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ABSTRACT 

In recent years the use of Tablet PCs in education has received a great deal of attention.  

Improved note-taking and lecture presentation have been the main focus of Tablet PCs in 

education.  Currently, grading of student work collected as digital ink using Tablet PCs is still 

done mostly as it would be done if collected as pencil on paper.  However, having content stored 

as digital ink provides an opportunity to perform analysis that is neither practical nor possible 

with pen and paper student content.  Once student work is collected using DyKnow Vision, an 

interactive Tablet PC based classroom software tool, the student names and specific answers to 

questions can be extracted for analysis.  One type of analysis is clustering of students’ answers.  

For short answer English words, clustering of answers can be automated using handwriting 

recognition algorithms, existing clustering techniques and string distance calculations.  The 

clustering of answers will be an automated process that forms sets, but could be supplemented 

with human feedback to further refine the result.  A software system to implement this approach 

was designed and developed. Multiple string distance measures were used to implement an 

agglomerative clustering algorithm that brought together similar answers. Initial evaluation of 

this approach on short, English word, answers showed that student answers can be clustered in 

such a way that produces useful results for a human grader.  The algorithm has been found to be 

useful at creating groups of answers which a grader would consider to be identical with the most 

logical merges occurring early.  However, the heuristic used by the algorithm has been found to 

both stop grouping similar answers too early in some cases and too late in others.  Further 

refinement of this heuristic is needed to produce ideal clusters.  While human processing is still 

required, more development in this area and the use of more advanced techniques would be 

highly valuable as technology becomes more tightly integrated in the classroom. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

As technology has become more integrated in the classroom setting, many different 

platforms have been adopted by educators in attempts to improve learning outcomes.  The use of 

Microsoft based Tablet PCs in classrooms in combination with software specifically designed for 

classroom presentation has been adopted by several institutions including the J.B. Speed School 

of Engineering at the University of Louisville.  A digital classroom unlocks new possibilities and 

opportunities that are not possible in a traditional pencil and paper environment.  While typed 

digital work has been used in education and submitted in printed or electronic forms for many 

years, the new trend is towards electronic content that remains in digital form from student to 

instructor and back to the student. 

The amount of data being generated by individuals and collected by businesses has been 

increasing exponentially as the digital frontier continues to expand.  This enormous amount of 

data has proven to be impossible to analyze by hand and a wide range of algorithms and 

approaches have been developed to tackle the problem of analyzing and understanding this 

mountain of data.  The software developed for collecting student work in an instructional 

environment has a variety of possible forms.  Highly structured input such as responding to a 

true / false question or multiple choice questions can allow for automated and instantaneous 

grading and analysis along with immediate student feedback.  Less structured forms of input 

such as text boxes tend to require human interpretation, and feedback is typically not 

instantaneous unless exact phrases are expected.  Hand written input captured through an active 
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digitizer is the least structured, but is much more flexible in the type of responses that can be 

accepted. 

The ability to collect, digital, hand written student work is well established; making it 

possible to begin investigating the opportunities afforded by the capture of digital ink applied by 

students to their Tablet PCs.  Early digital ink software systems applications simply mirror the 

well-known processes and workflows that teachers and students are familiar with.  It is only after 

the technology is adopted by a critical mass that the technology can break free of the artificial 

limitations and conventions imposed by its creators.  Pen based technology in the classroom has 

reached this threshold and needs to move beyond mimicking analog processes and embrace new 

possibilities or step aside for a new technology to takes its place. 

The application of data analysis to grading student work in digital ink form is an example 

of moving beyond mimicking analog processes.  While some benefits are gained from adopting a 

digital ink based approach, such as near instantaneous transmission and unlimited copying, the 

real benefits have yet to be realized.  The depth of information gathered, such as deleted pen 

strokes, is often ignored or simply too much information for the average grader to process.  The 

field of computer science has produce a staggering number of algorithms and methods for 

processing digital data, by focusing these techniques and developing innovative user interfaces, 

the true benefits of a digital classroom can be realized.  The approach for clustering student 

answers described here is one simple example on how this approach can be implemented and 

used. 

The potential benefits of this specific implementation are less important than the 

conceptual approach it demonstrates: computational analysis of digital ink content used to assist 
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in the grading process.  More advanced techniques such as machine learning, neural networks, 

and natural language processing could be applied to this domain and broaden the types of student 

work to which it could be applied.  While not focused directly on student learning outcomes, it is 

possible and expected that the secondary effects of implementing such a system would be 

profound. 

1.2 Organization of Thesis 

 Chapter two presents a literature review of the current state of Tablet PCs in education 

along with the important concepts of string distance and clustering used in the implementation of 

the clustering algorithm described in this paper.  Chapter three discusses the possible 

applications for clustering ink based student work in addition to how existing handwriting 

recognition algorithms can provide a starting point for this work. Chapter four discusses the 

specific algorithm used for clustering and provides detailed analysis of applications results on 

various data sets.  Conclusions and directions for future research are presented in Chapter five.  
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CHAPTER II 

LITERATURE REVIEW 

 With Tablet PCs and the connected digital-classroom becoming more common in 

instructional settings, new educational practices and opportunities are arising. The current state 

of Tablet PC use in educational settings is discussed in Section 2.1 along with the lack of 

software tools for analyzing ink based student work.  Clustering algorithms that might be 

applicable to analyzing student work are discussed in Sections 2.2.  One domain of digital ink to 

which clustering could be applied is short English words.   String distance algorithms that can be 

used as distance measures for clustering digital ink answers that represent short answers 

(interpreted as strings) are discussed in Section 2.3. 

2.1 Use of Tablet PCs in Education 

Windows based Tablet PCs have been used in the classroom setting as part of an attempt 

to improve the education of students.  This technology utilizes pen based input to provide a more 

natural interface for both the instructor and the student compared to a standard keyboard and 

mouse.  This has been shown to be very effective in both math and science classes because of the 

limitations of a standard keyboard.  The use of this technology, even in a large classroom 

environment, can have a positive impact on learning outcomes. [1] The benefits of transitioning 

away from traditional paper based systems for collecting student work for in-class assignments 

include decreasing the amount of paper, decreasing the amount of time required to collect 

student work, and decreasing the amount of time to process student work.  [2] 

The focus of software development in this field has been centered on interactions that 

occur in the classroom.  Software such as DyKnow Vision [3] and Classroom Presenter [4] 
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provide a platform for classroom presentations and interactivity.   Both software suites provide a 

mechanism for wirelessly collecting student work in the instructional setting.  Providing an open 

source foundation, Classroom Presenter has been expanded to further automate the collection of 

student work. [1] 

At the Speed School of Engineering in the fall of 2008, the decision was made by the 

Engineering Fundamentals Department to transition the collection of in-class student work from 

paper to digital by utilizing the capabilities of DyKnow Vision.  The task of compiling the 

weekly grade reports based off of the electronically collected submissions was given to Hatfield.  

While DyKnow provided a mechanism for collecting the student work, the facility to generate 

grade reports was absent from the software.  The end result of the work was the development of 

DPX Manager, a software tool that produces grade reports based on the panels collected from 

students. [2] 

For many schools, such as Grove City College, DyKnow was the preferred choice for 

interactive learning software, but the feedback from students was mixed with 20% of students 

having a negative opinion of the software’s use in the classroom. [5]  However, the use of 

interactive learning software, under controlled conditions, was shown to provide a significant 

improvement in student test scores in an undergraduate computer science course at MIT. [6]  

Even in the face of mixed feedback from students, many school administrators have recognized 

the potential benefits of Tablet PC deployments and have continued to experiment with the 

technology. 

The unique benefits offered by Tablet PCs provide opportunities for the classroom that 

are not possible in a traditional classroom.  The Virginia Tech College of Engineering, in an 
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attempt to “better facilitate pedagogical practices,” starting in 2006, required all incoming 

freshmen to purchase a Tablet PC, replacing the previous laptop requirement. [7]  Similarly, the 

J.B. Speed School of Engineering began requiring all incoming freshmen to purchase a Tablet 

PC starting in the fall of 2007.  Speed’s deployment focused on integrating the technology into 

the engineering analysis and mathematics classes and used multiple software packages including 

DyKnow. [8]  These large scale Tablet PC deployments support the need for additional software 

development in the field of classroom management and automation that utilize the unique 

features of Tablet PCs. 

While DyKnow is a proprietary piece of software and cannot be modified, it is possible to 

use the files that contain student work collected using DyKnow.  Through the use of additional 

software, the content of these files, and therefore the student work itself, can be analyzed using 

custom tools.  The ability to collect student work using DyKnow, combined with the use 

additional software, provides the opportunity to automate tasks such as grading and organizing 

student work. [9]  It is possible, through the continuation of earlier work, to further improve the 

analysis techniques that are being used on the content of files that can be opened using the open 

source DPX Reader library. [10] 

2.2 Clustering Algorithms: K-Means and Neighbor-joining 

There are a variety of clustering algorithms that exist for automatically discovering 

patterns that exist in data sets.   K-means clustering is a popular technique that divides a data set 

into a desired number of clusters by dividing the data into groups using the average value of 

subsets of the data.  It has been found that a bisecting k-means approach can yield better results 

than an agglomerative approach that combines clusters.  The difference in approaches can result 
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in different outcomes that are more or less desirable depending on the data set that is being 

manipulated. [11] 

The k-means clustering algorithm is based on the concept that values from each cluster 

would be grouped together into a predetermined number of groups.  This algorithm requires that 

the number of groups be known in advance and then associates every data point with the nearest 

mean.  To begin, the initial data set is arbitrarily divided into the number of desired groups.  The 

algorithm recalculates the group mean and every data point re-associates with the nearest mean 

for each group.  After running for several iterations, the groups will converge and the data points 

will be divided into the desired number of groups. 

A common approach used in the reconstruction of polygenetic trees is neighbor-joining.  

This approach produces an un-rooted tree that connects all of the nodes while dividing the 

structure of the tree based on similarity.  A major difference in this approach as compared to k-

means is that each node does not have an absolute value; rather the distance between the nodes is 

used to perform the clustering. [12] 

The neighbor-joining algorithm is useful when comparing the genomes of different 

species where a common ancestor can be identified.  This algorithm produces a tree that 

identifies which species or nodes are more closely related and then continues with the 

comparison to the other nodes.  This algorithm is implemented using a matrix based comparison 

that iterates through the data set identifying the groups that are most closely related.  While this 

algorithm can be applied to English words, the behavior of the algorithm is to first associate the 

node that has the largest distance value with the closest node since the intrinsic assumption that a 

common ancestor is made. 
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2.3 String Distance Algorithms 

Many algorithms have been developed for the purposes of processing text and 

documents.  For the purposes of correcting typed words, there are a handful of mistakes that 

humans are prone to making.  Characters may be inserted, deleted, substituted, or transposed 

during the construction of the word.  The number of operations required to transform one string 

into another denotes the Damerau-Levenshtein distance which provides a measure of similarity. 

[13]  This algorithm depends on the tendencies of humans to make the same type of mistakes 

which can be easily identified when comparing text to a known dictionary. Microsoft’s 

handwriting recognition engine utilizes a dictionary to assist in the handwriting recognition 

process to increase the overall accuracy.  [14]  Therefore the output string from handwriting 

recognition algorithms may have been refined based on the available dictionary. 

The distance of two strings is an integer value that is the minimum number of 

transformations required to transform one string into another.  For simple cases such as 

comparing “ran” and “run” it is obvious that a single substitution, changing the “a” into a “u” is 

the one substation required and the string distance is only one.  Deletions, substitutions, and 

transpositions are also considered by the algorithm as it finds the minimum number of operations 

to transform one string into another.  The greater the Demarau-Levenshtein is between two 

strings the more likely these strings are not related. 

The longest common subsequence is a well-established problem in computer science and 

is the foundation for commonly used technologies such as diff.  Several solutions to this problem 

exist and attempt to reduce the complexity of finding the longest subsequence as part of the 

comparison of long character sequences. [15]  The subsequence problem is distinct from the 

longest substring problem.  With a subsequence it is possible to have characters inserted between 
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other characters.  This approach has a number of applications in the domain of DNA processing.  

However, the longest common subsequence can also be applied to short phrases to provide a 

measure of their similarity. 
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CHAPTER III 

DESIGN 

The workflows used by instructors to grade student work collected using digital ink have 

been constructed to mimic the well-established workflows of pencil and paper grading.   Three 

different categories of responses are described in considering the possibility of clustering student 

responses: free form sketches, mathematical expressions, and handwritten short answers.  

Sketches provide an unstructured input that provides a difficult problem for clustering similar 

shapes and figures.  Mathematical equations are more structured and technologies are emerging 

that support the conversion of digital ink mathematical expressions to standard representations 

such as MathML [16], but these algorithms are still being developed.  For hand-writing short 

answers, handwriting recognition algorithms provide a mature technology that dramatically 

simplifies the problem of clustering short answers by providing well established algorithms for 

transforming the digital ink content into strings.  Given the existence of mature handwriting 

recognition algorithms, student responses in the form of short phrases provide a problem domain 

suitable for further analysis. 

Section 3.1 discusses the existing workflows used by instructors and the artificial 

limitations placed on electronic software packages for processing student work.  Section 3.2 

discusses the specifics for collecting student work using DyKnow Vision. The various domains 

of ink based content there were identified are explored in depth in Section 3.3.  Lastly, Section 

3.4 discusses the application of existing handwriting recognition technologies. 
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3.1 Optimizing Instructor Workflows Outside of the Classroom  

In a traditional paper-based classroom setting, student work is collected on sheets of 

paper that may or may not have questions and regions for answers printed in advanced.  In a 

paperless classroom that uses Tablet PCs, student work collected in a digital form provides a 

significant amount of flexibility in how the questions are delivered, the student work is collected, 

and how the instructor processes student responses.  Additionally, there are a number of file 

formats and software packages that can be used for transmitting information back and forth from 

instructor and student.  Once such classroom software package is DyKnow Vision discussed in 

Section 2.1. Other software packages such as Classroom Presenter and Microsoft Interactive 

Classroom provide alternative interactive classroom learning systems that vary slightly in the 

features they offer to instructors and students and the file format in which collected work is 

stored.  Previous work on processing DyKnow files, specifically the DPX Reader library [9] 

discussed in Section 2.1, makes DyKnow the obvious choice for this investigation, but the 

approach described here can be extended and applied to these other systems within the 

constraints and limitations of each system. 

DyKnow Vision is a proprietary software package that provides a robust Interactive 

Learning System that allows synchronized whiteboard space for instructors and students.  An 

important feature of the software is that it allows instructors to collect student work.  This 

collected work can then be viewed, modified, and eventually returned to the students using only 

the DyKnow Vision software. However, in the present release of DyKnow this remains a manual 

and time consuming process, even more so for large classes.  By strictly imitating the workflows 

that were well established in the pre-digital classroom, several opportunities for possible 

automation are missed and artificial limitations are imposed. 
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The opportunity for automation, specifically in large classes, has not been the focus for 

software developed for instructional purposes.  As discussed in section 2.1, software 

development has focused on tools that increase instructor and student interaction with the 

specific goals of improving the educational experience.  Software that focuses primarily on 

workflows and instructor efficiency outside of the classroom is less obviously connected to 

student learning outcomes, but still offer potential benefits and possibly measurable 

improvements.  Tools that assist in the grading process can provide more equitable grading by: 

reducing the turnaround time on grading assignments, providing the instructor with more time to 

focus lesson plans, reducing the variability of grades between students with similar or identical 

mistakes, preventing grader biases by not revealing student names during the grading process, 

and many other benefits. 

3.2 Electronically Collecting Student Responses using DyKnow Vision 

In DyKnow, all content is contained within DyKnow notebooks and student responses 

are collected or submitted as individual panels which are collectively stored in a DyKnow 

notebook.  Individual panels are the digital equivalent of a piece of paper and along with digital 

ink is defined by a bounded area where the instructor and student are capable of creating content.  

While it is possible to have typed content, from students or instructors, on panels; this discussion 

will ignore this possibility for the purpose of focusing on ink based content.  The standard layout 

assumed for the panel is a question and response type structure as show in Figure 3.1.  The dark 

shaded region represents an Answer Box
1 where the student is prompted to provide a response. 

                                                 
1 An Answer Box is a region on a DyKnow Panel that is depicted by a grey region on the panel.  While this region 
appears to just be a simple shaded region, the file format sores the information about an Answer Box in a unique 
format that allows the area to be identified and therefore the ink content contained within that region. 
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Figure 3.1 Panel Layout with Answer Box 

The digital ink contained within each Answer Box can be isolated and extracted from the 

panel as an independent component.  This isolated ink can then be displayed and analyzed 

independent of the other ink content on the panel.  Since the ink has been isolated from the other 

content that is present on the panel, it can then be analyzed using established data analysis 

algorithms. 

3.3 Applications for Clustering Digital Ink Student Responses 

The process of grading student work can be a time consuming process.  The pencil and 

paper approach is limited by the physical constraints of the medium.  Student work collected 

using a Tablet PC and digital ink does not suffer the same limitations of paper, but current 

practice often imposes these constraints artificially.  The digital nature of the content allows for 

infinite copies and unlocks an existing set of algorithms that can be used to analyze this content.  

However, the full range of data analysis techniques available in the field of computer science has 

not been applied to solve this problem. 

Question 1 

Handwritten student response 

Question 2 

Handwritten student response 



14 
 

Student work collected on a Tablet PC also provides more information than work written 

on an ordinary piece of paper.  This information exists in several obvious and a few non-obvious 

forms.  A subtle bit of information that is collected is the pressure of the pen to the screen as 

each individual stroke is made.  While this information may not directly provide useful 

information, it demonstrates that with the transition to Tablet PCs to capture content, 

substantially more information is gathered.  A piece of paper provides a static snapshot of the 

student work when it was finally submitted.  A Tablet PC is capable of capturing not only the 

order in which pen strokes were made, but even the pen strokes that were deleted.  While not all 

ink enabled Tablet PC software supports a history, this feature is part of DyKnow Vision. 

This substantial amount of information contained in the ink content stored as part of a 

student response can be meticulously analyzed by hand, but this task quickly becomes unwieldy 

as the number of students and amount of work from each student increases.   Since this content 

originates in a digital form, it is an ideal candidate for automated analysis.  One type of analysis 

would be to cluster students’ inked answers that were collected digitally. 

The most general example of clustering student work would be the analysis and 

clustering of similar drawings or sketches.  Even young children possess the ability to identify 

and classify objects even though they are not identical.  It is effortless for a human to identify an 

animal as a cat or a dog, but this process is still difficult task for a computer.  Restricting the 

domain to sketches, content drawn on a Tablet PC, this problem is simplified, but the problem is 

still very complex. 

The figures depicted in Figure 3.2 show two types of shapes, a smiley face and a sail 

boat.  While these figures are not identical, it is possible to divide them into categories.   Using 
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the shape, all of the smiley faces are placed in one cluster and all of the sail boats are placed in 

another cluster, as shown in Figure 3.3.  Other factors such as color and the scale of the sketch 

may be ignored and only the shape is considered for this specific problem. 

 
Figure 3.2 Sketch Example: Unclustered sketches 

 
Figure 3.3 Sketch Example: Clustered sketches 

 

A more structured application for clustering student work would be the organization of 

equivalent mathematical expressions.  Mathematical expressions are highly structured and there 

are existing approaches for comparing and simplifying mathematical expressions using a 

computer algebra system.  The novel component of this application is the input being in the form 

of digital ink instead of precise user input through a keyboard and mouse.  Reliably converting 

digital ink to a mathematical expression would allow clustering to group the same or possibly 

similar answers with a high degree of accuracy.  Microsoft’s Math Input Panel, which is included 

as part of Windows 7, provides users with a means to create mathematical expressions through 
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the input of digital ink.  However, this technology is still in its infancy and mature libraries are 

not available to convert existing ink directly into a mathematical representation as part of custom 

applications.  The existing approaches depend on a significant amount of user feedback to obtain 

a high level of accuracy, which eliminates any potential time gains that are sought through the 

automated analysis. 

The hand written mathematical equations shown in Figure 3.4 depicts several possible 

solutions to a mathematical problem.  The previous work as part of the problem is ignored and 

only the final answer is used for this analysis.  The trivial case of grouping together the identical 

answers is not difficult once the ink has accurately been transformed into a mathematical 

representation.  With the assumption of accurately transformed ink content, it is also possible to 

identify those expressions that are not identical, but are equivalent using valid algebraic 

rearrangements.  Figure 3.5 shows the equivalent expressions clustered into two groups.  The 

difficulty of implementing a system that can organize ink based mathematical expressions is the 

ability to accurately convert the ink content into a standardized mathematical form that can be 

manipulated.  While existing software allows for such a conversion, they depend on a large 

amount of supplemental information from the user to achieve a high level of accuracy.  Once the 

conversion from ink has been performed, it is possible to identify equivalent expressions.   So 

long as the question was not to simplify an expression, the equivalent answers could be 

clustered. 
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Figure 3.4 Math Example: Unclustered expressions 

 
Figure 3.5 Math Example: Clustered expressions 

Recognizing that the limiting factor of implementing an ink based mathematical answer 

clustering system is the recognition algorithm, a system that uses short English phrases as input 

can utilize the mature handwriting recognition algorithms that exist on Tablet PCs.  Short 

English phrases provide a problem domain that can benefit from highly accurate handwriting 

recognition algorithms that can transform the student’s ink into text based strings.  These 

existing algorithms are highly accurate even with no additional user feedback into the system.  

Once the ink is converted to strings it can be easily compared and manipulated as part of a 

clustering algorithm to organize similar student responses.  The difficulty of implementing this 

approach is finding an algorithm that can properly identify similar, but non identical, answers 

that the instructor would denote as equivalent. 
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A simple comparison can again be performed by comparing “smiley faces” and “sail 

boats,” but this time in word form.  The input values seen in Figure 3.6 can be easily divided into 

the two groups seen in Figure 3.7.  Even though the phrases are not equivalent, each group has a 

root word, “smile” and “boat” respectively, that makes it possible to separate the objects into two 

groups even without the aid of natural language processing.  A possible solution to this problem 

and specific test cases will be explored further in the next chapter. 

 
Figure 3.6 Example phrases: Unclustered phrases 

 
Figure 3.7 Example phrases: Clustered phrases 

 

3.4 Handwriting Recognition 

Handwriting recognition is an important component of pen based technology.  However, 

these algorithms are not necessary for pen based technology to function.  The algorithms 
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involved in handwriting recognition have undergone extensive development to improve the 

accuracy of the technology.  It has been shown that on-line recognition systems provide much 

higher accuracy.  [17]  Tablet PCs provide more input than simply scanning existing text because 

the computer is capable of capturing information about the pressure being applied and the order 

of the strokes.  For Windows based applications, handwriting recognition is predominately used 

for search, which does not require a high level of accuracy.  The Microsoft handwriting 

recognition also provides a list of alternate strings that have been recognized.  As long as the 

algorithm identifies the desired term as a potential candidate, it will appear in the search results.  

Microsoft has favored interfaces that allow the user to provide input and make corrections on the 

fly with an overall high level of accuracy.  Since it is not possible to perform machine 

handwriting recognition with 100% accuracy, even in the most optimistic setting, these alternates 

may have the actual string that was written.  The highest accuracy is achieved when the user 

provides input during the recognition process. [14]  However, when it is assumed that we will be 

clustering similar strings small mistakes in the recognition algorithm will not result in major 

problems. 
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CHAPTER IV 

IMPLEMENTATION 

This chapter describes the implementation of a tool that applies the clustering approach 

described in Chapter 3 to short handwritten English word answers.  To simplify the process of 

collecting student answers, DyKnow Vision was used as a foundation to collect and store the ink 

based content.  The retrieved files can then be analyzed and the content of each Answer Box can 

be extracted.  This ink content is then analyzed using Microsoft’s handwriting recognition 

algorithm and the resulting strings can be clustered.  This clustering is based on established 

string distance algorithms and the desired result is to organize the responses into groups that 

would be useful during the grading process.  Section 4.1 describes the software used to open and 

process the DyKnow files and extract the content from the Answer Boxes while section 4.2 

provides a detailed description of the clustering algorithm used to group similar answers.  A 

detailed mathematical example of the clustering algorithm is presented in section 4.3.  Known 

interesting failures cases are presented in section 4.4 and an analysis of clustering answers 

collected from students is presented in section 4.5. 

4.1 A System for Processing Student Responses 

The first task in investigating clustering of student responses is to get the ink associated 

with each student’s response into a data structure appropriate for analysis.  While the DyKnow 

client provides a robust mechanism for collecting student work in the classroom, there is no 

official mechanism to open a DyKnow file using anything other than the original application 

used to create the content.  Therefore, exporting the data directly from DyKnow was not an 

option.  Since the DyKnow client application is built on Microsoft’s .NET platform and the same 
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developer tools that were used to create the DyKnow client are widely available it was possible 

to write custom code capable of extracting the desired ink stroke data.  A DyKnow file is simply 

a compressed XML serialized object that has been stored to a file.  Knowing this, it is possible to 

work backwards and create the necessary objects to de-serialize a DyKnow file, without access 

to the original executable or source code that was used to create it.  With this knowledge and 

through a process of trial and error along with extensive testing, a C# library called DPXReader 

was created that is able to read a DyKnow file into memory. 

The next step in the process is taking the content of the DyKnow file and rendering each 

panel on an InkCanvas2.  This process is complicated by the fact that DyKnow stores a complete 

history of all changes made to a file.  However, the DPXReader library is able to render the ink 

content of a DyKnow file with high accuracy assuming the panel history has been removed using 

the DyKnow client.  It is also possible to display the Answer Boxes and extract the exact region 

on the panel.  With the ability to render the ink content and the ability to identify the region that 

is designated to be an Answer Box, it is trivial to extract only the ink for each answer. 

The application responsible for processing student responses contained within Answer 

Boxes is called DPX Answers [10] and is shown in Figure 4.1.   At the core this application is 

able to open a DyKnow file and displays its contents.  The content of each Answer Box is 

extracted and handwriting recognition is performed.  Since this is a very computationally 

intensive process, this task is performed using a queue that has multiple workers allowing for 

increased performance in computers with multiple cores.  The handwriting recognition must be 

performed on every Answer Box in the file so the more panels and the more boxes per panel, the 

                                                 
2 An InkCanvas is the graphical interface that is part of the Windows operating system that is capable of displaying 
and receiving digital ink based content. 
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longer this process will take.  The time required to render each panel and perform handwriting 

recognition on each Answer Box is negligible and is linearly related to the total number of panels 

and Answer Boxes that make up a DyKnow notebook. 

 

Figure 4.1 DPX Answers GUI 

The input from the user is centered on each Answer Box.  We can assume all Answer 

Boxes that occupy the same region contain inked answers for the same question. This is a valid 

assumption since instructors would not put multiple overlapping Answer Boxes on the same 

panel. The extracted answers can be placed into a various groups so clustering can be performed 

on the content.  It is also possible for the user to manually manipulate the groups that result after 

the clustering.  This provides a means to correct any mistakes that may have resulted.  The user 

is then able to indicate if each answer is correct or incorrect and that value will be assigned to 

every answer within the group. 
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4.2 Analysis of Student Answers 

Handwriting recognition provides a mechanism to convert the ink-based content into a 

text-based string.  As part of the process of organizing student answers into groups, the 

handwriting recognition provided by Windows is used to recognize short answers written into 

the Answer Box.  The simplifying assumption is made that the answer is a short text based string, 

a portion of which has a high likelihood of being repeated by many students.  While it would be 

possible to extend grouping to complex mathematical formula based ink content or even hand 

drawn sketches, this is beyond the scope of the approach employed in this context.  The 

possibilities of such an approach are discussed in chapter 5. 

The process of truly understanding the answers provided by students and accurately 

organizing them into groups is trivial for a human, but very difficult for a computer.  Linguistic 

processing would be required to understand answers that are different words meaning the same 

thing.  Utilizing handwriting recognition does not eliminate the possibility for misspelled words 

and actually amplifies the possibility of a misrecognized word.  The underlying goal of 

clustering similar student answers can reduce the amount of time required by a human to process 

the grading.  By extracting the various answers this is partially accomplished.  With the addition 

of a rudimentary clustering algorithm that can group similar answers, the amount of time 

required to process and grade student responses can be reduced. 

Two well established string comparison algorithms can be used to measure the similarity 

and difference of two strings.   The Damerau-Levenshtein distance algorithm measures how 

many deletions, insertions, substitutions, and transpositions of characters are required to 
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transform one string into another, providing a measure of how different two strings are from one 

another.  In contrast, the longest common subsequence algorithm provides a measure of how 

similar two strings are to one another.  While there are other established algorithms for 

comparing strings, these two algorithms in particular captured the distance and similarity 

measures that targeted the desired string mutations.  An additional comparison can be performed 

that computes the number of common string tokens, or words, that two strings share in common.  

Since words can be arranged in varying orders and extraneous words can be added to answers, 

this measure provides a balanced comparison of the difference between two strings. 

To perform the clustering of the various answers, an agglomeration approach is used to 

propose possible merges of the various groups of answers and then merge the two groups with 

the lowest cost.  The cost measure calculated for each group is a numerical representation of the 

amount of variance between all answers that are contained within a single group.  The cost 

calculation is performed through a collection of string comparisons and a formula that produces 

the overall cost of each proposed merge.  A threshold is then calculated and the lowest cost 

merge that falls below the threshold is performed and the process is repeated until no merges fall 

below the threshold or a single merge is proposed.  The goal of each merge is to reduce the 

overall variance of the system, however each iteration recalculates all of the group variances and 

threshold used to identify the best possible merge. 

A total of five different measures are used in combination to calculate the cost of a 

potential merger of two groups.  Two of the input parameters are trivial to calculate, one being 

the total number of strings and the other being the average length of the strings in the group.  The 

three remaining inputs are calculated by performing all possible comparisons using the list of 
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provided strings and each of the comparison algorithms.  The complete list of inputs is defined in 

Table 4.1 as the component measures of internal group variability. 

Table 4.1 Definitions for Measures of Variability 

Cost Measure Formula 
Symbol 

Description 

Average Tokenized String 
Distance 

     The average of the tokenized string distance 
algorithm applied to all combination of strings 

Average Damerau-
Levenshtein String 
Distance 

     The average of the Damerau-Levenshtein string 
distance algorithm applied to all combination of 
strings 

Average Longest Common 
Subsequence 

      The average of the longest common subsequence 
algorithm applied to all combination of strings 

Average String Length     The average length of the all of the strings 
Number of Strings    The number of strings in the group 
 

Once the values are calculated for each potential group merger, an overall cost for each 

group can be calculated using equation I.  The equation combines multiple measures that are 

computed from the collection of strings.  This specific equation was arrived at after 

experimentation on synthetic data sets and is only one of many possible equations that could be 

used to calculate a cost.  Weights were not used in the equation as a simplifying assumption.  

The negative sign before the ALCSS term was included because the longest common 

subsequence was used as a measure of similarity while the other terms were used as measures of 

difference.  This overall cost can then be used to compute the average and standard deviation for 

all of the potential merges.  The threshold value used to test if a merger should be performed is 

one standard deviation below the average.  A single merger takes place for the proposed merge 

that has the lowest computed cost.  The algorithm continues until the terminating condition is 

reached. 

      (                   )     (I) 



26 
 

The algorithm used for clustering is shown in Figure 4.2 and the code used to calculate 

the group variance is shown in Figure 4.3.  This algorithm uses an agglomerative approach; 

every iteration performs the necessary calculations to identify two groups that can be merged 

with the minimum cost.  An unabbreviated version of the source code is available in Appendix 

A.  The implementation show below is simplified to emphasize the important components of the 

algorithm. 

 

void Cluster() 

{ 

 while(number of clusters > 2 and candidate count > 1) 

 { 

  for each combination of cluster xi and yj 

  { 

   calculate cost of merging xi and yj 

  } 

 

  calculate cost threshold // average – standard deviation of costs 

  count number of candidates below threshold 

 

  if min cost of merging groups xi and yj < threshold 

  { 

   merge groups xi and yj 

  } 

 } 

} 

 

Figure 4.2 Clustering algorithm pseudo code 

 

 
GroupAnalysis(group1, group2) 

{ 

    tokenDistance = TokenizedStringDistance.Compute(group1, group2); 

    damerauLevenshtineDistance = DamerauLevenshteinDistance.Compute(group1, group2); 

    longestSubstringDistance = LongestSubstring.Compute(group1, group2); 

    averageLength = CombinedAverageLength(group1, group2); 

    size = group1.Count + group2.Count; 

 

    calculatedValue = (tokenDistance + damerauLevenshtineDistance –  

      longestSubstringDistance + averageLength) * size; 

} 

 

Figure 4.3 Pseudo code for calculating the cost of merging two groups  
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4.3 Example of Clustering Student Answers 

To demonstrate the algorithm, the list of words shown in Figure 4.4 is used as input to the 

clustering algorithm.  The responses show would be a possible output from the handwriting 

recognition algorithm performed on the appropriate hand written student answers.  The expected 

clusters that would result from a human performing simple answer clustering are shown in 

Figure 4.5.  For humans, in most circumstances, the question that was asked to produce a set of 

responses is not needed group similar answers.  The result arrived in Figure 4.5 is correct 

because a human recognizes that the addition of an “a” to the beginning of “cat” and the addition 

of an “s” to the end of “dog “does not change the meaning of the word.  However, even without 

such understanding as in the case of a computer program, it is possible to arrive at this same 

result. 

 
Figure 4.4 Unclustered example phrases 

 
Figure 4.5 Expected clustering of example phrases 

The calculations shown in Table 4.2 depict the first pass of the algorithm calculating all 

of the necessary input values.  For the five groups listed there are  
   

 
    possible merges that 

need to be considered.  In this first iteration of the algorithm there is only one item in each group 

so the average is the same as simply comparing the two items. 
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Table 4.2 Example calculation components: First pass 

 cat a cat dog dogs mouse 
A 

T 

S 

D 

A 

D 

L 

S 

A 

L 

C 

S 

S 

A 

S 

L 

N 

S 

A 

T 

S 

D 

A 

D 

L 

S 

A 

L 

C 

S 

S 

A 

S 

L 

N 

S 

A 

T 

S 

D 

A 

D 

L 

S 

A 

L 

C 

S 

S 

A 

S 

L 

N 

S 

A 

T 

S 

D 

A 

D 

L 

S 

A 

L 

C 

S 

S 

A 

S 

L 

N 

S 

A 

T 

S 

D 

A 

D 

L 

S 

A 

L 

C 

S 

S 

A 

S 

L 

N 

S 

cat      1 3 3 4 2 2 3 0 3 2 2 3 0 3.5 2 2 4 0 4 2 

a cat           3 4 0 4 2 3 4 0 4.5 2 3 5 0 5 2 

dog                2 1 3 3.5 2 2 3 1 4 2 

dogs                     2 2 1 4.5 2 

mouse                          

 

Table 4.3 Example calculations: First pass 

 cat a cat dog dogs mouse 

cat  (       )
      

(       )
      

(         )   
    

(       )   
    

a cat   (       )
      

(         )   
    

(       )   
    

dog    (         )   
   

(       )   
    

dogs     (         )
      

mouse      

 

The cost calculation for the first iteration is show in Table 4.3.  Using these calculated 

values we find the average to be      with a standard deviation of        .  This puts the 

threshold at          and the two groups that fall below the threshold are highlighted in Table 

4.3.  The minimum was the merger of “dog” with “dogs” having a calculated cost of  .  These 

two items are merged together and the algorithm is run again and the new cost calculations are 

show in Table 4.4.  Since some possible merges have more than two items in the group, the 

average of all possible merges must be calculated.  This computation is not shown, but can be 

derived from the computations found in Table 4.2.  For a potential group with three elements a 

total of  
   

 
   comparisons must be computed and then averaged. 
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Table 4.4 Example calculation components: Second pass 

 cat a cat dog 
dogs 

mouse 

A 

T 

S 

D 

A 

D 

L 

S 

A 

L 

C 

S 

S 

A 

S 

L 

N 

S 

A 

T 

S 

D 

A 

D 

L 

S 

A 

L 

C 

S 

S 

A 

S 

L 

N 

S 

A 

T 

S 

D 

A 

D 

L 

S 

A 

L 

C 

S 

S 

A 

S 

L 

N 

S 

A 

T 

S 

D 

A 

D 

L 

S 

A 

L 

C 

S 

S 

A 

S 

L 

N 

S 

cat      1 3 3 4 2 2    ̅ 1    ̅ 3 2 4 0 4 2 

a cat              ̅ 3 1 4 3 3 5 0 5 2 

dog 

dogs 

               2 2    ̅ 4 3 

mouse                     

 

Table 4.5 Example calculations: Second pass 

 cat a cat dog 
dogs 

mouse 

cat  (       )   
    

(     ̅       ̅)       (       )       

a cat   (   ̅       )       (       )       

dog 

dogs 

   (       ̅   )   
    

mouse     

 

Using the calculated values shown in Table 4.5 we get the average to be      ̅ with a 

standard deviation of         .  This puts the threshold at           and only one groups falls 

below the threshold.  This means the group with “cat” and the group with “a cat” will be merged.  

Because only one candidate was found, the algorithm will terminate. 



30 
 

 
Figure 4.6 Clustering output form algorithm 

The result of the algorithm is visualized in Figure 4.6, which shows the starting groups 

and the final groups.  The original groups are located at the top of the diagram and the successive 

merges are indicated using number to denote the order of the merges.  In this trivial example, 

“mouse” is both an original and final group to itself, but it is not shown grouped with the final 

clusters.  The blue color of the group denotes that it is present when the algorithm terminates.  

The software generated report that contains the same calculations is found in Appendix B. 

4.4 Analysis of Errors 

There are several examples where the clustering approach employed by this algorithm 

fails to produce the desired result.  The algorithm attempts to merge phrases that are similar and 

depending on the input, this may result in final clusters that are not the desired result.  The 

assumption is there are groups present in the data, when there are no clusters present, it is 

possible for artificial groups to emerge.  The example shown in Figure 4.7 performs clustering 

on the words one, two, three, up through ten.  It is possible to recognize that there are no clusters 

found in this data set, but the somewhat random clusters that result are a product of the 

algorithm.  Since these specific English words share a certain amount of similarity, and there are 

no merges present that actually make sense, the algorithm results in this undesirable output.  
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Figure 4.7 Incorrect clusters resulting from data with no pattern 

The algorithm also is not able to understand synonyms.  This is best demonstrated in the 

somewhat worst case example shown in Figure 4.8 where numerical numbers are used and the 

equivalent words.  The measure of similarity is very high with just single character input and the 

first match found results in a merger.  While it is obvious that the group “three” should be put 

together with “3” along with all of the other numbers, but this does not result.  More advanced 

linguistic processing would be required to properly cluster this type of input.  Unfortunately, the 

seemingly random clusters that result from the algorithm are more harmful than no clustering at 

all.  

 
Figure 4.8 Incorrect clusters resulting from data with identifiable groups 
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While it is possible for the algorithm to properly cluster the input phrases, the clustering 

algorithm may continue to merge groups resulting in an incorrect final result.  The clustering 

shown in Figure 4.9 has an intermediate step that contains the desired answer, but the final result 

is incorrect.  The fourth merge is correct, but the fifth merge results in an incorrect groups.  The 

significance here is that the incorrect merges occur after a certain point.  This is not a failure to 

recognize the correct phrases to merge, rather a failure to recognize when the optimal result has 

been reached.  

 

 
Figure 4.9 Incorrect clustering resulting from too many merges 

4.5 Analysis of Student Answers 

 DPX Answers was deployed to analyze sample questions answered by students.  The 

questions were answered using a provided DyKnow panel.  A sample student response is shown 

in Figure 4.10.  The panel contained four questions each with a corresponding answer box.  The 

panel was distributed to students and collected using DyKnow Vision’s retrieve panel feature.  A 
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total of 32 students participated in the trial run providing answers to each of the four questions.  

The questions were selected to provide various distributions of answers to test the effectiveness 

of the clustering algorithm.  The extracted ink for each student that was contained in an Answer 

Box as shown in the clustered results is provided in Appendix C. 

 

Figure 4.10 Student response collected using DyKnow 

The results provided several insights into the effectiveness of the software and the 

clustering algorithm.  The various responses to each question evoked different behaviors from 

the clustering algorithm.  The results from the algorithm for each question are visualized in 

Appendix D.  The original clusters along with the order of the cluster merge and final result is 

shown in a graph structure for the strings that were recognized from the digital ink answers. 

The handwriting analysis performed on the data set provided very accurate string 

representations of the hand written answers. There were several occurrences where case of a 

letter, especially the first letter of a word, was possibly recognized incorrectly.  This is not a 

major concern as there is definite ambiguity in the student’s handwriting.  The major failure in 

the algorithm was in the recognition of the ampersand found in the word “AT&T.”  The 
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handwriting recognition algorithm failed to recognize the entire word reverting to a string of 

“Other” indicating that the algorithm recognized an unknown shape.  The recognition algorithm 

also made interesting mistakes such as recognizing “Verizon” as “venison” or “vector”, 

“Kentucky” as “fantasy”, and “KY” as “Rut.”  These mistakes represent only a small percentage 

of the overall answers and were expected due to the imperfect nature of the handwriting 

recognition algorithm. 

The first question that asked about cell phone provider produced a large number of 

answer clusters.  The algorithm, after identical strings were paired, resulted in a total of 17 

distinct clusters.  The clustering algorithm’s heuristic determined that no clusters should be 

merged based on the original data set.  This is an obvious failure of the heuristic being overly 

cautious since the total number of distinct answers was six.  However, the results only matching 

on identical string put “Sprint” together three time, “AT&T” together five times, “ATT” together 

twice, and “Verizon” together eight times making the trivial clustering still useful. 

The second question asked about favorite color and the answers included: black, blue, 

green, n/a, navy blue, orange, pink, purple, red, teal, and yellow.  Ideally there should have been 

a total of 11 clusters, but the algorithm ended with only four.  This is an instance where the 

heuristic failed to stop the algorithm soon enough.  The ideal result was reached at an interim 

step, after three iterations, but the algorithm continued for a total of ten iterations. 

The third question asked for the student’s home state.  Initially the identical “KY” 

answers produced a group with 7 responses and the identical “Kentucky” answers produced a 

group of 12 responses.  The other responses and the merges that were performed were also 

reasonably accurate, although not perfect, making the results of this clustering very useful to a 
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possible grader.  This also represents the use case where a question to a class produces two 

distinct groups.  Since the majority of the responses fell into these groups, the amount effort 

required to grade is reduced and the interesting responses stand out from the crowd. 

The fourth question asked about handedness.  This question has two expected and distinct 

answers: left or right.  However, this section of students only contained one left handed student 

so the clustering algorithm was overpowered by the number of right handed students.  However, 

the results did produce in only a few numbers of clusters based on the very high number of 

identical answers.  The lack variability in the answers does not provide additional insights into 

the clustering algorithm. 

The analysis of the student answers shows that the approach employed by DPX Answers 

can provide useful results.  The major shortcoming is in the heuristic for determining when to 

stop clustering.  The examples presented in section 4.4 suffered from similar problems.  A 

possible solution would be to use a more sensitive heuristic or simply prompt the user to identify 

the correct stopping point.  Creating a user interface that combines the clustering algorithm 

results with human decision making would provide more accurate results.  Since the individual 

answers require analysis for accuracy it is reasonable to prompt the user for additional feedback.  

The string distance algorithms deployed as a distance measure provided consistently accurate 

recommendations for clusters that should be merged during the first few iterations of the 

algorithm. 
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CHAPTER V 

CONCLUSION AND FUTURE DIRECTIONS 

This thesis presents a system for automated analysis of clustering digital ink answers 

based on established string distance measurements in combination with an agglomerative 

clustering algorithm.  The approach presented here provides a means to automatically open, 

render, analyze, cluster, and manage groups of student answers along with producing a final 

grade report for all students.  The clustering algorithm was tailored and optimized to work on 

designed sets of data that provided a representational sample of the problem statement.  It has 

been shown that this approach can successfully group similar student responses in a number of 

test cases. Having shown that this workflow can be automated, the next step is to refine this 

automation process after gathering feedback and analyzing real data. 

While DPX Answers provides the basic functionality for clustering student answers, there 

is still significant room for improvement.  There are several directions future research could take, 

falling into three basic categories: expanding to other software systems, improving the clustering 

techniques used for short answers, or expanding into other types of input such as mathematical 

expressions.  The software is designed to specifically read in DyKnow files.  The library used to 

read in these files, DPX Reader, is not perfect because of the closed source nature of DyKnow.  

More importantly, the way the ink is rendered on the canvas is not always accurate.  Moving and 

resizing ink on a panel from within DyKnow causes panels to not be rendered properly inside of 

DPX Answers.  While there is a workaround for this problem by removing history, it is not a 

user friendly solution.  An alternative direction would be to add support for reading files created 
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by Classroom Presenter.  While this software package is open source, it provides its own set of 

challenges for reading and interpreting the content. 

The approach used for clustering was based on string distance.  While the algorithm 

outlined in section 4.2 has been show to produce useful clusters, a more advanced technique 

would be required to generalize the algorithm.  Natural language processing would likely provide 

significantly more accurate and useful clusters, but the implementation would be significantly 

more complex.  The most effective approach would likely be achieved by combining automated 

processing with human feedback.  It would be almost impossible to solve the generic problem of 

clustering short answers in every possible knowledge domain without computational knowledge 

that approaches human levels. 

A promising approach would be to offload the difficult decisions to the human user, but 

would still use the computational power of the computer to reduce the amount of effort required 

as part of the grading process.  The complexity in this approach is primarily a human interface 

problem.  What types of questions do we want to ask the user to insure the data is properly 

clustered?  How do you pose the question so that you gain the maximum amount of knowledge 

about the data set?  Can the user verify the accuracy of the clustering?  While these problems are 

manageable under specific assumptions and circumstances, a generic solution would provide a 

significant challenge to implement and test. 

Alternative approaches that use natural language processing, neural networks, or more 

complex clustering algorithms would likely provide improved results.  The direction this 

research should take would be best directed under a supervised learning approach.  The data sets 

used in the development of the clustering algorithm presented in this thesis were primarily 
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synthetic.  A large, diverse, real data set collected using DyKnow Vision and contained within 

Answer Boxes would provide the best starting point for additional work.  Useful statistics and 

knowledge could be extracted from such a data set, such as how common are identical answers, 

and would provide the necessary guidance in selecting the best approach.  Collecting this data set 

would be time consuming, but the possible rewards would be great. 

The problem of clustering short answers may have already been sufficiently solved by 

simply grouping identical answers.  While it is not possible to automate the task of grouping 

identical answers using analog paper, the trivial implementation of the clustering used by DPX 

Answers has this ability.  This trivial approach may be enough for many users in a variety of 

situations.  However, different domains still provide very challenging problems. 

Tablet PCs provide an attractive means of computer input for mathematics.  The 

unrestricted input is easy for humans, but is not precise when compared to MathML.  As the 

algorithms for transforming inked mathematical content approach the accuracy of handwritten 

language, the possibility of automated clustering opens up.  Since this field is still in its infancy, 

the possibilities and potential impact are wide reaching.  While the architecture of DyKnow 

favors student work that is analogous to quiz length assignments, the possibility for analyzing 

entire groups of tests and longer types of content will open up in the future.  As technology 

continues to pervade the classroom, more advanced software solutions will be used to assist with 

the teaching process. 

  



39 
 

REFERENCES 

[1] Koile, Kimberle and Singer, David., "Development of a Tablet-PC-based System to Increase 

Instructor-Student." The Impact of Pen-based Technology on Education: Vignettes, Evaluations, 

and Future Directions. 

[2] Hatfield, Jared, Hieb, Jeffery and Lewis, James., "Scoring DyKnow Retrieved Panels for 

Large Classes." s.l. : Purdue University Press, 2009. The Impact of Tablet PCs and Pen-based 

Technology on Education: New Horizons. pp. 47-55. 

[3] DyKnow., DyKnow - Classroom Management and Interactive Education Software. [Online] 

http://dyknow.com/. 

[4] University of Washington., UW Classroom Presenter. [Online] 

http://classroompresenter.cs.washington.edu/. 

[5] DiStasi, Vincent F., Birmingham, William P. and Welton, Gary L., "Evaluating Learning 

Software in the Classroom: A Continuing Study." s.l. : Purdue University Press, 2008. The 

Impact of Tablet PCs and Pen-based Technology on Education: Evidence and Outcomes. pp. 39-

45. 

[6] Koile, Kimberlie and Singer, David., "Assessing the Impact of Tablet-PC-based Classroom 

Interactive System." s.l. : Purdue University Press, 2008. The Impact of Tablet PCs and Pen-

based Technology on Education: Evidence and Outcomes. pp. 73-80. 

[7] Tront, Joseph G., "Facilitating Pedagogical Practices through a Large-Scale Tablet PC 

Deployment." Computer, September 2007, Issue 9, Vol. 40, pp. 62 - 68 . 



40 
 

[8] Hieb, Jeffery L. and Ralston, Patricia A. S., "Tablet PCs in Engineering Mathematics Courses 

at the J.B. Speed School of Engineering." International Journal of Mathematical Education in 

Science and Technology, 2010. 

[9] Hatfield, Jared., "A Method for Automating the Analysis of Tablet PC Ink Based Student 

Work Collected Using DyKnow Vision." s.l. : Purdue University Press, 2010. The Impact of 

Tablet PCs and Pen-based Technology on Education: Going Mainstream. pp. 57-64. 

[10] jjhatf02., dyknow-panel-extractor. dyknow-panel-extractor - Google Project Hosting. 

[Online] http://code.google.com/p/dyknow-panel-extractor/. 

[11] Steinbach, Michael , Karypis, George and Kumar, Vipin., "A Comparison of Document 

Clustering Techniques." 2000. KDD Workshop on Text Mining. 

[12] Saitou, Naruya and Nei, Masatoshi., "The neighbor-joining method: a new method for 

reconstructing phylogenetic trees." 1987. Molecular Biology and Evolution. 

[13] Damerau, Fred J., "A technique for computer detection and correction of spelling errors." 

Communications of the ACM, March 1964, Issue 3, Vol. 7. 

[14] Pittman, James A., "Handwriting Recognition: Tablet PC Text Input." Computer, September 

2007, Issue 9, Vol. 40, pp. 49 - 54. 

[15] Hirschberg, Daniel S., "Algorithms for the Longest Common Subsequence Problem." 

Journal of the ACM (JACM), October 1977, Issue 4, Vol. 24. 

[16] Panic, Marko., "Math Handwriting Recognition in Windows 7 and Its Benefits." 2009. 

INTELLIGENT COMPUTER MATHEMATICS. pp. 29-30. 



41 
 

[17] Plamondon, R. and Srihari, S.N., "Online and off-line handwriting recognition: a 

comprehensive survey." IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan 

2000, Issue 1, Vol. 22, pp. 63 - 84. 

 

  



42 
 

APPENDIX A 

This appendix contains the common source code used by DPX Answers and the 

clustering algorithm along with an implementation of the clustering algorithm and all of the 

associated distance calculations.  The code is written in C# and was compiled using Visual 

Studio 2010. 

// <copyright file="Cluster.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The Cluster.cs file.</summary> 
namespace ClusterLibraryCore 
{ 
    using System; 
    using System.Collections.ObjectModel; 
    using System.Linq; 
    using System.Text; 
    using ClusterLibraryCore.Exceptions; 
 
    /// <summary> 
    /// The class that contains all of the data that is being clustered. 
    /// </summary> 
    /// <typeparam name="T">The type of object that is being clustered.</typeparam> 
    /// <typeparam name="L">The label that is applied to the group.</typeparam> 
    public class Cluster<T, L> : ICluster<T, L> 
    { 
        /// <summary> 
        /// The list of groups that are contained within the universe. 
        /// </summary> 
        private ObservableCollection<IClusterGroup<T, L>> groups; 
 
        /// <summary> 
        /// The master group for the cluster that can not be removed. 
        /// </summary> 
        private ClusterGroup<T, L> masterGroup; 
 
        /// <summary> 
        /// The default label used when a new group is created. 
        /// </summary> 
        private L defaultLabel; 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="Cluster&lt;T, L&gt;"/> class. 
        /// </summary> 
        /// <param name="defaultLabel">The default label.</param> 
        public Cluster(L defaultLabel) 
        { 
            this.groups = new ObservableCollection<IClusterGroup<T, L>>(); 
            this.defaultLabel = defaultLabel; 
 
            // Adds the first cluster group that is the master which can not be deleted. 
            this.masterGroup = new ClusterGroup<T, L>(this.defaultLabel, false); 
            this.groups.Add(this.masterGroup); 
        } 
 
        /// <summary> 
        /// Gets the read only list of groups. 
        /// </summary> 
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        /// <value>The list of groups.</value> 
        public ReadOnlyObservableCollection<IClusterGroup<T, L>> Groups 
        { 
            get { return new ReadOnlyObservableCollection<IClusterGroup<T, L>>(this.groups); } 
        } 
 
        /// <summary> 
        /// Adds the specified value to the master group. 
        /// </summary> 
        /// <param name="value">The value of the node.</param> 
        /// <returns>The node that was added.</returns> 
        public IClusterNode<T> AddValue(T value) 
        { 
            ClusterNode<T> node = new ClusterNode<T>(value); 
            this.masterGroup.InternalNodes.Add(node); 
            return node; 
        } 
 
        /// <summary> 
        /// Adds the specified value to a group. 
        /// </summary> 
        /// <param name="group">The group to be appended.</param> 
        /// <param name="value">The value of the node.</param> 
        /// <returns>The node that was added.</returns> 
        public IClusterNode<T> AddValue(IClusterGroup<T, L> group, T value) 
        { 
            if (this.groups.Contains(group)) 
            { 
                ClusterGroup<T, L> g = group as ClusterGroup<T, L>; 
                ClusterNode<T> node = new ClusterNode<T>(value); 
                g.InternalNodes.Add(node); 
                return node; 
            } 
            else 
            { 
                throw new InvalidClusterGroupException(); 
            } 
        } 
 
        /// <summary> 
        /// Adds the value dynamically to the cluster. 
        /// If the value is the same as all values in a group it will be added to that group. 
        /// If the value is unique a new group will be added. 
        /// </summary> 
        /// <param name="value">The value of the node.</param> 
        /// <returns>The node that was added.</returns> 
        public IClusterNode<T> AddValueDynamic(T value) 
        { 
            ClusterNode<T> node = new ClusterNode<T>(value); 
            bool added = false; 
 
            // Identify the group to add 
            for (int i = 0; i < this.groups.Count && !added; i++) 
            { 
                // Lets inspect this group to see if it works 
                ClusterGroup<T, L> g = this.groups[i] as ClusterGroup<T, L>; 
 
                // The group can't be empty 
                if (g.InternalNodes.Count > 0) 
                { 
                    // Assume the group is a match 
                    bool match = true; 
                    for (int j = 0; j < g.InternalNodes.Count; j++) 
                    { 
                        // If the group doesn't match give up 
                        if (!g.InternalNodes[j].Value.Equals(value)) 
                        { 
                            match = false; 
                            break; 
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                        } 
                    } 
 
                    // If the group is a match, use it 
                    if (match) 
                    { 
                        g.InternalNodes.Add(node); 
                        added = true; 
                    } 
                } 
            } 
 
            if (!added) 
            { 
                ClusterGroup<T, L> g = this.AddGroup() as ClusterGroup<T, L>; 
                g.InternalNodes.Add(node); 
            } 
 
            return node; 
        } 
 
        /// <summary> 
        /// Adds a new group to the cluster universe. 
        /// </summary> 
        /// <returns>The group that was added.</returns> 
        public IClusterGroup<T, L> AddGroup() 
        { 
            L val = this.defaultLabel; 
            try 
            { 
                val = (L)(this.defaultLabel as ICloneable).Clone(); 
            } 
            catch 
            { 
                val = this.defaultLabel; 
            } 
 
            ClusterGroup<T, L> group = new ClusterGroup<T, L>(val); 
            this.groups.Add(group); 
            return group; 
        } 
 
        /// <summary> 
        /// Removes the specified node. 
        /// </summary> 
        /// <param name="node">The node to remove.</param> 
        /// <returns> 
        /// True if the node was successfully removed; otherwise false. 
        /// </returns> 
        public bool RemoveNode(IClusterNode<T> node) 
        { 
            for (int i = 0; i < this.groups.Count; i++) 
            { 
                ClusterGroup<T, L> g = this.groups[i] as ClusterGroup<T, L>; 
                ClusterNode<T> n = node as ClusterNode<T>; 
                if (g.InternalNodes.Contains(n)) 
                { 
                    g.InternalNodes.Remove(n); 
                    return true; 
                } 
            } 
 
            return false; 
        } 
 
        /// <summary> 
        /// Removes the specified group.  All of the nodes in the group will be moved to the master group. 
        /// </summary> 
        /// <param name="group">The group to remove.</param> 
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        /// <returns> 
        /// True if the group was successfully removed; otherwise false. 
        /// </returns> 
        public bool RemoveGroup(IClusterGroup<T, L> group) 
        { 
            if (this.groups.Contains(group)) 
            { 
                ClusterGroup<T, L> g = group as ClusterGroup<T, L>; 
                 
                // Make sure that the cluster can be deleted 
                if (g.IsDeletable) 
                { 
                    // Move all of the nodes that are in this group into the master group 
                    while (g.InternalNodes.Count > 0) 
                    { 
                        ClusterNode<T> n = g.InternalNodes[0] as ClusterNode<T>; 
                        g.InternalNodes.Remove(n); 
                        this.masterGroup.InternalNodes.Add(n); 
                    } 
 
                    // Remove the group 
                    this.groups.Remove(group); 
                    return true; 
                } 
                else 
                { 
                    return false; 
                } 
            } 
            else 
            { 
                throw new InvalidClusterGroupException(); 
            } 
        } 
 
        /// <summary> 
        /// Moves the specified node to the specified destination. 
        /// </summary> 
        /// <param name="node">The node to move.</param> 
        /// <param name="destination">The destination group.</param> 
        /// <returns> 
        /// True if the move was successful; otherwise false. 
        /// </returns> 
        public bool Move(IClusterNode<T> node, IClusterGroup<T, L> destination) 
        { 
            if (this.groups.Contains(destination)) 
            { 
                ClusterGroup<T, L> dest = destination as ClusterGroup<T, L>; 
 
                // Locate the source cluster 
                ClusterGroup<T, L> source = null; 
                for (int i = 0; i < this.groups.Count; i++) 
                { 
                    if (this.groups[i].Nodes.Contains(node)) 
                    { 
                        source = this.groups[i] as ClusterGroup<T, L>; 
                        break; 
                    } 
                } 
 
                // Test if the source pile was located 
                if (source != null) 
                { 
                    // Remove from the source and add to the destination 
                    source.InternalNodes.Remove(node); 
                    dest.InternalNodes.Add(node); 
                    return true; 
                } 
                else 
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                { 
                    return false; 
                } 
            } 
            else 
            { 
                throw new InvalidClusterGroupException(); 
            } 
        } 
 
        /// <summary> 
        /// Merges the specified group into the destination group.  The source group will be deleted. 
        /// </summary> 
        /// <param name="source">The source group.</param> 
        /// <param name="destination">The destination group.</param> 
        /// <returns>True if the merge was successful; otherwise false.</returns> 
        public bool Merge(IClusterGroup<T, L> source, IClusterGroup<T, L> destination) 
        { 
            Collection<IClusterNode<T>> list = new Collection<IClusterNode<T>>(); 
            foreach (IClusterNode<T> node in source.Nodes) 
            { 
                list.Add(node); 
            } 
 
            foreach (IClusterNode<T> node in list) 
            { 
                this.Move(node, destination); 
            } 
 
            this.RemoveGroup(source); 
            (destination as ClusterGroup<T, L>).RegenerateGroupId(); 
            return true; 
        } 
 
        /// <summary> 
        /// Gets the group that contains the specified node. 
        /// </summary> 
        /// <param name="value">The value of the node to locate.</param> 
        /// <returns>The group containing the node.</returns> 
        public IClusterGroup<T, L> GetGroup(T value) 
        { 
            for (int i = 0; i < this.groups.Count; i++) 
            { 
                ClusterGroup<T, L> g = this.groups[i] as ClusterGroup<T, L>; 
                for (int j = 0; j < g.Nodes.Count; j++) 
                { 
                    IClusterNode<T> node = g.Nodes[j] as IClusterNode<T>; 
 
                    // It is very important that we check to make sure the objects are the same, not that 
they are equal. 
                    if (Object.ReferenceEquals(value, node.Value)) 
                    { 
                        return g; 
                    } 
                } 
            } 
 
            throw new InvalidClusterGroupException(); 
        } 
    } 
} 
 
 

// <copyright file="ClusterGroup.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The ClusterGroup.cs file.</summary> 
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namespace ClusterLibraryCore 
{ 
    using System; 
    using System.Collections.ObjectModel; 
    using System.ComponentModel; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The group of objects within a cluster. 
    /// </summary> 
    /// <typeparam name="T">The type of object that is being clustered.</typeparam> 
    /// <typeparam name="L">The label that is applied to the group.</typeparam> 
    internal class ClusterGroup<T, L> : IClusterGroup<T, L> 
    { 
        /// <summary> 
        /// The index used to generate unique numbers. 
        /// </summary> 
        private static int index = 0; 
 
        /// <summary> 
        /// The list of objects that are within the cluster. 
        /// </summary> 
        private ObservableCollection<IClusterNode<T>> nodes; 
 
        /// <summary> 
        /// A flag indicating if this cluster can be deleted. 
        /// </summary> 
        private bool deletable; 
 
        /// <summary> 
        /// The uid for the group. 
        /// </summary> 
        private int uid; 
 
        /// <summary> 
        /// The label for the group. 
        /// </summary> 
        private L label; 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="ClusterGroup&lt;T, L&gt;"/> class. 
        /// </summary> 
        /// <param name="label">The label for the group.</param> 
        internal ClusterGroup(L label) 
        { 
            this.nodes = new ObservableCollection<IClusterNode<T>>(); 
            this.deletable = true; 
            this.uid = ClusterGroup<T, L>.index++; 
            this.label = label; 
        } 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="ClusterGroup&lt;T, L&gt;"/> class. 
        /// </summary> 
        /// <param name="label">The label for the group.</param> 
        /// <param name="deletable">if set to <c>true</c> [deletable].</param> 
        internal ClusterGroup(L label, bool deletable) 
        { 
            this.nodes = new ObservableCollection<IClusterNode<T>>(); 
            this.deletable = deletable; 
            this.uid = ClusterGroup<T, L>.index++; 
            this.Label = label; 
        } 
 
        /// <summary> 
        /// Event for updating properties. 
        /// </summary> 
        public event PropertyChangedEventHandler PropertyChanged; 
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        /// <summary> 
        /// Gets a value indicating whether this instance is deletable. 
        /// </summary> 
        /// <value><c>true</c> if this instance is deletable; otherwise, <c>false</c>.</value> 
        public bool IsDeletable 
        { 
            get { return this.deletable; } 
        } 
 
        /// <summary> 
        /// Gets the unique id. 
        /// </summary> 
        /// <value>The unique id.</value> 
        public int Uid 
        { 
            get { return this.uid; } 
        } 
 
        /// <summary> 
        /// Gets or sets the grouplabel. 
        /// </summary> 
        /// <value>The group label.</value> 
        public L Label 
        { 
            get 
            { 
                return this.label; 
            } 
 
            set 
            { 
                this.label = value; 
                this.NotifyPropertyChanged("Label"); 
            } 
        } 
 
        /// <summary> 
        /// Gets the read only list of nodes. 
        /// </summary> 
        /// <value>The list fo nodesnodes.</value> 
        public ReadOnlyObservableCollection<IClusterNode<T>> Nodes 
        { 
            get { return new ReadOnlyObservableCollection<IClusterNode<T>>(this.nodes); } 
        } 
 
        /// <summary> 
        /// Gets the modifible list of  nodes. 
        /// </summary> 
        /// <value>The list of nodes.</value> 
        internal ObservableCollection<IClusterNode<T>> InternalNodes 
        { 
            get { return this.nodes; } 
        } 
 
        /// <summary> 
        /// Label value was updated. 
        /// </summary> 
        public void UpdateLabelValue() 
        { 
            this.NotifyPropertyChanged("Label"); 
        } 
 
        /// <summary> 
        /// Regenerates the group id. 
        /// </summary> 
        internal void RegenerateGroupId() 
        { 
            this.uid = ClusterGroup<T, L>.index++; 
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        } 
 
        /// <summary> 
        /// Clusters the group label property changed. 
        /// </summary> 
        /// <param name="sender">The sender.</param> 
        /// <param name="e">The <see cref="System.ComponentModel.PropertyChangedEventArgs"/> instance 
containing the event data.</param> 
        private void LabelPropertyChanged(object sender, PropertyChangedEventArgs e) 
        { 
            this.NotifyPropertyChanged("Label"); 
        } 
 
        /// <summary> 
        /// Signals that a property of this object has changed. 
        /// </summary> 
        /// <param name="info">The property that is being affected.</param> 
        private void NotifyPropertyChanged(string info) 
        { 
            if (this.PropertyChanged != null) 
            { 
                this.PropertyChanged(this, new PropertyChangedEventArgs(info)); 
            } 
        } 
    } 
} 
 
 

// <copyright file="ClusterNode.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The ClusterNode.cs file.</summary> 
namespace ClusterLibraryCore 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// A node that contains a value used within the cluster. 
    /// </summary> 
    /// <typeparam name="T">The type of object that is being clustered.</typeparam> 
    internal class ClusterNode<T> : IClusterNode<T> 
    { 
        /// <summary> 
        /// The value contained within this node. 
        /// </summary> 
        private T value; 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="ClusterNode&lt;T&gt;"/> class. 
        /// </summary> 
        /// <param name="value">The value.</param> 
        internal ClusterNode(T value) 
        { 
            this.value = value; 
        } 
 
        /// <summary> 
        /// Gets the value. 
        /// </summary> 
        /// <value>The value.</value> 
        public T Value 
        { 
            get { return this.value; } 
        } 
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    } 
} 
 
 

// <copyright file="ICluster.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The ICluster.cs file.</summary> 
namespace ClusterLibraryCore 
{ 
    using System; 
    using System.Collections.ObjectModel; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The interface for the possible manipulations that can be made to the cluster. 
    /// </summary> 
    /// <typeparam name="T">The type of object that is being clustered.</typeparam> 
    /// <typeparam name="L">The label that is applied to the group.</typeparam> 
    public interface ICluster<T, L> 
    { 
        /// <summary> 
        /// Gets the read only list of groups. 
        /// </summary> 
        /// <value>The list of groups.</value> 
        ReadOnlyObservableCollection<IClusterGroup<T, L>> Groups 
        { 
            get; 
        } 
 
        /// <summary> 
        /// Adds the specified value to the master group. 
        /// </summary> 
        /// <param name="value">The value of the node.</param> 
        /// <returns>The node that was added.</returns> 
        IClusterNode<T> AddValue(T value); 
 
        /// <summary> 
        /// Adds the specified value to a group. 
        /// </summary> 
        /// <param name="group">The group to be appended.</param> 
        /// <param name="value">The value of the node.</param> 
        /// <returns>The node that was added.</returns> 
        IClusterNode<T> AddValue(IClusterGroup<T, L> group, T value); 
 
        /// <summary> 
        /// Adds the value dynamically to the cluster. 
        /// If the value is the same as all values in a group it will be added to that group. 
        /// If the value is unique a new group will be added. 
        /// </summary> 
        /// <param name="value">The value of the node.</param> 
        /// <returns>The node that was added.</returns> 
        IClusterNode<T> AddValueDynamic(T value); 
 
        /// <summary> 
        /// Adds a new group to the cluster universe. 
        /// </summary> 
        /// <returns>The group that was added.</returns> 
        IClusterGroup<T, L> AddGroup(); 
 
        /// <summary> 
        /// Removes the specified node. 
        /// </summary> 
        /// <param name="node">The node to remove.</param> 
        /// <returns>True if the node was successfully removed; otherwise false.</returns> 
        bool RemoveNode(IClusterNode<T> node); 
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        /// <summary> 
        /// Removes the specified group.  All of the nodes in the group will be moved to the master group. 
        /// </summary> 
        /// <param name="group">The group to remove.</param> 
        /// <returns>True if the group was successfully removed; otherwise false.</returns> 
        bool RemoveGroup(IClusterGroup<T, L> group); 
 
        /// <summary> 
        /// Moves the specified node to the specified destination. 
        /// </summary> 
        /// <param name="node">The node to move.</param> 
        /// <param name="destination">The destination group.</param> 
        /// <returns>True if the move was successful; otherwise false.</returns> 
        bool Move(IClusterNode<T> node, IClusterGroup<T, L> destination); 
 
        /// <summary> 
        /// Merges the specified group into the destination group.  The source group will be deleted. 
        /// </summary> 
        /// <param name="source">The source group.</param> 
        /// <param name="destination">The destination group.</param> 
        /// <returns>True if the merge was successful; otherwise false.</returns> 
        bool Merge(IClusterGroup<T, L> source, IClusterGroup<T, L> destination); 
 
        /// <summary> 
        /// Gets the group that contains the specified node. 
        /// </summary> 
        /// <param name="value">The value of the node to locate.</param> 
        /// <returns>The group containing the node.</returns> 
        IClusterGroup<T, L> GetGroup(T value); 
    } 
} 
 
 

// <copyright file="IClusterGroup.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The IClusterGroup.cs file.</summary> 
namespace ClusterLibraryCore 
{ 
    using System; 
    using System.Collections.ObjectModel; 
    using System.ComponentModel; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The IClusterGroup file. 
    /// </summary> 
    /// <typeparam name="T">The type of object that is being clustered.</typeparam> 
    /// <typeparam name="L">The label that is applied to the group.</typeparam> 
    public interface IClusterGroup<T, L> : INotifyPropertyChanged 
    { 
        /// <summary> 
        /// Gets a value indicating whether this instance is deletable. 
        /// </summary> 
        /// <value><c>true</c> if this instance is deletable; otherwise, <c>false</c>.</value> 
        bool IsDeletable 
        { 
            get; 
        } 
 
        /// <summary> 
        /// Gets the unique id. 
        /// </summary> 
        /// <value>The unique id.</value> 
        int Uid 



52 
 

        { 
            get; 
        } 
 
        /// <summary> 
        /// Gets or sets the grouplabel. 
        /// </summary> 
        /// <value>The group label.</value> 
        L Label 
        { 
            get; 
            set; 
        } 
 
        /// <summary> 
        /// Gets the read only list of nodes. 
        /// </summary> 
        /// <value>The list fo nodesnodes.</value> 
        ReadOnlyObservableCollection<IClusterNode<T>> Nodes 
        { 
            get; 
        } 
 
        /// <summary> 
        /// Label value was updated. 
        /// </summary> 
        void UpdateLabelValue(); 
    } 
} 
 
 

// <copyright file="IClusterNode.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The IClusterNode.cs file.</summary> 
namespace ClusterLibraryCore 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The IClusterNode file. 
    /// </summary> 
    /// <typeparam name="T">The type of object that is being clustered.</typeparam> 
    public interface IClusterNode<T> 
    { 
        /// <summary> 
        /// Gets the value. 
        /// </summary> 
        /// <value>The value.</value> 
        T Value 
        { 
            get; 
        } 
    } 
} 
 
 

// <copyright file="ClusterException.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The ClusterException.cs file.</summary> 
namespace ClusterLibraryCore.Exceptions 
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{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The base exception for the ClusterLibrary. 
    /// </summary> 
    public class ClusterException : Exception 
    { 
    } 
} 
 
 

// <copyright file="InvalidClusterGroupException.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The InvalidClusterGroupException.cs file.</summary> 
namespace ClusterLibraryCore.Exceptions 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The execption thrown with an invalid ClusterGroup is specified. 
    /// </summary> 
    public class InvalidClusterGroupException : ClusterException 
    { 
    } 
} 
 
 

// <copyright file="Grade.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The Grade.cs file.</summary> 
namespace GradeLibrary 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The different state for a grade. 
    /// </summary> 
    public enum Grade 
    { 
        /// <summary> 
        /// The box is not valid. 
        /// </summary> 
        INVALID, 
 
        /// <summary> 
        /// The answer has not been graded. 
        /// </summary> 
        NOTSET, 
 
        /// <summary> 
        /// The answer is correct. 
        /// </summary> 
        CORRECT, 
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        /// <summary> 
        /// The answer is incorrect. 
        /// </summary> 
        INCORRECT 
    } 
} 
 
 

// <copyright file="GroupData.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The GroupData.cs file.</summary> 
namespace GradeLibrary 
{ 
    using System; 
    using System.Collections.ObjectModel; 
    using System.ComponentModel; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The meta data that is part of a group of grades. 
    /// </summary> 
    public class GroupData : INotifyPropertyChanged, ICloneable 
    { 
        /// <summary> 
        /// The grade that is assigned to the group. 
        /// </summary> 
        private Grade grade; 
 
        /// <summary> 
        /// The list of terms that is included in the group. 
        /// </summary> 
        private Collection<string> includeList; 
 
        /// <summary> 
        /// The list of terms that are excluded from the group. 
        /// </summary> 
        private Collection<string> excludeList; 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="GroupData"/> class. 
        /// </summary> 
        public GroupData() 
        { 
            this.grade = Grade.NOTSET; 
            this.includeList = new Collection<string>(); 
            this.excludeList = new Collection<string>(); 
        } 
 
        /// <summary> 
        /// Event for updating properties. 
        /// </summary> 
        public event PropertyChangedEventHandler PropertyChanged; 
 
        /// <summary> 
        /// Gets or sets the grade. 
        /// </summary> 
        /// <value>The grade.</value> 
        public Grade Grade 
        { 
            get 
            { 
                return this.grade; 
            } 
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            set 
            { 
                this.grade = value; 
                this.NotifyPropertyChanged("Grade"); 
            } 
        } 
 
        /// <summary> 
        /// Gets the included term list. 
        /// </summary> 
        /// <value>The included term list.</value> 
        public Collection<string> IncludeList 
        { 
            get { return this.includeList; } 
        } 
 
        /// <summary> 
        /// Gets the excluded term list. 
        /// </summary> 
        /// <value>The excluded term list.</value> 
        public Collection<string> ExcludeList 
        { 
            get { return this.excludeList; } 
        } 
 
        /// <summary> 
        /// Creates a new object that is a copy of the current instance. 
        /// </summary> 
        /// <returns> 
        /// A new object that is a copy of this instance. 
        /// </returns> 
        public object Clone() 
        { 
            GroupData gd = new GroupData(); 
            gd.grade = this.grade; 
            gd.includeList = new Collection<string>(); 
            gd.excludeList = new Collection<string>(); 
            for (int i = 0; i < this.includeList.Count; i++) 
            { 
                gd.includeList.Add(this.includeList[i]); 
            } 
 
            for (int i = 0; i < this.excludeList.Count; i++) 
            { 
                gd.excludeList.Add(this.excludeList[i]); 
            } 
 
            return gd; 
        } 
 
        /// <summary> 
        /// Signals that a property of this object has changed. 
        /// </summary> 
        /// <param name="info">The property that is being affected.</param> 
        private void NotifyPropertyChanged(string info) 
        { 
            if (this.PropertyChanged != null) 
            { 
                this.PropertyChanged(this, new PropertyChangedEventArgs(info)); 
            } 
        } 
    } 
} 
 
 

// <copyright file="IAnswer.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
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// </copyright> 
// <summary>The IAnswer.cs file.</summary> 
namespace GradeLibrary 
{ 
    using System; 
    using System.Collections.ObjectModel; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The interface used to access the information about an answer. 
    /// </summary> 
    public interface IAnswer : ICloneable 
    { 
        /// <summary> 
        /// Gets the answer. 
        /// </summary> 
        /// <value>The answer.</value> 
        string Answer 
        { 
            get; 
        } 
 
        /// <summary> 
        /// Gets the alternates. 
        /// </summary> 
        /// <value>The alternates.</value> 
        ReadOnlyCollection<string> Alternates 
        { 
            get; 
        } 
    } 
} 
 
 

// <copyright file="IClusterAlgorithm.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The IClusterAlgorithm.cs file.</summary> 
namespace GradeLibrary 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
    using ClusterLibraryCore; 
 
    /// <summary> 
    /// An algorithm for processing  
    /// </summary> 
    public interface IClusterAlgorithm 
    { 
        /// <summary> 
        /// Gets or sets the cluster. 
        /// </summary> 
        /// <value>The cluster.</value> 
        ICluster<IAnswer, GroupData> Cluster 
        { 
            get; 
            set; 
        } 
 
        /// <summary> 
        /// Processes this instance. 
        /// </summary> 
        void Process(); 
    } 
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} 
 
 

// <copyright file="CacheManager.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The CacheManager.cs file.</summary> 
namespace HatfieldCluster 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Collections.ObjectModel; 
    using System.Diagnostics; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The cache manager that is responsible for speeding up string comparison computations. 
    /// </summary> 
    internal class CacheManager 
    { 
        /// <summary> 
        /// The defult number of items to store in the cache. 
        /// </summary> 
        private const int DefaultCacheSize = 100; 
 
        /// <summary> 
        /// The maximum value for the cache. 
        /// </summary> 
        private const int MaximumCacheSize = 10000; 
 
        /// <summary> 
        /// The padding used as part of the caching process. 
        /// </summary> 
        private const string Padding = "++-&|^|&-++"; 
 
        /// <summary> 
        /// The total number of hits. 
        /// </summary> 
        private static int totalHits = 0; 
 
        /// <summary> 
        /// The total number of misses. 
        /// </summary> 
        private static int totalMisses = 0; 
 
        /// <summary> 
        /// The lock used to synchronize access to the cache. 
        /// </summary> 
        private object cacheLock; 
 
        /// <summary> 
        /// The number of itmes to store in the cache. 
        /// </summary> 
        private int cacheSize; 
 
        /// <summary> 
        /// The counter that keeps track of the number of hits on the cache. 
        /// </summary> 
        private int hits; 
 
        /// <summary> 
        /// The counter that keeps track of the number of misses on the cache. 
        /// </summary> 
        private int misses; 
 
        /// <summary> 
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        /// The cache that is responsible for speeding up computations. 
        /// </summary> 
        private Dictionary<string, int> cache; 
 
        /// <summary> 
        /// The queue used to remove items from the cache. 
        /// </summary> 
        private Queue<string> queue; 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="CacheManager"/> class. 
        /// </summary> 
        internal CacheManager() 
        { 
            this.cacheLock = new object(); 
            this.cacheSize = CacheManager.DefaultCacheSize; 
            this.hits = 0; 
            this.misses = 0; 
            this.cache = new Dictionary<string, int>(); 
            this.queue = new Queue<string>(); 
        } 
 
        /// <summary> 
        /// Gets the statistics for the cache. 
        /// </summary> 
        /// <returns>The description of the statistics.</returns> 
        public static string Statistics() 
        { 
            return "Hits = " + CacheManager.totalHits + "\tMisses = " + CacheManager.totalMisses; 
        } 
 
        /// <summary> 
        /// Resets the size of the cache back to the default value. 
        /// </summary> 
        internal void ResetCache() 
        { 
            lock (this.cacheLock) 
            { 
                // Reset the hits and misses 
                this.hits = 0; 
                this.misses = 0; 
 
                // Clear the cache 
                this.cache.Clear(); 
                this.queue.Clear(); 
 
                // Set the size of the cache back to the default. 
                this.cacheSize = CacheManager.DefaultCacheSize; 
            } 
        } 
 
        /// <summary> 
        /// Sets the size of the cache. 
        /// </summary> 
        /// <param name="size">The size of the cache.</param> 
        internal void SetCacheSize(int size) 
        { 
            lock (this.cacheLock) 
            { 
                // Set the maximum size for the cache. 
                if (size > CacheManager.MaximumCacheSize) 
                { 
                    size = CacheManager.MaximumCacheSize; 
                } 
 
                // Update the cache size 
                if (size > this.cacheSize) 
                { 
                    // We are increasing the cache size so just make the change 
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                    this.cacheSize = size; 
                } 
                else 
                { 
                    // We are decreasing the cache size so first prune the cache 
                    while (this.queue.Count > size) 
                    { 
                        // The cache opperates in a FIFO manner with the assistance of a queue. 
                        string remove = this.queue.Dequeue(); 
                        this.cache.Remove(remove); 
                    } 
 
                    // Set the size of the specified value. 
                    this.cacheSize = size; 
                } 
            } 
        } 
 
        /// <summary> 
        /// Gets the specified key value. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
        /// <param name="t">The second string.</param> 
        /// <returns> 
        /// The requested value if it was located, ortherwise null if it is not found. 
        /// </returns> 
        internal Nullable<int> Get(string s, string t) 
        { 
            lock (this.cacheLock) 
            { 
                string key1 = CacheManager.GetKey(s, t); 
                string key2 = CacheManager.GetKey(t, s); 
                if (this.cache.Keys.Contains(key1)) 
                { 
                    int i = this.cache[key1]; 
                    this.hits++; 
                    CacheManager.totalHits++; 
                    return i; 
                } 
                else if (this.cache.Keys.Contains(key2)) 
                { 
                    int i = this.cache[key2]; 
                    this.hits++; 
                    CacheManager.totalHits++; 
                    return i; 
                } 
                else 
                { 
                    this.misses++; 
                    CacheManager.totalMisses++; 
                    return null; 
                } 
            } 
        } 
 
        /// <summary> 
        /// Puts the specified s. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
        /// <param name="t">The second string.</param> 
        /// <param name="n">The number.</param> 
        internal void Put(string s, string t, int n) 
        { 
            lock (this.cacheLock) 
            { 
                string key = CacheManager.GetKey(s, t); 
                this.cache.Add(key, n); 
                this.queue.Enqueue(key); 
                if (this.queue.Count > this.cacheSize) 
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                { 
                    // The cache opperates in a FIFO manner with the assistance of a queue. 
                    string remove = this.queue.Dequeue(); 
                    this.cache.Remove(remove); 
                } 
            } 
        } 
 
        /// <summary> 
        /// Gets the key. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
        /// <param name="t">The second string.</param> 
        /// <returns>The key used for lookup.</returns> 
        private static string GetKey(string s, string t) 
        { 
            return s + CacheManager.Padding + t; 
        } 
    } 
} 
 
 

// <copyright file="DamerauLevenshteinDistance.cs" company="Jared Hatfield"> 
// All Rights Reserved 2010 
// </copyright> 
// <summary>The DamerauLevenshteinDistance.cs file.</summary> 
namespace HatfieldCluster 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The Damerau Levenshtein Distance. 
    /// </summary> 
    internal class DamerauLevenshteinDistance : IDistance 
    { 
        /// <summary> 
        /// The cache used for speeding up the comparisons. 
        /// </summary> 
        private static CacheManager cache = new CacheManager(); 
 
        /// <summary> 
        /// Compute the distance between two strings. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
        /// <param name="t">The second string.</param> 
        /// <returns>The levenshtein distance.</returns> 
        internal static int Distance(string s, string t) 
        { 
            // Attempt to retreive value from cache 
            Nullable<int> cached = DamerauLevenshteinDistance.cache.Get(s, t); 
            if (cached != null && cached.HasValue) 
            { 
                return cached.Value; 
            } 
 
            // Calculate the value 
            int n = s.Length; 
            int m = t.Length; 
            int[,] d = new int[n + 1, m + 1]; 
 
            // The first string was empty so the distance is the length of the second string. 
            if (n == 0) 
            { 
                return m; 
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            } 
 
            // The second string was empty so the distance is the length of the first string. 
            if (m == 0) 
            { 
                return n; 
            } 
 
            // Check to see if the strings are actually equal to each other 
            if (s.Equals(t)) 
            { 
                return 0; 
            } 
 
            // Fill the matrix with the starting values. 
            for (int i = 0; i <= n; d[i, 0] = i++) 
            { 
            } 
 
            for (int j = 0; j <= m; d[0, j] = j++) 
            { 
            } 
 
            // Run the algorithm... 
            for (int i = 1; i <= n; i++) 
            { 
                for (int j = 1; j <= m; j++) 
                { 
                    int cost = 0; 
                    if (i >= n && j >= m) 
                    { 
                        cost = 1; 
                    } 
                    else if (i >= n || j >= m || s[i] == t[j]) 
                    { 
                        cost = 0; 
                    } 
                    else 
                    { 
                        cost = 1; 
                    } 
 
                    d[i, j] = Math.Min( 
                        Math.Min( 
                            d[i - 1, j] + 1,         // deletion 
                            d[i, j - 1] + 1),        // insertion 
                        d[i - 1, j - 1] + cost);     // substitution 
                     
                    if (i > 1 && j > 1 && i < n && j < m && s[i] == t[j - 1] && s[i - 1] == t[j]) 
                    { 
                        d[i, j] = Math.Min( 
                            d[i, j], 
                            d[i - 2, j - 2] + cost); // transposition 
                    } 
                } 
            } 
 
            int result = d[n, m]; 
 
            // Cache the value 
            DamerauLevenshteinDistance.cache.Put(s, t, result); 
             
            return result; 
        } 
 
        /// <summary> 
        /// Computes the string distance. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
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        /// <param name="t">The second string.</param> 
        /// <returns>The string distance.</returns> 
        internal override int GetDistance(string s, string t) 
        { 
            return DamerauLevenshteinDistance.Distance(s, t); 
        } 
    } 
} 
 
 

// <copyright file="GroupAnalysis.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The GroupAnalysis.cs file.</summary> 
namespace HatfieldCluster 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
    using ClusterLibraryCore; 
    using GradeLibrary; 
 
    /// <summary> 
    /// The algorithm for analyzing groups. 
    /// </summary> 
    internal class GroupAnalysis 
    { 
        /// <summary> 
        /// The analysis label; 
        /// </summary> 
        private string label; 
 
        /// <summary> 
        /// The token distance. 
        /// </summary> 
        private double tokenDistance; 
 
        /// <summary> 
        /// The damerau levenshtine distance. 
        /// </summary> 
        private double damerauLevenshtineDistance; 
 
        /// <summary> 
        /// The longest substring distance. 
        /// </summary> 
        private double longestSubstringDistance; 
 
        /// <summary> 
        /// The average length. 
        /// </summary> 
        private double averageLength; 
 
        /// <summary> 
        /// The size of the set. 
        /// </summary> 
        private int size; 
 
        /// <summary> 
        /// The calculated value. 
        /// </summary> 
        private double calculatedValue; 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="GroupAnalysis"/> class. 
        /// </summary> 
        /// <param name="label">The label.</param> 
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        /// <param name="g1">The first group.</param> 
        /// <param name="g2">The second group.</param>  
        internal GroupAnalysis(string label, IClusterGroup<IAnswer, GroupData> g1, IClusterGroup<IAnswer, 
GroupData> g2) 
        { 
            this.label = label; 
            this.tokenDistance = GroupVariance.Compute(g1, g2, new TokenizedStringDistance()); 
            this.damerauLevenshtineDistance = GroupVariance.Compute(g1, g2, new 
DamerauLevenshteinDistance()); 
            this.longestSubstringDistance = GroupVariance.Compute(g1, g2, new LongestSubstring()); 
            this.averageLength = this.CombinedAverageLength(g1, g2); 
            this.size = g1.Nodes.Count + g2.Nodes.Count; 
            this.Calculate(); 
        } 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="GroupAnalysis"/> class. 
        /// </summary> 
        /// <param name="label">The label.</param> 
        /// <param name="group">The group.</param> 
        internal GroupAnalysis(string label, IClusterGroup<IAnswer, GroupData> group) 
        { 
            this.label = label; 
            this.tokenDistance = GroupVariance.Compute(group, new TokenizedStringDistance()); 
            this.tokenDistance = GroupVariance.Compute(group, new TokenizedStringDistance()); 
            this.damerauLevenshtineDistance = GroupVariance.Compute(group, new 
DamerauLevenshteinDistance()); 
            this.longestSubstringDistance = GroupVariance.Compute(group, new LongestSubstring()); 
            if (group.Nodes.Count == 1) 
            { 
                this.tokenDistance = 1; 
                this.longestSubstringDistance = group.Nodes[0].Value.Answer.Length; 
            } 
 
            this.averageLength = this.CombinedAverageLength(group); 
            this.size = group.Nodes.Count; 
            this.Calculate(); 
        } 
 
        /// <summary> 
        /// Gets the lable. 
        /// </summary> 
        /// <value>The lable.</value> 
        internal string Lable 
        { 
            get { return this.label; } 
        } 
 
        /// <summary> 
        /// Gets the token distance. 
        /// </summary> 
        /// <value>The token distance.</value> 
        internal double TokenDistance 
        { 
            get { return this.tokenDistance; } 
        } 
 
        /// <summary> 
        /// Gets the damerau levenshtein distance. 
        /// </summary> 
        /// <value>The damerau levenshtein distance.</value> 
        internal double DamerauLevenshteinDistance 
        { 
            get { return this.damerauLevenshtineDistance; } 
        } 
 
        /// <summary> 
        /// Gets the longest substring distance. 
        /// </summary> 
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        /// <value>The longest substring distance.</value> 
        internal double LongestSubstringDistance 
        { 
            get { return this.longestSubstringDistance; } 
        } 
 
        /// <summary> 
        /// Gets the average length. 
        /// </summary> 
        /// <value>The average length.</value> 
        internal double AverageLength 
        { 
            get { return this.averageLength; } 
        } 
 
        /// <summary> 
        /// Gets the size of the group. 
        /// </summary> 
        /// <value>The size of the group.</value> 
        internal int Size 
        { 
            get { return this.size; } 
        } 
 
        /// <summary> 
        /// Gets the calculated value. 
        /// </summary> 
        /// <value>The calculated value.</value> 
        internal double CalculatedValue 
        { 
            get { return this.calculatedValue; } 
        } 
 
        /// <summary> 
        /// Gets the report rows. 
        /// </summary> 
        /// <returns>The string containing the HTML report rows.</returns> 
        internal string GetReportRows() 
        { 
            int round = 5; 
            StringBuilder sb = new StringBuilder(); 
            sb.Append("<td>" + Math.Round(this.TokenDistance, round) + "</td>"); 
            sb.Append("<td>" + Math.Round(this.DamerauLevenshteinDistance, round) + "</td>"); 
            sb.Append("<td>" + Math.Round(this.LongestSubstringDistance, round) + "</td>"); 
            sb.Append("<td>" + Math.Round(this.AverageLength, round) + "</td>"); 
            sb.Append("<td>" + this.Size + "</td>"); 
            sb.Append("<td>" + Math.Round(this.CalculatedValue, round) + "</td>"); 
 
            return sb.ToString(); 
        } 
 
        /// <summary> 
        /// Calculates the value. 
        /// </summary> 
        private void Calculate() 
        { 
            // Calculate the value used for comparisons 
            // this.calculatedValue = this.tokenDistance + this.damerauLevenshtineDistance - 
this.longestSubstringDistance; 
            this.calculatedValue = (this.tokenDistance + this.damerauLevenshtineDistance - 
this.longestSubstringDistance + this.averageLength) * this.size; 
        } 
 
        /// <summary> 
        /// Computes the combined average length. 
        /// </summary> 
        /// <param name="g1">The group 1.</param> 
        /// <param name="g2">The group 2.</param> 
        /// <returns>The average length of a word.</returns> 
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        private double CombinedAverageLength(IClusterGroup<IAnswer, GroupData> g1, IClusterGroup<IAnswer, 
GroupData> g2) 
        { 
            double total = 0; 
            for (int i = 0; i < g1.Nodes.Count; i++) 
            { 
                total += g1.Nodes[i].Value.Answer.Length; 
            } 
 
            for (int i = 0; i < g2.Nodes.Count; i++) 
            { 
                total += g2.Nodes[i].Value.Answer.Length; 
            } 
 
            return total / (double)(g1.Nodes.Count + g2.Nodes.Count); 
        } 
 
        /// <summary> 
        /// Computes the combined average length. 
        /// </summary> 
        /// <param name="group">The group.</param> 
        /// <returns>The average length of a word.</returns> 
        private double CombinedAverageLength(IClusterGroup<IAnswer, GroupData> group) 
        { 
            double total = 0; 
            for (int i = 0; i < group.Nodes.Count; i++) 
            { 
                total += group.Nodes[i].Value.Answer.Length; 
            } 
 
            return total / (double)group.Nodes.Count; 
        } 
    } 
} 
 
 

// <copyright file="GroupVariance.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The GroupVariance.cs file.</summary> 
namespace HatfieldCluster 
{ 
    using System; 
    using System.Collections.ObjectModel; 
    using System.Linq; 
    using System.Text; 
    using ClusterLibraryCore; 
    using GradeLibrary; 
 
    /// <summary> 
    /// Calculats the group variance for a list of answers. 
    /// </summary> 
    internal class GroupVariance 
    { 
        /// <summary> 
        /// Computes the variance for two groups assuming they were merged together. 
        /// </summary> 
        /// <param name="a">The cluster group a.</param> 
        /// <param name="b">The cluster group b.</param> 
        /// <param name="distanceAlgorithm">The distance algorithm.</param> 
        /// <returns>The computed variance.</returns> 
        internal static double Compute(IClusterGroup<IAnswer, GroupData> a, IClusterGroup<IAnswer, 
GroupData> b, IDistance distanceAlgorithm) 
        { 
            Collection<IAnswer> list = new Collection<IAnswer>(); 
            for (int i = 0; i < a.Nodes.Count; i++) 
            { 



66 
 

                list.Add(a.Nodes[i].Value); 
            } 
 
            for (int i = 0; i < b.Nodes.Count; i++) 
            { 
                list.Add(b.Nodes[i].Value); 
            } 
 
            return GroupVariance.Compute(list, distanceAlgorithm); 
        } 
 
        /// <summary> 
        /// Computes the variance for the specified group. 
        /// </summary> 
        /// <param name="group">The cluster group.</param> 
        /// <param name="distanceAlgorithm">The distance algorithm.</param> 
        /// <returns>The computed variance.</returns> 
        internal static double Compute(IClusterGroup<IAnswer, GroupData> group, IDistance 
distanceAlgorithm) 
        { 
            Collection<IAnswer> list = new Collection<IAnswer>(); 
            for (int i = 0; i < group.Nodes.Count; i++) 
            { 
                list.Add(group.Nodes[i].Value); 
            } 
 
            return GroupVariance.Compute(list, distanceAlgorithm); 
        } 
 
        /// <summary> 
        /// Computes the variance for the specified list of answers. 
        /// </summary> 
        /// <param name="list">The list of answers..</param> 
        /// <param name="distanceAlgorithm">The distance algorithm.</param> 
        /// <returns>The computed variance.</returns> 
        internal static double Compute(Collection<IAnswer> list, IDistance distanceAlgorithm) 
        { 
            int total = 0; 
            for (int i = 0; i < list.Count; i++) 
            { 
                for (int j = 0; j < list.Count; j++) 
                { 
                    if (i > j) 
                    { 
                        total += distanceAlgorithm.GetDistance(list[i].Answer, list[j].Answer); 
                    } 
                } 
            } 
 
            double normalize = ((list.Count * list.Count) - list.Count) / 2.0; 
            if (normalize == 0) 
            { 
                return normalize; 
            } 
 
            return total / normalize; 
        } 
    } 
} 
 
 

// <copyright file="HatfieldCluster.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The algorithm for clustering the answers.</summary> 
namespace HatfieldCluster 
{ 
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    using System; 
    using System.Collections.ObjectModel; 
    using System.Diagnostics; 
    using System.Linq; 
    using System.Text; 
    using ClusterLibraryCore; 
    using GradeLibrary; 
 
    /// <summary> 
    /// The algorithm for clustering the answers. 
    /// </summary> 
    public class HatfieldCluster : IClusterAlgorithm 
    { 
        /// <summary> 
        /// The instance of the cluster. 
        /// </summary> 
        private ICluster<IAnswer, GroupData> cluster; 
 
        /// <summary> 
        /// The list of seeds. 
        /// </summary> 
        private ObservableCollection<string> seeds; 
 
        /// <summary> 
        /// The flag indicating that a report should be generated. 
        /// </summary> 
        private bool reportGeneration; 
 
        /// <summary> 
        /// The report that was generated. 
        /// </summary> 
        private StringBuilder report; 
 
        /// <summary> 
        /// The number of iterations the algorithm has executed. 
        /// </summary> 
        private int iterations; 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="HatfieldCluster"/> class. 
        /// </summary> 
        public HatfieldCluster() 
        { 
            this.cluster = null; 
            this.seeds = new ObservableCollection<string>(); 
            this.reportGeneration = false; 
            this.report = new StringBuilder(); 
            this.iterations = 0; 
        } 
 
        /// <summary> 
        /// Initializes a new instance of the <see cref="HatfieldCluster"/> class. 
        /// </summary> 
        /// <param name="cluster">The cluster.</param> 
        public HatfieldCluster(ICluster<IAnswer, GroupData> cluster) 
        { 
            this.cluster = cluster; 
            this.seeds = new ObservableCollection<string>(); 
            this.reportGeneration = false; 
            this.report = new StringBuilder(); 
            this.iterations = 0; 
        } 
 
        /// <summary> 
        /// Gets or sets the cluster. 
        /// </summary> 
        /// <value>The cluster.</value> 
        public ICluster<IAnswer, GroupData> Cluster 
        { 
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            get { return this.cluster; } 
            set { this.cluster = value; } 
        } 
 
        /// <summary> 
        /// Gets the seeds. 
        /// </summary> 
        /// <value>The seeds.</value> 
        public ObservableCollection<string> Seeds 
        { 
            get { return this.seeds; } 
        } 
 
        /// <summary> 
        /// Gets the report. 
        /// </summary> 
        /// <value>The report.</value> 
        public string Report 
        { 
            get 
            { 
                if (this.reportGeneration) 
                { 
                    return this.report.ToString(); 
                } 
                else 
                { 
                    return "<h1>No Report Generated.</h1>"; 
                } 
            } 
        } 
 
        /// <summary> 
        /// Gets or sets a value indicating whether [report generation]. 
        /// </summary> 
        /// <value><c>true</c> if [report generation]; otherwise, <c>false</c>.</value> 
        public bool ReportGeneration 
        { 
            get 
            { 
                return this.reportGeneration; 
            } 
 
            set 
            { 
                this.reportGeneration = value; 
                this.report = new StringBuilder(); 
            } 
        } 
 
        /// <summary> 
        /// Gets the iterations. 
        /// </summary> 
        /// <value>The iterations.</value> 
        public int Iterations 
        { 
            get { return this.iterations; } 
        } 
 
        /// <summary> 
        /// Processes this instance. 
        /// </summary> 
        public void Process() 
        { 
            StringBuilder graph = new StringBuilder(); 
            if (this.reportGeneration) 
            { 
                this.report = new StringBuilder(); 
                this.report.AppendLine("<html><head>"); 
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                this.report.AppendLine("<style type=\"text/css\">td{width:120px;}tr.headrow{background-
color: #C1CDCD; font-weight: bold;}tr.highlightrow{background-color: #FDFCDC;}</style>"); 
                this.report.AppendLine("</head><body><h1>Report</h1>"); 
                graph.AppendLine("digraph {"); 
                graph.AppendLine("\tsubgraph cluster_0 {"); 
                for (int i = 1; i < this.cluster.Groups.Count; i++) 
                { 
                    graph.AppendLine("\t\t" + this.GraphVizNode(this.cluster.Groups[i], true) + ";"); 
                } 
 
                graph.AppendLine("\t}"); 
            } 
 
            int counter = 1; 
            int candidateCount = 2; 
            while (this.cluster.Groups.Count > 2 && candidateCount > 1) 
            { 
                if (this.reportGeneration) 
                { 
                    this.report.AppendLine("<h2>Pass " + counter + "</h2>"); 
                    this.DebugAnalysis(); 
                } 
 
                this.iterations++; 
                double total = 0; 
                double num = 0; 
                double min = int.MaxValue; 
                int groupOne = -1; 
                int groupTwo = -1; 
                Collection<double> calculatedValues = new Collection<double>(); 
                Collection<GroupAnalysis> calculatedGroups = new Collection<GroupAnalysis>(); 
 
                // Perform all of the necessary comparisons 
                for (int i = 1; i < this.cluster.Groups.Count; i++) 
                { 
                    for (int j = 1; j < this.cluster.Groups.Count; j++) 
                    { 
                        if (i > j) 
                        { 
                            string label = "Group " + j + ",Group " + i; 
                            GroupAnalysis ga = new GroupAnalysis(label, this.cluster.Groups[i], 
this.cluster.Groups[j]); 
                            calculatedGroups.Add(ga); 
                            double dist = ga.CalculatedValue; 
                            calculatedValues.Add(dist); 
                            total += dist; 
                            num++; 
                            if (min > dist) 
                            { 
                                min = dist; 
                                groupOne = i; 
                                groupTwo = j; 
                            } 
                        } 
                    } 
                } 
 
                // Calculate the threshold 
                double average = total / num; 
                double stddev = StandardDeviation.Calculate(calculatedValues); 
                double threshold = average - stddev; 
 
                // Count the number of comparisons that fall under the threshold 
                candidateCount = 0; 
                for (int i = 0; i < calculatedGroups.Count; i++) 
                { 
                    if (threshold > calculatedGroups[i].CalculatedValue) 
                    { 
                        candidateCount++; 
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                    } 
                } 
                 
                // Display the results table 
                if (this.reportGeneration) 
                { 
                    this.report.AppendLine("<h3>Comparisons</h3><table border='1' padding='4'>"); 
                    this.report.AppendLine("<tr class=\"headrow\"><td colspan=2>Comparison</td><td>Token 
Distance</td><td>Damerau Levenshiein Distance</td><td>Longest Common Substring</td><td>Average 
Length</td><td>Size</td><td>Calculated Variance</td></tr>"); 
                    for (int i = 0; i < calculatedGroups.Count; i++) 
                    { 
                        GroupAnalysis ga = calculatedGroups[i]; 
                        string[] label = ga.Lable.Split(','); 
                        if (ga.CalculatedValue < threshold) 
                        { 
                            this.report.AppendLine("<tr class=\"highlightrow\">"); 
                        } 
                        else 
                        { 
                            this.report.AppendLine("<tr>"); 
                        } 
 
                        this.report.AppendLine("<td>" + label[0] + "</td><td>" + label[1] + "</td>"); 
                        this.report.AppendLine(ga.GetReportRows()); 
                        this.report.AppendLine("</tr>"); 
                    } 
 
                    this.report.AppendLine("</table>"); 
 
                    // Display the value distribution graph 
                    string imgurl = this.ValueGraphURL(calculatedGroups, threshold, average, min); 
                    if (imgurl.Length < 2000) 
                    { 
                        this.report.AppendLine("<br /><img src=\"" + imgurl + "\" /><br />"); 
                    } 
                    else 
                    { 
                        this.report.AppendLine("<br />Image could not be displayed.<br />"); 
                    } 
 
                    // Display the report summary 
                    this.report.AppendLine("<h3>Analysis</h3>"); 
                    this.report.AppendLine("Average Cost = " + average + "<br />"); 
                    this.report.AppendLine("Standard Deviation of Cost = " + stddev + "<br />"); 
                    this.report.AppendLine("Threshold = " + threshold + "<br />"); 
                    this.report.AppendLine("Number of Candidates = " + candidateCount + "<br /><br />"); 
                } 
 
                if (threshold > min) 
                { 
                    if (this.reportGeneration) 
                    { 
                        this.report.AppendLine("<i>Merging Group " + groupTwo + " and Group " + groupOne + 
"</i><br />"); 
                    } 
 
                    string a = this.cluster.Groups[groupOne].Uid.ToString(); 
                    string b = this.cluster.Groups[groupTwo].Uid.ToString(); 
                    this.cluster.Merge(this.cluster.Groups[groupOne], this.cluster.Groups[groupTwo]); 
                    string c = this.cluster.Groups[groupTwo].Uid.ToString(); 
                    if (this.reportGeneration) 
                    { 
                        graph.AppendLine("\t" + a + "->" + c + "[label=\"" + counter + "\"];"); 
                        graph.AppendLine("\t" + b + "->" + c + "[label=\"" + counter + "\"];"); 
                        graph.AppendLine("\t" + this.GraphVizNode(this.cluster.Groups[groupTwo], false) + 
";"); 
                        if (candidateCount == 1) 
                        { 
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                            this.report.AppendLine("<i>Algorithm terminating because only one candidate 
found.</i><br />"); 
                        } 
 
                        this.report.AppendLine("<hr />"); 
                    } 
                } 
                else 
                { 
                    if (this.reportGeneration) 
                    { 
                        this.report.AppendLine("<i>No groups left to merge.</i><br />"); 
                        this.report.AppendLine("<hr />"); 
                    } 
 
                    break; 
                } 
 
                counter++; 
            } 
 
            if (this.reportGeneration) 
            { 
                this.report.AppendLine("<h2>Final State</h2>"); 
                this.DebugAnalysis(); 
                this.report.AppendLine("<hr />"); 
                graph.AppendLine("\tsubgraph cluster_1 {"); 
                for (int i = 1; i < this.cluster.Groups.Count; i++) 
                { 
                    graph.AppendLine("\t\t" + this.cluster.Groups[i].Uid + "[style=filled, 
fillcolor=lightblue];"); 
                } 
 
                graph.AppendLine("\t}"); 
                graph.AppendLine("}"); 
                string graphUrl = "https://chart.googleapis.com/chart?cht=gv&chl=" + graph.ToString(); 
                graphUrl = graphUrl.Replace("\t", string.Empty).Replace("\n", string.Empty).Replace(" ", 
"+"); 
                this.report.AppendLine("<h1>Graph Report</h1>"); 
                this.report.AppendLine("<img src='" + graphUrl + "' />"); 
                this.report.AppendLine("<h2>GraphViz Source Code</h2>"); 
                this.report.AppendLine("<pre style=\"font-family: Andale Mono, Lucida Console, Monaco, 
fixed, monospace; color: #000000; background-color: #EEE; font-size: 10px; line-height: 4px; \"><code>"); 
                this.report.AppendLine(graph.ToString().Replace("\n", "<br />\n")); 
                this.report.AppendLine("</code></pre>"); 
                this.report.AppendLine("</body></html>"); 
            } 
        } 
 
        /// <summary> 
        /// Generate the label for a group representing a GraphViz node. 
        /// </summary> 
        /// <param name="g">The group.</param> 
        /// <param name="original">if set to <c>true</c> [original].</param> 
        /// <returns>The node with the label.</returns> 
        private string GraphVizNode(IClusterGroup<IAnswer, GroupData> g, bool original) 
        { 
            StringBuilder sb = new StringBuilder(); 
            sb.Append(g.Uid.ToString()); 
            sb.Append("[label=\""); 
            for (int i = 0; i < g.Nodes.Count; i++) 
            { 
                sb.Append(g.Nodes[i].Value.Answer); 
                if (i + 1 < g.Nodes.Count) 
                { 
                    sb.Append(", "); 
                } 
            } 
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            sb.Append("\""); 
            if (original) 
            { 
                sb.Append(", style=filled, fillcolor=lightyellow"); 
            } 
 
            sb.Append("]"); 
            return sb.ToString(); 
        } 
 
        /// <summary> 
        /// Generates the graph for the calculated values. 
        /// </summary> 
        /// <param name="calculatedGroups">The calculated groups.</param> 
        /// <param name="threshold">The threshold.</param> 
        /// <param name="avg">The average.</param> 
        /// <param name="min">The minimum.</param> 
        /// <returns>The URL to a Google charts scatter plot.</returns> 
        private string ValueGraphURL(Collection<GroupAnalysis> calculatedGroups, double threshold, double 
avg, double min) 
        { 
            int number = 1; 
            StringBuilder sb = new StringBuilder(); 
            sb.Append("https://chart.googleapis.com/chart?cht=s&chs=600x300&chd=t:"); 
            for (int i = 0; i < calculatedGroups.Count; i++) 
            { 
                int index = (int)Math.Round(100.0 * (double)i / (double)calculatedGroups.Count); 
                for (int j = 0; j < number; j++) 
                { 
                    sb.Append(index); 
                    if (j + 1 < number) 
                    { 
                        sb.Append(","); 
                    } 
                } 
 
                if (i + 1 < calculatedGroups.Count) 
                { 
                    sb.Append(","); 
                } 
            } 
 
            sb.Append(",0,100,0,100"); 
 
            double scale = 0; 
            for (int i = 0; i < calculatedGroups.Count; i++) 
            { 
                if (calculatedGroups[i].CalculatedValue > scale) 
                { 
                    scale = calculatedGroups[i].CalculatedValue; 
                } 
            } 
 
            sb.Append("|"); 
            for (int i = 0; i < calculatedGroups.Count; i++) 
            { 
                sb.Append(Math.Round(100.0 * calculatedGroups[i].CalculatedValue / scale, 2)); 
                if (i + 1 < calculatedGroups.Count) 
                { 
                    sb.Append(","); 
                } 
            } 
 
            // Add the points for the horizontal lines 
            sb.Append(","); 
            sb.Append(Math.Round(100.0 * threshold / scale, 2)); 
            sb.Append(","); 
            sb.Append(Math.Round(100.0 * threshold / scale, 2)); 
            sb.Append(","); 
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            sb.Append(Math.Round(100.0 * avg / scale, 2)); 
            sb.Append(","); 
            sb.Append(Math.Round(100.0 * avg / scale, 2)); 
 
            // Add all of the special things to the end of the URL 
            sb.Append("&chxt=x,y&chco=FF0000&chdl=Value"); 
            int n = calculatedGroups.Count; 
            sb.Append("&chm=o,0000FF,0,-1,0|o,FF0000,0,0:" + (n - 1) + ":,10"); 
            sb.Append("|D,FFBA00,1," + n + ":" + (n + 1) + ",2,-1|D,000000,1," + (n + 2) + ":" + (n + 3) + 
",2,-1"); 
            for (int i = 0; i < calculatedGroups.Count; i++) 
            { 
                if (calculatedGroups[i].CalculatedValue <= min) 
                { 
                    sb.Append("|o,00FF00,0," + i + ",10"); 
                    break; 
                } 
            } 
 
            sb.Append("&chxr=0,1," + (n + 1) + "," + Math.Ceiling(n / 15.0) + "|1,0," + scale); 
            return sb.ToString(); 
        } 
 
        /// <summary> 
        /// Prints out useful information to the debug window. 
        /// </summary> 
        private void DebugAnalysis() 
        { 
            double total = 0; 
            this.report.AppendLine("<h3>Groups</h3><table border=1 padding=4>"); 
            this.report.AppendLine("<tr class=\"headrow\"><td>Group</td><td>Nodes</td><td>Token 
Distance</td><td>Damerau Levenshiein Distance</td><td>Longest Common Substring</td><td>Average 
Length</td><td>Size</td><td>Calculated Variance</td></tr>"); 
 
            for (int i = 1; i < this.cluster.Groups.Count; i++) 
            { 
                this.report.Append("<tr><td>Group " + i + "</td><td>"); 
 
                for (int j = 0; j < this.cluster.Groups[i].Nodes.Count; j++) 
                { 
                    this.report.Append(this.cluster.Groups[i].Nodes[j].Value.Answer + "<br />"); 
                } 
 
                this.report.AppendLine("</td>"); 
                GroupAnalysis ga = new GroupAnalysis(string.Empty, this.cluster.Groups[i]); 
                if (this.reportGeneration) 
                { 
                    this.report.AppendLine(ga.GetReportRows()); 
                } 
 
                total += ga.CalculatedValue; 
                this.report.AppendLine("</tr>"); 
            } 
 
            this.report.AppendLine("</table>"); 
            this.report.AppendLine("<br />Total Variance = " + total); 
        } 
    } 
} 
 
 

// <copyright file="IDistance.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The IDistance.cs file.</summary> 
namespace HatfieldCluster 
{ 
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    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// The abstract class for computing various types of string distances. 
    /// </summary> 
    internal abstract class IDistance 
    { 
        /// <summary> 
        /// Computes the string distance. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
        /// <param name="t">The second string.</param> 
        /// <returns>The string distance.</returns> 
        internal abstract int GetDistance(string s, string t); 
    } 
} 
 
 

// <copyright file="LongestSubstring.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The LongestSubstring.cs file.</summary> 
namespace HatfieldCluster 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// Computes the length of the longest substring. 
    /// </summary> 
    internal class LongestSubstring : IDistance 
    { 
        /// <summary> 
        /// The cache used for speeding up the comparisons. 
        /// </summary> 
        private static CacheManager cache = new CacheManager(); 
 
        /// <summary> 
        /// Computes the length of the longest substring. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
        /// <param name="t">The second string.</param> 
        /// <returns>The length of the longest substring.</returns> 
        internal static int Distance(string s, string t) 
        { 
            // Attempt to retreive value from cache 
            Nullable<int> cached = LongestSubstring.cache.Get(s, t); 
            if (cached != null && cached.HasValue) 
            { 
                return cached.Value; 
            } 
 
            // Calculate the value 
            if (String.IsNullOrEmpty(s) || String.IsNullOrEmpty(t)) 
            { 
                return 0; 
            } 
 
            int[,] mat = new int[s.Length, t.Length]; 
            int len = 0; 
 
            for (int i = 0; i < s.Length; i++) 
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            { 
                for (int j = 0; j < t.Length; j++) 
                { 
                    if (s[i] != t[j]) 
                    { 
                        mat[i, j] = 0; 
                    } 
                    else 
                    { 
                        if ((i == 0) || (j == 0)) 
                        { 
                            mat[i, j] = 1; 
                        } 
                        else 
                        { 
                            mat[i, j] = 1 + mat[i - 1, j - 1]; 
                        } 
 
                        if (mat[i, j] > len) 
                        { 
                            len = mat[i, j]; 
                        } 
                    } 
                } 
            } 
 
            // Cache the value 
            LongestSubstring.cache.Put(s, t, len); 
 
            return len; 
        } 
 
        /// <summary> 
        /// Computes the string distance. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
        /// <param name="t">The second string.</param> 
        /// <returns>The string distance.</returns> 
        internal override int GetDistance(string s, string t) 
        { 
            return LongestSubstring.Distance(s, t); 
        } 
    } 
} 
 
 

// <copyright file="StandardDeviation.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The StandardDeviation.cs file.</summary> 
namespace HatfieldCluster 
{ 
    using System; 
    using System.Collections.ObjectModel; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// Calculates the standard deviation. 
    /// </summary> 
    internal class StandardDeviation 
    { 
        /// <summary> 
        /// Calculates the standard deviation for the list. 
        /// </summary> 
        /// <param name="list">The list of values.</param> 
        /// <returns>The standard deviation.</returns> 
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        internal static double Calculate(Collection<double> list) 
        { 
            double sumOfValuesSquared = 0; 
            double sumOfValues = 0; 
 
            foreach (double item in list) 
            { 
                sumOfValues += item; 
            } 
 
            foreach (double item in list) 
            { 
                sumOfValuesSquared += Math.Pow(item, 2); 
            } 
 
            return Math.Sqrt((sumOfValuesSquared - (Math.Pow(sumOfValues, 2) / list.Count)) / list.Count); 
        } 
    } 
} 
 
 

// <copyright file="TokenizedStringDistance.cs" company="Jared Hatfield"> 
// All Rights Reserved 2011 
// </copyright> 
// <summary>The TokenizedStringDistance.cs file.</summary> 
namespace HatfieldCluster 
{ 
    using System; 
    using System.Collections.Generic; 
    using System.Linq; 
    using System.Text; 
 
    /// <summary> 
    /// Computes the tokenized string distance. 
    /// </summary> 
    internal class TokenizedStringDistance : IDistance 
    { 
        /// <summary> 
        /// The cache used for speeding up the comparisons. 
        /// </summary> 
        private static CacheManager cache = new CacheManager(); 
 
        /// <summary> 
        /// Computes the tokenized string distance. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
        /// <param name="t">The second string.</param> 
        /// <returns>The tokenized string distance.</returns> 
        internal static int Distance(string s, string t) 
        { 
            // Attempt to retreive value from cache 
            Nullable<int> cached = TokenizedStringDistance.cache.Get(s, t); 
            if (cached != null && cached.HasValue) 
            { 
                return cached.Value; 
            } 
 
            // Calculate the value 
            string[] stoken = s.Split(' '); 
            string[] ttoken = t.Split(' '); 
 
            int count = 0; 
            for (int i = 0; i < stoken.Length; i++) 
            { 
                if (!ttoken.Contains(stoken[i])) 
                { 
                    count++; 
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                } 
            } 
 
            for (int i = 0; i < ttoken.Length; i++) 
            { 
                if (!stoken.Contains(ttoken[i])) 
                { 
                    count++; 
                } 
            } 
 
            // Cache the value 
            TokenizedStringDistance.cache.Put(s, t, count); 
 
            return count; 
        } 
 
        /// <summary> 
        /// Computes the string distance. 
        /// </summary> 
        /// <param name="s">The first string.</param> 
        /// <param name="t">The second string.</param> 
        /// <returns>The tokenized string distance.</returns> 
        internal override int GetDistance(string s, string t) 
        { 
            return TokenizedStringDistance.Distance(s, t); 
        } 
    } 
} 
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APPENDIX B 

This appendix contains an output report from the clustering algorithm that details the 

calculations performed by the algorithm. 

Report 
Pass 1 

Groups 

Group Nodes Token 
Distance 

Damerau 
Levenshiein 
Distance 

Longest 
Common 
Substring 

Average 
Length Size Calculated 

Variance 

Group 1 cat 1 0 3 3 1 1 
Group 2 a cat 1 0 5 5 1 1 
Group 3 dog 1 0 3 3 1 1 
Group 4 dogs 1 0 4 4 1 1 
Group 5 mouse 1 0 5 5 1 1 

Total Variance = 5  

Comparisons 

Comparison Token 
Distance 

Damerau 
Levenshiein 
Distance 

Longest 
Common 
Substring 

Average 
Length Size Calculated 

Variance 

Group 1 Group 2 1 3 3 4 2 10 
Group 1 Group 3 2 3 0 3 2 16 
Group 2 Group 3 3 4 0 4 2 22 
Group 1 Group 4 2 3 0 3.5 2 17 
Group 2 Group 4 3 4 0 4.5 2 23 
Group 3 Group 4 2 1 3 3.5 2 7 
Group 1 Group 5 2 4 0 4 2 20 
Group 2 Group 5 3 5 0 5 2 26 
Group 3 Group 5 2 3 1 4 2 16 
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Group 4 Group 5 2 2 1 4.5 2 15 

 

 

Analysis 

Average Cost = 17.2 
Standard Deviation of Cost = 5.5281099844341 
Threshold = 11.6718900155659 
Number of Candidates = 2 
 
Merging Group 3 and Group 4 

 

Pass 2 

Groups 

Group Nodes Token 
Distance 

Damerau 
Levenshiein 
Distance 

Longest 
Common 
Substring 

Average 
Length Size Calculated 

Variance 

Group 1 cat 1 0 3 3 1 1 
Group 2 a cat 1 0 5 5 1 1 

Group 3 dog 
dogs 2 1 3 3.5 2 7 

Group 4 mouse 1 0 5 5 1 1 
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Total Variance = 10  

Comparisons 

Comparison Token 
Distance 

Damerau 
Levenshiein 
Distance 

Longest 
Common 
Substring 

Average 
Length Size Calculated 

Variance 

Group 1 Group 2 1 3 3 4 2 10 
Group 1 Group 3 2 2.33333 1 3.33333 3 20 
Group 2 Group 3 2.66667 3 1 4 3 26 
Group 1 Group 4 2 4 0 4 2 20 
Group 2 Group 4 3 5 0 5 2 26 
Group 3 Group 4 2 2 1.66667 4 3 19 

 

 

Analysis 

Average Cost = 20.1666666666667 
Standard Deviation of Cost = 5.36708072936821 
Threshold = 14.7995859372985 
Number of Candidates = 1 
 
Merging Group 1 and Group 2 
Algorithm terminating because only one candidate found. 
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Final State 

Groups 

Group Nodes Token 
Distance 

Damerau 
Levenshiein 
Distance 

Longest 
Common 
Substring 

Average 
Length Size Calculated 

Variance 

Group 1 cat 
a cat 1 3 3 4 2 10 

Group 2 dog 
dogs 2 1 3 3.5 2 7 

Group 3 mouse 1 0 5 5 1 1 

Total Variance = 18  

 

Graph Report 

 

GraphViz Source Code 

digraph { 

 subgraph cluster_0 { 

  1[label="cat", style=filled, fillcolor=lightyellow]; 

  2[label="a cat", style=filled, fillcolor=lightyellow]; 

  3[label="dog", style=filled, fillcolor=lightyellow]; 

  4[label="dogs", style=filled, fillcolor=lightyellow]; 

  5[label="mouse", style=filled, fillcolor=lightyellow]; 

 } 

 

 4->6[label="1"]; 

 3->6[label="1"]; 

 6[label="dog, dogs"]; 

 2->7[label="2"]; 
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 1->7[label="2"]; 

 7[label="cat, a cat"]; 

 

 subgraph cluster_1 { 

  7[style=filled, fillcolor=lightblue]; 

  6[style=filled, fillcolor=lightblue]; 

  5[style=filled, fillcolor=lightblue]; 

 } 

} 
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APPENDIX C 

This appendix contains the clustering results from an analysis performed by DPX 

Answers on sample questions answered by students in a classroom setting. 

Question 1 

Your Cell Phone Provider: 
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Question 2 

Your Favorite Color: 
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Question 3 

Your Home State: 
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Question 4 

Your Handedness: 
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APPENDIX D 

 This appendix contains the graphical visualization of the clustering results performed by 

DPX Answers on sample questions answered by students in a classroom setting.  The 

visualization contains the original clusters and the results of the algorithm are shown as indicated 

through the merging of clusters in the order indicated by the number on the edges of the graph. 

Question 1 

Your Cell Phone Provider: 
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Question 2 

Your Favorite Color: 
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Question 3 

Your Home State: 
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KY 
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Question 4 

Your Handedness: 
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