all strings x, y, if x is the shortest program that
outputs y, that is, K(y) = |x|, then K(x) ⩾ K(y) + c.

Proof.  Let x be the shortest program (by definition, incom-
pressible) that outputs y. That is, K(y) = |x|. Suppose K(y) >
K(x). By substitution, |x| > K(x), which is impossible as x was
defined as incompressible.”36

Next, we attempted to include best estimates for Darwinian
algorithm complexity found in literature:

The performance of an EA is measured by means of the number of
function evaluations T it makes until an optimal solution is found
for the first time. The reason is that evolutionary algorithms tend
to be algorithmically simple and each step can be carried out rela-
tively quick. Thus, a function evaluation is assumed to be the most
costly operation in terms of computation time. Most often, results
about the expected optimization time E(T) as a function of n are
derived where n is a measure for the size of the search space. If a
fixed-length binary encoding is used n denotes the length of the
bit strings (and the size of the search space equals 2n).71

“[W]ith random mutations, random point mutations, we will
get to fitness BB(N) in time exponential in N (evolution by
exhaustive search).”9 There busy beaver function BB(N) = the
largest integer that can be named by an N-bit program.

Fitness function evaluation is the most costly procedure in
the Darwinian algorithm and is particularly ill defined in the
case of software evaluation. How does one formalize a fitness
function for something like an operating system, without hav-
ing to include human users as evaluators? One may be required
to rely on human-based genetic algorithms (HBGAs),80 which
would greatly increase time necessary to evaluate every genera-
tion and by extension overall simulation time for the run, mak-
ing it impossible to recapitulate evolution through EAs:

Essentially, the complexity of an optimization problem for a GA is
bound above by the growth rate of the smallest representation [Min-
imum Chromosome Length—(MCL)] that can be used to solve the
problem This is because the probabilistic convergence time will
remain fixed as a function of the search space. All things held con-
stant, the convergence time will grow as the search space grows.36

“This means that the size of the search space doubles for every
increase in instance size because the number of possible solu-
tions is equivalent to the number 2 raised to the length of the
chromosome, 2l.”36

By creating a UGP [Universal Genetic Program], we have a single
vehicle capable of evolving any program evolvable by a GP. To do
this, we treat the first part of the data for the UGP as the specif ica-
tion (i.e. the “target” function) for a unique GP. In this way, we can

8	 Evolutionary Bioinformatics ﻿

implement any GP. This does not eliminate the Kolmogorov com-
plexity bound, rather it determines the hidden constant in the Kol-
mogorov complexity bound.36

Because the output complexity includes all individuals from all
populations, producing more individuals through larger popula-
tions or longer runs must eventually stop producing new solutions
because these solutions would necessarily increase the output com-
plexity beyond the finite limit imposed by the GP.36

Others have attempted to calculate total “Computational
requirements for recapitulating evolution through genetic
algorithms.”39

Given estimates of computational power of biological evo-
lution in the wild and theoretical analysis for computational
resources necessary to run a Darwinian algorithm, we will now
try to see whether matching compute is currently available, and
whether not how soon until it is predicted to be developed.
Currently, world’s top 10 supercomputers (https://en.wikipedia.
org/wiki/TOP500#Top_10_ranking) range from 10 to 125
peta (1015) floating point operations per second of theoretical
peak performance. For comparison, Bitcoin network (https://
blockchain.info) currently performs around 35 exa (1018)
hashes per second, many thousands of times the combined
speed of the top 500 supercomputers. Similarly, “Storing the
total amount of information encoded in DNA in the biosphere,
5.3 × 1031 megabases (Mb), would require approximately 1021
supercomputers with the average storage capacity of the world’s
four most powerful supercomputers”:76

In recent years it has taken approximately 6.7 years for commodity
computers to increase in power by one order of magnitude. Even a
century of continued Moore’s law would not be enough to close
this gap. Running more or specialized hardware, or longer runt-
imes, could contribute only a few more orders of magnitude.39

In this section, we looked at estimated computational power
of biological evolution and theoretical computational complex-
ity of Darwinian algorithm. In both cases, we found that
required computational resources greatly exceed what is cur-
rently available and what is projected to be available in the near
future. In fact, depending on some assumptions we make
regarding multiverse,81 quantum aspects of biology,82 and
probabilistic nature of Darwinian algorithm such compute may
never be available. Mahoney arrives at a similar realization:

The biosphere has on the order of 10^31 cells (mostly bacteria) . . .
with 10^6 DNA base pairs each, encoding 10^37 bits of memory.
Cells replicate on the order of 10^6 seconds, for a total of 10^48
copy operations over the last 3 billion years. If we include RNA
transcription and protein synthesis as computing operations, then
the evolution of humans required closer to 10^50 operations. By
contrast, global computing power is closer to 10^20 operations per
second and 10^22 bits of storage. If we were to naively assume that
Moore’s Law were to continue increasing computing power by a
factor of 10 every 5 years, then we would have until about 2080
before we have something this powerful.83

Others agree,

The computing resources to match historical numbers of neurons
in straightforward simulation of biological evolution on Earth are
severely out of reach, even if Moore’s law continues for a century.
The argument from evolutionary algorithms depends crucially on
the magnitude of efficiency gains from clever search, with perhaps
as many as thirty orders of magnitude required.39

If “. . . one would have to simulate evolution on vast numbers
of planets to reliably produce intelligence through evolutionary
methods, then computational requirements could turn out to
be many, many orders of magnitude higher still . . .”39 It is
hoped by some that future developments in Quantum
Evolutionary Computation84 will help to overcome some of the
resource limitations85 without introducing negative side
effects.86

Conclusions
Our analysis of relevant literature shows that no one has suc-
ceeded at evolving nontrivial software from scratch; in other
words, the Darwinian algorithm works in theory but does not
work in practice, when applied in the domain of software pro-
duction. The reason we do not evolve software is that the space
of working programs is very large and discrete. Although hill-
climbing heuristic–based evolutionary computations are excel-
lent at solving many optimization problems, they fail in the
domains of noncontinuous fitness.87 This is also the reason we
do not evolve complex alife or novel engineering designs. With
respect to our 2 predictions, we can conclude that (1) simula-
tions of evolution do not produce comparably complex artifacts
and (2) running EAs longer leads to progressively diminishing
results. With respect to the 3 falsifiability conditions, we
observe that all 3 are true as of this writing. Likewise, neither
the longest-running EA nor the most complex-evolved algo-
rithm nor the most complex digital organism are a part of our
common cultural knowledge. This is not an unrealistic expecta-
tion as successful software programs, such as Deep Blue88 or
Alpha Go,89,90 are well known to the public.

Others have come to similar conclusions:

It seems reasonable to assume that the number of programs pos-
sible in a given language is so inconceivably large that genetic
improvement could surely not hope to find solutions in the ‘genetic
material’ of the existing program. The test input space is also, in the
words of Dijkstra, “so fantastically high” that surely sampling
inputs could never be sufficient to capture static truths about
computation.17

. . . computing science is—and will always be—concerned with the
interplay between mechanized and human symbol manipulation,
usually referred to as “computing” and “programming” respectively.
An immediate benefit of this insight is that it reveals “automatic
programming” as a contradiction in terms.91

Moreover, more specifically,

https://en.wikipedia.org/wiki/TOP500#Top_10_ranking
https://en.wikipedia.org/wiki/TOP500#Top_10_ranking
https://blockchain.info) currently performs around 35 exa (10
https://blockchain.info) currently performs around 35 exa (10

Yampolskiy	 9

Genetic algorithms do not scale well with complexity. That is,
where the number of elements which are exposed to mutation is
large there is often an exponential increase in search space size.
This makes it extremely difficult to use the technique on problems
such as designing an engine, a house or plane. In order to make
such problems tractable to evolutionary search, they must be bro-
ken down into the simplest representation possible. Hence we
typically see evolutionary algorithms encoding designs for fan
blades instead of engines, building shapes instead of detailed con-
struction plans, and airfoils instead of whole aircraft designs. The
second problem of complexity is the issue of how to protect parts
that have evolved to represent good solutions from further destruc-
tive mutation, particularly when their fitness assessment requires
them to combine well with other parts.92

Even Koza himself acknowledges that it would be highly sur-
prising if his approach could work:

Anyone who has ever written and debugged a computer program
and has experienced their brittle, highly non-linear, and perversely
unforgiving nature will probably be understandably skeptical about
the proposition that the biologically motivated process sketched
above could possibly produce a useful computer program.16

We challenge EA community to prove us wrong by producing
an experiment, which evolves nontrivial software from scratch
and without human help. That would be the only way in which
our findings could be shown to be incorrect. Perhaps, refram-
ing the problem in terms of maximizing negentropy of digital
organisms, as suggested by Schrödinger93, Michaelian,94 and
Ulanowicz and Hannon,95 with respect to negative energy
being a fundamental property of all life-forms may produce
better results.

On a positive side, the fact that it seems impossible to evolve
complex software implies that we are unlikely to be able to
evolve highly sophisticated artificially intelligent agents, which
may present significant risk to our safety and security.96-102 Just
imagine what would have happened, if the very first time we
ran a simulation of evolution on a computer, it produced a
superintelligent agent. Yampolskiy103 has shown that program-
ming as a problem is AI-complete; if GP can solve program-
ming that would imply that GP = AGI (artificial general
intelligence), but we see no experimental evidence for such
claim. In fact, it is more likely that once we have AGI, it could
be used to create an intelligent fitness function for GP and so
evolve software. Genetic programming will not be the cause of
AI, but a product of it. However, neuroevolution methods for
optimizing deep learning architectures and parameters remain
a strong possibility for creation of AGI.

Author Contributions
RVY is the only author contributed everything to this work.

References
	 1.	 Walker SI, Davies PC. The algorithmic origins of life. J R Soc Interface.

2013;10:20120869.

	 2.	 Darwin C. The Origin of Species by Means of Natural Selection: Or, The Preservation
of Favoured Races in the Struggle for Life [Die Entstehung der Arten durch natürliche
Zuchtwahl]. London, England: Leipzig; 1859.

	 3.	 Lamarck JBP. Philosophie Zoologique. National Museum of Natural History (Jar-
din des Plantes); 1809.

	 4.	 Chambers R. Vestiges of the Natural History of Creation. London: John Spriggs
Morss Churchill; 1853.

	 5.	 Yampolskiy RV. What are the ultimate limits to computational techniques: veri-
fier theory and unverifiability. Phys Script. 2017;92:093001.

	 6.	 Fogel LJ, Owens AJ, Walsh MJ. Artificial Intelligence Through Simulated Evolu-
tion. Oxford, UK: John Wiley & Sons; 1966.

	 7.	 Barricelli NA. Symbiogenetic evolution processes realized by artificial methods.
Methodos. 1957;9:143–182.

	 8.	 Valiant LG. Evolvability. J ACM. 2009;56:3.
	 9.	 Chaitin G. Life as evolving software. In: Zenil H, ed. A Computable Universe:

Understanding and Exploring Nature as Computation. Singapore: World Scien-
tific; 2013:277–302.

	 10.	 Chaitin G. Proving Darwin: Making Biology Mathematical. New York, NY: Vin-
tage; 2012.

	 11.	 Wolfram S. A New Kind of Science. Champaign, IL: Wolfram Media, Inc; 2002.
	 12.	 Livnat A, Papadimitriou C. Sex as an algorithm: the theory of evolution under

the lens of computation. Commun ACM. 2016;59:84–93.
	 13.	 Back T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-

ary Programming, Genetic Algorithms. Oxford, UK: Oxford University Press; 1996.
	 14.	 Mayr E. Behavior programs and evolutionary strategies: natural selection some-

times favors a genetically “closed” behavior program, sometimes an “open” one.
Am Scient. 1974;62:650–659.

	 15.	 Davis L. Handbook of Genetic Algorithms. New York, NY: Van Nostrand Rein-
hold; 1991.

	 16.	 Koza JR. Genetic programming as a means for programming computers by nat-
ural selection. Stat Comput. 1994;4:87–112.

	 17.	 Petke J, Haraldsson S, Harman M, White D, Woodward J. Genetic improve-
ment of software: a comprehensive survey. IEEE T Evol Comput.
2017;22:415–432.

	 18.	 Ferreira C. Gene Expression Programming: Mathematical Modeling by an Artificial
Intelligence. Vol 21. Berlin, Germany: Springer; 2006.

	 19.	 Storn R, Price K. Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces. J Global Optim. 1997;11:341–359.

	 20.	 Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J. Deep neuro-
evolution: genetic algorithms are a competitive alternative for training deep neu-
ral networks for reinforcement learning. arXiv preprint arXiv:1712.06567; 2017.

	 21.	 Stanley KO, Miikkulainen R. A taxonomy for artificial embryogeny. Artif Life.
2003;9:93–130.

	 22.	 Yampolskiy RV, Ashby L, Hassan L. Wisdom of artificial crowds—a meta-
heuristic algorithm for optimization. J Intell Learn Syst Appl. 2012;4:98–107.

	 23.	 Yampolskiy RV, El-Barkouky A. Wisdom of artificial crowds algorithm for solv-
ing NP-hard problems. Int J Bio-Inspir Com. 2011;3:358–369.

	 24.	 Khalifa AB, Yampolskiy RV. GA with wisdom of artificial crowds for solving
mastermind satisfiability problem. Int J Intell Games Simul. 2011;6:12–17.

	 25.	 Lowrance CJ, Abdelwahab O, Yampolskiy RV. Evolution of a metaheuristic for
aggregating wisdom from artificial crowds. Paper presented at: Portuguese Con-
ference on Artificial Intelligence; September 8-11, 2015; Coimbra, Portugal.

	 26.	 Hundley MV, Yampolskiy RV. Shortest total path length spanning tree via wis-
dom of artificial crowds algorithm. Paper presented at: 28th Modern Artificial
Intelligence and Cognitive Science Conference (MAICS); April 28-29, 2017;
Fort Wayne, IN.

	 27.	 Ouch R, Reese K, Yampolskiy RV. Hybrid genetic algorithm for the maximum
clique problem combining sharing and migration. Paper presented at: 24th Mid-
west Artificial Intelligence and Cognitive Science Conference (MAICS); April
13-14, 2013; New Albany, IN.

	 28.	 Port AC, Yampolskiy RV. Using a GA and wisdom of artificial crowds to solve
solitaire battleship puzzles. Paper presented at: 17th International Conference
on Computer Games (CGAMES); July 30-August 1, 2012; Louisville, KY.

	 29.	 Hughes R, Yampolskiy RV. Solving Sudoku puzzles with wisdom of artificial
crowds. Int J Intell Games Simul. 2012;7:24–29.

	 30.	 Ashby LH, Yampolskiy RV. Genetic algorithm and wisdom of artificial crowds
algorithm applied to light up. Paper presented at: 16th International Conference
on Computer Games (CGAMES); July 27-30, 2011; Louisville, KY.

	 31.	 Hindi M, Yampolskiy RV. Genetic algorithm applied to the graph coloring
problem. Paper presented at: 23rd Midwest Artificial Intelligence and Cognitive
Science Conference (MAICS); April 21-22, 2012; Cincinnati, OH.

	 32.	 Yampolskiy RV. Application of bio-inspired algorithm to the problem of integer
factorisation. Int J Bio-Inspir Com. 2010;2:115–123.

	 33.	 Mishra M, Pal S, Yampolskiy R. Nature-inspired computing techniques for
integer factorization. In: Gujarathi AM, Babu BV, eds. Evolutionary Computa-
tion: Techniques and Applications. Waretown, NJ: Apple Academic Press;
2016:401.

10	 Evolutionary Bioinformatics ﻿

	 34.	 Yampolskiy R, Anderson P, Arney J, Misic V, Clarke T. Printer model integrat-
ing genetic algorithm for improvement of halftone patterns. Paper presented at:
Western New York Image Processing Workshop (WNYIPW); September 24,
2004; Rochester, NY.

	 35.	 Yampolskiy RV. Efficiency theory: a unifying theory for information, computa-
tion and intelligence. J Discr Math Sci Cryptogr. 2013;16:259–277.

	 36.	 Rylander B, Soule T, Foster J. Computational complexity, genetic programming,
and implications. Paper presented at: European Conference on Genetic Pro-
gramming; April 18-20, 2001; Lake Como, Italy.

	 37.	 White DR, McDermott J, Castelli M, et al. Better GP benchmarks: community
survey results and proposals. Genet Program Evol M. 2013;14:3–29.

	 38.	 Woodward JR, Bai R. Why evolution is not a good paradigm for program induction: a
critique of genetic programming. Paper presented at: Proceedings of the First ACM/
SIGEVO Summit on Genetic and Evolutionary; June 12-14, 2009; Shanghai, China.

	 39.	 Shulman C, Bostrom N. How hard is artificial intelligence? evolutionary argu-
ments and selection effects. J Consciousness Stud. 2012;19:103–130.

	 40.	 Becker K, Gottschlich J. AI Programmer: autonomously creating software pro-
grams using genetic algorithms. arXiv preprint arXiv:1709.05703; 2017.

	 41.	 Orlov M, Sipper M. FINCH: a system for evolving Java (Bytecode). In: Riolo R,
McConaghy T, Vladislavleva E, eds. Genetic Programming Theory and Practice
VIII. New York, NY: Springer; 2011:1–16.

	 42.	 Koza JR. Human-competitive results produced by genetic programming. Genet
Program Evol M. 2010;11:251–284.

	 43.	 Kannappan K, Spector L, Sipper M, et al. Analyzing a decade of human-com-
petitive (“HUMIE”) winners: what can we learn? In: Riolo R, Worzel W,
Kotanchek M, eds. Genetic Programming Theory and Practice XII. Cham, Switzer-
land: Springer; 2015:149–166.

	 44.	 Clune J, Misevic D, Ofria C, Lenski R, Elena S, Sanjuán R. Natural selection
fails to optimize mutation rates for long-term adaptation on rugged fitness land-
scapes. PLoS Comput Biol. 2008;4:e1000187.

	 45.	 Ray TS. Evolution and optimization of digital organisms. In: Billingsley KR,
Derohanes E, Brown H III, eds. Scientific Excellence in Supercomputing: The IBM
1990 Contest Prize Papers, Athens, GA: The Baldwin Press; 1991:489–531.

	 46.	 David OE, van den Herik HJ, Koppel M, Netanyahu NS. Genetic algorithms
for evolving computer chess programs. IEEE T Evol Comput. 2014;18:
779–789.

	 47.	 Altshuler EE, Linden DS. Wire-antenna designs using genetic algorithms.
IEEE Antenn Propag M. 1997;39:33–43.

	 48.	 Bird J, Layzell P. The evolved radio and its implications for modelling the evolu-
tion of novel sensors. Paper presented at: Proceedings of the IEEE Congress on
Evolutionary Computation (CEC’02); May 12-17, 2002; Honolulu, HI.

	 49.	 Hauptman A, Sipper M. GP-EndChess: using genetic programming to evolve
chess endgame players. Paper presented at: European Conference on Genetic
Programming; March 30-April 1, 2005; Lausanne, Switzerland.

	 50.	 Kolmogorov AN. Three approaches to the quantitative definition of information.
Probl Inf Trans. 1965;1:1–7.

	 51.	 Turing A. Computing machinery and intelligence. Mind. 1950;59:433–460.
	 52.	 Yampolskiy RV. Turing test as a defining feature of AI-completeness. In: Yang

XS, ed. Artificial Intelligence, Evolutionary Computing and Metaheuristics. Berlin,
Germany; Heidelberg, Germany: Springer; 2013:3–17.

	 53.	 Armstrong S, Sotala K. How we’re predicting AI—or failing to. In: Romportl J,
Zackova E, Kelemen J, eds. Beyond Artificial Intelligence. Cham, Switzerland:
Springer; 2015:11–29.

	 54.	 Soros LB, Stanley KO. Identifying necessary conditions for open-ended evolu-
tion through the artificial life world of chromaria. Paper presented at: Proceed-
ings of the Fourteenth International Conference on the Synthesis and Simulation
of Living Systems; July 30-August 2, 2014; Manhattan, NY.

	 55.	 Teller A. Turing completeness in the language of genetic programming with
indexed memory. Paper presented at: Proceedings of the First IEEE Conference
on Evolutionary Computation. IEEE World Congress on Computational Intel-
ligence; June 27-29, 1994; Orlando, FL.

	 56.	 Woodward JR, Johnson CG, Brownlee AE. GP vs GI: if you can’t beat them,
join them. Paper presented at: Proceedings of the Genetic and Evolutionary
Computation Conference; July 20-24, 2016; Denver, CO.

	 57.	 Poli R, Langdon WB, McPhee N, Koza J. Field guide to genetic programming,
2008, http://www.gp-field-guide.org.uk.

	 58.	 Woodward JR. GA or GP? that is not the question. Paper presented at: Congress
on Evolutionary Computation (CEC’03); December 8-12, 2003; Canberra,
ACT, Australia.

	 59.	 Orlov M, Sipper M. Flight of the FINCH through the Java wilderness. IEEE T
Evol Comput. 2011;15:166–182.

	 60.	 Turing A. On computable numbers, with an application to the Entscheidung-
sproblem. P Lond Math Soc. 1936;2:230–265.

	 61.	 Lehman J, Clune J, Misevic D, et al. The surprising creativity of digital evolu-
tion: a collection of anecdotes from the evolutionary computation and artificial
life research communities. arXiv preprint arXiv:1803.03453; 2018.

	 62.	 Yampolskiy RV, Spellchecker M. Artificial intelligence safety and cybersecurity:
a timeline of AI failures. arXiv preprint arXiv:1610.07997; 2016.

	 63.	 Nachenberg C. Computer virus-antivirus coevolution. Commun ACM.
1997;40:46–51.

	 64.	 Yampolskiy RV. On the origin of synthetic life: attribution of output to a par-
ticular algorithm. Phys Script. 2016;92:013002.

	 65.	 McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous
activity. Bull Math Biophys. 1943;5:115–133.

	 66.	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.
	 67.	 Yampolskiy RV. Artificial Superintelligence: A Futuristic Approach. New York:

Chapman and Hall/CRC; 2015.
	 68.	 Yampolskiy R. Artificial Intelligence Safety and Security. Boca Raton, FL: CRC

Press; 2018.
	 69.	 Stuhlmüller A. 50 things I learned at NIPS 2016. NIPS, 2016, https://blog.

ought.com/nips-2016-875bb8fadb8c.
	 70.	 Osborne TJ. Hamiltonian complexity. Rep Prog Phys. 2012;75:022001.
	 71.	 Jansen T, Zarges C. Analysis of evolutionary algorithms: from computational

complexity analysis to algorithm engineering. Paper presented at: Proceedings of
the 11th Workshop Proceedings on Foundations of Genetic Algorithms; January
5-9, 2011; Schwarzenberg, Austria.

	 72.	 Beck MB, Yampolskiy RV. Hiding color images in DNA sequences. Paper pre-
sented at: 26th Modern Artificial Intelligence and Cognitive Science Confer-
ence (MAICS); April 25-26, 2015; Greensboro, NC.

	 73.	 Beck MB, Desoky AH, Rouchka EC, Yampolskiy RV. Decoding methods for
DNA steganalysis. Paper presented at: 6th International Conference on Bioin-
formatics and Computational Biology (BICoB); March 24-26, 2014; Las Vegas,
NV.

	 74.	 Beck MB, Rouchka EC, Yampolskiy RV. Finding data in DNA: computer
forensic investigations of living organisms. Paper presented at: International
Conference on Digital Forensics and Cyber Crime; October 25-26, 2012; Lafay-
ette, LA.

	 75.	 Beck M, Yampolskiy R. DNA as a medium for hiding data. BMC Bioinformatics.
2012;13:A23.

	 76.	 Landenmark HK, Forgan DH, Cockell CS. An estimate of the total DNA in the
biosphere. PLoS Biol. 2015;13:e1002168.

	 77.	 Gillings MR, Hilbert M, Kemp DJ. Information in the biosphere: biological and
digital worlds. Trends Ecol Evol. 2016;31:180–189.

	 78.	 Lenski RE, Rose MR, Simpson SC, Tadler SC. Long-term experimental evolu-
tion in Escherichia coli. I. adaptation and divergence during 2,000 generations.
Am Nat. 1991;138:1315–1341.

	 79.	 Hanson R. Must early life be easy? the rhythm of major evolutionary transitions.
Unpublished Manuscript. 1998, http://hanson.gmu.edu/hardstep.pdf.

	 80.	 Kosorukoff A. Human based genetic algorithm. Paper presented at: IEEE Inter-
national Conference on Systems, Man, and Cybernetics; October 7-10, 2001;
Tucson, AZ.

	 81.	 De Simone A, Guth AH, Linde A, Noorbala M, Salem MP, Vilenkin A.
Boltzmann brains and the scale-factor cutoff measure of the multiverse. Phys Rev
D. 2010;82:063520.

	 82.	 Lambert N, Chen Y-N, Cheng Y-C, Li C-M, Chen G-Y, Nori F. Quantum biol-
ogy. Nat Phys. 2013;9:10–18.

	 83.	 Mahoney M. Couldn’t we eliminate any and all risk of the artificial general
intelligence by making its goal to be the most accurate possible advisor? 2015,
https://www.quora.com/Couldnt-we-eliminate-any-and-al l-risk-of-the
-artificial-general-intelligence-by-making-its-goal-to-be-the-most-accurate-
possible-advisor.

	 84.	 Han K-H, Kim J-H. Quantum-inspired evolutionary algorithm for a class of
combinatorial optimization. IEEE T Evol Comput. 2002;6:580–593.

	 85.	 Sofge DA. Toward a framework for quantum evolutionary computation. Paper
presented at: IEEE Conference on Cybernetics and Intelligent Systems; June
7-9, 2006; Bangkok, Thailand.

	 86.	 Majot A, Yampolskiy R. Global catastrophic risk and security implications of
quantum computers. Futures. 2015;72:17–26.

	 87.	 Mishra M, Gupta V, Chaturvedi U, Shukla KK, Yampolskiy RV. A study on the
limitations of evolutionary computation and other bio-inspired approaches for
integer factorization. Proced Comput Sci. 2015;62:603–610.

	 88.	 Hsu F-H. Behind Deep Blue: Building the Computer That Defeated the World Chess
Champion. Princeton, NJ: Princeton University Press; 2004.

	 89.	 Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep
neural networks and tree search. Nature. 2016;529:484–489.

	 90.	 Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without
human knowledge. Nature. 2017;550:354.

	 91.	 Dijkstra EW. On the cruelty of really teaching computing science. Commun
ACM. 1989;32:1398–1404.

	 92.	 Mewada S, Sharma P, Gautam S. Exploration of fuzzy system with applications. In:
Shah NH, Mittal M, eds. Handbook of Research on Promoting Business Process Improve-
ment through Inventory Control Techniques. Hershey, PA: IGI Global; 2018:479–498.

http://www.gp-field-guide.org.uk
https://blog.ought.com/nips-2016-875bb8fadb8c
https://blog.ought.com/nips-2016-875bb8fadb8c
http://hanson.gmu.edu/hardstep.pdf
https://www.quora.com/Couldnt-we-eliminate-any-and-all-risk-of-the

Yampolskiy	 11

	 93.	 Schrodinger E. What Is Life?: The Physical Aspect of the Living Cell and Mind and
Matter; Mind and Matter. Cambridge, UK: Cambridge University Press; 1967.

	 94.	 Michaelian K. Entropy production and the origin of life. J Mod Phys.
2011;2:595–601.

	 95.	 Ulanowicz RE, Hannon B. Life and the production of entropy. P Roy Soc Lond B
Bio. 1987;232:181–192.

	 96.	 Sotala K, Yampolskiy RV. Responses to catastrophic AGI risk: a survey. Phys
Script. 2015;90:018001.

	 97.	 Babcock J, Kramár J, Yampolskiy R. The AGI containment problem. Paper pre-
sented at: International Conference on Artificial General Intelligence; July
16-19, 2016; New York, NY.

	 98.	 Pistono F, Yampolskiy RV. Unethical research: how to create a malevolent arti-
ficial intelligence. Paper presented at: 25th International Joint Conference on
Artificial Intelligence (IJCAI-16); July 9-15, 2016; New York, NY.

	 99.	 Majot AM, Yampolskiy RV. AI safety engineering through introduction of self-
reference into felicific calculus via artificial pain and pleasure. Paper presented
at: IEEE International Symposium on Ethics in Science, Technology and Engi-
neering; May 23-24, 2014; Chicago, IL.

	100.	 Ramamoorthy A, Yampolskiy R. Beyond mad? the race for artificial general
intelligence. ITU J. 2018;1:1–8.

	101.	 Yampolskiy RV. Taxonomy of pathways to dangerous artificial intelligence.
Paper presented at: AAAI Workshop: AI, Ethics, and Society. February 13,
2016; Phoenix, AZ.

	102.	 Yampolskiy RV, Fox J. Safety engineering for artificial general intelligence.
Topoi. 2013;32:217–226.

	103.	 Yampolskiy RV. AI-complete, AI-hard, or AI-easy—classification of problems
in AI. Paper presented at: 23rd Midwest Artificial Intelligence and Cognitive
Science Conference (MAICS); April 21-22, 2012; Cincinnati, OH.

	Why We Do Not Evolve Software? Analysis of Evolutionary Algorithms
	Original Publication Information
	ThinkIR Citation

	Why We Do Not Evolve Software? Analysis of Evolutionary Algorithms

