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ABSTRACT 
 

EARLY DETECTION AND CONTROL OF POTENTIAL PANDEMICS 

SHENGPENG JIN 

April 11, 2014 

 

Over the centuries, human beings have been inflicted with a variety of contagious 

diseases, resulting in tens of millions of respiratory illnesses and deaths worldwide. 

Early detection of disease spread facilitates timely responses that can greatly reduce its 

impact on a population. Therefore, this early information is a major public health 

objective and is crucial for policy makers and public health officials responsible for 

protecting the public from the spread of contagious diseases.  

 

Current indicators of the spread of contagious outbreaks lag behind its actual spread, 

leaving no time for a planned response. The studies of Christakis et al. in 2010 have 

shown that social networks can provide more timely information for prediction. 

However, the reported social network methods used to monitor disease spread do not 

consider contact patterns of individuals over space and time, such as during their 

movement from place to place. In this dissertation we propose a more effective way to 

http://www.isixsigma.com/me/six_sigma/
http://www.isixsigma.com/me/six_sigma/
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chart the spread of contagious outbreaks, in a spatio-temporal sense, using “contact 

networks”. This enables more effective control of the spread of contagious outbreaks 

in their early stages so as to “nip a potential pandemic in the bud.”   

 

In order to enhance the prediction model developed we introduce factors to consider 

the intensity of exposure to the disease, and the susceptibility of the individual. This 

would involve the consideration of both space and time factors, since diseases caused 

by either viruses or bacteria involve some type of contact, either direct (e.g. shaking 

hands) or through the atmosphere (e.g. coughing or sneezing) between the susceptible 

and infected individuals.  

 

In this dissertation, we apply data mining methodologies and predictive modeling 

technologies, such as logistic regression, decision trees and neural networks to estimate 

the infection risk based on an individual’s demographic information and health status. 

The information used in the models can be obtained from a wide variety of data sources, 

including historical medical records from hospitals and clinics. Early information on 

the presence of a potential disease outbreak can be obtained from "sensors", such as, 

First Watch and EARS (Early Aberration Response Systems) and "central" individuals 

in “contact” networks.   

 

http://www.isixsigma.com/me/six_sigma/
http://www.isixsigma.com/me/six_sigma/
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CHAPTER 1  INTRODUCTION 
 

1.1 Background 

Over the centuries, human beings have been inflicted with a variety of contagious 

diseases, including various forms of plague, typhoid fever, cholera, malaria, influenza 

and AIDS etc. At the beginning of the twentieth century, infectious diseases were the 

leading cause of death worldwide (Cohen, 2000). During the 20th century, three 

worldwide outbreaks of influenza occurred in 1918, 1957 and 1968. The pandemic in 

1918 caused 40 to 50 million deaths worldwide and more than 500,000 deaths in the 

United States. The latter two were in an era of modern virology and were therefore most 

thoroughly characterized. All three outbreaks have been informally identified by their 

presumed sites of origin as Spanish, Asian, and Hong Kong influenza, respectively 

(Kilbourne, 2006). In the United States, three diseases – tuberculosis, pneumonia, and 

diarrheal disease – caused 30% of deaths (CDC 1994). Infectious diseases account for 

29 out of the 96 major causes of human morbidity and mortality listed by the World 

Health Organization and the World Bank (Murray and Lopez, 1996) and 25% of global 

deaths (over 14 million deaths annually) (WHO 2000). 

 

In 2009, the H1N1 influenza emerged out of Mexico and rapidly spread around the 

globe. Similarly in 2003 the respiratory illness SARS (Severe Acute Respiratory 

Syndrome) occurred in the Guangdong province of China and lead to the death of many 

people all over the world. Therefore, it is extremely important for public health 
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agencies to understand and to control the spread of infectious diseases and prevent 

potential pandemics (Dimitrov et al. INFORMS Tutorial 2010). Many infectious 

diseases are spread through populations via physical contacts among individuals. The 

patterns of these contacts tend to be highly heterogeneous. The traditional mathematical 

model used to understand the dynamics of epidemics is the compartmental SIR model, 

which assumes that the population groups are fully mixed and every individual has an 

equal chance of spreading the disease to another individual. However this is not the 

case in the real world (Meyers et al. 2005).  Therefore, a more effective way is needed 

to chart the spread of infectious diseases, to allow for effective control.  This 

dissertation illustrates a framework for accomplishing this objective.  

 

1.2 Problem Statement 

It is well established that random immunization requires immunizing a very large 

fraction of the population in order to arrest diseases that spread through contacts 

between infected and susceptible individuals (Cohen et al. 2003). Mathematical 

modeling, such as the compartmental SIR models, has long been utilized for predicting 

the spread of infectious diseases. These models are useful for defining the levels of 

resources needed to curtail the spread. However, as stated previously, the current 

models espoused in the literature do not properly address some important aspects of 

disease spread even though they have proven to be quite useful in understanding 

epidemic dynamics.  

 

An appropriate strategy to slow down and control the spread rate of infectious diseases 

is needed so that there would be enough time for resource accumulation and allocation, 
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such as vaccination production and distribution. In recent years, the study of social 

networks and in particular the spread of disease through these networks has attracted 

considerable attention in the academic community (Newman, 2002). It is well known 

that individuals near the center of a social network are likely to get infected sooner 

during the course of an outbreak than those at the periphery on average (Christakis et 

al. 2010).  Unfortunately, it is typically very difficult to map a whole network to 

identify central individuals who might be monitored for infection (Christley et al. 

2005). Therefore, an alternative strategy which does not require ascertainment of the 

global social network structure has been proposed by Christakis et al, namely, i.e. to 

simply monitor the friends of randomly selected individuals. Also, the current social 

network methods used to monitor disease spread seldom takes both the space and time 

factors and the travel pattern of individuals into account. 

 

1.3 Objective 

Since the current social network methods used to monitor disease spread do not 

consider contact patterns of individuals over space and time, such as during their 

movement from place to place, in this dissertation we define “contact” networks, and 

suggest the use of contact network epidemiology to define effective control policies to 

arrest the spread of a contagious disease. We also propose a model that that utilizes 

spatio-temporal information for more effective control of disease spread. Additionally, 

we suggest a system that would provide proper directions to susceptible individuals so 

that they may reduce the likelihood of contracting the disease. 

 

1.4 Dissertation Organization 
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Chapter 2 provides a literature review mainly associated with current approaches to 

disease prediction. Chapter 3 describes the basic methods of disease spread, including 

the research of Christakis et al on social network (Christakis et al. 2009), Hongbo Yu’s 

research on spatio-temporal representation of travel patterns and interactions of 

individuals in GIS (Hongbo, 2008), data mining methodologies and proposed methods 

as well as some extension on the pandemic control. Chapter 4 presents our 

methodologies to predict the disease spread, such as risk analysis of infection, sensors 

to aid disease prediction and their relationships with the other parts of a decision support 

system. Chapter 5 evaluates the experimental results and conducts the analysis on the 

contact network and spatiotemporal GIS information. Chapter 6 presents the 

conclusions from this dissertation and Chapter 7 lists some points for the future 

research. 
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CHAPTER 2  LITERATURE REVIEW 

2.1 Social Network 

The careful collection of information from a sample of central individuals within human 

social networks could be used to mitigate the spread of contagious outbreaks before 

they happen in the population-at-large (Christakis et al. 2009). The social network itself 

will be an important conduit for the spread of an outbreak. However, mapping a whole 

network to identify particular individuals from whom to collect information is 

impractical, especially for large networks.  

 

However, some other ways might be used to deal with this situation. Intuitively, it could 

enhance the population-level efficacy of a prophylactic intervention to vaccinate the 

central individuals in networks (Manhart and Holmes, 2005). Dr. Christakis et al 

monitored the spread of flu at Harvard College from September 1 to December 31, 2009 

to evaluate the effectiveness of using nominated friends of randomly selected students 

as the central individuals in the social network.  

 

They enrolled a total number of 744 undergraduate students from Harvard College as 

the randomly selected group and tracked whether they had the flu during that period of 

time. Another “nominated” group consisted of those who were named as a friend at 

least once by a member of the random group. And the demographic information, such 

as, whether they were infected and vaccination status were collected by a 
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completed brief questionnaire for each subject. The hypothesis is that the set of the 

nominated friends become infected earlier than the set of randomly chosen individuals 

(Christakis, 2010). 

 

Figure 1. Theoretical differences in contagion between two groups 
 
 
As hypothesized, the cumulative incidence curves for the friend group and the random 

group diverge and then converge and the friends curve for flu diagnosed by medical 

staff is shifted 13.9 days forward in time (95% C.I. 9.9–16.6), thus providing early 

detection. The friend group showed a significant lead time prior to the estimated peak 

which could be an effective technique for detecting outbreaks at early stages of an 

epidemic. See Figure 2 (Christakis, 2010). 
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Figure 2. Empirical differences in contagion between two groups 

 

For many contagious diseases, early knowledge of when – or whether – an epidemic is 

unfolding is crucial to policy makers and public health officials responsible for defined 

populations, whether small or large. In fact, with respect to flu, models assessing the 

impact of prophylactic vaccination in a metropolis such as New York City suggest that 

vaccinating even one-third of the population would save lives and shorten the course of 

the epidemic, but only if implemented a month earlier than usual (Khazen et al, 2009). 

Also in case of influenza it takes time to develop the vaccine. In addition, resource 

planning requires early knowledge of the pandemic spread, and when it is expected to 

peak, etc.  

 

In fact, this method could be used to monitor targeted populations of any size, in real 

time. For example, a health service at a university (or other institution) could empanel 

a sample of subjects who are nominated as friends and who agree to be passively 

monitored for their health care use. 
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There are two main steps associated with using the social network epidemiology as an 

analytical framework to capture the disease transmission. The first step in this modeling 

approach is to build a realistic network model of contact pattern at an appropriate 

temporal and spatial scale. The second step is to predict the disease spread through the 

social network, based on the feature of both the disease and the network structure. 

 

2.2 Spatio-temporal GIS Design  

 
Human activities are performed within a spatial and temporal context (Golledge and 

Stimson, 1997). GIS has been used for representing human activity data, such as that 

obtained from travel and diary records for the exploration of their spatio-temporal 

characteristics (Shaw and Wang, 2000). The individual travel activities with their 

spatial, temporal and event attributes could be organized by using a path-based 

representation of trips in a relational GIS environment.  

 

A person’s daily activities include physical and virtual activities. Four types of 

communication modes have been suggested in the literature according to their spatial 

and temporal requirements (Janelle, 2004) in Table 1.  

(1) Conventional face-to-face meetings require participants to be at the same location 

during the same time period. This communication mode requiring coincidence in both 

space and time is classified as Synchronous Presence (SP).  

(2) Post-it notes or bulletin boards must have people visit the same location, but these 

visits can be at different times, to complete the information exchange. This type of 



9 
 

communications requires coincidence in space, but not in time, is called Asynchronous 

Presence (AP).  

(3) With the use of information and communication technologies (ICT)s, people are no 

longer required to be present at the same physical location for communications. 

Synchronous Telepresence (ST) only requires coincidence in time (e.g., two friends at 

different locations doing instant messages over the Internet).  

(4) Finally, Asynchronous Telepresence (AT) is free from coincidence requirements in 

either space or time. E-mail between people belongs to this type of communications.  

This classification system can be used to describe different types of human interactions 

based on their spatial and temporal requirements. The SP and AP types of human 

interactions are carried out in physical space and they are also what we are interested 

in because only physical activities could lead to the disease spread in real world. 

Therefore, in this dissertation only SP is taken into consideration and AP is the 

extension of the dissertation. 

 

 
                Spatial 
Temporal 
 

 
 
Physical presence 

 
 
Telepresence 

Synchronous SP 
Face to face (F2F) 

ST 
Telephone 
Chat rooms 
Teleconferencing 

Asynchronous AP 
Post-it or notes 
Traditional hospital charts 

AT 
Mail 
E-mail 
Web pages 

 
Table 1. Communication modes based on spatial and temporal constraints 

 

2.3 Space-time Path  
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Hagerstrand(1970) proposed a theoretical framework to study the constraints that affect 

an individual’s presence in space and time and to portray individual activities in a 

space-time context, which is known as Time Geography. One fundamental concept is 

suggested under the time geographic framework to depict the capability of an individual 

to conduct activities in space and time which is space-time path. 

A space-time path is the container of all activities performed by a person, since all 

activities take place at certain locations and time periods and each of them occupies a 

portion of the space-time path (Hagerstrand, 1970). It depicts the sequence of an 

individual’s activities at various locations over a time period. 

 

A space-time path offers a proper continuous representation of such a trajectory. Both 

physical activities and virtual activities performed by individuals leave traces in the 

physical space and time, which become contents of space-time paths. An individual’s 

trajectory may pass through a location in the 2D space multiple times. When a space-

time path is used to store the trajectory, every point on the space-time path possesses 

unique coordinates of (x, y, t) since a person only can be at a single physical location 

at any given time (Hongbo, 2008). 
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Figure 3. Spatio-temporal features in a 3D GIS framework 
 
Figure 3 shows an example of typical activities of one individual. 

t

y

x

a

b

c

d
e

f
g

h
i

j

k

Physical Activities:
a: Having breakfast at home
b: Driving to school
c: Having classes at IE department
d: Walking to school library
e: Study in school library
f: Walking for lunch
g: Having lunch at cafeteria 
h: Walking back to IE department
i: Having another class
j: Driving back home
k: Staying at home

 

Figure 4. Locate individual activities on a space-time path 
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There exist three basic relationships of space-time paths between different individuals. 

(Hongbo, 2008) See Figure 4. 

(1) Co-location in time represents activities in different space–time paths that interact 

with each other within a common time window.  

(2) Co-location in space occurs when activities in different space–time paths occupy 

the same location in different time windows.  

(3) Co-existence describes the cases when activities take place at the same location and 

within a common time window. 

 

Figure 5. Space-time path relationships 
 
 
Figure 5 illustrates the difference between these three basic relationships. The typical 

example for co-location in time is a phone call, instant messaging or a remote video 

meeting, while the use of a specific desk in an office, is an example of co-location in 

space. The third relationship, which is co-existence, is the one we will discuss in this 

paper, since it is the main factor that effects the spread of disease; a face to face talk 

might be a typical example. However, the audiences in a cinema, passengers on a plane, 

or the guests in a restaurant could also be classified as being in a co-existence 

relationship. 



13 
 

2.4 Transmission and Prevention of Infectious Disease 

 
As is known to all, infectious disease could be transmitted easily from one individual 

to another. Pathogens can be spread by many methods other than direct contact, 

including through water, food, air, blood and so on. For instance, any time a person 

with an infection coughs or sneezes may be transmitting illness. And defining the means 

of transmission plays an important role in understanding the biology of an infectious 

agent and in addressing the disease it causes.  

 

Transmission may occur through several different sources. Respiratory-borne 

diseases like influenza, tuberculosis, meningococcal meningitis and SARS, spread 

through the exchange of respiratory droplets between people in close physical 

proximity to each other. Sexually transmitted diseases like HIV, genital herpes, and 

syphilis spread through intimate sexual contact. Gastrointestinal diseases are often 

acquired by ingesting contaminated food and water. Some infectious agents may be 

spread as a result of contact with a contaminated, inanimate object (known as a fomite), 

such as a coin passed from one person to another, while other diseases penetrate the 

skin directly (Ryan and Ray, 2004). Explicit models of the patterns of contact among 

individuals in a community, contact network models, provide a powerful approach for 

predicting and controlling the spread of such infectious diseases (Longini, 

1988; Sattenspiel and Simon, 1988; Morris, 1995; Kretzschmar et al., 1996; Ball et al., 

1997; Morris and Kretzschmar, 1997; Ferguson and Garnett, 2000; Hethcote, 

2000; Lloyd and May, 2001; Newman, 2002; Sander et al., 2002; Keeling et al., 

2003; Meyers et al., 2003; Meyers et al., 2005).  

 

http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib17
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib17
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib30
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib22
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib14
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib4
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib4
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib23
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib10
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib11
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib11
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib16
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http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib13
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib13
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib19
http://www.sciencedirect.com/science/article/pii/S0022519305004418#bib21
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Generally, there are several ways to prevent the spread of infectious disease. One of the 

ways to prevent or slow down the transmission of infectious diseases is to recognize 

the different characteristics of various diseases (Watts, 2003). Some critical disease 

characteristics that should be evaluated include virulence, season, age and gender of the 

susceptible, distance traveled by individuals, and levels of contagiousness. Another 

effective way to decrease the transmission rate of infectious diseases is to recognize the 

effects of small-world networks (Watts, 2003). And in epidemics, there are often 

extensive interactions within groups of infected individuals and other interactions 

within susceptible individuals. In this dissertation, we will only take the respiratory-

borne diseases into consideration and do the risk analysis of getting infected for a 

susceptible individual by using both contact network model and spatio-temporal 

information.  

 

2.5 Compartmental SIR Model   

The compartmental SIR model, which is relatively simple and widely used, is a 

traditional approach to model infectious disease dynamics.  

 

Consider a population of N individuals and the following simple discrete-time, discrete-

state epidemic model. Each individual begins in one of the three possible states: 

(1) susceptible, meaning that the individual has never had the disease and is susceptible 

to being infected; 

(2) infected, meaning that the individual currently has the disease and can infect other 

people; and 
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(3) resistant, meaning that the individual does not have the disease, cannot infect others, 

and cannot be infected. 

The model simulates the progression of the disease through the three states. Individuals 

are first susceptible, then infected, and then become resistant by acquiring immunity to 

the disease (Anderson et al, 1979; Bernoulli and Blower, 2004 ). 

 

The model then evolves in discrete time steps, with all individuals simultaneously 

acting as follows in each time step: 

(1) Each susceptible individual draws a uniformly random person from the population. 

If the person drawn is infected, then the susceptible individual changes his state to 

infected with probability β. 

(2) Each infected individual changes his state to resistant with probability γ. 

(3) Each resistant individual remains resistant. 

 

The parameter β captures the ability of the disease to be transmitted from one person to 

another; the parameter γ is related to length of the period for which an individual can 

transmit the disease, called the infectious period. The population in this model is a 

homogeneously mixed population which interacts in such a uniformly random and 

independent way between time steps. In this model, there is a very important parameter 

R0, called the basic reproduction number, which is the expected number of new 

infections created by an infected individual under the most favorable conditions for 

http://www.isixsigma.com/me/six_sigma/
http://www.isixsigma.com/me/six_sigma/
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transmission. For the compartmental SIR model, R0 =β/γ and generally the disease can 

become an epidemic only if R0 > 1. 

 
Here is a mass-action SIR compartmental model, where X(t), Y (t),and Z(t) denote the 

number of susceptible, infected, and resistant individuals in the population at time t. 

and X(t) + Y (t) + Z(t) = N. 

                         (1) 

                     (2) 

                             (3) 

 
The model can also be extended to a more complex disease spread model with a more 

complex population structures. For example, a natural birth/death rate or a latent period 

of disease could be included in the model. For more information on the SIR model and 

its extension, see Dimitrov and Meyers, INFORMS Tutorial 2010. 

 

Figure 6 provides an example of typical epidemic curves defined by the SIR model 

(Dimitrov and Meyers, INFORMS Tutorial 2010). 

 
Figure 6. A typical curve of the compartmental SIR model 
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2.6 The Comparison of Three Disease Spread Models 

 
Although the compartmental SIR models have proven to be quite useful in modeling 

epidemics, they do not properly model some important aspects of disease. Moreover, 

the compartmental SIR models assume a fully mixed, homogeneous population in 

which each individual has the same amount of contact as every other individual. Thus, 

simple SIR models do not accurately model the increased rate of contact in the hospitals 

and the decreased rate of contact of quarantined individuals. If the population at large 

had as many contacts as the population within a hospital, possibly the estimates of R0 

would have been more accurate, and SARS (Severe acute respiratory syndrome, see 

http://en.wikipedia.org/wiki/SARS ) would have infected many more people. 

Incorporating realistic contact patterns of the population is just one possible way to 

increase the fidelity of epidemic models. Diseases often spread at different rates based 

on age and the type of contact; they also have varying incubation periods in different 

age groups. For example, contacts at home tend to be more intimate than contacts at 

work. Hence, an infected person’s family members are more susceptible to the disease. 

Also, disease spread is affected by both geographic location and seasonality. 

 

Therefore, researchers have attempted to use high-fidelity agent-based simulation 

models, where each individual is tracked as they move from home to work and back. 

Such models involve complex parameterization and often require extensive 

computation that deems the models intractable and of limited usefulness. The social 

network modeling approach utilized in this research provides acceptable fidelity and 

http://en.wikipedia.org/wiki/SARS
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tractable formulations. This is illustrated in Figure 7 (Dimitrov and Meyers, INFORMS 

Tutorial 2010). 

 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7. Complexity of epidemiological models 
 
The Compartmental SIR models are easy to analyze but miss important, realistic details, 

such as heterogeneous patterns and types of contacts. Agent-based simulations are able 

to model reality with a great amount of detail, but are difficult to parameterize and 

analyze, and require large amounts of computation. Social network models capture 

disease transmission with a higher fidelity than compartmental models yet remain 

analytically tractable. 

2.7 Travel Patterns 

As we know, travelers are a rich source of information for infectious disease specialists. 

On returning from their journey, travelers can provide a representative sample of the 

diseases that abound in the places they have visited (Ross, 2006). There are a wide 

variety of travelers ranging from tourists and business people to immigrants, refugees 

and foreign-born citizens who have visited friends and relatives in their home countries. 

Moreover, a traveler who returns home with an unusual disease could be the first clue 

to a new outbreak (Ross, 2006).  
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Therefore, a disease tracking system could be built for sharing information among their 

networks of travel medicine clinics or hospitals such that doctors could record travel 

histories and symptoms of their patients and their diagnoses in standardized electronic 

forms and submit these to the system which in fact, is also a central database. Then the 

system regularly examines the data to detect the symptoms which might indicate a new 

outbreak and warrants a warning to the clinics or hospitals. 



20 
 

CHAPTER 3  BASIC METHODS OF DISEASE SPREAD 

3.1 Basic Concepts of a Contact Network 

The contact (or social) network is a hot concept across many disciplines, including 

sociology, epidemiology, biology, computer science and physics (Amaral and Ottino, 

2004). A contact network model captures the patterns of interactions that can lead to 

the transmission of an infectious disease. And a social network, which focuses on the 

social relationship between nodes, is similar to a contact network in terms of analysis. 

A contact network is a contact structure made up of individuals (or organizations) 

represented as "nodes", that are tied (connected) by physical contacts (Horton, 2006). 

Contact network consists of nodes and ties (also called edges, links, arcs or connections). 

Nodes are the individuals within the networks, and ties are the physical contacts 

between the individuals. The resulting graph-based structures are often very complex. 

Contact network plays a critical role in determining the way problems are solved, 

organizations are run, and the degree to which individuals succeed in achieving their 

goals. 

 

Moreover, contact network analysis has also been used in epidemiology to help 

understand how patterns of human contact aid or inhibit the spread of diseases such as 

HIV in a population (Parker, 2002). The evolution of contact networks can sometimes 

be modeled by the use of agent based models, providing insight into the interplay 

between communication rules, rumor spreading and social structure.

http://en.wikipedia.org/wiki/Social_structure
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Epidemiology
http://en.wikipedia.org/wiki/Rumor
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3.2 Network Centrality 

3.2.1 Individual Centrality in Contact Network 

 
The centrality in a contact network is a parameter used to measure how central an 

individual is in a contact network (Freeman, 1979). The concept of centrality was 

formally defined by Freeman. Specifically, Freeman identified three primary centrality 

measures: degree, closeness and betweenness.  

 

(1) Degree centrality measures an individual’s direct connectedness with other 

individuals; 

(2) Closeness centrality provides a more global network prospective than degree 

centrality. Specifically, closeness centrality is a measure that indicates the degree to 

which an individual is near all the other individuals in the network not just those 

adjacent to them; 

(3) Betweenness centrality is a measure of the strategic location of an individual along 

a potential communication path. 

 

The study of the centrality in a contact network could determine the most central 

individuals who play a critical role in the disease spread. Obviously, the rate of spread 

of a potential pandemic could be mitigated to some extent by monitoring and 

immunizing those with higher centrality values.  

 

3.2.2 The Traditional Method of the Centrality  
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Consider a contact network modeled as a direct graph, G(V, E). Let V = (v1, v2,…, vn) 

denote the set of nodes in the network, and let E = (e1, e2, …, em) denote the set of 

edges between the nodes (Hamill et al. 2006). Specifically, consider the modified 

network from Hamill with n = 11 nodes with the social relationships (or paths of 

communication) depicted in Figure 8 (Schneider et al 2011). 

 
Figure 8. Sample Network 

 

One of the most important metrics in the social network analysis (SNA) is the centrality 

of an individual (each node in the network). There are three main centrality measures: 

degree, closeness and betweenness (Freeman, 1979). The traditional way to calculate 

these three centrality measures is introduced below: 

 

Degree centrality CD(v): measures an individual’s direct connectedness with other 

individuals. The degree of a node (or vertex) is the number of edges connected to it. Let 

deg(v) denote the degree of an individual v in the network which have n individuals, 

and then the degree centrality is given by 
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                                                            (4) 

 
Closeness centrality CC(v): a measure that indicates the degree to which an individual is 

close to all the other individuals in the network not just those adjacent to them. It 

provides a more global network prospective than degree centrality. Let dG(v, c) denote 

the length of a shortest path connecting individual v with individual c, so that the 

closeness centrality of an individual v is given by 

                          (5) 

 
Betweenness centrality CB(v): a measure of the strategic location of an individual along 

a potential communication path. Let σbc denote the number of shortest paths from 

individual b to individual c, and let σbc(v) denote the number of shortest paths from 

individual b to individual c that contain individual v. The betweenness centrality of an 

individual v is given by 

                       (6) 

 
The centrality measures for the network in Figure 8 are shown in Table 2 (Schneider et 

al 2011). From Table 2, we can see that individual 4 has the largest centrality values for 

each measure. Individuals 6 and 7 exhibit the second highest degree centrality and 

meanwhile individual 7 exhibits the second highest closeness and betweenness 

centrality as well. All these results could indicate which individuals are the most 

“central” people in a social network to some extent. However, these metrics treat each 

individual in the network identically and assume a perfect contact chain. In reality, 

certain individuals within the network may be more persuasive and the contact between 

individuals in the network may not be that perfect since their centrality values are so 

close such that we could not tell the differences among individuals based on their 
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centralities. In these instances, the centrality metrics may not adequately quantify the 

criticality of individuals within the network (Schneider et al 2011). 

 
Individual Degree Closeness Betweenness Betweenness* 

1 0.20 0.0500 0 0 
2 0.10 0.0435 0 0 
3 0.10 0.0435 0 0 
4 0.60 0.0714 43 1 

5 0.30 0.0588 2 0.0465 
6 0.50 0.0588 17 0.3953 
7 0.50 0.0667 36 0.8372 

8 0.20 0.0435 0 0 
9 0.20 0.0435 0 0 
10 0.20 0.0455 0 0 
11 0.30 0.0526 8 0.7273 

 
Table 2. Traditional centrality measures of sample network 

 

 

3.2.3 A Proposed Centrality Measure 

 
Consider a contact network with n nodes with the connection probabilities between 

every two nodes given. The connection probability is the likelihood of contact between 

two individuals and it could be obtained by recent frequency of physical contact 

between the two individuals. The connection probability could reflect the possibility 

for one individual to get an infection from another individual to some extent, although 

the chance of getting infected also depends on other factors, such as the feature of the 

disease, the feature of the population and the contact network structure.  

 

There are several steps to calculate the centrality value of a specific node i; these steps 

are illustrated using the simple network in Figure 9. R is the transmission rate between 

two specific nodes and it is a value between 0 and 1. Particularly, if R = 0, it indicates 
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that there is no direct connection between these two nodes; if R = 1, it indicates that 

two individuals will infect each other by all means.  

 

i
j k

lR(i, j) R(j, k) R(k, l)

 
 

Figure 9. Sample arc in a network 
  

1.   For each node, find the first-nearest-layer (FNL) nodes which have direct 

connection with the original node i. In this case, node j is the only FNL nodes and the 

impact of FNL nodes (FNL values) could be obtained by the formula below. 

             i=1,2,…,n         (7) 

 
2.   For each FNL node, generate a second loop to their FNL nodes, which would be 

the second-nearest-layer (SNL) nodes of the initial node i. In this illustrative example, 

node k is the SNL node and their impact (SNL value) towards the initial node i could 

be obtained by the formula below: 

         i=1,2,…,n    (8) 

 
3.   Similarly, for each SNL node, generate a loop to their FNL nodes, which are the 

third-nearest-layer (TNL) nodes of the initial node i and their indirect impact values 

(TNL value) towards the initial node i could be calculated by the formula below:         

            

 
                                                 i=1,2,…,n   (9) 
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4.   Finally, the centrality of node i would be the summation of all the impacts of FNL, 

SNL and TNL.  

 

The algorithm as described above is straight forward. However, more thoughts and 

work are needed when we realize it by using Matlab. Here is how it works: First of all, 

we build a n × n matrix in which each element presents the degree of connectedness 

between node i and j. In fact, this is a symmetric matrix which is called connectedness 

matrix whose elements are already known to us. Besides, we have to build another three 

zero n × n matrices which are FNL matrix, SNL matrix and TNL matrix respectively. 

Each element in these three matrices represents the corresponding centrality values as 

the FNL, SNL and TNL nodes respectively. For example, element (i, j) in these three 

matrices may have different values which are not equal to zero and this indicates that 

as a FNL, SNL and TNL node, the same node j will have three impacts on the same 

node i. Therefore, the final impact which node j contributes to node i would be the 

summation of these three impacts. Secondly, we go through all the elements in the 

connectedness matrix and calculate all the values in FNL, SNL and TNL matrices in 

which each elements represents the FNL, SNL and TNL impacts a specific node j for 

another node i. Then the centrality matrix would be obtained by adding all these three 

matrices up since they have the same structure. Finally, if we sum all the values up in 

each row, an n dimension vector would be obtained in which each element represent 

the final centrality value for each node in the network.  

 

3.2.4 Utilizing the Proposed Measure to Identify Central 

Nodes in a Sample Contact Network 
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By using both the traditional metrics and the proposed method, we obtain the results in 

Table 3. We can see that individual 4 has the largest values for each traditional measure. 

Individuals 6 and 7 exhibit the second highest degree centrality and meanwhile 

individual 7 exhibits the second highest closeness and betweenness centrality as well. 

All these results could indicate which individuals are the most “central” people in a 

contact network to some extent. However, as previously mentioned these metrics treat 

each individual in the network identically and assume the same intensity of contact 

among all individuals.  In reality, this is not the case. In these instances, the traditional 

metrics may not adequately quantify the criticality of individuals within the network. 

However, using  the centrality metrics proposed in this dissertation, we note that 

individuals 4, 6 and 7 have a higher centrality values than others which indicates that 

they the most central individuals in the network who should have a higher priority to 

get vaccinated.  

 

Individua
l 

Degre
e 

Closenes
s 

Betweennes
s 

Betweenness
* 

Centralit
y 

Centraliy
* 

1 0.20 0.0500 0 0 3.4640 0.6307 
2 0.10 0.0435 0 0 1.3080 0.2382 
3 0.10 0.0435 0 0 0.8920 0.1624 
4 0.60 0.0714 43 1 5.1880 0.9446 
5 0.30 0.0588 2 0.0465 5.4920 1 
6 0.50 0.0588 17 0.3953 4.9190 0.8957 
7 0.50 0.0667 36 0.8372 5.3190 0.9685 
8 0.20 0.0435 0 0 3.2100 0.5845 
9 0.20 0.0435 0 0 3.2100 0.5845 
10 0.20 0.0455 0 0 3.4320 0.6249 
11 0.30 0.0526 8 0.7273 4.3780 0.7972 

 

Table 3. Metrics of a sample network 
 
Consider another sample non-dynamic contact network model which contains 30 

individuals represented in Figure 10. The number beside each arc indicates the 
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connection probability between two adjacent nodes. Using this sample we illustrate the 

utilization of the proposed centrality measure to identify “central” nodes in the network.  
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Figure 10. A 30-size sample population network 

 
The centrality values of all nodes based on the proposed measure are shown in Table 4. 

Node Value  Node Value  Node Value 
1 5.8410  11 12.1001  21 8.1659 
2 7.4620  12 15.4282  22 2.8680 
3 7.3070  13 26.0583  23 5.0380 
4 4.6883  14 20.6846  24 6.8458 
5 21.0422  15 15.5823  25 8.1482 
6 12.5615  16 3.2845  26 4.5005 
7 21.4805  17 5.3983  27 3.2793 
8 21.1098  18 14.8474  28 2.4795 
9 5.0700  19 17.4846  29 2.8969 
10 3.8628  20 16.4306  30 2.7025 

 
Table 4. Centrality values of a 30-size population network 
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From Table 4, we can see that nodes 5, 7, 8, 13 and 14 seem more central than other 

individuals. The Matlab program developed to automate the calculation is shown in the 

Appendix.  
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Figure 11. More central individuals in the sample network 
 
Visually examining, the identified central nodes (red nodes) and their probabilities in 

the network provide face validity to the suggested measure of centrality.  

3.3 Extension of Network Analysis 

 
In fact, each node in the network could be colored according to their centrality values 

in order to classify different importance of the nodes like the social network below 

(Christakis, 2010). Table 5 demonstrates the relationships between range of the risk 

index and color and risk level. 
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Figure 12. The colored 30-size sample population network 

 

The social network visualization can support such intervention in numerous ways.  

First of all, they can be used to identify clusters of connected individuals with similar 

disease susceptibility and health-relevant attributes. The clusters could be targeted for 

collective interventions. Secondly, they can be used to identify and target individuals 

for public heath interventions. Thirdly, the knowledge of the overall network structure 

may be crucial to the design of public health intervention strategies. 
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Range Color Risk Level 

0.000 – 5.000 Light Blue Extremely Low 

5.001 – 10.000 Green Low 

10.001 – 15.000 Yellow Medium 

15.001 – 20.000 Orange High 

20.001 – above Red Extremely High 

 

Table 5. The relationship between risk index and risk levels 

 

3.4 Transmission Rate 

 
Since the air-borne infectious disease could be transformed rapidly between individuals 

through physical contact, it is critical to do some analysis on the transmission rate of 

the infectious disease, especially for the emerging disease, which have newly appeared 

in a population or have existed but are rapidly increasing in geographic range, such as 

SARS and H1N1. Some potential factors precipitating disease emergence can be 

identified in virtually all cases. These include ecological, environmental, or 

demographic factors that place people at increased contact with a previously unfamiliar 

microbe or its natural host or promote dissemination (Morse, 1995). 

 

In this dissertation, we will use the data mining methodologies and predictive modeling 

to perform the analysis on the potential factors of the transmission rate for a specific 

infectious disease, which is the disease parameter γ in the formula. And the potential 

risk factors might include the gender, age, the month to get infected, smoker or not, 

obesity, the amount of exercise per week, vegetarian or not, high blood pressure, 

diabetes, medical care rate and so forth. Then by building different models and 
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weighting different factors by the sample data, we could get a reasonable value for the 

disease parameter γ, which would be used in the formula to obtain the infection index 

Fab. 

 
 

3.5 Data Mining Methodology 

It is widely recognized that the risk factors of getting infected includes both individual 

and disease characteristics. The variables considered in this analysis are the potential 

risk factors or the infected diseases and they do not affect the presence of each 

individual disease equally. Therefore, several data mining methods have been applied 

to get a comprehensive parameter by taking all the potential risk factors into account. 

3.5.1 Introduction to Data Mining 

 
In this dissertation, we will use the data mining methodologies to extract the useful 

information from our datasets. The reason we utilize data mining rather than statistical 

methods is that data mining is more practically oriented discipline than the statistics.  

 

 Dataset must be prepared with appropriate preprocessing techniques in data 

mining and the preparation can have as much or even more influence on the 

quality of the final results than the selected technique. 

 Data mining use flexible predictive techniques that are often based on strong 

algorithms (such as artificial neural network and decision trees). 
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 Data mining attempts to find not only general models base on the dataset but 

also local patterns in large dataset, which is especially useful when the number 

of dimensions are relatively large. 

 

Specifically, data mining concentrates on data management and optimization of data 

searches (with a focus on problems of preprocessing, data cleaning, algorithms, and 

data structures). Statistics is more oriented toward formalisms for final model 

representation and score function formalization in the data space to perform inference 

(with a focus on problems of models and principles of statistical inference).  

 

Also, the fitness and quality of data is another critical aspect in data analysis. When we 

are analyzing the data statistically, the datasets should be in a format that we can 

analyze. Unfortunately, it is very common that most datasets in the real world have poor 

quality and therefore we must consider the quality of the data as well as the applicability 

of the statistical models.  

 

Finally, the main difference between data mining and statistics is the size of the 

datasets. In statistics, p-values and statistical significance are the primary measures of 

model fitness. However, in real world the datasets are generally so large that p-values 

have no meaning. Also the confidence width and effect size in such large datasets 

decreases to 0 as the dataset size increases. It is usual to have a regression model with 

every parameter statistically significant but with a correlation coefficient of almost 0. 

Therefore, we need other methods to measure the fitness of the model. In data mining, 
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the data sets are usually large enough to partition into three types: training, testing, and 

validation. The training data set is used to define the model, the testing data set is used 

in an iterative process to change the model if necessary to improve it, and the validation 

data set represents a final examination of the model. Depending upon the profit and loss 

requirements in the data, misclassification is used in supervised learning where there is 

a specific outcome variable (Cerrito, 2006).    

 

3.5.2 Decision Tree 

 
A decision tree serves as a tree-like graph to display decision models and their relevant 

potential consequences, among which are chance event outcomes, cost of resource and 

utility. As a tool to present an algorithm, decision trees are commonly used to help 

identify a strategy to achieve a goal in many fields, especially in decision analysis and 

operations research. Decision trees and decision rules are data-mining methodologies 

applied in many real world applications as a powerful solution to classification 

problems. A well-known tree-growing algorithm for generating decision trees is 

Quinlan’s ID3 with an extended version called C4.5(Kantardzic, 2011). 
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Figure 13. An example of a decision tree 
 
 
The ID3 algorithm creates the root node of the tree first and searches all the training 

samples. And then an attribute would be selected to partition these samples and a branch 

is generated. Based on the value of this attribute, the corresponding subset of samples 

which have the attribute value specified by the branch is moved to the new child nodes 

separately. The algorithm will repeat all these steps recursively until all samples are at 

least in one class. Finally, a decision tree is created and each leaf in the decision tree 

represents a classification rule.  

 

C4.5 algorithm is the extension of ID3 algorithm, which extends the domain of 

classification from categorical attributes to numeric ones (Kantardzic, 2011). Both ID3 

and C4.5 algorithms are based on mining an information entropy measure applied to 

the samples at a node. Specifically, the C4.5 favors attributes which result in 
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partitioning the data into subsets with a low-class entropy, which indicates that the 

majority samples in it belong to a single class.  

 

We will use C4.5 algorithm as the main decision tree methodology to classify all the 

potential factors of individual conditions which would have a contribution of disease 

spread with different weights. And a decision tree would be created and illustrate the 

classification rules of the infection. Finally, the analysis would be made for the decision 

tree results to figure out the different impacts from all the potential individual factors 

of the disease spread. 

 

3.5.3 Artificial Neural Network 

 
An artificial neural network (ANN), usually called neural network (NN), is 

a mathematical model or computational model that is inspired by the structure and/or 

functional aspects of biological neural networks. A neural network consists of an 

interconnected group of artificial neurons, and it processes information using a 

connectionist approach to computation. In most cases an ANN is an adaptive 

system that changes its structure based on external or internal information that flows 

through the network during the learning phase. Modern neural networks are non-

linear statistical data modeling tools. They are usually used to model complex 

relationships between inputs and outputs or to find patterns in data. 

http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Computational_model
http://en.wikipedia.org/wiki/Biological_neural_networks
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Connectionism
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Adaptive_system
http://en.wikipedia.org/wiki/Adaptive_system
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Non-linear
http://en.wikipedia.org/wiki/Non-linear
http://en.wikipedia.org/wiki/Statistical
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Pattern_recognition
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Figure 14. The Structure of artificial neural network 
 
 
Multilayer feedforward networks are one of the most important and most popular 

classes of ANNs in real-world applications (Kantardzic, 2011). A multilayer perceptron 

(MLP) is a feedforward artificial neural network model that maps sets of input data 

onto a set of appropriate output. It consists of multiple layers of nodes in a directed 

graph, with each layer fully connected to the next one. Each node is a neuron or a 

processing element with a nonlinear activation function in addition to the input node. 

MLP is the standard algorithm for any supervised learning pattern recognition process, 

which can also distinguish data that is not linearly separable. 

 

Artificial neural networks act like black box and there is no definite equation or model 

and the model is not presented in concise format available for regression. Its accuracy 

is examined similar to the diagnostics of the regression curve including 

misclassification rate and the average error. Its complexity increases with the number 

of hidden layers and input variables increases. Each input variable is connected to each 
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variable in the hidden layer and each hidden variable is connected to each outcome 

variable. The hidden layers combine inputs and apply a function to predict outputs.  

 

3.6 Logistic Regression 

Regression Analysis is widely used to estimate the relationships among variables and 

predict the future situation. It is helpful to understand how the typical value of the 

dependent variable changes when the independent variable varies by using regression 

analysis. Regression analysis is also interesting theoretically because of elegant 

underlying mathematics and a well-developed statistical theory. Successful use of 

regression requires an appreciation of both the theory and the practical problems that 

typically arise when the technique is employed with real-world data (Montgomery, 

1992).  There are monadic regression analysis and multivariate regression analysis 

which depends on the numbers of input variables or independent variables; also, there 

are linear regression analysis and nonlinear regression in terms of the relationship 

between the independent variables and dependent variables. Besides, there is the 

logistic regression which would be used in this dissertation.  

 

Logistic Regression has become, in many fields, the standard method of analysis in the 

situation that the outcome variable is discrete, taking on two or more possible values 

(Hosmer and Lemeshow, 1989). In epidemiology, we would like to determine the 

probabilities, which are bounded by 0 and 1, for a susceptible individual to get infected 

from a specific disease. But the linear functions are inherently unbounded. Therefore, 

the logistic regression would be applied to transform the probability such that it’s no 
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longer bounded (Allison, 1999). To better understand the logistic regression, it’s helpful 

to have an understanding of odds, which is the ratio of the expected numbers of times 

that an event will occur to the expected number of times it will not occur. If p is the 

probability of an event and O is the odd of the event, then 

                    (10) 

 
Transforming the probability to an odds will removed the upper bound and also the 

lower will be removed if the logarithm of the odds is taken. A logit model will be 

obtained after setting the result to a liner function of the explanatory variables. For 

example, if there are k explanatory variables, the model is 

                                 (11) 

 
where p is the probability and the expression on the left-hand side is usually referred 

to as the logit or log-odds. Either the natural logarithms or the base-10 logarithms 

could be used and the x’s may be either interval-level variables or dummy variables 

in the ordinary regression model. We can solve the logit equation for p to obtain 

                               (12) 

 
Exp(x) is the exponential function, equivalent to ex and the equation has the desired 

property that no matter what values we substitute for the β’s and the x’s, p will always 

be a number between 0 and 1, which could be used as the probability of getting 

infected from a specific disease for a susceptible individual. 

 

In addition, information Value is used to evaluate the overall predictive power of a 

characteristic, which is the characteristic’s ability to separate between good and bad 
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records (susceptible individuals and infected individuals in our case). Information value 

is calculated as follows: 

      
 

 

Here L is the number of attributes for the characteristic variable. In general an 

information value less than 0.02 is unpredictive, a value between 0.02 and 0.10 is 

weakly predictive, a value between 0.10 and 0.30 is moderately predictive, and a value 

greater than 0.30 is strongly predictive. Also, the Gini statistic is used as an alternative 

to the information value. 

 

The weight of evidence (WOE) measures the strength of an attribute of a characteristic 

in differentiating susceptible and infected individuals. Weight of evidence is based on 

the proportion of susceptible individuals to infected individuals at each group level. For 

each group i of a characteristic WOE is calculated as follows: 

                          (14) 

 
Negative values indicate that a particular grouping is isolating a higher proportion of 

infected individuals than susceptible individuals. That is, negative WOE values are 

worse in the sense that individuals in that group present a greater infection risk. By 

default, missing values are assigned to their own group. 

 

3.7 Model Performance Assessment 

 

(13) 
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In statistics, we use the coefficient of determination R2 to measure how well the 

regression line represents the data. First, let’s look at its definition: suppose we have 

a data set with observed values yi and each of them has an associated predicted value 

ŷi . The mean of the observed data  

                                           
                      

Where n is the number of observations. The variability of the data set is measured 

through different sums of squares.  

 

 

We define the coefficient of determination R2 = SSR/SST, and 0 ≤ R2 ≤ 1, which is 

useful since it gives the proportion of the variance of one variable that is predictable 

from the other variable. If the regression line passes exactly through every point on 

the scatter plot, it would be able to explain all of variation. The further the line is away 

from the points, the less it is able to explain. 

 
 
A model realized through the data mining process using different inductive – learning 

techniques might be estimated using the standard error rate parameter as a measure of 

its performance (Kantardzic, 2011). An approximation of the true error rate which 

expressed by this value, can be computed by using a testing data through the data 

(15) 

(16) 
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Predicted Class 

Actual Class 

mining techniques we introduced above. In terms of other parameters, such as speed, 

robustness and interpretability, the data mining models could also be compared. All of 

this might have an influence on both the verification of the validation of the final model. 

Here, we will use both confusion matrix and ROC curve to estimate the different data 

mining models. 

 
The Confusion Matrix is commonly used to assess the prediction accuracy of a model, 

especially for classification models. It measures whether a model is confused or not, 

that is, whether the model is making mistakes in its prediction. . It is a specific table 

layout that visualization of the performance of an algorithm, typically a supervised 

learning one. Each column of the matrix represents the samples in the predicted models 

while each row is the instances in an actual class. The format of a confusion matrix for 

a two-class case with classes yes and no is shown in Table 6 (Kantardzic, 2011). 

 Class 1 = Yes Class 2 = No 

Class 1 = Yes A: True + (TP) B: False + (FP) 

Class 2 = No C: False – (FN) D: True – (TN) 

 

Table 6. Confusion matrix for two-class classification model 
 
Consider a two-class prediction problem in which the outcomes are labeled either as 

positive (p) or negative (n). Then measures represented in the confusion matrix include: 

1) True Positive(TP): both the outcome from a prediction and the actual value are 

p; 

2) False Positive(FP): the prediction outcome is p but the actual value is n; 
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3) True Negative(TN): both the prediction outcome and the actual value are n; 

4) False Negative (FN): the prediction outcome is n while the actual value is p. 

FP is also called Type I error and FN is called Type II error as well. And one of the 

most widely used metric for assessing the data mining methodologies is “Accuracy” 

defined as follows: 

Accuracy              (17) 

 
In addition, the Received Operating Characteristic (ROC) or simply ROC curve is also 

applied for assessing the classification model. The ROC can be represented 

equivalently by plotting both the true positive rate (TPR) and the false positive rate 

(FPR), which are the fraction of true positives out of the positives and the fraction of 

false positives out of the negatives respectively: 

TPR ,  FPR       (18) 

 

A ROC space depicts relative trade-offs between true positive (benefits) and false 

positive (costs), which is defined by FPR and TPR as x and y axes respectively. And 

TPR is equivalent with sensitivity and FPR is equal to 1- specificity, therefore the ROC 

curve is also the sensitivity and (1- specificity) plot. Each prediction result or instance 

of a confusion matrix represents one point in the ROC curve as shown in Figure 15. 
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Figure 15. A ROC space 
 
The top left corner is the perfect performance point and the closer to the top left corner, 

the better the performance is. So in Figure 15, the point A is better than the point B and 

ROC curves characterize the performance of a classification mode as a curve instead of 

a single point. The ROC curve is an appropriate tool to measure the success of subgroup 

discovery for classification models since subgroups could be discarded as insignificant 

if their TPR/FPR tradeoff is close to the diagonal which represents random 

performance. Conversely, those sufficiently far away from the diagonal are the 

significant subgroups (Xiaoyi, 2008). To summarize, the following classification 

measures are derived from the relationship in the confusion matrix, some of which 

represents the sensitivity and specificity in the ROC curve. 

 Classification (Accuracy) Rate: (A + D) / (A + B + C + D) 
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 Misclassification Rate: (B + C) / (A + B + C + D) 

 Sensitivity (True Positive Rate): A / (A + C) 

 Specificity (True Negative Rate): D / (B + D) 

 1 – Specificity (False Positive Rate): B / (B + D) 

 

Additionally, cumulative gains and lift charts can be also used to measure the model 

performance. Both charts consist of a lift curve and a baseline and the greater the area 

between the lift curve and the baseline, the better the model is. Lift is a measure of the 

effectiveness of a predictive model, which could be calculated as the ratio between the 

results obtained with and without the predictive model. Also, Lift is the ratio of the 

percentage of targets which is infected individuals in each decile to the percent of 

targets in the entire data set. Cumulative lift is the cumulative ratio of the percent of 

targets up to the decile of interest to the percent of targets in the entire data set. For lift 

and cumulative lift, the higher value in the lower deciles indicates a predictive model. 

 

The Kolmogorov-Smirnov statistic is the maximum distance between the empirical 

distribution functions for the susceptible individuals and infected individuals. The 

difference is plotted, for all cutoffs, in the Kolmogorov-Smirnov Plot. The weakness of 

reporting only the maximum difference between the curves is that it provides only a 

measure of vertical separation at one cutoff value, but not overall cutoff values. 
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Also, the average square error is another fundamental statistical measure of the model 

performance in SAS. The squared difference between a predicted value and an actual 

value for the dependent variable is called the squared error and averaged over all cases, 

we obtain 

                                    (19) 

 
 
Where N is the number of cases or records or observations and for ith case, yi is the 

actual target value and ŷi is the predicted target value. A model with a lower average 

square error is less biased, more accurate than a model with a higher average square 

error. 
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 CHAPTER 4  ASSESSMENT OF DISEASE SPREAD BASED 
ON SPATIO-TEMPORAL INFORMATION 

 

Although there are a variety of different tools to predict and detect the disease spread 

including the SIR model, contact network models and mathematical model, we suggest 

that it would be more effective and beneficial to predict the disease spread considering 

the intensity of exposure to the disease of susceptible individuals. This would involve 

the consideration of both space and time factors. Since diseases caused by either viruses 

or bacteria involve some type of contact, either direct (shaking hands) or through the 

atmosphere (e.g. coughing or sneezing) between the susceptible and infected 

individuals.  

 

In this dissertation we use the concept of space-time paths to embellish the prediction 

of disease spread. As we know, the space-time path records the main activities and 

tracks during a certain period of time for an individual. Suppose there are two 

individuals and one is susceptible and the other is infected. By considering the space-

time paths of the individuals, we could estimate exposure intensity and assess the 

likelihood for the susceptible individual to get infected. 
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In this case, both space and time would be taken into account which is unique in this 

dissertation as well as other parameters, such as the characteristics of the disease. The 

length of time for overlapping parts of the two-individual space-time paths could be a 

descriptive method to evaluate the chance for one individual to get infected from the 

other. More detail is on the procedure is provided in the next section. 

  

4.1 Risk Analysis of Infection 

Consider two individuals A & B. A is infected and B is susceptible. The locations of A 

& B at any point in time t, specified by geographic coordinates (Xa(t), Ya(t)) and (Xb(t), 

Yb(t)) respectively.  

 

Therefore, their relatively proximity at any time t, can be represented by the Euclidean 

distance Dab(t) as indicated below:  

             (20) 
 

Consider the start and end times that A & B are in the “infection range” at location i (i 

= 1, 2, …, n ) as Tsi and Tei. where n presents the number of segments in common on 

the space-time paths for both A and B over a certain period of time. 

In fact, for each location i, Dab could be regarded as a constant.  

Therefore, Dab = Di =  
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We propose a function Fab that incorporates individual and spatio-temporal factors to 

define the likelihood that B catches the infection from A, while at location i.   

                     (21) 

 
Where p is the time parameter and q is the distance parameter. p should be between 0 

and 1; q should be greater than 1. Both p and q could be obtained from experimental 

and field studies. Additionally, ε is a very small positive number which prevents the 

denominator from being zero. 

 

γs is a parameter that defines the susceptibility of a particular individual to the infectious 

disease. This would depend on a variety of factors, and is discussed further in the next 

section; γd is a disease parameter which represents the virulence of the disease and could 

also be estimated by R0 in the compartmental SIR model approximately.  

 

Let γ = γs × γd and γ is roughly equal to the force of infection in epidemiology, which 

is the rate at which susceptible individuals become infected by an infectious disease. 

The advantage of the method to calculate the force of infection is that data on the 

average age of infection is very easily obtainable from doctors’ reports, even though 

they are not reporting all cases of the disease. It also can be used to compare the rate of 

transmission between different groups of the population for the same infectious disease 

or even between different infectious diseases. If the force of infection is denoted as λ, 

then we have  
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λ = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 ×𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
    

(22) 

It is difficult to do such a calculation since not all new infections are reported but also 

to know how many susceptible were exposed. Therefore, we estimate the value of γ 

from two aspects, the characteristics of the infectious disease itself and the existing 

health status of the susceptible individuals.   

 
However, in the real world it is unlikely that individuals could specify the locations 

where they had been in terms of exact geometric coordinates. It is conceivable however, 

that they could identify landmarks, such as buildings, museums, libraries, restaurants. 

where they had been. Therefore, the formula above could be approximately rewritten 

as follows: 

                        

                   (23) 

 
Where Ri represents radius of a circle that could encompass the areas of possible 

movement at common location i between two individuals.  

 

Fab is referred to as infection index between two individuals A and B, who have a 

coexistence relationship at locations i.  By normalizing F over all individuals (l,m € 

C) with coexistence relationships, we can obtain the relative transmission rate Rab 

which defines the likelihood the disease could be transmitted between two individuals 

in Equation 18.  
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       (∀(l, m € 𝐶)    𝑙 ≠ 𝑚 )    (24) 

 
The following example illustrates this concept: 

Consider two individuals and their activity information over two days in Table 7. 

 

 

Table 7. Activity information of two individuals during two days 
 
And by using ArcGIS software, we can generate the space-time paths of their activity 

information as shown in Figure 16. The red line represents the first individual’s activity 

information and the blue one for the other individual. On the space-time path, there are 

several overlapping parts, which represents synchronous activities, where they are both 

are in close proximity. This, as noted previously, would factor into risk of getting 

infected.  
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Figure 16. The Space-time paths of two individuals 

 

Let γ = γs × γd, so given different parameters such as γ, p and q, Fab could have different 

values which are displayed in Table 8 and their data analyses are shown in Figure 17.  

 

Fab 

γ = 0.2 

q\p 0.3 0.6 0.9 

1.5 1.3263 4.8136 18.4013 

2 0.2649 0.0622 3.6794 

2.5 0.0529 0.1924 0.7358 

γ = 0.4 

q\p 0.3 0.6 0.9 

1.5 2.6526 9.6272 36.8026 

2 0.5298 1.9244 7.3588 

2.5 0.1058 0.3848 1.4716 

γ = 0.6 

q\p 0.3 0.6 0.9 

1.5 3.9789 14.4408 55.2039 

2 0.7947 0.1866 11.0382 

2.5 0.1587 0.5772 2.2074 

γ = 0.8 

q\p 0.3 0.6 0.9 

1.5 5.3052 19.2544 73.6052 

2 1.0596 0.2488 14.7176 



53 
 

2.5 0.2116 0.7696 2.9432 

γ = 1.0 

q\p 0.3 0.6 0.9 

1.5 6.6315 24.068 92.0065 

2 1.3245 0.311 18.397 

2.5 0.2645 0.962 3.679 
 

Table 8. Different Fab values with different parameters 

 

 

Figure 17. The Curve of different Fab values with different parameters (γ= 0.2) 
 
 
So from both Table 8 and Figure 17, we can see that for the same value of γ, as p 

increases, Fab would be increased accordingly; Conversely, Fab would decrease when q 

increases. For the same p and q, the risk would increase if γ increases. Intuitively this 

makes sense, since higher the infectivity of the disease, higher risk of getting infected. 

 

4.2 Parameter γs and γd Computation 

In the formula 11 discussed in section 4.1, the susceptible parameter γs could be related 

to multiply factors, especially the physical conditions and behaviors of the individuals. 
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Therefore, we will use both data mining methodologies and MIC to compute the 

approximate value of γs. And for γd, we will just normalize the R0 values among 

common airborne diseases.  

4.2.1 Datasets 

 
Since the real world data sets are difficult to collect, we establish a reasonable dataset 

based on the academic statistical results from both journals and related organizational 

websites, which records the body physical conditions and the routine activities of 10000 

different individuals with the format of comma-separated value (.CSV) files.  

No. Name Data Type Role Range 

1 ID interval ID 40001-50000 

2 State nominal Rejected US 50 States 

3 Gender binary Input 0 or 1 

4 Age interval Input 1-100 

5 Month interval Rejected 1 to 12 

6 Body Mass Index Interval Input 15-33 

7 Smoker binary Input 0 or 1 

8 Obesity binary Input 0 or 1 

9 Diabetes binary Input 0 or 1 

10 Asthma binary Input 0 or 1 

11 Alcohol binary Input 0 or 1 

12 Prescription Drugs binary Input 0 or 1 

13 Illicit Drugs binary Input 0 or 1 

14 Vegetarian binary Input 0 or 1 

15 Exercise Rate ordinal Input 0 to 7 

16 High Blood Pressure binary Input 0 or 1 

17 Medical Care Rate ordinal Input 0 - 4 

18 Pregnant binary Input 0 or 1 

19 Family History binary Input 0 or 1 

20 Allergy binary Input 0 or 1 

21 Avg Working Hours interval Input 0 to 45 

22 Infected binary Output 0 or 1 

 

Table 9. Dataset variables 
 
The variables in the dataset are explained as follows: 
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1) ID: Sample ID; 

2) State: indicates which state each individual gets infected from; 

3) Gender: 1 represents male and 0 represents female; Data was generated based  

       on US 2010 Census Briefs: Male 49.2%, Female 50.8%; 

4) Age: also based on US 2010 Census Briefs: 

Age  Under 18 years 18 to 44 years 45 to 64 years 65 years and over 

Percentage 24.00% 36.60% 26.40% 13% 

 

Table 10. Age percentage of US population 2010 
 

5) Month: month in which each individual got infected and might have some   

       relationships with temperature and humidity; 

6) Body Mass Index (BMI): Based on the US statistics in the year of 1999 

Age < 20 20-29 30-39 40-49 50-59 60+ 

BMI 15-28 20-28 20-30 22-30 22-32 22-33 

BMI Median 22.72 25.05 25.77 25.94 26.51 26.70 

 

Table 11. US BMI statistics by Age in 1999 
 

7) Smoker: 1 is for Yes and 0 is for No. Data was established based on CDC  

        statistics results in US.2010: 22% of adults aged 18-64 years and     

        9.5% of adults aged 65 years and older; 

8) Obesity: 1 is for Yes and 0 is for No. Data was created based on CDC US.    

        Obesity Trends: 9.5% for children and adolescents aged less than 19  

        years and 35.7% for adults aged 19 years and older; 
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9) Diabetes: 1 is for Yes and 0 is for No. Data was generated based on CDC  

        statistics from 1980 through 2010: 12.3% for adults aged 45-65  

        years and 20.5% for adults aged 66 years and older; 

10) Asthma: 1 is for Yes and 0 is for No. Data was established based on CDC  

        statistical results in 2010: 9.4% for children aged less than 18 and  

        8.2% for adults aged 19 years and older. 

11)  Alcohol: 1 is for Yes and 0 is for No. 72% for adults aged 18-54 years and  

         59% for adults aged 55 years and older (Frank Newport, 2010) 

12) Recent Prescription Drugs: 1 is for Yes and 0 is for No. 10% for children and  

                       adolescents aged less than 18 years, 30% for  

                       adults aged19-60 years and 30% for adults aged  

                       61 years and older; 

13) Illicit Drugs: 1 is for Yes and 0 is for No. Data was created based on the  

           statistical results of National Institute on Drug Abuse (NIDA) in   

           2011: 2% for adults. 

14) Vegetarian: 1 is for Yes and 0 is for No. 12% for children and                

               adolescents aged less than 18 years, 7% for adults aged19-55  

              years and 14.4% for adults aged 56 years and older; 

15) Exercise rate: How many times do individuals do exercise per week. 1-7 times  
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            per week for the 23% adults aged 19-44 years old, 1-7 times  

            per week for the 17% adults aged 45-64 years and 1-5 times per  

            week for the 9.6% adults aged 65 years and older; 

16) High Blood Pressure: 1 is for Yes and 0 is for No. Data was generated based  

                  on the statistical results by American Heart Association:  

                  22% for the adults aged 20-54 years and 67% for the  

                  adults aged 55 years and older; 

17) Medical Care Rate: how many times to get a physical examination per year.  

                 Never for 35% of the whole population, only once for  

                 45% population, twice for 15% population, three times  

                 for 6% population and four times for 4% population; 

18) Pregnant: 1 is for Yes and 0 is for No. 30% female adults aged 15-28 years; 

19) Family History: 1 is for Yes and 0 is for No. 14% of the whole population; 

20) Allergy: 1 is for Yes and 0 is for No. Approximate 10% of the whole US  

        population have allergy based on CDC survey in 2008;  

21) Avg Working Hours: average working hours per week. See Table 12 below: 

 

Age Unemployed or Retired 10-25 hours per week 33-45 hours per week 

18-64 10% 30% 60% 

65 and older 95% 3% 2% 
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Table 12. US．Average working hours by age 
 

22) Infected: 1 is for Yes and 0 is for No. Seasonal flu & influenza rate: around  

           6.5% for the children and adolescents aged below 18 years old and  

           6.3% for the adults aged 18 years and older based on the statistical  

           results by the American Lung Association in 2007. 

 

4.2.2 Data Preparation 
 
We will use the SAS Enterprise Miner 12.1 as the software tool to do the data mining 

process since the SAS Enterprise Miner streamlines the data mining process to create 

highly accurate predictive and descriptive models based on analysis of vast amounts of 

data. 

In SAS Enterprise Miner, the data mining process has the following (SEMMA) steps:  

1. Sample the data by creating one or more data sets. The sample should be large 

enough to contain significant information, yet small enough to process. This 

step includes the use of data preparation tools for data import, merge, append, 

and filter, as well as statistical sampling techniques. 

2. Explore the data by searching for relationships, trends, and anomalies in order 

to gain understanding and ideas. This step includes the use of tools for statistical 

reporting and graphical exploration, variable selection methods, and variable 

clustering.  

3. Modify the data by creating, selecting, and transforming the variables to focus 

the model selection process. This step includes the use of tools for defining 
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transformations, missing value handling, value recoding, and interactive 

binning. 

4. Model the data by using the analytical tools to train a statistical or machine 

learning model to reliably predict a desired outcome. This step includes the use 

of techniques such as linear and logistic regression, decision trees, neural 

networks, partial least squares, LARS and LASSO, nearest neighbor, and 

importing models defined by other users or even outside SAS Enterprise Miner. 

5. Assess the data by evaluating the usefulness and reliability of the findings from 

the data mining process. This step includes the use of tools for comparing 

models and computing new fit statistics, cutoff analysis, decision support, report 

generation, and score code management.  

 

There are several models included in our data mining process.  

The Input Data tool represents the data source that we choose for our data mining 

analysis and provides details (metadata) about the variables in the data source; while 

the File Import enables us to convert selected external flat files, spreadsheets, and 

database tables into a format that SAS Enterprise Miner recognizes as a data source. 

 

The Data Partition tool enables us to partition data sets into training, test, and validation 

data sets. The training data set is used for preliminary model fitting. The validation data 

set is used to monitor and tune the model during estimation and is also used for model 

assessment. The test data set is an additional holdout data set that you can use for model 
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assessment. This tool uses simple random sampling, stratified random sampling, or 

cluster sampling to create partitioned data sets. 

 

The Graph Explore tool is an advanced visualization tool that enables us to explore 

large volumes of data graphically to uncover patterns and trends and to reveal extreme 

values in the database. The tool creates a run-time sample of the input data source. We 

can use the Graph Explore node to interactively explore and analyze our data using 

graphs. 

 

The MultiPlot tool is a visualization tool that enables us to explore large volumes of 

data graphically and it automatically creates bar charts and scatter plots for the input 

and target. Also, the code created by this tool can be used to create graphs in a batch 

environment. 

 

The StatExplore tool is a multipurpose tool used to examine variable distributions and 

statistics in the data sets. The tool generates summarization statistics and we can use 

the StatExplore tool to select variables for analysis, for profiling clusters, and for 

predictive models; It can be also used to compute standard univariate distribution 

statistics, standard bivariate statistics by class target and class segment and correlation 

statistics for interval variables by interval input and target. 
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The Impute tool enables us to replace values for observations that have missing values. 

We can replace missing values for interval variables with the mean, median, midrange, 

mid-minimum spacing, or distribution-based replacement, or we can use a replacement 

M-estimator such as Tukey’s biweight, Huber’s, or Andrew’s Wave. We can also 

estimate the replacement values for each interval input by using a tree-based imputation 

method. Missing values for class variables can be replaced with the most frequently 

occurring value, distribution-based replacement, tree-based imputation, or a constant. 

 

The Transform Variables tool enables us to create new variables that are 

transformations of existing variables in our data. Transformations are useful if we want 

to improve the fit of a model to the data. For example, transformations can be used to 

stabilize variances, remove nonlinearity, improve additivity, and correct nonnormality 

in variables. The Transform Variables tool supports various transformation methods. 

The available methods depend on the type and the role of a variable.  

The Control Point tool enables us to establish a control point to reduce the number of 

connections that are made in process flow diagrams. For example, suppose that three 

Input Data Source tools are to be connected to three modeling tools. If no Control Point 

tool is used, then nine connections are required to connect all of the Input Data Source 

tools to all of the modeling tools. However, if a Control Point tool is used, only six 

connections are required. 

 

The Model Comparison tool provides a common framework for comparing models and 

predictions from any of the modeling tools. The comparison is based on the expected 
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and actual profits or losses that would result from implementing the model. The tool 

produces several charts that help to describe the usefulness of the model, such as lift 

charts and profit/loss charts. 

 

The Score tool enables us to manage, edit, export, and execute scoring code that is 

generated from a trained model. Scoring is the generation of predicted values for a data 

set that might not contain a target variable. The Score tool generates and manages 

scoring formulas in the form of a single SAS DATA step, which can be used in most 

SAS environments even without the presence of SAS Enterprise Miner. The Score tool 

can also generate C score code and Java score code. 

 

 

4.2.3 γs computation 
 
As mentioned previously, γs is the parameter which describes the susceptibility for 

those who have not been infected yet. We believe that it is associated with people’s 

demographic information and health status and therefore logistic regression and several 

data mining methodologies might be used to predict the likelihood of infection. In real 

world case, health care records in clinics or hospital would be very helpful for the 

infection prediction. 

 

 

The estimation of transmission parameters has been problematic for diseases that rely 

predominantly on transmission of pathogens from person to person through small 
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infectious droplets (Wallinga et al. 2006). For example, age-specific transmission 

parameters determine how such respiratory agents will spread among different age 

groups in a human population. Estimating the values of these parameters is essential in 

planning an effective response to potentially devastating pandemics of influenza and in 

designing control strategies for diseases. In Wallinga’s paper, the estimated age-

specific transmission parameters suggested that school-aged children and young adults 

will experience the highest incidence of infection and will contribute most to further 

spread of infections during the initial phase of an emerging respiratory-spread epidemic 

in a completely susceptible population (Wallinga et al. 2006).  

 

Similarly, from all the potential factors, we conduct regression models and several other 

data mining methodologies to determine which factors have important implications for 

controlling future outbreaks of respiratory-spread infectious agents. Specifically, these 

significant factors would be utilized to build a predictive model and estimate the 

susceptibility parameter γs. To accomplish this, it is necessary to choose a particular 

software system to carry out the computations. Although there are many good statistical 

packages for doing the logistic regression, SAS is certainly among the best in terms of 

the range of estimation methods, available features and options, efficiency and stability 

of the algorithms, and quality of the documentation. 

  

 

4.2.4 γd computation 
 
γd is a parameter associated with the characteristics of the infectious disease itself as 

well as the ability of the disease to infect susceptible individuals during the pandemics. 
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Therefore, we can use the basic reproduction rate R0 in the compartmental SIR model 

to approximately estimate the value of γd. In epidemiology, the basic reproduction 

number R0 describes the number of susceptible individuals one infected individual on 

average can infect over the course of the infectious period. Table 13 provides the R0 

values for a couple of common different infectious diseases. The initial R0 value is a 

range and therefore the average R0 is computed to obtain an exact value. By normalizing 

the average R0 (divided by 20, this could vary in real world case), we can roughly get a 

value for γd, that would be used in the infection risk formula introduced previously.  

 

Disease Transmission R0 Average R0 γd (/20) 

Measles Airborne 12 – 18 15 0.75 
Pertussis Airborne droplet 12 – 17 14.5 0.725 
Rubella Airborne droplet 5 – 7 6 0.3 
Mumps Airborne droplet 4 – 7 5.5 0.275 
SARS Airborne droplet 2 – 5 3.5 0.175 

Influenza Airborne droplet 2 – 3 2.5 0.125 
Diphtheria Saliva 6 – 7 6.5 0.325 
Smallpox Social contact 5 – 7 6 0.3 

Polio Fecal-oral route 5 – 7 6 0.3 
HIV/AIDS Sexual contact 2 – 5 3.5 0.175 

 
Table 13. R0 values for different diseases 

 
 

4.3 Process Flowchart Summary 

The essence of the decision support system for risk analysis, is the assessment of the 

four parameters (γs, γd, Fab, Rij )defined previously and summarized below: 
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(1) Susceptible parameter γs and disease parameter γd: data mining tools such as 

Decision Trees, Artificial Neural Network, and Regression are used to compute the 

susceptible parameter γs and the disease parameter γd in the infection index formula. 

 

(2) Infection Index Fab: Provided with information from both susceptible individuals 

and infected individuals, the decision support system would use the spatio-temporal 

formula to calculate the infection index Fab after the susceptible parameter γs and 

disease parameter γd are obtained empirically. 

 

(3) Transmission Rate Rij: By normalizing the infection index Fab, the transmission rate 

Rij between two specific individuals would be computed in the decision support system.  

 

(4) Risk Analysis: the centrality value for each individual in the network would be 

evaluated by the method proposed in this paper. Conceptually all individuals could then 

be ranked or color coded different colors according to their centrality values. As 

explained in the previous section, this information could be utilized in a decision 

support system to effectively and efficiently mitigate the spread of a virulent disease. 

Figure 18 displays the process flow chart of the decision support system. 
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Figure 18. The working flowchart of contact network analysis with 

spatiotemporal information 

 

Again, by normalizing the infection index Fab, we could obtain the transmission rate 

between two individuals which could be used in the proposed centrality computation 

method discussed in the previous section. According to the centrality values, each 

individual would be classified into different color risk zones and given different 

priorities for the vaccination.  

 

4.4 Decision Support System 

 
Generally speaking, a decision support system is a computerized information system 

that supports business and organizational decision-making activities. It is intended to 

help decision makers compile useful information from raw data, documents, personal 
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knowledge and business models to identify and solve problems and make decisions. 

While in the field of healthcare, clinical decision-support systems (CDSSs) are 

computer programs that are designed to provide expert support for health professionals 

making clinical decisions (Musen et al. 2001). It is an interactive system used to give 

clinical advice for the patients based on the existing patient data.  

 

The core of the spatio-temporal analysis is the decision support system since it 

compares the information provided by both the susceptible people and infected people 

and gives constructive suggestions to both the public health organizations and the 

general population. All these procedures discussed previously are operated by the 

decision support system in Figure 19 which has the main processes. 

 

 
Figure 19. Decision support system 
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(1) The people who seem to have the infection symptoms go to the hospitals 

spontaneously and then they have to fill out the surveys provided by the hospital. The 

surveys contain some questions about the information of where they have been to 

recently and when.   

(2)  Then the geographic information of these infected individuals could be obtained 

by space-time paths, which would be displayed in ArcGIS environment.  

(3)  For those who care more about their risk of getting infected and mostly susceptible 

or not detected to be infected yet, they can input their information about their recent 

tracks into the decision support system. Then they will get a feedback or report about 

their infection risk based on the infection index.  

(4)  If the risk is high, they would be given priority for observation or vaccines. 

Otherwise, they could do the routine activities as normal but still need to keep an eye 

on the spatial-temporal trend of the disease spread.  

 

4.5 Comprehensive Application 

 
As a matter of fact, not only people with symptoms could be used for detecting the 

potential pandemics, some other potential “sensors” could also have this functionality. 

For example, the “Louisville Connectors” could be considered as one set of sensors for 

the Louisville metropolitan area. The Louisville connectors are a diverse group of 128 

individuals ranging in age from 28 to 71, from 5,500 nominations submitted by people 

through Louisville and Southern Indiana and they could be considered as “central 

individuals” to monitor. Individuals identified by sources, such as, hospital laboratories, 

and “First Watch” with symptoms of virulent infections can also answer questionnaires. 



69 
 

Additionally, The Early Aberration Reporting System (EARS) of the Centers for 

Disease Control and Prevention (CDC) allows the analysis of public health surveillance 

data using available aberration detection methods. 

 

In a similar fashion, infection spread within a hospital or treatment facility could be 

mitigated by tracking spatial-temporal movement and contact of infected patients, 

especially those with long hospital stays. This approach could also be extended to 

equipment used on infected patients, which hospitals typically do not track. One way 

to accomplish this would be through the use of RFID tags that track the movement of 

patients, hospital staff and equipment and their spatial-temporal interactions with an 

infected person. This would enable the defining a risk level for all hospital residents 

who are susceptible to infection, which would allow efficient prophylactic measures to 

be appropriately scheduled and adopted. 
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CHAPTER 5 EXPERIMENTAL EVALUATION AND ANALYSIS 
 

5.1 Experimental Evaluation 

5.1.1 Explore dataset and descriptive statistics 
 
First of all, we need to understand the data, draw data graphs and perform basic data 

summaries including means, standard deviation etc. The exploration of data is relatively 

straightforward in SAS since they can be obtained by using a couple of SAS 

components. Here we are mainly using the StatExplore node and Multiplot node to 

realize the data exploration. 

 

The results of StatExplore node include the data summary statistics for both class 

(category) variables and interval variables. 

 

 
 

Table 14. Class variable summary statistics 
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From the class variable table, we can see that there are totally 13 input variables and 1 

target variables, most of which are binary variables. There are no missing values for the 

training set which is good for predictive modeling since our data is generated according 

to the pubic statistics from authority agencies, such as US census and CDC. But as a 

matter of fact, the raw data could be very messy in the real world and we need to 

perform data preprocessing before the predictive modeling, such as data cleaning, data 

reduction and outlier detection. According to the class variable table, almost half of the 

whole sample population have an experience of drinking alcohol. Only a small 

percentage have allergy, asthma, diabetes and also a small percentage are pregnant, 

smokers and vegetarians. Also, currently 6.27 % of the sample population have already 

been infected to have the influenza, which indicates that the number of infected people 

could be very large if it is true for the whole population. 

 
 

Table 15. Interval variable summary statistics 
 

 
There are 4 interval variables, which are all input variables also with no missing values. 

From the interval variable table, we can see that the sample population have an age 

range between 1 and 99, and their average age is 38. Also, the average BMI for the 

sample population is approximately 24.8, which is within the normal range. On average, 

people do not do exercise that much, less than once per week. The average working 

hours per week is 17.8 hours and some people work more than 40 hours per week. 

 

5.1.2 Analyze the sample dataset 
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In order to explore the data well, we need to know about the domain and therefore it is 

essential to discuss the sample dataset into more details. The sample dataset contains 

all the demographic information and health condition status information of individuals 

with a total of 20 variables and 10000 observations. Our goal is to determine which 

factors among the potential demographic and health condition information have a 

significant impact on the likelihood of infection for individuals and what that infection 

risk is for one susceptible individual. The variable list for the sample dataset is given in 

Table 16. 

 
Variable Name Variable Description 

Age People’s Age 
Alcohol Check if an individual has an experience of drinking alcohol 
Allergy Check if an individual has allergy 
Asthma Check if an individual has asthma 
BMI People’s BMI (Weight over Height) 
Diabetes Check if an individual has diabetes 
Exercise_Rate Describes how often an individual does exercises 
Famaily_His Check if an individual has a family history infection 
Gender People’s gender 
HighBloodPressure Check if an individual has high blood pressure 
Illicit Drugs Check if an individual has an experience of illicit drugs 
Infected Check if an individual has been already infected 
Obesity Check if an individual has obesity 
Pregnant Check if a female individual is pregnant 
Recent_Perscription_Drugs Check if an individual has an experience of prescription drugs 

recently 
Smoker Check if an individual is a smoker 
Vegetarian Check if an individual is a vegetarian 
Working_Hours How many hours an individual works per week 

 
Table 16. Variable names and variable description 

 
Most variables are identified as binary variables and only Age, BMI, Exercise_Rate 

and Working_Hours are identified as interval variables. In order to further investigate 

these variables, we will use StatExplore and MultiPlot nodes in the SAS Enterprise 

Miner.  
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Also, SAS/Insight is the main module of the explorative data analysis, which could be 

reached by typing “insight” in the command box of SAS toolbar or selecting system 

menu “Solutions – Analysis – Interactive Data Analysis”. 

 
 

 

Figure 20. Distribution of Age 
 
 
Data could be displayed through diagrams and sometimes we also need to extract data 

summarization information to describe the characteristics of the entire dataset. These 

abstract and summary data could be collected from the raw dataset after summarization, 

which utilizes relatively small amount of variables and metrics to represent the whole 

data information. Meanwhile, these extracted information computed from the sample 

data is referred as to the sample statistics. Since different sample dataset could be 

obtained from the population through different ways, the sample statistics varies 

according to the different sample dataset even for the same population. Therefore, the 

sample statistics is mostly uncertain but it is known and it could be measured from 

several perspectives, such as converge trend, dispersion, distribution and data shape. 

 
1. Age 
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Table 17. Statistical results for the variable Age 
 
 

 
Figure 21. The distribution and trend of variable age 
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The Age variables statistics table indicates that there are 10000 individuals in the 

sample dataset at the age ranging from 1 to 99 and their average age is approximately 

38 with a standard deviation of 24.6, which leads to a high coefficient of variation 

64.5%. Also, the histogram of age distribution illustrates that the majority in the sample 

have an age between 10 and 60 and the minority are children and senior citizens. It is 

right skewed since the skewness is 0.498 > 0 and the peak value is lower than standard 

normal distribution because the Kurtosis is -0.487 < 0. 

 
2. BMI 

 

 
 

Table 18. Statistical results for the variable BMI 
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Figure 22. Distribution of BMI 

 

3. Exercise Rate 

 
 

 
 

Table 19. Statistical results for the variable Exercise_Rate 
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Figure 23. Distribution of exercise rate 
 

4. Average Working Hours 
 

 
 

Table 20. Statistical results for the variable Average Working Hours 
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Figure 24. Distribution of Working Hours 
 

5. All other Category Variables  
 

Variable Value Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

Gender 0 5081 50.81 5081 50.81 
1 4919 49.19 10000 100.00 

Smoker 0 8596 85.96 8596 85.96 
1 1404 14.04 10000 100.00 

Obesity 0 7207 72.07 7207 72.07 
1 2793 27.93 10000 100.00 

Diabetes 0 9425 94.25 9425 94.25 
1 575 5.75 10000 100.00 

Asthma 0 9122 91.22 9122 91.22 
1 878 8.78 10000 100.00 

Alcohol 0 5204 52.04 5204 52.04 
1 4796 47.96 10000 100.00 

Recent_ 
Prescription_Drugs 

0 7571 75.71 7571 75.71 
1 2429 24.29 10000 100.00 

Illicit_Drugs 0 9836 98.36 9836 98.36 
1 164 1.64 10000 100.00 

Vegetarian 0 9042 90.42 9042 90.42 
1 958 9.58 10000 100.00 

High_Blood_Pressure 0 7339 73.39 7339 73.39 
1 2661 26.61 10000 100.00 

Pregnant 0 9741 97.41 9741 97.41 
1 259 2.59 10000 100.00 

Family_His 0 8664 86.64 8664 86.64 
1 1336 13.36 10000 100.00 

Allergy 0 9008 90.08 9008 90.08 
1 992 9.92 10000 100.00 

Infected 0 9373 93.73 9373 93.73 
1 627 6.27 10000 100.00 

 
Table 21. All other categorical variables 

 
The MEANS procedure provides data summarization tools to compute descriptive 

statistics for variables across all observations and within groups of observations.   
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In data mining, we try to find patterns in the data and it is always possible to make it. 

However, pattern recognition with validation could be a reason that data mining as a 

method was often disparaged in statistical training. Therefore, it is strongly 

recommended that the raw data is partitioned routinely into three datasets: training, 

validation and testing. Specifically, the training dataset is used to develop the model 

and the validation datasets iteratively ensure that the developed model fits a fresh 

dataset. Once the model is completed, the testing datasets make a final comparison. 

 

For a given output variable (or target variable), the accuracy of the final developed 

model is initially judged by misclassification rate and misclassification occurs when the 

predicted output value is not equal to the actual output value. Also, there are many 

different models that can be used and compared to investigate the data instead of 

choosing just one model to define a specific p-value. These assessment methods have 

been developed to make these comparisons using the training, validation and testing 

methodology. 

 

Another important component of data mining in SAS is the ability to score the data. 

The predicted value is related to the actual value through scoring and the closeness of 

one to the other can be examined by using other statistical techniques. Also, scoring is 

particularly important when examining the likelihood of getting infected for an 

individual before the pandemics. In this case, scoring assigns a level of infection risk 
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to a susceptible individual such that the pandemic response team could control the 

spread of infectious disease effectively.  

 
 

5.1.3 Data Mining Process  
 
According to the SEMMA principle discussed previously, the brief steps of the data 

mining process are as follows: 

1) Open the SAS Enterprise Miner WorkStation 7.1 and in the Welcome to 

Enterprise Miner Window, create a New Project and specify the SAS Server 

Directory in which SAS data sets and other files that are generated by the project 

will be stored. 

2) Create a Diagram with the same name of the project. Create the File Import 

Node under Sample by dragging it into the Text workstation. Select this Import 

Node and in the Property Panel click on the ellipses that represent Import File 

to import the original training data set. And right click on the File Import Node 

and select run to make sure that the original data is successfully imported.  

3) Create both the StatExplore and Multiplot Nodes under Explore also by 

dragging it into the Text workstation and connect it to the previous nodes. Select 

the StatExpore node and click on the value of Interval Variables and select Yes 

from the drop-down menu that appears. And then Select the MultiPlot node, in 

the Properties Panel, click on the value of Type of Charts and select Both from 

the drop-down menu that appears. Finally right-click the Multiplot node, and 

select Run from the resulting menu. And we could see the Results in the Train 

Graphs window which displays a bar chart and a scatter plot for each variable. 
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4) Create Data Partition node under Sample also by dragging it into the Text 

workstation and connect it to the previous nodes. Select the Data Partition node, 

and click on the value of Training and enter 70.0, similarly click on the value of 

Validation and enter 30.0, finally click on the value of Test, and enter 0.0. Run 

the Data Partition node and the results are as follows: 

 

Table 22. Partition summary 
 
 

5) Create the Replacement node under Modify, drag it into the Diagram 

Workspace and connect it to the previous nodes. And in the Properties Panel set 

the Default Limits Method as Standard Deviations from the Mean in order to 

reduce the missing values. 

6) Create the Decision Tree node under Model and drag it into the Diagram 

Workspace and connect it to the previous nodes. Right-Click the Decision Tree 

node and rename the node as Interactive Decision Tree. In the Properties Panel, 

click on the ellipses that represent the value of Interactive. Select the root node 

and then from the Action menu select Split Node. The Split Node window 

appears that lists the candidate splitting rules ranked by logworth (-Log(p)). 

Since the Smoker variable has the highest logworth, it is first split and the tree 

now has two additional nodes. Repeat this process for each newly generated 

node until the logworth value for variable equals to 0.  Figure 25 displays the 
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Leaf Statistics results and the structure of the Decision Tree is illustrated in 

Appendix 4. 

 

 

Figure 25. The Leaf Statistics 
 
 

7) Create the Impute node under Modify and drag them into the Diagram 

Workspace and connect them to the previous nodes. For class variable, click on 

the value of Default Input Method and select Tree Surrogate from the drop-

down menu that appears; for interval variables, click on the value of Default 

Input Method and select Median from the drop-down menu that appears. In our 

case, the values of missing interval variables are replaced by the median of the 

nonmissing values. This statistic is less sensitive to extreme values than the 

mean or midrange and is therefore useful for imputation of missing values from 

skewed distributions. 

8) Create both the Variable Selection node and AutoNeural nodes and drag them 

into the Diagram Workspace and connect them to the previous nodes. Click on 

the value of the model option Architecture and select Cascade from the drop-

down menu that appears. This action causes SAS Enterprise Miner 7.1 to train 



83 
 

only cascade network models. Click on the value of the model option Train 

Action and select Search. This action causes SAS Enterprise Miner 7.1 to 

perform a search to find the best of the candidate network models. 

 

 

Figure 26. Results of AutoNeural model 

9) Create the Regression node under Model and drag it into the Diagram 

Workspace and connect it to the previous nodes. Click on the Selection Model 

property in the Model Selection subgroup and select Stepwise from the drop-

down menu that appears. This specification causes SAS Enterprise Miner to use 

stepwise variable selection to build the logistic regression model. Make all the 

other settings by default and run the model.  
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10) Create two Neural Network nodes under Model by dragging them into the Text 

workstation and connect them to the previous nodes. Rename the nodes as MLP 

and GLIM respectively. In the Properties Panel, click on the ellipses that 

represent the value of Network. Select the root node and then from the Action 

menu select Split Node. Change the Architecture property as Multilayer 

Perceptron and Generalized Linear Model respectively for MLP and GLIM 

nodes from the Network menu that appears. This selection enables the network 

to have connections directly between the inputs and the outputs in addition to 

connections via the hidden units. Click on the value of Number of Hidden Units 

and enter 5. This case trains a multilayer perceptron neural network with five 

units on the hidden layer. 

11) Create the DMNeural node under Model and drag it into the Diagram 

Workspace and connect it to the previous nodes. Make all the setting by 

default and run the model.  

12) Create both the Control Point node under Utility and Model Comparison node 

under Assess and drag them into the Diagram Workspace and connect them to 

the previous nodes in order to compare models and select a champion model, 

which according to an evaluation criterion performs best in the validation data. 

Control Point nodes enable you to better organize your process flow diagram. 

These nodes do not perform calculations; they simply pass data from preceding 

nodes to subsequent nodes. Finally run the Model Comparison node and display 

the results. The Results indicate that the AutoNeural Network is the champion 

model. 
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13) Stop Criteria: Could be specified in each model and if the criteria are met, the 

process will automatically stop. Or we can set a limited running time and as 

long as the time is reached, the data mining process would also come to an end. 

The whole data mining process is displayed in Figure27: 

 



86 
 

 
 

Figure 27. Process flow diagram of data mining process 

 

5.1.4 Data Visualization 
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Data visualization is the presentation of data in a pictorial or graphical format. For 

centuries, people have depended on visual representations such as charts and maps to 

understand information more easily and quickly. As more and more data is collected 

and analyzed, decision makers at all levels welcome data visualization software that 

enables us to see analytical results presented visually, find relevance among the millions 

of variables, communicate concepts and hypotheses to others, and even predict the 

future. Because of the way the human brain processes information, it is faster for people 

to grasp the meaning of many data points when they are displayed in charts and graphs 

rather than poring over piles of spreadsheets or reading pages and pages of reports. 

Therefore, we will utilize several data visualization tools to explore our data and give 

us a direct way to understand how our data looks like. 

 
Bar charts are most commonly used for comparing the quantities of different categories 

or groups. Values of a category are represented using the bars, and they can be 

configured with either vertical or horizontal bars with the length or height of each bar 

representing the value. When values are distinct enough that differences in the bars can 

be detected by the human eye, we can use a simple bar chart. However, when the values 

(bars) are very close together or there are large numbers of values (bars) that need to be 

displayed, it becomes more difficult to compare the bars to each other. Figure 28 

demonstrates the number of infected individuals by their age group. 
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Figure 28. Number of infected individuals by age 
 
 
A line graph, or line chart, shows the relationship of one variable to another. They are 

most often used to track changes or trends over time. Line charts are also useful when 

comparing multiple items over the same time period. The stacking lines are used to 

compare the trend or individual values for several variables. Bar charts and line graphs 

are more appropriate for continuous data rather than the categorical data. 

  

Pie charts are most effective when there are limited components and when text and 

percentages are included to describe the content. There is much debate around the value 

of pie charts, which are used to compare the parts of a whole. However, they can be 

difficult to interpret because the human eye has a hard time estimating areas and 

comparing visual angles. Another challenge with using a pie chart for analysis is that it 

is difficult to compare slices of the pie that are similar in size but not located next to 

each other. If you do use pie charts, they are most effective when there are limited 

components and when text and percentages are included to describe the content. Figure 
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29 illustrates the average weekly working hours and their percentage of the whole 

sample population. 

 

Figure 29. Pie chart of population percentage of average weekly working hours 
 
 
A bubble plot is a variation of a scatter plot in which the markers are replaced with 

bubbles. In a bubble plot, each bubble represents an observation. The location of the 

bubble represents the value for two measured axes; the size of the bubble represents the 

value for a third measure. These plots are useful for data sets with dozens to hundreds 

of values or when the values differ by several orders of magnitude. We can also use a 

bubble plot if we want specific values to be represented by different bubble sizes. 

Animated bubble plots are a good way to display changing data over time. 

 
Scatter plots are useful for examining the relationship, or correlations, between X and 

Y variables. Variables are said to be correlated if they have a dependency on, or are 

somehow influenced by, each other. For example, “profit” is often related to “revenue” 
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and the relationship that exists might be that as revenue increases profit also increases 

(a positive correlation). A scatter plot is a good way to visualize these relationships in 

data. In a scatter plot, you can also apply statistical analysis with correlation and 

regression. Correlation identifies the degree of statistical correlation between the 

variables in the plot. Regression plots a model of the relationship between the variables 

in the plot.  

 

A box plot is a graphical display of five statistics (the minimum, lower quartile, median, 

upper quartile and maximum) that summarize the distribution of a set of data. The lower 

quartile (25th percentile) is represented by the lower edge of the box, and the upper 

quartile (75th percentile) is represented by the upper edge of the box. The median (50th 

percentile) is represented by a central line that divides the box into sections. Extreme 

values are represented by whiskers that extend out from the edges of the box. Usually, 

these display well when using big data. Often, box plots are used to understand the 

outliers in the data.  

 

Moreover, server other data visualization tools might be also useful. For example, 

Matrix Graph allows us to see more variables simultaneously and shows a series of 

scatter plots that examine the variables two at a time; Lattice Graph can be used with a 

variety of different plots. 
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Figure 30. Distribution of BMI by Infected 
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5.2 Result Analysis  

5.2.1 Predictive modeling 
 
Predictive modeling is an extension of statistical linear models. Since typically the 

datasets are so large that a statistical p-value has no meaning, other measures are used 

to judge the quality of the model, especially misclassification rates. Predictive modeling 

is considered supervised learning because you can use the outcome to judge the 

accuracy. As a form of predictive modeling, classification is an important part of data 

mining because it defines groups within the population. Also, it could help us to predict 

which individuals are at high risk for infectious diseases when pandemic happens.   

 

There are many different classification methods to classify data in SAS Enterprise 

Miner, such as neural network, decision trees and regression analysis. And we can 

determine the best model for classification by comparing the results of different 

classification methods. Specifically speaking, we can compare the rates of correct 

classification and select the model with the highest rate. Unfortunately, accuracy tends 

to be inflated when data are used to define the model. For example, it is possible to 

define a predictive model which is 100% accurate on a training set but 0% accurate on 

a validation set. Therefore, validation is also essential (Cerrito, 2006).  

 

The classification methods used for data mining are similar to those used for statistical 

inference. However, data mining uses many different models and then compares the 

results on a testing set while statistical inference tends to examine a single model and 

measure its effectiveness by the p-value and by adherence to model assumptions. But 
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Data mining focuses less on model assumptions and more on the model’s ability to 

actually predict outcomes. Assumptions are not as important as outcomes. 

 

5.2.2 Regression Analysis 

 

In SAS enterprise miner, we will use the regression node for linear or logistic 

regression, which depends on the type of target variable. If the target variable is 

nominal, the regression node will use logistic regression; if the target variable is an 

interval variable or ordinal with more than 7 categories, the linear regression will be 

applied automatically by the regression node. Since our outcome variable is a binary 

variable, which has two potential values 0 and 1, the regression node will conduct 

logistic regression. 

 

Additionally, covariance and correlation between variables should be checked before 

the regression analysis. Both the correlation and grouping steps provide valuable 

information on the data at hand, and are more than just statistical exercises. In SAS, we 

use a type of principal component analysis to identify group of variables that are highly 

correlated. If some variables are highly correlated, basically clustering could be 

conducted and choose the best variable or a linear combination of those variables in the 

same cluster as the final input variable to represent that cluster. Appendix 6 illustrates 

the covariance and correlation matrices, from which it can be seen that there is no high 

correlation or covariance between variables. Therefore, the clustering of variables is 

unnecessary at this point.  
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Figure 31. Cumulative life curve for the regression model 
 

 
The curve above gives the cumulative lift for the regression model. Cases in both 

training and validation data are ranked based on decreasing predicted target values. A 

fraction or decile of the ranked data is selected, which corresponds to the horizontal 

axis of the chart. The ratio, (proportion of cases with the primary outcome, in our case 

“infected” in the selected fraction) to the proportion of cases with the primary outcome 

overall, is defined as cumulative lift, which corresponds to the vertical axis. High values 

of cumulative lift suggest that the model is doing a good job separating the infected and 

the susceptible and generally if the depth increases, the lift will inversely decrease.  

 

From the Figure 31, we can see that the lift is decreasing for the training set while the 

lift is increasing for the validation set both from the perspective of entire tendency. 

Specifically, for the training dataset there are mainly three peaks where the lift first 

increases and then decrease at a depth of approximately 10%, 25% and 55% 
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respectively. Similarly, there are two peaks for the validation dataset and lift increases 

to the peaks at 25% and 65%, then decreases beyond that. Sometimes the training data 

could inflate results and therefore it is better to examine the lift for the validation 

dataset.   

 
 

Figure 32. Effects plot of the regression model 
 

 
The effects plot illustrates the r2 value for each variable and in this case, we can see that 

the first four factors, which are intercept, smoker, illicit_drugs and obesity, account for 

most of the cumulative r2 and the remaining factors only contributes a small part.  

 

Also, the results indicate that the misclassification rate on the initial training dataset is 

6.25%, which is the best indication of the regression accuracy. And the 

misclassification rates for validation dataset is slightly increased to 6.27%z. In the real 

world case, we have to also consider the actual group size to determine whether the 



96 
 

prediction is valid and also the model accuracy should be compared to random chance. 

If the misclassification rate is close to or even higher than random choice rate, it will 

indicate that the model built is not a good fit. But in our case, since the misclassification 

for both training and validation datasets are relatively small, we can draw the 

conclusion that the model we developed is accurate.   

 

 
 

 

Table 23. Analysis of Maximum Likelihood Estimates 
 

 
Table 23 displays the analysis results of maximum likelihood estimates. The estimate 

column of results shows the weight or contribution to the linear regression equation for 

each variable. If we take into consideration the first four factors with p-value < 0.30 

including intercept, which have the most significant impact on the outcome variable, 

the linear regression equation after logit function is as follows: 

   (25) 

 
 
Therefore, we can obtain the probability of getting infected p for an individual. 
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         (26) 

 
 

 
 

Table 24. Odds Ratio Estimates 
 

 
Table 24 illustrates the odds ratio for each variable, which can be obtained from the 

Wald Chi-Square column in SAS results. If an odds ratio is greater than 1, as the input 

variable increases, the output variable will also increase. But when the odds ratio is less 

than 1, the output variable increases from 0 to 1 as the input variable decreases. The 

output variable in our experiment is the infected variables, where 1 represents infected 

and 0 represents not. 
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Figure 33. Classification chart for regression 
 

 
From the classification chart for the validation dataset, the model appears correctly 

classify the individuals based on the input values. 

 

5.2.3 Neural Network 
 

1. Multilayer Perceptrons (MLP) 
 

There are mainly four types of neural network methodologies in SAS Enterprise Miner, 

the MLP, GLIM, AutoNeural and DMNeural. MLP, the multi-layer perceptron is the 

default model, which is the most popular form of neural network architecture and a 

perceptron is a classifier that maps an input to an output. The GLIM represents the 

generalized linear interactive modeling used in PROC GENMOD in SAS/STAT 

software, which has no hidden layers. AutoNeural acts as an automated tool to find 

optimal configurations for a neural network. DMNeural uses the bucketed principal 

components as input to predict a binary target variable and it also overcomes several 
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problems of the common neural networks for data mining purposes including nonlinear 

estimation problem and computing time problem. We can compare these models to see 

the impact on the results. 

 

 
 

Figure 34. Cumulative lift curve for neural network 
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Figure 35. Average square error for training and validation sets 

 
 

The cumulative lift curve for neural network looks similar to that for regression and 

just a little bit lower compared to the regression cumulative lift. Since neural network 

represents an iterative process, the results provide a graph of the rate of convergence to 

a final model. Additionally, the training set converges after 20 iterations while the 

validation set seems not to converge at all.  

 

 
 

Table 25. Fit statistics for neural network 
 
 
The misclassification rates for both the training and validation sets are almost the same 

compared to those for regression. And the average error for neural network is also 

almost the same compared to regression. The classification chart in Figure 36 appears 
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the same rates as the regression. Therefore, at this point in the analysis, no model has 

been identified as a better one for the classification. 

 

 
 

Figure 36. Classification chart of infected variable 
 
 

2. Generalized Linear Model (GLIM) 
 
Since there is not the best model so far, we will try to build another neural network 

model. Let’s change the architecture to GLIM and set the training techniques to quasi-

Newton. Then we can obtain the results as follows.  
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Figure 37. GLIM model results 
 
 
In the cumulative lift curve, there is a big rise and fall on both training and validation 

sets but the whole tendency is decreasing for both. There is still no convergence in the 

validation set. Also, the misclassification rate for training and validation sets are 6.25% 

and 6.27% respectively and there is almost no change in misclassification compared to 

the results in the previous models. However, inversely the average error is slightly 

higher. Therefore, it still does not improve the results a lot by changing the architecture 

to GLIM and unfortunately it is still unreliable to differentiate between events and 

nonevent in both training and validation sets by using the new model. 

 
 

3. AutoNeural 
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AutoNeural is another type of neural network technique in SAS Enterprise Miner and 

the Neural Network node is required to change manually while the AutoNeural node 

changes the default setting automatically. Also it adds hidden nodes one at a time and 

we can define the maximum number of iterations with an adjustable setting. The default 

setting defines a single-layer neural network and specifies how hidden layers are added 

to the model. We make the activation function include the logistic function, which a 

slight difference from the default setting. The Figure 38 illustrates the results of 

AutoNeural Network analysis. 

 

  
 

   
 

Figure 38. AutoNeural model results 
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From the cumulative lift curve, the score rankings for both training and validation sets 

are decreasing rapidly. Also there are no significant changes on misclassification rates 

and the average error is even slightly higher, which indicates that the AutoNeural is not 

a good fit for the data modeling. 

 
 

4. DMNeural 
 

The DMNeural node offers another method for neural network analysis. It is focusing 

on nonlinear estimation and could simultaneously reduce the computation time. Also, 

it begins with principle component analysis which determines which input variables 

have a significant impact on the outcome variables. Then a small set of principal 

components is selected for further modeling.  
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Figure 39. DMNeural model results 
 

The cumulative lift curve does not look accurate and also the misclassification rate for 

training and validation sets stay the same. Also, the average error is still high and all 

these indicate the DMNeural model is not the best.  

 

5.2.4 Decision Tree 
 

Decision tree is another different approach for classification, which develops a series 

of if-then rules. Each rule assigns one sample to at least one branch of the tree. The 

initial node is the root of the decision tree, which includes the entire dataset. The final 

nodes are the leaves of the tree, which are the predictive values for a sample.  

 

The imputation is not required in decision trees since missing value could be used in 

creating if-then rules. For the splitting rules, interval criterion is set by default while 

Gini index and Entropy are selected for nominal criterion and ordinal criterion 

respectively. Also, the significant level is 0.2 by default. After running the program, the 
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decision tree is not generated successfully as a result. Therefore, we would create an 

interactive tree as an alternative in order to prune a decision tree instead of generating 

the decision tree automatically. Every time splitting a node, the candidate variables to 

split are ranked by logworth (-Log(p-value from Chi-square or F test)) and the variable 

with maximum logworth value are selected. Also, we can manually specify the split 

point for the rule. For example, the exercise rate variable is selected on the second layer 

with the split point 3 rather than 2.5. In our case, we use logworth=0 as the stopping 

criterion when adding generations. 

 

 
 

Figure 40. Decision tree result structure 
 
 

From the structure of the interactive decision tree, there are 6 levels and 12 leaves, 

which indicates that for each individual, he or she could be classified into one of these 

12 classes. Their English rules are shown in Appendix 6. The decision tree demonstrates 

the predicted infected probability at each node in the English rules. Also for the leaf 

node, the percentage of susceptible and infected individuals is used as a value of 
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parameter γs in Formula 22, which is mainly from the training datasets. For example, 

for Node ID 29 shown in Figure 41, if one individual is a smoker, works more than 22 

hours per week on average, has a BMI of lower than 26 and also has allergy, the 

probability for him or her to get infected would be 0.11, which is also used as γs value 

in Formula 22. 

 

,  
 

Figure 41. English rules for Node 29 
 
 

 
 

Figure 42. Decision tree map 
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The decision tree map also illustrates the percentage of susceptible individuals and 

infected individuals at each node in the tree. 

 

  

 
 
Figure 43. Cumulative lift, leaf index and fit statistics for interactive decision tree 

 
 
As we know, if the cumulative lift is much more above 1.0 for both training and 

validation sets, there would be a reasonably accurate mode. However, from our result 

the cumulative life is only a little more than 1.0, therefore the interactive decision tree 

we built only provides a slightly better prediction than the chance. For each leaf of the 

decision tree, the leaf index demonstrates the bar chart of predicted infection probability 

descent by training sets. It graphically compares the results for both training and 

validation sets and also indicates how well the decision rules separate infected 

individuals from the susceptible. In our case, the results look acceptable since there is 

no significant difference between the training and validation datasets for each leaf node. 

Also, for the misclassification, they are still the same as the neural network model. 

 

5.3 Model Comparison 
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So far, we have been using logistic regression model, four neural network models and 

decision tree model to train our datasets and build the predictive models. Then we can 

use model comparison module in SAS enterprise miner to compare these models and 

determine which one could predict the outcome the best. The fit statistics we used in 

the previous sections could also make a more direct comparison between models and 

additionally the receiver operating curve (ROC) and the cumulative lift functions are 

provided as the visual representations to compare different predictive models.  

 

As discussed previously, there are a couple of metrics which we can use to assess the 

model performance. In SAS Enterprise Miner, for decision prediction the Model 

Comparison tool rates the model performance based on accuracy or misclassification 

rate, profit or loss, and by the Kolmogorov-Smirnov (KS) statistic, which describes the 

ability of the model to separate the infected individuals and non-infected individuals. 

For ranking predictions, the Model Comparison tool gives two closely related measures 

of model fit. The ROC index is similar to concordance, which equals the percent of 

concordant cases plus one-half times the percent tied cases. The Gini coefficient (for 

binary prediction) equals 2 × (ROC Index – 0.5). For estimate predictions, the 

Model Comparison tool provides two performance statistics. Average squared error 

was used to tune many of the models fit in earlier chapters. The Schwarz's Bayesian 

Criterion (SBC) is a penalized likelihood statistic. The likelihood statistic was used to 

estimate regression and neural network model parameters and can be thought of as a 

weighted average squared error. SBC is provided only for regression and neural 

network models and is calculated only on training data. To summarize, we get the table 

displaying the relationship of choice of fit statistics and prediction of interest. 
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Prediction Type Validation Fit Statistic Direction 

Decisions 

Misclassification smallest 

Average Profit/Loss Largest/smallest 

Kolmogorov-Smirnov Statistics largest 

Rankings 
ROC Index (concordance) largest 

Gini Coefficient largest 

Estimates 

Average Squared Error smallest 

Schwarz’s Bayesian Criterion smallest 

Log-Likelihood largest 
 

Table 26. Choice of fit statistics and prediction of interest 
 
 

The Model Comparison node in SAS Enterprise Miner gives us both statistical and data 

mining measures and enables us to compare the performance of different models using 

various benchmarking criteria. Several comparative criteria including K-S value, ROC 

Index, Gini coefficient, Gain, Lift, cumulative lift and their corresponding results are 

selected in Table 27. 

 

Fit 
Statistics 

 Decision 
Tree 

Regression MLP GLIM DMNeural AutoNeural 

K-S Value Train 0 0.069 0.022 0.004 0.076 0.088 
Validation 0 0.019 0.021 0.008 0.014 0.059 

ROC Index Train 0.5 0.546 0.52 0.504 0.554 0.537 
Validation 0.5 0.484 0.505 0.499 0.495 0.528 

Gini 
Coefficient 

Train 0 0.093 0.04 0.007 0.107 0.073 
Validation 0 -0.033 0.009 -0.002 -0.011 0.057 

Gain 
Train 2E-13 31.93 15.94 6.45 51.92 43.93 

Validation 2.66E-
13 14.89 7.98 27.66 4.26 43.62 

Lift Train 1 1.36 0.95 0.97 1.44 1.20 
Validation 1 0.85 0.63 1.47 0.85 1.70 

Cumulative 
Lift 

Train 1 1.32 1.16 1.06 1.52 1.44 
Validation 1 0.85 0.92 1.28 0.96 1.44 

 
Table 27. Fit Statistics for different models 
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From the fit statistics table, it appears that Regression, DMNeural, AutoNeural are 

better than other predictive modeling methods based on different statistical metrics. So 

these three models are currently our champion model candidates. If we look into the 

details more carefully, in most cases, as a matter of fact the AutoNeural model is our 

champion model at this point no matter for Training sample or validation sample. 

However, let’s have a look at the performance of their ROC curve and cumulative life 

function before the final conclusion is drawn.  

 

Fit statistics provides us with a more direct way to compare different models while the 

receiver operating curve (ROC) and the cumulative life function can also be used to 

compare models. As discussed in previous section, the ROC curve maps the sensitivity 

on the Y axis against 1-specificity on the X axis and it could indicate the overall 

accuracy of the model. Sensitivity is also the true positive rate (TPR), which is the 

proportion of target values that are predicted as a value of 1 and are actually equal to 1. 

However, the specificity is the true negative rate (TNR), which is the proportion of 

observation that is predicted as a value of 0 and is actually equal to 0. The outcome has 

two potential values, 0 and 1, which represents susceptible individuals and infected 

individuals respectively in our case. Moreover, if the more the area under the curve is 

close to 1, the more accurate the model for the training set is. It also indicates that the 

closer the ROC curve lies to the top left concern, the more accurate the predictive model 

is.  
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Figure 44. ROC Curve for Different Models 
 
 

 

Figure 45. Cumulative lift charts for different models 
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From both the ROC curve and cumulative lift function, AutoNeural model also does 

the best job among all the models. Therefore, according to the comparison results of 

both fit statistics, ROC curve and cumulative lift functions, we can draw the conclusion 

for our case that the AutoNeural model is the best model, which has a better 

performance over other models. 

 

But in real-world cases, it’s better to choose logistic regression as the champion model 

if there is no big difference between regression model and neural network model. 

Unlike regression model and decision trees, neural networks do not present an easily-

understandable model and it is more of a “black box” that delivers results without an 

explanation of how the results were derived. Thus, it is difficult or impossible to explain 

how decisions were made. In other words, if a challenge is made to a neural network, 

it is very difficult to explain and justify to non-technical people how decisions were 

made. Also, it is difficult to incorporate a neural network model into a computer system 

without using a dedicated “interpreter” to the model. So if the goal is to produce a 

program that can be distributed with an embedded predictive model, generally it is 

necessary to send some additional module or information for the neural network 

interpretation. 

 

5.4 Model Implementation 

 
After we train and compare the predictive models, AutoNeural model is selected to 

represent the relationship between inputs and the target. The model must be put into 

use and score a completely new dataset in the model. In SAS enterprise miner, the Score 

node can help us to model implementation and generate predicted values for an 
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infection risk. In our case, we have a score data source, which contains all the 

demographic and health status information of 1000 susceptible individuals. And the 

variable identification in the score data set is identical to the train and validation 

datasets.  

 

Figure 46. Scoring process with the best model 
 
 
Figure 46 shows the scoring process and the score node created predicted values using 

the best model that is AutoNeural model in our case. Consequently, the predicted value 

for each susceptible individual would be used as γs, that describes the health condition 

and the susceptibility of an individual. Also, the SAS Code node is used to export the 

scored data and the statistical results and distribution of the scored data are illustrated 

in Table 28 and Figure 47.  

Predicted Value  γs  Number Percentage  

0.002-0.022 76 7.60% 

0.022-0.042 58 5.80% 

0.042-0.062 578 57.80% 

0.062-0.082 107 10.70% 

0.082-0.102 40 4.00% 

0.102-0.122 63 6.30% 

0.122-0.142 53 5.30% 

0.142-0.162 19 1.90% 

0.162-0.182 2 0.20% 

0.202-0.222 3 0.30% 

0.222-0.242 1 0.10% 

Grand Total 1000 100% 
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Table 28. Number of susceptible individuals for different predicted value ranges 

 

 

 

Figure 47. Distribution of number of susceptible individuals by predicted γs 

value 

 

From both Table 28 and Figure 47, we can see that the predicted value of γs by using 

AutoNeural model is less than 0.25 and more than 50% of susceptible individuals have 

their predicted γs value between 0.042 and 0.062, that describes their health status and 

susceptibility. However, this is only part of their overall infection risk and other parts 

such as spatiotemporal information and the disease characteristics itself are also critical. 

Moreover, after the infection risk of each susceptible individual is estimated, their 

relationship with other people including both the infected and the susceptible via 

contact network plays an essential role in prioritizing the public health strategies such 

as vaccine distribution and resource allocation, which is of great help to decision 

makers in public health organizations.   
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CHAPTER 6  CONCLUSIONS 
 
In recent year, the infectious diseases have emerged from some part of the world and 

rapidly spread around the globe. In the last decade alone disease, such as SARS in 2003 

and H1N1 in 2009, have spread globally, and have received needed attention from the 

public as well as the public health agencies. It is essential to understand, predict and 

control the spread of the disease. However, as discussed previously, the mathematical 

techniques used to understand, forecast and control the spread of infectious disease is 

not effective and sometimes lags the actual spread of disease, and hence is of limited 

value for proactive actions to mitigate the spread.  

 

The approach that has been developed and suggested in this dissertation is built on 

existing methods from diverse fields such as contact network modeling, graph theory, 

space-time path development and risk analysis. Some “sensors”, which in fact are the 

sample group of individuals, or web-based tools, or even survey methodology, and 

comprehensive application of the approach, are also introduced in this dissertation to 

mitigate the disease spread. Additionally, this approach provides a prototype of the 

infection risk estimation and could be practically implemented to better control the 

spread of infectious disease. In reality, a large amount of people’s medical records or 

clinical trial from hospital and clinics could be of great help to this approach. Also, the 

application of GIS tracking feature on our communication devices such as cellphone 
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would also be very helpful to collect people’s GIS information, such as the daily 

movements and activities. 

 

Last but not least, as a module of decision support system, this approach would be 

working close with other modules in the system. On one hand, the disease spread 

module collects relevant information from different sources, such as hospital, clinic, 

mobile devices, survey and even other modules in the system, to estimate the infection 

risk of susceptible individuals; On the other hand, the disease spread module also 

provides useful information for other modules in the decision support system, including 

vaccine distribution module, patient distribution module, resource allocation module 

and ambulance distribution module etc. All the parts in the system have to work 

effectively and efficiently make maximum efforts in order to reduce the loss and cost 

during the pandemics. 
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CHAPTER 7  FUTURE RESEARCH 
 
Future research should aim to extend and validate the application of infection index and 

the likelihood of infection to large networks, such as a residential community, the 

population in a city, in a county or even in a state. Also, besides the study of disease 

spread through synchronous physical presence of susceptible and infected individuals, 

future research could be extended to the situation of asynchronous physical presence. 

 

Additionally, the infection index itself could be expanded to a large potential factors 

including both individual and disease factors, such as the medical treatment records, 

clinical trials, population, climate, censors, etc. Also, in the infection index formula, 

the time parameter p and the distance parameter q should be estimated based on the 

statistical analysis on the historical data. 

 

Finally, feedback of values of infection index and the likelihood of infection to the 

general public based on interaction with a web based tool would be a valuable 

contribution to society. The decision support system is implemented through this web-

based tool and provides a platform to collect information and make a wise decision 

during the pandemics. 
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APPENDIX 
1. Matlab codes for the individual centrality model 

 

function V = getCentrality 

 

A = [0, 0, 0.65, 0, 0, 0, 0.40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0.50, 0, 0, 0, 0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

    0.65, 0, 0, 0, 0.60, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0.50, 0.55, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0.50, 0.60, 0, 0, 0, 0, 0.85, 0, 0, 0, 0.65, 0.90, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0.70, 0, 0, 0, 0, 0, 0.70, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0.40, 0, 0, 0, 0.95, 0, 0, 0, 0, 0, 0, 0, 0.75, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0.85, 0.70, 0, 0, 0, 0, 0, 0, 0.90, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.40, 0, 0.45, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

    0, 0, 0, 0.50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0.30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0.30, 0, 0.55, 0, 0, 0, 0, 0, 0, 0, 0.90, 0, 0, 0, 0, 

0, 0.75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0.65, 0, 0, 0, 0, 0, 0.90, 0, 0, 0, 0, 0, 0, 

0.70, 0, 0, 0, 0, 0, 0.50, 0, 0, 0, 0, 0, 0;  

    0, 0, 0.55, 0, 0.90, 0, 0.75, 0.90, 0, 0, 0, 0, 0, 0.70, 

0, 0, 0, 0.40, 0.75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0.70, 0, 0, 0.40, 0, 0, 0, 0.70, 0, 0.90, 

0, 0, 0, 0, 0.70, 0, 0, 0, 0, 0, 0, 0, 0, 0.15, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.90, 0, 0, 0, 0, 

0.75, 0, 0.65, 0, 0, 0, 0.60, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0.45, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0.70, 0, 0, 0, 0.30, 0, 0, 0, 0; 
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    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30, 0.75, 0.70, 0.40, 0, 0, 

0, 0.65, 0, 0, 0, 0, 0, 0.35, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.75, 0, 0.75, 0, 0, 

0, 0, 0, 0, 0, 0.25, 0, 0, 0.35, 0, 0.30, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 0.70, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 0, 0, 0, 

0, 0, 0, 0.25, 0, 0, 0.40, 0, 0.65, 0, 0.25, 0.20;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.70, 0, 0, 

0, 0, 0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.35, 

0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.50, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0.65, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.60, 0, 0, 0, 

0, 0, 0.40, 0, 0, 0.65, 0, 0, 0, 0, 0, 0;    

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30, 0, 0, 

0.35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.60;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0.65, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0.30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.15, 0, 0, 0, 0, 

0, 0, 0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0;  

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0.20, 0, 0, 0, 0, 0.60, 0, 0, 0, 0] 

 

n = size(A); 

 

MV = zeros(n); 

MV1 = zeros(n); 

MV2 = zeros(n); 

MV3 = zeros(n); 

 
 

V = zeros(1,n); % record the value of each node 
 

%--- The codes below is to find 3-layer nodes related to each 

node.  

for i = 1:n 

    for j = 1 : n 
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        if A(i, j) ~=0 & i ~= j           

            MV1(i, j) = A(i, j); 

            for k = 1: n  

               if A(j, k) ~=0 & j ~=k & i~= k                    

                   MV2(i, k) = MV2(i, k) + A(i, j)* A(j, k); 

                   for m = 1:n  

                       if A(k, m)~=0 & k~= m & i~= m & j~=m                            

                           MV3(i, m) = MV3(i, m) + A(i, j)* 

A(j, k)* A(k, m); 

                       end 

                   end 

               end 

            end 

         

         end     

    end 

end 

 

MV = MV1 + MV2 + MV3; 

 

for i = 1: n  

    for j = 1: n 

      V(i) = V(i) + MV(i,j); 

    end 

end 

 

%----------------------------------------- 
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2. Matlab codes for the risk analysis model 

 

function getInfect 

 

syms x; 

 

A = [ 540, 602, 1 ; 

      608, 641, 2 ; 

      647, 744, 3 ; 

      760, 792, 4 ; 

      810, 1030, 1]; 

   

B = [ 537, 605, 1 ;  

      612, 655, 3 ; 

      658, 735, 6 ; 

      745, 790, 5 ;  

      802, 990, 1 ; 

      1007, 1148, 5]; 

   

R = [1, 25;  

     2, 5; 

     3, 35; 

     4, 8; 

     5, 20; 

     6, 3; 

     7, 100] 

   

s = size(A, 1);    % get the number of rows in Matrix A 

t = size(B, 1);    % get the number of rows in Matrix B 

 

num = 0 ; % define the number of rows in the result Matrix C 

 

for i = 1:s 

  for j = 1:t 

       

      if A(i, 3) == B(j, 3) 

          if B(j, 1) <= A(i, 1) 

              if B(j, 2) <= A(i, 2) & B(j, 2)>=A(i, 1) 

                  num = num + 1; 

                  C(num, 1) = A(i, 1); 

                  C(num, 2) = B(j, 2); 

                  C(num, 3) = A(i, 3); 

                  C(num, 4) = R(A(i, 3), 2); 
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              elseif B(j, 2) >= A(i, 2) 

                  num = num + 1; 

                  C(num, 1) = A(i, 1); 

                  C(num, 2) = A(i, 2); 

                  C(num, 3) = A(i, 3); 

                  C(num, 4) = R(A(i, 3), 2); 

              end 

          elseif B(j, 1) >= A(i, 1) & B(j, 1) <= A(i, 2) 

                  if B(j, 2) >= A(i, 2) 

                  num = num + 1; 

                  C(num, 1) = B(j, 1); 

                  C(num, 2) = A(i, 2); 

                  C(num, 3) = A(i, 3); 

                  C(num, 4) = R(A(i, 3), 2); 

                   

               elseif B(j, 2) <= A(i, 2) 

                  num = num + 1; 

                  C(num, 1) = B(j, 1); 

                  C(num, 2) = B(j, 2); 

                  C(num, 3) = A(i, 3);      

                  C(num, 4) = R(A(i, 3), 2); 

               end 

          end 

             

      end 

  end 

   

end 

   

 m = size(C, 1); 

 m1 = size(C, 1); 

 m2 = size(C, 1); 

 Eps = 0.00001;  % Epsilon is a very small positive number 

 Gam = 0.2;      % Gamma is a medical parameter about the 

feature of the disease 

 f = 0.0; 

 f1 = 0.0; 

 f2 = 0.0; 

 p = 0.30; 

 q = 1.5; 

 q1 = 2; 

 q2 = 2.5; 

  

 for k = 1: m 
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     fx = Gam * (x - C(k, 1))^p/ (C(k, 4)^q + Eps); 

     f = f + int(fx, x, C(k, 1), C(k, 2)); 

 end     

 

 g = 0.00; 

 g = double(f) 

  

  for k = 1: m1 

     fx1 = Gam * (x - C(k, 1))^p/ (C(k, 4)^q1 + Eps); 

     f1 = f1 + int(fx1, x, C(k, 1), C(k, 2)); 

 end     

 

 g1 = 0.00; 

 g1 = double(f1) 

  

  for k = 1: m2 

     fx2 = Gam * (x - C(k, 1))^p/ (C(k, 4)^q2 + Eps); 

     f2 = f2 + int(fx2, x, C(k, 1), C(k, 2)); 

 end     

 

 g2 = 0.00; 

 g2 = double(f2) 
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3. SAS Codes for Variables Statistics 

proc capability data = sasuser.data10000; 

    

   histogram age/normal 

   midpoin = 10 20 30 40 50 60 70 80 90 

   ctext = blue; 

run; 

 

 

proc freq data = sasuser.data10000; 

 tables age; 

 output out = sasuser.data10000_output; 

run; 

 

 

proc univariate data = sasuser.data10000; 

   var age; 

   histogram age/midpoints = 0 to 99 by 10; 

 

run; 

 

 

proc means data = sasuser.data10000 min max median q1 q3 range cv 

skew kurt; 

  var age; 

run; 

 

 

proc freq data = sasuser.data10000; 

 tables gender alcohol allergy asthma Diabetes Family_His 

Highbloodpressure illicit_drugs infected obesity 

 pregnant Recent_Perscription_drugs smoker vegetarian; 

 output out = sasuser.data10000_output; 

run; 

 

 

proc univariate data = sasuser.data10000; 

   var bmi; 

   histogram bmi/midpoints = 15 to 33 by 1; 

run; 

 

 

proc capability data = sasuser.data10000; 

   var bmi; 

   histogram bmi/normal 

   midpoints = 15 to 33 by 1 

   ctext = blue; 

run; 

 

 

proc means data = sasuser.data10000 min max median q1 q3 range cv 

skew kurt; 

  var bmi; 

run; 

 

 

proc means data = sasuser.data10000 min max median q1 q3 range cv 

skew kurt; 
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  var exercise_rate; 

  freq exercise_rate; 

run; 

 

 

proc capability data = sasuser.data10000; 

   var exercise_rate; 

   histogram exercise_rate/normal 

   midpoints = 0 to 7 

   ctext = blue; 

run; 

 

proc freq data = sasuser.data10000; 

 tables exercise_rate; 

 output out = sasuser.data10000_output; 

run; 

 

 

proc univariate data = sasuser.data10000; 

   var exercise_rate; 

   histogram exercise_rate/midpoints = 0 to 7 by 1; 

run; 

 

 

proc means data = sasuser.data10000 min max median q1 q3 range cv 

skew kurt; 

  var working_hours; 

  freq working_hours; 

run; 

 

 

proc univariate data = sasuser.data10000; 

   var working_hours; 

   histogram working_hours/midpoints = 0 to 50 by 10; 

 

run; 

 

 

proc freq data = sasuser.data10000; 

 tables working_hours; 

 output out = sasuser.data10000_output; 

run; 
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4. The Structure of the Interactive Decision Tree 
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5. English Rules for the interactive decision tree 

 

*------------------------------------------------------------* 

 Node = 9 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 0 or MISSING 

AND Replacement: Exercise Rate < 3 or MISSING 

then  

 Tree Node Identifier   = 9 

 Number of Observations = 3136 

 Predicted: Infected=1  = 0.07 

 Predicted: Infected=0  = 0.93 

  

*------------------------------------------------------------* 

 Node = 18 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 1 

AND Replacement: Working Hours < 22 

AND Gender IS ONE OF: 0 or MISSING 

then  

 Tree Node Identifier   = 18 

 Number of Observations = 102 

 Predicted: Infected=1  = 0.03 

 Predicted: Infected=0  = 0.97 

  

*------------------------------------------------------------* 

 Node = 19 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 1 

AND Replacement: Working Hours < 22 

AND Gender IS ONE OF: 1 

then  

 Tree Node Identifier   = 19 

 Number of Observations = 96 

 Predicted: Infected=1  = 0.00 

 Predicted: Infected=0  = 1.00 

  

*------------------------------------------------------------* 

 Node = 24 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 1 

AND Replacement: Working Hours >= 22 or MISSING 

AND Replacement: BMI >= 26 or MISSING 
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then  

 Tree Node Identifier   = 24 

 Number of Observations = 216 

 Predicted: Infected=1  = 0.10 

 Predicted: Infected=0  = 0.90 

  

*------------------------------------------------------------* 

 Node = 25 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 0 or MISSING 

AND Replacement: Exercise Rate >= 3 

AND Asthma IS ONE OF: 0 or MISSING 

AND Alcohol IS ONE OF: 0 

then  

 Tree Node Identifier   = 25 

 Number of Observations = 87 

 Predicted: Infected=1  = 0.06 

 Predicted: Infected=0  = 0.94 

  

*------------------------------------------------------------* 

 Node = 29 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 1 

AND Replacement: Working Hours >= 22 or MISSING 

AND Replacement: BMI < 26 

AND Allergy IS ONE OF: 1 

then  

 Tree Node Identifier   = 29 

 Number of Observations = 9 

 Predicted: Infected=1  = 0.11 

 Predicted: Infected=0  = 0.89 

  

*------------------------------------------------------------* 

 Node = 30 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 1 

AND Replacement: Working Hours >= 22 or MISSING 

AND Replacement: BMI < 26 

AND Allergy IS ONE OF: 0 or MISSING 

then  

 Tree Node Identifier   = 30 

 Number of Observations = 141 

 Predicted: Infected=1  = 0.02 

 Predicted: Infected=0  = 0.98 
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*------------------------------------------------------------* 

 Node = 32 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 0 or MISSING 

AND Replacement: Exercise Rate >= 3 

AND Replacement: BMI < 26 

AND Asthma IS ONE OF: 1 

then  

 Tree Node Identifier   = 32 

 Number of Observations = 9 

 Predicted: Infected=1  = 0.33 

 Predicted: Infected=0  = 0.67 

  

*------------------------------------------------------------* 

 Node = 33 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 0 or MISSING 

AND Replacement: Exercise Rate >= 3 

AND Replacement: BMI >= 26 or MISSING 

AND Asthma IS ONE OF: 1 

then  

 Tree Node Identifier   = 33 

 Number of Observations = 17 

 Predicted: Infected=1  = 0.00 

 Predicted: Infected=0  = 1.00 

  

*------------------------------------------------------------* 

 Node = 44 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 0 or MISSING 

AND Replacement: Working Hours >= 44 

AND Replacement: Exercise Rate >= 3 

AND Asthma IS ONE OF: 0 or MISSING 

AND Alcohol IS ONE OF: 1 or MISSING 

then  

 Tree Node Identifier   = 44 

 Number of Observations = 18 

 Predicted: Infected=1  = 0.11 

 Predicted: Infected=0  = 0.89 

  

*------------------------------------------------------------* 

 Node = 45 

*------------------------------------------------------------* 
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if Smoker IS ONE OF: 0 or MISSING 

AND Replacement: Working Hours < 44 or MISSING 

AND Replacement: Exercise Rate >= 3 

AND Asthma IS ONE OF: 0 or MISSING 

AND Allergy IS ONE OF: 1 

AND Alcohol IS ONE OF: 1 or MISSING 

then  

 Tree Node Identifier   = 45 

 Number of Observations = 16 

 Predicted: Infected=1  = 0.06 

 Predicted: Infected=0  = 0.94 

  

*------------------------------------------------------------* 

 Node = 46 

*------------------------------------------------------------* 

if Smoker IS ONE OF: 0 or MISSING 

AND Replacement: Working Hours < 44 or MISSING 

AND Replacement: Exercise Rate >= 3 

AND Asthma IS ONE OF: 0 or MISSING 

AND Allergy IS ONE OF: 0 or MISSING 

AND Alcohol IS ONE OF: 1 or MISSING 

then  

 Tree Node Identifier   = 46 

 Number of Observations = 151 

 Predicted: Infected=1  = 0.00 

 Predicted: Infected=0  = 1.00 
 

6. Covariance and Correlation Matrices 
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7. SAS Score Node Code 
 
*------------------------------------------------------------

*; 

*------------------------------------------------------------

*; 

* TOOL: Input Data Source; 

* TYPE: SAMPLE; 

* NODE: Ids; 

*------------------------------------------------------------

*; 

*------------------------------------------------------------

*; 

* TOOL: Statistics Exploration; 

* TYPE: EXPLORE; 

* NODE: Stat; 

*------------------------------------------------------------

*; 

*------------------------------------------------------------

*; 

* TOOL: Partition Class; 

* TYPE: SAMPLE; 

* NODE: Part; 

*------------------------------------------------------------

*; 

*------------------------------------------------------------

*; 

* TOOL: Extension Class; 

* TYPE: MODIFY; 

* NODE: Repl; 

*------------------------------------------------------------

*; 

* ; 

*Variable: Age; 

* ; 

Label REP_Age= 'Replacement: Age'; 

REP_Age= Age; 

if Age ne . and Age<-35.89243376 then REP_Age=-35.89243376; 

if Age ne . and Age>112.63180345 then REP_Age=112.63180345; 

*------------------------------------------------------------

*; 

* TOOL: Imputation; 

* TYPE: MODIFY; 

* NODE: Impt; 

*------------------------------------------------------------

*; 

*------------------------------------------------------------

*; 

* TOOL: Variable selection Class; 

* TYPE: EXPLORE; 

* NODE: Varsel; 

*------------------------------------------------------------

*; 
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*------------------------------------------------------------

*; 

* TOOL: Neural; 

* TYPE: MODEL; 

* NODE: Neural; 

*------------------------------------------------------------

*; 

***********************************; 

*** Begin Scoring Code for Neural; 

***********************************; 

DROP _DM_BAD _EPS _NOCL_ _MAX_ _MAXP_ _SUM_ _NTRIALS; 

 _DM_BAD = 0; 

 _NOCL_ = .; 

 _MAX_ = .; 

 _MAXP_ = .; 

 _SUM_ = .; 

 _NTRIALS = .; 

 _EPS =                1E-10; 

LENGTH _WARN_ $4 

; 

      label Illicit_Drugs0 = 'Dummy: Illicit_Drugs=0' ; 

 

      label I_Infected = 'Into: Infected' ; 

 

      label U_Infected = 'Unnormalized Into: Infected' ; 

 

      label P_Infected1 = 'Predicted: Infected=1' ; 

 

      label P_Infected0 = 'Predicted: Infected=0' ; 

 

      label  _WARN_ = "Warnings"; 

 

*** Generate dummy variables for Illicit_Drugs ; 

drop Illicit_Drugs0 ; 

if missing( Illicit_Drugs ) then do; 

   Illicit_Drugs0 = .; 

   substr(_warn_,1,1) = 'M'; 

   _DM_BAD = 1; 

end; 

else do; 

   length _dm12 $ 12; drop _dm12 ; 

   _dm12 = put( Illicit_Drugs , BEST12. ); 

   %DMNORMIP( _dm12 ) 

   if _dm12 = '0'  then do; 

      Illicit_Drugs0 = 1; 

   end; 

   else if _dm12 = '1'  then do; 

      Illicit_Drugs0 = -1; 

   end; 

   else do; 

      Illicit_Drugs0 = .; 

      substr(_warn_,2,1) = 'U'; 

      _DM_BAD = 1; 

   end; 

end; 
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*** *************************; 

*** Checking missing input Interval 

*** *************************; 

 

IF NMISS( 

   REP_Age   ) THEN DO; 

   SUBSTR(_WARN_, 1, 1) = 'M'; 

 

   _DM_BAD = 1; 

END; 

*** *************************; 

*** Writing the Node intvl ; 

*** *************************; 

*** *************************; 

*** Writing the Node bin ; 

*** *************************; 

*** *************************; 

*** Writing the Node Infected ; 

*** *************************; 

IF _DM_BAD EQ 0 THEN DO; 

   P_Infected1  =     0.00056629486246 * REP_Age ; 

   P_Infected1  = P_Infected1  +    -0.11940844734222 * 

Illicit_Drugs0 ; 

   P_Infected1  =    -2.61417739119657 + P_Infected1 ; 

   P_Infected0  = 0; 

   _MAX_ = MAX (P_Infected1 , P_Infected0 ); 

   _SUM_ = 0.; 

   P_Infected1  = EXP(P_Infected1  - _MAX_); 

   _SUM_ = _SUM_ + P_Infected1 ; 

   P_Infected0  = EXP(P_Infected0  - _MAX_); 

   _SUM_ = _SUM_ + P_Infected0 ; 

   P_Infected1  = P_Infected1  / _SUM_; 

   P_Infected0  = P_Infected0  / _SUM_; 

END; 

ELSE DO; 

   P_Infected1  = .; 

   P_Infected0  = .; 

END; 

IF _DM_BAD EQ 1 THEN DO; 

   P_Infected1  =     0.06253126563281; 

   P_Infected0  =     0.93746873436718; 

END; 

 

 

*** Decision Processing; 

label D_INFECTED = 'Decision: Infected' ; 

label EP_INFECTED = 'Expected Profit: Infected' ; 

 

length D_INFECTED $ 9; 

 

D_INFECTED = ' '; 

EP_INFECTED = .; 

 

*** Compute Expected Consequences and Choose Decision; 

_decnum = 1; drop _decnum; 
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D_INFECTED = '1' ; 

EP_INFECTED = P_Infected1 * 1 + P_Infected0 * 0; 

drop _sum; 

_sum = P_Infected1 * 0 + P_Infected0 * 1; 

if _sum > EP_INFECTED + 4.547474E-13 then do; 

   EP_INFECTED = _sum; _decnum = 2; 

   D_INFECTED = '0' ; 

end; 

 

 

*** End Decision Processing ; 

*** *************************; 

*** Writing the I_Infected  AND U_Infected ; 

*** *************************; 

_MAXP_ = P_Infected1 ; 

I_Infected  = "1           " ; 

U_Infected  =                    1; 

IF( _MAXP_ LT P_Infected0  ) THEN DO; 

   _MAXP_ = P_Infected0 ; 

   I_Infected  = "0           " ; 

   U_Infected  =                    0; 

END; 

********************************; 

*** End Scoring Code for Neural; 

********************************; 

drop S_:; 

*------------------------------------------------------------

*; 

* TOOL: Model Compare Class; 

* TYPE: ASSESS; 

* NODE: MdlComp; 

*------------------------------------------------------------

*; 

if (P_Infected1 ge 0.06407466187056) then do; 

b_Infected = 1; 

end; 

else 

if (P_Infected1 ge 0.06360085914664) then do; 

b_Infected = 2; 

end; 

else 

if (P_Infected1 ge 0.06313032365367) then do; 

b_Infected = 3; 

end; 

else 

if (P_Infected1 ge 0.06299648237857) then do; 

b_Infected = 4; 

end; 

else 

if (P_Infected1 ge 0.06286290581796) then do; 

b_Infected = 5; 

end; 

else 

if (P_Infected1 ge 0.06272959352898) then do; 

b_Infected = 6; 

end; 
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else 

if (P_Infected1 ge 0.06259654506911) then do; 

b_Infected = 7; 

end; 

else 

if (P_Infected1 ge 0.06246375999629) then do; 

b_Infected = 8; 

end; 

else 

if (P_Infected1 ge 0.06233123786882) then do; 

b_Infected = 9; 

end; 

else 

if (P_Infected1 ge 0.06219897824541) then do; 

b_Infected = 10; 

end; 

else 

if (P_Infected1 ge 0.0620999555309) then do; 

b_Infected = 11; 

end; 

else 

if (P_Infected1 ge 0.06196815422896) then do; 

b_Infected = 12; 

end; 

else 

if (P_Infected1 ge 0.06183661421962) then do; 

b_Infected = 13; 

end; 

else 

if (P_Infected1 ge 0.0617053350631) then do; 

b_Infected = 14; 

end; 

else 

if (P_Infected1 ge 0.06160704661605) then do; 

b_Infected = 15; 

end; 

else 

if (P_Infected1 ge 0.061476222895) then do; 

b_Infected = 16; 

end; 

else 

if (P_Infected1 ge 0.06137827552057) then do; 

b_Infected = 17; 

end; 

else 

if (P_Infected1 ge 0.06128047401185) then do; 

b_Infected = 18; 

end; 

else 

if (P_Infected1 ge 0.06115029858309) then do; 

b_Infected = 19; 

end; 

else 

do; 

b_Infected = 20; 

end; 
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*------------------------------------------------------------

*; 

* TOOL: Score Node; 

* TYPE: ASSESS; 

* NODE: Score; 

*------------------------------------------------------------

*; 

*------------------------------------------------------------

*; 

* Score: Creating Fixed Names; 

*------------------------------------------------------------

*; 

LABEL EM_SEGMENT = 'Segment'; 

EM_SEGMENT = b_Infected; 

LABEL EM_EVENTPROBABILITY = 'Probability for level 1 of 

Infected'; 

EM_EVENTPROBABILITY = P_Infected1; 

LABEL EM_PROBABILITY = 'Probability of Classification'; 

EM_PROBABILITY = 

max( 

P_Infected1 

, 

P_Infected0 

); 

LENGTH EM_CLASSIFICATION $%dmnorlen; 

LABEL EM_CLASSIFICATION = "Prediction for Infected"; 

EM_CLASSIFICATION = I_Infected; 
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