University of Louisville

ThinkIR: The University of Louisville's Institutional Repository

Faculty Scholarship

6-4-2012

Development of embedded CAPTCHA elements for bot prevention
in Fischer random chess

Ryan McDaniel
University of Louisville

Roman V. Yampolskiy
University of Louisville, roman.yampolskiy@louisville.edu

Follow this and additional works at: https://ir.library.louisville.edu/faculty

6‘ Part of the Computer Engineering Commons

Original Publication Information

Ryan McDaniel, Roman V. Yampolskiy, "Development of Embedded CAPTCHA Elements for Bot Prevention
in Fischer Random Chess", International Journal of Computer Games Technology, vol. 2012, Article ID
178578, 6 pages, 2012. https://doi.org/10.1155/2012/178578

ThinkIR Citation

McDaniel, Ryan and Yampolskiy, Roman V., "Development of embedded CAPTCHA elements for bot
prevention in Fischer random chess" (2012). Faculty Scholarship. 639.
https://ir.library.louisville.edu/faculty/639

This Article is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of ThinkIR: The
University of Louisville's Institutional Repository. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/faculty
https://ir.library.louisville.edu/faculty?utm_source=ir.library.louisville.edu%2Ffaculty%2F639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Ffaculty%2F639&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/faculty/639?utm_source=ir.library.louisville.edu%2Ffaculty%2F639&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu

Hindawi Publishing Corporation

International Journal of Computer Games Technology
Volume 2012, Article ID 178578, 6 pages
doi:10.1155/2012/178578

Research Article

Development of Embedded CAPTCHA Elements for
Bot Prevention in Fischer Random Chess

Ryan McDaniel and Roman V. Yampolskiy

Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, USA
Correspondence should be addressed to Ryan McDaniel, rcmcda01@louisville.edu

Received 31 December 2011; Revised 29 March 2012; Accepted 12 April 2012

Academic Editor: Narendra Chaudhari

Copyright © 2012 R. McDaniel and R. V. Yampolskiy. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Cheating in chess can take many forms and has existed almost as long as the game itself. The advent of computers has introduced
a new form of cheating into the game. Thanks to the computational power of modern-day computers, a player can use a program
to calculate thousands of moves for him or her, and determine the best possible scenario for each move and countermove. These
programs are often referred to as “bots,” and can even play the game without any user interaction. In this paper, we describe
a methodology aimed at preventing bots from participating in online chess games. The proposed approach is based on the
integration of a CAPTCHA protocol into a game scenario, and the subsequent inability of bots to accurately track the game
states. This is achieved by rotating the images of the individual chess pieces and adjusting their resolution in an attempt to render
them unreadable by a bot. Feedback from users during testing shows that there is minimal impact on their ability to play the game.
Players rated the difficulty of reading the pieces on a scale of one to ten, with an average rank of 6.5. However, the average number
of moves to adjust to the distorted pieces was only 3.75. This tells us that, although it is difficult to read the pieces at first, it is easy

to adjust quickly to the new image.

1. Introduction

Chess programs have been designed and implemented on
computers since the 1950s. In 1950, Shannon published
“Programming a computer for playing chess,” in which he
presented a chess computer as possible proof of artificial
intelligence [1]. At first, these chess programs were created
only to test the waters of what computing could do to
enhance the game. However, over the years, programs such as
Rybka have become very powerful [2]. In 1997, a computer
built by IBM, called Deep Blue, even beat then-world
champion Garry Kasparov, marking the first time a computer
was able to beat a reigning world champion [3]. Some of
the chess programs available today include databases of past
games and provide numerous ways for players to learn the
game and improve their skills. These aspects are certainly
positive; however, there are other forms of computer-assisted
chess which are not. While cheating in chess can take many
forms and has existed almost as long as the game itself, the
advent of computers has introduced a new form of cheating

into the game. Robots, or “bots,” are computer programs
that can read a chessboard and the pieces, determine the
best possible move to make, and either recommend the
move to a player or make the move for them [4]. These
bots are easily accessible and can be very difficult to detect.
Chess is not the only game plagued by bots, however. These
technology cheats are very common in online games today,
from traditional games such as poker and chess, all the way
up to complex Massively Multiplayer Online Roleplaying
Games (MMORPGS) like Blizzard Entertainment’s World of
Warcraft [5]. Keeping bots from ruining the game for honest
players requires a constant effort, since whenever a game
update to eliminate bots is implemented, the bot creators
update their bot to circumvent the latest fix [6]. Cheating
in online gaming can have far-reaching impact on honest
players. For example, online poker is played for money. If
someone is cheating with a bot, then they are having a direct
impact on the other players by taking money from them
[7]. Poker is gambling, however, and whenever money is
involved, you can expect dishonesty as well. Chess, on the

other hand, has traditionally been about the spirit of the
game. Quintessentially, chess is a war campaign, with two
players battling it out, planning their short-term and long-
term strategies, and utilizing either an offensive or defensive
game plan. Inevitably, some plans end in defeat, some in
victory, and yet still some end with a draw. In this regard,
it is easy to see how one player planning his moves with a
computer has a very unfair advantage over the other. The
game is not intended to be played this way, so the chess-
playing community gets frustrated with cheating players.
Unknowingly playing a game of chess against a bot may have
varied repercussions. Some players may just brush off the
loss, attributing it to a stronger opponent, and trying to learn
from it; they may or may not be suspicious that cheating was
involved. Others may get so frustrated that they quit playing
chess altogether after a few encounters [8]. It is the latter
group that makes preventing cheating so very important.
Quickly and accurately identifying a bots’ presence in an
online game is crucial; false positives cannot be tolerated.

2. Related Work

A popular method of ensuring the players involved in a
game are, in fact, human players is “Completely Automated
Public Turing test to tell Computers and Humans Apart”
(CAPTCHA). A typical CAPTCHA test will present the
player with distorted text and then require them to type that
text into a box in order to continue. A computer program will
be unable to read the text and respond correctly, preventing
the bot from continuing beyond that point [4].

There are, however, ways to beat a CAPTCHA test. A bug
in the CAPTCHA may be exploited to bypass the CAPTCHA
test completely, for example, reusing the session ID of an
image that is known to have passed the test.

Also, Optical Character Recognition (OCR) software is
improving, allowing the bot to “read” the CAPTCHA text.
CAPTCHA breaking algorithms have been designed with
alarmingly high success rates as high as 70% on some
websites [9].

Finally, the bot may present the CAPTCHA to the
player as a part of the program. Due to the limitations
of a CAPTCHA test, it is not an ideal solution for bot
prevention; the test can be easily defeated if it is presented
at the beginning of the game, and the test becomes an
inconvenience to the player if it is presented during the game
[10].

Research on bot detection and prevention in online
games has expanded over the past few years, with method-
ologies ranging from direct impact on the player’s game
experience, to total transparency, with varying degrees of
success. Input devices could be used as a type of hardware-
based CAPTCHA; for example, a joystick could be used as a
CAPTCHA device, or a specially designed keypad could be
used to input a series of characters at certain points during a
game. This method would require the output of the device
to be authenticated by a game server or console, as well
as making the device itself secure to avoid tampering [10].
The cost associated with tamper-proofing devices and the
incompatibilities that would exist with legacy hardware limit

International Journal of Computer Games Technology

—

Figure 1: Embedding CAPTCHA by altering the appearance of a
bishop.

the usefulness of this approach. Requiring special hardware
and keying in characters on a keypad would have a direct
negative impact on the game also, as it draws the players’
attention away.

Embedding a CAPTCHA into the game itself is a clever
idea (see Figure 1). However, it can be difficult to implement
properly. Randomizing certain aspects of the game can
make it much more difficult for a bot to participate.
Randomization creates a noninteractive CAPTCHA type of
test, as the bot will have to analyze options; however, it is
not a particularly powerful deterrent since it can be solved.
A more formal test could be presented to a player as well, in
the form of a simple text-based or image-based CAPTCHA,
in order to allow access to various aspects of the game
[11]. This type of test would at least force some human
interaction, adding only minor disruption to the playing
experience, ensuring that a bot cannot operate completely
autonomously.

Server-side bot detection is a method that is concealed
to users and typically focuses on the behavioral patterns
of game clients. For example, the movement pattern of a
character can be analyzed for overly repetitious actions to
determine whether a bot or a human is in control [5].

Also, input data from devices such as a mouse or
keyboard could be analyzed for button-press-length and
interval to determine if a bot is controlling a character [6].
Server-side bot detection requires some resources to analyze
the data that is collected, however, and could possibly be
circumvented by a bot program [12]. Once a bot is removed
from the game, the bot creator can easily change the program
to avoid the behavior that resulted in detection.

3. Behavior of a Bot

A robot or “bot,” for the purposes of this research, can be
described as an artificially intelligent program, with either
partial or full autonomy, which assists a player in an online
game [4]. One must understand how a bot works before one
can discuss how to combat it. A typical bot program will go
through three basic steps, the first of which is collecting data
for the input. The second step is the heart of the program,
where the collected data will be used to create a course
of action, predicated by the bots’ purpose and design. For
example, in this step, a poker bot would determine the action
a player should take, while a chess bot would determine
which piece should be moved. In step three, the bot will
output the desired action to the player, or even perform
that action for the player, in the case of a fully autonomous

International Journal of Computer Games Technology

bot. Bots commonly collect input data in one of two ways.
A chess server may give the location of pieces in a log file,
possibly even in real time, making it very easy to gather
the information needed for a bot to process the locations
and determine a move. If the data is not available via a log
file, a second data collection option is called screen scraping
[13]. In the case of chess, the bot will compare the images
on the board with images in its database. The bot can then
essentially know which piece is a king, which is a queen, and
so forth. The position of each piece is also easily determined,
since the board is an image as well. As a result, the bot
can look at the board, identify each piece, and its respective
location, and process that information to determine the best
move to make.

4. Procedure

Written in C#, the software contains menu, grid, and options
elements. The grid consists of sixty-four separate panels,
each representing a single space on a chess board. Each
100 x 100 pixel panel is added to a two-dimensional array,
arranged in an 8 panel X 8 panel square. This layout makes
it simple to place a chess board image behind the panels,
allowing the panels themselves to contain the chess piece
images. While standard functions are used to determine
the movability of pieces, it is the resolution, rotation, and
randomization which provide additional ammunition to
prevent bot play, and protect the players who simply wish to
pursue a challenging game of chess against another human
opponent.
The algorithm is based on two morphing functions:

Rotate Image Function

(i) Accepts image data type as argument.

(ii) Generate random number between —35 and +35.
(iii) Create new bitmap from image passed in.
(iv) Create new graphics object from bitmap and rotate.

(v) Draw image back to bitmap form and return it.

Reduce Resolution Function

(1) Accepts image and integer data types as arguments.

(i) Returns the image to its original resolution if percent-
age = 0.

(iii) Pass image to Rotate Image Function.
(iv) Create a temporary image from the rotated image.

(v) Create new bitmap from temporary image with new
size based on input.

As shown in Figure 2, functions to adjust the resolution
and rotation of the chess pieces have been added to the user
interface, using a text box on the right-hand side of the
form to accept entry of an integer between zero and ninety-
nine. Once a valid number is input into the text box and
the adjacent “Ok” button is pressed, the resolution of all

These o contiols can be
Used 10 reduce B qualty of
e images on the chess
oM peevent a bot fom

Percentto
Reduce

FIGURE 2: Standard chess board layout.

pieces is decreased by the value entered, as a percentage, and
arotation between —35 degrees and +35 degrees is applied to
each piece individually. This will result in all pieces having
the same resolution reduction, but a different rotation for
each piece (see Figure 3).

Track Bar Function

(i) Track bar minimum is 0, maximum is 5, increments
by 1.

(ii) Generate random number between 5 and 10 and
multiply it by track bar value.

(iii) Pass image and random number to Resolution
Reduction Function.

(iv) Repeat steps 2 and 3 for each image to give every piece
a different rotation and reduction.

Below the text box is a track bar that can be used to
increment the distortion of the pieces in a slightly different
way. The track bar consists of six values, starting with zero
at the bottom and incrementing by one to five at the very
top notch. The track bar starts at zero by default. When
incremented, the track bar value is multiplied by a random
number, labeled randNum, between five and ten, and passed
on to the resolution reduction function. A new random
number is generated for each chess piece, giving a certain
amount of randomness to the resolution reduction of each
individual piece. Incrementing the track bar increases the
value to be multiplied by the random number, somewhat
guaranteeing an increase in distortion as the track bar is
incremented.

As illustrated in Figure 4, when the “Randomize!” button
below the track bar is selected, the program rearranges
the back row of both team’s pieces according to the rules
set forth for Fischer Random Chess. Another function,
RandomResolution, is called to distort the images as well.

FIGURE 3: Distortion using the text box.

A random value, between five and thirty percent, is chosen
for resolution reduction and applied to every piece on the
board. Rotation is again applied to each piece individually.
The “Randomize!” button may be pressed as many times as
desired; however, once a piece has been moved, the game is
officially started and the button is disabled. Distortion of the
pieces can still be controlled via the other two methods at any
point during the game.

Fischer Random Chess Function

(i) Assign const integers to pieces (example: EMPTY =0,
KING =1, QUEEN = 2, etc.).

(ii) Create two lists to keep track of empty spaces in the
back row, one for odd and one for even spaces.

(iii) Create an array to hold piece positions in the back
row.

(iv) Generate a random number between 1 and 6 to place
the KING.

(v) Place KING into back row array at index just
generated.

(vi) Generate 2 random numbers for placing ROOK.
These must be between 0 and KING index, KING
index and 7.

(vii) Place ROOK into back row array, 1 at each index just
generated.

(viii) Update even and odd lists so no pieces are placed on
occupied spaces.

(ix) Generate random number between 0 and even list
size.

(x) Place BISHOP into back row array at index just
generated.

(xi) Generate random number between 0 and odd list
size.

International Journal of Computer Games Technology

F1GURE 4: Fischer Random Chess.

(xii) Place BISHOP into back row array at index just
generated.

(xiii) Update odd and even lists.

(xiv) Consolidate odd and even lists into 1 empty spaces
list since no remaining pieces have an odd or even
requirement.

(xv) Generate random number between 0 and empty
spaces list size.

(xvi) Place QUEEN into back row array at index just
generated.

(xvii) Update empty spaces list.

(xviii) Place KNIGHT into back row array at last 2 remain-
ing indices.

5. Results

Each user filled out a feedback form during testing, as seen in
Table 1, and the results were consistent. The form was used
to collect some background information from 11 players
to get an idea of their skill level at chess and determine
how long it took them to adjust to the distorted pieces.
Adjusting to the altered appearance of the pieces took most
users a few seconds regardless of their skill level; after an
average of four moves, none of the players had any trouble
differentiating between pieces. Very few mistakes were made
by the players. Some users did mention that additional
changes could be implemented to make distinguishing pieces
easier. For example, a letter representing the piece could be
added to the image in a distorted way as well.

Humans are much better than computers at identify-
ing patterns in an image [14]. Most modern text-based
CAPTCHAs rely on letters which have been distorted.
Therefore, distorting and rotating an image should prove
very difficult for a bot to recognize. Including additional
distortion effects will increase the difficulty of programming

International Journal of Computer Games Technology

TaBLE 1: Feedback form embedded non-interactive CAPTCHA for Fischer Random Chess. Adjust the distortion to desired level. Try playing
the game for at least 5-10 minutes. Feedback form used to gather information about the difficulty of the CAPTCHA tests.

What level of distortion was applied?
(e.g., 17% or trackbar tick number 2)

Your gender 0 Male OJ Female

Your age

Chess skill (beginner, intermediate, advanced) O Beginner O Intermediate [J Advanced
How many times have you played online chess? 0 <10 0 >10
How recently have you played online chess? [Less than a month 0J 1-6 months ago = >6a;1:)onths

On a scale of 1-10, with 10 being very difficult,
how difficult was it to recognize pieces after
distortion?

Approximately how long did it take to get used to
the look of the distorted pieces?

Have you ever played Fischer Random Chess?

Comments

[J Less than 3 moves

[Yes

[0 4-7 moves (] >8 moves

[0 No

a bot to read the pieces. For example, a skewing function
would further help to prevent recognition. Adding back-
ground noise to each individual image would also provide
more distortion for a bot to overcome, as well as changing
the size of each piece slightly.

However, there are weaknesses to this approach to bot
prevention. If there is only one available set of images for
the chess pieces, then a bot simply has to compare the
known images to distorted ones and make a guess based on
similarity. This method could be fairly accurate, so it would
be important to include multiple sets of images that can be
used. Tracking piece movements could also give a bot clues
as to what the pieces are; the bot may be fooled at the start,
but as the game progresses, the movement trail left by the
opponent may allow the bot to identify the pieces and resume
control of the board.

The feedback, gathered from players with skill levels
ranging from beginner to advanced, is promising. Players
rated the difficulty of reading the pieces on a scale of one
to ten, with an average rank of 6.5. However, the average
number of moves to adjust to the distorted pieces was only
3.75, indicating that although this approach has a direct
impact on the game experience, the user’s ability to play the
game is not hindered. The relatively high level of difficulty to
read the pieces can be seen as a good indicator that a bot will
have a hard time determining what the pieces are as well. The
low number of moves to adjust to the distortion is a good sign
that the player’s experience will not be affected a great deal.

6. Conclusion

The program is designed to prevent a bot’s ability to read
a chess board, which renders the bot harmless and unable
to suggest or make moves for the opposing player. This
is accomplished by altering the visual aspects of the chess
pieces on the board via user-controlled changes in resolution
and/or rotation of the pieces; this skewing makes the pieces

unrecognizable by a bot, while allowing human players to
identify the pieces. With the added ability to play the game
using the rules of Fischer Random Chess, a bot’s inability to
read the piece positions would prevent unfair advantages.

Additional research into bot prevention is clearly needed.
One path may be further altering the area of CAPTCHA tests.
For example, added altering of visual elements—such as
skewing or stretching—could be tested. Other user-interface
changes could include multiple image sets for swapping.
These options continually evolve as standard CAPTCHA
research moves forward. Additionally, although distorted
audio or program-initiated questioning are alternatives to
standard CAPTCHA tests, those methods could not be used
with chess pieces. However, some of these methods are very
creative; it is possible future research could find a way to
incorporate an alternative method into the game of chess.

Breaking down a CAPTCHA is not always considered
a total loss, as there are some positives that arise from it.
For one, a weakness in the CAPTCHA has to be exposed,
which can be fixed to strengthen the test in future revisions.
Also, it is important to note that programming a bot to
break a CAPTCHA test can be considered an advancement
in Artificial Intelligence, as a bot has to try to emulate how
a human would think in order to pass the test. This kind of
competition is very important for promoting advancement
in the fields of both artificial intelligence and security.

References

[1] C.E. Shannon, “Programming a computer for playing chess,”
Philosophical Magazine, 1950.

[2] Rybka, for the serious chess player, http://rybkachess.com/.

[3] IBM Research, Deep Blue. 1997, http://www.research.ibm
.com/deepblue.

[4] R. V. Yampolskiy and V. Govindaraju, “Embedded noninter-
active continuous bot detection,” Computers in Entertainment,
vol. 5, no. 4, article no. 7, 2008.

(5]

[6

(14]

S. Mitterhofer, C. Kruegel, E. Kirda, and C. Platzer, “Server-
side bot detection in massively multiplayer online games,”
IEEE Security and Privacy, vol. 7, no. 3, pp. 29-36, 2009.

S. Gianvecchio, Z. Wu, M. Xie, and H. Wang, “Battle of
Botcraft: Fighting bots in online games with human observa-
tional proofs,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security (CCS ’09), pp. 256—
268, November 2009.

D. Kushner, “On the Internet, nobody knows you're a Bot,”
Wired Magazine, p. 13, 2005.

Ethical cheating in online chess. 2007, http://amirbagheri
.virtuaboard.com/t34-ethical-cheating-in-online-chess.

E. Bursztein, M. Matthieu, and J. Mitchell, “Text-based
CAPTCHA strengths and weaknesses,” in ACM Computer and
Communicatino Security, Chicago, Ill, USA, 2011.

P. Golle and N. Ducheneaut, “Preventing Bots from playing
online games,” ACM Computers in Entertainment, vol. 3, no. 3,
2005.

D. Bushell, “In search of the perfect CAPTCHA,” Smashing
Magazine, 2011.

D. Bethea, R. Cochran, and M. Reite, “Server-Side verification
of client behavior in online games,” in Proceedings of the 17th
Annual Network and Distributed System Security Symposium of
the Internet Society, San Diego, Calif, USA, 2010.

J. Devlin, “How I built a working poker Bot,” Part I.
2008, http://www.codingthewheel.com/archives/how-i-built-
a-working-poker-bot.

J. Strickland, “How CAPTCHA works,” 2011, http://computer
.howstuffworks.com/captcha.htm/printable.

International Journal of Computer Games Technology

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

	Development of embedded CAPTCHA elements for bot prevention in Fischer random chess
	Original Publication Information
	ThinkIR Citation

	tmp.1632860536.pdf.LBIQG

