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ABSTRACT 

 

Introduction: There are many problems with current state-of-the-art protocols for 

maintenance dosing of the oral anticoagulant agent warfarin used in clinical practice.  

The two key challenges include lack of personalized dose adjustment and the high cost of 

monitoring the efficacy of the therapy in the form of International Normalized Ratio 

(INR) measurements.  A new dosing algorithm based on the principles of Reinforcement 

Learning (RL), specifically Q-Learning with functional policy approximation, was 

created to personalize maintenance dosing of warfarin based on observed INR and to 

optimize the length of time between INR measurements.  This new method will help 

improve patient’s INR time in therapeutic range (TTR) as well as minimize cost 

associated with monitoring INR when compared to the current standard of care. 

Procedure: Using the principles of Reinforcement Learning, an algorithm to control 

warfarin dosing was created.  The algorithm uses 9 different controllers which 

correspond to 9 different levels of warfarin sensitivity.  The algorithm switches between 

controllers until it selects the controller that most closely resembles the individual 

patient’s response, and thus the optimal dose change (       and time between INR 

measurements (       are personalized for each patient, based on INR observed in the 

patient.  Three simulations were performed using data from 100 artificial patients, 
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generated based on data from real patients, each.  The first simulation that was performed 

was an ideal case scenario (clean simulation where the coefficient of variance (CV) of 

noise added to the model output = 0) using only the warfarin RL algorithm to prove 

efficacy.  The second simulation was performed using the current standard of care and a 

CV = 25% to simulate intra-patient variability.  The third simulation was performed 

using the warfarin RL algorithm with a CV = 25%.  180 days were simulated for each 

patient in each simulation and the measurements that were used to benchmark the 

efficacy of the therapy were INR time in therapeutic range (TTR) and the number of INR 

measurements that were taken during simulation. 

Results: The first simulation yielded a mean TTR = 92.1% with a standard deviation of 

4.2%, and had a mean number of INR measurements = 7.94 measurements/patient. The 

second simulation yielded a mean TTR = 45.3% with a standard deviation of 16.4%, and 

had a mean number of INR measurements = 12.3 measurements/patient. The third 

simulation yielded a mean TTR = 51.8% with a standard deviation of 10.8%, and had a 

mean number of INR measurements = 8.05 measurements/patient. A p-value <.001 

suggests that there is a statistically significant difference between the 2 algorithms. 

Conclusion: Results from the simulations indicate that the warfarin RL algorithm 

performed better than the standard of care at keeping the patient’s INR in therapeutic 

range and also reduced the number of INR measurements that were necessary.  This 

algorithm could help improve patient safety by increasing the patient’s INR TTR in the 

presence of intra-patient variability, and also help reduce the heavy cost associated with 

the therapy by minimizing the number of INR measurements that are necessary. 
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I. INTRODUCTION 

 

 

A. Problem Statement 

There are a variety of different disease states and conditions where the use of 

prophylaxis is recommended to reduce the risk of thromboembolism in patients. These 

disease states and conditions include, but are not limited to, atrial fibrillation, heart valve 

replacements, deep vein thrombosis (DVT), and myocardial infarction (MI) (Merli & 

Tzanis, 2009). Common prophylaxes that are used in clinical practice include mechanical 

methods, such as compression sleeves, and pharmaceutical methods, such as 

anticoagulants. 

 Mechanical methods used to reduce the risk of thromboembolism include a 

variety of different types of compression sleeves.  Compression sleeves are used to apply 

pressure to areas of poor circulation, thereby reducing blood stasis (Larkin, Mitchell, & 

Petrie, 2012).  There are many different types of compression sleeves used in clinical 

practice including uniform compression sleeves, graduated compression sleeves, and 

intermittent pneumatic sleeves.  Uniform compression sleeves apply uniform pressure to 

the area that they are applied and are readily available to the entire population, whereas 

graduated compression sleeves vary the pressure they apply throughout the sleeve and are 

typically used in hospital settings (Larkin, Mitchell, & Petrie, 2012).  Intermittent 

pneumatic sleeves use pressure cuffs to repeatedly inflate and deflate around the area 

they are applied.  These sleeves can vary the amount of pressure they apply and can also 

be used to apply uniform or graduated pressure.  While compression sleeves have proven 

to be effective in reducing thromboembolism in conditions such as DVT and surgery 
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(Morris & Woodcock, 2004; MacLellan & Fletcher, 2007; Larkin, Mitchell, & Petrie, 

2012), there is no evidence to suggest that they could be effective in reducing 

thromboembolic events in conditions such as atrial fibrillation and MI. 

Pharmaceutical methods for reducing the risk of thromboembolic event are 

typically anticoagulant drugs including injectable drugs such as heparin and oral 

anticoagulant drugs such as dabigatran, rivaroxaban, and warfarin.  Heparin, specifically 

low molecular weight heparin, binds to antithrombin III which inactivates thrombin and 

factor Xa (Chuang, Swanson, Raja, & Olson, 2001).  Dabigatran is a direct thrombin 

inhibitor (Miller, Grandi, Shimony, Filion, & Eisenberg, 2012).  Rivaroxaban inhibits 

both free factor Xa and factor Xa (Miller, Grandi, Shimony, Filion, & Eisenberg, 2012).  

Warfarin is a vitamin K antagonist and works by inhibiting the synthesis of the Vitamin 

K dependent clotting factors II, VII, IX, and X (Porter, 2010).  While all of these drugs 

have proven to be effective in clinical practice, there are drawbacks associated with each.  

Injectable heparin can cause patient discomfort because of the need for injections, and 

even when it is taken orally, it still has a higher monetary cost when compared to other 

oral anti-coagulants (Looi, et al., 2013).  Due to the nature of these anticoagulant drugs, 

there is an increased risk of patient bleeding, and because of this, there is a need to take 

precautions while using anticoagulants for therapy.  Warfarin has an easy reversibility of 

action when compared to other oral anticoagulants, such as dabigatran and rivaroxaban, 

and due to this fact, it remains the most widely used oral anticoagulant in clinical practice 

today (The International Warfarin Pharmacogenetics Consortium, 2009).   

The standard for measuring the efficacy of warfarin therapy, first adopted in 1982 

by the World Health Organization, is known as the International Normalized Ratio (INR) 
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(Wardrop & Keeling, 2008).  Many of the indications for use of warfarin therapy specify 

a narrow therapeutic range of 2.0-3.0, and because of this there is a need for frequent INR 

measurements to minimize the risk of bleeding (when INR is too high), or 

thromboembolic event (when INR is too low) (Merli & Tzanis, 2009).  The high cost 

associated with warfarin therapy comes from the need for frequent INR measurements.  

These costs include not only the health care expenses (such as laboratory tests, 

equipment, labor, etc.), but also indirect costs such as time lost from work, travel 

expenses, and many others (Chambers, Chadda, & Plumb, 2009; Harrington, Armstrong, 

Nolan, & Malone, 2013; Lafata, Martin, Kaatz, & Ward, 2000). 

Because of the widely adopted use of warfarin oral anticoagulant therapy, there is 

a need for dosing algorithms to maintain the efficacy of the therapy while reducing the 

risk for bleeding or thromboembolic events.  The current standard of care for warfarin 

oral anticoagulant therapy, as dictated by the American Society of Hematology, is an 

expert-system type algorithm that provides no dosing personalization and also does not 

explicitly optimize the monitoring frequency of the efficacy of the therapy (Cushman, 

Lim, & Zakai, 2011).  While there are many other warfarin dosing algorithms that seek to 

improve the efficacy of warfarin therapy, including pharmacogenetic algorithms 

(Carlquist & Anderson, 2011) and computerized algorithms (Grzymala-Lubanski, 

Själander, Renlund, Svensson, & Själander, 2013; Dimberg, et al., 2012), these 

algorithms do a poor job of accounting for intra-patient variability (Kangelaris, Bent, 

Nussbaum, Garcia, & Tice, 2009) and do not explicitly optimize the monitoring 

frequency, which would reduce the overall cost of the therapy.  Intra-patient variability 

during maintenance dosing can occur due to a variety of factors such as diet, disease 
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state, and drug interactions. (Ansell, et al., 2008; White, 2010).   In fact, there are 

currently no warfarin dosing algorithms that optimize both the warfarin dose for an 

individual patient as well as the time between INR monitoring visits. 

 

B. Current Warfarin Dosing Methods 

There are three main types of algorithms that are used in clinical practice to 

manage warfarin oral anticoagulant therapy.  These three main types of algorithms 

include dose titration, pharmacogenetic algorithms, and computerized algorithms.  

Warfarin dose titration is exemplified in the dosing protocol dictated by the American 

Society of Hematology, which is the current standard of care (Cushman, Lim, & Zakai, 

2011).  Dose titration algorithms slowly titrate a patient’s warfarin dose until the patient’s 

INR levels are within the therapeutic range, and the method of titrating a patient’s dose 

until the desired effect is achieved is common practice in drug dosing even outside of the 

realm of anticoagulant therapy.  This can be ineffective and slow to respond in the 

presence of intra-patient variability, resulting patient’s INR values being outside of the 

therapeutic range (Wilson, Costantini, & Crowther, 2007).   

Pharmacogenetic algorithms use pharmacogenetic information, specifically, 

variations in the genes CYP2C9 and VKORC1, to select a more accurate initial warfarin 

dose (Carlquist & Anderson, 2011).  While pharmacogenetic algorithms have been 

proven in clinical practice to minimize the effect of inter-patient variability and select a 

more accurate initial warfarin dose (Carlquist & Anderson, 2011), they do nothing to 

account for intra-patient variability due to external factors, which is unhelpful during a 

patient’s maintenance dosing period, and also are yet to gain wide acceptance among 
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physicians.  The required pharmacogenetic testing to determine a patient’s genetic 

variations are also costly and not part of standard clinical practice. 

Computerized algorithms, exemplified by AuriculA (a Swedish national quality 

registry of patients treated with warfarin), use key patient characteristics, and information 

about the warfarin treatment and complications to make dose suggestions (Dimberg, et 

al., 2012).  These algorithms operate according to 720 rules and patient history to make 

dose suggestions (Grzymala-Lubanski, Själander, Renlund, Svensson, & Själander, 

2013).  While these algorithms have been successful in clinical practice, they require 

massive databases of patient information, and also, in the presence of high intra-patient 

variability, still require manual (physician initiated) dose changes.  Another issue with all 

of the algorithms in clinical practice are that there are no dosing algorithms that optimize 

INR measurement and dose change frequency. 

 

C. Objective 

The objective of this study was to develop a new method for dosing warfarin 

based on the control technique of Reinforcement Learning (RL) that will adapt to each 

patient based on feedback from the patient, and will also optimize the time between INR 

measurements.  This new algorithm will help minimize the effect of intra-patient 

variability and reduce the number of INR measurements that are necessary.  Because the 

current standard of care does a poor job of accounting for intra-patient variability and 

does nothing to optimize the time between INR measurements, the ultimate goal of this 

work is for the new warfarin RL algorithm to increase patient’s time in the therapeutic 
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range (TTR) and reduce the overall cost of therapy by optimizing the INR monitoring 

frequency when compared to the current standard of care. 
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II. INSTRUMENTATION AND EQUIPMENT 

 

 

 The equipment that was used for the creation of the warfarin RL algorithm was a 

Lenovo ThinkPad Edge laptop with model number 0301-DBU.  The laptop was 

manufactured by Lenovo (Singapore) Pte. Ltd., and it was made in China.  All coding, 

calculations, and graphs were done using MATLAB 7.12.0 R2011a software created by 

The MathWorks Inc., located in Natick, MA. 
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III. PROCEDURE 

 

 

A. Reinforcement Learning Overview 

 Reinforcement Learning (RL) is a control method used to control a system based 

on experience. Elements of Reinforcement Learning include: Environment, which is the 

system that is being affected, State, which is a measurement of the environment, Action, 

which is the control input into the system, Agent, which is the governing body that takes 

the action, and Reward, which identifies how well the agent is performing. This method 

utilizes the Markov Decision Process (MDP) to determine the optimal action to take, 

while in a given state, to achieve a desired state (Sutton & Barto, 1998). The rules 

governing what action to take, while in a given state, to achieve a desired state are known 

as a policy, and the goal of Reinforcement Learning is to determine the optimal policy. 

 One of the most popular RL methods is Q-Learning.  Q- Learning is a type of 

Reinforcement Learning that seeks to maximize the action-value function defined as: 

 

 (         (                    ⏟
 

  (           (                            (1) 

 

In this equation,      is the reward observed after performing action    in state   ,   is the 

learning rate, and   is the discount factor (Sutton & Barto, 1998).  The learning rate 

determines how much the new learning signal will outweigh past learning signals. The 

discount factor determines the significance of future rewards (    will only take into 

account immediate reward, and     will seek a higher cumulative reward). The term 
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  (         is an estimate of the optimal future action value.  If the policy is 

represented as a lookup table, this can be a long and arduous process, as the whole state-

action space should preferably be explored during learning, including suboptimal actions.  

Depending on the problem dimensionality, there can be a large number of possible states 

and actions and the learning process may be computationally expensive. 

 Because of the limitations of traditional RL and Q-Learning, a method known as 

Q- Learning with Linear Functional Policy Approximation can help eliminate the need 

for unnecessary exploration, and simplify calculations.  This method translates the state 

into a set of features and actions into a set of symbolic parameters (Irodova & Sloan, 

2005), represented by the equation: 

 

 (        
       

                                                            (2) 

 

In this equation,   …   represent the translated set of states,   
 …  

  represent the 

symbolic parameters, and  (     is the policy.  Using the Q-learning equation (1), the 

following update rule for each parameter (  
 ) can be derived: 

 

  
     

    [      ⏟
  

  (          (    ]
   (    

   
                               (3) 

 

In this equation, (a) represents the most recent action taken, (s) represents the most recent 

state observed,    represents future action, and    represents the future state (Irodova & 

Sloan, 2005). Q-Learning with Linear Functional Policy Approximation eliminates the 
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need to visit many state action pairs during the learning phase, some of which may be 

infeasible or even impossible. 

 

B. Warfarin Q-Learning With Linear Policy Approximation 

Q-Learning with linear functional policy approximation is the control method 

used to determine the optimal dose change,      , and the optimal time between INR 

measurements,      . In this work, the clinical goal of warfarin therapy is to achieve a 

patient INR value of 2.5 represented by          (this value is chosen because it is the 

midpoint of the warfarin therapeutic range of INR = 2.0-3.0).  The control method uses 

the difference between the measured INR value and          , defined by         , as the 

output of the system, where the desired state is for         = 0, defined by               .  

The elements of this method are detailed in FIGURE 1, and the goal of this method is for 

the environment to achieve the desired state,              . 

10 



 

 

FIGURE 1 - Block Diagram of RL based Warfarin Dosing  

 

 The patient’s body is the environment being affected, and more specifically the 

mechanisms that involve thrombus formation (Hirsh, Fuster, Ansell, & Halperin, 2003; 

Porter, 2010).  In this work, two different patient models are used to represent the 

environment (patient), the control-relevant patient model, and the simulation model. The 

control-relevant patient model is used to design the controllers and is represented as 

follows: 

 

   (      (      
( 

 

  
 
                                                   (4) 

 

In control-relevant patient response model,   represents the gain (INR increase/mg/day 

of warfarin administered), t represents time (in days), and    represents the time constant 
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(time until the administered warfarin dose reaches 32% of its full pharmacodynamic 

(INR) effect).   This model is used for controller design because it can represent the 

properties of the more complex process with sufficient accuracy, while minimizing the 

number of parameters.  The simulation model used for simulation is represented by the 

equation: 

 

   (   (    (        (  )     
( 

 

  
 
                                      (5) 

 

In the simulation model,    represents the linear gain (INR increase/mg/day of warfarin 

administered),    represents the nonlinear (quadratic) gain, t represents time (in days), 

and    represents the time constant (time until the administered warfarin dose reaches 

32% of its full pharmacodynamic (INR) effect).  The agent is the body that governs the 

actions that are to be taken.  In this work the agent is represented by the equations: 

 

           (            (                                         (6) 

 

           (            (                                         (7) 

 

The actions, governed by the agent, are       and      , where       is the dose 

change and       is the time between INR measurements.  The state is represented by 

the observed values         and         .  These values are determined by the 

equations:  
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                                                                        (8) 

 

                                                                        (9) 

 

INR is the patient’s current INR value and                 is the         from the 

previous INR measurement.  The reward is a value assigned to the action based on 

whether or not the environment moves closer to the desired state,              . Here, the 

equation used to assign the reward is as follows: 

 

  (
 

  (         
                                                           (10) 

 

As the INR moves farther away from the target value,              , the reward grows 

smaller, and as the INR moves closer to the target value, the reward grows larger.  The 

maximum reward is R = 1. 

 

C. Reinforcement Learning Warfarin Dosing Algorithm 

The Overall Reinforcement Learning warfarin dosing algorithm is separated into 

2 phases:  

1) Learning phase (off-line) 

2) Dosing phase (on-line) 

The learning phase is the design phase and uses the principles of RL to “learn” the 

optimal parameter values that are implemented to calculate the proper       and       
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during the dosing phase.  The dosing phase uses the optimal parameter values extracted 

from the learning phase to calculate the proper       and       based on         and 

         observed in the individual patient.   

During the learning phase, 9 different controllers are created to optimize the 

warfarin dose for 9 different patient responder types.  These different patient responder 

types range from extremely hypo-responsive (patient has a marginal INR increase 

compared to the dose administered) to extremely hyper-responsive (patient has a 

significant INR increase compared to the dose administered).   To create the different 

controllers, the control-relevant patient response model is used. Nine different K values 

are used to create 9 different controllers, and are listed as follows: 

 

TABLE I 

CONTROL REVELANT K VALUES 

 

These values are listed in order of increasing patient responsiveness ranging from 

extremely hypo-responsive (K = 0.1) to extremely hyper-responsive (K = 0.9).  Three 

hundred learning episodes, each 120 days in length, are performed for each value of K.  

Before the first learning episode for each K value, initial values for the learned 

parameters are set:    = 0, a = -1, c = 0, f = .01, h = -4, and    = 4.  Initial values are 

K

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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arbitrary as the optimal parameter values will be determined over the course of the 

learning episodes.  RL parameters   and  , which are the discount factor and the learning 

rate respectively, are also initiated before the first learning episode and have initial values 

of       and       .  The values of the RL parameters are determined heuristically to 

help reduce simulation time.  Once the parameter values and RL variables are initiated, 

the first learning episode begins. 

Step 1: The algorithm calculates the Q values for all of the possible       values 

(-5mg/day, -4.9mg/day, -4.8mg/day…+4.8mg/day, +4.9mg/day, +5mg/day), and the 

calculations are made using the equation:  

 

         ( (     (         (         (                                 (11) 

 

The       that yields the highest        value is selected as the optimal dose change. 

The same thing is done for      , the algorithm calculates the Q values for all possible 

      values (1-6 weeks) using the equation: 

 

         ( (     (           (          (                             (12) 

 

 The       that yields the highest         is then selected, and no INR measurements 

are made until the selected number of weeks has passed.  Step 2: The new       and 

      are simulated using the control-relevant patient model, with the addition of 

random noise to compensate for external factors. A reward is then determined based on 

the difference between the most recent INR measurement and the target INR as governed 
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by equation (10).  Step 3: The reward is then used to calculate value functions for both 

      and       using the equations: 

 

           (    ⏟
        

      (                    )                       (13) 

 

           (    ⏟
        

      (                    )                      (14) 

 

In these equations,          (                     and 

      (                     are estimates of optimal future values.  Step 4: The 

parameters   , a, c, f, h, and    are then updated based on the value functions following 

the form listed in equation (3). The update equations are described as follows: 

 

     (               (
       

  
                                           (15) 

 

     (               (
       

  
                                           (16) 

 

     (               (
       

  
                                         (17) 

 

     (               (
       

  
                                         (18) 
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      (               (
       

   
                                        (19) 

 

   = 0 remains constant. 

Steps 1-4 are repeated until the length of the simulation meets or exceeds 120 days 

(        ), and once this occurs, the learning episode is finished.  The learning rate is 

then reduced using the equation:  

    (                                                              (20) 

Once the learning rate is updated, the learning episode is completed, and a new learning 

episode begins.  Each new learning episode exploits the previously learned parameter 

values   , a, c, f, h, and   , so that they are continuously updated during each learning 

episode.  When all 300 learning episodes are completed, the learned optimal parameter 

values   , a, c, f, h, and    are extracted. 

The Dosing Phase can begin once the learning phase is complete.  During the 

initiation of dosing, an initial dose of 5mg/day of warfarin is given to the patient.  

Patient’s INR measurements are taken on a weekly basis (days 7, 14, and 21), and after 

the measurement is taken, a new dose is determined by the algorithm and administered to 

the patient until it is time for the next INR measurement.  To adjust the dose, a control-

relevant K value is estimated based on the most recent dose using the equation: 

 

    
   

    
                                                            (21) 

 

The K value from table 1 that is closest to the calculated     value is then selected as the 

control-relevant K value. The value of 1.5 is used in the first equation because that is the 
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difference between the patient’s initial INR value (1) and the target INR value.  Once the 

control-relevant K value is determined, the parameters associated with that control-

relevant K value,          and          are used to determine the new dose: 

 

                                                                (22) 

 

In this equation,              is the most recent dose given to the patient before the INR 

measurement.  The calculated new dose is then given to the patient until the next INR 

measurement, and this process is repeated on day 7, 14, and 21 (initiation phase).  After 

day 21 (maintenance phase),       is determined by the equation (7).  After day 21, INR 

is only measured when the algorithm suggests.  For maintenance dosing, the patient’s 

INR is measured when       suggests, the control-relevant K value is estimated, and the 

new Dose and       are calculated. 

To prove the efficacy of the new RL warfarin algorithm, three simulations were 

performed on each of 100 artificial patients (with varying warfarin responses), and each 

patient was simulated for 180 days of therapy.  The first simulation was performed as an 

ideal case scenario (random noise with CV = 0%) for verification of the RL warfarin 

algorithm in the presence of no intra-patient variability. It is, however, impossible to 

eliminate intra-patient variability in a real world scenario, so two more simulations were 

performed to compare the industry standard of care to the RL warfarin algorithm.  The 

second simulation was performed following the guidelines for dosing and INR 

measurements stipulated in the current standard of care, and a CV = 25% was used to 

simulate extreme intra-patient variability.  The third simulation was performed following 
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guidelines stipulated by the RL warfarin algorithm, and this simulation also used a CV = 

25% to simulate extreme intra-patient variability.  Simulations two and three were then 

used to compare the industry standard of care to the RL warfarin algorithm using %TTR 

(time in therapeutic range) and the number of INR measurements as performance criteria. 
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VI. RESULTS AND DISCUSSION 

 

 All simulations, calculations, and graphs were performed and made using 

MATLAB software.  Before simulation using the RL could take place, the learning phase 

to determine the optimal parameter values associated with each control-relevant K value 

had to be performed, and the results were as follows: 

 

TABLE 2 

PARAMETER VALUES 

K    a c f h    
0.1 0 -3.00367 0.607573 0.413057 -3.79183 4.407258 

0.2 0 -2.25922 0.562711 0.737318 -3.35005 4.774702 

0.3 0 -0.82387 0.813361 0.573093 -3.47947 4.598232 

0.4 0 -0.4069 0.737377 0.057894 -4.13071 3.924247 

0.5 0 -0.58846 0.699238 0.835709 -3.10336 4.885482 

0.6 0 -0.26811 0.564213 0.123133 -4.27049 3.988894 

0.7 0 -0.25454 0.571812 0.274075 -4.01829 4.225859 

0.8 0 -0.1582 0.503708 0.154036 -4.37039 3.982359 

0.9 0 -0.19254 0.446211 0.232318 -4.13157 4.19317 

 

The control relevant K values are listed in the first column of TABLE 2, and the 

remaining columns list the parameter values associated with the control relevant K value 

in the same row.  The values for parameter “a” trended towards 0 as the control relevant 

K value increased.   When the values for parameter “a” were looked at in the context of 

equation (6), it indicated that when the patient became more responsive to the warfarin 

dose (control relevant K value increased), the same         values would result in a 

smaller dose change.  This means that if a patient was determined to have a high control 

relevant K value, a smaller dose change is necessary to achieve the desired effect.  
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The results for parameter value “c” varied, which indicated that          had a 

varying effect depending on the responder type.  The parameter values for “  ”, when 

taken in context of equation (7), were determined to be the optimal times between INR 

measurements when the         and          values were both 0, which would mean the 

patient had reached the target values for         and         .  The parameter values for 

both “f” and “h” varied, which indicated that the values for         and          had 

varying effects depending on the control relevant K value, respectively, when taken in the 

context of equation (7). 

 The first simulation was performed using only the RL algorithm in the presence 

of no intra-patient variability (CV = 0%) and the results were as follows: 

 

TABLE 3 

SIMULATION 1 RESULTS 

Simulation 

Dosing 

Algorithm CV %TTR 

%TTR standard 

deviation 

mean # of INR 

Measurements 

1 RL 0% 92.1% 4.2% 7.94/patient 

 

The first simulation, represented in TABLE 3, yielded a mean %TTR = 92.1% over all 

100 artificial patients, with a standard deviation of 4.2%, and had a mean number of INR 

measurements = 7.94 measurements/patient. These results indicated, that in the presence 

of no intra-patient variability, the RL algorithm did an exceptional job of keeping the 

simulated patients’ INR values within the therapeutic range.  The reason the RL 

algorithm was not able to attain a higher %TTR was due to 2 factors.  First, each patient 

started off with an INR value of 1, meaning that there was always a time when the 

patient’s INR values were not in therapeutic range.  Second, the initial dose given to the 
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patient was 5mg/day (the American Society of Hematology recommended starting dose 

(Cushman, Lim, & Zakai, 2011)), which, in the cases of the medium and hyper responder 

types (see FIGURES 3 and 4), can cause an overshoot of the therapeutic range due to an 

incorrect initial dose and not due to controller action.  FIGURES 2, 3, and 4 are sample 

plots of the results that were attained from single patient types (hypo, medium, and hyper 

responders).  A comparison to the current standard of care was still necessary to prove 

that the RL algorithm was viable. 

 

FIGURE 2 - Sample plot of a single patient - Hypo-Responder. The top plot is the 

patient’s INR response, where the blue line is INR and the red lines indicate therapeutic 

range.  The bottom plot is the dose.  
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FIGURE 3 - Sample plot of a single patient - Medium-Responder. The top plot is the 

patient’s INR response, where the blue line is INR and the red lines indicate therapeutic 

range.  The bottom plot is the dose. 
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FIGURE 4 - Sample plot of a single patient - Hyper-Responder. The top plot is the 

patient’s INR response, where the blue line is INR and the red lines indicate therapeutic 

range.  The bottom plot is the dose.  

 

 The second simulation was performed with all 100 artificial patients using the 

American Society of Hematology dosing algorithm (represented as ASH in TABLE 4), 

which is the current standard of care, and the third simulation was performed with all 100 

artificial patients using the warfarin RL algorithm (indicated in TABLE 4 as RL).  

Simulations two and three were both performed in the presence of heavy intra-patient 

variability (CV = 25%) and the results were as follows: 
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TABLE 4 

SIMULATIONS 2 AND 3 RESULTS 

Simulation 

Dosing 

Algorithm CV %TTR 

%TTR 

standard 

deviation 

mean # of INR 

Measurements 

RL vs 

ASH 

pvalue 

2 ASH 25% 45.3% 16.4% 12.30/patient 

<.001 3 RL 25% 51.8% 10.8% 8.05/patient 

 

 The second simulation, represented in TABLE 4, yielded a mean %TTR = 45.3% 

over all 100 artificial patients, with a standard deviation of 16.4%, and had a mean 

number of INR measurements = 12.3 measurements/patient. The third simulation, 

represented in TABLE 4, yielded a mean %TTR = 51.8% over all 100 artificial patients, 

with a standard deviation of 10.8%, and had a mean number of INR measurements = 8.05 

measurements/patient.  There was determined to be a statistically significant difference 

(P<.001) between the American Society of Hematology algorithm and the warfarin RL 

algorithm.  Figures 5, 6, and 7 are sample plots of the results that were attained from 

single patient types (hypo, medium, and hyper responders). 
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FIGURE 5 - Sample plot of a single patient - Hypo-Responder. The top plot is the 

patient’s INR response using the RL algorithm, where the blue line is INR and the red 

lines indicate therapeutic range.  The bottom plot is the patient’s INR response using the 

ASH algorithm. 
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FIGURE 6 - Sample plot of a single patient - Medium-Responder. The top plot is the 

patient’s INR response using the RL algorithm, where the blue line is INR and the red 

lines indicate therapeutic range.  The bottom plot is the patient’s INR response using the 

ASH algorithm. 
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FIGURE 7 - Sample plot of a single patient - Hyper-Responder. The top plot is the 

patient’s INR response using the RL algorithm, where the blue line is INR and the red 

lines indicate therapeutic range.  The bottom plot is the patient’s INR response using the 

ASH algorithm. 

 

 

 

The results listed in TABLE 4 indicated that the warfarin RL algorithm not only 

did a better job at keeping the patient’s INR in therapeutic range, but also reduced the 

number of INR measurements that were required per patient.  When translated into a real 

world scenario, the data from TABLE 4 indicated that the warfarin RL algorithm would 

result in greater patient safety and therapeutic efficacy by keeping the patient’s INR 

values in therapeutic range for a greater amount of time than the current standard of care.  
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The warfarin RL algorithm was also able to reduce the mean number of INR 

measurements that were necessary over all 100 artificial patients, which indicated that the 

overall cost of the warfarin therapy when using the warfarin RL algorithm would be less 

than the cost of warfarin therapy when using current standard of care. 

 The %TTR values listed in TABLE 4 correspond closely with %TTR values that 

are typically seen in clinical practice (Wilson, Costantini, & Crowther, 2007).  The 

warfarin RL algorithm performed better than the current standard of care (ASH 

algorithm) at keeping patient’s INR values in the therapeutic range due to its ability to 

switch between controllers to match each patient’s response instead of slowly titrating the 

dose until the desired effect is achieved.  When a patient is matched to their respective 

control relevant K value, the algorithm is able to make smaller or larger dose changes to 

match the possible patient response, whereas the ASH algorithm uses titration to achieve 

the desired INR value.  This means that the warfarin RL algorithm is able to respond 

faster and better when a patient’s response to warfarin dose changes, which can occur due 

to intra-patient variability factors (diet, drug interactions, and disease state), than titration 

based algorithms. 

 The mean number of INR measurements that were necessary, listed in TABLE 4, 

are another important factor to consider when comparing the warfarin RL algorithm with 

the current standard of care.  As previously stated, utilizing the warfarin RL algorithm 

resulted in a fewer number if INR measurements that were necessary when compared to 

the current standard of care, and that would result in a reduction of the overall cost of the 

therapy.  The rising cost of healthcare and the uncertain changes that are occurring in the 

U.S. healthcare market are important considerations when evaluating this metric.  If a 
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patient could receive superior healthcare at a lower cost, the patient would be, overall, 

more satisfied.  Also, the cost of warfarin therapy is more than just monetary, and patient 

convenience is an important factor to consider.  If fewer INR measurements were 

necessary over the course of warfarin therapy, this would greatly increase patient 

convenience and quality of life. 

Drug dosing as a whole, even outside of the realm of warfarin and anticoagulants, 

could greatly benefit from the use of engineering methods like the one presented in this 

study.  For most drugs, outdated dosing methodologies are used to slowly titrate the dose 

until a desirable effect is achieved.  These methodologies can be inefficient, and can even 

have the potential to be dangerous if the proper dose is not determined fast enough or the 

methodology used is slow to respond to inter and intra patient variability.  There is a need 

for the development of new dosing methodologies that utilize engineering methods to 

improve patient safety, and reduce the cost of different types of therapy by more 

“intelligently” dosing patients.   

These methods could be applied to drugs like Plavix, which is an antiplatelet 

agent, and also other unrelated drugs such as erythropoiesis stimulating agents, which are 

used to stimulate red blood cell production in patients with End Stage Renal Disease.  In 

fact, there is evidence in the literature which suggests that control systems engineering 

methodologies have been effective in real life clinical settings (Gaweda, Jacobs, Arnoff, 

& Brier, 2008).  If the medical community were to develop and adopt “smarter” dosing 

protocols based on control systems engineering techniques, patient’s receiving a variety 

of different drug therapies would benefit greatly. 
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VII. CONCLUSIONS 

 

 Based on the data from the simulations that were performed, the patient 

population as a whole could greatly benefit from using the RL warfarin algorithm as an 

alternative to the current standard of care.  Using the RL warfarin algorithm could help 

keep patient’s INR in therapeutic range in the presence of heavy intra-patient variability 

while also greatly reduce the cost of the therapy by optimizing the number of INR 

measurements that are required.  The RL Warfarin Algorithm offers distinct advantages 

compared to the industry standard dosing methods, and while there are other 

computational and evidence based algorithms in practice, no other algorithm optimizes 

monitoring frequency.  Next, a human study of the RL warfarin algorithm should be 

performed to ensure patient safety and efficacy. 
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