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ABSTRACT 

 

 Pancreatic adenocarcinoma is the fourth leading cause of cancer death in 

the United States. It is identified by its rapid, invasive progression with a 

profound resistance to treatments such as chemotherapy. Unfortunately, there is a 

lack of information on how to effectively inhibit and control the rapid growth of 

pancreatic tumors, as well as limited information for diagnostics. With current 

methods, pancreatic cancer will continue to prevail as a leading cause of cancer 

death. We propose to study the complexity of pancreatic tumors with a systematic 

and analytical approach. Cancer is an abnormal growth of tissue caused by 

uncontrolled cell division. Observing the growth of these cells would prove to 

have a good basis to monitor the growth of a tumor. Here we create a 3-D 

simulation of tumor growth through mathematical modeling, using data from 

pancreatic cells grown in vitro. Using 3-D models will help to understand 

pancreatic tumors at cellular and molecular levels. 

 The project aims to observe realistic growth of the tumor, accomplished 

from growing tumor cells on a monolayer in order to find parameters for our 3D 

mathematical model. This method will prove more beneficial than testing only on 

a monolayer cell line. Although cell death and the toxicity of drug dosage can be 

tested using a cell monolayer alone, it does not meet the demands of testing drug 



delivery in a realistic tumor environment that the mathematical model would 

provide. The monolayer lacks the dimensions that the drug would have to travel if 

it were delivered to a real in vivo tumor. A possible continuation of this project in 

the future could be to utilize the mathematical based approach to predict optimal 

therapy for the pancreatic tumor in order to develop models that can better test 

patient care for tumors. Computer modeling, another stepping stone through 

mathematical modeling, will possibly lead to testing the toxic effects of drugs on 

a 3-D model through computer modeling will aid in understanding the delivery of 

drugs throughout the tumor in vivo. 

  

 

 

 

 

 

 

 

 

 

 



NOMENCLATURE 

 

A ratio of cell death to cell mitosis 

G ratio of cell mitosis to mechanical relaxation 

L diffusion length 

R radius of spheroid tumor 

λM mitosis rate 

λD cell death rate 

λR intrinsic relaxation rate 

∇ del (vector differential) 

u cell velocity 

λP cell-proliferation rate 

λA apoptosis rate 

b measure of mitosis 

n concentration of cell substrate 

  rate at which nutrient is added 

D diffusion coefficient 

λB blood-tissue transfer rate of nutrient 

nB concentration of nutrient in blood 

B measure of vascularization 

µ mobility of cell 

P oncotic pressure 
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I. Introduction 

Pancreatic adenocarcinoma is the fourth leading cause of cancer death in 

the United States. Out of the population in the U.S., it was estimated that 37,000 

men and women will die from pancreatic cancer in 2012 alone (statistics from 

National Cancer Institute). Even when the tumor was identified, there was only a 

5% chance of survival [3]. This may lend to the fact that diagnostics fail to locate 

a pancreatic growth until it has grown sufficiently into a malignant tumor. A 

pancreatic tumor is identified by its rapid, invasive progression with a profound 

resistance to treatments such as chemotherapy. It goes unnoticed for months 

without notice due to its deep location, hidden by other organs. It may only 

present itself when it grows large enough and begins to push against surrounding 

tissue, such as intestine, bile ducts, and nervous system [7]. Even then, the initial 

diagnosis can be associated with other illnesses due to the tumor only presenting 

unspecific symptoms (i.e. nausea, difficult motor function). This leaves patients 

with a late stage of correct diagnosis and a smaller survival rate. 

A problem, therefore, seems to be poor understanding of what occurs 

when a tumor becomes malignant. Diagnostics aimed specifically at pancreatic 

cancer have not advanced much. With the rapid growth of pancreatic cancer, 

diagnosticians need to know what stage a tumor has entered in order to quickly 

assess the proper treatment a patient requires. To this end, a link between tumor 



stages and the rapid growth of pancreatic cancer would assist in finding the best 

course of action for a patient after diagnosis of the tumor. 

The proposed project is to use mathematical models to represent tumor 

growth. Unlike observing growth of cancer through monolayers, this model would 

allow us to understand the more complex arrangement of tumor cells as they 

interact [1], [2]. This is a relatively new method for observing cancer growth. This 

provides a better way of studying cellular interactions and would represent an in 

vivo environment. It is believed that this will provide a guideline to identify when 

a tumor mass is benign or malignant [5]. 

 

II. Materials and Methods 

A. Summary 

The mathematical model for the tumor will represent a tumor mass that grows in 

an avascular spheroid. Like cells growing on a monolayer, the avascular spheroid 

will only grow from oxygen and nutrients (from growth factors of the cell media) 

through diffusion instead of a blood supply. For a tumor spheroid, cells interact 

by adhering to each other and continue its growth. The outer cells of the spheroid 

will proliferate while the interior cells die to form a necrotic core due to a lack of 

nutrients. The distance oxygen and nutrients will usually travel is approximately 

100µm before being absorbed by cells, limiting the size of an avascular tumor. 

For the mathematical models, the tumors are limited to 500µm to 2000µm [20]. 



Multicellular spheroid models are developed in vitro to observe its interaction 

with the environment and the cell-cell interaction of the spheroid [7], [8], [9], 

[10], [11], [12]. Although it’s usually vascular tumors that demonstrate irregular 

shapes, avascular spheroids begin to show different morphologies as well [4]. 

Metastasis can be monitored using mathematical models to observe when tumors 

begin to bud and branch out from a typical avascular spheroid shape [5]. 

Early continuum models [13], [14] were developed for tumor growth for the 

diffusion of nutrients. Other studies take into account conditions of a tumor for in 

vivo, such as immune response [15], mitotic inhibitor [15], [38], apoptosis [16], 

and growth stability [17]. The important part of a continuum model is also to 

observe the boundary [39], [40], identified by our mathematical equations. The 

boundary may be either expanding or reached its estimated maximum diameter. 

Morphological stability is identified by the tumor boundary [41], [42]. 

Computer simulations of tumor growth demonstrate how the continuum tumor 

model works [18]. Linear analyses and spherical geometries are limited, requiring 

a nonlinear model. A complex tumor has morphologies that are taken into account 

by an improved continuum tumor model. Through the study for computer models, 

tumor evolution is described by dimensionless parameters. These parameters are 

related to mitosis rate, apoptosis rate, cell mobility, and cell adhesion, which will 

be discussed further on through mathematical equations relating to the tumor 

model. For avascular tumors, these parameters govern the morphology of the 



tumor, which is an advantage of the continuum model. At a certain point, when 

these parameters are scaled, the mathematical model is able to differentiate 

noninvasive tumor growth to unstable, infiltrative growth [18]. This suggests that 

the parameters used for the model to identify the morphology can also be used to 

identify its state of invasion. While normal spheroid tumors are limited to a 

certain size and potential infiltration, morphological instability increases the 

chance for invasion without angiogenesis. More oxygen and nutrients are also 

supplied to aid a tumor’s invasion by increasing surface area from budding and 

branching cells of the spheroid. Instability would lead to complex shapes from 

spheroid budding which would have branches of cells with high nutrient diffusion 

and higher cell proliferation. This has been observed when tumors are able to 

bypass limits from diffusion without angiogenesis in avascular tumors [19], [20]. 

 

B. Cell Culture 

MiaPaca2 cells were used to test cell growth for pancreatic cancer cells. The cells 

were cultured using DMEM (Dulbecco’s Modified Eagle Media; 10% FBS, 1% 

L-glutamine) cell media. 6-well plates were seeded with MiaPaca2 cells. Each 

well was plated with 30,000 cells in 2.5mL of the cell/media mix (1,200 

cells/mL). 24 wells were filled, totaling four 6-well plates. The well plates were 

placed into the incubator (37˚C, humidified 17% CO2) for 24 hours to allow cells 

to attach and grow on the wells. 



C. Trypan Blue Staining and Cell Counting 

After 24 hours, the media was aspirated from the first four wells and 1mL of PBS 

was added to the wells to wash the bottom. PBS was aspirated and added two 

more times to complete the wash. After the third wash and aspiration, 0.5mL of 

trypsin was added to the four wells and placed back in the incubator for 

approximately five minutes to detach the cells from the bottom. A pipette was 

used to evenly mix the detached cells into the media of the wells. 100mL was then 

taken from each well and pipetted into individual centrifuge capsules. 100mL of 

trypan blue was added to the capsules, diluting it by a factor of two. Using a 

hemocytometer, the cell counts of each capsule were counted, giving four cell 

counts (n=4), counting the living cells (white) and dead cells (blue). This was 

repeated at 48hr, 60hr, and 72hr intervals, counting cells from four wells each 

time (n=4). 

 

D. Mathematical Model Setup 

Following the design of a continuum model [18], it’s assumed that the cell density 

of the proliferating cells is constant. Therefore, mass changes correspond to 

volume changes. Defining u to be the cell velocity, volume change is: 

∇ · u = λp         (1) 

where λp is the cell-proliferation rate, defined by: 

λp = bn − λA         (2) 



where n denotes the concentration of a cell substrate (e.g. oxygen or glucose). λp 

corresponds to proliferation through mitosis while λA is the rate of volume loss 

due to apoptosis (programmed cell death). Here, λA is the rate of apoptosis and b 

is a measure of mitosis. 

Since the rate of diffusion of oxygen and nutrients is much faster (e.g. ∼1 min
−1

) 

than the rate of cell proliferation (e.g. ∼1 day
−1

), the substrate may be regarded to 

be in a steady state for a given tumor morphology (e.g. [21, 18, 22, 14]). This 

gives: 

0 = D∇2
n +          (3) 

where   is the rate at which nutrient is added to the tumor, described by: 

  = λB(nB − n) – λn        (4) 

Here, λB is the blood-tissue transfer rate of nutrient, nB is the concentration of 

nutrient in the blood and λ is the rate of consumption of nutrient by the tumor 

cells. λn describes nutrient uptake by the tumor cells. It is subtracted from the 

source of nutrient of the vasculature to give the rate of nutrient given. In this 

simplified model, the vasculature is assumed to be uniform, and vascular growth 

is associated with a bulk source of oxygen and nutrients. Growth is limited by the 

diffusion of the cell substrates according to this model. 

To determine the cell velocity, Darcy’s law may be used as the constitutive 

assumption [21], [18], [22], [13]: 

u = −µ∇P         (5) 



where P is the oncotic (solid) pressure and µ is a mobility that reflects the 

combined effects of cell–cell and cell–matrix adhesion. Alternatively, the velocity 

may be determined using the Stokes equations [23], [24], [25], [26] or the Darcy-

Stokes (Brinkman) equations [27]. Models of viscoelasticity [28], 

elastoviscoplasticity [29] and soft tissue may also be used. 

The boundary conditions of the tumor [18] may be set up by: 

(n) = n
∞
         (6) 

(P ) = γ κ         (7) 

where the pressure boundary condition (7) reflects the influence of cell–cell 

adhesion through the parameter γ and κ. Together, these two terms make the local 

total curvature. For equation (6), assume n
∞
 is constant so that outside the tumor, 

the nutrient is uniform. Nutrient inhomogeneity in the tumor microenvironment in 

2D has been considered [30, 20, 31, 32, 27] and more recently in 3D [33], [34], 

[35]. 

The normal velocity of the tumor boundary [21], [18], [22], [13] is: 

V = −µn · (∇P )        (8) 

Following [21], [18], [22], [13] and others, assume that λ, λA, λB, nB, and b are 

uniform. Following [18], denote  

λM = bn
∞
          (9) 

to be the characteristic mitosis rate, 

λR = µγ LD
−3

          (10) 



to be the intrinsic relaxation time scale, and 

B =  
    

          
          (11) 

to be a measure of the extent of vascularization. Introducing the non-dimensional 

length scale LD = D
1/2

 (λB + λ)
−1/2

 , and time scale λR
−1

, a modified concentration   

and pressure p can be defined [18]: 

n = n
∞
(1 − (1 − B)(1 −  ))       (12) 

P =( 
 

  
) * (p + (1 −  )G + 

    

  
      (13)

 

where G and A [18] measure the relative strength of cell–cell and cell–matrix 

adhesion and apoptosis, respectively: 

G = (λM/λR) * (1 − B)        (14) 

A = (λA/λM – B)/(1 – B)       (15) 

Boundary equations for   and p can be obtained: 

( ) = 1          (16) 

(p) = κ − AG(x
2
)/2d        (17) 

in a d-dimensional tumor (d = 2, 3). The non-dimensional normal velocity of the 

tumor [18] is: 

V = −n · (∇p) + Gn · (∇ ) – 
    

  
      (18) 

A study of spherically symmetric tumor growth provides insight into the regimes 

of growth described by the model [21], [18], [36]. In this case, the PDEs reduce to 



ODEs in the polar coordinate r. From equation (18) the evolution equation for the 

tumor radius R [18]is: 

.
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       (19) 

For a radially symmetric tumor, |G| rescales time. In all dimensions, unbounded 

growth (R → ∞) occurs if and only if AG is much greater than 0. Three regimes of 

growth are identified [18], and the behavior is qualitatively unaffected by the 

number of dimensions d. 

(1) Low vascularization: G is much greater than 0 and A greater than 0 (B < 
  

  
). 

Note that the special case of avascular growth (B = 0) belongs to this regime. The 

evolution always leads to a stationary state R∞ (if A > 1, then R∞ = 0). This 

behavior is in agreement with experimental observations of in vitro diffusional 

growth [14] of avascular spheroids to a dormant steady state [9], [10]. In the 

experiments, however, tumors always develop a necrotic core that further 

stabilizes their growth [37]. 

(2) Moderate vascularization: G is much greater than 0 and A is greater than 0, 

where 1 > B (which is much greater than 
  

  
). Unbounded growth occurs from any 

initial radius R0 > 0. The growth tends to be exponential for A < 0 with velocity V 

approaching 
    

 
), as R approaches ∞, and to be linear for A = 0 with velocity V 

approaching G as R approaches ∞. 



(3) High vascularization: G < 0 (where B > 1). For A > 0, growth (V > 0) may 

occur, depending on the initial radius, and is always unbounded; for A < 0 (for 

which cell apoptosis is dominant: 
  

  
 > B), the evolution is always to the only 

stationary solution R∞ = 0. This stationary solution may also be achieved for A > 

0. The stationary radius R∞ is independent of G, and is a solution of V = 0 with V 

from equation (19). 

Mass growth of a spheroid tumor can be monitored by observing the expansion of 

its radius over a period of time. The growth and shape of spheroids grown in vitro 

were governed by specific variables [1]: diffusion length L, the ratio of cell death 

rate to cell mitosis rate A, and the ratio of cell mitosis rate to relaxation rate G. 

The evolving growth of a spheroid [1] can be represented as: 

  

  
    (

 

 
)  

 

       
 

 

 
      (20) 

Where R is the radius of a tumor, and A is the cell death to cell proliferation ratio. 

The ratio for A can be shown as: 

  
  

  
          (21) 

As a tumor cell continues to grow, it growth begins to plateau until its radius 

becomes near constant when it doesn’t have a vascular source. Its growth was 

only governed by the nutrients and oxygen that can diffuse through the tumor of 

length L [2]. From Equation 1, and setting the change of R as zero at steady state 

[2], the new equation is: 



  
 

          
                         (22) 

The radius of avascular tumors usually span a radius of 500µm to 2000µm. Using 

these parameters, the death rate to mitosis rate A can be estimated. 

 

III. Data and Results 

A chart was made using the number of cells for 24hr, 48hr, 60hr, and 72hr times.  

 

Figure 1. Living cells were monitored using trypan blue at time intervals 24hr, 48hr, 60hr, and 

72hr. 

 

From the initial slope from the chart of cancer cell growth, shown in Figure 1, the 

mitosis rate (λM) can be calculated. From the chart, λM was approximately 3638.4. 

The cell death rate can thus be calculated by knowing A. 

The radius of avascular tumors usually span a radius of 500µm to 2000µm. Using 

these parameters, the death rate to mitosis rate A can be estimated, as seen in 

Figure 2. 
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Figure 2. Relation of death variable, A, and radius of tumor, R, over a 500um to 2000um range 

(setting L=100um, and dividing the actual radius by L, gives a dimensionless range of 2.5 to 10). 

 

From Figure 2, A ranges from: 

0.27  < A < 0.57 

Morphologically stable tumors stay within the definition of G. G regulates a 

stability between mitosis (mass growth) and cell death (destruction of mass). Cell 

growth from Figure 2, then, must remain morphologically stable [1], as defined 

by: 
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Where I11/2 and I9/2 were Bessel functions, and G (the ratio of cell mitosis rate to 

mechanical relaxation rate) was identified [1],[2] by: 

  
  

  
          (24) 

Using the range of A (0.27 to 0.57) found from Figure 2, the boundaries of G were 

found through Equation 23 and plotted, as seen in Figure 3. The values of A used 

were 0.27 (lowest value), 0.42 (mid-range), and 0.57 (highest value). 

 
Figure 3. Using the boundaries of A (0.27 and 0.57), the area between G-0.27 and G-0.57 was 

morphologically stable for tumor spheroids. 

 

IV. Discussion 

From Figure 3, the stability of the tumor mass is monitored. Following the 

stationary curve in the center, any tumor in the shaded area and to the left is 

morphologically stable. As the radius increases along the stationary curve (when 

  

  
 = 0), moving past the shaded area to the right, the tumor becomes unstable. 
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The increase of the radius as its growth plateaus is an indication that the tumor is 

developing a small G ratio and a larger relaxation rate. This instability was based 

on the spheroid shape of the tumor. As instability increases, the cell adhesion 

forces that keep the tumor together deteriorate and the tumor begins to bud and 

expand. Budding parts of the tumor mark the invasiveness of a tumor, increasing 

the surface area of the tumor for more nutrients and oxygen. As the tumor 

develops a large G ratio, identifying a large mitosis rate, this may indicate 

micrometastasis. Small areas continue to lose cell adhesion as instability (based 

on G) increases [33]. 

A B  

Figure 4. Mathematical models of morphological states. Stable spheroids (A) maintain a spherical 

shape when it is limited by size in its avascular state. When spheroids become unstable (B), the 

surface begins to branch and invade surrounding tissue. The forces that keep the tumor together 

lose effect as the tumor is predicted to metastasize. 

 

 

When analyzing the progression of a tumor, G may be an important identifier to 

tumors that were beginning to metastasize in patients. This work uses cell growth 

data, as demonstrated from the in vitro, to estimate the stability. A dimensionless 

unit G was estimated by 
 

 
. In cases where R can’t be accurately determined, 

   Necrotic core     

   outer boundary     



morphological stability can determine A. Tumor progression may be monitored by 

observing the cell death rate to the cell mitosis rate. Plotting a stationary curve to 

Figure 3 and observing A, as was done above using the data from the MiaPaca 2 

cells in Figure 1, can give observations as to when the tumor shifts to the right of 

the shaded area. When A decreases to a point where cell death was significantly 

less than cell mitosis, the tumor becomes morphologically unstable. Observations 

from in vitro can identify beginning of metastasis using mathematical models. 

When performing in vitro experiments with a patient’s tumor cells, the values of 

A will change, consequently changing the area of the shaded region as well. The 

changing graph according to a patient’s tumor growth and the parameter A will 

indicate what stage a patient is currently. 

Morphological instability is an indicator of metastasis, and observing parameters 

through mathematical models allow practitioners to monitor tumor activity. 

Metastasis was previously thought to derive from malignant tumors [6], but newer 

reconsiderations are being tested for a tumor’s metastatic ability. Models that 

demonstrate branching represent in vivo tumors that are invading surrounding 

tissue. The important concept to take away from this is that branching areas of 

tumor cells have the potential to absorb more nutrients and oxygen, and could 

eventually “pinch off” of the original tumor. 

The aim of these mathematical models and cells grown in vitro is to represent in 

vivo tumor growth. Understanding growth of 3D tumors will benefit 



diagnosticians to make decisions on the best course of treatment for each patient. 

In the future, mathematical models can aid research to counter tumor progression. 

Pancreatic cancer is a particularly aggressive cell line that can be monitored 

morphologically to understand and limit its invasive nature. The aggressive nature 

of pancreatic cancer leads to a high mortality rate in patients. Understanding the 

tumor growth of these cells would not only act as a beneficial model in designing 

drug deliveries and therapies, but alert diagnosticians when a tumor is 

approaching malignant condition. With this goal, mathematical models can be 

designed to predict the 3D nature of cancerous tumors, as well as its growth and 

progression toward metastasis. 
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