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ABSTRACT 

The properties of gold nanoparticles (GNP) holds promising potential for drug 

delivery, diagnostics, plasmonic photothermal therapy of diseases, electronics, catalysis, 

and photovoltaics (Liu et al., 2006; Huang et al., 2003; Thompson, 2007; Atwater and 

Polman, 2010). This field is growing at a fast pace with the demand for GNPs ever 

increasing with slow progress on development of synthesis techniques. The objective of 

this study was to develop a new synthesis technique that produces gold/gold sulfide 

(GGS) nanoparticles with a high yield. This process can control the equilibrium shift of 

the surface plasmon resonance (SPR) of the nanoparticles (Patel, 2012). The goal of this 

research is to increase the total volume of GGS nanoparticles to be synthesized while 

keeping their tunability for the SPR absorption peak. This research has demonstrated the 

ability of cellulose membrane to reduce the need for purification steps, which are 

associated with traditional synthesis techniques for removing small colloidal gold (<10 

nm). It was found that controlling the surface area to volume ratio (SA/Vol) of the 

cellulose to GGS solution and temperature of the synthesis process, would provide, 

greater control over the SPR peak. Using these principles allows for larger volume 

synthesis to be performed while still retaining the ability to tune the SPR peak. It was 

also discovered that dialyzing out ions during the synthesis process makes bare GGS 

nanoparticles more stable over time. The time for the reaction to reach equilibrium was 

observed and showed an increase in temperature and/or SA/Vol reduces the reaction 

time. In conclusion, this study demonstrated how increasing the temperature and SA/Vol 

shifts the SPR peak and reduces the time for the reaction to reach equilibrium. 
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I. INTRODUCTION 
 

A. Problem Statement 

 

Over the past two decades, gold nanoparticles (GNPs) have been of great interest 

due to their unique physical and optical properties. The properties of GNPs hold 

promising potential for drug delivery, diagnostics, plasmonic photothermal therapy of 

diseases, electronics, catalysis, and photovoltaics (Liu et al., 2006; Huang et al., 2003; 

Thompson, 2007; Atwater and Polman, 2010). To date, research has focused on the 

application of GNPs, with slow progress on the development of new synthesis 

techniques, leaving a gap between research and applied technology. The desired goal for 

gold nanotechnology is the controlled growth of the size and shape, making GNPs robust 

tools. Many of the current synthesis techniques are intended for research purposes instead 

of industrial manufacturing. Most synthesis techniques require 24hrs to weeks to 

synthesize GNPs. Faster synthesis techniques have been shown to utilize a fast self-

assembly process that reduces a gold salt with a sulfur group. Recently, Patel et al. (Patel, 

2012) have demonstrated a new high yield synthesis process, known as “Diasynth”, 

which uses a cellulose dialysis membrane as a reaction vessel to control the equilibrium 

shift favoring the growth of the gold/gold sulfide nanoparticles (GGS). Diasynth has a 

reaction time of less than an hour and removes the need for purification steps (Patel, 

2012). This process, however, has difficulty in scaling up with volume while keeping the 

tunability of the surface plasmon resonance and repeatability constant. Therefore, finer 

control is needed with the Diasynth process to control the growth of the particles and 

retain the ability to increase the total volume of the reaction.     
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B. Objectives 

The objective of this study is to develop a new synthesis technique that produces 

gold/gold sulfide (GGS) nanoparticles with a high yield by evaluating the effect of 

temperature and surface area to volume ratio (SA/Vol) of the cellulose membrane to 

nanoparticle solution on the surface plasmon resonance (SPR) peak, time it takes for 

equilibrium to occur, the reaction environment, and GGS nanoparticle yield. The 

hypothesis of this study is that as the surface area to volume ratio increases, the SPR 

absorption peak will have a blue shift and the SPR tunability approaches a constant. Four 

corollaries to this hypothesis are: 1) as the reaction temperature increases the SPR 

absorption peak will have a blue shift; 2) as the SA/Vol ratio of cellulose membrane to 

nanoparticles solution increases the reaction time will decrease; 3) as the reaction 

temperature increases the reaction time will decrease; and, 4) the exchange of ions will 

affect the stability of the GGS nanoparticles. 

C. Therapeutic Applications 

Gold nanoparticles of are great interest in biomedicine due to their 

biocompatibility, ease of functionalization, stability under atmospheric conditions, and 

photothermal abilities (Zharov, 2006; Ghosh and Pal, 2007). Another important aspect of 

GNPs is their large surface to volume ratio and close size to biomolecules which allow 

for great opportunities in medical applications (Azzazy and Mansour, 2009). 

Photothermal therapy has emerged in the past decade as a promising treatment against 

cancer and bacteria cells. Cancer is one of the leading causes of death worldwide; in 

2007, accounting for nearly 8 million deaths, and in 2030 it is projected to increase to 12 

million (Bode and Dong, 2009). The need for better treatments at lower cost is in need. 
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Photothermal therapeutics have shown to hold promising potential in this field (Jain, 

Hirst, and O’Sullivan, 2012).  

There is a narrow near infrared wavelength range (also known as optic or 

therapeutic window) from 650-900 nm where light penetrating tissue is scattered and 

with little absorption shown in Fig. 1. Within this window, a laser can pass through tissue 

with little temperature change to the surrounding tissue leaving it unharmed (Ito et al., 

2000). Applying this principle with the photothermal properties of GNPs, one could heat 

up GNPs within the body while preventing unnecessary damage to other areas.  

 

FIGURE 1 - Graph depicting the nIR window (650-900 nm) that light can pass 
through tissue with minimal damage at high intensities. (Weissleder, 2001). 
 

One of the first in vivo studies to demonstrate this was by Hirsch et al. where 100 

nm gold nanoshells was injected into mice tumors  and a laser tuned to the SPR was 
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applied where the average tumor temperatures increased by 9oC in control mice and 37oC 

in nanoshell treated mice with irreversible tissue damage. All mice in the nanoshell group 

survived 90 days with no evidence of tumor recurrence whereas all mice in the control 

group were euthanized by 20 days from uncontrolled tumor growth (Hirsch et al., 2003).  

Another study conducted by Gobin et al. repeated Hirschs’s study with gold/gold 

sulfide nanoparticles. It was found that there was no difference between the two types of 

particles with respect to mice survival. However, the size of the gold/gold sulfide 

particles was 30-36 nm vs. the silica/gold nanoshell particles at 110 nm. The smaller size 

means that the particle has a higher absorbing cross-sectional area ratio than the 

gold/silica nanoshell. Also the Mie scattering theory calculations predict that the 

gold/gold sulfide nanoparticles will absorb 98–99% of the incident energy compared to 

67–85% for the gold/silica nanoshells currently being used. The implications for these 

smaller, more highly energy-absorbing nanoshells for therapy are that fewer particles 

could be used during treatment or alternatively a lower laser power or time could be 

utilized during therapeutic laser administration (Gobin et al.,2010). 

 

D. Gold Nanoparticle Morphologies 

Nanoparticles are usually under 100 nm (1000 angstroms) in size and have unique 

properties at this dimension. Gold nanoparticles (GNPs) were first used during ancient 

Roman times to stain glass to various colors. The first scientific report on them wasn’t 

observed until the 1850's by Michael Faraday (Faraday, 1857). It was not until this past 

century that the optical principles were understood in more detail. It is now known that 

nanoparticles are larger than individual atoms but are smaller than the bulk solid, making 
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materials at the nanoscale exhibit behavior intermediate between a macroscopic solid and 

an atomic system (Gosh and Pal, 2007). This allows for GNPs to have unique optical and 

electronic properties capable of being determined by their size and shape (Link and El-

Sayed, 1999b). Some of the optical properties for GNPs include surface plasmon 

resonance (SPR), surface enhanced Raman scattering (SERS), nonlinear optical 

properties (NLO), and luminescence making GNPs a robust tool (Klar et al. 1998; Averitt 

et al. 1999; Cao et al. 2002). Along with its optical properties, GNPs can be irradiated by 

a laser at a wavelength around the SPR band which can efficiently convert the photon 

energy to thermal energy (Zharov, 2006).  

1.   Surface Plasmon Resonance 

A unique optical characteristic of gold nanoparticles, which is an important topic 

within this study, is surface plasmon resonance (SPR). This phenomenon is present 

within many metal nanoparticles, including the GNPs described herein. Figure 2 

illustrates the principles behind SPR with light (Willets and Van Duyne, 2007). SPR is 

created in metallic nanoparticles from the interaction of electromagnetic radiation with 

the metal sphere. A dipole is induced, which oscillates in phase with the electric field of 

the incident electromagnetic radiation. This causes the conduction electrons in the 

particle to act like an oscillator system (Ghosh and Pal, 2007).  
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FIGURE 2 - Illustration showing a localized surface plasmon. (Willets and Van Duyne, 
2007). 

2.  Nanospheres 

Gold nanospheres (also known as gold colloids) range from less than a nanometer 

to over 100 nm in diameter and are synthesized by a controlled reduction of an aqueous 

HAuCl4 solution with a reducing agent. One of the most commonly used reducing agents 

is citrate, which can produce nearly monodisperse gold nanospheres (Turkevich et al 

1951; Frens 1973). The size of the nanospheres can be controlled by varying the 

citrate/gold ratio. Generally, a smaller amount of citrate will yield larger nanospheres. 

These particles have a strong absorbance peak in the visible range typically from 520 to 

540 nm as shown in Figure 3a (Link and El-Sayed, 1999b). The major limitations of this 

method are the low yield and the restriction of using water as the solvent (Cai et al., 

2008). 

3.  Nanorods 

In preparing gold nanorods (GNRs) there are two different approaches available: 

1) electrochemical; and, 2) seed-mediated (Yu et al., 1997; Nikoobakht and El-Sayed, 

2003). When the shape of the gold nanoparticles is changed from sphere to rod, the SPR 

spectrum splits into two peaks; a stronger, long-wavelength band in the nIR region is due 

to the longitudinal oscillation of electrons while a weaker short-wavelength band in the 
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visible region (around 520 nm) is due to the transverse electronic oscillation (Link and 

El-Sayed, 1999a). Unlike gold nanospheres, the absorption spectrum of the gold nanorods 

is very sensitive to the aspect ratio (length/width). With an increase in the nanorod aspect 

ratio, the SPR absorption peak of the longitudinal band significantly shifts redshifts to the 

red region of the spectrum (Huang et al., 2008). Figure 3b shows a TEM of GNRs and 

their spectra profile.  

4.  Nanoshells 

Oldenburg et al. (Oldenburg et al., 1999) developed a gold nanoshell structure, 

which is composed of a silica dielectric core (100–200 nm in diameter) surrounded by a 

thin layer of gold shell (5–20 nm). The nanoshells absorb and scatter strongly in the nIR 

region. The SPR of the nanoshells can be tuned by adjusting the ratio of the thickness of 

the gold shell to the diameter of the silica core. A redshift of the SPR wavelength occurs 

with a decrease in the thickness to diameter ratio (Loo et al., 2004; Huang et al. 2008). 

Mie theory uses Maxwell’s equations that can be used to estimate the nIR spectra profile 

of gold nanoshells (Mie, 1908; Gosh and Pal, 2007). These particles require a multiple 

step synthesis process, but result in a monodispersed homogenous population. Figure 3c, 

shows a TEM of gold nanoshells and their respective spectra as well. 

5.  Nanoprisms 

 A variety of synthesis routes have been used to generate triangular, plate-like 

nanostructures (also referred to as nanoprisms, nanotriangles, nanoplates, or nanodisks) 

(Millstone et al., 2009). In particular, these prisms have SPRs that are tunable throughout 

the visible and nIR regions of the spectrum by controlling the nanoprism’s edge length, 
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thickness, and tip morphology (Young et al., 2012). Gold nanoprism synthesis typically 

generates gold colloid and requires purification steps to acquire a homogenous solution 

(Young et al. 2012). Figure 3d shows a TEM image and spectra profile of gold 

nanoprisms.  
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FIGURE 3 - (a)   Top - Illustration of colloidal gold nanoparticle (Huang et al., 2008), 
Middle - TEM image of 99 nm gold nanoparticles (Link and El-Sayed, 1999b), Bottom - 

UV-vis absorption spectra of various diameter gold nanospheres (Link and El-Sayed, 
1999b).   (b)  Top - Illustration of gold nanorod (Huang et al., 2008),  Middle - TEM 
image of 50 nm gold nanorods (Link and El-Sayed, 1999a), Bottom - UV-vis optical 
density spectra of gold nanorods of various lengths (Nikoobakht and El-Sayed, 2003; 
Huang et al., 2008),   (c) Top - Illustration of silica core/gold nanoshell (Huang et al., 
2008),  Middle - TEM image of silica core/gold nanoshell particle (Loo et al., 2004), 

Bottom - UV-vis extinction spectra of  various shell thickness of silica core/gold 
nanoshell (Oldenburg et al., 1999; Huang et al. 2008),  (d)   Top-Illustration of gold 

nanoprism (Millstone et al., 2009), Middle - TEM image of gold nanoprisms (Tréguer-
Delapierre et al., 2008)  Bottom-UV-vis extinction spectra for gold nanoprisms of 

varying edge lengths (Young et al. 2012). 
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6.  Gold/Gold Sulfide Nanoparticles 

Gold/Gold nanoparticles (GGS) are synthesized by reacting sodium sulfide 

(Na2S) or sodium thiosulfate (Na2S2O3) with a gold salt, tetrachloroauric acid (HAuCl4), 

in a traditional one-step or two-step method. Below, Eq. 1 and 2 shows the reaction for 

both Na2S and Na2S2O3 respectively (Averitt, Sarkar, and Halas, 1997; Schwartzberg, 

2007; Patel, 2012). 

 

 

HAuCl4*4H2O + Na2S*9H2O = Au2S + Au + Au2S/Au (nanoshell) + S+                      (1) 

 

 

HAuCl4*3H2O + Na2S2O3*5H2O = Au2S + Au + Au2S/Au (nanoshell) + S+ + H+ +     (2) 

 SO4
2- + NaCl + SO3

2- + S2O6
2- + Cl- + Na+  

 

 

The advantage of these particles is their ability to be synthesized without the 

assistance of additional templates, capping reagents, or seeds in addition to having a 

strong tunable SPR absorption peak in the nIR range (Zhang et al., 2012). These self-

assembling particles require one or two steps and can be synthesized in less than an hour. 

This synthesis process also has associated issues, mainly the control over the formation of 

the particle structure and a high concentration of small colloidal gold (<10 nm 

nanospheres) formed as a result of the self-assembly process (Schwartzberg et al. 2007). 

The traditional one-step reaction calls for the mixing of 2mM HAuCl4 with 1mM Na2S 
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solution at a volumetric ratio of 1:2, while stirring at room temperature (Diao and Chen, 

2006). For the two-step method, Na2S is mixed with HAuCl4 for a few minutes and then 

an additional amount of Na2S is added (Zhou, Honma, and Komiyama, 1994). The two-

step becomes more difficult to repeat with increasing the total volume of the reaction. 

This study will focus on the one-step method over the two-step to ensure repeatability. 

Both methods produce a heterogeneous mixture of nanoparticles containing gold colloid, 

spheroids, triangular plates, and rods. Mie theory cannot be applied to these particles 

since they are not homogenous spherical particles (Gosh and Pal, 2007). The SPR peak 

can be tuned to a certain wavelength by adjusting the molar ratio of Na2S or Na2S2O3 and 

HAuCl4 (Zhou, Honma, and Komiyama, 1994; Zhang et al., 2012; Diao and Chen, 2006; 

Schwartzberg et al. 2007). Fig. 4 shows the tunability of the SPR peak in a one-step 

process by varying the molar ratio (Zhang et al., 2012). 

 

FIGURE 4 - Optical spectra of GGS nanoparticles from a traditional one step method 
with different molar ratios, Na2S2O3:HAuCl4. (Zhang et al., 2012) 
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 The traditional one-step synthesis process forms a high concentration of small 

colloidal gold particles (<10 nm) as evidenced by the 530 nm peak absorption and the 

nIR peak varies depending on the molar ratio. Fig. 5 shows the UV-vis-nIR spectra of 

GGS manufactured via traditional one-step synthesis (black) and purified (blue) (Zhang 

et al., 2012). After purification from centrifugation, the resulting solution’s nIR SPR 

redshifts and reduces the colloidal gold as illustrated by the reduction in peak absorbance 

at 530 nm (Figure 5 blue). The removal of the small colloidal gold was not only evident 

from the 530 nm absorbance peak drop in Fig. 5, but can also be seen from transmission 

electron microscopy (TEM) image shown in Figs. 6 and 7 (Patel, 2012; Zhang et al., 

2012).     

 

FIGURE 5 - UV–vis-nIR spectra of GGS nanoparticles shown before and after 
purification via centrifugation. The sample is separated at 1,000×g for 20min. (Zhang et 

al., 2012) 
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FIGURE 6 - TEM image of gold/gold sulfide nanoparticles made with traditional one 
step synthesis. (Patel, 2012) 
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FIGURE 7 - TEM image of GGS nanoparticles after centrifugation to remove gold 
colloid. (Zhang et al., 2012) 
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7.  Diasynth 

 The Diasynth process was described by Patel (Patel et al., 2012) as an exchange 

of ions and GNPs which occurs between the GGS solution and surrounding deionized 

(DI) water via a cellulose membrane resulting in an equilibrium shift that changes the 

SPR nIR peak position. From Eq. (2), there are many ions present from the reaction that 

can affect the growth of the GGS particles, thereby altering the SPR peak equilibrium 

shift. Patel (Patel et al., 2012) tested different molecular weight cutoffs (MWCO) and 

various molar ratios of reactants to determine the optimal conditions for a high 

absorbance peak centered on 820 nm, while minimizing the colloidal gold concentration 

(530 nm peak). It was seen that different MWCOs would alter the equilibrium shift due to 

the different rates of diffusion for the exchange ions and GNPs. Fig. 8 shows the change 

in colors in the traditional synthesis (A-D) vs. Diasynth (E-H) over an hour time span. 

 

FIGURE 8 - Image of Non-Dialysis synthesis and dialyzed synthesis over 1hr time 
period: (A) 30sec, (B) 5 mins, (C) 30mins, (D) 1hr. Image of Diaylzed sample over 1hr 

time period: (E) 30sec, (F) 5 mins, (G) 30mins, (H) 1hr. (Patel, 2012) 
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FIGURE 9 - TEM images of traditional synthesis (A-C) and Diasynth (D-F).            
(Patel, 2012) 

 
 The Diasynth process (Fig. 9) was shown to be just as effective at removing 

colloidal gold as the centrifugation method of the traditional GGS synthesis process (Fig. 

7). From Patel, it was seen that the Diasynth is a high yield synthesis process for GGS 

nanoparticles.   

8.  Cellulose  

  Porous materials have been used as nanoreactors for metal nanoparticle synthesis.  

Specifically Ag, Au, Pt, and P nanoparticles have been synthesized in porous cellulose 

(He, Kunitake, and Nakao, 2003).  He et al. (2003) submerged porous cellulose fibers in 

10mM AuCl3, then added NaBH4 (reducing agent) and saw the clear membrane change 

color to a light pink. Fig. 10 shows a TEM image and size distribution histogram from 

their findings.   
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FIGURE 10 - (a)  TEM image and (b)  histogram of Au nanoparticles in cellulose fiber. 
(He, Kunitake, and Nakao, 2003) 

 
The metal ions are impregnated into and reduced onto the cellulose fibers in the 

presence of a reducing agent. This method can be employed without the addition of a 

reducing agent, because adsorption of metal ions on the cellulose fibers may be reduced 

to metal nanoparticles by organic moieties such as terminal aldehyde or carboxylic 

groups. The structure and the presence of ether and hydroxyl groups in cellulose fibers 

create an effective nanoreactor for synthesis of the metal nanoparticles. The ether oxygen 

and the hydroxyl group not only anchor metal ions tightly onto cellulose fibers via ion-

dipole interactions, but also stabilize metal nanoparticles by strong bonding interaction 

with their surface interactions (He, Kunitake, and Nakao, 2003; Pinto and Neves, 2012, 

77).  
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II.  MATERIALS AND METHODS 

A. Instrumentation 

UV absorption spectrum was measured on all samples at a 10x dilution in water 

with the Varian Cary 50 BIO UV Visible Spectrometer. The size and zeta potential 

measurements were measured at a 10x dilution in DI water on the Malvern Zetasizer 

Nano ZS90. It is important to note that the size measured is the hydrodynamic radius with 

the Malvern Zetasizer. The conductance measurements were performed with the 

Brookhaven Zeta Pals instrument. The scanning tunneling electron microscopy (STEM) 

was performed on the Zeiss SUPRA FE-SEM. The statistical analysis was performed 

with Minitab software. Image j software was used to measure the size and counts for the 

size distribution analysis. 

B. Reactants 

 The gold salt used for all experiments was hydrogen tetrachloroaurate(III) 

trihydrate (HAuCl4*3H2O) purchased from Alfa Aesar.  A 2mM solution is prepared with 

DI water and protected from light with aluminum foil. The sulfur used in all experiments 

was sodium thiosulfate pentahydrate (Na2S2O3*5H2O) purchased from Sigma-Aldrich.  

C. Cellulose Membrane 

The cellulose dialysis tubing was stored at 4oC and pretreated by soaking in 2L of 

DI water for 4 days while changing the water every day to remove preservatives 

(glycerol, sodium azide, and/or sulfur in trace amounts). Once hydrated, the membrane 

was kept in 2L of DI water. Before use, the membrane was cut to desired lengths and 

rinsed thoroughly inside and out with running DI for 3-5 minutes. The 8 (FW 50mm; 
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Spectra/Por 7), 15 (FW 45mm; Spectra/Por 7), and 12-14kDa (FW 120mm; Spectra/Por 

2) molecular weight cutoff (MWCO) cellulose membranes were purchased from 

Spectrum Labs and 12kDa (FW 43 and 76mm) from Sigma-Aldrich.  

D. Traditional Synthesis 

 For the traditional synthesis procedure, 3mM Na2S2O3 was added to 2mM 

HAuCl4. The molar ratio of the two reactants controlled the size and placement of the 

SPR nIR peak. Traditional synthesis protocol consisted of measuring 150ml of 2mM 

HAuCl4 into a 250ml polystyrene 75cm2 canted neck flask (Corning), then adding 62ml 

of 3mM Na2S2O3 into the polystyrene flask, agitating for 1 minute and letting sit for 45 

minutes. The solution was aliquoted into eight 50ml centrifuge test tubes (VWR) and 

centrifuged three times at 1,000g for 20min, collecting the pellet each time to purify 

sample. 

E. Diasynth 

This method used the dialyzing role of the dialysis membrane to exchange ions 

and small gold nanoparticles during synthesis with the surrounding water. The protocol 

for this process requires a 177-203 mm length of 12kDa MWCO cellulose dialysis tubing 

(Flat Width 43mm, Sigma Aldrich). One end of the dialysis tubing was clipped with a 

weighted dialysis clip and 44ml of 2mM HAuCl4 was added into the membrane through 

the open end of the dialysis tubing. 10ml of 3mM Na2S2O3 was added into the solution 

via mechanical pipette with continued mixing of the solution by bubble mixing through 

the mechanical pipette for 10 seconds. Subsequently, the other end of the membrane was 

clipped and air was removed from the tubing. The tubing was placed in 7L of 25oC DI 
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water with a stir bar and allowed to react for 60 min. After synthesis, the GGS 

nanoparticle solution was stored in 50ml test tubes at room temperature.     

F. Reactor 

To ensure reproducibility of the GGS nanoparticles and scale up of the synthesis 

volume, a reactor was constructed out of glass. Glass was chosen because it does not 

react readily with gold. The reactor consisted of a 61cm tall cylinder with an inner 

diameter of 10cm (Fig. 11a). An inlet and outlet was at the top and bottom, respectively, 

of the reactor for DI water circulation. A glass membrane frame was made 37cm high 

with a 7cm outer diameter to hold open the membrane whereas still maximizing the 

surface area for diffusion, shown in Fig. 11b. The top of the glass membrane frame had a 

diameter of 13cm so the rest of the frame could be inserted into the reactor while held 

suspended at the top. A glass stir rod was made for the length of the membrane frame for 

stirring the solution. 

The membrane was placed over top of the membrane frame, tied in a knot at the 

bottom and zip-tied at the top to secure the membrane overtop the frame. Once the 

membrane was secured, it is placed within the reactor and then circulation of DI water 

can begun (Neslab RTE 221 refrigerated bath/circulator). The two reactants were then 

added into the membrane with the stir rod for mixing (Heidolph RZR 2021).  



23 

 

 

FIGURE 11 – (a) Glass reactor that has inlet and outlet at top and bottom and      
(b) glass membrane frame that is placed inside of reactor. 

 

G. Experiments 

1. Experiment A 

 To verify that ions and small particles were being dialyzed out of solution during 

the Diasynth process, a conductance experiment was performed on the dialysate. A 



24 

 

sample was made with the Diasynth process: 8ml of 3mM Na2S2O3 was added to 44ml of 

2mM  HAuCl4  inside a 152mm long 12kDa cellulose membrane (76mm Flat Width) and 

placed in 7L of 25oC  DI water inside a square plastic  8L tub with constant stirring. 

1.8ml of dialysate was collected between half the distance from the cellulose membrane 

to container wall. The conductance was measured at 0, 1, 10, 20, 30, 40, 50, and 60 

minute time intervals. This same experiment was performed with 52ml of DI water 

within the membrane as a control.  

2. Experiment B 

 This experiment used the same principles as Patel to perform the Diasynth process 

on a total volume batch of 216ml. This was the largest volume synthesis, to date: 40ml of 

3mM Na2S2O3 was added to 176ml of 2mM HAuCl4 inside a 12kDa cellulose membrane 

(43mm Flat Width) and placed in 55L of DI water inside a plastic 113L tub with constant 

stirring with a magnetic stir bar. The dialysis clips used were weighted on both ends. A 

magnet was used on the outside of the tub to hold the membrane horizontally across for a 

uniform distribution of solution across the membrane as seen in Fig. 12. Two different 

SA/Vol ratios were used to test their effect on the SPR nIR peak: 150 (375mm; sample 

M7) and 240mm2/ml (600mm; sample M8).  
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FIGURE 12 – Schematic depicting the Diasynth setup for a 216ml volume batch. 

 

3. Experiment C 

This experiment was the first time the new reactor configuration was used and a 

reaction synthesis volume of 746ml was produced. A 45cm long 12-14kDa (145mm2/ml; 

120mm Flat Width) membrane was placed overtop the glass membrane frame and tied 

above and below with zip ties. 608ml of 2mM HAuCl4 was mixed with 138ml of 3mM 

Na2S2O3 simultaneously while pouring into the membrane. Stirring occurred at 100rpm. 

Since the SA/Vol ratio was low, it was expected that a redshift would occur on the SPR 

absorption. It was theorized that constant stirring would increase the exchange of ions to 

cause a blue shift, offsetting the redshift caused from low SA/Vol. Constant DI water 

circulation occurred at a rate of 15L/min. The reaction lasted for 60min before storing in 

a 1 L glass bottle and the UV-spectrum absorption measured.  

 

 



26 

 

4. Experiment D 

 This experiment was performed to determine if either of the reactants reacted with 

the cellulose membrane during the Diasyth process. 20 ml of 3 mM Na2S2O3 was placed 

inside a 5 cm long 8, 12, and 15 kDa membrane in 7 L of DI water for 2 hours. The same 

procedure was followed for 32 ml of 2 mM HAuCl4 poured inside the membranes under 

the same conditions.  

5. Experiment E 

 This experiment was performed to determine the effects of the cellulose 

membrane on the SPR nIR peak. 32.6ml of 2mM HAuCl4 was placed into 50ml 

centrifuge test tube. The cellulose membrane was cut to the desired length that 

corresponded to surface area to volume (SA/Vol) ratio and rinsed thoroughly with DI 

water. It is then placed inside the test tube along with the HAuCl4 solution. 7.4ml of 3mM 

Na2S2O3 was added to the solution via mechanical pipette and bubble mixed for 10 

seconds at room temperature. The cap of the test tube was screwed on and the test tube 

was rocked back and forth by hand for 1 min. The sample was allowed to react at room 

temperature for 60 min before measuring the sample’s UV-spectrum absorption. An n=3 

was performed for each SA/Vol ratio: 0, 320, 650, and 1075mm2/ml. An analysis of 

variance (ANOVA) was performed to confirm the significance.  

6. Experiment F 

 An experiment was performed to determine the effects of a dry Diasynth (no DI 

water) method on the equilibrium shift of SPR nIR peak. The cellulose membrane was 

used as the reaction vessel with no DI water present for dialysis.  40ml of 3mM Na2S2O3 
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was added to 176ml of 2mM  HAuCl4  inside a 508mm (360mm2/ml; sample M17) and 

250mm long (175mm2/ml; sample M18) 12kDa cellulose membrane (76mm Flat Width) 

and placed flat inside a plastic 113L tub. The reaction lasted for 60min at room 

temperature.  

7. Experiment G 

 This experiment was performed to determine the effects of temperature and 

SA/Vol of the cellulose membrane to GGS solution has on the SPR nIR peak during 

Diasynth. 7.4ml of 3mM Na2S2O3 was added to 32.6ml of 2mM  HAuCl4  inside a 100 

(220mm2/ml), 150 (340mm2/ml), or 200mm long (470mm2/ml) 12kDa cellulose 

membrane (43mm Flat Width) and placed in 2L of DI water at 25, 37, or 50oC. An n=3 

was performed for an ANOVA. Measurements were taken at 10min intervals to 

determine the reaction equilibrium kinetics. The GGS nanoparticle solution for each 

sample was stored in 50ml centrifuge test tubes at room temperature and size and UV-

spectrum absorption was measured 14 days after the reaction to test the stability of the 

particles.  

8. Experiment H 

Experiment H was similar to Experiment E, except the Diasnyth process was 

performed in the absence of DI water and different temperatures were investigated. This 

experiment was performed to determine the effects that the cellulose membrane has on 

the GGS SPR nIR peak during Diasynth when temperature and SA/Vol ratio were varied. 

7.4ml of 3mM Na2S2O3 was added to 32.6ml of 2mM  HAuCl4  inside a 100 

(220mm2/ml), 150 (340mm2/ml), and 200mm long (470mm2/ml) 12 kDa cellulose 
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membrane (43mm Flat Width) and placed in 2L of DI water at 25, 50, and 100oC. An n=3 

was performed for an ANOVA. UV-spectrum absorption measurements were taken at 

10min intervals to determine the reaction equilibrium kinetics. The GGS nanoparticle 

solution for each sample was stored in 50ml centrifuge test tubes at room temperature and 

the size and UV-spectrum absorption was measured 14 days after the reaction to test the 

stability of the particles. 

9. Experiment I 

 For Experiment I, scanning tunneling electron microcopy (STEM) will be 

performed on two different samples that have a SPR nIR peak near 800 and 900nm. The 

size of the samples will be measured and counted with Imagej software manually. This 

experiment will determine the size distribution between the two samples.  
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III.  RESULTS AND DISCUSSION 

A. Experiment A 

 

FIGURE  13 - Conductance vs. time for GGS sample dialysate (blue) and DI water 
control (red). 

 
TABLE I 

 
CONDUCTANCE OVER TIME 

 

Sample Control 
min µS min µS 
0 2 0 2 
1 8 1 2 
10 14 10 2 
20 19 20 2 
30 23 30 2 
40 27 40 2 
50 31 50 2 
60 32 60 2 
70 33 70 2 

 

The conductance over time for the GGS sample shows in Fig. 13 and Table I, that 

there are ions and/or gold nanoparticles within the dialysate. The increase in conductance 
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over time in the dialysate is evidence that there is diffusion through the membrane. The 

control (DI water) shows that no change in conductance occurs over time, proving that 

the cellulose membrane or the dialysis clips are not attributing to the conductance 

measurements. The conductance measurements increase steadily until 50 min when it 

began to plateau at 31µS which marks the reaction reaching the equilibrium point.  

B. Experiment B 

 The GGS solution was collected after the reaction (60min) and a UV-spectra 

profile was measured at 10x dilution in water. The results are shown below in Table II 

and Fig. 14. This experiment shows promising results for the capability of scaling up the 

reaction volume during synthesis while keeping the tunability of the SPR nIR peak 

constant by altering the SA/Vol ratio. This represents the largest synthesis, to date since 

Patel performed his Diasynth process under the same conditions, but with a maximum 

volume of 50ml. The blue shift of the SPR nIR due to increasing the SA/Vol ratio proves 

the hypothesis. This blueshift could be due to an increased diffusion rate or an interaction 

between the GGS and the cellulose membrane at the higher SA/Vol ratios.  

TABLE II 

EXPERIMENT B GGS SAMPLE PROPERTIES 

SA/Vol 
(mm2/ml) 

nIR Peak 
(nm) 

Optical 
Density 

Size (nm) Zeta Potential 
(mV) 

150 920 8.6 84.27 -28.25 

240 810 7.1 63.21 -29.9 
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FIGURE 14 – The UV-spectra of gold/gold sulfide nanoparticles synthesized with 
Diasynth with a total volume of 216ml. Measured with two different SA/Vol ratios: 

150mm2/ml (blue curve) and 240mm2/ml (red curve). 

C. Experiment C 

The GGS solution was collected after the reaction (60min) and a UV-spectra 

profile was measured at 10x dilution in water. The results are shown below in Table III 

and Fig. 15. The stirring does not shift the SPR nIR peak as originally thought. We 

theorized that the stirring would increase exchange of ions and/or small gold 

nanoparticles out of solution and into the DI water space, which would then cause a blue 

shift in SPR nIR peak equilibrium to accommodate for the decrease in the SA/Vol ratio. 

The Day 0 SPR nIR peak is above 1100 nm and shifts towards the blue spectrum (940 

nm) by Day 3, which the shift in equilibrium is not reached on Day 0, but has reached it 

by Day 3. Another measurement was performed at Day 5 with no significant difference 

from Day 3. The SPR nIR peak on Day 3 is broad indicating a varied size distribution 

from poor particle formation which could be the result of active mixing instead of passive 

diffusion for ion exchange. Another possibility would be that the low SA/Vol ratio 
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(145mm2/ml) had a resdshift on the SPR absorption peak not because of poor ion 

exchange, but from the decrease in cellulose present during the reaction.  

TABLE III 

EXPERIMENT C GGS SAMPLE PROPERTIES 

Day nIR Peak 
(nm) 

Optical 
Density 

DLS 
Size (nm) 

Zeta Potential 
(mV) 

0 >1100 7.0 NA NA 

3 940 4.5 63.52 NA 

 

 

FIGURE 15 – The UV-spectra of gold/gold sulfide nanoparticles synthesized within the 
reactor with a total volume of 746ml. Measured at Day 0 (blue curve) and Day 3 (red 

curve). 

D. Experiment D 

 The Na2S2O3 shows to have no effect on the change in color on the cellulose 

membrane for 8, 12, and 15kDa MWCO. The HAuCl4 did show signs of reacting with the 

cellulose membrane as shown in Fig. 16. The 12kDa membrane seems to have had a 
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stronger reaction with HAuCl4 than the 8 or 15kDa membranes from the deeper 

pink/purple color. This is mostly likely due to trace amounts of sulfur compounds present 

on the 12kDa membrane acting as a reducing agent. The other two membranes are 

purchased from another vendor and do not contain the sulfur compounds. This 

experiment does show visually some interaction between HAuCl4 and the cellulose 

membrane. The 8kDa membrane displays a light pink, 12kDa membrane displays a deep 

pink/purple, and the 15kDa membrane displays a pink/blue color. These results are 

similar to the findings of He et al. (He, Kunitake, and Nakao, 2003). The cellulose 

membrane uptakes the gold ions and entraps them within the cellulose fibers. In He’s 

study, the gold ions are being reduced and retained. Scanning electron microscopy (SEM) 

is needed to confirm that gold nanoparticles are being reduced on the cellulose fibers.  

 

FIGURE 16 – Image of 8 (left), 12 (middle), and 15kDa (right) cellulose membranes in 
the presence of HAuCl4  

E. Experiment: E 

This experiment shows the effect of the SA/Vol ratio of the cellulose membrane 

to GGS nanoparticle solution has on SPR nIR peak. As shown in Fig. 17 and 18, the 
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higher the SA/Vol ratio, the more the nIR peak has a blue shift. The trend shows an 

asymptotic decay that approaching the wavelength of 800nm. The error bars are the 

standard deviation for an n=3 for each data point. Since there is no dialysis occurring in 

this experiment, the equilibrium shift seen must be from the reaction with the cellulose 

membrane. The decrease in the 530 nm absorption peak from the traditional synthesis 

process may be from the cellulose membrane retaining the gold colloid. Table IV 

summarizes the results of the experiment. 

 

FIGURE 17 - SA/Vol ratio of cellulose membrane to nanoparticle solution vs. SPR nIR 
peak position for traditional synthesis in 50ml test tube reacted in presence of cellulose 

membrane.  
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FIGURE 18 – The UV-spectra of gold/gold sulfide nanoparticles synthesized with 
traditional method in 50ml test tube in the presence of cellulose membrane. Varying 

SA/Vol ratios of cellulose to nanoparticles solution were used: 0 (blue), 320 (red), 650 
(green), and 1075mm2/ml (purple). 

 

TABLE IV 

EXPERIMENT E GGS SAMPLE PROPERTIES 

 Sample NIR Peak DLS Zeta 

(mV) 

Temp 

(C) 

 SA/Vol 

(mm2/ml) 

Wavelength Abs OD Size 

(nm) 

  

Avg 0 1100.00 0.73 7.30 63.42 -32.47 25.00 

Std  0.00 0.03 0.26 5.20 3.36  

Avg 340 927.00 0.77 7.73 69.53 -43.37 25.00 

Std  1.73 0.02 0.21 1.40 16.11  

Avg 650 843.33 0.62 6.18 66.40 -34.73 25.00 

Std  7.09 0.07 0.68 3.27 2.80  

Avg 1075 803.67 0.52 5.20 65.82 -32.33 25.00 

Std  5.86 0.03 0.30 1.41 5.80  
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An ANOVA was performed in mintab along with a Tukey test. The SA/Vol ratio 

had a   P < 0.000 and a R2 value of 99.89%. The Tukey test shows that each of the 

SA/Vol picked were significantly different from one another. The residual plots are 

acceptable as the histogram and normal probability plot are centered around zero. The 

0mm2ml SPR nIR peak cannot be accurately measured, each run was assigned an 

estimated 1100 nm giving no calculated variance. This data proves that the hypothesis of 

increasing SA/Vol ratio of cellulose membrane to nanoparticles causes a blueshift of the 

SPR peak is correct.  

 
F. Experiment F 

 
This experiment proves that dialysis of ions and/or gold nanoparticles does not 

affect the SPR nIR peak as much as previously thought. The interaction between 

reactants and cellulose membrane is what drives the equilibrium shift of the SPR nIR 

peak. The SA/Vol still has significant effect on the equilibrium shift of the SPR 

absorption peak as seen in Fig. 19. The reduction of colloidal gold concentration is shown 

from the decrease at the 530nm absorption peak as compared to the tradition synthesis 

from the cellulose membrane retaining the gold nanoparticles. This alters the 

concentration of gold ions present during the reaction which causes a shift in SPR nIR 

peak. This experiment backup the hypothesis that increases in the SA/Vol ratio of 

cellulose to nanoparticle causes a blueshift on the SPR nIR peak. This dry Diasynth 

(360mm2/ml) method is comparable to Experiment B’s Diasynth (240mm2/ml), as they 

have close SPR nIR peaks, but different SA/Vol ratios meaning that the exchange of ions 

does effect the peak as well (Fig. 20). Table V summarizes the results. 
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FIGURE 19 – The UV-spectra of gold/gold sulfide nanoparticles synthesized with dry 
Diasynth at 360mm2/ml (blue) and 175mm2/ml (red) SA/Vol ratios of cellulose to GGS 

solution with a total volume of 216ml.  

 
 

FIGURE 20 – The UV-spectra of gold/gold sulfide nanoparticles synthesized with dry 
Diasynth (blue) vs. Diasynth (red) method from Experiment B with a total volume of 

216ml. Measured with a SA/Vol ratio of 360mm2/ml (blue curve) and 240mm2/ml (red 
curve). 
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TABLE V 

EXPERIMENT F GGS SAMPLE PROPERTIES 

Method SA/Vol 
(mm2/ml) 

nIR Peak 
(nm) 

Optical 
Density 

Size (nm) Zeta Potential 
(mV) 

Dry Diasynth 175 970 8.4 54.97 -38.7 

Dry Diasynth 360 817 8.0 62.47 -38.40 

Diasynth 240 810 7.1 63.21 -29.9 

 

G. Experiment G 

This experiment gives information about the SA/Vol ratio of cellulose membrane 

to GGS nanoparticle solution and temperature effects on the SPR peak. There is a 

relationship with temperature and the SPR peak equilibrium shift shown in Fig. 21. The 

ANOVA data in Appendix I show that SA/Vol ratio, temperature, and the interaction 

between the two all have a significant effect on the SPR absorption peak with an R2 value 

of 98.03%. The Tukey test showed that 340 and 470mm2/ml were not significantly 

different from each other for temperatures at 25 and 37oC. This data proves the 

hypothesis that the increase in SA/Vol of cellulose membrane to nanoparticles creates a 

blueshift for the SPR nIR peak. The 1st corollary was also proved here, showing that an 

increase in temperature causes a blueshift for the SPR nIR peak. 
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FIGURE 21 – Temperature vs. SPR nIR peak placement for 220, 340, and 470mm2/ml. 
n=3 

 
To determine the time it takes for the reaction to reach equilibrium, every 10 

minutes a sample’s UV-spectrum absorption was measured to determine its SPR peak 

placement and the time that it takes to reach equilibrium. Fig. 22 shows an example of the 

UV spectra of a 220mm2/ml at 37oC sample over time. Fig. 23 displays the time at which 

the equilibrium point is reached (20 min). Fig 24 proves the 2nd and 3rd collieries that an 

increase in SA/Vol ratio and/or temperature reduces the equilibrium shift time of the 

reaction, respectively.  
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FIGURE 22 – An example showing the equilibrium shift during a Diasynth reaction 

 
 

 
FIGURE 23 – An example showing the equilibrium point for a Diasynth sample  
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FIGURE 24 – The time (min) of that it takes to reach equilibrium vs Temperature (oC) 
for 220, 340, and 470 mm2/ml.  

 All of the samples’ UV absorption spectra were measured at Day 0 and 14 (Fig. 

25). The samples subjected to the Diasynth process seem to remain stable without being 

capped or protected. This proves the 4th corollary with Experiment H’s stability results 

showing that an exchange of ions in this experiment improves stability over time wheras 

Experiment H has no ion exchange reducing the stability over time. The sample at 50oC 

with a 470mm2/ml was the only sample that was unstable over 14 days and is most likely 

due to the large SA/Vol ratio at the highest temperature point causes a fast reaction that 

was seen under 5 min This reaction may be too fast for stable particle formation.   
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FIGURE 25 – Stability of the GGS nanoparticles after 14 days 

H. Experiment H 

This experiment shows the SA/Vol ratio of cellulose membrane to GGS 

nanoparticle solution and temperature effects on the SPR peak for dry Diasynth (no DI 

water). There is not a linear relationship with temperature and the SPR peak equilibrium 

shifts like in Experiment G shown in Fig. 26. This non-linearity is most likely from the 

evaporation of water from the GGS solution which causes the GGS sample to concentrate 

while reacting. The ANOVA data in Appendix I shows that SA/Vol ratio, temperature, 

and the interaction between the two all have a significant effect on the SPR absorption 

peak with an R2 value of 97.53%. Similar to Experiment G, this experiment backups the 

hypothesis and 1st corollary that an increase in SA/Vol ratio of cellulose membrane to 

nanoparticles and increase in temperature has a blueshift on the SPR nIR peak, 

respectively.   
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FIGURE 26 - Temperature vs. SPR nIR peak placement for 220, 340, and 470mm2/ml for 

dry Diasynth. n=3 
 

To determine the time it takes for the reaction to reach equilibrium, a sample was 

taken every 10 minutes to determine its SPR peak placement and the time that it takes to 

reach equilibrium. Fig. 22 from Experiment G shows an example of the UV spectra of a 

220mm2/ml at 37oC sample over time. Fig. 23 displays the time at which the equilibrium 

point is reached (20 min). Fig 27 shows that an increase in SA/Vol ratio and/or 

temperature reduces the equilibrium shift time. The temperature most likely increases the 

number of collisions during the reaction, whereas it is unclear why SA/Vol reduces 

reaction time. Again, similar to Experiment G, the results proved the 2nd and 3rd 

corollaries where an increase in SA/Vol and temperature will decrease the reaction time, 
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respectively. 220 and 340mm2/ml seem to have the same the same reaction time to reach 

equilibrium, however measurements at smaller time intervals would be needed to verify. 

 

 

FIGURE 27 - Time (min) of equilibrium vs Temperature (oC) for 220, 340, and 
470 mm2/ml. 

All of the samples’ UV absorption spectra was measured at Day 0 and 14. The 

samples that were subjected to the dry Diasynth process become unstable and aggregate 

over 14 days. Fig. 28 also shows the stability of the particles. This experiment confirms 

the 4th corollary with the stability results from Experiment G, where this experiment has 

no exchange of ions out of the GGS solution. The GGS nanoparticles remain stable in 

solution by not coming into contact with one another from the repulsion forces due to 

their negative surface charge. Ions can mask the surface charge of the GGS nanoparticles 

allowing for the repulsion forces become reduced and come into contact with other 

nanoparticles reacting with one another forming larger aggregates. This continues until 

the entire solution has aggregated.   
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FIGURE 28 – Stability of the GGS nanoparticles after 14 days 

I. Experiment I 

 Two different GGS samples were imaged using STEM with the Zeiss SUPRA 

FE-SEM. The two samples imaged have a nIR absorption peak close to 800 and 900 nm 

shown in Fig. 29. Image j software was used manually count and measure the size 

distribution data as shown in Fig. 30. 
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FIGURE 29 - The UV-spectra of gold/gold sulfide nanoparticles synthesized 
close to 800nm (blue) and 900nm (red). 

  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 30 – Histogram of size distribution for two samples 
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TABLE VI 

GGS SIZE DISTRUBUTION DATA 

800nm 

 

 

 

 

900nm 

 

 

 

 

The average size in Table VI refers to diameter, edge length, and length for 

nanoshells, nanotriangles, and nanorods respectively. The images used for the histogram 

were Figs. 38-40 for 800 and Figs. 41-43 for 900nm in Appendix III. The edge length of 

the nanotriangles increase in size from the 800 to 900 nm sample, which follows the same 

trend with findings by Young et al. (Young et al., 2012). The nanoshells also increase in 

size from the 800nm sample to the 900nm sample. Mie theory needs to be performed to 

determine the core and shell dimensions. 

IV.  CONCLUSION 

It was demonstrated in this paper that ions are diffusing out of the cellulose 

membrane during the Diasynth process. These ions do not have a significant effect on the 

equilibrium shift of the surface plasmon absorption as previously thought. However, 
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these ions do affect the stability of non-coated GGS nanoparticles. The GGS particles that 

dialyzed out of the ions remained stable for up to 2 weeks whereas the particles which 

had no dialysis aggregated. It was discovered that the cellulose membrane retains the 

small gold colloid (<10 nm) that was problematic before with the traditional synthesis 

that required purification.  

The Diasynth method has shown to be able to increase in synthesis volume from 

50ml (Patel, 2012) to 216ml. Not shown in this paper, but the volume has been scaled up 

even further to 500ml with control over SPR peak placement. Further volume increase 

can be performed with more precise control over the reaction by adjusting molar ratio, 

temperature, and/or surface area to volume ratio of cellulose membrane to gold/gold-

sulfide nanoparticles. The SA/Vol ratio and temperature were found to significantly 

affect the SPR equilibrium shift. The temperature SA/Vol ratio not only helps to control 

the surface plasmon resonance peak, but also reduce the time the reaction takes.  

V. RECOMMENDATIONS 

There is still room for potential expansion upon this synthesis process. Using 

Na2S with the Diasynth method (wet or dry) could give better stable GGS nanoparticles. 

From Eq. 1, there are fewer ions associated with this reaction which could yield a more 

stable GGS solution as well as be performed with the dry Diasynth method. Mie theory 

calculations can be performed to determine the nanoshell thickness from Experiment I’s 

data. Better initial mixing techniques of the two reactants should be investigated, as this 

now will begin to affect the volumetric scale up process due to initial colloidal gold 
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formation. The largest reaction thus far has been 500 ml which had an nIR peak at 820 

nm.  An important future work would be to increase the volume of the reaction to 1 L. 
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APPENDIX I 

 

Experiment E 

 
 
Minitab 
General Linear Model: Wavelength versus SA/Vol  
 
Factor  Type   Levels  Values 
SA/Vol  fixed       4  0.0, 320.0, 650.0, 1075.0 
 
 
Analysis of Variance for Wavelength, using Adjusted SS for Tests 
 
Source  DF  Seq SS  Adj SS  Adj MS        F      P 
SA/Vol   3  155554  155554   51851  2365.84  0.000 
Error    8     175     175      22 
Total   11  155729 
 
 
S = 4.68152   R-Sq = 99.89%   R-Sq(adj) = 99.85% 
 
 
Unusual Observations for Wavelength 
 
Obs  Wavelength     Fit  SE Fit  Residual  St Resid 
  8      851.00  843.33    2.70      7.67      2.01 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
SA/Vol  N    Mean  Grouping 
   0.0  3  1100.0  A 
 320.0  3   927.0    B 
 650.0  3   843.3      C 
1075.0  3   803.7        D 
 
Means that do not share a letter are significantly different. 
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Residual Plots for Wavelength 
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FIGURE 31 – Residual Plots for Experiment E 
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Experiment G 

 

MINITAB 
General Linear Model: wavelength versus Temp (C), SA (mm2/ml)  
 
Factor       Type   Levels  Values 
Temp (C)     fixed       3  25, 37, 50 
SA (mm2/ml)  fixed       3  220, 340, 470 
 
 
Analysis of Variance for wavelength, using Adjusted SS for Tests 
 
Source                DF  Seq SS  Adj SS  Adj MS       F      P 
Temp (C)               2   69207   69207   34603  302.75  0.000 
SA (mm2/ml)            2   27082   27082   13541  118.47  0.000 
Temp (C)*SA (mm2/ml)   4    6198    6198    1550   13.56  0.000 
Error                 18    2057    2057     114 
Total                 26  104545 
 
 
S = 10.6909   R-Sq = 98.03%   R-Sq(adj) = 97.16% 
 
 
Unusual Observations for wavelength 
 
Obs  wavelength      Fit  SE Fit  Residual  St Resid 
  4     812.000  830.667   6.172   -18.667     -2.14 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Temp 
(C)   N   Mean  Grouping 
25    9  835.4  A 
37    9  775.2    B 
50    9  711.4      C 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
SA 
(mm2/ml)  N   Mean  Grouping 
220       9  818.8  A 
340       9  753.8    B 
470       9  749.6    B 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Temp  SA 
(C)   (mm2/ml)  N   Mean  Grouping 
25    220       3  863.6  A 
37    220       3  830.7    B 
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25    470       3  828.0    B 
25    340       3  814.7    B 
50    220       3  762.0      C 
37    470       3  758.3      C 
37    340       3  736.7      C D 
50    340       3  710.0        D 
50    470       3  662.3          E 
 
Means that do not share a letter are significantly different. 
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FIGURE 32 – Residual plots for Experiment G 
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FIGURE 33 –Main Effects plots for Experiment G 
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FIGURE 34 – Interaction plot for Experiment G 
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Experiment H 
 

General Linear Model: Wavelength versus Temp, SA/Vol  
 
Factor  Type   Levels  Values 
Temp    fixed       3  25, 50, 100 
SA/Vol  fixed       3  220, 340, 470 
 
 
Analysis of Variance for Wavelength, using Adjusted SS for Tests 
 
Source       DF   Seq SS   Adj SS   Adj MS       F      P 
Temp          2  52220.4  52220.4  26110.2  243.67  0.000 
SA/Vol        2  14689.9  14689.9   7344.9   68.55  0.000 
Temp*SA/Vol   4   9129.7   9129.7   2282.4   21.30  0.000 
Error        18   1928.7   1928.7    107.2 
Total        26  77968.7 
 
 
S = 10.3515   R-Sq = 97.53%   R-Sq(adj) = 96.43% 
 
 
Unusual Observations for Wavelength 
 
Obs  Wavelength      Fit  SE Fit  Residual  St Resid 
  2     817.935  800.283   5.976    17.652      2.09 R 
  3     782.961  800.283   5.976   -17.323     -2.05 R 
  8     923.000  901.000   5.976    22.000      2.60 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Temp  N   Mean  Grouping 
 25   9  900.2  A 
 50   9  838.5    B 
100   9  792.9      C 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
SA/Vol  N   Mean  Grouping 
220     9  872.3  A 
340     9  844.1    B 
470     9  815.2      C 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Temp  SA/Vol  N   Mean  Grouping 
 25   470     3  901.0  A 
 25   220     3  901.0  A 
 25   340     3  898.7  A 
 50   220     3  867.0    B 
100   220     3  849.0    B 
 50   340     3  848.3    B 
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 50   470     3  800.3      C 
100   340     3  785.3      C 
100   470     3  744.3        D 
 
Means that do not share a letter are significantly different. 
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FIGURE 35 – Residual plots for Experiment H 
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FIGURE 36 – Main effects plots for Experiment H 
 

470.00340.00220.00

900

875

850

825

800

775

750

SA/Vol

M
e

a
n

25.00

50.00

100.00

Temp

Interaction Plot for Wavelength
Fitted Means

 

FIGURE 37 – Interaction plot for Experiment H 
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APPENDIX II 

TABLE VII 

EXPERIMENT G SAMPLE PROPERTIES 

Sample NIR Peak   Ratio* 

Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

  wavelength OD NIR/Coll         

Diasynth 

14 775.96 5.29 1.60 56.92 50.00 220.00 10.00 

Diasynth15 758.95 5.00 1.55 59.24 50.00 220.00 20.00 

Diasynth19 751.05 4.99 1.47 55.11 50.00 220.00 20.00 

Avg 761.99 5.09 1.54 57.09 50.00 220.00 20.00 

Std 12.73 0.17 0.06 2.07 0.00 0.00   

Diasynth29 812 4.702 1.61 57.01 37 220 20 

Diasynth30 839 5.465 1.84 58.04 37 220 30 

Diasynth31 841 5.436 1.75 59.71 37 220 20 

Avg 830.7 5.201 1.732 58.3 37 220 30 

Std 16.20 0.43 0.12 1.36 0.00 0.00 

 Diasynth23 850 4.140 1.64 68.7 25 220 30 

Diasynth24 875 4.965 1.85 74.63 25 220 30 

Diasynth25 866 5.383 1.85 81.03 25 220 40 

Avg 863.6 4.829 1.780 74.8 25 260 40 

Std 12.66 0.63 0.12 6.17 0.00 69.28   

  NIR Peak   Ratio* 

Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

Sample wavelength OD NIR/Coll         

Diasynth16 706.00 4.31 1.41 49.02 50.00 340.00 10.00 

Diasynth17 716.04 4.62 1.45 54.87 50.00 340.00 20.00 

Diasynth18 708.01 4.63 1.39 53.69 50.00 340.00 20.00 

Avg 710.02 4.52 1.42 52.53 50.00 340.00 20.00 

Std 5.31 0.18 0.03 3.09 0.00 0.00   

Diasynth26 732 4.357 1.46 58.95 37 340 20 

Diasynth27 748 4.357 1.47 62.75 37 340 20 

Diasynth28 730 4.126 1.48 60.29 37 340 20 

Avg 736.7 4.280 1.470 60.7 37 340 20 

Std 9.85 0.13 0.01 1.93 0.00 0.00 0.00 

Diasynth20 826.05 4.23 1.60 68.42 25.00 340.00 40.00 

Diasynth21 803.01 4.51 1.69 69.02 25.00 340.00 30.00 

Diasynth22 815.04 4.67 1.79 69.70 25.00 340.00 30.00 

Avg 814.70 4.47 1.69 69.05 25.00 340.00 40.00 

Std 11.53 0.22 0.10 0.64 0.00 0.00   
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Diasynth32 659 3.265 1.11 51.52 50 470 10 

Diasynth33 661 3.595 1.17 54.11 50 470 10 

Diasynth34 667 3.623 1.21 53.26 50 470 10 

Avg 662.3 3.494 1.162 53.0 50 470 10 

Std 4.2 0.199 0.0 1.32 0.0 0.0 0.0 

Diasynth35 745 4.042 1.44 59.31 37 470 20 

Diasynth36 761 4.535 1.47 60.83 37 470 20 

Diasynth37 769 4.264 1.50 62.43 37 470 20 

Avg 758.3 4.280 1.468 60.9 37 470 20 

Std 12.2 0.247 0.0 1.56 0.0 0.0 0.0 

Diasynth38 830 4.412 1.70 69.25 25 470 30 

Diasynth39 823 4.377 1.68 74.93 25 470 30 

Diasynth40 831 4.479 1.67 68.37 25 470 30 

Avg 828.0 4.423 1.682 70.9 25 470 30 

Std 4.4 0.052 0.0 3.56 0.0 0.0 0.0 

 

 

TABLE VIII  

EXPERIMENT H SAMPLE PROPERTIES 

Sample NIR Peak Ratio* 
Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

  wavelength OD NIR/Coll 

    MR19 923 7.536 2.19 72 25 220 60 

MR20 887 7.288 2.15 86.37 25 220 60 

MR21 893 6.823 2.06 84.89 25 220 60 

Avg 901.0 7.2 2.1 81.1 25.0 220.0 60.0 

Std 19.29 0.36 0.06 7.90 0.00 0.00 0.00 

        

Sample NIR Peak Ratio* 
Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

  wavelength OD NIR/Coll 

    MR22 904 5.884 1.94 76.3 25 340 60 

MR23 893 6.207 2.00 78.43 25 340 60 

MR24 899 6.988 2.00 76.33 25 340 60 

Avg 898.7 6.359 1.982 77.0 25 340 60 

Std 5.49 0.57 0.03 1.22 0.00 0.00 34.64 

        

Sample NIR Peak Ratio* 
Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 
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  wavelength OD NIR/Coll 

    MR25 903 5.282 2.00 82.27 25 470 60 

MR20 899 7.288 2.15 86.37 25 470 60 

MR21 901 6.823 2.06 84.89 25 470 60 

Avg 901.0 6.5 2.1 84.5 25.0 470.0 60.0 

Std 2.00 1.05 0.08 2.08 0.00 0.00 0.00 

        

Sample NIR Peak   Ratio* 

Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

  wavelength OD NIR/Coll   

   MR16 860.00 6.19 2.07 87.70 50 220 30 

MR17 870.93 6.18 2.12 73.20 50 220 30 

MR18 869.99 6.35 1.97 94.20 50 220 30 

Avg 866.97 6.24 2.05 85.03 50 220 30 

Std 6.06 0.09 0.08 10.75       

        

Sample NIR Peak   Ratio* 

Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

  wavelength OD NIR/Coll         

MR1 849.01 4.92 1.73 104.60 50.00 340.00 30.00 

MR2 849.01 4.55 1.76 74.65 50.00 340.00 30.00 

MR3 846.97 5.43 1.74 76.76 50.00 340.00 30.00 

Avg 848.33 4.97 1.74 85.34 50.00 340.00 30.00 

Std 1.18 0.45 0.01 16.72 0.00 0.00 0.00 

        

Sample NIR Peak   Ratio* 

Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

  wavelength OD NIR/Coll         

MR13 817.94 4.91 1.56 76.63 50.00 470.00 20.00 

MR14 782.96 4.49 1.48 76.85 50.00 470.00 20.00 

MR15 799.95 4.70 1.54 64.72 50.00 470.00 20.00 

Avg 800.28 4.70 1.53 72.73 50.00 470.00 20.00 

Std 17.49 0.21 0.04 6.94 0.00 0.00 0.00 

        

Sample NIR Peak   Ratio* 

Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

  wavelength OD NIR/Coll         

MR4 842.07 5.67 1.82 68.03 100.00 220.00 20.00 

MR5 846.02 5.17 1.78 67.54 100.00 220.00 20.00 

MR6 859.05 6.52 1.86 68.33 100.00 220.00 20.00 

Avg 849.05 5.78 1.82 67.97 100.00 220.00 20.00 

Std 8.89 0.68 0.04 0.40 0.00 0.00 0.00 
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Sample NIR Peak   Ratio* 

Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

  wavelength OD NIR/Coll         

MR10 781.00 5.96 1.63 67.03 100.00 340.00 20.00 

MR11 780.02 5.43 1.64 69.20 100.00 340.00 20.00 

MR12 794.95 5.85 1.62 61.94 100.00 340.00 20.00 

Avg 785.33 5.75 1.63 66.06 100.00 340.00 20.00 

Std 8.35 0.28 0.01 3.73 0.00 0.00 0.00 

        

Sample NIR Peak   Ratio* 

Size 

(nm) 

Temp 

(C) 

SA 

(mm2/ml) 

Time 

(min) 

  wavelength OD NIR/Coll         

MR7 753.02 4.93 1.53 63.93 100.00 470.00 10.00 

MR8 737.01 4.47 1.45 64.07 100.00 470.00 10.00 

MR9 742.97 4.33 1.43 61.35 100.00 470.00 10.00 

Avg 744.34 4.57 1.47 63.12 100.00 470.00 10.00 

Std 8.09 0.31 0.05 1.53 0.00 0.00 0.00 
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APPENDIX III 

 

 

FIGURE 38 - STEM Image 01 
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FIGURE 39 - STEM Image 02 
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FIGURE 40 - STEM Image 03 
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FIGURE 41 - STEM Image 04 
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FIGURE 42 - STEM Image 05 
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FIGURE 43 - STEM Image 06 
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