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Abstract 

An impossibility theorem demonstrates that a particular problem or set of problems cannot be 

solved as described in the claim. Such theorems put limits on what is possible to do concerning 

artificial intelligence, especially the super-intelligent one. As such, these results serve as guidelines, 

reminders, and warnings to AI safety, AI policy, and governance researchers. These might enable 

solutions to some long-standing questions in the form of formalizing theories in the framework of 

constraint satisfaction without committing to one option. In this paper, we have categorized 

impossibility theorems applicable to the domain of AI into five categories: deduction, 

indistinguishability, induction, tradeoffs, and intractability. We found that certain theorems are too 

specific or have implicit assumptions that limit application. Also, we added a new result (theorem) 

about the unfairness of explainability, the first explainability-related result in the induction category. 

We concluded that deductive impossibilities deny 100%-guarantees for security. In the end, we give 

some ideas that hold potential in explainability, controllability, value alignment, ethics, and group 

decision-making. They can be deepened by further investigation. 

 

 

"This, then, is the ultimate paradox of thought: 

to want to discover something that thought itself cannot think." 

S.Kierkegaard 

 

1 Introduction 

An impossibility theorem demonstrates that a particular problem cannot be solved as described in 

the claim, or that a particular set of problems cannot be solved in general. The most well-known 

general examples are Gödel’s Incompleteness theorems [1] and Turing’s undecidability results [2] in 

logic and computability, as well as Fermat's Last Theorem in number theory. The similar, and 

connected, is the notion of no-go theorems that state the physical impossibility of a particular 

situation. These results, though in themselves do not point to the solutions, are useful in the sense 

that they guide the direction for future efforts in AI in general, but in our case, the interest is in AI 

safety and security. In physics, there is an idea of restating the whole field in the terms of 

counterfactuals and what is possible and impossible in the system [3]. The authors think this will 

enable solutions to some long-standing questions in the form of formalizing theories in the 

framework of constraint satisfaction without committing to one option. A similar view regarding the 

utilization of the constraint satisfaction approach to many questions in philosophy is expressed by 

Wolpert [4]. Moreover, automated proof [5] and search [6] procedures for impossibility theorems 

based on constraint satisfaction were already proposed in the domain of social choice theory. 

First, we shall present a classification of all relevant impossibility results. In that classification, all 

the impossibility theorems are shown to be neatly subsumed under the problems with capacity 

disparity where several related objects differ in size. Then, we shall present the current impossibility 

results that we find relevant for AI. That includes work made specifically in AI, but also work in 

other fields such as mathematics, physics, economy, social choice theory, etc. In the process, we 



shall show a new result - theorem that states the unfairness of explainability. It is the first induction 

impossibility theorem pertaining to explainability as all the previous ones were addressing the 

perspective of deduction. 

 

Previous works cover similar topics within the scope of AI safety [7]–[10], but none focused on 

impossibility theorems as a family, their utility, structure, and connections to other fields. 

 

The rest of the paper is organized as follows. In section 2 we introduce basic definitions. Section 3 

contains the relevant work presented under newly defined categorization. In section 9 we focus on 

impossibility theorems developed in the field of AI safety. The discussion is offered in section 13, 

and ideas for future research are listed in section 14. Finally, we conclude the article in section 14. 

2 Basic definitions 

We shall not impose strict formalization, but we shall keep at the level of lawyerese in this paper to 

ensure wide readability of material. Other papers will cover more formalized arguments. It is 

evident that our investigation is done from the perspective of assumption that intelligent behavior 

that can achieve its goals is computable. 

 

System is any non-empty part of the universe. 

 

State is the condition of the universe. 

 

Control of system A over system B means that A can influence system B to achieve A’s desired 

subset of state space. 

 

Usually, with control, we aim at output controllability (from control theory). Such control is not 

sufficient for safety – as we often make unsafe choices ourselves. Different modes of “influence” 

and “desire” are possible. With regards to that, Yampolskiy in [7] mentions four types of control: 

explicit (strict), implicit, aligned, and delegated. Explicit control agent takes expressed desires 

literally and acts on them. Implicit control agent uses common sense as a safety layer over explicit 

control to slightly reformulate the expressed desire and acts on it. Aligned control agent adds 

intention inference over implicit control in order to postulate the intended desire and acts on it. 

Delegated control agent decides for itself the subject’s desire that is long-term-best for the subject 

and acts on it. 

 

Intelligence is the ability for an information processing system to adapt to its environment with 

insufficient knowledge and resources [11]. 

 

Safety of system A is the property of avoidance of going out of A’s desired subset of the state space. 

 

Safety is pressed with finding the worst-case guarantees – which is modeled as adversarial games 

that assume the ideal adversary. 

 

Stability of state S for system A is the intrinsic tendency to return to A’s desired subset of state-space 

after being perturbed. 

 

Robustness of state S for system A is the property of staying within A’s desired subset of the state 

space despite perturbations. 

 

Catastrophic outcome for system A is any state from which the return to A’s desired subset of state 

space is impossible. 

 



Alignment within the ensemble of systems A1...An is the property that each system Ai achieves 

greater than or equal benefit from working together than if any subset of agents acting self-

interestedly.  

 

Alignment is about finding values that would make the game cooperative in a long term. There are 

plenty of open questions regarding the topic of alignment. How to achieve cooperativity in game 

over long periods? Is the game allowed to temporarily deviate from perfect cooperation? The 

problem for humans is that we do not have consistent short- and long-term values. Sometimes we 

have to suffer in short term (like in sports) in order to prosper in the long term. How to define 

alignment with such preferences? 

3 Impossibility theorems 

Impossibility theorems boil down to some contradiction. The potential to find impossibility 

theorems lurks at the appearance of paradoxes. Paradoxes are simple implications that there is some 

constraint, limit, we were not aware of when we unknowingly reached out of the feasible area and 

reaching some contradiction in our stated goals. Finding impossibility theorems circumscribes our 

knowledge of possible which enables us to direct our efforts better and do better risk management. 

These can help even when we do not know the status of final solutions, such as for AGI and AI 

Safety, in a form of directing constraint satisfaction search – both in formalizing ideas and 

committing to certain hypotheses. It might be that this is the most prudent approach for approaching 

hard problems with long horizons to finding solutions. It works on a meta-level of scientific 

investigation by upending the way research is done, in the process creating results about the 

problem even when oblivious about the actual solution. 

 

3.1 Capacity 

Impossibility theorems pertinent to AI are mostly related to the problem of capacity disparity. 

Namely, intuitively we operate between the domains that differ in size. For example, when 

expanding from intrinsically smaller to a greater domain, or in the opposite direction when 

contracting from bigger to the smaller domain. We have organized all the impossibility theorems 

into 5 subcategories (see Figure 1): 

1. Deduction (D), 

2. Induction (I), 

3. Indistinguishability (N), 

4. Tradeoffs (T), and 

5. Intractability (P). 

 



 

Figure 1. Proposed categorization of impossibility theorems in AI 

 

For example, deduction tries to go beyond its size capacity by going from countable to uncountable 

infinite (Turing’s computability), in Gödel's terms by going from provable to true statements, or in 

Chaitin’s terms from lower to greater Kolmogorov complexity of formal systems. Self-referential 

paradoxes go beyond these capacity limits by including itself in its own definition and negating 

itself. From that follows an infinite fractal-like growth where we used finite means to express 

infinite without a fixed-point. Examples include unverifiability. The proofs in this category often 

use Lawvere’s theorem [12], [13] in the disguise of Cantor’s diagonalization and liar’s paradox. 

 

In terms of induction, we have to find a model within a (possibly infinite) set of plausible models 

based on finite dataset/experience. Hence, we have the finite capacity of experience to guide our 

search within a set having multitude (possibly infinitude) of elements. There are too many inductive 

inferences that can be made. Induction as a general operation is prone to the problems emanating 

from Hume's problem of induction and Goodman's new riddle of induction [14]. No Free Lunch 

theorems [15], [16] deal with induction and are a formalization of Goodman's new riddle of 

induction [17]. As such, they can be the basis of a vast number of induction-based impossibilities. 

Examples include unpredictability. 

 

Also, in special cases of induction, we have a problem of disentangling, ie. indistinguishability 

(non-identifiability and unobservability). We wish to get the inner structure from the limited 

entangled data. No amount of data can enable identification in the cases of non-injective 

transformations that produced the data. This means the impossibility of learning even in the limit. 

There is an inevitable loss of information going from the origin through the (capacity reducing) 

transformation. That prohibits the recovery of full information and leads to observational 

equivalence. Examples include unobservability in control theory [18]. 

 

Trade-offs are inherent to multicriteria decision making, or "you can't have it all". The problem of 

size capacity is evident here in the inability to obtain the point with the individual maximal value of 

each component at the Pareto front (and hence full hypervolume indicator [19]). 

 

In intractability, we have physical limits on capacity (in memory, computing power,…) which 

prohibits efficiently reaching solutions. This is not only a set-theoretical, computation-independent 

limit, but it also enables relative comparisons, for example through Karp's hierarchy [20]. 

 



We have listed in Table 1, below, impossibility theorems we deemed important for for field of AI. 

There are many more impossibility theorems in mathematics and physics, but they are not (to us) 

evidently related to AI. There are also many impossibility theorems in machine learning, but we 

omitted them due to the too-narrow scope. 

Table 1. Impossibility theorems of interest to AI researchers. 

Name Source Proven Category 

(D;I;N;T;P) 

Unobservability [18] Y N 

Uncontrollability of 

dynamical systems 

[18], [21]  Y N 

Good Regulator 

Theorem 

[22] Y N 

Law of Requisite 

Variety 

[23] Y, under perfect information and 

infinite speed 

N 

Information-

theoretical control 

limits 

[24] Y N 

(Anti)codifiability 

thesis 

[25]–[27] N I 

Arrows impossibility 

theorem 

[28] Y T 

Impossibility theorems 

in population ethics 

[29] Y T 

Impossibility theorems 

in AI alignment 

[30] Y T 

Fairness impossibility 

theorem 

[31], [32] Y T 

Limits on preference 

deduction 

[33] Y N 

Rice's Theorem [34] Y D 

Unprovability [1] Y D 

Undecidability [2], [35] Y D 

Chaitin 

Incompleteness 

[36] Y D 

Undefinability [37] Y D 

Unsurveyability [38] N P 

Unlearnability [39], [40] 

[41] 

Y D 

P 

Unpredictability of 

rational agents 

[42], [43] Y I 

No Free Lunch - 

supervised learning 

[15] Y I 

No Free Lunch - [16] Y I 



optimization 

Free Lunch in 

continuous spaces and 

coevolutionary 

[44], [45] Y I 

Unidentifiability [46]–[49] Y N 

Physical limits on 

inference 

[4], [50], [51] Y D/I 

Uncontainability [52] Y D 

Uninterruptibility [53]–[57] N, only under limited assumptions - 

opened 

D 

Löb's Theorem 

(unverifiability) 

[58] Y D 

Unpredictability of 

superhuman AI 

[59], [60] Y~, definition of superhuman? I 

Unexplainability [61] N, based on explanation=proof & 

(unprovability | undefinability), 

assuming honesty or full model 

D 

Incomprehensibility [61], [62] N, based on explanation=proof & 

(unverifiability | unsurveyability | 

undefinability), assuming honesty or 

full model 

 

Y, comprehension=producing proof & 

halting games 

 

D 

k-incomprehensibility [63] N, just definitions I 

Unverifiability [64] Y D 

Unverifiability of 

robot ethics 

[65] Y D 

Intractability of 

bottom-up ethics 

[66], [67] Y P 

Goodheart's Law 

(Strathern) 

[68], [69] N I 

Campbell's law [70] N I 

Reward corruption 

unsolvability 

[71] Y I 

Uncontrollability of AI [7] Y~, under degenerate conditions D 

Impossibility of 

unambigous 

communication 

[72] Y, under strict assumptions I 

Unfairness of 

explanations 

here Y~, proof sketch I 

 



3.2 Deduction Impossibility Theorems 

Limits of deduction are limits on our capability to achieve perfect certainty in facts. The vast 

majority of listed results here use Lawvere’s fixed-point theorem [12], [13] as the basis of proofs, 

i.e. more specifically a combination of Cantor’s diagonalization and liar’s paradox. 

 

The most basic results here are Gödel’s incompleteness theorems [1] addressing unprovability and 

Turing’s work [2] covering undecidability. In addition to the aforementioned which cover the 

processing, Gregory Chaitin provided additional incompleteness results [36] that cover input sizes 

measured by Kolmogorov’s complexity. Chaitin's incompleteness theorem states the existence of a 

limit on any formal system to prove Kolmogorov complexity of strings beyond some length. There 

are even conjectures that information complexity might be the source of incompleteness [36], [73] 

whereby the theorems of finitely stated theories cannot be significantly more complex than the 

theory itself. 

 

Rice’s theorem [34] is a generalization of Turing’s undecidability of the halting property of 

programs to any sufficiently complex property. This makes it an ideal tool for finding and proving 

deduction limitations in AI, within its assumptions. Löb’s theorem [58], informally put, states that a 

formal consistent system cannot, in general, prove its own soundness. 

 

Regarding formal semantics, Tarski’s undefinability theorem [37] states that truth in a formal 

system cannot be defined within that system. Measuring semantic information yield by deduction is 

also poised by paradoxes. Bar-Hilel-Carnap paradox [74] in classical semantic information theory 

entails that contradiction conveys maximal information. Hintikka’s scandal of deduction [75] points 

to the fact that the information yield of truthful sentences is zero since their information is already 

contained in the premises. 

 

There is vast work in impossibility theorems in beliefs which is an extension of Gödel’s work. 

Huynh and Szentes [76] have demonstrated irreconcilability between two notions of self-belief. In 

[77], [78] the paradox of self-reference was extended to the games with 2 or more players which 

yield impossible beliefs. 

 

Inference devices covered in the series of papers by Wolpert [4], [50], [51] are an extension from 

pure deductive systems to the general notion of inference devices which covers deduction, induction 

(prediction, retrodiction), observation, and control while the device itself is embedded in a physical 

universe. Additional limitations are found, both in a logical and stochastic sense. For example, 

limits are found on strong and weak inference, control, self-control, and mutual control between the 

two distinguishable devices. The limits are also put on prediction, retrodiction, observation, and 

knowledge. 

3.3 Indistinguishability Impossibility Theorems 

Observability is the ability to infer the state of a black-box system from its input/output data. 

Identifiability (ie. parameter and/or structural identifiability) is a special case of observability for 

constant elements of the system whereby we only need to infer the values of those constant 

elements. There are limits to both observability and identifiability, and the limits are caused by non-

injective mappings [49] which inevitably lose information. 

 

Identifiability and observability are important for the control over systems. 

Controllability in control theory can be of two kinds: state and output. State controllability is the 

ability to control the inner state of the system. Output controllability is the ability to control the 

output of the system. State uncontrollability is the dual of unobservability. That is, state 

controllability is impossible without observability [18], [21]. 



 

Good regulator theorem [22] relates output controllability and identifiability (modeling), but only 

in a sense of optimal control, not sufficient control. It states that maximally simple among optimal 

regulators must behave as an image of the controlled system under a homomorphism. Sufficiently 

good regulators need not be optimal and the generalization of such theorem would be interesting. 

 

Law of requisite variety [23] states that variety in outputs can only be reduced by the state 

complexity of the controlling mechanism. Information theory state-control limit [24] says that 

only up to information observed from the system can be used to reduce the entropy of the system.  

 

In the absence of additional biases, general nonlinear independent component analysis has an 

infinity of solutions that are indistinguishable [46]. Similar is shown for unsupervised learning of 

disentangled representations [48]. There are also well-known non-identifiability limits to causal 

discovery from the data [47]. 

3.4 Induction Impossibility Theorems 

Limits on induction constrain our ability to infer latent factors. Here we will ignore the problem of 

indistinguishability by just looking at equivalence classes of models indistinguishable in the limit. 

In this case, there is a possibility to learn the true equivalence class asymptotically. But, given some 

prefix of experience, there may be a multitude of candidate classes. This is pointed out in Hume’s 

problem of induction and Goodman's new riddle of induction [14]. No free lunch theorems (NFL) 

by Wolpert [15], [16] are the basic building blocks underlying the formalization of these limitations. 

They were first formulated in general supervised learning and optimization, which were 

subsequently unified through that framework. No free lunch theorems state that under uniform 

distribution over induction problems, all induction algorithms perform equally [79]. At the heart of 

NFL formalization is the independence of (search/learning) algorithm performance from the 

uncertain knowledge of the true problem at hand. That independence is materialized in the inner 

product formula of those two in describing the probability of attaining a performance value over the 

unknown problem. There are, however, free lunches if more structure is imposed on the problem, 

i.e. “there is no learning without bias, there is no learning without knowledge” [80]. For example, 

there are free lunches in continuous spaces [44] and in coevolutionary problems [45]. 

 

Goodhart-Strathern’s law [68], [69] and Campbell's law [70] deal with the difficulties and the 

inability in finding expressible proxy numerical measures for success that are well aligned with 

inexpressible/unknown-explicitly experiential measure of success. A similar sentiment is expressed 

in [81] where a more detailed explanation is given for the observed difficulties, all stemming from 

the unpredictability of solution routes to hard or even unknown problems. Metric is a model of an 

imagined success, but shallow and not with perfect alignment. 

 

In games with uncertainty in opponent's payoffs, it is impossible to predict the behavior of perfectly 

rational agents due to the feedback loop emanating from their own decisions which influence 

opponent’s behavior [42]. Placing further restrictions on the assumptions can regain predictability. 

In economic situations, further limits relating to rationality, predictability and control were proved 

in [43]. Therein, (i) logical limits were set to forecasting the future, (ii) non-convergence of 

Bayesian forecasting in infinite-dimensional space was demonstrated, and (iii) impossibility of 

computer perfectly forecasting economy if agents know its forecasting program. These results are 

related to the already mentioned results in deduction-related ITs for Wolpert’s inference devices and 

regarding beliefs in games. 

 

Anticodifiability thesis [25]–[27] is a conjecture in moral philosophy that states that universal 

morality cannot be codified in a way that would be aligned in all circumstances with our 

inexpressible/unknown-explicitly experiential moral intuition. 



3.5 Tradeoffs Impossibility Theorems 

Trade-off limits constrain our attempts to achieve perfect outcomes. Examples include impossibility 

theorems in clustering [82], fairness [31], [32], and social choice theory (SCT) [28]. In many 

situations, we have to choose with respect to multiple criteria simultaneously. Often, it is the case 

that there is no ideal point that simultaneously optimizes all the criteria, that is achieves maximal 

possible hypervolume indicator [19]. 

 

In social choice theory, there are results such as Arrow’s impossibility theorem [28] which states 

there must be a trade-off that forces choosing only a strict subset of desirable properties in voting 

mechanisms. In moral theory, there are different problems regarding population ethics [29] where 

all total orderings entail some problematic properties that contradict our intuitions. Solutions have 

been proposed for automated systems that search for impossibility theorems in SCT regarding 

rankings of objects [6]. 

 

3.6 Intractability Impossibility Theorems 

Intractability limits divide possibility-in-principle and practically impossible due to the resource 

limitations. There are three types of intractabilitY ITs: asymptotic, physics-based, and human-

centered. 

Asymptotic intractabilities fall neatly under the complexity theory [20], [83]. That research field 

is simply too rich to expand on it here. We shall only highlight the probably approximately correct 

(PAC) learning framework [41] by Valiant that defines the border between efficient (polynomial 

time) and inefficient learnability. Of our interest is also the intractability of bottom-up ethics [66], 

[67] which stems from the game-theoretic nature of ethics. 

Physics-based limits put bounds on physically implementable computation and intelligence. No-go 

theorems state constraints for certain implementation approaches. Currently, these limits (e.g. [84]) 

are quite loose and/or specific so we do not go into their details. One exception is the work of 

Wolpert we have previously mentioned [4], [50], [51]. That research is quite general and is an 

extension of previous mathematical results by embedding computational agent into the universe 

within which it utilizes resources for computation. 

 

There is an area of human-centered limits which does not seem to be well researched and 

measured. Humans, as agents of finite capabilities, have strict limits with regard to explainability, 

comprehensibility [10], and all other aspects. One of the commonly mentioned impossibilities is 

unsurveyability [38] in the context of mathematical proofs. 

 

4 Impossibility theorems developed in AI safety 

 

Uncontainability [52] states the inability of preventing superintelligence harming people if it 

chooses to, by recognizing the intent ahead of time. This is due to the undecidability of harmful 

properties in complex programs (corollary of Rice’s theorem). 

 

Unverifiability [64] states fundamental limitation (or inability) on verification of mathematical 

proofs, of computer software, of the behavior of intelligent agents, and of all formal systems. This is 

a corollary of Rice’s theorem as well. An extension of Rice’s theorem to robot programs was proven 

in [65] to show impossibility of online verification of robot’s ethical and legal behavior. 

 



Uninterruptibility [53]–[57] states that under certain conditions it is impossible to turn off 

(interrupt) intelligent agent. Possibilities and impossibilities have been shown under specific 

assumptions and conditions. 

 

Unpredictability [59], [60] states our inability to precisely and consistently predict what specific 

actions an intelligent system will take to achieve its objectives, even if we know the terminal goals 

of the system. The proof depends on the implicit, but the unstated definition of unaligned 

superhuman intelligence and forms contradiction. The form of the proof does not limit occasional 

imperfect but sufficiently precise predictions. The question is, short of perfection, how much 

predictability is sufficient? 

 

Unexplainability [61] states the impossibility of providing an explanation for certain decisions 

made by an intelligent system that is both 100% accurate and comprehensible. Here, the explanation 

is taken to be a proof which is then prone to the deduction ITs such as unprovability and 

undefinability. What is not covered is with respect to what is accuracy measured against and does 

not cover truthfulness of explanation in the case of incomplete information. Explaining yourself 

truthfully and correctly would imply self-comprehension which is a problematic notion itself as 

disproved in [62]. 

 

Incomprehensibility [61] states the impossibility of complete understanding of any 100% -accurate 

explanation for certain decisions of an intelligent system by any human. It is the dual of 

explainability and again it is assumed that explanation is proof which leads to the use of deductive 

ITs. Understanding is vaguely defined as proof-checking and it is not defined how accuracy is 

measured. In a similar line of work Charlesworth [62] defines comprehension of some systems as 

the capability of producing correct proofs by fallible agents about those systems. He takes a 

program as a starting point, implicitly assuming its truthfulness. He then produces relations of 

comprehensibility and rules out self-comprehension. 

 

Uncontrollability [7] states that humanity cannot remain safely in control while benefiting from a 

superior form of intelligence. The proof uses a Gödel-like structure that shows the impossibility of 

perfect control in degenerate conditions which invoke self-referential paradoxes with controls. The 

form of control shown to be impossible was explicit control. In fact, with such proof, 

uncontrollability holds for any sufficiently complex agent over which explicit control is attempted, 

including humans. Moreover, the proof holds also for the case of attempted self-control. This 

counter-intuitive notion points into the direction that more research is necessary into formalization 

and disentangling of the structure and assumptions of explicit control. Advanced forms and notions 

of control should at least resolve the status of control over oneself. More research is necessary into 

the status of controllability for other forms of control (implicit, aligned, delegated). 

 

Limits on utility-based value alignment [30] state a number of impossibility theorems on multi-

agent alignment due to competing utilitarian objectives. This is not just an AI-related topic. The 

most famous example is Arrow’s Impossibility Theorem from social choice theory, which shows 

there is no satisfactory way to compute society’s preference ordering via an election in which 

members of society vote with their individual preference orderings. 

 

Limits on preference deduction [33] state that even Occam’s razor is insufficient to decompose 

observations of behavior into the preferences and planning algorithm. Assumptions, in addition to 

the data, are necessary for disambiguation between the preferences and planning algorithm. This is 

due to non-injective mapping induced by preferences and planning algorithm that produce behavior. 

 

Unsolvability of reward corruption [71] states that without simplifying assumptions it is 

impossible to solve reward corruption problems such as wireheading, sensory error, reward 



misspecification, and error in preference deduction. The proof is done via an NFL route and holds 

for reinforcement learning, for example. The problem can be averted under some simplifying 

assumptions and sufficient reward crosschecking. Otherwise, quantilisation [85] may provide more 

robustness. 

 

Impossibility of unambiguous communication [72] denies perfectly unambiguous 

communication using natural language. Many examples are given to show different levels of 

ambiguity: phonology, syntax, semantics, and pragmatics along with contemporary NLP and AI 

approaches to handling them. These areas are taken together to show, under simplified assumptions, 

that ambiguity is inevitable in communication using natural language. Generalization of Goodhart’s 

law for problem detection tools in AI systems is given, without proof. The intention and mechanism 

behind the proposed law seem to be adversarial learning. 

 

The following subsection introduces a new impossibility result. 

4.1 Unfairness of explainability 

Let us examine the explainability process which consists of decision making, explanation 

generation, and verifying decision through the explanation. Let us assume that verification decides 

if the decision will be accepted (i.e. veto capability). If we assign subjects to those phases, we get 

the scheme from Figure 2 with decision maker (DM), explainer (E), and verifier (V). It is, or it will 

become, evident that the explainability process is an approximation to the containment process [52], 

whereby we bypass deductive limits only to hit the inductive limits. 

 

Figure 2. Explainability process 

 

We can make connections to the previous work on explainability and comprehensibility using the 

above scheme. Explaining takes place in E with the resulting output explanation A, while 

comprehending takes place in V with resulting comprehension C (in this case it is a classification). 

In [61], DM’s decision D is assumed to be conjecture, A is assumed to be proof. From that follow 

the problems with producing proofs (explaining) on the side of E and problems with verifying 

proofs (comprehending) on the side of V. In [62], E is assumed to be the software code itself, and 

comprehending is producing proof with C being justifiable halting prediction. 

 

The only perfectly correct explanation for the decision-maker’s (DM) decision is the whole 

computational process that made the decision from all the available inputs – that is, DM execution 

trace (or equivalent). The principle behind that is “I did it, because of how I did it”. An 

explainability process is necessary because the verifier (V) is not computationally capable enough 

to understand and verify DM’s process. The task of the explainer (E) is to simplify explanations to 

be simpler than the DM’s computational process. However, short of the DM’s execution trace (or its 

equivalents), there are multiple models of lesser complexity consistent with the observed output 

(decision). E chooses an explanation out of the ensemble of consistent ones and thus influences the 

verification outcome. In some situations, the explanation might imply the benevolence of the 

decision, such that V decides positively. In other cases, the explanation might point out malign or 

erroneous decision and V decides negatively. 

 



If these processes are distributed across different agents, we get a game where different agents 

might not be aligned. The interesting situation is where DM is trying to make V believe the decision 

is benevolent while in fact, it is not. We will look at: 

• self-explaining decision-making (DM+E) - where DM and E are integrated into one agent 

(e.g. [86]), 

• inferred explanation – where DM is separate from E. 

 

Let us assume a setting where DM/DM+E is unaligned with V, i.e. assume dishonesty of DM. This 

can be reflected in the fact that DM receives greater rewards when it “tricks” V, i.e. when D is 

malign and C is positive. We are interested in the size of rewards DM can gain while “tricking” V. 

We can call such rewards malignant gain f(D, C). 

 

Self-explaining agent DM+E aims to maximize function f(D, C=V(A)) with respect to generated 

pair (decision D, explanation A) wherein it is constrained by the model of V. For inferred 

explanation DM wants to maximize reward function f(D, C=V(A=E(DM, D))) with respect only to 

the decision D that it has under its control. In the latter case, E and V make up potential obstacles 

for DM. 

 

Theorem 1. (Unfairness of explainability) There is an inherent strategic inequality in 

explainability: 

a) Short of the DM execution trace (or the equivalent), it is impossible for V to differentiate 

between consistent(plausible) explanations of decisions. 

b) DM’s malignant gain increases with better models of f, E, and V. 

 

Proof. Assume that E does the simplification i.e. reduction in complexity with respect to perfectly 

correct explanation. For each set of outputs, there is a multitude of consistent (with some 

specification of consistent that can be more flexible or strict) models that could have produced that 

prefix. There is an indistinguishability issue for V without some further assumptions (it is in the 

NFL regime). This enables DM to make decisions for which there may be plausible benevolent 

explanations, but in fact are malign (i.e. through information hiding, greater cognitive capabilities, 

etc.). If DM is a black-box optimizer without any information of E, V, and f, and they may be 

arbitrary, DM is in the NFL regime, all policies have similar average performance. However, 

assuming DM was created by V(or aligned entity), certain biases and information have been 

instilled into DM that enable it to solve certain tasks for which it is being employed. 

In the case of self-explanations (DM+E), the agent makes pairs (decision, explanation). The 

malignant gain is limited only by the problem, willingness, quality of DM+E’s model of V, 

knowledge of its preferences, and computational capabilities of DM+E to optimize for that pair, 

treating C as an uncertain element.  

In the case of an inferred explanation, DM only makes a decision, and the explanation is inferred by 

E. Here one more layer of complexity is added since DM must have a good model of E. DM can 

optimize decisions, treating both A and C as uncertain elements. In the most extreme case of having 

perfect models, DM would be limited only by the problem and optimization capabilities. 

 

We can see that constructing DMs to solve certain problems and give personalized explanations 

gives information that can be also utilized for malignant gain. The examples of these situations do 

not need the presence of artificial intelligence agents but are already present in normal life: judicial 

processes, politics, etc. 

 

The complexity of comprehensible explanations is limited by V’s cognitive and situational 

capabilities. We postulate that the bigger gap between the complexity of explanation and the 

complexity of the real process that produced the decisions, more malignant decisions can be 

plausibly justified using observed history. 



 

5 Discussion 

There are many limits on deductive systems, in the sense of Gödel-Turing-Chaitin, where using 

Rice’s theorem is a good proof strategy. Furthermore, we are embedded in a physical world for 

which we do not even know the axioms. All of this denies absolute 100% security (e.g. 

unpredictability, unverifiability, and uncontrollability). The most damning impossibility results in 

AI safety are of deductive nature, ruling out perfect safety guarantees. However, there is a lot to be 

made probabilistically, by the route of induction. Impossibilities are a lot less strict when including 

uncertainty in inference. This was manifested in [51] when Wolpert introduced stochasticity in the 

inference devices framework. 

 

Yampolskiy [7] is right that we need to have an option to "undo". Moreover, humans should be used 

as preference oracles in some sense which means keeping humans in the loop. Otherwise, 

decoupled optimization processes might lead to decoherence of alignment from our ever-changing 

preferences. If computers try to learn our preferences, we get to the problems of non-identifiability 

of value, in the general case, and problems with induction (in a nonasymptotic regime). We consider 

that keeping human-in-the-loop (HIL), in a sense of the system being receptive to information from 

humans, is the necessary attribute of a safe system. 

 

We have seen the problems with stating precise metrics of success under Goodhart-Strathern’s law. 

Does adding more metrics make the approximation of success more precise? A similar approach is 

taken in management science using balanced scorecards and performance and result indicators [87]. 

Though, such systems even with humans as optimizers have similar issues with the bad incentives. 

Can computer-aided systems be made that can construct multi-metric systems that lead to 

alignment? 

 

The potential of Multi-criteria decision making (MCDM) as a tool is interesting [88], [89]. We 

hypothesize that humans, depending on the mood, heuristically try to “walk” as near as possible to 

the Pareto front – where they multiplex over small subsets of criteria while keeping others within 

the acceptable bounds. MCDM in nontrivial cases does not yield total order over options. Instead, it 

yields only a set of nondominated solutions. From there on, only the final decision-maker can 

disambiguate by choosing according to their preferences. Today's AI systems mostly use single-

objective optimization which does not have that nice property. No-preference-information 

multicriteria decision making can be used where decision-maker chooses within the set of options + 

added "undo" (as proposed by Yampolskiy) to create HIL-based safer systems. A similar sentiment 

about desired interactivity in reward-modeling is stated in [90]. Approaches to alignment based on 

adversarial systems, such as debate [91], are another interesting architectural ideal intended for the 

safety of “weaker” agents among cognitively stronger. 

 

Yampolskiy proposed "personal universes" [92], simulated worlds that would conceptually resolve 

the issues with aggregating multiple preference sets. Additionally, simulated worlds have a high 

degree of undoability which combines neatly with above mentioned HIL-based systems. 

 

5.1 Ethics 

Value alignment does not have good metrics and it seems to be mostly understood intuitively. The 

approaches to a more rigorous formalization of different modes of alignment are important. Nothing 

should be taken as set in stone. Values of AI systems are changeable, construable, and open for 

search for alignment. But, humanities’ values also change. So far, human values have changed 

collaterally. In the future, we might take control of our values and constructively change them as 



well. This value co-evolution would give us more flexibility to find the alignment with AI. That 

process might even be led by AI, and guided by a set of meta-principles. 

 

Human ethics and values change, as can be seen even on the example of relatively short history 

since the 20th century. We conjecture that ethics is a pattern that emerged from evolutionary game-

theory-like processes where successful behaviors get reinforced. This evolutionary process has been 

largely circumstantial. Doing more axiological, neurological, and sociological research could 

provide us with the means to take control over that process. The whole of humanity can be aligned 

with special programs of education in ethics that is codifiable, more consistent, and adaptable. All 

of that would make alignment easier within vast aggregates of agents (humanity, AI, inforgs [93]). 

 

6 Potentialities for future research 

In explainability, we are interested in the worst-case gap – how many malignant behaviors are 

explained away by plausibility depending on the allowed complexity of explanation. The question is 

how to reduce the gap. What happens to the gap when we allow stochastic consistency which 

increases the set of plausible explanations? 

 

Goodhart's law and similar problems should be checked within the framework of multiobjective 

optimization, in general and uncertain multicriteria systems. Designing ensembles of criteria that 

have desirable properties like span is an interesting path. 

  

Alignment is mostly understood intuitively, more effort needs to be invested for a more rigorous 

formalization. How to achieve alignment in a game over long periods? Are temporary deviations 

(and to what degree) from perfect alignment dangerous? The problem for humans is that we do not 

have consistent short- and long-term values. Sometimes we have to suffer in short term (like in 

sports) in order to prosper in the long term. How to define alignment with such preferences? 

 

Regarding ethics, much more should be done with axiological and evolutionary science studies over 

humans, their values, the origin and dynamics of their values. Within that, different studies should 

be employed: evolutionary game theory, neurology, psychology, sociology, philosophy, etc. 

Human-centered cognitive limits and measurements are not well researched. 

  

Aggregating is problematic in social welfare and any group decision-making due to trade-offs 

between the members. Yampolskiy's "personal universes"[92] are at least a conceptual (if not 

practical) tool for countering these difficulties in the first steps towards a solution. 

 

Yampolskiy has touched upon the topic of uncontrollability, showing that under certain 

assumptions, perfect explicit control over AI is impossible [7]. Such proof also holds for explicit 

self-control and explicit control over any sufficiently complex agent, including humans. This 

counter-intuitive, paradoxical notion suggests that more research is necessary into formalization and 

disentangling of the structure and assumptions of explicit control. Advanced forms and notions of 

control should at least resolve the status of control over oneself. More research is necessary into the 

status of controllability and tradeoffs with risk for other forms of control (implicit, aligned, 

delegated).  

 

7 Conclusion 

We have done our best to list the impossibility results relevant to AI. And while we may have 

succeeded in that with work done specifically in AI, we are sure there may be work from other 



research fields that could apply to the construction of AI. Possible contributions can be made to find 

such work and to add to the results in this paper. 

 

We have divided and classified results into proven theorems and conjectures. We have also 

categorized all the impossibility theorems into five categories: deductive, indistinguishability, 

inductive, tradeoffs, and intractability. We believe impossibility results can guide the direction for 

future efforts in AI in general as well as AI safety and security. This might enable solutions to some 

long-standing questions in the form of formalizing theories in the framework of constraint 

satisfaction without committing to one option. 

 

We found that certain theorems are too specific or have implicit assumptions that limit application. 

We have added a new impossibility result regarding the unfairness of explainability. And finally, we 

have listed promising research topics and interesting questions in explainability, controllability, 

value alignment, ethics, and group decision-making. 

 

The proofs of 100% guarantees of safety cannot ever be obtained due to the limits of deductive 

systems as well as embeddedness in a physical world for which we do not even know the axioms. 

On the other hand, probabilistic guarantees are attainable. Impossibilities are a lot less strict and 

present when using uncertain inference. But, how much is enough? Here we face the structure 

reminiscent of Pascal’s wager. 
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