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ABSTRACT 

 

 

 This research dealt with the examination of Supervisory Control and Data 

Acquisition (SCADA) information of a water distribution system through Principal 

Component Analysis (PCA).  PCA is a mathematical method to convert a set of possibly 

correlated data into a set of fewer variables called principal components.  In a SCADA 

environment, possibly hundreds of data points such as booster pumps, storage tanks, 

pressure reducing valves, and others constantly provide operational statistics including 

water pressure, tank capacity, and more.  This vast amount of data can be difficult to 

analyze in its entirety, especially to detect issues in the distribution system. 

 PCA was utilized to observe abnormalities in these SCADA readings.  Each 

SCADA data point was used as an input variable to PCA such as the pressure flow 

through a pump.  Various calculations could be achieved by examining data points from a 

specific pressure zone or through the entire system.  Breaking down the observations into 

specific areas resulted in better identification of the problem location.  Each SCADA data 

point also provides an updated reading each minute.  At the same interval, the principal 

component is calculated along with the variance of the prior twenty minutes worth of 

data.  The difference between the current variance and the previous minute’s variance 

highlights possible issues when compared to normal operations.  For instance, at 11 am, 

the current principal component is computed and the principal component results from 

10:40 am to 11 am are used as inputs in determining the current variance.  This variance, 

when compared to the previous minute’s variance, is plotted to show deviations in the 

data.  One principal component was calculated each minute resulting in a single value to 

correlate all provided inputs regardless of the number of SCADA data points analyzed.   

 Analysis of normal operations still results in varying outputs as a result of low and 

high demand on the water distribution system throughout the day but maintains a regular 

pattern.  Review of data during a main break condition emphasizes the irregular pattern 

signaling a possible fault.  PCA interpretation can be an additional monitoring tool of the 

distribution system to provide advanced warning of main breaks or other system issues.   
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I.  INTRODUCTION 

 

 

The primary objective of Principal Component Analysis (PCA) is to reduce the 

complexity of a set of data which includes a large number of related variables.  The 

variation of the original data set should also be maintained as much as possible.  This is 

accomplished by transforming the data to a new set of variables called principal 

components.  These are unrelated and ordered such that the first few include most of the 

variation in all of the original variables [7]. 

The research involved very large datasets with a large number of variables from 

the Supervisory Control and Data Acquisition (SCADA) system at the Louisville Water 

Company (LWC).  A SCADA infrastructure denotes an industrial control system that 

monitors and controls industrial, infrastructure, or facility-based processes [8].  The 

SCADA system controls and monitors the water treatment and distribution for Louisville 

Water Company.  In other instances, SCADA can control or monitor wastewater 

collection ad treatment, electrical power transmission and distribution, or monitor 

building energy consumption [8].   

The SCADA system is comprised of several components including a Human-

Machine Interface (HMI), computer system, remote terminal units (RTU), programmable 

logic controllers (PLC), and a communication network.  The HMI is the device that 

allows a human operator to interact with the system to monitor and control processing.  

The computer system retrieves and processes data as well as sends control signals 

throughout the system.  RTU’s connect to sensors to process and send signals to the 

computer system.  PLC’s are types of remote terminal units and are commonly used in 

the field because of their advantages as special-purpose remote terminal units.  The 

communications network connects the field units, including the RTU’s and PLC’s with 

the computer system [8].   

SCADA systems monitor and control sites spread out over a large area. This 

could include a single industrial plant or a larger geographical region such as a city or 

metropolitan area.  In the field, control actions are performed by the RTU or PLC.  For 

instance, a PLC can control and monitor the water level of a storage tank.  The RTU or 

PLC takes meter or equipment readings which are transmitted over the communications 
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network to the computer system.  In the case of the storage tank, the water level is 

transmitted.  Data from each of the systems RTUs or PLCs is compiled in the computer 

system.  Typically, a database is used to store each of the data endpoints which are called 

tags.  Each tag represents a single input or output from the RTUs or PLCs throughout the 

system.  An operator is able to access this information through the HMI to gather data 

trends or make system changes such as opening or closing a valve.  When the operator 

modifies the configuration through the computer system, the change is transmitted over 

the communications network and applied to the RTU or PLC [8]. 

 

  

LOUISVILLE WATER COMPANY A 

 

Louisville Water Company (LWC) is a municipally owned corporation that 

provides water to about 850,000 people in a 600+ square mile area encompassing 

Louisville Metro/Jefferson County, KY and areas of Oldham and Bullitt Counties.  LWC 

provides water for resale to Taylorsville, Mount Washington, North Shelby, and Salt 

River, KY.  The distribution system consists of over 4,000 miles of water mains, over 

23,000 hydrants, almost 50,000 system valves, and over 300,000 services [1,2]. 

Since its inception over 150 years ago, Louisville Water Company has been 

providing safe, high quality water.  Very innovative processes have been created during 

this time including the redundancy and design of the distribution system, use of the water 

quality lab that now performs over 200 tests daily on the drinking water supply, and 

being the first water utility in the world to combine a tunnel with gravity-fed wells as a 

source for drinking water [9]. 

Part of what aids the innovation is the information provided by the SCADA 

system.  It contains 9,000 data points, or tags, in the real-time database at 1 second 

intervals.  Each tag is a unique identifier for a specific measurement attribute and 

corresponds to a field data point such as pressure through a valve or temperature of 

finished water [6].  The historical database stores over 850 of these tags at 1 minute 

intervals and has data back to 2003 [4]. 
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PROBLEM STATEMENT B 

 

There are vast amounts of data to analyze in LWC’s complex environment.  A 

highly qualified and dedicated staff maintains the SCADA infrastructure and distribution 

system.  Proper maintenance and quick problem resolution depend on the staff 

understanding the system and being able to correlate data from several sources including 

SCADA, Geographical Information System (GIS), and historical trends.  This requires a 

deep and extensive knowledge of the operating environment.  A need exists to stay 

current on the status of daily operations including break locations and equipment 

maintenance schedules.  The volume of data to process is also quite large.  Looking at a 

single data point such as a tank level is simple to process but will only provide a limited 

amount of information.  Looking at multiple data points such as all SCADA monitoring 

points in a pressure plane can provide numerous combinations of data and become labor 

intensive to study manually.  Experienced employees are able to recognize certain trends 

in the raw SCADA readings that could be indicative of system issues.  These readings are 

typically much closer to the climax of a break and do not provide much advanced 

warning. 

The large number of SCADA variables and the constant influx of information 

make PCA a practical tool for examination.  Using PCA with the SCADA information 

reduces the amount of data by computing a single principal component for multiple 

monitoring points thereby correlating the data automatically.  Systems currently in place 

monitor the environment and provide alerts on various components in the distribution 

system including equipment failures like a large pumping station outage.  PCA can 

extend alerting capabilities by providing earlier notification of issues in the pipe 

infrastructure.  Observing subtle changes in the analysis can signal that a large main 

break or other event in the system could be pending.   
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II. PRINCIPAL COMPONENT ANALYSIS 

 

 

The focus of PCA is the reduction of a complicated set of data without losing the 

variation of the original data.  Applications for PCA can include pattern searching such as 

for facial recognition as well as image compression [10].  The initial details of the 

methods now known as PCA were provided by Pearson (1901) and Hotelling (1933).  

Research is still being completed in the general area of PCA.  There is also widespread 

use of PCA in a number of different areas including biology, chemistry, genetics, quality 

control, and many more.  This widespread use is evident by the 2000 articles published in 

the two years from 1999 to 2000 that contained the phrases ‘principal component 

analysis’ or ‘principal components analysis’ in the title, abstract, or keywords [7]. 

PCA can be calculated manually relatively easily if the number of variables, or 

dimensions, is small such as two or three dimensions.  Once a data set has been chosen to 

have principal component analysis completed, the mean of the data points needs to be 

calculated.  The mean, x̄, is found by adding all numbers in the data set and dividing by 

the number of values in the data set, n,  as shown by the formula  

 

n

x
=x

i

n

1=i
∑

 

 

Numerous calculations throughout this process use the raw data minus the mean for each 

raw data point.  It is beneficial to also compute this now [10]. 

Next, the standard deviation of the data set, represented by symbol σ, is 

computed.  Standard deviation measures the spread of the data and is the average distance 

from the mean to a data point.  It is derived by the formula 

 

)1-n(

)x - x(
=σ

2
n

1=i i∑

 

 

(1). 

(2). 
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In the above formula, n represents the number of samples, xi is the current raw data point, 

and x̄ is the mean or average [10]. 

The normalization or standardization of the data is then calculated using the above 

information of mean and standard deviation.  This normalization is the process of 

isolating statistical error in repeated measured data [11].  A SCADA system is an 

excellent example of a system with repeated measured data.  The normalized data set is 

calculated by formula 

 

σ

− xx i  

 

for 1 ≤ i ≤ n where n is the number of items in the data set.  Essentially, each raw data 

point has the mean subtracted and that value is divided by the standard deviation [10]. 

The next step in computing PCA is calculating the covariance matrix using the 

normalized data from above.  Covariance measures the extent that variables vary with 

respect to each other.  It is always measured between two variables.  For data with three 

or more variables, covariance is calculated between each pair of variables.  For example, 

data with three variables x, y, and z, covariance can be calculated between x and y, x and 

z, and y and z.  For an m-dimensional set of data, the number of different covariance 

values that can be created is 

 

2)!*2 -m(

!m
 

 

The formula for covariance between two normalized variables is  

 

1n

yx
)y,xcov(

i

n

1i i∑

−
=

=  

 

(3) 

(4). 

(5) 
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where n is the number of data in the set.  The covariance matrix is then a matrix of all 

possible covariance values between all of the different dimensions.  The definition of the 

covariance matrix C with m variables is 

 

)Var,Varcov( jiijC =  

 

where 1 ≤ i,j ≤ m and Varx is the xth variable.  From the definition, the covariance matrix 

will always be a square matrix.  Continuing the example of data with three dimensions x, 

y, and z, the covariance matrix C would consist of three rows and three columns such as  

 

















=

)z,zcov()y,zcov()x,zcov(

)z,ycov()y,ycov()x,ycov(

)z,xcov()y,xcov()x,xcov(

C  

 

It can be noted that the main diagonal consists of the covariance with one of the variables 

and itself.  These are actually the variances for that variable [10].
 
 

 Once the covariance matrix is determined, its eigenvectors and eigenvalues can be 

discovered.  An eigenvector is a vector that, when acted upon by a particular linear 

transformation, produces a scalar multiple of the original vector.  The scalar in question is 

the eigenvalue that corresponds to the eigenvector [12].  Eigenvectors and eigenvalues 

can be expressed in terms of A which is a square matrix and a non-zero eigenvector x of 

A if an eigenvalue λ exists such that 

 

xAx λ=  

 

When calculating the PCA, the square matrix in the above expression, A, is the 

covariance matrix C.  It should be noted that eigenvectors can only be found for square 

matrices although not every square matrix has eigenvectors.  Given any n x n matrix that 

does have eigenvectors, there are n eigenvectors.  All eigenvectors of a matrix are also 

perpendicular to each no matter how many variables are involved.  This allows the data to 

be expressed in terms of these eigenvectors.  When eigenvectors are discovered, it is also 

(6) 

(7). 

(8) [13]. 
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desired to find ones that have a length of exactly one.  The length of a vector doesn’t 

affect whether or not it is an eigenvector but the direction of the vector does.  To be 

standard, when eigenvectors are found, they are scaled to have a length of one.  By the 

expression above, it is given that when an eigenvector is discovered, so is the eigenvalue 

[10].   

 The eigenvector with the highest eigenvalue turns out to be the primary 

component of the data set.  This is easily seen once the eigenvectors found in the 

covariance matrix are ordered by eigenvalue from highest to lowest putting them in order 

of significance.  At this time, components of lesser significance can also be ignored.  This 

does cause a loss of information but if the eigenvalues are small it can be minimal.  Also, 

if some information is removed, there will be fewer dimensions than the original data.  A 

feature vector or a matrix of vectors is then constructed by putting the selected 

eigenvectors into matrix format with the eigenvectors in columns [10]. 

 Finding the principal components is the last step.  This is accomplished by dot-

multiplying each column of the feature vector of eigenvectors by each row of the 

normalized data.  This will provide an updated matrix of data that contains the principal 

components.  The first column of data is the first principal component; the second 

column is the second principal component and so on.  This gives the original data in 

terms of the vectors we have chosen.  Since eigenvectors are perpendicular to each other 

as stated previously, the data can be represented by the axes of the final data set.  This 

creates a transformed data set that is expressed in terms of the patterns between the data 

where the patterns are lines that describe the relationship between the data.  The data 

values also shows how the data points compare to the trend, whether or not they are 

above or below the trend line seen from the data [10].   

 

 

PCA EXAMPLE A 

 

 The following example illustrates the above steps to calculate principal 

components.  As stated previously, PCA can be calculated easier with a smaller number 

of variables.  For this reason, data was chosen with two variables.  Also, the use of 
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computer-based software allows for increased complexity and improved performance.  

This research was accomplished using Matlab software. 

 Data for this example consists of the following values which were generated by 

the Matlab random number function randn(10,1). 

 

TABLE I 

 

PCA EXAMPLE DATA 

x y 

-0.0301 1.5326 

-0.1649 -0.7697 

0.6277 0.3714 

1.0933 -0.2256 

1.1093 1.1174 

-0.8637 -1.0891 

0.0774 0.0326 

-1.2141 0.5525 

-1.1135 1.1006 

-0.0068 1.5442 

 

 The sum of the x values is -0.4854 and sum of the y values is 4.1669.  Taking the 

sum of the raw data and dividing by the number of data points, 10, provides the mean 

values.  These are -0.04854 for x̄ and 0.41669 for ȳ.   

 The updated raw data with the mean subtracted is 

 

TABLE II 

 

PCA EXAMPLE UPDATED RAW DATA 

x - x̄ y - ȳ 

0.01844 1.11591 

-0.11636 -1.18639 

0.67624 -0.04529 

1.14184 -0.64229 

1.15784 0.70071 

-0.81516 -1.50579 
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0.12594 -0.38409 

-1.16556 0.13581 

-1.06496 0.68391 

0.04174 1.12751 

 

 Using the expression provided above for standard deviation yields 0.8360 for the 

x variable and 0.9268 for the y variable. 

 The normalization of the data which consists of each raw data point subtracting 

the mean and that result divided by the standard deviation has the following results. 

 

TABLE III 

 

PCA EXAMPLE NORMALIZED DATA 

Nx  Ny  

0.022057 1.204037 

-0.13918 -1.28008 

0.808882 -0.04887 

1.365808 -0.69301 

1.384946 0.756047 

-0.97505 -1.62471 

0.150643 -0.41442 

-1.39418 0.146535 

-1.27385 0.737921 

0.049927 1.216553 

 

The normalized data above is used when calculating the covariance matrix.  Since 

there are 2 variables, it will be a 2 x 2 matrix.  By using the expression above for this 

matrix, it can be expressed as  

 

 

 

resulting in matrix 

 









=

)yycov()xycov(

)yxcov()xxcov(
C

N,NN,N

N,NN,N (9) 



10 

 









=

000.10782.0

0782.0000.1
C  

 

 The covariance matrix C is then applied to equation 8 to discover eigenvectors 

and eigenvalues.  In this equation, A is replaced by the covariance matrix C yielding  

 

xCx λ=  

 

As C is a 2 x 2 matrix, and since eigenvalues did exist, there are two.  The two resulting 

eigenvectors from this covariance matrix are calculated by using equation 11 to be 

 








 −

7071.07071.0

7071.07071.0
 

 

The two resulting eigenvalues are 

 










9218.0

0782.1
 

 

Breaking this down, the first eigenvector is  

 










7071.0

7071.0
 

 

with an eigenvalue of 1.0782.  The second eigenvector is 

 








−

7071.0

7071.0

 

 

with an eigenvalue of 0.9218.  These can be also be verified by using equation 11.  As an 

example, verifying the first eigenvector and eigenvalue result in  

(10). 

(12). 

(13). 

(11). 

(14) 

(15) 
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







=

















7071.0

7071.0
x0782.1

7071.0

7071.0
x

000.10782.0

0782.0000.1

 

 

This reduces to the following which validates the eigenvector and eigenvalue. 

 









=









7624.0

7624.0

7624.0

7624.0
 

 

The second eigenvector and eigenvalue can be verified using the same method.   

The eigenvector with the highest eigenvalue is therefore the first eigenvector 

 










7071.0

7071.0
 

 

since it had the eigenvalue of 1.0782 which is greater than 0.9218. The eigenvector with 

the highest eigenvalue is used to determine the first principal component.  The 

eigenvector with the second highest eigenvalue is used to determine the second principal 

component, and so on with the remaining eigenvectors. 

 The principal components are then calculated from the normalized data and 

eigenvectors.  Each row of the normalized data is multiplied by the chosen eigenvector 

column.  This results in a single computed variable representing the principal component.  

For our example, the first row of data in the normalized data which includes values 

0.0221 and 1.2040 is multiplied by the first eigenvector which includes 0.7071 and 

0.7071.  Using matrix multiplication, the first value becomes 

 

8670.0
7071.0

7071.0
]2040.10221.0[ =








×  

 

Completing the calculations on the remaining normalized rows produces the following 

results. 

 

(18) 

(19). 

(16). 

(17). 
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TABLE IV 

 

PCA EXAMPLE FIRST PRINCIPAL COMPONENT 

1
st
 PCA 

0.8670 

-1.0036 

0.5374 

0.4757 

1.5139 

-1.8383 

-0.1865 

-0.8822 

-0.3790 

0.8955 

 

 This process can be repeated for the other eigenvector to calculate the second 

principal component if desired.  As stated previously, these principal components can be 

plotted to show patterns that describe the relationship between the data and highlight their 

similarities and differences.  It shows whether or not the data is consistent with a defined 

trend.  As eigenvectors are orthogonal to each other, the data is shown in terms of the 

eigenvectors instead of the normal axes [10]. 

 It is easily illustrated from the example that computing principal components is 

straight-forward, especially with a small number of variables.  With a larger set of 

variables, these calculations become much more complex and more difficult to calculate 

manually.  Computer software such as Matlab greatly simplifies this process.   
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III. SCADA ENVIRONMENT 

 

 

In the late 1970’s and early 1980’s, LWC did not have a centralized SCADA 

system.  A local Bristol-Babcock Digital Control System (DCS) was in operation at the 

B.E. Payne Facility.  The Crescent Hill Filter Plant, Zorn Avenue Pumping Station, and 

Crescent Hill Pumping Station utilized local single-loop controllers for flow control and 

electro-mechanical drum-style controllers for automated tasks that involved timing or 

sequencing such as filter backwashing [4]. 

In the 1980’s and 1990’s, LWC upgraded to a Texas Instrument (TI) DCS system 

which was the company’s first modern SCADA system that combined all of the major 

production facilities.  Several generations of TI controllers including PM550 and TI500 

series and HMIs handled controls, monitoring, and small amounts of data collection [4].   

Beginning in early 2002, LWC had a complete upgrade of its automation and 

centralized control scheme.  The local controllers were converted to Allen-Bradley’s 

RSLogix platform.  Each treatment facility was converted to Ethernet for local 

communications and Ethernet via Frame-Relay for remote distribution systems for 

communications [4].   

The top-level SCADA was converted to Intellution iFix which is now a General 

Electric Intelligent Platforms product.  The system consists of the following major 

components: 

• Long-term archives running General Electric’s iHistorian 

• Microsoft Windows Servers consisting of redundant servers at different locations 

and all running General Electric’s Proficy Server 

• Microsoft Windows Workstations running General Electric’s Proficy HMI 

• RSLogix 5000 Series PLCs 

• SLC PLCs 

• MicroLogix PLCs [4] 

The system today is a powerful, enterprise-wide data historian that retrieves, 

archives and distributes tremendous volumes of real-time production information at 

extremely high speeds.  The architecture consists of several components including the 

Historian server, collectors, and clients.  The Historian server is the central point for 
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managing all of the client and collector interfaces, storing and (optionally) compressing 

data and retrieving data. All tag data is stored in a proprietary format in the archive 

database. The archive database consists of several files, each of which represents a 

specific time period of historical data.  The system includes several types of data 

collectors for collecting data from a wide variety of applications.  All client applications 

retrieve archived data through the Historian API. The Historian API is a client/server 

programming interface that maintains connectivity to the Historian Server and provides 

functions for data storage and retrieval in a distributed network environment.  A typical 

Historian environment has the layout described in the following figure. 

 

 

FIGURE 1 - Typical Historian System [6] 
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The Historian database tables contain read-only information from the Historian 

archive.  Some of the tables included in the database are: 

• ihTags – Contains tag configuration information. 

• ihArchives – Contains archive filename and configuration information. 

• ihCollectors – Contains configuration and status information for each 

collector. 

• ihMessages – Contains messages such as alerts held in the audit log. 

• ihRawData – Contains collected data for each tag. 

The primary tables utilized in this study are the ihTags and ihRawData tables.  

Although the ihTags table contains numerous columns including the collector name and 

type used, input high and low scales, and many others, this research only utilized the tag 

name information.  These tags represent various components of the distribution system 

including elevated storage tanks or pressure reducing valves to name a few.  Many of 

these tags are represented in our GIS.  Although there is currently no direct connectivity 

between GIS and SCADA systems for data value sharing, the GIS system does provide 

location information.  The following illustration shows the area around eastern Jefferson 

County and Oldham County.  It was created from the GIS data using ESRI ArcMap 

software.  To simplify the map, only storage facility information is displayed which 

includes various ground and elevated storage tanks. 
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FIGURE 2 - GIS Storage Tank Location Example 

 

Employees access SCADA data in several different ways depending on need.  

The SCADA administrator has created a web site based on the Proficy Real Time 

Information Portal.  This provides quick and easy access for an employee to view current 

statistics relating to the distribution system including a general system overview as well 

as water quality data as an example.   
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FIGURE 3 - SCADA System Overview 

 

 

FIGURE 4 - SCADA Water Quality Information 

Employees can also directly access the SCADA information through a Microsoft Excel 

Add-In which is a part of the Historian product.  The Add-In allows access to any of the 

archive files for any of the tag and raw data information.  The user can then create reports 

or perform needed analysis using standard corporate software [5]. 
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IV. DATA ANALYSIS 

 

 

TEST ENVIRONMENT SETUP A 

 

To not affect the production SCADA system, data was copied to a local PC for 

data processing and analysis.  The local PC is a Dell Latitude E6500 with 3 GB memory 

and a 2.67 GHz dual-core Intel processor running Microsoft Windows 7 SP1 operating 

system.  Matlab R2010a, version 7.10.0.499, was installed for mathematical processing 

as well as creation of a graphical user interface (GUI).  Microsoft SQL Server Express 

version 2008 R2 was installed as the database to store copied SCADA data as well as 

other tabular information required for PCA.  The instance is named SQLEXPRESS. 

Connectivity to the SCADA system needed to be established through the 

corporate network.  The corporate network and SCADA networks are separated by a 

firewall for security purposes.  Rules are in place such that corporate systems including 

desktops and servers can access SCADA servers.  Servers and devices in the SCADA 

network require rules in the firewall to initiate connectivity.  By default, none of the 

SCADA systems including servers and workstations can initiate network traffic through 

the firewall to the corporate network. 

The Historian OLE DB Provider was next installed on the local PC so the SQL 

Server could have direct access to the Historian archives.  The Historian OLE DB 

Provider is a data access mechanism that allows Historian data to be directly queried 

using Structured Query Language (SQL) statements [5].  This software is included with 

the regular Historian client.  It allows the Historian server to be configured as a linked 

server in the SQL Server database.  A linked server is a remote server defined in the SQL 

Server database through an OLE DB Provider.  This allows tables and views to be 

defined in the local SQL Server that appear local to end users but actually access the data 

in the remote server.  Although the installation and configuration of the Historian OLE 

DB Provider is very straightforward, the Historian server would not initially work as a 

linked server.  When defining the linked server, the error message “Cannot create an 

instance of OleDb provider IhOLEDB.iHistorian for linked server ‘IHIST’”.  This error 
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was corrected after searching the GE Fanuc support site for a solution that consisted of 

adding registry key HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Microsoft SQL 

Server/MSSQL.1/Providers/iholedb.iHistorian.  In this key, two DWORD values 

AllowInProcess and LevelZeroOnly were added and both set to one.   

 Once connectivity could be established, the raw SCADA data could be copied to 

the local SQL server.  A SCADA database was also created in the local SQL Server 

instance.  A local version of the ihRawData table was created in the local SCADA 

database as table [SCADA].[dbo].[ihRawData].  The local ihRawData table has the 

following table structure to match the Historian structure. 

 

TABLE V 

 

[SCADA].[dbo].[ihRawData] Table Structure 

COLUMN_NAME DATA_TYPE CHARACTER_MAXIMUM 

TagName Nvarchar 4000 

TimeStamp Datetime NULL 

Value Nvarchar 4000 

Quality Nvarchar 4000 

 

Data from the Historian ihRawData archive is imported into the local table by using a 

SQL command in the SQLEXPRESS instance similar to the following. 

 

insert into [SCADA].[dbo].[ihRawData] (TagName, TimeStamp, Value, Quality) 

SELECT TagName, TimeStamp, Value, Quality FROM OPENQUERY 

(iHist,' 

SET 

StartTime="09/08/2010 23:59:00", 

EndTime="09/11/2010 23:59:59", 

IntervalMilliseconds=1Minute, 

SamplingMode=Calculated, 

CalculationMode=Maximum 
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SELECT * FROM ihRawData WHERE TagName LIKE 

CHFP.BROOKS_STATION_TANK_LEVEL.F_CV') 

 

The above query contains the linked server, iHist, as the target of the OLE DB 

OPENQUERY function.  The StartTime and EndTime parameters can be modified to 

import data from the desired timeframe.  The IntervalMilliseconds parameter set to 

1Minute tells the query to get a sample for each minute during the start and stop times 

provided.  In the SELECT statement of the OPENQUERY function, the tagname is 

specified to select data for the appropriate tag.  This query can be modified as needed to 

get the raw data from the Historian SCADA system. 

 When analyzing LWC data, it was initially decided to look at pressure plane 

boundaries to segment data.  These geographic regions each run at the same elevation or 

plane.  Each pressure plane contains components such as valves and storage tanks that 

have representative SCADA tags associated.  Results and information regarding the 

evaluation of data is discussed further in the report. 

As stated, each pressure plane would therefore contain components such as 

storage tanks or booster pumps to maintain the proper pressure.  Another local table in 

the SQL Server Express SCADA database was created to link the pressure plan 

information with the SCADA tags in each zone.  This table is named 

PRESSURE_ZONES.  It contains the pressure zone name as required for this research, 

SCADA tag, pressure plane name, and facility identifier.  The facility identifier is used as 

link for the GIS system and would provide a future interface for this research.  Since 

multiple tags are in each pressure plane, this table has a one-to-many relationship 

between the pressure plane and the SCADA tags. 

 

TABLE VI 

 

[SCADA].[dbo].[PRESSURE_ZONES] Table Structure 

COLUMN_NAME DATA_TYPE CHARACTER_MAXIMUM 

PressureZone Nvarchar 200 

Tagname Nvarchar 4000 

PressurePlaneName Nvarchar 200 
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FACILITY_ID Nvarchar 50 

 

 These correspond to the tagname field in the PRESSURE_ZONES table.  The 

PressureZone field in the table contains the name of the pressure zone in the LWC 

distribution system.  Geographically, the pressure zones have the following layout. 

 

 
FIGURE 5 - LWC Pressure Planes 
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As an example, one of the 760 pressure zones contains four SCADA components 

or tags.  The entries in the PRESSURE_ZONES table for these items include the 

following for the PressureZone and Tagname fields. 

 

TABLE VII 

 

PRESSURE_ZONES Table Sample 

PressureZone Tagname 

760 CHFP.BROOKS_STATION_TANK_LEVEL.F_CV 

760 CHFP.JEFF_DISCHARGE_PRESSURE.F_CV 

760 CHFP.JEFF_FOREST_TANK_LEVEL.F_CV 

760 CHFP.MARTIN_STATION_TANK_LEVEL.F_CV 

 

 As described previously, the raw SCADA data is loaded from the iHistorian 

system to the local SQL Server Express database.  To expedite and automate this data 

load, the Matlab software package is utilized.  At the start of a new Matlab program, 

BeginDate and EndDate variables are established to set the dates and times of data that 

will be transferred.  These variables are in YYYY-MM-DD HH:MM format such as 

‘2011-03-10 00:00’ for easier interaction with the SQL Server database.  These dates can 

be days apart or any amount of time.  However, the code loops in 24 hours intervals 

meaning that if the end date is only 1 hour greater than the start, there will still be 24 

hours of data collected.  The code connects to the SQLEXPRESS instance and queries 

the PRESSURE_ZONES table for all tags in a particular pressure zone.  This creates a 

list variable containing the tags that will have data copied.  For instance, it can contain 

‘TagName = CHFP.JEFF_DISCHARGE_FLOW.F_CV or TagName = 

CHFP.BROOKS_DISCHARGE_PRESSURE.F_CV’.  The code also takes into account 

whether or not it was the first tag in the list so it would not include the ‘or’ statement.  An 

outer loop is created such that the query increments in 24 hour intervals between the start 

and stop dates.  For example, if the start time is ‘2011-03-10 0:00’ and the stop time is 

'2011-03-30 23:59', the first iteration will only include the time between ‘2011-03-10 

0:00’ and ‘2011-03-10 23:59’.  The second iteration will begin at ‘‘2011-03-11 0:00’.  A 
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loop variable entitled CurrentDate is set to the present loop time.  Inside this loop, the 

code runs the iHistorian OPENQUERY SQL code discussed previously substituting the 

time and tag variables to get the raw SCADA data and insert it into the SQLEXPRESS 

table.  The CurrentDate variable is incremented to the next day, adding one day to the 

present value.  This greatly improves the amount of time required to import data.  The 

full code Matlab code listing is listed in the appendix.  It should be noted that importing 

data into another database is an extra step for offline processing and testing.  Creating a 

permanent solution, if desired, could pull data directly from the SCADA system for 

processing.   

This research included a total of 183 tags out of the 850 available in the historical 

archive.  The tags not chosen include information specific to the treatment process at the 

pumping stations and treatment plants and not related to the distribution.  For instance, 

there are tags for the running time of pumps and the flow and run time through various 

filters.  For these 183 tags, there are a total of 76,150,080 rows of data, each equating to a 

single data point observation.  So, there are over 416,000 observations for each tag!  This 

data includes observations for approximately 8 months of sampling.  The data was 

collected in the same date range from multiple years to be consistent with seasonal 

patterns.     

Storing this data requires approximately 17.6 GB of disk capacity in the SQL 

Server Express database.  This does not include other relevant information including the 

tags, pressure zone data, calculated PCA data, and required system SQL Server tables.  

The SQL Server Express instance also has storage limitations since it is a free product.  A 

single database is limited to 10 GB of space including the database file and associate 

logs.  For this reason, two databases were created in the SQLEXPRESS instance solely 

for the storage of this raw data.  The databases are named RAW0 and RAW1.  Each 

database contains four tables.  Database RAW0 contains tables named raw0, raw1, raw2, 

and raw3.  Database RAW1 contains tables named raw4, raw5, raw6, and raw7.  Each 

table has the same structure as the SCADA ihRawData table and contains three hours of 

data.  For example, table raw0 contains all data with times ranging from 0:00 to 2:59 and 

table raw1 contains all data with times ranging from 3:00 to 5:59.  The data was grouped 

by time because of the methodology for analyzing the data as described further in the 
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paper.  Data was also distributed among several tables for improved performance.  Each 

of these tables contains approximately 9.5 million rows or records.  Functions to analyze 

the data and compute the principal components perform table searches based on time.  If 

all data was in one or two tables, the computing process would take an extremely long 

time since the number of records to analyze would be double or more in size.  

 

 

PRINCIPAL COMPONENT CALCULATION B 

 

 With the data loaded into the SQL Server Express databases, the principal 

components can be calculated.  Matlab code is executed to read through the raw data, 

grouping the data by hour and minute, and storing the result in another table named 

HistoricalPCA for processing. This table contains the coefficients or eigenvectors from 

the principal component analysis. 

Start and stop times are set as variables StartTime and EndTime.  With the GUI 

environment, these variables are set through a Matlab listbox.  Four listbox components 

are used for the start hour, start minute, stop hour, and stop minute.   

 

 

FIGURE 6 - Update Historical PCA Multipliers GUI 

 

Each listbox item has two functions.  One function creates the listbox items 

including the selection for minute or hour options as follows. 

 

function stop_min_listbox_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 

end 

  

set(hObject, 'String', 

{'01','02','03','04','05','10','15','20','24','25','30','35','40','45','50','55','59'}); 

 

The other function is the callback function.  Each of the callback functions set a 

global variable to the current, selected value in the listbox control.   

 

function stop_min_listbox_Callback(hObject, eventdata, handles) 

global stop_min_lb; 

stop_min_lb_selected = get(hObject, 'Value'); 

stop_min_lb_list = get(hObject, 'String'); 

stop_min_lb = stop_min_lb_list(stop_min_lb_selected); 

  

When the Update button is selected in the GUI, it calls a callback function for the 

pushbutton.  The global variables, start_hour_lb, start_min_lb, stop_hour_lb, and 

stop_min_lb, are used as each contains the string for the start or stop hour and minute 

values from the listboxes.  The start strings are concatenated with a colon to create a start 

time in HH:MM format and saved to variable StartTime.  The stop strings are 

concatenated in the same manner and saved to variable EndTime.  The GUI code also 

checks that the stop time is not earlier than the starting time.  If it is not, it calls a user-

defined function to perform the historical PCA analysis.  If the stop time is actually 

earlier than the start time, a message box is displayed and the routine ends so the user can 

reenter appropriate values. 

 

 

FIGURE 7 - Message Box When Incorrect Time Data Entered 

 

 The Matlab code executed for the Update pushbutton consists of the following. 

 

function upd_hist_pca_pushbutton_Callback(hObject, eventdata, handles) 

cla; 

global start_hour_lb; 

global start_min_lb; 
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global stop_hour_lb; 

global stop_min_lb; 

  

StartTime=strcat(start_hour_lb,':',start_min_lb); 

EndTime=strcat(stop_hour_lb',':',stop_min_lb); 

  

StartTimeNum = datenum(StartTime); 

EndTimeNum = datenum(EndTime); 

  

if EndTimeNum <= StartTimeNum 

    msgbox('End Time Can Not Be The Same Or Earlier Than Start Time!'); 

else 

    update_historical_pca(); 

end; 

 

 Once the start and stop times are correctly defined through the listbox routines, 

the function update_historical_pca begins by setting variables and opening log files for 

operational management.  This function also uses the global start and stop time variables 

explained previously.  Variable alerts_exist is initialized to 0.  This variable will be set to 

1 when an alert occurs during processing that will get logged to a file.  Two files are 

opened for logging including alerts.txt and log.txt.  These files are appended with 

information.  File log.txt contains the start and stop time of processing so the user can see 

how long the process takes.  It also contains information on the time range selected for 

processing.  An example selection is: 

 

Update PCA Multiplier Start Run: 2011-10-16 16:53 

Update PCA Multiplier Range: 02:22_to_02:24 

Update PCA Multiplier Stop Run: 2011-10-16 17:03 

 

File alerts.txt contains errors or issues for user awareness.  It includes the date and 

time of the alert and the actual alert.  The following example shows several calculations 

where the data computation included a Matlab Not-A-Number (NaN) result. 

 

2011-10-16 17:03: Tag #179 [CHFP.ZONE_DISCHARGE_PRESSURE.F_CV] is NaN 

2011-10-16 17:03: Tag #178 [CHFP.ZONE_DISCHARGE_FLOW.F_CV] is NaN 

2011-10-16 17:03: Tag #136 [CHFP.SMYRNA_BARDSTOWN_PH.F_CV] is NaN 
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The function also defines a Matlab waitbar which is a timer showing processing 

progress.  This provides the operator a visual on how much longer the routine will take to 

calculate the PCA components and update system tables.  For the number of repetitions 

to illustrate, it calculates the amount of time between the start and stop times.  During 

each iteration, a step variable is increased which is used for the display. 

 

 

FIGURE 8 - Progress-Bar Illustration 

 

A connection is established to the local SQL Server Express instance 

SQLEXPRESS for data gathering and processing.  Initially, the tagnames are queried, 

sorted by tagname, and loaded into an array named TagList.  The number of tags is 

computed with the Matlab size command and saved as variable NumTags. 

 Another string variable is created titled TagString.  This variable contains all of 

the tags used for processing.  The string is defined with an opening parenthesis and each 

tag is enclosed in single quotes.  The code takes into account whether or not the tag is the 

first in the list so it does not contain a comma in the list.  An example TagString is 

(‘CHFP.JEFF_DISCHARGE_FLOW.F_CV’,’CHFP.BROOKS_DISCHARGE_PRESSU

RE.F_CV’,’CHFP.MARTIN_STATION_TANK_LEVEL.F_CV’).   

 Next is a loop that begins with the start time and increments until the time reaches 

the stop time.  During the loop, because the data is spread among several tables in the 

SQL Express instance, the source database and source table are set based on the loop 

time.  For example, at time 02:13, the source database is RAW0 and the source table is 

RAW0.  Another query is executed against the correct database and table to fetch all data 

for tags included in the TagString variable.  The query is further restricted by just the 

current loop hour and minute, such as 02:13, as well as a prior 4 month date range.  This 

range was chosen to provide a good number of sample points as well as being considerate 

of weather changes and patterns.  If a larger date range was chosen, a broader range of 
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numbers would be returned because of the change in water usage and consumption 

dealing with weather patterns.  Typically, there is higher consumption in summer months 

compared to winter by homeowners.  Including July and August data when evaluating 

January numbers could have an impact on results.  The code for the query is  

 

strcat('select * from [',SourceDatabase,'].[dbo].[',SourceTable,'] where timestamp >= 

''2009-03-10 00:02'' and timestamp <= ''2009-07-03 23:59'' and tagname in ',TagString,' 

and convert(time,timestamp) = ''',datestr(StartTimeNum,'HH:MM'),''' order by timestamp 

asc').  

 

This illustrates the variables being used.  With variable substitution, this becomes 

 

select * from [RAW0].[dbo].[RAW0] where timestamp >= ''2009-03-10 00:02'' and 

timestamp <= ''2009-07-03 23:59'' and tagname in 

(‘CHFP.JEFF_DISCHARGE_FLOW.F_CV’,’CHFP.BROOKS_DISCHARGE_PRESSU

RE.F_CV’,’CHFP.MARTIN_STATION_TANK_LEVEL.F_CV’) and 

convert(time,timestamp) = '2:13' order by timestamp asc').  

 

The result of this SQL query is stored in variable bigdata.  This contains all fields 

including tag name, date timestamp, raw data value, and quality for all tags at the loop 

time hour and minute.  There could be issues with the SCADA raw data due to 

maintenance windows causing missing readings, new devices installed, or old monitoring 

points removed.  This could make some tags have more rows of data returned than others.  

For this reason, another loop is executed to find the highest number of rows returned that 

all tags have in common.  This allows all of the tag data to have the same number of 

samples to examine and can be easily used with Matlab matrix operations.  If the number 

of rows were different, the matrix operations would fail.  As it loops through the data in 

the bigdata variable, it uses the Matlab functions find and ismember to query the set and 

only respond to the current tag in the loop.  The Matlab size function then gathers the 

number of rows returned for that specific tag.  If the value is less than the current 

minimum, the new minimum becomes this size.  The result of this internal loop is a 

variable called minrows that stores the number of rows that each data point has in 

common. 

 

minrows = 32000; 

    for i = 1:NumTags 
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        cursize = size(find(ismember(bigdata,TagList(i))),1); 

        if cursize < minrows 

            minrows = cursize; 

        end 

    end 

 

 During each iteration of the main loop, an empty matrix H is initialized.  This will 

store the raw historical data.  Each column of this matrix will contain the raw data and 

have minrows of data from the previous calculation.  Similar to the previous operation, 

another internal loop through all of the tags is utilized.  The find and ismember Matlab 

functions are used again to find all raw data for the current tag, returning arrays r and c 

containing the row and column information locating the current tag data in the bigdata 

matrix.  All rows for the current tag are sorted ascending by time which is the second 

column of the bigdata matrix.  The actual raw data, which is the third column of the 

bigdata matrix, is converted from a string to a double and only includes the last minrows 

number of data values.  This data is concatenated to the H matrix with the Matlab horzcat 

function.  Once all of the tags have been processed, matrix H contains all of the historical 

raw data.  Each column corresponds to a specific tag.  Since all tags were searched and 

processed in alphabetical order, it is important to note that column one of H corresponds 

to the first tag processed and the nth column of H corresponds to the nth tag processed.  

This will make future calculations easier by matching the tag and raw data indexes. 

 As stated previously, the raw data can contain variations in the data including null 

or 0 data.  For instance, if a storage tank is out of service for maintenance, the SCADA 

system may return null or 0 values during that time period.  There are several methods to 

deal with missing data.  The most usual way is to completely delete any observation for 

which at least one of the variables has a missing value [7].  This method is used further in 

the PCA calculation.  Another method is to replace missing values with the mean 

calculated from observations for which the value is available [7].  For the data in matrix 

H, all zero data is replaced by the mean of the non-zero elements to minimize data loss.  

Matlab functions are used to loop through a temporary copy of matrix H, searching for 

zero values.  When located, their row and column values are saved in temporary array 

variables.  Looping through each column, if a zero value is discovered, the data point is 

deleted and leaves only non-zero elements in the array.  Another array named averages is 
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used to store the average of the remaining non-zero elements.  The size of array averages 

equals the number of columns in H which is the number of SCADA tags being used.  

Another loop is used to set the zero values in H to the average. 

 With all zero values removed, the data from H is normalized into a new matrix 

called Hn.  For this operation, the number of rows and columns of H are required and 

stored in variables histn and histm respectively.  The mean of each column is computed 

and stored in variable HMean.  The standard deviation of each column is calculated with 

the Matlab std function and saved to variable HStd.  These values are used in the 

normalization data calculation.  The normalization is calculated by subtracting the mean 

from each data point and dividing by the standard deviation.   

 

% n = number of rows 

% m = number of columns (ie variables) 

[histn histm] = size(H); 

  

% Calculate mean for each column 

HMean = mean(H); 

 

% Calculate Standard Deviation for each column 

HStd = std(H); 

     

% Calculate normalized data 

Hn = (H - repmat(HMean,[histn 1])) ./ repmat(HStd,[histn 1]); 

 

 With a new matrix Hn containing the normalized raw data, there may still be data 

integrity issues.  In the previous calculations, all zero data was replaced with the average 

of non-zero data.  What happens if all data during a timeframe is zero?  This data point 

must be removed entirely as was explained the primary option when dealing with missing 

data.  In the normalized matrix, zero or missing data is discovered by NaN values 

indicating Not-A-Number.  These are instances where the mathematical operations to 

calculate the normalized data have undefined results.  The Matlab isnan function locates 

these values.  To prevent removing a tag or variable from all further processing, 

temporary tag lists and tag counts are used.  This way, further processing still uses all 

variables if data is available.  If a NaN value exists, the event is logged in the alert log 

and the alerts_exist variable is set to 1 to signify the existence of an issue.  The value in 
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the HistoricalPCA result table for the tag with NaN is set to 0 for the current hour and 

minute.  This is similar to deleting the value since anything multiplied by it will be 0 and 

adding anything to it will also be 0.  The tag is removed from the temporary tag list 

variable and the count of tags is reduced by one.  The normalized data column is also 

removed from Hn completely removing the data from the PCA calculation.  It is 

interesting to note that the loop to remove NaN columns starts with the last entry and 

ends with the first data point.  Calculations are done in this manner because of the 

indexing that is used to keep the tag and data values in sync with regards to matrix 

operations.  If the loop was started at one, and the second column needed to be removed, 

the second column data would be removed and the variables modified as needed.  

However, when the column is removed from the matrix, the third column becomes the 

second column and so-on.  The next iteration of the loop would be the third column but 

by comparing the original matrix, this is actually the fourth column!  By starting with the 

last tag, there is no adjusting of columns.  For example, if there are 12 variables resulting 

in 12 columns in the Hn matrix, and column 11 is removed, column 12 still becomes 

column 11.  However, since working from end to beginning, the next iteration would be 

column 10 as expected.  No adjustments are needed to keep the indexing in sync.  

Removing the columns with NaN values is completed with the following Matlab code. 

 

% Check for NaN in matrix due to non-changing variables 

% Set HistoricalPCA value to 0 for future processing to not use it and 

% remove the tag from current processing 

tTagList = TagList; 

tNumTags = NumTags; 

j = NumTags; 

while j >= 1 

    if isnan(Hn(:,j)) 

        fprintf(alert_fid,'%s\n',(strcat(datestr(now,'yyyy-mm-dd HH:MM'),': Tag 

#',num2str(j),' [',cell2mat(tTagList(j)),'] is NaN'))); 

        alerts_exist = 1; 

        %update value with 0 in HistoricalPCA table 

        sqlquery=strcat('update [scada].[dbo].[HistoricalPCA] set [',tTagList(j),'] = 0 where 

Time = ''',datestr(StartTimeNum,'HH:MM'),''';'); 

        curs = exec(conn,sqlquery); 

             

        %remove Hn and TagList and subtract 1 from NumTags 

        tTagList(j)=[]; 
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        Hn(:,j)=[]; 

        tNumTags = tNumTags - 1; 

    end 

    j = j - 1; 

end 

 

 After all of these calculations and preparation, the principal components can 

finally be determined!  The Matlab princomp function is used on the Hn normalized 

matrix.   

 

% Perform PCA on normalized data 

[HCOEFF HSCORE HLATENT] = princomp(Hn); 

 

 The princomp function returns three variables.  HCOEFF stores the unit 

eigenvectors, HSCORE stores the PCA results, and HLATENT contains the eigenvalues.  

The eigenvectors are the data stored in the HistoricalPCA data.  These values will be used 

in future processing as coefficients to calculate a current PCA value.  Another internal 

loop processes each remaining tag and updates the current hour and minute of the 

HistoricalPCA table with its corresponding HCOEFF value.   

 

% store HCOEFF into Historical table 

for i = 1:tNumTags 

    sqlquery=strcat('update [scada].[dbo].[HistoricalPCA] set [',tTagList(i),'] = 

',num2str(HCOEFF(i,1),16),' where Time = ''',datestr(StartTimeNum,'HH:MM'),''';'); 

    curs = exec(conn,sqlquery); 

end 

 

An example update for a non-zero data point would be 'update 

[scada].[dbo].[HistoricalPCA] set ['CHFP.BROOKS_STATION_TANK_LEVEL.F_CV'] 

= -0.0379695589580 where Time = '02:13';' 

 

Several checks are computed on the results to ensure accuracy and to maintain 

faith in the system.  The first checks that the sum of the eigenvalues equals the number of 

variables or tags. In using all of the tags, they both equaled 182.  The second check 

ensured the sum of the variance of the computed principal components equaled the 
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number of variables or tags.  Again, using all tags, they both equaled 182.  In either case, 

if the checks did not equal the correct values, it is written to the alert log. 

 

% perform checks on HLATENT and manually calculate variance on HCOEFF 

str1 = sprintf('%.4f',sum(HLATENT)); 

str2 = sprintf('%.4f',histm); 

str3 = sprintf('%.4f',sum(var(HSCORE))); 

if str1 ~= str2 

    fprintf(alert_fid,'%s\n',(strcat(datestr(now,'yyyy-mm-dd 

HH:MM'),':',datestr(StartTimeNum,'HH:MM'),': HLATENT sum != number of 

columns!'))); 

    alerts_exist = 1; 

    %disp('HLATENT sum != number of columns!'); 

end 

     

if str3 ~= str2 

    fprintf(alert_fid,'%s\n',(strcat(datestr(now,'yyyy-mm-dd 

HH:MM'),':',datestr(StartTimeNum,'HH:MM'),': HSCORE variance sum != number of 

columns!'))); 

    alerts_exist = 1; 

    %disp('HSCORE variance sum != number of columns!'); 

end 

 

 All of these computations build the HistoricalPCA table in the local SCADA 

database.  It has the following format. 

 

TABLE VIII 

 

[SCADA].[dbo].[HistoricalPCA] Table Structure 

COLUMN_NAME DATA_TYPE 

Time Time(7) 

[CHFP.BROOKS_STATION_TANK_LEVEL.F_CV] Decimal(18,13) 

[CHFP.JEFF_FOREST_TANK_LEVEL.F_CV] Decimal(18,13) 

[CHFP.MARTIN_STATION_TANK_LEVEL.F_CV] Decimal(18,13) 

Repeats for rest of SCADA tags Decimal(18,13) 

 

 

 Because each column is also a SCADA tag, there are a total of 183 columns 

counting the Time field and the 182 tags.  The Time field contains unique values from 



34 

 

0:00 to 23:59 for each minute of the day.  Therefore, there are 1,440 rows in the table.  

The data in each tag’s field has the calculated PCA coefficients for a specific time.  For 

instance, as shown in the following sample, at time 0:01, the PCA coefficient for the 

CHFP.BROOKS_STATION_TANK_LEVEL.F_CV is -0.0508022294967. 

 

TABLE IX 

 

[SCADA].[dbo].[HistoricalPCA] Single Field Sample 

Time CHFP.BROOKS_STATION_TANK_LEVEL.F_CV 

0:00 -0.0503698239275 

0:01 -0.0508022294967 

0:02 -0.0536926964676 

0:03 -0.0527105587950 

0:04 -0.0516202908944 

 

 Initial designs of this process included additional SQL queries to the local 

SQLEXPRESS database for information gathering.  Specifically, the code that discovers 

the highest common count of data among all tags had many more SQL select queries.  At 

first, there was one select statement to get the highest common count and then a loop for 

all tags to return that amount of rows of data.  When dealing with a small pressure zone 

or area with a small amount of tags, the process ran smoothly.  When running this process 

with 182 tags, it took quite a while to run.  For each minute to populate the 

HistoricalPCA table, there was actually 18 minutes of processing time.  For all 1,440 

rows in the table, it would take 25,920 minutes or 18 days to calculate everything.  The 

updated code presented takes advantage of Matlab matrix processing.  Instead of 

performing a SQL select for each tag to parse the correct number of data samples, a 

single SQL select is executed with the results stored in a matrix.  Matlab ismember and 

other commands explained previously then parse the correct number of samples.  This 

method reduces the amount of processing time to 3 minutes per HistoricalPCA row. 
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PRINCIPAL COMPONENT OPERATION C 

 

 Once the HistoricalPCA table holds the PCA coefficient calculations, analysis can 

be made on other SCADA data to look for anomalies and potential breaks or issues in the 

distribution system.  Matlab is again used to query the SQLEXPRESS database at the 

current time and use the coefficients from the HistoricalPCA table to create a current 

principal component value.  The variance of the current principal component value and 

the prior 20 minutes values is calculated as well.  The difference between the calculations 

at each minute’s sampling is used to show the possibility of a system issue.  Both the 

current principal component value and associated variance are stored in a results table.  

This table is named the same as the pressure zone that is being evaluated.  For all tags, 

which are the primary focus of this research, the table name is PZALL.  This table and 

any others storing the calculated data, has the following structure. 

 

TABLE X 

 

[SCADA].[dbo].[PZALL] Table Structure 

COLUMN_NAME DATA_TYPE 

TimeStamp Datetime 

CurrentValue Decimal(28,14) 

Variance Decimal(28,14) 

 

 For research purposes, the current time was simulated and another table similar to 

ihRawdata is used.  This table contains the same SCADA tags and is new raw data that 

was not used in the calculation of the HistoricalPCA coefficients.  The Matlab code 

initializes several variables including the beginning time, ending time, and what pressure 

zone is being analyzed.  For this research, it was predominately set to PZALL indicating 

all tags from all pressure zones would be analyzed.  This also corresponds to the table 

that will store the final results as explained previously.  A connection to the local 

SQLEXPRESS database is also created. 
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 The list of tags to be used in the operation is created first.  The program queries 

the PRESSURE_ZONES table for all required tags.  The results are stored in array 

TagList with the number of tags returned in variable NumTags.  This portion of code is 

listed below.  The results are sorted by the tagname field along with future queries.  This 

allows the TagList to be referenced by an index and the index remains the same 

throughout the other queries.  For instance, TagList(1) references tag 

CHFP.BROOKS_STATION_TANK_LEVEL.F_CV and TagList(2) references tag 

CHFP.JEFF_FOREST_TANK_LEVEL.F_CV. In future queries, when needing to use 

one of these tags, it can be referenced by either TagList(1) or TagList(2) instead of doing 

another lookup into the database.   

 

% Get the tags from the pressure zone 

sqlquery = strcat('select tagname from [scada].[dbo].[pressure_zones] where 

PressureZone = ''',PZTable,''' order by tagname;'); 

curs = exec(conn,sqlquery); 

curs = fetch(curs); 

TagList = curs.data; 

NumTags = size(curs.data,1); 

 

 Similar to previous components, string variables named TagString and 

TagsHistString are created.  Each contains a comma separated list of the tags that will be 

used in future SQL queries.  The TagString is enclosed in parenthesis.  An example is 

('CHFP.BROOKS_STATION_TANK_LEVEL.F_CV','CHFP.JEFF_FOREST_TANK_L

EVEL.F_CV','CHFP.MARTIN_STATION_TANK_LEVEL.F_CV').  The TagHistString 

is another, similar string that will be used to query the HistoricalPCA table.  Since the 

tags are the actual field names, each tag needs to be enclosed in square brackets.  An 

example TagHistString is 

[CHFP.BROOKS_STATION_TANK_LEVEL.F_CV],[CHFP.JEFF_FOREST_TANK_L

EVEL.F_CV],[CHFP.MARTIN_STATION_TANK_LEVEL.F_CV].   

 Next, the entire HistoricalPCA table is queried and loaded into a Matlab matrix 

with name HISTPCA.  This was chosen as a way to speed processing.  Instead of having 
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to run a select query for each minute, this is only computed once and stored in Matlab 

memory.  The Time field in the table was converted to VARCHAR format so it could be 

queried in the HISTPCA matrix itself.  The TagHistString was used in the query to only 

return the fields or tags that we are interested in processing.  This portion of code 

includes the following. 

 

sqlquery = strcat('select CONVERT(varchar,time,108) as thetime,',TagHistString,' from 

[scada].[dbo].[HistoricalPCA] order by thetime;'); 

curs = exec(conn,sqlquery); 

curs = fetch(curs); 

HISTPCA = curs.data; 

 

 A loop is then executed starting with the start time provided and ending with the 

end time provided.  A variable CurrentTotal is initialized to zero.  This variable will 

contain the computed principal component for the current date / time.  The current raw 

data is then queried with the statements below.  It only queries the tags included in 

TagString.  As explained previously, it also sorts the results by the tagname field to keep 

the same order as the original queries.  This allows the use of the indexed TagList array. 

 

sqlquery = strcat('select * from [ihist].[dbo].[ihRawdata] where tagname in ',TagString,' 

and timestamp =''',datestr(BeginDateNum,'yyyy-mm-dd HH:MM'),''' order by tagname;'); 

curs = exec(conn,sqlquery); 

curs = fetch(curs); 

curdata = curs.data; 

     

 The current raw data values are then multiplied by the historically calculated PCA 

coefficients stored in the HISTPCA matrix to determine the principal component.  The 

current hour is stored as variable curHH and the current minute is stored at curMM.  

These two variables are used to determine the correct row from the HISTPCA matrix.  

Since it is a matrix ordered on time, the row that matches the current hour and minute can 

be calculated by adding the product of the hour and 60 with the minutes and adding 
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another one.  Basically it computes what minute of the day it is based on 1440 minutes 

total in the day.  For example, 0:00 is obviously the first row of the HISTPCA matrix.  

Multiplying the hour 0 times 60, adding the minutes 0, and then adding another 1 yields 

1, which is the first row.   For time 2:13, row 134 is selected since 2 times 60 plus 13 plus 

1 equals 134.  The array variable histrow stores the values from the HISTPCA matrix.  It 

should be noted that histrow contains data from columns two through the number of tags 

stored in the NumTags variable plus one.  The first column contains the time so it is 

removed.   

 The CurrentTotal variable is then calculated through matrix multiplication.  The 

historical coefficients for the current time stored in variable histrow are multiplied by the 

current raw data.  The matrices will have the same dimensions because all of the queries 

and resulting variables were limited and ordered by the appropriate tags.  Also, only the 

third column of the returned raw data is used which is the raw data point.  By multiplying 

the matrix with the array, it automatically sums the data which becomes the principal 

component.  These steps are completed with the following Matlab code. 

 

curHH = str2num(datestr(BeginDateNum,'HH')); 

curMM = str2num(datestr(BeginDateNum,'MM')); 

rownum = (60 * curHH) + curMM + 1; 

histrow = cell2mat(HISTPCA(rownum,2:(NumTags + 1))); 

CurrentTotal = histrow * str2double(curdata(:,3)); 

 

Now that the current principal component has been determined, the variance in 

the data needs to be calculated and the results stored in the corresponding table.  The 

variance is calculated with the prior 20 minutes data.  For this, a query is executed on the 

results table for data greater than 20 minutes prior.  Since it is greater than and not greater 

than or equal to, it actually returns the previous 19 minutes of data.  This is ok since the 

current value will be in the list as well giving 20 minutes of data.  The query results will 

be returned in a Matlab cell format.  For mathematical calculations, this is converted to 

number format and saved in array TheCV for the current value.  The current value is 

appended to the array with Matlab array operations.  The variance is then computed using 
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the Matlab var function and saved in variable TheVar.  The following code demonstrates 

this operation.  

 

sqlquery = strcat('select currentvalue from [scada].[dbo].[',PZTable,'] where timestamp 

<=''',datestr(BeginDateNum,'yyyy-mm-dd HH:MM'),''' and timestamp 

>''',datestr(addtodate(BeginDateNum,-20,'minute'),'yyyy-mm-dd HH:MM'),''' order by 

TimeStamp;'); 

curs = exec(conn,sqlquery); 

curs = fetch(curs); 

TheCV = cell2mat(curs.data); 

TheCV = [ TheCV ; CurrentTotal ]; % Add current value to vector since not in table yet 

TheVar = var(TheCV); 

 

 This data is inserted into the results table with the Matlab code below. 

 

sqlquery = strcat('insert into 

[scada].[dbo].[',PZTable,'](TimeStamp,CurrentValue,Variance) values 

(''',datestr(BeginDateNum,'yyyy-mm-dd 

HH:MM'),''',',num2str(CurrentTotal),',',num2str(TheVar),');'); 

curs = exec(conn,sqlquery); 

 

 The current date and time is incremented by one minute and the process is 

repeated.  The results from this stage are storing the principal component and the twenty 

minute variance for plotting and analysis.  
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V. RESULTS 

 

 

INITIAL TESTING A 

 

To verify the process, this research started by evaluating data in a small pressure 

zone.  This pressure zone is one of the zones in the 760 pressure plane named Brooks Hill 

and has four SCADA tags.  Working with the SCADA administrator, the date and 

information concerning a past incident was provided.  This would allow the logic and 

mathematical analysis to be tested in a small, closed environment.  Since it only 

contained four tags, visual analysis of the raw data can show the issue by comparing to 

normal operations. 

The SCADA tags in this simple environment consisted of 

CHFP.BROOKS_STATION_TANK_LEVEL.F_CV, 

CHFP.JEFF_DISCHARGE_PRESSURE.F_CV, 

CHFP.JEFF_FOREST_TANK_LEVEL.F_CV, and 

CHFP.MARTIN_STATION_TANK_LEVEL.F_CV.  Charting the raw data under 

normal circumstances provided the following information. 
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FIGURE 9 - Brooks Hill 760 Pressure Zone Normal Operations 

Over a several day span, it is easy to notice the normal data pattern representing 

the typical usage.  Charting the raw data during a break illustrates a drastic change in this 

pattern. 
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FIGURE 10 - Brooks Hill 760 Pressure Zone Break Condition 

 

It is obvious that a break condition was occurring by reviewing the drastic 

changes in raw data.  The same raw data used in these charts were processed with the 

PCA programming outlined previously.  This small group of variables or tags was placed 

in a pressure zone named ORIG4.  The PressureZone name in the PRESSURE_ZONES 

table was set to ORIG4 for these tags.  The output table containing the principal 

components and calculated variance is named ORIG4.  Using the difference between 

each 20 minute variance samples produced the following results.   
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FIGURE 11 - PCA Calculation Example using 20 Minute Variance 

 

 The chart above was created in Microsoft Excel after importing the ORIG4 

tabular data from the SQLSERVER database instance.  Both lines show variations in 

data.  The blue line represents the calculated PCA for the small testing area.  The green 

line represents the difference between the current calculated variance and the variance 

from the previous minute.  Again, the calculated variance included the current and prior 

19 minute PCA computations.  One can also notice a pattern in the PCA line just as a 

pattern is noticeable in the raw data due to usage demands and pumping trends. 

 It is interesting to match the break information of the PCA computed data with the 

raw SCADA information.  From viewing the raw data chart, it appears that the issue 

occurred between 14:00 and 16:00 and had major issues around midnight.  The PCA 

calculated graph shows a change in variance shortly before 14:00 and major changes just 

after 22:00 and midnight. 

 From these observations, the process described to compute the principal 

component and then compare variance data was accurate.  It was then required to 

determine what affect the 20 minute sampling range had on the difference among 

variance calculations.  Additional ranges were then tested including 15 minute, 45 

minute, and 60 minute ranges.  These range changes changed the number of previous 
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samples used in the variance calculation.  For instance, at time 13:30, the 20 minute chart 

above included the 20 PCA calculations sampled from 13:11 to 13:30 in determining the 

variance.  Changing the range to 60 minutes, for example, increased the number of 

samples in the variance calculation to 60 and included samples from 12:31 to 13:30.  

With the same set of data, this produced the following results.   

 

 

FIGURE 12 - PCA Calculation Example with 60 Minute Variance  

 

 

FIGURE 13 - PCA Calculation Example with 45 Minute Variance  
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FIGURE 14 - PCA Calculation Example with 15 Minute Variance 

 

 Each method shows the same PCA data even though the range on the x-axis has 

different interval values.  They each show the issue occurring at approximately the same 

time.  The 60 minute variance showed a much different graph making it stand out more.  

Was this the best variance range for detection?  To make a more informed decision, a 

smaller time interval was compared.  Specifically, a smaller time range was charted to 

show more detail.  The early warning time of the break seemed to occur around 14:00 so 

that area was highlighted.  Adding all variance ranges on the same chart and therefore the 

same time axis illustrated the differences and similarities.  As perceived from the 

individual charts, the 60 minute range was the most dramatic.  The others maintained a 

very similar pattern, all around the same time within about 15 minute of each other.  The 

20 minute range was chosen even though the 60 minute range had the most obvious 

difference.  From an early reporting perspective, the 60 minute range showed the largest 

change but it wasn’t until much later in time, around 15:00 that it had the highest change 

which was approximately -100.  Both the 15 minute and 20 minute ranges showed the 

earliest changes at around 13:52.  Between these two, the 20 minute seemed to maintain 

additional, noticeable spikes in the data making it more useful.  The 45 minute range was 

very close to both the 15 and 20 minute ranges but just a few minutes past the others.  

Trying to create a predictive or early warning application steered the decision towards the 
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20 minute range although any option would be acceptable.  The chart below was created 

in MS Excel to show these differences. 

 

 

FIGURE 15 - Comparison of Variance Calculations 

 

ENTERPRISE ANALYSIS B 
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change in variance would be minor and a pattern of the PCA data would still exist.  The 
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FIGURE 16 - Normal Operating Day 

 

Considering that issues occur each day as well as normal maintenance of pipe, 

valves, and other system components, some change in variance was expected.  The large 

differences in variance around midnight each day was completely unexpected.  The chart 

above includes data from a seven day span.  As originally thought, the PCA data does 

maintain a repeating pattern when viewed at a high level.  This is similar to the repeating 

pattern of the raw data.  The spikes of the variance data also show a repeating pattern 

although not as exact and defined. 
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Working with the SCADA Administrator, several dates were chosen when large breaks 

occurred.  Similar to the other charts, the break conditions showed the repeating pattern 

of PCA data and the large spikes around midnight.  Below are two different incidents that 
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FIGURE 17 - First Large Break Occurrence 

 

 

FIGURE 18 - Second Large Break Occurrence 
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was some advanced warning but not by much.  Using 182 SCADA tags, the raw data 

could not be plotted and compared.  That was the point of using PCA!  For the large 

amount of data, there were observances of large changes in variance that occurred several 

days prior to the notice of the break.  In the first case, it was four days prior and the 

second was five days.  It should be noted that the day and time of the break was 

determined by examining several sources.  One, the actual breaking of the pipe causing 

damage to the ground and surrounding area depending on the severity of the break was an 

obvious indicator.  Secondly, the raw SCADA information was used to notice 

abnormalities with the data.  Once there is a known break in a specific area, the raw 

SCADA information can be reviewed for tags in that region.  This is similar to our 

evaluation in the initial testing phase with the small number of tags.  For these two 

instances, there was a great pressure drop at one of the SCADA points in the region of 

these breaks.  The first break had a large drop at 18:00 and the second break at 20:00.  

The charts presented above are very high level showing data from several days and these 

specific times do not show anything abnormal due to the lack of detail.  Graphing the 

PCA and variance data specifically at the time of the pressure drop resulted in the 

following. 

 

 

FIGURE 19 - First Large Break Occurrence Detail 
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FIGURE 20 - Second Large Break Occurrence Detail 
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variance even during regular operations.  If a storage tank, pump, or section of pipe is 

removed from operations for maintenance, it can trigger a change as well [4].   

 

RUNTIME ENVIRONMENT C 

  

 To model the above environment on a PC as an end user support system, a Matlab 

graphical user interface was created.  Much of the code was detailed previously on the 

actual PCA calculations.  In particular, the update operation for computing the actual 

principal component coefficients was explained thoroughly.  This is accomplished by 

selecting the Update button in the user interface.  The user needs to be aware that this is a 

long-running process if choosing a wide span of time.  Each minute that it needs to 

calculate takes three minutes of actual time! 

 

 

FIGURE 21 - Runtime Interface Starting View 

 

When the application starts, a blank window is displayed.  To begin charting the 

PCA and variance data, the user needs to select an option from a drop-down list.  With 

the original focus to look at pressure zones individually, the drop-down list shows the 

pressure zones for the system as well as an option to select all data.  As a testing 
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environment, only a few pressure zones were included.  The small test pressure zone 

entitled “Pressure Zone 760 – Brooks Hill” and all SCADA tags in our test instance 

entitled “ALL” were the primary focus.   

 

 

FIGURE 22 - Runtime Pressure Zone Listing 

 

 Once a pressure zone is selected, the user can hit the Execute button to begin the 

plot.  In the real-life application, the plot would start with the current time.  For research 

purposes, the start time was hardcoded in the application.  With the Execute button 

pushed, a global variable, emergency_stop is set to 0.  This variable is used for control of 

the plot window in conjunction with the Stop Loop button.  The Stop Loop button can be 

used to halt the drawing in the plot window.  The code behind the Stop Loop button 

simply sets the global emergency_stop variable to 1.  While a plot is still drawing and 

looping through time, a check is made on the emergency_stop variable during the 

iterations.  If the variable is set to one, the Execute button code stops drawing. 

 The user created function plot_diff is called each minute to plot the change in 

variance.  It takes 2 arguments, the time and the pressure zone selected.  The pressure 

zone is chosen from the current value of the drop-down list.  In live operations, the time 

is the current system time.  For research purposes, this is a programmed value.  A 

connection is made to the local SQLEXPRESS database for data to plot.  A query is 

created and executed to return the time, PCA data, and variance that was explained in 

previous steps outlined in the section entitled Principal Component Operation.  These 

steps are completed in a calc_pca function in the final product included in the appendix.  

The Execute button code calls this function in addition to plotting the data.  The Matlab 

code inside the calc_pca function includes the following for the query to return this data.  
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It returns 180 rows of data for the previous 3 hours of calculations.  The Matlab code also 

sets a variable to the amount of rows returned.  The amount of data returned indicated by 

the number of hours in the query can be adjusted as this changes the plot window as well.  

Three hours were chosen as a start to monitor the variance change.  A longer window, 

such as 24 hours or more would show more of the daily pattern. 

 

sqlquery = strcat('select CONVERT(varchar,timestamp,120) as 

thetime,currentvalue,variance from [scada].[dbo].[',PZTable,'] where timestamp 

<=''',datestr(BeginDateNum,'yyyy-mm-dd HH:MM'),''' and timestamp 

>''',datestr(addtodate(BeginDateNum,-180,'minute'),'yyyy-mm-dd HH:MM'),''''); 

curs = exec(conn,sqlquery); 

curs = fetch(curs); 

numrows = size(curs.data,1); 

 

 Three variables are created and set to data returned from the query.  Variable 

TimeData includes the date/time information, PCAData contains the calculated principal 

component values, and VarData contains the variance.  Another array variable, VarDiff is 

set to an empty array as well. 

 A loop from one to the number of rows returned from the query is executed next.  

This performs the subtraction of the variance data and saves it in variable VarData.  At 

the start of the loop, if the loop variable is set to 1, the first difference calculation is zero 

since there is nothing to subtract so the first element of the VarDiff array is set to zero.  

For the remaining items, the array appends the difference between the current variance 

value and the previous minute data.  After the loop is fully executed, it only contains the 

difference between variance calculations.  This is computed with the following Matlab 

code.  Earlier attempts were made to store the difference in the SQLEXPRESS database 

which would be a waste of storage space.  Using a SQL query in the database to calculate 

the difference was also attempted.  This was difficult and time consuming.  Instead, it 

was more efficient to use Matlab’s array capabilities to compute the difference. 

 

VarDiff = []; 

for i = 1:numrows     

    if i == 1 

        VarDiff = [ 0 ]; 

    else 
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        VarDiff = [ VarDiff ; VarData(i) - VarData(i-1) ]; 

    end  

end 

 

 Making the actual plot in the plot_diff function is next.  Matlab timeseries plots 

were chosen.  An initial timeseries was created with the PCA data and time as inputs.  

The plot name and time interval of Minute were set for this timeseries.  It is then plotted 

and the color and line width are set as well.  Another timeseries is created with the 

variance difference array, VarDiff, and time as inputs.  The name and time interval are set 

in this timeseries as well.  The Matlab command “hold on” is required before plotting the 

second timeseries.  This tells the system to pause while another plot is added to the 

timeseries.  Once added, the color and line width are modified on the new plot.  After 

both timeseries plots have been created, the characteristics of the plot area are defined.  

The title, x-axis label, y-axis label, and legend are populated.  Once the plot is complete, 

so is the function, which passes back to the calling code to repeat again.  The code to plot 

the data as well as example outputs are below. 

 

ts = timeseries(PCAData,TimeData); 

ts.Name = 'PCA Data'; 

ts.TimeInfo.Units = 'Minutes'; 

pca_plot = plot(ts,'-b'); 

set(pca_plot,'Color','blue','LineWidth',2); 

nts = timeseries(VarDiff,TimeData); 

nts.Name = 'Difference Data'; 

nts.TimeInfo.Units = 'Minutes'; 

hold on; 

diff_plot = plot(nts,'-b'); 

set(diff_plot,'Color','green','LineWidth',2);        

title('PCA Calculations'); 

xlabel('Time'); 

ylabel('PCA Value'); 

legend('PCA','Difference','Location','northwest'); 
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FIGURE 23 - Sample Execution with Normal Operation 

 

 

FIGURE 24 - Sample Execution with Break Condition 

 

 The runtime GUI illustrates very well how the comparison of the difference in 

variance can signal an issue in the system.  Under good operating conditions, the change 

in difference is very low and flat.  Once an issue occurs, whether from the change in 
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electrical usage or a break, the change in variance is an obvious indicator.  When 

reviewing data for a small area or pressure zone, it is easy to geographically isolate the 

area of concern.  When plotting data for the entire system, it does not provide a 

geographical area of reference.  It will signal that a change is about to occur and provide 

additional time for close inspection of the raw SCADA information.  Since the raw 

SCADA data also contains typical usage patterns, this can pinpoint a more appropriate 

geographic area to concentrate efforts. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

 

 

The goal was to implement principal component analysis on a large amount of 

data with many variables for early detection of data fluctuations.  The SCADA system at 

Louisville Water Company was an excellent match for this research.  Each individual 

variable, or tag, of the raw SCADA data can be plotted which results in a steady pattern 

over time under normal circumstances.  There are hundreds of tags in the system that 

record different qualities of data.  For instance, some tags refer to tank levels stored in 

feet, some are based on pressure in pounds-per-square-inch, and others measure flow in 

million-gallons-per-day.  With so much data with a wide range of values, it is impossible 

to plot everything together in one chart to measure operational status.  Principal 

component analysis reduces all applicable variables, or tags in this instance, to a single 

element.  This principal component is representative of all data.  It too contains a steady 

pattern over time under normal conditions.  The reduction in variables allows for a single 

plot to represent the overall status of the system.  Monitoring the changes in variation of 

the principal component can then be used to detect abnormalities in normal operations. 

As with any research, numerous attempts with many successes and failures 

occurred.  There were many changes in program design and flow.  Typical learning 

curves with new software such as Matlab and nuances with SQL Server Express caused 

minor setbacks at times.  Certain issues were related to choosing the best solution for a 

problem.  Multiple SQL queries were first executed directly in the database to return 

numeric information but that proved inefficient compared to the faster processing of a 

single query result in Matlab.  Both the SQL Query and Matlab code provided the same 

result but Matlab was faster.   

This research concludes there are several decisions that affect the output of the 

principal component calculation.  Missing data can occur such as when a pump is taken 

offline for maintenance.  Choosing to replace missing data with an average such as when 

importing raw SCADA reading or to remove missing data affects the outcome.  When 

calculating the principal coefficients, any missing data was removed.  The variance 

calculated on the principal components was tested with several ranges of data until a 20 
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minute range seemed to provide the best result.  This seemed to be the most significant 

decision on how well abnormalities could be detected in the data.   

The use of principal components to evaluate SCADA data was successful.  The 

amount of change in variance illustrated whether or not something was occurring in the 

system such as a main break.  This was verified by examining raw data for specific 

incidents and matching it to the principal component data.  The principal component data 

was also able to show the possible early detection of issues in the distribution system.  

This research used approximately 8 months of data over a 2 year period.  During this 

time, five specific dates were chosen that were either considered a normal operating day 

or had a major main break. On the normal operating days, the PCA observations did not 

show any major events outside of the known regular operating indicators.  All of the 

dates with major main breaks did show changes in the PCA variation several days prior 

to the established event date.  However, a knowledgeable workforce is still required to 

interpret and react on data.  Trends do exist in the data but they can alter depending on 

the time of year and demand.  Employees need to know about operational activities such 

as taking major pumps or sections of main offline for maintenance and what that may 

impact.  The method to use electricity efficiently causes spikes in the data at regular times 

of the day as well as just the typical power cycling of various distribution components.  

These changes show in the variance throughout the day even under normal operating 

conditions such as the large spikes around midnight due to pumping schedules.  Staff 

needs to understand these normal spikes or changes which are not due to a break.  

Misinterpreting the data could cause staff to investigate system issues when none exist.  

This can be a great support tool but it also needs to be reinforced with an understanding 

of the distribution system. 

Future enhancements can also be added.  A deeper inspection of the tags used in 

the system as well as how they are grouped might lead to improved detection.  Adjusting 

the graphical user interface to include the overview plot with all SCADA tags and 

including another plot window showing a user selected pressure zone would provide 

more location information on where a break or issue was occurring.  When running the 

routine to update PCA coefficients, since it is a very time consuming activity, it should be 

started in a separate instance of the program.  As new SCADA monitoring points are 
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added to the environment, improved detection is possible.  The program should also 

adapt to new SCADA monitoring points without changing source code.  Further 

investigation into the normal operations that cause drastic changes in variance could lead 

to an improved solution where they do not get highlighted reducing false positives. 
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APPENDIX I 

 

 

MATLAB CODE TO INSERT MULTIPLE RECORDS 

 

% BeginDate 0:01 to EndDate + 1 0:00 

BeginDate='2010-10-05 0:00'; 

EndDate='2010-10-08 23:59'; 

  

CurrentDate = datenum(BeginDate); 

StopDate = datenum(EndDate); 

  

conn = database('SQLEXPRESS','',''); 

  

while CurrentDate <= StopDate 

         

    TempStart = datestr(CurrentDate,'yyyy-mm-dd HH:MM'); 

    TE = addtodate(CurrentDate,1,'day'); 

    TempEnd = datestr(TE,'yyyy-mm-dd HH:MM'); 

    disp(strcat('Start: ',TempStart,'  Stop: ',TempEnd)); 

     

    sqlquery = strcat('insert into [SCADA].[dbo].[ihRawData] (TagName, TimeStamp, 

Value, Quality) SELECT TagName, TimeStamp, Value, Quality FROM OPENQUERY 

(iHist,''SET 

RowCount=0,StartTime="',TempStart,'",EndTime="',TempEnd,'",IntervalMilliseconds=1

Minute,SamplingMode=Calculated,CalculationMode=Maximum SELECT * FROM 

ihRawData WHERE TagName = CHFP.BROOKS_STATION_TANK_LEVEL.F_CV or 

TagName = CHFP.JEFF_FOREST_TANK_LEVEL.F_CV or TagName = 

CHFP.MARTIN_STATION_TANK_LEVEL.F_CV or TagName = 

CHFP.JEFF_DISCHARGE_PRESSURE.F_CV)'')'); 

    disp(sqlquery)     

     

   curs = exec(conn,sqlquery); 

   curs = fetch(curs); 

     

    CurrentDate = addtodate(CurrentDate,1,'day');     

end 

  

close(conn); 
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APPENDIX II 

 

 

MATLAB GUI CODE 

 

function varargout = scada(varargin) 

% SCADA M-file for scada.fig 

%      SCADA, by itself, creates a new SCADA or raises the existing 

%      singleton*. 

% 

%      H = SCADA returns the handle to a new SCADA or the handle to 

%      the existing singleton*. 

% 

%      SCADA('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in SCADA.M with the given input arguments. 

% 

%      SCADA('Property','Value',...) creates a new SCADA or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before scada_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to scada_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help scada 

  

% Last Modified by GUIDE v2.5 14-Nov-2011 22:37:24 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @scada_OpeningFcn, ... 

                   'gui_OutputFcn',  @scada_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 
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if nargout    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

% --- Executes just before scada is made visible. 

function scada_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to scada (see VARARGIN) 

  

% Choose default command line output for scada 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% This sets up the initial plot - only do when we are invisible 

% so window can get raised using scada. 

if strcmp(get(hObject,'Visible'),'off') 

    plot(1); 

end 

  

% UIWAIT makes scada wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = scada_OutputFcn(hObject, eventdata, handles) 

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 



63 

 

  

global emergency_stop; 

emergency_stop = 0; 

  

axes(handles.axes1); 

cla; 

  

popup_sel_index = get(handles.popupmenu1, 'Value'); 

switch popup_sel_index 

    case 1 % ALL 

        BeginDate='2011-07-06 6:15'; 

        EndDate='2011-07-06 10:00'; 

        PZTable='PZALL'; 

        SourceTable = '[ihist].[dbo].[ih_july]'; 

         

        CurrentDate = datenum(BeginDate); 

        StopDate = datenum(EndDate); 

  

        while CurrentDate <= StopDate && emergency_stop == 0 

            TempCurrentDate = datestr(CurrentDate,'yyyy-mm-dd HH:MM'); 

             

            % Calculate PCA and variance for current time 

            calc_pca(TempCurrentDate,PZTable,SourceTable); 

             

            % PLOT PCA and variance difference for current time 

            plot_diff(TempCurrentDate,PZTable); 

            pause(2); 

             

            CurrentDate = addtodate(CurrentDate,1,'minute');    

        end 

        % plot(sin(1:0.01:25.99)); 

  

    case 2 % 660 

        msgbox('Not done yet!','Future Enhancement!','help'); 

     

    case 3 % 690 

        %bar(1:.5:10); 

        msgbox('Not done yet!','Future Enhancement!','help'); 

         

    case 4 % 760 Brooks Hill Break 

         

        BeginDate='2010-09-26 22:00'; 

        EndDate='2010-09-26 23:59'; 

        PZTable='ORIG4'; 

        SourceTable='[SCADA].[dbo].[ihrawdata]'; 
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        CurrentDate = datenum(BeginDate); 

        StopDate = datenum(EndDate); 

  

        while CurrentDate <= StopDate && emergency_stop == 0 

            TempCurrentDate = datestr(CurrentDate,'yyyy-mm-dd HH:MM'); 

             

            % Calculate PCA and variance for current time 

            calc_pca(TempCurrentDate,PZTable,SourceTable); 

             

            % PLOT PCA and variance difference for current time 

            plot_diff(TempCurrentDate,PZTable); 

            pause(2); 

             

            CurrentDate = addtodate(CurrentDate,1,'minute');    

        end 

        %plot(membrane); 

  

    case 5 % 760 Brooks Hill Normal 

         

        BeginDate='2010-09-21 3:30'; 

        EndDate='2010-09-21 6:59'; 

        PZTable='ORIG4'; 

        SourceTable='[SCADA].[dbo].[ihrawdata]'; 

         

        CurrentDate = datenum(BeginDate); 

        StopDate = datenum(EndDate); 

  

        while CurrentDate <= StopDate && emergency_stop == 0 

            TempCurrentDate = datestr(CurrentDate,'yyyy-mm-dd HH:MM'); 

             

            % Calculate PCA and variance for current time 

            calc_pca(TempCurrentDate,PZTable,SourceTable); 

             

            % PLOT PCA and variance difference for current time 

            plot_diff(TempCurrentDate,PZTable); 

            pause(2); 

             

            CurrentDate = addtodate(CurrentDate,1,'minute');    

        end 

        %plot(membrane); 

  

    case 6 % 900 

        msgbox('Not done yet!','Future Enhancement!','help'); 

end 

  

% -------------------------------------------------------------------- 
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function FileMenu_Callback(hObject, eventdata, handles) 

% hObject    handle to FileMenu (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  

% -------------------------------------------------------------------- 

function OpenMenuItem_Callback(hObject, eventdata, handles) 

% hObject    handle to OpenMenuItem (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

file = uigetfile('*.fig'); 

if ~isequal(file, 0) 

    open(file); 

end 

  

% -------------------------------------------------------------------- 

function PrintMenuItem_Callback(hObject, eventdata, handles) 

% hObject    handle to PrintMenuItem (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

printdlg(handles.figure1) 

  

% -------------------------------------------------------------------- 

function CloseMenuItem_Callback(hObject, eventdata, handles) 

% hObject    handle to CloseMenuItem (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... 

                     ['Close ' get(handles.figure1,'Name') '...'],... 

                     'Yes','No','Yes'); 

if strcmp(selection,'No') 

    return; 

end 

  

delete(handles.figure1) 

  

  

% --- Executes on selection change in popupmenu1. 

function popupmenu1_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from popupmenu1 
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% --- Executes during object creation, after setting all properties. 

function popupmenu1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

     set(hObject,'BackgroundColor','white'); 

end 

  

set(hObject, 'String', {'ALL', 'Pressure Zone 660', 'Pressure Zone 690', 'Pressure Zone 760 

- Brooks Hill Break', 'Pressure Zone 760 - Brooks Hill Normal','Pressure Zone 900'}); 

  

  

% --- Executes during object creation, after setting all properties. 

function axes1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to axes1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: place code in OpeningFcn to populate axes1 

  

  

% --- If Enable == 'on', executes on mouse press in 5 pixel border. 

% --- Otherwise, executes on mouse press in 5 pixel border or over pushbutton1. 

function pushbutton1_ButtonDownFcn(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  

% --- Executes on selection change in start_hour_listbox. 

function start_hour_listbox_Callback(hObject, eventdata, handles) 

% hObject    handle to start_hour_listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: contents = cellstr(get(hObject,'String')) returns start_hour_listbox contents as 

cell array 

%        contents{get(hObject,'Value')} returns selected item from start_hour_listbox 

global start_hour_lb; 
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start_hour_lb_selected = get(hObject, 'Value'); 

start_hour_lb_list = get(hObject, 'String'); 

start_hour_lb = start_hour_lb_list(start_hour_lb_selected); 

% msgbox(start_hour_lb); 

  

  

% --- Executes during object creation, after setting all properties. 

function start_hour_listbox_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to start_hour_listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: listbox controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

set(hObject, 'String', 

{'00','01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','20','21',

'22','23'}); 

  

  

% --- Executes on button press in monitor_pushbutton. 

function monitor_pushbutton_Callback(hObject, eventdata, handles) 

% hObject    handle to monitor_pushbutton (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  

% --- Executes on button press in upd_hist_pca_pushbutton. 

function upd_hist_pca_pushbutton_Callback(hObject, eventdata, handles) 

% hObject    handle to upd_hist_pca_pushbutton (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

%update_historical_pca(); 

cla; 

global start_hour_lb; 

global start_min_lb; 

global stop_hour_lb; 

global stop_min_lb; 

  

StartTime=strcat(start_hour_lb,':',start_min_lb); 

EndTime=strcat(stop_hour_lb',':',stop_min_lb); 
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StartTimeNum = datenum(StartTime); 

EndTimeNum = datenum(EndTime); 

  

if EndTimeNum <= StartTimeNum 

    msgbox('End Time Can Not Be The Same Or Earlier Than Start Time!'); 

else 

    update_historical_pca(); 

end; 

  

     

function update_historical_pca() 

global start_hour_lb; 

global start_min_lb; 

global stop_hour_lb; 

global stop_min_lb; 

  

alerts_exist = 0; 

alert_fid = fopen('c:\kevin\thesis\gui\alerts.txt', 'a'); 

log_fid = fopen('c:\kevin\thesis\gui\log.txt', 'a'); 

  

fprintf(log_fid, 'Update PCA Multiplier Start Run: %s\n', datestr(now,'yyyy-mm-dd 

HH:MM')); 

  

%StartTime='22:00'; 

%EndTime='23:59'; 

StartTime=strcat(start_hour_lb,':',start_min_lb); 

EndTime=strcat(stop_hour_lb',':',stop_min_lb); 

%msgbox(strcat(StartTime,'_to_',EndTime)); 

  

StartTimeNum = datenum(StartTime); 

EndTimeNum = datenum(EndTime); 

  

fprintf(log_fid, 'Update PCA Multiplier Range: 

%s\n',strcat(datestr(StartTimeNum,'HH:MM'),'_to_',datestr(EndTimeNum,'HH:MM'))); 

  

% setup waitbar to show progress 

wb = waitbar(0,'Calculating PCA ...'); 

step = 0; 

total_reps=abs(EndTimeNum - StartTimeNum)*24*60 + 1; 

  

% Connect to SQL Server Express Database 

conn = database('SQLEXPRESS','',''); 

  

% Get the tags from the pressure zone 

sqlquery = strcat('select tagname from [scada].[dbo].[pressure_zones] where 

PressureZone = ''PZALL'' order by tagname;'); 
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curs = exec(conn,sqlquery); 

curs = fetch(curs); 

TagList = curs.data; 

NumTags = size(curs.data,1); 

  

% create string including all tags to be searched 

TagString='('''; 

for i = 1:NumTags 

    if i == 1 

            TagString = strcat(TagString,TagList(i),''''); 

    else 

        TagString = strcat(TagString,',''',TagList(i),''''); 

    end 

end 

TagString = strcat(TagString,')'); 

%disp(TagString); 

  

while StartTimeNum < EndTimeNum 

    %disp(datestr(StartTimeNum,'HH:MM')); 

    %disp(datestr(now,'HH:MM:SS')) 

     

    step = step + 1; 

    waitbar(step / total_reps); 

     

    % Get raw data source database and source table 

    if (StartTimeNum >= datenum('0:00')) && (StartTimeNum < datenum('3:00')) 

        SourceDatabase = 'RAW0'; 

        SourceTable = 'RAW0'; 

    elseif (StartTimeNum >= datenum('3:00')) && (StartTimeNum < datenum('6:00')) 

        SourceDatabase = 'RAW0'; 

        SourceTable = 'RAW1'; 

    elseif (StartTimeNum >= datenum('6:00')) && (StartTimeNum < datenum('9:00')) 

        SourceDatabase = 'RAW0'; 

        SourceTable = 'RAW2'; 

    elseif (StartTimeNum >= datenum('9:00')) && (StartTimeNum < datenum('12:00')) 

        SourceDatabase = 'RAW0'; 

        SourceTable = 'RAW3'; 

    elseif (StartTimeNum >= datenum('12:00')) && (StartTimeNum < datenum('15:00')) 

        SourceDatabase = 'RAW1'; 

        SourceTable = 'RAW4'; 

    elseif (StartTimeNum >= datenum('15:00')) && (StartTimeNum < datenum('18:00')) 

        SourceDatabase = 'RAW1'; 

        SourceTable = 'RAW5'; 

    elseif (StartTimeNum >= datenum('18:00')) && (StartTimeNum < datenum('21:00')) 

        SourceDatabase = 'RAW1'; 

        SourceTable = 'RAW6'; 
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    elseif (StartTimeNum >= datenum('21:00')) && (StartTimeNum <= datenum('23:59')) 

        SourceDatabase = 'RAW1'; 

        SourceTable = 'RAW7'; 

    end; 

  

    % Get the number of rows for each tag at the current time (ie 0:00).   

    % Use the most recent number of rows from the minimum count returned of 

    % all the tags specified.  It is sorted in ascending order, lowest to 

    % highest.  The minimum is used so each tag has the same number of 

    % entries to compare or else would get matrix errors. 

     

    %select top 1 count(value) as thecount from raw0 

    %group by tagname 

    %order by thecount asc; 

    %sqlquery = strcat('select * from [RAW1].[dbo].[raw7] where timestamp >= ''2010-

03-10 00:02'' and timestamp <= ''2011-07-03 23:59'' and tagname in ',TagString,' and 

convert(time,timestamp) = ''',datestr(StartTimeNum,'HH:MM'),''' order by timestamp 

asc'); 

    sqlquery = strcat('select * from [',SourceDatabase,'].[dbo].[',SourceTable,'] where 

timestamp >= ''2010-03-10 00:02'' and timestamp <= ''2011-07-03 23:59'' and tagname in 

',TagString,' and convert(time,timestamp) = ''',datestr(StartTimeNum,'HH:MM'),''' order 

by timestamp asc'); 

    %disp(cell2mat(sqlquery)); 

    curs = exec(conn,sqlquery); 

    curs = fetch(curs); 

    bigdata = curs.data; 

    %disp(size(bigdata)); 

     

    minrows = 32000; 

    for i = 1:NumTags 

        cursize = size(find(ismember(bigdata,TagList(i))),1); 

        if cursize < minrows 

            minrows = cursize; 

        end 

    end 

    %disp(minrows); 

     

    % Initialize empty matrix H for historical data 

    H = []; 

  

    % Get data for specific time, ie 0:05 

    for i = 1:NumTags 

         

        [r,c] = find(ismember(bigdata,TagList(i))); 

        smalldata = sortrows(bigdata(r,:),2); 

        singletag = str2double(smalldata(end-(minrows-1):end,3)); 
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        H = horzcat(H,singletag); 

    end 

     

    % find 0 values and replace with avg from non-zero elements 

    [r,c]=find(ismember(H,0)); 

    TempH = H; 

    [Tr,Tc]=size(TempH); 

    averages=[]; 

    for i = 1:Tc 

        V = TempH(:,i); 

        [Vr,Vc]=find(ismember(V,0)); 

        Vrows=sort(Vr,'descend'); 

        for j = 1:size(Vrows) 

            V(Vrows(j),:) = []; 

        end 

        averages(i)=mean(V); 

    end 

     

    % replace original 0 data with averages 

    for i = 1:size(r) 

        H(r(i),c(i)) = averages(c(i)); 

    end 

    % end find 0 values and replace with avg from non-zero elements 

         

    % n = number of rows 

    % m = number of columns (ie variables) 

    [histn histm] = size(H); 

  

    % Calculate mean for each column 

    HMean = mean(H); 

  

    % Calculate Standard Deviation for each column 

    HStd = std(H); 

     

    % Calculate normalized data 

    Hn = (H - repmat(HMean,[histn 1])) ./ repmat(HStd,[histn 1]); 

     

    % Check for NaN in matrix due to non-changing variables 

    % Set HistoricalPCA value to 0 for future processing to not use it and 

    % remove the tag from current processing 

    tTagList = TagList; 

    tNumTags = NumTags; 

    j = NumTags; 

    while j >= 1 

        if isnan(Hn(:,j)) 
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            fprintf(alert_fid,'%s\n',(strcat(datestr(now,'yyyy-mm-dd HH:MM'),': Tag 

#',num2str(j),' [',cell2mat(tTagList(j)),'] is NaN'))); 

            alerts_exist = 1; 

            %update value with 0 in HistoricalPCA table 

            sqlquery=strcat('update [scada].[dbo].[HistoricalPCA] set [',tTagList(j),'] = 0 

where Time = ''',datestr(StartTimeNum,'HH:MM'),''';'); 

            curs = exec(conn,sqlquery); 

             

            %remove Hn and TagList and subtract 1 from NumTags 

            tTagList(j)=[]; 

            Hn(:,j)=[]; 

            tNumTags = tNumTags - 1; 

        end 

        j = j - 1; 

    end 

             

    % Perform PCA on normalized data 

     

    [HCOEFF HSCORE HLATENT] = princomp(Hn); 

     

    % store HCOEFF into Historical table 

    for i = 1:tNumTags 

        sqlquery=strcat('update [scada].[dbo].[HistoricalPCA] set [',tTagList(i),'] = 

',num2str(HCOEFF(i,1),16),' where Time = ''',datestr(StartTimeNum,'HH:MM'),''';'); 

        curs = exec(conn,sqlquery); 

        %disp(sqlquery); 

    end 

     

    % perform checks on HLATENT and manually calculate variance on HCOEFF 

    str1 = sprintf('%.4f',sum(HLATENT)); 

    str2 = sprintf('%.4f',histm); 

    str3 = sprintf('%.4f',sum(var(HSCORE))); 

    if str1 ~= str2 

        fprintf(alert_fid,'%s\n',(strcat(datestr(now,'yyyy-mm-dd 

HH:MM'),':',datestr(StartTimeNum,'HH:MM'),': HLATENT sum != number of 

columns!'))); 

        alerts_exist = 1; 

        %disp('HLATENT sum != number of columns!'); 

    end 

     

    if str3 ~= str2 

        fprintf(alert_fid,'%s\n',(strcat(datestr(now,'yyyy-mm-dd 

HH:MM'),':',datestr(StartTimeNum,'HH:MM'),': HSCORE variance sum != number of 

columns!'))); 

        alerts_exist = 1; 

        %disp('HSCORE variance sum != number of columns!'); 
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    end 

     

    % Increase time for loop 

    StartTimeNum = addtodate(StartTimeNum,1,'minute'); 

end 

close(wb); 

  

if alerts_exist == 1 

    h = msgbox('Alerts generated! Please see alert.log','ALERT','warn'); 

end 

  

fprintf(log_fid, 'Update PCA Multiplier Stop Run: %s\n', datestr(now,'yyyy-mm-dd 

HH:MM')); 

fclose(alert_fid); 

fclose(log_fid); 

close(conn); 

  

  

  

% --- Executes on selection change in start_min_listbox. 

function start_min_listbox_Callback(hObject, eventdata, handles) 

% hObject    handle to start_min_listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: contents = cellstr(get(hObject,'String')) returns start_min_listbox contents as 

cell array 

%        contents{get(hObject,'Value')} returns selected item from start_min_listbox 

global start_min_lb; 

start_min_lb_selected = get(hObject, 'Value'); 

start_min_lb_list = get(hObject, 'String'); 

start_min_lb = start_min_lb_list(start_min_lb_selected); 

  

  

% --- Executes during object creation, after setting all properties. 

function start_min_listbox_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to start_min_listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: listbox controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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set(hObject, 'String', 

{'00','01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','20','21',

'22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','

44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59'}); 

  

  

% --- Executes on selection change in stop_hour_listbox. 

function stop_hour_listbox_Callback(hObject, eventdata, handles) 

% hObject    handle to stop_hour_listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: contents = cellstr(get(hObject,'String')) returns stop_hour_listbox contents as 

cell array 

%        contents{get(hObject,'Value')} returns selected item from stop_hour_listbox 

global stop_hour_lb; 

stop_hour_lb_selected = get(hObject, 'Value'); 

stop_hour_lb_list = get(hObject, 'String'); 

stop_hour_lb = stop_hour_lb_list(stop_hour_lb_selected); 

  

  

% --- Executes during object creation, after setting all properties. 

function stop_hour_listbox_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to stop_hour_listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: listbox controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

set(hObject, 'String', 

{'00','01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','20','21',

'22','23'}); 

  

  

% --- Executes on selection change in stop_min_listbox. 

function stop_min_listbox_Callback(hObject, eventdata, handles) 

% hObject    handle to stop_min_listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
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% Hints: contents = cellstr(get(hObject,'String')) returns stop_min_listbox contents as cell 

array 

%        contents{get(hObject,'Value')} returns selected item from stop_min_listbox 

  

global stop_min_lb; 

stop_min_lb_selected = get(hObject, 'Value'); 

stop_min_lb_list = get(hObject, 'String'); 

stop_min_lb = stop_min_lb_list(stop_min_lb_selected); 

  

% --- Executes during object creation, after setting all properties. 

function stop_min_listbox_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to stop_min_listbox (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: listbox controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

set(hObject, 'String', 

{'00','01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','20','21',

'22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','

44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59'}); 

  

function plot_diff(BeginDate, PZTable) 

    BeginDateNum = datenum(BeginDate); 

     

    % Connect to SQL Server Express instance 

    conn = database('SQLEXPRESS','',''); 

  

    % Get the tags from the pressure zone 

    sqlquery = strcat('select CONVERT(varchar,timestamp,120) as 

thetime,currentvalue,variance from [scada].[dbo].[',PZTable,'] where timestamp 

<=''',datestr(BeginDateNum,'yyyy-mm-dd HH:MM'),''' and timestamp 

>''',datestr(addtodate(BeginDateNum,-60,'minute'),'yyyy-mm-dd HH:MM'),''''); 

    curs = exec(conn,sqlquery); 

    curs = fetch(curs); 

    numrows = size(curs.data,1); 

        

    TimeData = curs.data(:,1); 

    PCAData = cell2mat(curs.data(:,2)); 

    VarData = cell2mat(curs.data(:,3)); 
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    % Calculate the difference 

    VarDiff = []; 

    for i = 1:numrows     

        if i == 1 

            VarDiff = [ 0 ]; 

        else 

            VarDiff = [ VarDiff ; VarData(i) - VarData(i-1) ]; 

        end  

    end 

     

     

    % Create plots 

    ts = timeseries(PCAData,TimeData); 

    ts.Name = 'PCA Data'; 

    ts.TimeInfo.Units = 'Minutes'; 

    pca_plot = plot(ts,'-b'); 

    set(pca_plot,'Color','blue','LineWidth',2); 

    nts = timeseries(VarDiff,TimeData); 

    nts.Name = 'Difference Data'; 

    nts.TimeInfo.Units = 'Minutes'; 

    hold on; 

    diff_plot = plot(nts,'-b'); 

    set(diff_plot,'Color','green','LineWidth',2); 

         

    title('PCA Calculations'); 

    xlabel('Time'); 

    ylabel('PCA Value'); 

    legend('PCA','Difference','Location','northwest'); 

         

    % Close database connection 

    close(conn);     

  

  

% --- Executes on button press in stop_button. 

function stop_button_Callback(hObject, eventdata, handles) 

% hObject    handle to stop_button (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global emergency_stop; 

emergency_stop=1; 

  

  

function calc_pca(BeginDate, PZTable, SourceTable) 

    BeginDateNum = datenum(BeginDate); 

     

    % Connect to SQL Server Express instance 
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    conn = database('SQLEXPRESS','',''); 

  

    % Get the tags from the pressure zone 

    sqlquery = strcat('select tagname from [scada].[dbo].[pressure_zones] where 

PressureZone = ''',PZTable,''' order by tagname;'); 

    curs = exec(conn,sqlquery); 

    curs = fetch(curs); 

    TagList = curs.data; 

    NumTags = size(curs.data,1); 

  

    % create string including all tags to be searched 

    TagString='('''; 

    TagHistString='['; 

    for i = 1:NumTags 

        if i == 1 

            TagString = strcat(TagString,TagList(i),''''); 

            TagHistString = strcat(TagHistString,TagList(i),']'); 

        else 

            TagString = strcat(TagString,',''',TagList(i),''''); 

            TagHistString = strcat(TagHistString,',[',TagList(i),']'); 

        end 

    end 

    TagString = strcat(TagString,')'); 

    %disp(TagString); 

  

    % Input Historical PCA data into matrix for quicker manipulation 

    % The correct row can be calculated by (60 x hour) + (minute) + 1 

    % eg 1:33 = (60 x 1) + 33 + 1 = 94 so use row 94 in matrix for that value 

    sqlquery = strcat('select CONVERT(varchar,time,108) as thetime,',TagHistString,' 

from [scada].[dbo].[HistoricalPCA] order by thetime;'); 

    curs = exec(conn,sqlquery); 

    curs = fetch(curs); 

    HISTPCA = curs.data; 

    %disp(HISTPCA); 

  

    % Get the current data value for each tag 

    % Get the previous hour data value for each tag 

    % Get the historical data for the tag at the current time 

    % Multiply the current value * the historical PCA value 

    % Add it to the total 

    CurrentTotal = 0; 

    %%%PreviousTotal = 0; 

  

    % Current 
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    sqlquery = strcat({'select * from '},SourceTable,{' where tagname in '},TagString,{' 

and timestamp ='''},datestr(BeginDateNum,'yyyy-mm-dd HH:MM'),{''' order by 

tagname;'}); 

    % disp(sqlquery); 

    curs = exec(conn,sqlquery); 

    curs = fetch(curs); 

    curdata = curs.data; 

    %disp(curdata); 

     

    curHH = str2num(datestr(BeginDateNum,'HH')); 

    curMM = str2num(datestr(BeginDateNum,'MM')); 

    %disp(strcat(num2str(curHH),':',num2str(curMM))); 

    rownum = (60 * curHH) + curMM + 1; 

    histrow = cell2mat(HISTPCA(rownum,2:(NumTags + 1))); 

    %disp(histrow); 

     

    CurrentTotal = histrow * str2double(curdata(:,3)); 

    %disp(CurrentTotal); 

     

  

    % calculate variance for current and prior 20 min 

    %ORIG: sqlquery = strcat('select currentvalue-historicalvalue as DIFF from 

[scada].[dbo].[PZ1] where timestamp <=''',datestr(BeginDateNum,'yyyy-mm-dd 

HH:MM'),''' and timestamp >''',datestr(addtodate(BeginDateNum,-20,'minute'),'yyyy-mm-

dd HH:MM'),''' order by TimeStamp;'); 

    %%sqlquery = strcat('select currentvalue-historicalvalue as DIFF from 

[scada].[dbo].[',PZTable,'] where timestamp <=''',datestr(BeginDateNum,'yyyy-mm-dd 

HH:MM'),''' and timestamp >''',datestr(addtodate(BeginDateNum,-20,'minute'),'yyyy-mm-

dd HH:MM'),''' order by TimeStamp;'); 

    %%%%sqlquery = strcat('select abs(currentvalue-historicalvalue) as DIFF from 

[scada].[dbo].[',PZTable,'] where timestamp <=''',datestr(BeginDateNum,'yyyy-mm-dd 

HH:MM'),''' and timestamp >''',datestr(addtodate(BeginDateNum,-20,'minute'),'yyyy-mm-

dd HH:MM'),''' order by TimeStamp;'); 

    sqlquery = strcat('select currentvalue from [scada].[dbo].[',PZTable,'] where timestamp 

<=''',datestr(BeginDateNum,'yyyy-mm-dd HH:MM'),''' and timestamp 

>''',datestr(addtodate(BeginDateNum,-20,'minute'),'yyyy-mm-dd HH:MM'),''' order by 

TimeStamp;'); 

    curs = exec(conn,sqlquery); 

    curs = fetch(curs); 

    TheCV = cell2mat(curs.data); 

    TheCV = [ TheCV ; CurrentTotal ]; % Add current value to vector since not in table 

yet 

    TheVar = var(TheCV); 

    %disp(TheDiff); 

    %disp(TheVar); 
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    % insert data into table 

    sqlquery = strcat('insert into 

[scada].[dbo].[',PZTable,'](TimeStamp,CurrentValue,Variance) values 

(''',datestr(BeginDateNum,'yyyy-mm-dd 

HH:MM'),''',',num2str(CurrentTotal),',',num2str(TheVar),');'); 

    %%sqlquery = strcat('insert into [scada].[dbo].[',PZTable,'] (TimeStamp,CurrentValue) 

values (''',datestr(BeginDateNum,'yyyy-mm-dd HH:MM'),''',',num2str(CurrentTotal),');'); 

    %disp(sqlquery); 

    curs = exec(conn,sqlquery); 

         

    close(conn); 
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