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We point out a curious philosophical implication of the algo-
rithmic perspective: if the origin of life is identified with the 

transition from trivial to non-trivial information  
processing – e.g. from something akin to a Turing machine 
capable of a single (or limited set of ) computation(s) to a  

universal Turing machine capable of constructing any  
computable object (within a universality class) – then a precise 

point of transition from non-life to life may actually  
be undecidable in the logical sense. This would  

likely have very important philosophical  
implications, particularly in our interpretation of life  

as a predictable outcome of physical law.1

Introduction
On April 1, 2016, Dr Yampolskiy posted the following to his 
social media accounts: “Google just announced major layoffs of 
programmers. Future software development and updates will be 
done mostly via recursive self-improvement by evolving deep 
neural networks.” The joke got a number of “likes” but also, 
interestingly, a few requests from journalists for interviews on 
this “developing story.” To nonexperts, the joke was not obvious, 
but why? Why don’t we evolve software? A quick search pro-
duced no definitive answers, and so this article was born.

In 1859, Charles Darwin2 and many scholars before him3,4 
have proposed theories to explain the origins of complex life-
forms via natural selection and modification. Scientific theories 
are algorithms which given as input starting conditions make 
statistically accurate predictions of the future state of the sys-
tem. For example, computer simulations of continental drift 
give us positions of continents at some time t. Yampolskiy 
emphasizes importance of such simulations:

A scientific theory cannot be considered fully accepted until it can 
be expressed as an algorithm and simulated on a computer. It should 
produce observations consistent with measurements obtained in the 
real world, perhaps adjusting for the relativity of time scale between 
simulation and the real world. In other words, an unsimulatable 
hypothesis should be considered significantly weaker than a 

simulatable one. It is possible that the theory cannot be simulated 
due to limits in our current computational capacity, hardware design, 
or capability of programmers and that it will become simulatable in 
the future, but until such time, it should have a tentative status.5

Simulations of Darwinian algorithm on a computer are known as 
evolutionary algorithms (EAs) and have been around since the 
early days of computer science,6,7 with popular sub-fields such as 
genetic algorithms (GA), genetic programming (GP), evolutionary 
strategy (ES), and artificial life (AL). Currently, the state of perfor-
mance in all of the above-mentioned areas is orders of magnitude 
less complex than what we observe in the natural world, but why?

A number of seminal papers have been published attempting 
to formalize Darwin’s biological theory from the point of view 
of computational sciences. Such works essentially see biological 
evolution as a computational process running on a carbon-based 
substrate, but which can be run on other substrates. Valiant in 
his work on evolvability8 treats Darwinian evolution as a learn-
ing process over mathematical functions and attempts to explain 
quantitatively which artifacts can be evolved with given 
resources, and which cannot. Likewise, Chaitin9,10 in his work 
on metabiology attempts to develop an abstract fundamental 
mathematical theory of evolution. Wolfram in his, “a New Kind 
of Science,”11 attempts to show how rules of computational uni-
verse of simple programs can be used to explain some of the 
biological complexity we observe. Livnat and Papadimitriou12 
analyze sex as an algorithm, in their work on the theory of evo-
lution viewed through the lens of computation.

It is interesting to do a thought experiments and try to 
imagine what testable predictions Charles Darwin would have 
made, had he made his discovery today, with full knowledge of 
modern bioinformatics and of computer science. His predic-
tions may have included the following: (1) simulations of evo-
lution will produce statistically similar results at least with 
respect to complexity of artifacts produced and (2) if running 
EAs for as long as possible continued to produce nontrivial 
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2 Evolutionary Bioinformatics 

outputs, scientists would run them forever. Likewise, he would 
be able to make some predictions, which would be able to fal-
sify his theory, such as (1) representative simulations of evolu-
tion will not produce similar results to those observed in nature, 
(2) researchers will not be able to evolve software or other com-
plex or novel artifacts, and (3) there will not be any projects 
running EAs long term because their outputs would quickly 
stop improving and stabilize. With respect to the public and 
general cultural knowledge, it would be reasonable to predict 
that educated people would know the longest-running EA and 
the most complex evolved algorithm. Similarly, even school-
children would know the most complex digital organism ever 
evolved.

In the rest of the article, we evaluate the state-of-the-art in 
relevant published research to see how the above-mentioned 
predictions and counterfactuals hold up and what we can say 
about the foundational question of this article. We analyze 
potential explanations for the current observations of progress 
in the domain of EAs and look at computational resources, 
required and available, as the main source of limitations and 
future opportunities for evolving software.

Evolutionary Computation
Inspired by the Darwin’s theory2 of biological evolution, evolu-
tionary computation attempts to automate the process of opti-
mization and problem-solving by simulating differential 
survival and reproduction of individual solutions. From the 
early 1950s, multiple well-documented attempts to make 
Darwin’s algorithm work on a computer have been published 
under such names as Evolutionary Programming,13 
Evolutionary Strategies,14 Genetic Algorithms,15 Genetic 
Programming,16 Genetic Improvement,17 Gene Expression 
Programming,18 Differential Evolution,19 Neuroevolution,20 
and Artificial Embryogeny.21 Although numerous variants dif-
ferent in their problem representation and metaheuristics 
exist,22-25 all can be reduced to just 2 main approaches—GA 
and GP.

The GAs are used to evolve optimized solutions to a par-
ticular instance of a problem such as Shortest Total Path,26 
Maximum Clique,27 Battleship,28 Sudoku,29 Mastermind,24 
Light Up,30 Graph Coloring,31 integer factorization,32,33 or 
efficient halftone patterns for printers34 and so are not the pri-
mary focus of this article. The purpose of GPs, from their 
inception, was to automate programming by evolving an algo-
rithm or a program for solving a particular class of problems, 
for example, an efficient35 search algorithm. Software design is 
the type of application most frequently associated with GPs,36 
but work in automated programming is also sometimes referred 
to as “real programing,” “object-oriented GP,” “traditional pro-
gramming,” “Turing-equivalent (TE) programming,” or 
“Turing-complete GP.”37,38

The subfield of computation, inspired by evolution in gen-
eral, and GP paradigm, established by John Koza in 1990s, in 

particular, are thriving and growing exponentially as evidenced 
both by the number of practitioners and of scientific publica-
tions. Petke et al17 observe “. . . enormous expansion of number 
of publications with the Genetic Programming Bibliography 
passing 10,000 entries . . . By 2016 there were nineteen GP 
books including several intended for students . . .” Such tre-
mendous growth has been fueled, since early days, by belief in 
capabilities of EAs and our ability to overcome obstacles of 
limited compute or data as illustrated by the following quotes:

We will (before long) be able to run genetic algorithms on com-
puters that are sufficiently fast to recreate on a human timescale 
the same amount of cumulative optimization power that the rele-
vant processes of natural selection instantiated throughout our 
evolutionary past . . .39

As computational devices improve in speed, larger problem spaces 
can be searched.40

“We believe that in about fifty years’ time it will be possible to pro-
gram computers by means of evolution. Not merely possible but 
indeed prevalent.”41 “The relentless iteration of Moore’s law prom-
ises increased availability of computational resources in future years. 
If available computer capacity continues to double approximately 
every 18 months over the next decade or so, a computation requiring 
80 h will require only about 1% as much computer time (i.e., about 
48 min) a decade from now. That same computation will require 
only about 0.01% as much computer time (i.e., about 48 seconds) in 
two decades. Thus, looking forward, we believe that genetic pro-
gramming can be expected to be increasingly used to automatically 
generate ever-more complex human-competitive results.”42

The production of human-competitive results as well as the 
increased intricacy of the results are broadly correlated to increased 
availability of computing power tracked by Moore’s law. The pro-
duction of human-competitive results using genetic programming 
has been greatly facilitated by the fact that genetic algorithms and 
other methods of evolutionary computation can be readily and 
efficiently parallelized. . . . Additionally, the production of human-
competitive results using genetic programming has facilitated to 
an even greater degree by the increased availability of computing 
power, over a period of time, as tracked by Moore’s law. Indeed, 
over the past two decades, the number and level of intricacy of the 
human-competitive results has progressively grown. . . . there is, 
nonetheless, data indicating that the production of human-com-
petitive results using genetic programming is broadly correlated 
with the increased availability of computer power, from year to 
year, as tracked by Moore’s Law.42

. . . powerful test data generation techniques, an abundance of 
source code publicly available, and importance of nonfunctional 
properties have combined to create a technical and scientific envi-
ronment ripe for the exploitation of genetic improvement.40

State-of-the-Art With Respect to Predictions
To establish the state-of-the-art in evolutionary computation 
we examined a number of survey papers42,43 and seminal 
results44-49 looking at produced human-competitive results, as 
they are meant to represent the greatest accomplishments of 
the field. Although, on the surface, the results may seem 
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impressive, deeper analysis shows complete absence of success 
in evolving nontrivial software from scratch and without 
human assistance. It is of course necessary to be precise about 
what it is we are trying to measure or detect, as to avoid disa-
greements resulting from ambiguity in terms being used.

It may be difficult to formally specify what makes a piece of 
software nontrivial, but intuitively attractive measure of length 
of the program expressed as the number of lines of code is not 
a sufficient indicator of complexity, as it could have an extremely 
low Kolmogorov50 complexity. Inspired by the Turing test,51,52 
which is based on inability to distinguish output from a person 
and a computer, we propose defining nontrivial software as 
such which would take an average experienced human pro-
grammer at least a full hour of effort to produce if given the 
same problem to solve. If the solution source code could be 
produced with significantly less effort (eg, 1 minute), it may not 
be sufficiently complex and the problem may be deemed trivial 
for our purposes. Our approach to specifying triviality would 
exclude “Hello World” and most other toy programs/problems 
from consideration, which is exactly what we wanted to achieve 
as the main benefit from being able to evolve software would 
come from ability to replace full-time programmers.

Regarding the other 2 conditions, they are much easier to 
specify. From “scratch” means that we are not starting with an 
existing version of a program (but are happy to rely on existing 
APIs, subject to the nontriviality of all newly produced code). 
Without human assistance can be interpreted to mean that the 
programmer is working alone, or a team of programmers is 
working an equivalent amount of time, for example, 2 pro-
grammers would each need at least 40 minutes to solve the 
problem, which implies a small communication overhead.

Reading early claims about capabilities of EA feels just like 
reading early predictions from artificial intelligence (AI) litera-
ture.53 Some early success is projected into the future by assum-
ing that the same rate of progress continues and it is claimed 
that complete success is just years away. However, just like with 
early AI, the claims are inflated, unsupported, overly optimis-
tic, phrased in deceptive and metaphoric language, and the 
solutions do not scale to the real-world problems. Perhaps, an 
EA “winter” is long overdue. Here is how Koza presents the 
state of the field in 1994:

. . . in this article, we will present a number of examples from vari-
ous fields supporting the surprising and counter-intuitive notion 
that computers can indeed by programmed by means of natural 
selection. We will show, via examples, that the recently developed 
genetic programming paradigm provides a way to search the space 
of all possible programs to find a function which solves, or approxi-
mately solves, a problem.16

After 16 years, he reports results of what he calls an “extraor-
dinary long experiment”:

An additional order-of-magnitude increase was achieved by mak-
ing extraordinarily long runs on the largest machine (the 1,000-
node machine). . . . The length of the run that produced the two 

patentable inventions was 28.8 days—almost an order-of-magni-
tude increase (9.3 times) over the overall 3.4-day average for typi-
cal runs of genetic programming that our group had been making 
at the time.42

One quickly realizes that most improvements in the field sim-
ply come from using more compute to search progressively 
larger parts of the solutions space, a result similar to the one 
expected for random search algorithm.

Here is an example of overhyped and ambiguous reporting 
of results, from recent work on EA. Researchers Becker and 
Gottschlich40 go from naming their paper—“AI Programmer: 
Autonomously Creating Software Programs Using Genetic 
Algorithms” to abstract “AI Programmer, that can automati-
cally generate full software programs requiring only minimal 
human guidance.” To claiming that “Using AI Programmer, we 
were able to generate numerous complete software programs.” 
Finally, in experimental results they state what they managed to 
produce “A generated program that outputs ‘hello’” or performs 
addition operation.40 But even that is a bit of a hype, “Rather 
than starting with ‘Hello World,’ we first had AI Programmer 
create a more simplistic program that simply output ‘hi.’ It was 
successfully after 5,700 generations . . .”40 Even this trivial 
1-liner was not a clean success. “The generated program ful-
filled its requirement to output the target text, but interestingly 
included subsequent random characters, which contained pars-
ing errors, including nonmatching brackets.”40 An identical 
program but the one printing “I love all humans” took 6 057 
200 generations.40

Perhaps, it is unfair to pick on this particular article, which 
is only available as an unreviewed preprint, but we selected it 
because it is highly representative of the type of work fre-
quently published in GP, and its extremeness makes problems 
clear to identify. If its title was “Brute Forcing Strings,” it would 
be a reasonable work on that subject, but like so many others, 
authors claim to “Autonomously Creating Software Programs” 
using evolutionary computation, a claim which is never sub-
stantiated in any published literature on this subject. We are 
not alone in our skepticism; many others have arrived at exactly 
the same conclusions:

We examine what has been achieved in the literature, and find a 
worrying trend that largely small toy-problems been attempted 
which require only a few line of code to solve by hand.38

“A literature review has revealed that only a small fraction of the 
papers on GP deal with evolving TE computer programs, with the 
ability to iterate and utilize memory, while the majority of papers 
deal with evolving less expressive logical or arithmetic functions.”38 
“We conclude that GP in its current form is fundamentally awed, 
when applied to the space of TE programs.”38 “Computer code is 
not as robust as genetic code, and therefore poorly suited to the 
process of evolution, resulting in a insurmountable landscape 
which cannot be navigated effectively with current syntax based 
genetic operators. Crossover, has problems being adopted in a 
computational setting, primarily due to a lack of context of 
exchanged code. A review of the literature reveals that evolved 
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programs contain at most two nested loops, indicating that a glass 
ceiling to what can currently be accomplished.”38

A full understanding of open-ended evolutionary dynamics 
remains elusive.54

There are many problems that traditional Genetic Programming 
(GP) cannot solve, due to the theoretical limitations of its para-
digm. A Turing machine (TM) is a theoretical abstraction that 
express the extent of the computational power of algorithms. Any 
system that is Turing complete is sufficiently powerful to recognize 
all possible algorithms. GP is not Turing complete.55

Even a survey of GP community itself produced the follow-
ing feedback regarding current problems being worked on:

“Far too many papers include results only on simple toy problems 
which are often worse than meaningless: they can be misleading”;

“(we should exclude) irrelevant problems that are at least 20 years 
old”;

“get rid of some outdated, too easy benchmarks”;

“the standard ‘easy’ Koza set should not be included”

“[it is] time to move on.”37

In practice, GPs are used in the same way as GAs, for optimi-
zation of solutions to particular problems or for function opti-
mization37,38,55–58 or for software improvement.59

Regarding Darwin’s hypothetical predictions raised in the 
introduction, we can state the following:

Prediction. Simulations of evolution will produce statisti-
cally similar results at least with respect to complexity of 
artifacts produced. Status. False as of 2018.

Prediction. If running EAs for as long as possible contin-
ued to produce nontrivial outputs, scientists would run them 
forever. Status. False as of 2018.

Prediction. Representative simulations of evolution will not 
produce similar results to those observed in nature. Status. 
True as of 2018.

Prediction. Researchers will not be able to evolve software 
or other complex or novel artifacts. Status. True as of 2018.

Prediction. There will not be any projects running EAs 
long-term because their outputs would quickly stop improv-
ing and stabilize. Status. True as of 2018.

Prediction. With respect to the public and general cultural 
knowledge, it would be reasonable to predict that educated 
people would know the longest-running EA, and the most 
complex evolved algorithm. Status. False as of 2018.

Prediction. Similarly, even schoolchildren would know the 
most complex digital organism ever evolved. Status. False 
as of 2018.

Looking at outcomes from the made predictions, we observe 
that all predictions are false as of 2018 and all counterfactuals 
are true as of the same year as long as we look only at nontrivial 
products of evolutionary computations. We are not evolving 
complex artifacts, we are not running EAs for as long as pos-
sible, we are not evolving software, and the public is unaware of 
most complex products of evolutionary computation. On close 
examination, all “human-competitive” results turn out to be 
just optimizations, never fully autonomous programming lead-
ing to novel software being engineered.

Possible Explanations
A number of possible explanations for “Why we don’t evolve 
software?” could be considered. We tried to be as comprehen-
sive as possible in this section, but it is possible that we have not 
considered some plausible explanations:

•• Incompetent programmers—It is theoretically possible, 
but is highly unlikely, that out of thousands of scientists 
working on evolutionary computation, all failed to cor-
rectly implement the Darwinian algorithm.

•• Nonrepresentative algorithms—Some55 have suggested 
that EAs do not accurately capture the theory of evolu-
tion, but of course that would imply that the theory itself 
is not specified in sufficient detail to make falsifiable pre-
dictions. If, however, such more detailed specifications 
are available to GP believers, it is up to them to imple-
ment them as computer simulations for testing purposes, 
but no successful examples of such work are known and 
the known ones have not been successful in evolving 
software.

•• Inadequate fitness functions—Fitness function for a 
complex software product is difficult to outline and spec-
ify and may be as complex (or even more complex) as the 
software we want to evolve as it has to consider all the 
possible use cases and pass all unit tests. This may be the 
Achilles heel of GP, but it is also an objection to feasibil-
ity of programming in general and GP in particular, as 
both have to convert software specification into the 
source code. If human programmers and biological evo-
lution succeed with such constraints, so should Darwinian 
simulations.

•• The Halting problem—Turing proved60 that it is impos-
sible to determine whether an arbitrary program halts, 
but this is also a problem for human programmers and 
could be easily addressed by placing time limits on con-
sidered solutions.

•• Program correctness—If we require evolved software to 
be provably correct, this would present a problem as GP 
does not verify produced designs but only tests them 
against specific unit tests. Likewise, we cannot rely on 
automated software verification as it is still an unsolved 
problem5 in the general case. This is not really a problem 
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as most of the human-written software is never proven to 
be correct and only a small portion of software engineer-
ing process relies of formal specification and Test Driven 
Development.

•• Inappropriate solutions—Literature on EA is full of 
examples61 of surprising creativity of Darwinian algo-
rithm resulting in solutions which match the letter of 
design specifications but not the spirit. This is similar to 
human-produced software and numerous examples of 
ways in which such software fails the goals of the initial 
design.62

•• Insufficient complexity of the environment (not enough 
data, poor fitness functions)—It is possible that the sim-
ulated environment is not complex enough to generate 
high complexity outputs in evolutionary simulations. 
This does not seem correct as Internet presents a highly 
complex landscape in which many self-modifying com-
puter viruses roam.63 Likewise, virtual world such as 
Second Life and many others present close approxima-
tions to the real world and are certainly more complex 
than early Earth was:

A skeptic might insist that an abstract environment would be 
inadequate for the evolution . . ., believing instead that the virtual 
environment would need to closely resemble the actual biological 
environment in which our ancestors evolved. Creating a physi-
cally realistic virtual world would require a far greater investment 
of computational resources than the simulation of a simple toy 
world or abstract problem domain (whereas evolution had access 
to a physically realistic real world “for free”). In the limiting case, 
if complete microphysical accuracy were insisted upon, the com-
putational requirements would balloon to utterly infeasible 
proportions.39

Requiring more realistic environmental conditions may result 
in an increase in necessary computational resources, a problem 
addressed in the next bullet.

•• Insufficient resources (compute, memory)—From the 
history of computer science, we know of many situations 
(speech recognition, NN training), where we had a cor-
rect algorithm but insufficient computational resources 
to run it to success. It is possible that we simply do not 
have hardware powerful enough to emulate evolution. 
We will address this possibility in section “Computational 
Complexity of Biological Evolution and Available 
Compute.”

•• Software design is not amenable to evolutionary meth-
ods—Space of software designs may be discreet with no 
continues path via incremental fitness to the desired 
solutions. This is possible, but this implies that original 
goals of GP are unattainable and misguided. In addition, 
because a clear mapping exists between solutions to 
problems and animals as solutions to environmental 
problems, this would also imply that current explanation 
for the origin of the species is incorrect.64

•• Darwinian algorithm is incomplete or wrong—Finally, 
we have to consider the possibility that the inspiration 
behind evolutionary computation, the Darwinian algo-
rithm itself is wrong or at least partially incomplete. If 
that was true, computer simulations of such algorithm 
would fail to produce results comparable with observa-
tions we see in nature and a search for an alternative 
algorithm would need to take place. This would be an 
extraordinary claim and would require that we discard all 
the other possible explanations from this list.

Perhaps, we can learn some answers from similar historical 
conundrums. Earliest work on artificial neurons was done in 
1943 by McCulloch and Pitts,65 and although research on 
Artificial Neural Networks (ANN) continued,66 until 2010 it 
would have been very logical to ask: “Why don’t artificial neu-
ral networks perform as well as natural ones?” Today, deep neu-
ral networks frequently outperform their human 
counterparts,67,68 but it may still be helpful to answer this ques-
tion about NN, to see how it was resolved. Stuhlmüller suc-
cinctly summarizes answer given by Ghahramani:

Why does deep learning work now, but not 20 years ago, even 
though many of the core ideas were there? In one sentence: We 
have more data, more compute, better software engineering, and a 
few algorithmic innovations . . .69

Consequently, the next section looks at this very likely explana-
tion in detail.

Computational Complexity of Biological Evolution 
and Available Compute
In the biological world, evolution is a very time-consuming 
process with estimates for the appearance of early life pointing 
to some 4 billion years ago and each new generation taking 
minutes for simple life-forms like bacteria and about 20 years 
for more complex species, like Homo sapiens. Given the time-
scales involved, it is impossible to replicate full-scale evolution 
in experimental settings, but it may be possible to do so in 
computer simulations, by generating new offspring in matter of 
milliseconds and by greatly expediting necessary fitness evalu-
ation time, potentially reducing a multibillion year natural pro-
cess to just a few years of simulation on a powerful 
supercomputer. Others have thought about the same:

What algorithm could create all this in just 1012 steps? The number 
1012—one trillion—comes up because this is believed to be the 
number of generations since the dawn of life 3.5 ∙ 109 years ago 
(notice that most of our ancestors could not have lived for much 
more than a day).12

Hamiltonian complexity70 studies how hard is it to simulate a 
physical system, where “hard” means that the computational 
resources required to approximate behavior of the system grow 
too quickly with the size of the system being simulated, so that 
no computer can perform the task in reasonable time.70 
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Specifically, in the context of EAs, research effort to establish 
bounds and improve efficiency is known as evolutionary algo-
rithm theory (EAT).71 In this section, we will attempt to esti-
mate the computational power of evolution in biosphere, 
analyze computational complexity of bioinspired EAs, and 
finally compare our findings with the available and anticipated 
computational resources; all in the hopes of understanding if it 
is possible to replicate evolution on a computer, in practice.

Similar attempts have been made by others, for example, 
Shulman and Bostrom wanted to figure out computational 
requirements necessary to evolve AI:

The argument from evolutionary algorithms then needs one addi-
tional premise to deliver the conclusion that engineers will soon be 
able to create machine intelligence, namely that we will soon have 
computing power sufficient to recapitulate the relevant evolution-
ary processes that produced human intelligence. Whether this is 
plausible depends both on what advances one might expect in 
computing technology over the next decades and on how much 
computing power would be required to run genetic algorithms 
with the same optimization power as the evolutionary process of 
natural selection that lies in our past. One might for example try to 
estimate how many doublings in computational performance, 
along the lines of Moore’s law, one would need in order to dupli-
cate the relevant evolutionary processes on computers.39

By looking at total number of generations, population sizes, 
DNA storage72–75 and computation and involved neural infor-
mation processing it is possible to arrive at broad estimates of 
computational power behind biological evolution.

In this way, the biosphere can be visualised as a large, parallel 
supercomputer, with the information storage represented by the 
total amount of DNA and the processing power symbolised by 
transcription rates. In analogy with the Internet, all organisms on 
Earth are individual containers of information connected through 
interactions and biogeochemical cycles in a large, global, bottom-
up network.76

We have various methods available to begin to estimate the power 
of evolutionary search on Earth: estimating the number of genera-
tions and population sizes available to human evolution, creating 
mathematical models of evolutionary “speed limits” under various 
conditions, and using genomics to measure past rates of evolution-
ary change.39

•• With respect to the estimates of the storage capabilities 
of the biosphere we have: “The total amount of DNA 
contained in all of the cells on Earth is estimated to be 
about 5.3 x 1037 base pairs,76 equivalent to 1.325 x 1037 
bytes of information.”77

Modern whole-organism genome analysis, in combination with 
biomass estimates, allows us to estimate a lower bound on the total 
information content in the biosphere: 5.3 × 1031 (±3.6 × 1031) 
megabases (Mb) of DNA. Given conservative estimates regarding 
DNA transcription rates, this information content suggests bio-
sphere processing speeds exceeding yottaNOPS values (1024 
Nucleotide Operations Per Second).76

Finding the amount of DNA in the biosphere enables an esti-
mate of the computational speed of the biosphere, in terms of the 
number of bases transcribed per second, or Nucleotide Opera-
tions Per Second (NOPS), analogous to the Floating-point 
Operations Per Second (FLOPS) metric used in electronic com-
puting. A typical speed of DNA transcription is 18–42 bases per 
second for RNA polymerase II to travel along chromatin tem-
plates . . . and elsewhere suggested as 100 bases per second . . .. 
Precisely how much of the DNA on Earth is being transcribed at 
any one time is unknown. The percentage of any given genome 
being transcribed at any given time depends on the reproductive 
and physiological state of organisms, and at the current time we 
cannot reliably estimate this for all life on Earth. If all the DNA 
in the biosphere was being transcribed at these reported rates, 
taking an estimated transcription rate of 30 bases per second, 
then the potential computational power of the biosphere would 
be approximately 1015 yottaNOPS (yotta = 1024), about 1022 
times more processing power than the Tianhe-2 supercomputer . 
. ., which has a processing power on the order of 105 teraFLOPS 
(tera = 1012).76

•• To estimate neural information processing of nature, we 
need to look at the processing power of all neurons in the 
biosphere:

There are some 4-6*1030 prokaryotes in the world today, but only 
1019 insects, and fewer than 1010 human (pre-agricultural popula-
tions were orders of magnitude smaller). However, evolutionary 
algorithms require not only variations to select among but a fitness 
function to evaluate variants, typically the most computationally 
expensive component. A fitness function for the evolution of arti-
ficial intelligence plausibly requires simulation of “brain develop-
ment,” learning, and cognition to evaluate fitness. We might thus 
do better not to look at the raw number of organisms with complex 
nervous systems, but instead to attend to the number of neurons in 
biological organisms that we might simulate to mimic evolution’s 
fitness function. We can make a crude estimate of that latter quan-
tity by considering insects, which dominate terrestrial biomass, 
with ants alone estimated to contribute some 15-20% of terrestrial 
animal biomass. Insect brain size varies substantially, with large 
and social insects enjoying larger brains; e.g., a honeybee brain has 
just under 106 neurons, while a fruit fly brain has 105 neurons, and 
ants lie in between with 250,000 neurons. The majority of smaller 
insects may have brains of only a few thousand neurons. Erring on 
the side of conservatively high, if we assigned all 1019 insects fruit-
fly numbers of neurons the total would be 1024 insect neurons in 
the world. This could be augmented with an additional order of 
magnitude, to reflect aquatic copepods, birds, reptiles, mammals, 
etc., to reach 1025. (By contrast, in pre-agricultural times there were 
fewer than 107 humans, with under 1011 neurons each, fewer than 
1018 total, although humans have a high number of synapses per 
neuron.) The computational cost of simulating one neuron 
depends on the level of detail that one wants to include in the 
simulation. Extremely simple neuron models use about 1,000 
floating-point operations per second (FLOPS) to simulate one 
neuron (for one second of simulated time); an electrophysiologi-
cally realistic Hodgkin-Huxley model uses 1,200,000 FLOPS; a 
more detailed multicompartmental model would add another 3-4 
orders of magnitude, while higher-level models that abstract sys-
tems of neurons could subtract 2-3 orders of magnitude from the 
simple models. If we were to simulate 1025 neurons over a billion 
years of evolution (longer than the existence of nervous systems as 
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we know them) in a year’s run time these figures would give us a 
range of 1031-1044 FLOPS.39

As Darwinian algorithm is inherently probabilistic, it is likely 
that many runs of the algorithm are required to have just one of 
them succeed, just like in the case of biological evolution.78 The 
number of such simultaneous runs can be estimated from the 
total size of the search space divided by the average individual 
computational resources of each run. In the special case of bio-
logical evolution, evolving intelligent beings:

The observation selection effect is that no matter how hard it is for 
human-level intelligence to evolve, 100% of evolved civilizations 
will find themselves originating from planets where it happened 
anyway. . . . every newly evolved civilization will find that evolution 
managed to produce its ancestors.39

So even a successful evolutionary run, with fixed computational 
resources, does not indicate that used compute would be suffi-
cient in a similar experiment, as subsequent runs may not pro-
duce similar results. As Shulman and Bostrom39 put it, 
“However, reliable creation of human-level intelligence through 
evolution might require trials on many planets in parallel, with 
Earth being one of the lucky few to succeed.” Conceivably, 
“Evolution requires extraordinary luck to hit upon a design for 
human-level intelligence, so that only 1 in 101000 planets with 
life does so.”39 Hanson elaborates,

Many have recognized that the recent appearance of intelligent life 
on Earth need not suggest a large chance that similarly intelligent 
life appears after a similar duration on any planet like Earth. Since 
Earth’s one data point has been subject to a selection effect, it is 
consistent with any expected time for high intelligence to arise 
beyond about a billion years. Few seem to have recognized, however, 
that this same selection effect also allows the origin of life to be 
much harder than life’s early appearance on Earth might suggest.79

Evolutionary algorithm theory attempts to estimate computa-
tional requirements theoretically necessary to run different 
variants of the Darwinian algorithm. Such estimates are usu-
ally made with respect to the size of the input problem, which 
is difficult to formalize with respect to software generation:

It is difficult to characterize the complexity of a problem specific to 
a method of programming. Holding all things constant, you measure 
what must change as the size of the input instance increases. It is 
even more difficult to describe the complexity of a problem that can 
be solved by a program that is itself the output of a program, as is the 
case with the typical GP. In general, this type of question cannot be 
answered. What can be done however, is to compare the information 
content of a program with the information content of its output and 
in this way provide a bound on the complexity of that output.36

Specifically, “Though it is impossible to classify the complexity of 
a problem that can be solved by the output program in advance, it 
is possible to relate the amount of information contained in the 
output program to the GP itself. By applying the theorems from 

Kolmogorov complexity, it can be shown that the complexity of 
the output program of a GP using a pseudo random number gen-
erator (PRNG) can be bound above by the GP itself.

Theorem. For all strings x, y, if x is the shortest program that 
outputs y, that is, K(y) = |x|, then K(x) ⩾ K(y) + c.

Proof. Let x be the shortest program (by definition, incom-
pressible) that outputs y. That is, K(y) = |x|. Suppose K(y) > 
K(x). By substitution, |x| > K(x), which is impossible as x was 
defined as incompressible.”36

Next, we attempted to include best estimates for Darwinian 
algorithm complexity found in literature:

The performance of an EA is measured by means of the number of 
function evaluations T it makes until an optimal solution is found 
for the first time. The reason is that evolutionary algorithms tend 
to be algorithmically simple and each step can be carried out rela-
tively quick. Thus, a function evaluation is assumed to be the most 
costly operation in terms of computation time. Most often, results 
about the expected optimization time E(T) as a function of n are 
derived where n is a measure for the size of the search space. If a 
fixed-length binary encoding is used n denotes the length of the 
bit strings (and the size of the search space equals 2n).71

“[W]ith random mutations, random point mutations, we will 
get to fitness BB(N) in time exponential in N (evolution by 
exhaustive search).”9 There busy beaver function BB(N) = the 
largest integer that can be named by an N-bit program.

Fitness function evaluation is the most costly procedure in 
the Darwinian algorithm and is particularly ill defined in the 
case of software evaluation. How does one formalize a fitness 
function for something like an operating system, without hav-
ing to include human users as evaluators? One may be required 
to rely on human-based genetic algorithms (HBGAs),80 which 
would greatly increase time necessary to evaluate every genera-
tion and by extension overall simulation time for the run, mak-
ing it impossible to recapitulate evolution through EAs:

Essentially, the complexity of an optimization problem for a GA is 
bound above by the growth rate of the smallest representation [Min-
imum Chromosome Length—(MCL)] that can be used to solve the 
problem . . . . This is because the probabilistic convergence time will 
remain fixed as a function of the search space. All things held con-
stant, the convergence time will grow as the search space grows.36

“This means that the size of the search space doubles for every 
increase in instance size because the number of possible solu-
tions is equivalent to the number 2 raised to the length of the 
chromosome, 2l.”36

By creating a UGP [Universal Genetic Program], we have a single 
vehicle capable of evolving any program evolvable by a GP. To do 
this, we treat the first part of the data for the UGP as the specif ica-
tion (i.e. the “target” function) for a unique GP. In this way, we can 
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implement any GP. This does not eliminate the Kolmogorov com-
plexity bound, rather it determines the hidden constant in the Kol-
mogorov complexity bound.36

Because the output complexity includes all individuals from all 
populations, producing more individuals through larger popula-
tions or longer runs must eventually stop producing new solutions 
because these solutions would necessarily increase the output com-
plexity beyond the finite limit imposed by the GP.36

Others have attempted to calculate total “Computational 
requirements for recapitulating evolution through genetic 
algorithms.”39

Given estimates of computational power of biological evo-
lution in the wild and theoretical analysis for computational 
resources necessary to run a Darwinian algorithm, we will now 
try to see whether matching compute is currently available, and 
whether not how soon until it is predicted to be developed. 
Currently, world’s top 10 supercomputers (https://en.wikipedia.
org/wiki/TOP500#Top_10_ranking) range from 10 to 125 
peta (1015) floating point operations per second of theoretical 
peak performance. For comparison, Bitcoin network (https://
blockchain.info) currently performs around 35 exa (1018) 
hashes per second, many thousands of times the combined 
speed of the top 500 supercomputers. Similarly, “Storing the 
total amount of information encoded in DNA in the biosphere, 
5.3 × 1031 megabases (Mb), would require approximately 1021 
supercomputers with the average storage capacity of the world’s 
four most powerful supercomputers”:76

In recent years it has taken approximately 6.7 years for commodity 
computers to increase in power by one order of magnitude. Even a 
century of continued Moore’s law would not be enough to close 
this gap. Running more or specialized hardware, or longer runt-
imes, could contribute only a few more orders of magnitude.39

In this section, we looked at estimated computational power 
of biological evolution and theoretical computational complex-
ity of Darwinian algorithm. In both cases, we found that 
required computational resources greatly exceed what is cur-
rently available and what is projected to be available in the near 
future. In fact, depending on some assumptions we make 
regarding multiverse,81 quantum aspects of biology,82 and 
probabilistic nature of Darwinian algorithm such compute may 
never be available. Mahoney arrives at a similar realization:

The biosphere has on the order of 10^31 cells (mostly bacteria) . . . 
with 10^6 DNA base pairs each, encoding 10^37 bits of memory. 
Cells replicate on the order of 10^6 seconds, for a total of 10^48 
copy operations over the last 3 billion years. If we include RNA 
transcription and protein synthesis as computing operations, then 
the evolution of humans required closer to 10^50 operations. By 
contrast, global computing power is closer to 10^20 operations per 
second and 10^22 bits of storage. If we were to naively assume that 
Moore’s Law were to continue increasing computing power by a 
factor of 10 every 5 years, then we would have until about 2080 
before we have something this powerful.83

Others agree,

The computing resources to match historical numbers of neurons 
in straightforward simulation of biological evolution on Earth are 
severely out of reach, even if Moore’s law continues for a century. 
The argument from evolutionary algorithms depends crucially on 
the magnitude of efficiency gains from clever search, with perhaps 
as many as thirty orders of magnitude required.39

If “. . . one would have to simulate evolution on vast numbers 
of planets to reliably produce intelligence through evolutionary 
methods, then computational requirements could turn out to 
be many, many orders of magnitude higher still . . .”39 It is 
hoped by some that future developments in Quantum 
Evolutionary Computation84 will help to overcome some of the 
resource limitations85 without introducing negative side 
effects.86

Conclusions
Our analysis of relevant literature shows that no one has suc-
ceeded at evolving nontrivial software from scratch; in other 
words, the Darwinian algorithm works in theory but does not 
work in practice, when applied in the domain of software pro-
duction. The reason we do not evolve software is that the space 
of working programs is very large and discrete. Although hill-
climbing heuristic–based evolutionary computations are excel-
lent at solving many optimization problems, they fail in the 
domains of noncontinuous fitness.87 This is also the reason we 
do not evolve complex alife or novel engineering designs. With 
respect to our 2 predictions, we can conclude that (1) simula-
tions of evolution do not produce comparably complex artifacts 
and (2) running EAs longer leads to progressively diminishing 
results. With respect to the 3 falsifiability conditions, we 
observe that all 3 are true as of this writing. Likewise, neither 
the longest-running EA nor the most complex-evolved algo-
rithm nor the most complex digital organism are a part of our 
common cultural knowledge. This is not an unrealistic expecta-
tion as successful software programs, such as Deep Blue88 or 
Alpha Go,89,90 are well known to the public.

Others have come to similar conclusions:

It seems reasonable to assume that the number of programs pos-
sible in a given language is so inconceivably large that genetic 
improvement could surely not hope to find solutions in the ‘genetic 
material’ of the existing program. The test input space is also, in the 
words of Dijkstra, “so fantastically high” that surely sampling 
inputs could never be sufficient to capture static truths about 
computation.17

. . . computing science is—and will always be—concerned with the 
interplay between mechanized and human symbol manipulation, 
usually referred to as “computing” and “programming” respectively. 
An immediate benefit of this insight is that it reveals “automatic 
programming” as a contradiction in terms.91

Moreover, more specifically,

https://en.wikipedia.org/wiki/TOP500#Top_10_ranking
https://en.wikipedia.org/wiki/TOP500#Top_10_ranking
https://blockchain.info) currently performs around 35 exa (10
https://blockchain.info) currently performs around 35 exa (10
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Genetic algorithms do not scale well with complexity. That is, 
where the number of elements which are exposed to mutation is 
large there is often an exponential increase in search space size. 
This makes it extremely difficult to use the technique on problems 
such as designing an engine, a house or plane. In order to make 
such problems tractable to evolutionary search, they must be bro-
ken down into the simplest representation possible. Hence we 
typically see evolutionary algorithms encoding designs for fan 
blades instead of engines, building shapes instead of detailed con-
struction plans, and airfoils instead of whole aircraft designs. The 
second problem of complexity is the issue of how to protect parts 
that have evolved to represent good solutions from further destruc-
tive mutation, particularly when their fitness assessment requires 
them to combine well with other parts.92

Even Koza himself acknowledges that it would be highly sur-
prising if his approach could work:

Anyone who has ever written and debugged a computer program 
and has experienced their brittle, highly non-linear, and perversely 
unforgiving nature will probably be understandably skeptical about 
the proposition that the biologically motivated process sketched 
above could possibly produce a useful computer program.16

We challenge EA community to prove us wrong by producing 
an experiment, which evolves nontrivial software from scratch 
and without human help. That would be the only way in which 
our findings could be shown to be incorrect. Perhaps, refram-
ing the problem in terms of maximizing negentropy of digital 
organisms, as suggested by Schrödinger93, Michaelian,94 and 
Ulanowicz and Hannon,95 with respect to negative energy 
being a fundamental property of all life-forms may produce 
better results.

On a positive side, the fact that it seems impossible to evolve 
complex software implies that we are unlikely to be able to 
evolve highly sophisticated artificially intelligent agents, which 
may present significant risk to our safety and security.96-102 Just 
imagine what would have happened, if the very first time we 
ran a simulation of evolution on a computer, it produced a 
superintelligent agent. Yampolskiy103 has shown that program-
ming as a problem is AI-complete; if GP can solve program-
ming that would imply that GP = AGI (artificial general 
intelligence), but we see no experimental evidence for such 
claim. In fact, it is more likely that once we have AGI, it could 
be used to create an intelligent fitness function for GP and so 
evolve software. Genetic programming will not be the cause of 
AI, but a product of it. However, neuroevolution methods for 
optimizing deep learning architectures and parameters remain 
a strong possibility for creation of AGI.
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