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ABSTRACT 
 
 

6-PHOSPHOFRUCTO-2-KINASE INHIBITION 
INDUCES AUTOPHAGY AS A SURVIVAL 

MECHANISM 
 

 
 

Alden Klarer 
 
 

May 21, 2013 
 
 
 
 

Altered metabolism has long been recognized as a defining characteristic 

of tumor cells.  The increased glycolytic phenotype, an observation credited to 

Otto Warburg in 1956, is almost universal for cancer cells, making metabolic 

enzymes attractive targets for cancer therapy.  However, anti-metabolic drugs, 

thus far, have not lived up to expectations as stand-alone agents to treat this 

disease.  Unlike glycolytic enzymes that directly catabolize glucose to pyruvate, 

the family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFBs) 

control the conversion of fructose-6-phosphate to and from fructose-2,6-

bisphosphate, a key regulator of the glycolytic enzyme phosphofructokinase-1 

(PFK-1).  One isoform, PFKFB3, has been shown to be highly expressed by 

human cancer cells and a specific PFKFB3 small molecule inhibitor, (3-(3-
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pyridinyl)-1-(4-pyridinyl)-2-propen-1-one [3PO] is currently being developed for 

clinical use.  However, the effectiveness of current chemotherapeutics is limited 

by the development of drug resistance, which is especially problematic for anti-

metabolic drugs where the starvation state activates a variety of survival 

mechanisms within the cell that contribute to resistance.  One such mechanism 

used by all cells to survive nutrient-poor conditions is the activation of autophagy, 

the process of cellular self-catabolism.  Autophagic induction allows for the 

continued generation of biosynthetic intermediates that can be used for energy 

generation and critical metabolic processes while also ensuring prompt disposal 

of damaged and malfunctioning organelles before they cause cellular harm.  We 

hypothesized that the functional starvation induced by inhibition of PFKFB3 in 

tumor cells might induce autophagy as a pro-survival mechanism and that the 

combination of drugs targeting PFKFB3 with pharmacologic inhibitors of 

autophagy could increase anti-tumor effects. This hypothesis has been tested 

and our data reveal that knockdown or inhibition of PFKFB3 results in autophagic 

induction.  This induction appears to serve as a survival mechanism as 

evidenced by furthered cell death upon the addition of inhibitors of autophagy. 
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CHAPTER I 
 
 
 

GENERAL INTRODUCTION 
 

Cancer cells have altered cellular metabolism. 

 The metabolic alterations characteristic of tumor cells have now 

reached hallmark status [1].  Increased glucose uptake and utilization, first 

described by Warburg in 1956, provides biosynthetic precursors for these rapidly 

dividing cells and also may be a means by which cancer cells compensate for 

reduced ATP production [2, 3].  This counterintuitive replacement of a more 

efficient system, oxidative respiration, that generates 36 mol of ATP per mol of 

glucose, with glycolysis which only produces 2 ATP, to generate increased 

energy needed by highly proliferative tumor cells has been rationalized by the 

rapid rates at which glucose can be metabolized through glycolysis [4].   There 

are a number of theories pertaining to why tumor cells take up and utilize more 

glucose than normal cells.   Some have proposed that mitochondrial defects 

result in the preferential use of glycolysis; however, support for this view is limited 

[5-7].  Others speculate that hypoxia encountered within the tumor 

microenvironment due to outgrowing its blood supply, results in the shift to 

glycolysis [8].  Whether due to hypoxia, or to other causes, it is clear that 

changes in glucose uptake or glycolytic flux can result from changes in the 
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expression or activity of a number of key proteins involved in the glycolytic 

pathway including glucose transporter-1, hexokinase, pyruvate kinase, and a 

family of enzymes involved in the regulation of glycolysis, the PFKFBs [9-16]. 

 

PFKFB3 can regulate glycolysis by controlling levels of F2,6BP 

 Bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases 

(PFKFBs) regulate glycolytic flux by controlling the steady state concentration of 

fructose 2,6 bisphosphate (F2,6BP), a potent allosteric regulator of PFK-1[17].  

The PFKFB family consists of 4 isoforms of which PFKFB3 is of particular 

interest in tumor cells [18].  PFKFB3 mRNA and protein are increased in tumors 

when compared to normal tissue [19, 20].  This increase is mediated in part 

through repeating AUUUA elements in the 3’-UTR of its mRNA which are present 

in the mRNAs of several proto-oncogenes and have been shown to increase 

translational activity [21].  Additionally, PFKFB3 has a kinase: phosphatase ratio 

of 740:1, due to the lack of regulatory residues present on other isoforms [22].  

The result is a considerable increase in F2,6BP and subsequent upregulation of 

glycolysis following increased PFKFB3 expression [23-25].  Knockdown of 

PFKFB3 using siRNA decreases glycolysis, cell proliferation and inhibits 

anchorage-independent growth, making this enzyme a promising target for anti-

cancer therapy [26].  Despite the development of numerous anti-metabolic 

agents to treat cancer, these drugs have not seen the clinical success anticipated 

based on their pre-clinical profiles and their presumed tumor-specific activity.  

[27-32].  Interestingly, in a clinical trial testing 2-deoxyglucose, a competitive 
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inhibitor of glucose metabolism [33] in prostate cancer patients, an autophagic 

resistance, indicated by decreased p62 expression, was observed in the majority 

of the patients treated [34].  Recently, the combination of autophagy inhibitors 

with compounds that induce metabolic stress has drawn great attention and 

chloroquine, a drug that has been shown to inhibit autophagy, is now being used 

alone and in combination with other chemotherapeutics in human cancer trials 

[35-37] 

 

Anti-metabolic targeting can mimic a low nutrient environment and lead to 

activation of autophagy  

 Cells in low nutrient environments, such as those with reduced amino 

acids or glucose, activate the cellular self-digestion process of autophagy [38-

40].  While this process occurs at a basal level within cells playing a 

complementary role with the proteasome to help clear larger and more abundant 

material, the induction of autophagy can be triggered by stressful stimuli such as 

hypoxia or nutrient deprivation.  Under these conditions, autophagy is a means 

by which cells are able to degrade cellular components to provide biosynthetic 

precursors which can be used for anabolic processes and energy production [41-

44].  Targeting cancer cell metabolism is a promising strategy for anti-tumor 

therapy due to selectivity for the more metabolically active tumor cells.  However, 

as with many other chemotherapeutic agents, cancer cells have developed 

resistance mechanisms in response to treatment with anti-metabolic drugs.  

Amongst these resistance mechanisms, the induction of autophagy may play an 
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especially critical role in conferring resistance to anti-metabolic drugs since they 

induce states that mimic low nutrient environments that can stimulate autophagy.  

For example, 2-deoxy-glucose has been shown to induce autophagy both in vitro 

and in vivo as part of a phase I clinical trial for prostate cancer [34, 45, 46].   

 

Autophagy may serve to protect cells from metabolic stress 

 Although autophagy has been implicated as either a mechanism for 

adaptive cell survival or for cell death, the process can serve either function 

depending on the stimulus, the timing, and the degree of activation.  There are 

numerous examples of the pro-survival role of autophagy in cells.  Potentially 

hazardous damaged mitochondria are routinely degraded by autophagic self-

digestion [47, 48].  Amino acids can stimulate the TCA cycle by increasing 

capacity through anaplerotic reactions that produce compounds like -

ketoglutarate.  Amino acids and fatty acids also produce acetyl-CoA which, as a 

substrate for the TCA cycle, is converted to carbon dioxide and water fueling 

cellular energetic processes [41-44].   Autophagy has also been shown to 

promote cellular survival in tumor cells treated with chemotherapeutic agents, 

e.g. etoposide, temozolomide, trastuzumab and imatinib [49-52].  Due to this 

demonstrated function of autophagy in protecting cells experiencing stress, it is 

reasonable to postulate that this process may protect cells that are confronted 

with the starvation condition created by metabolic inhibitors. 
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Co-targeting PFKFB3 and the autophagic pathway may result in increased 

anti-cancer effects 

 Molecular modeling has allowed for the development of novel small 

molecule inhibitors that are able to target PFKFB3 enzyme activity.  One such 

inhibitor, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), has been shown to 

suppress glycolysis flux to lactate, decrease glucose uptake and attenuate the 

proliferation of human cancer cell lines in vitro [53].  Similar inhibition was also 

observed in vivo, and, although tumor growth was decreased by treatment with 

3PO, it was not completely suppressed [53].  We postulated that the metabolic 

stress caused by PFKFB3 inhibition might activate autophagy as a survival 

pathway that could confer resistance to 3PO.  Chloroquine (CQ), an anti-malarial 

agent that is relatively well tolerated and has been used in humans since the 

1940’s has been shown to inhibit autophagy and potentiate cancer cell death and 

is now being added to a number of other drugs as a part of several human 

cancer clinical trials [54-59].  We hypothesized that the combination of the 

PFKFB3 inhibitor 3PO with the autophagy inhibitor CQ might lead to a significant 

improvement in anti-cancer effect of 3PO in vitro and that this combination might 

also increase efficacy of 3PO as an anti-tumor agent in vivo which could have 

major implications for clinical trials using PFKFB3 inhibitors. 
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CHAPTER II 

 

 

KNOCKDOWN OF 6-PHOSPHOFRUCTO-2-KINASE (PFKFB3) RESULTS IN 

INHIBITION OF GLYCOLYSIS AND INDUCTION OF AUTOPHAGY 

 

 

Introduction 

 

 Tumor cell dependence on increased glucose uptake and glycolysis 

allows for the increased production of ATP, nucleic acids, amino acids and fatty 

acids required for proliferation [60].  Glycolytic flux is controlled through the 

irreversible, rate-limiting enzyme, PFK-1.  This enzyme is allosterically inhibited 

by ATP, which reduces flux when cellular ATP production exceeds utilization 

[61].  When energy reserves are reduced, AMP activates PFK-1.  However, 

fructose 2,6 bisphosphate (F2,6BP), is also a potent activator of PFK-1 [17].  The 

family of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatases (PFKFBs) is 

responsible for establishing the steady state levels of cellular F2,6BP. 
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The PFKFB family consists of four members, (PFKFB1-4), which act to 

regulate the concentration of F2,6BP in cells [62-64].  The PFKFB3 isoform, with 

a kinase: phosphatase ratio of 740:1, due to the absence critical residues 

required for regulating kinase and phosphatase activity [65] has been shown to 

be expressed at higher levels in tumor cells [20].   This upregulation is mediated 

in part through an AUUUA-rich region in the 3’ untranslated region of its mRNA 

which controls mRNA stability and translational activity [23, 65, 66].  The 

PFKFB3 isoform also contains a hypoxia responsive element making it a direct 

transcriptional target of HIF-1 [22, 67-69].  Finally, PFKFB3 is activated by 

mitogenic signals and is stabilized after the loss of PTEN [23, 70-75].  These 

data indicate that the PFKFB3 isoform may play a role in the increased glycolytic 

phenotype of tumor cells relative to normal cells, which has led to the interest in 

targeting PFKFB3 as an anti-cancer strategy.   Additionally, previous studies 

have shown that knockdown of PFKFB3 reduces glycolytic flux and has anti-

proliferative effects in tumors cells [26].    

The interest in PFKFB3 as an anti-tumor target has resulted in the 

development of a number of small molecule inhibitors against the enzyme [53, 

76] of which some are in the process of entering Phase I clinical trials as anti-

cancer therapeutics.   

Chemotherapies, even those with extremely promising results in vitro, have 

long been plagued by resistance when administered to cancer patients.   

Amongst the large number of resistance mechanisms, autophagy has been 

shown to be activated by a large number of chemotherapeutic agents as a pro-
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survival pathway and is now being studied as a potential target for both single 

and combination cancer therapy trials [50, 52, 77, 78]. 

Autophagy, a term first coined by Christian de Duve in 1963 is the 

evolutionarily conserved process of cellular self-catabolism [79].  Of the three 

types of autophagy, macroautophagy, microautophagy, and chaperone-mediated 

autophagy, macroautophagy is the most well-characterized and is referred to as 

autophagy in this dissertation.  Autophagy is normally active at low levels in most 

cells and functions to remove long-lived proteins and organelles.  This process 

has also been observed to protect cells by removing intracellular pathogens, 

potentially harmful damaged mitochondria and in generating metabolic 

substrates during nutrient deprivation [41-44, 80].  The process of autophagy 

involves the initial formation of a double-membraned vesicle, thought to originate 

from de novo synthesis as well as sources of cellular membrane such as the 

plasma membrane, the Golgi complex, endoplasmic reticulum or the 

mitochondrial membrane [81-87].  As maturation of this membrane continues, 

LC3-I is modified by the addition of phosphatidylethanolamine to form LC3-II 

which is incorporated into the growing membrane as a scaffolding protein [88].  

Cargo is recruited to this forming autophagosome by p62, an adapter molecule 

with ubiquitin-binding domains that recognize poly-ubiquitinated organelles, or 

proteins [89].   Ultimately, autophagosomes fuse with lysosomes where cargo is 

degraded [89].   Autophagy normally functions at basal levels in most cells can 

be induced by a variety of stressful stimuli such as hypoxia or glucose 

deprivation, where it is presumed to promote survival [90]. 
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Regulation of autophagy is mainly controlled through inhibition by the 

mammalian target of rapamycin (mTOR) pathway.  In response to rapamycin, a 

compound isolated from soil-dwelling bacterial and originally used as an 

antimicrobial agent, mTOR activity is suppressed [91].  However, mTOR is now 

known to be regulated by other stimuli, especially signals associated with cellular 

energy status.  When nutrients are plentiful, mTOR phosphorylates and activates 

ribosomal S6 kinases resulting in increased protein translation [92, 93].  At the 

same time, mTOR blocks autophagy by inhibition of a critical component in the 

autophagic pathway, Ulk1[94].  Upon nutrient deprivation, such as that 

experienced by glucose withdrawal, the AMP:ATP ratio is altered and AMP, and 

more recently revealed, ADP,  binds to cellular energy sensor AMP-activated 

protein kinase (AMPK) causing a conformational change that favors the 

activation via phosphorylation at Thr 172 by upstream kinase LKB1 [95-98].  

Upon phosphorylation, AMPK can inhibit mTOR activity by phosphorylation of 

TSC2 which suppresses Rheb, an mTOR activator [99, 100].  AMPK can also 

directly phosphorylate ULK1 to induce autophagy [99, 101, 102].  In this way, 

nutrient deprivation can signal both the inhibition of protein translation and the 

activation of the catabolic process of autophagy [103].    

Previous studies have shown that loss of PFKFB3 expression or inhibition of 

its enzyme activity result in decreased glucose uptake, effectively starving the 

cells.  Cellular responses to metabolic stress during starvation are varied and 

depend on numerous factors including but not limited to; cell type, the 

proliferative state of the cell and the extent and time of starvation.   The induction 



10 

 

of autophagy is one response mechanism that has been shown to increase cell 

survival during times of metabolic stress by allowing for the production of 

nutrients and sustained metabolism [41-44].   

Based on the known metabolic effects of PFKFB3 targeting, we sought to 

determine the effects that knockdown of PFKFB3 would have on the activation of 

autophagy.  In the current chapter, we find that knockdown of PFKFB3 results in 

an increase in autophagy and that this increase is likely mediated through the 

mTOR signaling pathway. 
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Materials and Methods 

 
 

Cell Culture 

Human colorectal carcinoma cells (HCT116) obtained from American 

Type Culture Collection (Manassas, VA) and were cultured with McCoy’s 5A 

medium (Gibco, Grand Island, NY) supplemented with 10% calf serum and 

50ug/mL gentamicin.  Cells were incubated at 37 C with 5% CO2. 

 

Transfection  

HCT-116 cells were plated at 100,000 cells/well of a 6-well dish in 2.5 ml 

complete medium.  24 h after seeding, cells were transfected with either control 

siRNA (Stealth Negative Control Medium GC Duplex), or PFKFB3 siRNA 

(PFKFB3HSS107860;  5’ UUCAUCAGGUAGUACACGCGGC 3’, both from 

Invitrogen, Grand Island, NY).  OptiMEM (Invitrogen, Grand Island, NY) with 1% 

Lipofectamine RNAiMAX (Invitrogen, Grand Island, NY) was incubated at RT for 

5 minutes.  siRNA was added to the Lipofectamine mixture and incubated for 20 

minutes at room temperature.  The mixture was added to a single well of the 6-

well plate for a total volume of 3 ml and a final siRNA concentration of 10nM.  

Cells were incubated at 37 C for 48 hours before harvest.  Samples in which 
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bafilomycin A1 was used were treated with 1nM bafilomycin A1 (Sigma, St. 

Louis, MO) for 24 hours prior to harvest.  

 

Protein Extraction 

Cells were washed with PBS then lifted in 0.25% Trypsin (Gibco, Grand 

Island, NY) and pelleted by centrifugation.  Pellets were lysed in protein lysis 

buffer (Thermo, Rockford, IL) supplemented with protease and phosphatase 

inhibitors (Sigma, St. Louis, MO).  Samples were homogenized by passing 

repeatedly through a 28 ½ gauge needle and then incubated on ice for 20 

minutes before centrifugation at 2,000 g for 5 minutes at 4 C and collection of 

supernatants.  Protein concentration was determined using bicinchoninic acid 

assay (Thermo, Rockford, IL).   

 

Immunoblotting 

Equal amounts of protein were added to loading buffer (BioRad, Hercules, 

CA) containing 10ul/ml β mercaptoethanol and heated to 98 C for 5 minutes and 

then loaded onto a 4-12% gradient SDS-polyacrylamide gel (BioRad, Hercules, 

CA) and run for 60 minutes at 130 volts.  Protein was transferred to a 

nitrocellulose membrane over 1 hour at 400 mA and then blocked in 5% non-fat 

milk for 1 hour before incubation with primary antibodies.  Antibodies against 

LC3, p62, pAMPK, AMPK, p-p70S6K, p70S6K, pS6, S6 (Cell Signaling, Danvers, 

MA), PFKFB3, Tel2 (Protein Tech, Chicago, IL), β actin (Sigma, St. Louis, MO) 

were diluted 1:1000 and were incubated overnight at 4 C, with the exception of 
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p62 and β actin Ab that were incubated at room temperature for 1 hour.  

Membranes were washed for 30 minutes in Tris-Buffered Saline with Tween-20 

(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20) before addition of 

secondary antibodies (anti-mouse or anti-rabbit, diluted 1:10,000 in TBS-T, 

(Sigma, St. Louis, MO).  ECL Western Blotting Detection Kit (Amersham/GE 

Pittsburgh, PA) was used to develop membranes.  Quantitative densitometry was 

performed using Image J (NIH). 

 

F2,6BP Assay 

 Intracellular fructose 2,6 bisphosphate (F2,6BP) levels were determined 

using a method previously described [104].  Briefly, HCT-116 cells were 

harvested 48 hours after transfection and centrifuged at 200 x g.  The pellets 

were resuspended in 50mM Tris acetate (pH 8.0) and 100 mM NaOH then 

incubated at 80 C for five minutes and then placed on ice.  Extracts were 

neutralized to pH 7.2 with 1 M acetic acid and 1 M Hepes and then incubated at 

25 C for 2 min in 50mM Tris, 2mM Mg2+, 1mM F6P, 0.15mM NAD, 10u/l PPi-

dependent PFK1, 0.45 kU/I aldolase, 5 kU/I triosephosphate isomerase, and 1.7 

kI/I glycerol-3-phosphate dehydrogenase.  0.5mM pyrophosphate was added and 

the rate of change in absorbance (OD=339 nm) per min over five minutes was 

determined.  A calibration curve using 0.1 to 1 pmol of F2,6BP (Sigma, St. Louis, 

MO) was used to calculate F2,6BP which was then normalized to total protein. 
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Glucose Uptake Assay 

  HCT-116 cells were plated at 100,000 cells in each well of a 6-well dish. 

Cells were transfected with either control siRNA or siRNA directed against 

PFKFB3.  48 hours post-transfection, cells were washed with PBS and media 

was replaced with glucose-free RPMI 1640 for 30 minutes.  2-[1-14C]-deoxy-D-

glucose (Perkin Elmer, Waltham, MA) was added for 30 minutes.  Cells were 

then washed three times with ice-cold RPMI 1640 containing no glucose.  Cells 

were lysed with 0.1% SDS.  Scintillation counts (counts/min) were measured on 

a portion of lysate and normalized to protein concentration using the remainder of 

the lysate.  Data are represented as mean + SD from duplicate samples. 

 

Acridine Orange Immunofluorescence 

After 48 hours of transfection, HCT-116 cells were washed with PBS and 

then stained with 0.01mg/ml acridine orange in PBS for 15 minutes at 37 C.   

Cells were washed twice with PBS then harvested for study by microscopy or 

flow cytometry.   For immunofluorescent examination and imaging, cells were 

viewed using an EVOSfl fluorescent microscope (AMG, Grand Island, NY).  

Acridine orange was visualized using an overlay of GFP and RFP filters.  For 

flow cytometry, green (510-530nm) and red (650nm) fluorescence emission from 

10,000 cells illuminated with blue (488nm) excitation light was measured (BD 

FACSCalibur, San Jose, CA).  FlowJo software (TREE STAR Inc, San Carlos, 

CA) was used to calculate the red: green fluorescence ratio.  
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Electron Microscopy 

HCT-116 cells were prepared for electron microscopy 48 hours post-

transfection.  Cells were washed twice with PBS and fixed in cold glutaraldehyde 

(3% in 0.1M cacodylate buffer, pH 7.4) for 30 minutes.  Samples were post fixed 

in OsO4 and 100nm sections were taken and stained with uranyl/lead citrate and 

viewed using a transmission electron microscope (Phillips CM12).  Methodology 

and identification of autophagic structures was based on established criteria and 

previous studies [105-107].   

 

ATP Determination 

 ATP levels were determined using a bioluminescence assay (Invitrogen, 

Grand Island, NY) following established protocols from suppliers.  Briefly, cells 

were lysed on cultured plates using a passive lysis buffer and snap frozen in 

liquid nitrogen then thawed at 37 C and spun at 1200 x g for 30 seconds and 

4C to clear the lysates.  Lysate was added to a prepared reaction solution 

containing reaction buffer, DTT, d-luciferin and firefly luciferase and 

luminescence was read using a luminometer (Biotek, Winooski, VT).  ATP was 

determined based on a standard curve using 1-500nM ATP and was calculated 

relative to protein concentration. 
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Results 

 
 
 
 
Knockdown of PFKFB3 results in decreased glycolytic flux 

 In order to reduce PFKFB3 levels, a siRNA directed against PFKFB3 was 

transfected into human colorectal carcinoma cells (HCT-116).  Protein 

expression, assessed by Western blotting, was inhibited by >90% at 48 hours by 

the PFKFB3-specific siRNA relative to cells transfected with the negative control 

(p value < 0.05) (Figure 1).   After confirmation of siRNA-mediated knockdown, 

the product of the enzyme, fructose 2,6 bisphosphate (F2,6BP) was measured 

using an enzyme-coupled assay.  Knockdown of PFKFB3 resulted in a 60% 

reduction in F2,6BP at 48 hours after transfection (p value < 0.05) (Figure 2).  

Blocking the production of F2,6BP leads to reduced activity of PFK-1 [23]. 

Glucose uptake was used as an indirect measure of PFK-1 activity as loss of 

PFK-1 activity results in the intracellular accumulation of glucose and its 

derivatives reducing further glucose uptake.  To measure glucose uptake 2-[1-

14C]-deoxy-D-glucose (2DG) was added to cells transfected with either a 

negative control siRNA or a siRNA directed against PFKFB3.  2DG uptake was 

reduced by more than 50% (p value < 0.05) after 48 hours in cells with reduced 

PFKFB3 expression relative to the negative control (Figure 3). 
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Figure 1. Treatment of cells with siRNA directed against PFKFB3 mRNA 

results in decreased steady-state levels of PFKFB3 protein. HCT-116 cells 

were transfected with either a control siRNA (ctrl) or 10nM of a siRNA directed 

against PFKFB3 (PFKFB3).  Total protein was harvested 48 hours post-

transfection and protein levels relative to β actin were determined by Western 

blotting.  Densitometry data are presented as the mean fold change + SD from 

three experiments. (p value < 0.05) 
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Figure 2. Knockdown of PFKFB3 reduces fructose 2,6 bisphosphate 

(F2,6BP) levels.   HCT-116 cells were transfected with either a control siRNA 

(ctrl) or 10nM of a siRNA directed against PFKFB3 (PFKFB3).   Fructose 2,6 

bisphosphate levels were determined using an enzyme-coupled assay. Data are 

presented as the mean pmol/mg protein + SD from three experiments. (p value < 

0.05). 
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Figure 2. 
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Figure 3. 2-[1-14C]-deoxy-D-glucose uptake is reduced by PFKFB3 

knockdown. 48 hours after transfection with either control (ctrl) or PFKFB3-

specific siRNA (PFKFB3), glucose uptake was measured using 2-[1-14C]-deoxy-

D-glucose.  Data are presented as the mean counts + SD from three 

experiments. (p value < 0.05) 
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Figure 3. 
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PFKFB3 knockdown results in activation of autophagy 

 Glucose starvation is known to increase autophagy in a number of model 

systems.  Thus we sought to determine if the decrease in glucose uptake due to 

knockdown of PFKFB3 similarly increased autophagy in our model system.  Four 

measures of autophagy were used including protein markers LC3-II and p62, 

acridine orange immunofluorescence, and electron microscopy.  Knockdown of 

PFKFB3 resulted in an 8-fold increase in LC3-II protein levels relative to the 

negative control (p value < 0.05).  Addition of bafilomycin A1, a vacuolar type H+-

ATPase that inhibits lysosomal function, was used to block LC3-II degradation 

and resulted in a further increase in LC3-II, indicating autophagic flux is 

increased rather than merely a block in LC3-II degradation (Figure 4) [108, 109].   

As an additional measure of autophagy, protein levels of p62, a ubiquitin-binding 

scaffold protein that plays a role in targeting of cargo to autophagosomes, where 

it is also degraded, was measured.  Knockdown of PFKFB3 resulted in a ~90% 

decrease (p value < 0.05) in p62 protein levels (Figure 4) [110]. 
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Figure 4. Protein markers of autophagy, LC3-II and p62, are altered after 

knockdown of PFKFB3. 48 hours after transfection with either control (ctrl) or a 

siRNA directed against PFKFB3 (PFKFB3), LC3-II protein levels were 

determined using Western blotting.  Treatment with 1nM bafilomycin A1 (Baf A1) 

was used to determine if LC3-II levels were a result of increased autophagic flux 

or impaired degradation.  Quantitative densitometry was performed to assess 

relative protein levels.  LC3-II and p62 levels are expressed as the mean fold 

change + SD from three experiments relative to β actin and control. (p value < 

0.05) 
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Figure 4. 
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 As a second measure of autophagy, acridine orange immunofluorescence 

was used.  Acridine orange, a cell-permeable fluorescent dye, becomes 

protonated and trapped in acidic compartments such as lysosomes and, upon 

excitation (488 nM), emits a red light (650 nM).  Acridine orange 

immunofluorescence was assessed by both fluorescent microscopy and by flow 

cytometry.  HCT-116 cells transfected with PFKFB3 siRNA had a significantly 

higher emission of red light (650) when viewed by fluorescent microscopy (Figure 

5A).  Acridine orange fluorescence was quantified by flow cytometry.  PFKFB3 

knockdown resulted in a shift in FL-3 (red) fluorescence, indicating that the 

PFKFB3-siRNA transfected cells had a larger quantity of acidic compartments (p 

value <0.05), characteristic of cells with increased autophagic activity (Figure 

5B). 

 Another methodology commonly used to study autophagy is electron 

microscopy.  HCT-116 cells were transfected with PFKFB3 siRNA or a negative 

control siRNA and 48 hours post-transfection, were collected and prepared for 

electron microscopy.  Sections were studied using a transmission electron 

microscope (Phillips CM12).  An increased number of intracellular structures 

including double-membrane bound vesicles, consistent with autophagosomes 

were visualized in cells transfected with PFKFB3 siRNA [111].  Representative 

images of these cells and structures were collected (Figure 6).   
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Figure 5. Acridine orange immunofluorescence is increased by PFKFB3 

knockdown.  After 48 hours of transfection with either control (ctrl) or PFKFB3-

specific siRNA, cells were stained with acridine orange and observed by 

fluorescent microscopy. Representative images were taken.  Cells were then 

collected by flow cytometry to measure the relative content of acidic 

compartments.   Data are presented as the mean percentage of cells with high 

acridine orange staining + SD. (p value < 0.05) 
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Figure 5. 
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Figure 6. Autophagic structures are visible by electron microscopy after 

knockdown of PFKFB3.  48 hours after transfection, HCT-116 were harvested 

and fixed for electron microscopy.  Microscopic examination of the cells treated 

with PFKFB3 siRNA contained intracellular structures consistent with 

autophagosomes (arrow). 
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Figure 6. 
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Autophagy due to PFKFB3 knockdown may result from mTOR inhibition 

Protein collected from HCT-116 cells transfected with either a negative 

control siRNA or a PFKFB3-specific siRNA for 48 hours was used for 

immunoblotting to measure levels of proteins involved in the mTOR pathway.  

Relative to total AMPK, pAMPK was increased after 48 hours of transfection with 

PFKFB3 siRNA.  AMPK activation is known to suppress mTOR activity which can 

be measured using downstream mTOR effectors p70 S6 kinase (p70S6K) and 

ribosomal protein S6 (S6).  The phosphorylated forms of both p70S6K and S6 

were decreased by PFKFB3 knockdown, relative to their total expression level 

(Figure 7) indicating suppression of the mTOR pathway.  mTOR inhibition 

resulting from AMPK activation can occur when the intracellular ATP is reduced 

relative to AMP [112].  ATP levels after PFKFB3 knockdown were determined 

using a bioluminescence assay.  48 hours post-transfection, PFKFB3 knockdown 

resulted in a ~30% decrease in ATP (p value <0.05) (Figure 8).  Taken together, 

these data indicate that suppression of glucose uptake may result in decreased 

ATP, increased AMPK activation, mTOR pathway inhibition and resultant 

activation of autophagy. 
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Figure 7. Protein markers downstream of mTOR are decreased by PFKFB3 

knockdown.  After 48 hours of transfection with either a control or a PFKFB3-

specific siRNA, protein expression of both phosphorylated and total levels of 

downstream mTOR targets, p70S6K and ribosomal protein S6 (S6) were 

measured using Western blotting.  Activating phosphorylation of a well-studied 

upstream inhibitor of mTOR activity, AMPK, was also measured.  Quantitative 

densitometry is reported as phosphorylated relative to total protein for AMPK, 

p70S6K and S6 and relative to β actin for LC3.  All are relative to control.  Data 

are presented as the mean fold change + SD of three experiments. (p value < 

0.05) 
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Figure 7. 
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Figure 8. PFKFB3 knockdown reduces ATP levels.  HCT-116 cells were 

transfected with either a control or a PFKFB3-specific siRNA.  48 hours after 

transfection cells were harvested for ATP determination.  ATP was measured 

using a bioluminescence assay and data are presented as the mean + SD of 

ATP relative to control from three experiments. (p value < 0.05) 

 

 



 

35 

 

Figure 8.  
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Discussion 
 
 
 

 Members of the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 

(PFKFB) family have been shown to be highly expressed in neoplastic relative to 

normal tissue [19, 20].  This increase in expression occurs concurrently with 

increased glucose uptake and utilization by tumors.  For these reasons, the 

family of PFKFBs has become an attractive target for anti-cancer drug 

development.  The PFKFB3 isoform is of particular interest in this pursuit due to 

the considerable imbalance of this enzyme’s kinase to phosphatase activity.  

Increased activity of PFKFB3 results in the production of a large amount of 

F2,6BP, resulting in PFK-1 activation and increased glycolytic flux [18, 20, 26].    

Inhibition of PFKFB3 has been shown to reduce glucose uptake in vitro and in 

vivo.  Although the precise mechanism for decreased glucose uptake is not well 

defined, suppression of PFK-1 activity caused by decreased F2,6BP is expected 

to increase F6P which is in equilibrium with G6P, a potent inhibitor of hexokinase 

and, thus, of glucose uptake [113].  However, tumor cells are quite 

heterogeneous as a result of ongoing genetic alteration such that even cells 

within a single tumor can have distinctly different responses to a stimulus.  For 

this reason it is important to validate each model system used when studying the 
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effects of genetic manipulation of a target.   To evaluate the effect of PFKFB3 

knockdown, a siRNA approach was used in a transformed cell line derived from a 

human colon adenocarcinoma (HCT-116).  Knockdown of PFKFB3 in this cell 

line resulted in a substantial reduction in PFKFB3 protein expression.  At the 

same time there was also a decrease in glucose uptake and in fructose 2,6 

bisphosphate production as would be expected with reduced PFKFB3 

expression.    

 The metabolic stress caused by reduced glucose availability results in a 

number of cellular defense mechanisms critical to survive transitory periods of 

starvation.  These include the suppression of energy-requiring processes by 

reducing the expression of biosynthetic genes, inhibiting the activity of 

translational machinery and halting the cell cycle [114-116].  At the same time, 

catabolic processes, such as autophagy, are used to recycle intracellular 

components in order to provide metabolic substrates which can then be used to 

generate energy as well as to remove potentially harmful intracellular material 

such as damaged mitochondria [41, 44, 117-119].  To determine if the reduced 

glucose uptake due to knockdown of PFKFB3 caused cells to activate this 

catabolic process, autophagy markers were assessed.   

Knockdown of PFKFB3 in this model system resulted in changes in 

protein markers involved in the autophagic process.  There was an increase in 

the lipidated form of the autophagosomal membrane protein LC3 and a decrease 

in protein levels of cargo protein p62 in cells transfected with PFKFB3 siRNA.  

Microtubule-associate protein 1 light chain 3-II (LC3-II) is a component of the 
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autophagosomal membrane.  LC3 is cleaved to LC3-I which liberates a C-

terminal glycine that allows the conjugation to phosphatidylethanolamine (PE) 

whereupon it can target the autophagosomal membrane.  Although 

counterintuitive, the heavier LC3-II migrates faster than LC3-I due to its 

hydrophobicity, and is seen as the lower band in Western blotting (Figure 4).  [88, 

120].  Increased LC3-II can indicate either increased autophagic synthesis or 

reduced autophagic degradation.  The addition of bafilomycin A1, an inhibitor of 

the vacuolar type H+-ATPase, allows for the determination of autophagic flux by 

inhibiting lysosomal acidification and blocking degradation of LC3-II [88, 121, 

122].  The further increase in LC3-II protein observed in the presence of 

bafilomycin A1 after knockdown of PFKFB3 indicates that knockdown is inducing 

autophagy rather than merely causing a block in LC3-II degradation.  PFKFB3 

knockdown also resulted in decreased p62 protein levels.  p62 is an autophagy 

cargo receptor protein that contains an LC3-interacting region that targets it and 

its cargo to the autophagosome.  In autophagy competent cells, this cargo 

protein is degraded along with autophagosomal contents resulting in decreased 

total levels [123].   

Additionally, knockdown of PFKFB3 resulted in cells with a higher volume 

of acidic compartments as measured using acridine orange staining, consistent 

with increased autophagy.  When visualized by electron microscopy, PFKFB3 

knockdown also resulted in the appearance of autophagosomal structures.    

Taken together, these data support the induction of autophagy due to knockdown 

of PFKFB3. 
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Based on these observations, it appears that cells respond to PFKFB3 

knockdown by increasing autophagic processing.  Protein expression suggests 

that this induction is via the energy sensing AMPK/mTOR pathway based on an 

increased amount of phosphorylated AMPK and a decrease in the 

phosphorylated forms of downstream mTOR effectors p70 S6 kinase and 

ribosomal protein S6.  However, because gene silencing is not currently a widely 

used cancer therapy technique, the significance of these studies in the setting of 

human disease cannot be determined using knockdown methodologies alone.  

To increase its relevance most targeting is aimed at the identification of 

compounds with anti-tumor efficacy.  The interest in PFKFB3 as an anti-cancer 

target has resulted in the identification and validation of a number of compounds 

that inhibit enzyme function.  In order to determine if these observations made 

using genetic knockdown might result in meaningful advances in tumor therapy, 

further studies were conducted using a PFKFB3 small molecule inhibitor that had 

previously been shown to inhibit PFKFB3 enzyme function. 
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CHAPTER III 
 
 
 

INHIBITION OF PFKFB3 USING 3-(3-PYRIDINYL)-1-(4-PYRIDINYL) 
2-PROPEN-1-ONE (3PO), RESULTS IN AUTOPHAGIC INDUCTION 

 
 

Introduction 
 
 
 

The interest in PFKFB3 as a drug target for cancer treatment has now 

resulted in the identification of small molecule inhibitors of enzyme activity [53, 

76].  Molecular modeling allowed for the computational screening of a large 

number compounds with the potential to bind the fructose-6-phosphate binding 

pocket of PFKFB3.  Further validation of selected compounds resulted in the 

identification of a compound with dose-dependent inhibition of PFKFB3, termed 

3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) (Figure 9).  This compound 

was shown to suppress glucose uptake and F2,6BP production and, importantly, 

seemed to be cancer-specific due to the selective suppression of growth of 

transformed cells relative to untransformed cells [53].  Using this inhibitor, we 

were also able to show reduced glucose uptake and F2,6BP in our model 

system.
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Since a reduction in PFKFB3 activity results in decreased cellular glucose 

uptake, and glucose starvation is an established stimulus for increased 

autophagic flux, it was hypothesized that starvation due to PFKFB3 inhibition 

would increase autophagic flux.  In the following results section, treatment of 

transformed cells with 3PO is shown to result in increased autophagy.  

Interestingly, the mechanism by which autophagy is induced following drug 

treatment does not appear to be the same as that observed using siRNA 

mediated knockdown.  Although PFKFB3 inhibition using 3PO results in 

decreased ATP, this change does not occur until long after the effects on 

metabolism.  The very early effects of 3PO on glucose uptake and F2,6BP 

relative to that with siRNA-mediated knockdown pointed to another source for 

autophagic induction, oxidative stress.  

 
 



42 

 

 

 

 

 

 

 

 

Figure 9. 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), was designed 

to inhibit PFKFB3 activity.  Computational modeling led to the identification of a 

small molecule inhibitor of PFKFB3 termed -(3-pyridinyl)-1-(4-pyridinyl)-2-propen-

1-one (3PO) (Figure 9A).  This compound can be seen within the PFKFB3 

binding pocket (Figure 9B) [53]. 
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Figure 9. 
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Materials and Methods 
 

 

Cell Culture 

Cells were cultured as described in Chapter II. 

 

Drug Treatment 

3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) (Advanced Cancer 

Therapeutics).  Samples in which bafilomycin A1 was used were treated with 

1nM bafilomycin A1 (Sigma, St. Louis, MO) 24 hours prior to harvest. 

 

Protein Extraction and Immunoblotting 

Protein extraction and Western blotting were performed as described in 

Chapter II.  

 

F2,6BP Assay 

 Intracellular fructose 2,6 bisphosphate (F2,6BP) levels were measured 

after two or eight hours of drug treatment as described in Chapter II. 

 



45 

 

Glucose Uptake Assay 

  Glucose uptake after two or eight hours of treatment was measured using 

2-[1-14C]-deoxy-D-glucose as described in Chapter II. 

 

 

Acridine Orange Immunofluorescence 

Acridine orange staining and detection was determined as described in 

Chapter II. 

 

Electron Microscopy 

HCT-116 cells were prepared for electron microscopy 24 hours after drug 

treatment as described in Chapter II.  

 

ATP Determination 

 ATP levels were determined after 6, 12 or 24 hours of treatment as 

described in Chapter II.   

 

Glutathione Measurement 

GSH-Glo Glutathione Assay (Promega) was used to measure total glutathione 

levels following manufacturer’s protocol.  Briefly, cells were lifted and washed in 

PBS.  10,000 cells from each sample were added each well of an opaque 96-well 

plate.  Cells were lysed with passive lysis buffer containing luciferin-NT (+ NEM 
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for the measurement of GSSG).  Luciferin generation reagent containing DTT, 

glutathione-S-transferase and glutathione reaction buffer was added and the 

plate was incubated at room temperature for 30 minutes.  Luciferin detection 

reagent was added and plate was read using a luminescence reader after 15 

minute incubation at room temperature.  Glutathione was calculated based on a 

standard curve generated using 0.25 to 16 M GSH. 

 

Reactive Oxygen Species Flow Cytometry 

1nM 2’,7’ –dichlorofluorescein diacetate (DCFDA) (Molecular Probes) was 

diluted in 1X PBS containing magnesium and calcium (Gibco) and added to 

washed cells and incubated at 37C for 30 minutes before being analyzed by a 

flow cytometry (BD FACSCalibur, San Jose, CA).  Data was analyzed using 

FlowJo software (TREE STAR Inc, San Carlos, CA).  Results were calculated as 

average of triplicate samples + SD. 

 

Flow Cytometry for Cell Death 

Cells were stained with annexin-V labeled with FITC and propidium iodide 

following manufacturer’s protocol (BD Biosciences).  Briefly, cells were lifted and 

pelleted by centrifugation at 2,500 rpm for 5 minutes.  Cell pellets were washed 

with 1X PBS and 100,000 cells were pelleted by centrifugation at 2,500 rpm for 5 

minutes.   Pellets were resuspended in 1X Binding Buffer and Annexin-V/FITC 

and/or Propidium Iodide was added and cells were incubated in the dark at room 

temperature for 10 minutes.  1X Binding Buffer was added to increase volume 
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and 10,000 events were counted for each sample using the appropriate filters for 

FITC and PI detection (BD FACSCalibur, San Jose, CA).  Data was analyzed 

using FlowJo software (TREE STAR Inc, San Carlos, CA).  Results were 

calculated as average of triplicate samples + SD. 
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Results 
 
 
 

Small molecule inhibition of PFKFB3 decreases glucose uptake 

 A small molecule designed to target the fructose-6-phosphate binding site 

of the PFKFB3 enzyme has previously been shown to suppress glycolysis, inhibit 

recombinant PFKFB3 activity, and decrease glucose uptake and fructose 

2,6,bisphosphate (Figure 9).  This inhibitor, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-

propen-1-one (3PO), has also been used as an anti-tumor agent in vivo.  To 

validate this small molecule in our model system HCT-116 cells were treated and 

fructose 2,6 bisphosphate levels and glucose uptake were measured.  HCT-116 

cells were treated with either vehicle alone or 10 M 3PO.  Fructose 2,6 

bisphosphate was measured using an enzyme-coupled reaction and a sharp 

~50% drop in fructose 2,6 bisphosphate was noted only 2 hours after drug 

treatment (Figure 10).  3PO-treated cells were also assessed for glucose uptake 

using 2-[1-14C]-deoxy-D-glucose.  Relative to vehicle treated cells, ~35% reduced 

glucose uptake was observed in 3PO treated cells as early as two hours after 

drug treatment (Figure 11).   
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Figure 10. Small molecule inhibition of PFKFB3 reduces fructose 

2,6,bisphosphate (F2,6BP) levels.  To determine the activity of 3PO in the 

current model system, HCT-116 cells were treated with 10 M 3PO and cells 

were harvested to measure fructose 2,6 bisphosphate using an enzyme coupled 

assay.  Data are presented as the mean pmol/mg protein + SD from three 

experiments. (p value < 0.05) 
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Figure 10. 
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Figure 11. A small molecule inhibitor of PFKFB3, 3PO, reduces 2-[1-14C]-

deoxy-D-glucose uptake.  2-[1-14C]-deoxy-D-glucose uptake was measured in 

HCT-116 cells treated with either vehicle or 10 M 3PO.  Data are presented as 

the mean counts + SD from three experiments. (p value < 0.05) 
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Figure 11. 
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Inhibition of PFKFB3 induces autophagy 

Multiple markers of autophagy were measured following small molecule 

inhibition of PFKFB3.  Treatment of HCT-116 cells with 7.5, 10, or 15 M 3PO for 

24 hours led to the increased expression of protein marker LC3-II in a dose 

dependent manner.  Like PFKFB3 knockdown, the LC3-II induction by 3PO is 

likely due to increased synthesis rather than a blockade of protein degradation as 

indicated by the further increase in LC3-II upon addition of bafilomycin A1 (Figure 

12).  3PO also resulted in a decreased amount of p62 (Figure 12).   

 Treatment with 7.5, 10, or 15 M 3PO for 24 hours increased acridine 

orange immunofluorescence which was visualized by fluorescent microscopy 

(Figure 13) and quantified using flow cytometry (Figure 13).  This induction of 

fluorescence was also noted to occur in a dose dependent manner. 

 HCT-116 cells treated with 10 M 3PO were examined by electron 

microscopy.  After 24 hours of treatment, cells exposed to 3PO were noted to 

have numerous intracellular structures consistent with autophagosomes (Figure 

14). 
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Figure 12. Markers of autophagy, LC3-II and p62, are altered by 3PO.  HCT-

116 cells were treated with either vehicle, or 7.5, 10, or 15 M 3PO for 24 hours.  

Addition of bafilomycin A1 (Baf A1) was used to determine if the changes in LC3-

II were the result of increased synthesis or impaired degradation.  Quantitative 

densitometry was conducted and protein expression was determined relative to β 

actin and to control. (LC3-II quantitation is relative to control + bafilomycin due to 

the absence of a visible band in the control sample).  Data are presented as the 

mean fold change + SD from three experiments. (p value < 0.05) 
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Figure 12. 
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Figure 13:  3PO increases acridine orange immunofluorescence.     HCT-

116 cells were treated with either vehicle or 7.5, 10, or 15 M 3PO.  24 hours 

after treatment, cells were stained with 1ug/ml acridine orange for 15 minutes 

and then viewed using a fluorescent microscope.  Representative images were 

captured (Figure 12A).  Cells were then harvested for flow cytometry.  Gating 

was used to quantitate the number of cells with a high AO fluorescence and 

expressed relative to vehicle (Figure 12B, C).  Data are presented as the mean 

relative percentages + SD from three experiments. (p value < 0.05) 
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Figure 13. 
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Figure 14:  Inhibition of PFKFB3 results in autophagic structures visualized 

by electron microscopy. HCT-116 cells treated with 10 M 3PO were 

harvested after 24 hours and prepared for electron microscopy.  Representative 

images were captured.  Autophagic structures were seen in cells exposed to 

3PO (arrow). 
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Figure 14. 
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mTOR inhibition following 3PO treatment does not correlate with AMPK 

Protein lysates prepared from HCT-116 cells treated with 3PO (10 M) 

were examined for protein expression and phosphorylation of downstream 

mTOR effectors p70S6K and S6.  The levels of phosphorylated p70S6K and S6 

were decreased after treatment with 3PO, indicating mTOR inhibition similar to 

that seen with knockdown of PFKFB3.  However, unlike the knockdown, 3PO did 

not result in the activation of AMPK (Figure 15).   The lack of AMPK activation 

was appropriate, however, because ATP was not found to decrease until 24 

hours after treatment (Figure 16). 
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Figure 15:  3PO treatment results in decreased expression of downstream 

mTOR effectors.  HCT-116 cells were treated with 10 M 3PO and harvested at 

specified times for protein lysates.  Immunoblotting was performed using 

antibodies to detect pAMPK, AMPK, p-p70S6K, p70S6K, pS6, S6, β actin and 

LC3.  Quantitative densitometry was used to determine protein expression and is 

expressed as phosphorylated relative to total levels for AMPK, p70S6K and S6 

and relative to β actin for LC3-II.  All values are expressed as fold change relative 

to control and are presented as the mean fold change + SD of three experiments. 

(p value < 0.05) 
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Figure 15. 
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Figure  16: ATP levels are decreased by treatment with 3PO.  Cells treated 

with 10 M 3PO were harvested at specified times and intracellular ATP was 

measured using a bioluminescence assay.  ATP levels are expressed as mean 

nmol ATP/ug protein relative to control + SD from three experiments. (p value < 

0.05) 
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Figure 16.  
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PFKFB3 inhibition with 3PO increases oxidative stress 

 Glucose starvation is known to induce oxidative stress [124, 125].  After 

determining that 3PO reduced fructose 2,6 bisphosphate and glucose uptake 

very soon after treatment, we sought to determine the effect of 3PO on oxidative 

stress, focusing on glutathione levels and reactive oxygen species.  HCT-116 

cells were treated with 10 M 3PO and harvested for glutathione measurement 

using a luminescence-based assay.  After 2 hours of treatment, 3PO-treated 

cells had a ~40% decrease in glutathione relative to control (p value < 0.05) 

(Figure 17).    To determine if this prompt change in glutathione had an impact on 

reactive oxygen species, a flow cytometry approach was employed.   

Fluorescence of 2’,7’ –dichlorofluorescein diacetate (DCFDA), a dye that is used 

to measure hydroxyl, peroxyl and other reactive oxygen species was determined 

by flow cytometry.  Reactive oxygen species were increased by more than 50% 

in 3PO-treated cells (p value < 0.05) (Figure 18). 
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Figure 17:  3PO treatment causes a reduction in glutathione.  Glutathione 

was measured using a luminescence-based assay in HCT-116 cells treated with 

either vehicle or 10 M 3PO.   Glutathione was calculated as g GSH/ g protein 

relative to vehicle treated cells and is expressed as the mean + SD from three 

experiments. (p value < 0.05) 
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Figure 17. 
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Figure 18:  Reactive oxygen species are increased by treatment with 3PO.  

HCT-116 cells treated with either vehicle or 10 M 3PO were harvested at 

specified time points and loaded with 2’,7’-dichlorofluorescein diacetate (DCFDA) 

for determination of reactive oxygen species by flow cytometry.  Average 

geometric mean of fluorescence intensity calculated as the relative mean + SD 

from three experiments is presented. (p value < 0.05) 
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Figure 18. 
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Activation of autophagy due to PFKFB3 inhibition is rescued with NAC 

 The correlation between oxidative stress and autophagy was further 

examined using the anti-oxidant N-acetylcysteine, which can act as a precursor 

to the antioxidant glutathione.  The drop in glutathione after 10 M 3PO treatment 

was partially rescued by the addition of 1mM N-acetylcysteine (Figure 19).  N-

acetylcysteine also partially blocked the increase in reactive oxygen species 

induced by 3PO, as determined by flow cytometric measurement of DCFDA 

fluorescence (Figure 20).  This rescue of glutathione and reduction in ROS 

following 3PO treatment in combination with NAC also blocked the induction of 

autophagy as measured by loss of LC3-II (Figure 21) and a reduction in acridine 

orange immunofluorescence (Figure 22). 

 N-acetylcysteine also rescued HCT-116 cells from cell death due to 

treatment with 3PO.   Flow cytometric analysis of cell death using  Annexin V and 

Propidium Iodide staining revealed a marked reduction in both early and late 

apoptotic events when 1mM NAC was combined with 10 M 3PO (Figure 23). 
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Figure 19: N-acetylcysteine prevents 3PO induced reduction in glutathione 

levels. HCT-116 cells were treated with either vehicle or 10 M 3PO + 1mM 

NAC and harvested after eight hours of treatment for measurement of glutathione 

levels using a luminescence-based assay.  Glutathione values were calculated 

as g GSH/ g protein relative to control + NAC and are expressed as the mean 

+ SD from three experiments. 
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Figure 19. 
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Figure 20: Reactive oxygen species production by 3PO is rescued by N-

acetylcysteine.  2’,7’-dichlorofluorescein diacetate (DCFDA) fluorescence was 

measured using flow cytometry in HCT-116 cells treated for eight hours with 

either vehicle or 10M 3PO + 1mM NAC.  Average geometric mean was 

calculated relative to control and is expressed as the relative mean + SD from 

three experiments. (p value < 0.05) 
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Figure 20. 
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Figure 21: LC3-II induction by 3PO is blocked by N-acetylcysteine.  After 

eight hours of treatment with either vehicle or 10 M 3PO + 1mM NAC, cell 

lysates were prepared and LC3-II levels were determined using immunoblotting.  

Quantitative densitometry was performed and expressed as the fold change 

relative to β actin and to control + SD. (p value < 0.05)  
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Figure 21. 
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Figure 22: 3PO-induced acridine orange immunofluorescence is blocked by 

N-acetylcysteine.  After 24 hours of treatment with either vehicle or 10 M 3PO 

+ NAC, HCT-116 cells were stained with 1ug/ml acridine orange for 15 minutes.  

Fluorescence microscopy was used to capture representative images (Figure 

22B).  Cells were then harvested and acridine orange fluorescence was 

determined using flow cytometry.  Fluorescence intensity was calculated as 

average relative to control + SD (Figure 22A).   (p value < 0.05) 
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Figure 22. 
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Figure 23: N-acetylcysteine rescues cells from death after treatment with 

3PO.  Cell death was measured in HCT-116 cells treated with either vehicle or 10 

M 3PO + 1mM NAC.  Annexin-V and PI stained cells were collected using flow 

cytometry (Figure 23A).  The percentage of cells with either annexin-V only 

staining or annexin-V/PI staining were determined and expressed as a 

percentage relative to control + SD from three experiments (Figure 23B, C). (p 

value < 0.05) 
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Figure 23. 
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Discussion 
 
 

 
 

The observation that PFKFB3 is overexpressed in neoplastic relative to 

normal tissues prompted the concept that targeting PFKFB3 expression may be 

a useful anti-cancer approach.  Genetic manipulation is commonly used as a 

starting point to understand the importance of specific genes and proteins.  

Knockdown of PFKFB3 using gene silencing resulted in enzyme inhibition.  

However, as presented in Chapter II of this dissertation, knockdown of PFKFB3 

also led to increased autophagic flux, presumably as a resistance mechanism to 

the knockdown.  To expand these findings in a way that is more relevant and 

applicable to treating human disease, a drug-based approach was employed. 

A drug that had previously been shown to inhibit PFKFB3, 3PO, was used 

to treat HCT-116 cells.  Similar to PFKFB3 knockdown, PFKFB3 inhibition using 

3PO reduced glucose uptake as well as reduced the levels of F2,6BP in this 

model system.  Corresponding to the changes seen after PFKFB3 knockdown, 

inhibition with 3PO also resulted in increased autophagic flux, as measured using 

protein markers, acridine orange staining and electron microscopy.  

Knockdown of PFKFB3 resulted in decreased ATP levels and an increase 

in AMPK activation as measured by phosphorylation.  Since knockdown usually 
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results in a gradual change in protein expression and drug treatment has a more 

immediate effect it was not surprising that 3PO did not seem to activate AMPK as 

was seen with PFKFB3 knockdown.  In fact, ATP levels did not even begin to 

decrease after 3PO treatment until at least 24 hours.  Still, phosphorylated 

protein markers downstream of mTOR, phospho-p70S6K and phospho-

ribosomal protein S6 were found to be decreased even in the absence of AMPK 

activation.  This indicated that for the acute response, an alternative mechanism 

was involved in mTOR suppression and autophagy activation.  Autophagy 

induction, even that induced by metabolic stress, has been shown to occur 

independently of ATP and AMPK as the result of other stimuli such as 

endoplasmic reticulum (ER) stress or through SIRT1/FOX01/3 [126-128].  

Additionally, starvation can result in decreased glutathione and the accumulation 

of reactive oxygen species [125, 129], and this oxidative stress is another 

stimulus for autophagic induction which can serve as a survival mechanism, 

mitigating damage by degrading oxidized proteins and by degrading damaged 

mitochondria [36-38, 130-138]  There is abundant evidence that oxidative stress-

induced autophagy occurs through inhibition of the mTOR pathway [125, 131, 

139-142]. 

Oxidative stress is recognized as a potent activator of autophagy and can 

also be increased under stressful stimuli such as glucose starvation [125, 141, 

143].  Nutrient deprivation can lead to oxidative stress due to the accumulation of 

reactive oxygen species (ROS).  ROS, reactive molecules that contain oxygen, 

are produced as a byproduct of normal cellular metabolism, are present at low 
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levels in all cells, serving as signaling molecules [144] and playing a role in 

immune function [145, 146].  However, when improperly regulated, ROS can 

cause damage to intracellular macromolecules and organelles [147] .  The main 

defense against ROS is the action of anti-oxidants, including catalases, 

superoxide dismutases, and glutathione.  Glutathione (GSH), a tripeptide formed 

by glycine, cysteine and glutamate, is the most abundant intracellular non-protein 

thiol and plays a critical role in limiting oxidative damage by scavenging ROS.  

Glutamylcysteine synthetase initiates the formation of GSH by catalyzing an 

amide linkage between glutamate and cysteine.  Glycine is then added by GSH 

synthetase to complete the formation of GSH.  Donation of electrons to ROS 

leads to the formation of an oxidized thiol radical (GS) which can then form a 

disulfide bond with another thiol radical to form GSSG.  Accumulation of GSSG 

can be toxic and normally accounts for about 1% of the total cellular glutathione 

[148]  GSSG can be converted back to GSH by glutathione reductase, which 

requires reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an 

electron donor.  GSSG can also be transported across the plasma membrane as 

a way to prevent accumulation [149].  GSH may also have ROS-independent 

protective effects on cell function, some of which may be due to its function in 

glutathionylation [150-152].  Data presented here indicate that 3PO treatment 

results in a rapid decline in GSH as well as ROS accumulation. 

Autophagic induction by 3PO seems to depend on oxidative stress, as 

supported by rescue using N-acetylcysteine.  N-acetylcysteine, a compound with 

a reactive thiol group capable of reducing free radicals and a precursor to 
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glutathione, rescues not only the oxidative stress caused by 3PO, seen as a 

return in GSH and ROS levels towards that seen with vehicle treatment, but also 

prevents autophagic induction.  At this time, the mechanism by which 3PO leads 

to an increase in oxidative stress, whether by increasing ROS which results in 

depletion of GSH, or by first causing depletion in the GSH pool resulting in the 

accumulation in ROS, is unclear.  However, the induction of autophagy by the 

PFKFB3 inhibitor 3PO does appear to depend on oxidative stress and there is 

evidence that it may be through inhibition of mTOR, a pathway noted to be 

involved in autophagic induction by oxidative stress [153, 154].  While 3PO has 

mostly cytostatic effects at low doses, cytotoxicity is observed at high doses or 

after long periods of exposure.  This cytotoxicity is almost completely abrogated 

upon the addition of NAC suggesting that inducing oxidative stress is a 

mechanism by with 3PO can result in cell death.  However, the larger percentage 

of cells that survive treatment with 3PO suggests that these cells could be 

responding to the oxidative stress in order to prevent cell death.  Autophagy is a 

well-known defense against oxidative stress [138, 155].  Thus, inhibiting 

autophagy in the setting of 3PO treatment could shift this resistant population 

towards cell death.     

Although through two distinct biochemical mechanisms, autophagy was 

induced by both the knockdown of PFKFB3 using siRNA and by enzyme 

inhibition using 3PO.  The interest in PFKFB3 inhibitors as a new cancer 

treatment option means that recognition of potential drug resistance mechanisms 

may lead to more successful combinations when resistance in encountered.   
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Autophagy is now a widely recognized process induced by stimuli such as 

nutrient deprivation or chemotherapeutic drugs.  However, there is some 

disagreement as to the function of autophagy as a tumor suppressive versus as 

a tumor survival mechanism.  In support of a tumor suppressive mechanism, the 

mammalian orthologue of yeast Atg6, Beclin1, is deleted in large number of 

human cancers including breast, ovarian and prostate cancers [156].  In this 

regard, autophagy is theorized to reduce genomic instability.  Loss of this 

process, by deletion of Beclin1, results in tumorigenesis due to increased 

genomic instability.  Additionally, autophagy has been seen to prevent necrotic 

inflammation which prevents the release of tumor promoting cytokines [90] and 

the persistent activation of autophagy can eventually lead to death via a 

caspase-independent mechanism [157].  The oncogenic regulation of autophagy 

is also not entirely clear.  Some tumor suppressors (e.g. PTEN)  

activate autophagy, and some oncogenes can inhibit autophagy (Akt, Ras, ERK) 

while others, such as p53, have been shown to both activate and inhibit 

depending on the context [158-162].  Still, despite these indications that 

autophagy may suppress tumor initiation or growth, there is more evidence that 

autophagy is actually a tumor survival mechanism.  In order to metastasize, 

tumor cells must overcome matrix detachment-induced cell death, anoikis.  

Autophagy has been shown to be protective against cell death during this 

process which may function in facilitating metastatic spread [163].  Autophagy 

can also serve to promote survival of dormant tumor cells which could have 

major implications for adjuvant therapies aimed at preventing recurrence. [164, 
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165].  This role of autophagy in dormancy is the result of reduced proliferation, 

the same function that is also touted as a tumor suppressive function.  However, 

the function to reduce proliferation until adequate nutrients or a more conducive 

environment are encountered is surely one that can be viewed as tumorigenic 

rather than suppressive.  Additionally, there is now considerable evidence that 

the combination of inhibitors of autophagy with drugs that induce autophagy in 

cancer cells can increase tumor cell death [77, 158, 166-168] 

The most currently accepted model of autophagy is that of a process with 

a dual nature, depending on tumor type and stage.  Autophagy may suppress 

tumor initiation via reduced genomic instability and prevention of chronic 

inflammation and necrosis, while later serving as a cell survival mechanism by 

allowing stress tolerance through increased production of metabolic precursors, 

mitigating excessive damage that can be caused by damaged mitochondria, and 

facilitating metastasis by protecting from anoikis-induced cell death.  

To determine if the autophagy induced by knockdown or inhibition of 

PFKFB3 could be exploited to increase efficacy as an anti-tumor agent, the next 

step was to evaluate how tumor cells reacted to the combination of PFKFB3 

inhibition and autophagy inhibition both in vitro and in vivo. 
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CHAPTER IV 
 
 

INHIBITION OF PFKFB3 HAS ADDITIVE ANTI-TUMOR 
EFFECTS WITH PHARMACOLOGIC AUTOPHAGY 

INHIBITORS 
 
 

Introduction 

 
 

While there was an indication of cytotoxic activity of 3PO in transformed 

cells, this toxicity occurred at concentrations that also had toxic effects on 

untransformed cells.   At lower concentrations, when the drug was found to 

influence transformed cells more than normal cells, the effect was more 

cytostatic [53].  In vivo tumor experiments using 3PO resulted in a significant 

reduction in tumor growth relative to vehicle treated animals.  However, tumors in 

animals treated with 3PO, while smaller than the controls, continued to grow 

through drug treatment.  Like most drugs currently used to treat human cancers, 

3PO seemed to have restricted efficacy as a single drug option, making rational 

drug combination an important step to ensure maximal efficacy when used to 

treat human cancer patients.    

The majority of cancers not amenable to surgical removal are treated with 

combinations of chemotherapeutic drugs.  It is well known that neoplastic cells 

are capable of evading and resisting treatment making the recognition of 
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resistance mechanisms imperative to the identification of successful 

combinations of drugs to counter such defenses.  There are numerous 

mechanisms employed by tumor cells to avoid death caused by 

chemotherapeutic agents.  In some tumors, cells have membrane protein pumps 

that prevent drug from accumulating inside [149, 169].  Other mechanisms 

involve changes that reduce the sensitivity to drug-induced apoptosis, allowing 

for survival even in the presence of pro-apoptotic signals [170].  Another way that 

tumor cells resist destruction is through the activation of autophagy, a ubiquitous 

intracellular catabolic processing pathway [41-44].   An increase in autophagic 

processing results in the degradation of intracellular proteins and organelles for 

the production of biosynthetic precursors can be used to fuel the continued 

production of ATP and lead to cell survival under adverse conditions.  Autophagy 

is now recognized as a major resistance mechanism of tumors to a large number 

of drug therapies [50-52, 55, 57, 78].  The cause for increased autophagic flux is 

not always identified but, nonetheless, can be taken advantage of by the addition 

of autophagy inhibitors to therapy regimens.    

The increased detection of autophagy due to drug treatment in cancer has 

resulted in great interest in the use of autophagy inhibitors in cancer therapy.  

While there are now a number of drugs known to inhibit autophagy, the drug that 

is currently the most widely used for this purpose is chloroquine, a drug that was 

originally developed as an anti-malarial agent.   

Chloroquine is a 4-aminoquinoline drug that has been used to treat 

malaria for more than half a century.  The original observation that malaria could 
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be treated using the bark of cinchona trees led to the isolation of quinine.  The 

molecular structure of quinine was determined and later, a derivative with potent 

anti-malarial activity called Resochin, N’-(7-chloroquinolin-4-yl)-N,N-diethyl-

pentane-1,4-diamine, and later renamed chloroquine, was produced [171, 172].  

Chloroquine in an unprotonated form can diffuse across membrane bilayers.  

However, once protonated in the lysosome, chloroquine is no longer able to exit 

and accumulates resulting in the inhibition of lysosomal enzymes such as 

phospholipase A2, lysophospholipid acylhydrolase [173, 174].   This inhibition 

blocks the final step of autophagy, degradation on autophagosomal contents by 

lysosomal enzymes.   Chloroquine was later shown to be effective in treating 

other diseases such as rheumatoid arthritis and HIV [175-177].   The observation 

of a reduced incidence of Burkitt’s lymphoma in malaria patients treated with 

chloroquine was made in 1989 [178].  More recently, chloroquine has been 

shown to reduce autophagy in vivo and to potentiate the anti-cancer effects of 

some cancer therapies [55, 167, 179, 180].   The relatively mild safety profile and 

widely accepted use of chloroquine makes this compound attractive for use in a 

combination drug trial for cancer.  As such, chloroquine is currently being used in 

combination with a number of other agents as part of clinical trials, including 

carmustine, paclitacel, gefitinib, and temozolomide among others reviewed in 

[181]. 

To determine the effect of autophagy inhibition in combination with 

PFKFB3 inhibition in transformed cells, HCT-116 cells were treated with 

combinations of PFKFB3 inhibitors and autophagy inhibitors and cell death was 
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measured.  The addition of autophagy inhibitors to PFKFB3 inhibitors resulted in 

more cell death than either inhibitor alone.  While these results were 

encouraging, in vitro assays do not always accurately predict the effects of 

certain treatments when used in vivo.  This can be due to a number of factors 

including the tumor microenvironment, such as access to blood supply and 

nutrients, or to the heterogeneous nature of tumors.  Additionally, systemic 

effects such as drug metabolism or activation/inactivation and unexpected 

toxicities are impossible to predict using an in vitro modeling system.  As 

predicted, tumors from animals treated with the combination of 3PO and 

chloroquine grew significantly slower relative to animals treated with either drug 

alone.  While a significant amount of work needs to be done before these results 

can translate into an effective treatment option for human cancer patients, data 

here support the increased efficacy of PFKFB3 inhibitors when combined with 

inhibitors of autophagy. 
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Materials and Methods 
 
 

Cell Culture 

Human colorectal carcinoma cells (HCT116) were cultured as described in 

Chapter II.  Lewis lung carcinoma cells (LLC) obtained from American Type 

Culture Collection (Manassas, VA) were cultured in Dulbecco’s Modified Eagle 

Medium (Gibco, Grand Island, NY) supplemented with 10% calf serum and 

50ug/mL gentamicin.  Cells were incubated at 37 C with 5% CO2.   

 

Drug Treatment 

3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), PF15, PF158 

(Advanced Cancer Therapeutics, Louisville, KY). Chloroquine, 3-methyladenine, 

Spautin-1, Bafilomycin A1 from (Sigma, St. Louis, MO).  Samples in which 

bafilomycin A1 was used were treated with 1nM bafilomycin A1 24 hours prior to 

harvest. 

 

Protein Extraction and Immunoblotting 

Protein extraction and immunoblotting were performed as described in 

Chapter II. 
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Acridine Orange Immunofluorescence 

Acridine orange staining and immunofluorescence measurements were 

performed as described in Chapter II.  

 

Flow Cytometry for Cell Death 

Cell death was assessed using method described in Chapter II. 

 

 

Tumor model system 

12 week old female C57/BL6 mice were injected subcutaneously with 

1x106 Lewis lung carcinoma (LLC) cells and once tumors reached 150-200 mg, 

mice were randomized into four groups (N=6 per group): Group 1: Vehicle 

(DMSO+PBS), Group 2: Chloroquine (DMSO+50mg/kg CQ), Group 3: 3PO 

(0.07mg/g 3PO+PBS), Group 4: (0.07mg/g 3PO+50mg/kg CQ).  Drug treatments 

were based on published tumor models [53, 167, 182].  Mice were given two 

daily intraperitoneal injections with either vehicle or drug and tumors were 

measured using calipers for estimation of tumor volume.  At the conclusion of the 

study, mice were euthanized and tumors were removed.  Tumors tissues were 

fixed in paraformaldehyde and prepared for immunohistochemistry. 

    

 

 

 



 

93 

 

Immunohistochemistry 
 

Tumors excised after completion of all tumor measurements were fixed in 

paraformaldehyde for 24 hours and then embedded in paraffin, sections and 

stained with anti-cleaved caspase 3 antibody using standard 

immunohistochemical methods. 
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Results 
 

 

Pharmacologic inhibition of autophagy in combination with 3PO increases 

tumor cell death  

 To determine if autophagy following 3PO treatment serves as a survival 

mechanism, chloroquine, an agent that accumulates in lysosomes and interferes 

with autophagy was used in combination with 3PO.  Treatment of HCT-116 cells 

with 15 or 30 M chloroquine led to a dose-dependent increase in cell death 

when combined with 3PO treatment as measured by flow cytometric analysis of 

annexin V and propidium iodide staining (Figure 24).   

Two additional inhibitors of autophagy were also used in combination with 

3PO to look for increased cell death, 3-methyladenine and Spautin-1.  3-

methyladenine (3MA), an inhibitor of type III phosphatidylinositol 3-kinases, 

which blocks the formation of autophagosomes was used to treat HCT-116 cells 

(1mM) that were also treated with either vehicle, or 3PO.  Cell death was 

assessed using annexin V and PI staining and quantified by flow cytometry.  The 

number of cells staining positive for both annexin V and PI was increased in 

samples treated with the combination of 3MA and 3PO relative to either drug 

alone (Figure 25).  Spautin-1, which inhibits autophagy by promoting increased 

proteasomal degradation of class III PI3 kinase complexes through inhibition of 
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ubiquitin-specific peptidases USP10 and USP13 also resulted in greater numbers 

of annexin-V and PI double positive cells when used in combination with 3PO 

(Figure 26). 

To assess whether the combined effects of autophagy inhibitors and the 

PFKFB3 inhibitor was limited only to the specific inhibitor 3PO, two other 

derivatives of 3PO were used to treat cells in combination with the autophagy 

inhibitor chloroquine.  Cell death, assessed using flow cytometry measuring 

annexin V and PI staining, was increased when chloroquine was combined with 

3PO derivative PF-158 (Figure 27) or derivative PF-15 (Figure 28). 

This increase in cell death upon the addition of chloroquine was also 

noted in HCT-116 cells that had been transfected with a siRNA directed against 

PFKFB3 (Figure 29).   
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Figure 24: Synergistic increase in cell death when 3PO is combined with 

the autophagy inhibitor chloroquine.  Annexin-V/PI staining was performed in 

cells treated with vehicle, 3PO, chloroquine, or the combination of 3PO and 

chloroquine for 48 hours.  Quantitation of cell staining was performed using flow 

cytometry (Figure 24A) and the number of cells staining with both annexin-V and 

PI was quantitated and is expressed as the percentage relative to control + SD 

from three experiments (Figure 24 B). (p value < 0.05) 
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Figure 24. 

 

 

 

  



98 

 

 

 

 

 

Figure 25: The autophagy inhibitor, 3-methyladenine, increased cell death 

when combined with 3PO.  HCT-116 cells were treated with either vehicle or 

7.5 M or 10 M 3PO + 1mM 3-methyladenine (3MA).  24 and 48 hours after 

treatment cells were stained with annexin-V and PI and measured using flow 

cytometry (Figure 25A).  Cell death was quantitated as the percentage of cells 

staining positive for annexin-V and PI relative to control + SD from three 

experiments (Figure 25B).  (p value < 0.05) 
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Figure 25. 
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Figure 26.  The combination of Spautin-1 and 3PO increased cell death.  

HCT-116 cells were treated with either vehicle, 7.5 or 10 M 3PO + 15 M 

Spautin-1.  After 24 or 48 hours of treatment cells were stained with annexin-V 

and PI and collected by flow cytometry (Figure 26A).  The percentage of cells 

stained positive for both annexin-V and PI was quantitated and is expressed 

relative to control + SD from three experiments (Figure 26B). (p value < 0.05) 
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Figure 26.  
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Figure 27. The 3PO derivative PF158 causes increased cell death when 

combined with chloroquine.  HCT-116 cells treated with vehicle or 0.5 M 

PF158 + 30 M CQ were stained with annexin-V and PI and collected by flow 

cytometry (Figure 27A).  Annexin-V/PI positive cells were quantitated as 

percentage of total relative to control + SD from three experiments (Figure 27B). 

(p value < 0.05) 
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Figure 27. 
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Figure 28. Cell death by PF-15, a derivative of 3PO, is increased when 

combined with chloroquine.  After treatment with either vehicle or 1M PF-15 + 

30 M chloroquine, HCT-116 cells were stained with annexin-V and PI and 

collected by flow cytometry (Figure 28A) (Figure 28A).  Cells staining positive for 

annexin-V and PI were quantitated as percentage of total relative to control 

presented as mean + SD from three experiments (Figure 28B). (p value < 0.05) 
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Figure 28.  
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Figure 29: Cell death due to knockdown of PFKFB3 is increased when 

combined with the autophagy inhibitor chloroquine.  HCT-116 cells were 

transfected with either a negative control siRNA or with a PFKFB3-specific siRNA 

+ 30 M CQ.  After 48 hours of transfection, cells were stained with annexin-V 

and PI and measured using flow cytometry (Figure 29A).  Quantitation of cells 

staining positive for annexin-V and PI was performed relative to control and is 

expressed as the mean + SD from three experiments (Figure 29B). (p value < 

0.05) 
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Figure 29. 
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Validation of a mouse tumor cell line prior to in vivo experiment 

 Before moving to an in vivo model, a mouse tumor cell line, Lewis lung 

carcinoma (LLC) was evaluated for autophagy and increased sensitivity to 

chloroquine following treatment with 3PO.   Lewis lung carcinoma cells treated 

with 10 M 3PO had increased levels of LC3-II relative to control.  This increase 

was further enhanced upon the addition of bafilomycin A1 (Figure 30).  Acridine 

orange immunofluorescence was also increased by 10M 3PO in LLC cells as 

determined visually by fluorescence microscopy (Figure 31 A), and quantified by 

flow cytometry (Figure 31B).  Similar to the HCT-116 cells, Lewis lung carcinoma 

cell death was also increased when chloroquine treatment was used in 

combination to 3PO treatment relative to either drug alone (Figure 32). 
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Figure 30: Autophagic protein marker LC3-II is increased in Lewis lung 

carcinoma cells exposed to 3PO.  LLC cells were treated with 25 M 3PO for 

24 hours.  LC3-II levels were measured using immunoblotting and quantitative 

densitometry was performed.  Levels expressed as mean fold change LC3-II/β 

actin relative to control + SD (Figure 30B). (p value < 0.05) 
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Figure 30. 
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Figure 31: Lewis lung carcinoma cells treated with 3PO have increased 

acridine orange staining. LLC cells treated with 25 M 3PO for 24 hours were 

stained with acridine orange.  Cells were viewed by fluorescent microscopy and 

representative images were taken (Figure 31A).  Flow cytometry was performed 

and the relative number of cells with a high level of acridine orange staining was 

quantitated and is expressed as the mean + SD from three experiments (Figure 

31B). (p value < 0.05) 
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Figure 31. 
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Figure 32: The combination of 3PO and chloroquine has synergistic effects 

on cell death in Lewis lung carcinoma cells.  LLC cells were treated with 

either vehicle or 10 M 3PO + either 15 or 30 M CQ.  After 24 hours of 

treatment cells were stained with annexin-V and PI and measured using flow 

cytometry (Figure 32A).  Cells staining positive for both annexin-V and PI were 

quantitated as the percentage of the total relative to control and data is presented 

as the mean + SD from three experiments (Figure 32B). (p value < 0.05) 
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Figure 32. 
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Combination of autophagy inhibition and 3PO decreases tumor growth in 

vivo 

 12 week old female C57/BL6 mice were used to determine the in vivo 

effect of the combination of chloroquine and 3PO on tumor growth.  Animals 

were injected subcutaneously with 1x106 Lewis lung carcinoma cells.  When 

tumors reached 150-200 mm3, calculated based on volume, mice were 

randomized into four treatment groups (N=6 per group).  Group 1: Vehicle 

(DMSO+PBS), Group 2: Chloroquine (DMSO+50mg/kg CQ), Group 3: 3PO 

(0.07mg/g 3PO+PBS), Group 4: (0.07mg/g 3PO+50mg/kg CQ).   Daily tumor 

measurements were obtained using calipers for estimation of tumor mass.  The 

experiment was concluded two weeks from the start of drug treatment and 

tumors were collected for further examination.  The tumor mass was significantly 

reduced in animals treated with both 3PO and chloroquine relative to either drug 

treatment alone (Figure 33).  Excised tumors were fixed and prepared for 

immunohistochemistry.  The tumor sections were stained with an antibody 

recognizing cleaved caspase-3, a key protein in the execution phase of 

apoptosis.  Tumors from animals treated with the combination of 3PO and 

chloroquine were noted to have an increased number of cleaved caspase-3 

positive cells relative to tumors from animals treated with either drug alone 

(Figure 34). 
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Figure 33: Combination therapy using 3PO and chloroquine reduces tumor 

growth in a Lewis lung carcinoma tumor model in vivo.  C57/BL6 mice were 

inoculated with 1x106 Lewis lung carcinoma cells by subcutaneous flank 

injection.  Mice were randomized into 4 treatment groups when tumors reached 

150-200 mm3 and were treated by i.p. injections with either vehicle, 50mg/kg 

chloroquine, 0.07mg/g 3PO, or a combination of the two drugs.  Tumor 

measurements taken over the course of treatment were used to calculate tumor 

mass.  Data is presented as mean tumor mass + SD. (p value < 0.05) 
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Figure 33. 
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Figure 34: Immunohistochemistry of excised tumors from 3PO + 

chloroquine treated animals have increased cleaved-caspase 3 staining.  

Tumors were fixed, paraffin embedded and stained with an antibody directed 

against cleaved caspase-3 (CC3).  The number of cells staining positive for CC3 

was in a 200X field was counted and data is expressed as the mean + SD from 

three counts. (p value < 0.05) 
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Figure 34. 
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Discussion 

 

The increasing identification of autophagy as a resistance mechanism 

utilized by tumor cells to avoid destruction led to postulation of improved anti-

tumor effects by the combination of autophagy inhibitors with PFKFB3 inhibitors.  

We have shown that cell death following treatment with PFKFB3 inhibitor 3PO 

was increased when combined with autophagy inhibitors chloroquine, 3-

methyladeneine or Spautin-1.  Additionally, chloroquine increased cell death 

when combined with other derivatives of the PFKFB3 inhibitor 3PO, PF-158 and 

PF-15, showing that the combination of chloroquine is not limited to only one 

PFKFB3 inhibitor.  While these inhibitors, 3PO, PF-158 and PF-15, have been 

shown to inhibit PFKFB3 enzyme activity, these compounds most certainly have 

some off-target effects.  For this reason, chloroquine was also tested in 

combination with PFKFB3 siRNA and enhanced cell death was noted.  These 

observations support the role of autophagy as a resistance mechanism following 

the inhibition of PFKFB3 activity. 

While in vitro research is absolutely essential to the understanding of cell 

function, data collected is limited by unforeseen effects that occur only in vivo.  

Animal studies are laborious, costly, and, even more importantly, result in the 

expenditure of numerous animal lives.  Once sufficient data has been compiled 

from in vitro work, it is necessary and responsible to expand studies to an animal 
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model system in order to increase its relevance.  This is especially important 

when evaluating drugs or combinations of drugs due to unanticipated systemic 

effects that can occur.   

Chloroquine has been safely used as an anti-malarial agent since the 

1940’s and has more recently been used as an anti-tumor agent.  Based on 

previously reported animal tumor studies using chloroquine, a dose of 50mg/kg 

was selected [36, 54, 183, 184].  The dose of 3PO used for this study (0.07mg/g) 

was also selected based on a previously published animal tumor model [53].  

The combination of 3PO and chloroquine resulted in significantly smaller tumors 

relative to either drug treatment alone.  While there was a substantial difference 

in tumor size, it is important to note that 3PO treatment alone did not have the 

same anti-tumor effects that were seen in the previously published work [53], 

although the tumor model (Lewis lung carcinoma tumors in C57/BL6 mice) was 

the same.  Additionally, although the model system was different, tumors from 

animals treated with chloroquine alone failed to show any difference in tumor 

size, contrasting with other published tumor studies [183, 184].  While this may 

be due to the use of slower growing tumor models that are not as sensitive to 

chloroquine the LLC tumors grew very quickly, with the first tumors palpable 

merely three days after inoculation.  Drug treatment was started when tumors 

reached between 150-200 mm3, calculated based on caliper measurements, 

which was less than one week after inoculation for most animals, in contrast to 

two to four weeks between inoculation and drug treatment in other models [183, 

184].  In fact, in those studies it was not until more than three weeks after tumor 
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inoculation that the average tumor mass in chloroquine-treated animals was 

smaller than the vehicle treated, which is longer than the length of the entire 

study presented here [184].  In this setting it is reasonable to speculate that the 

drugs may have had a difficult time competing with the accelerated growth of 

tumors. Future studies may benefit from using a slower growing model system so 

that treatment time can be extended.  

Tumors that were removed from animals at the conclusion of the study 

were fixed and stained with a marker of cell death, cleaved-caspase 3.  This 

marker was increased in tumors excised from animals treated with the 

combination of chloroquine and 3PO relative to those from animals treated with 

either drug alone.  The smaller tumor size and increased CC3 staining supports 

the idea that autophagy is serving as a protective mechanism following PFKFB3 

inhibition and that the efficacy of PFKFB3 inhibitors as anti-cancer agents may 

be improved using autophagy inhibitors such as chloroquine. 
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Figure 35. Inhibition of glycolysis causes induction of autophagy for 

survival.  Metabolic stress due to PFKFB3 knockdown results in AMPK 

activation and subsequent mTOR inhibition which relieves autophagy 

suppression allowing for increased cell survival.  PFKFB3 inhibition using 3PO 

results in a much more rapid inhibition of glycolysis resulting in acute oxidative 

changes that lead to mTOR inhibition and autophagy induction.  Adding 

chloroquine, an autophagy inhibitor, to either knockdown or to 3PO increases cell 

death.  
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Figure 35. 
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CHAPTER V 
 

 

SUMMARY 

 

 

Harnessing our knowledge gained from studying cancer cells over the 

past century in order to determine the traits that distinguish them from normal 

cells is paramount to developing cancer-specific therapies.  Inhibition of 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) has proven to 

effectively and specifically target tumor cells in vitro and to decrease tumor 

burden in vivo [53].  Clinical trials using PFKFB3 inhibitors are forthcoming.  

However, like so many chemotherapeutics, it is not unexpected that resistance to 

these inhibitors could be encountered in the setting of human cancers.  

Resistance is often battled using combinations of drugs, which have now become 

standard, making single drug therapies quite rare.  Elucidating the specific 

resistance mechanisms triggered by chemotherapeutic drugs allows for the 

selection of combinations that might work to combat such resistance with the 

hope of increasing efficacy.  In this work we show that autophagy is induced by 

PFKFB3 inhibition and that this induction is likely serving as a resistance 

mechanism as supported by the observations of increased cell death in vitro and
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slowed tumor growth in vivo when combined with pharmacologic inhibitors of 

autophagy.  It is likely that the use of drugs targeting PFKFB3 in human cancers 

will benefit from combinatorial therapies, such as that supported here with the 

autophagy inhibitor chloroquine. 
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FUTURE DIRECTIONS 
 
 
 

EXPANSION OF MODELING SYSTEMS 

Like Galileo’s heliocentric model of the universe, Warburg’s theory 

regarding tumor cell metabolism, while still a major contribution to our 

understanding of tumor cell metabolism, may be flawed.  He originally proposed 

that cancer cells utilized glycolysis due to damaged mitochondria preventing 

efficient oxidative respiration [2].  It is now thought that mitochondrial defects are 

somewhat rare and that most tumor cells not only have the capacity for but also 

utilize oxidative metabolism, albeit at reduced rates [185].  Still, it is clear that the 

increased uptake and utilization of glucose is a distinguishing attribute of tumor 

cells relative to normal cells, a feature that is taken advantage of for visualizing 

tumors by PET scanning using 2-deoxy-2-(18F)fluoro-D-glucose positron 

emission tomography (FDG-PET) imaging.   

To account for the increased uptake in glucose of tumors despite 

functional mitochondrial an alternative hypothesis, termed the “Reverse Warburg 

Effect” was proposed [186].  It postulates that the increased glycolytic flux in 

tumors is not due to the cancer cells themselves, but to stromal cells in the tumor 

microenvironment.  In this model, oxidative stress resulting from cancer cell 

release of H2O2 stimulates stromal cells to undergo autophagy, and, in particular, 
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selective mitochondrial autophagy, leaving them dependent on glycolysis for 

energy production [187, 188].  Thus, it is the stromal cancer-associated 

fibroblasts that are responsible for increased glucose uptake and utilization.  

These fibroblasts are then observed to release lactate and pyruvate as a result of 

increased glycolytic flux, which is taken up as a fuel for mitochondrial respiration 

in the cancer cells.   In support of this theory, cancer cells co-cultured with 

fibroblasts were observed to have increased mitochondrial mass and decreased 

glycolytic flux relative to cancer cells cultured alone.   Additionally, fibroblasts co-

cultured with cancer cells had decreased mitochondrial activity [189].   Whether it 

is due to stromal cells or to cancer cells or both, it is clear that tumors take up 

more glucose than normal tissues.  It is reasonable to speculate that anti-

glycolytic drugs, such as PFKFB3 inhibitors, will be more effective as cytostatic 

or cytotoxic agents in cells with increased glycolytic potential.  For this reason it 

would be important to return to the in vitro system and look at PFKFB3 inhibition 

in the setting of co-cultures of tumor cells and fibroblasts to determine if one cell 

type seems to be affected more than the other.  In this same model system, other 

consequences of PFKFB3 inhibition, such as the induction of autophagy, could 

be measured to understand how cells within the tumor environment behave in.   

Additionally, the work presented in this dissertation is limited by the model 

system used to evaluate PFKFB3 knockdown or inhibition.  Future studies will 

also be conducted in multiple cell lines including a variety of tumor cells 

originating from different organs as well as in normal cells derived from primary 

cultures.  It will also be important to study the combination of PFKFB3 inhibitors 
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with more specific autophagy inhibitors.  The use of chloroquine in this work was 

based on its action to inhibit autophagy and its long-standing safety profile in 

humans.  As the autophagy field expands, it is likely that more inhibitors will be 

developed that have greater specificity for the autophagic process.  This could 

mean that these agents are more tumor-specific and will have greater anti-tumor 

effects than chloroquine. As well as expanding the variety of drugs used to inhibit 

autophagy, it will be important to test newer derivatives of PFKFB3 inhibitors with 

fewer off-target effects and with lower toxicity ranges. 

Another limitation of the work presented here is the singular in vivo model 

system.  The animal study was performed using a mouse tumor cell line.  More 

sophisticated, and also more expensive, xenograft modeling systems that utilize 

human cancer cells in an immunodeficient athymic mouse may more 

appropriately simulate the effect that PFKFB3 inhibitors will have on human 

cancers. 

 

UNDERSTANDING THE ROLE FOR GLUTAMINOLYSIS  

Other studies that could further our understanding of the role of PFKFB3 

in cancer and the consequences of inhibition as a means to treat cancer should 

be focused on glutamine metabolism.  Glutamine is another substrate, in addition 

to glucose, that is utilized to a greater extent in cancer cells relative to normal 

cells [190, 191].  Glucose deprivation is known to induce glutaminolysis which 

increases the synthesis of TCA intermediates, reduces oxidative stress by 

production of NADPH, and also causes increased ammonia, a known inducer of 
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autophagy [192-194].  Glutamine can also be used to make GSH.  Glutaminase 

converts glutamine to glutamate which can be acted upon by glutathione cysteine 

ligase to be converted directly to GSH [195]. A gradual reduction in PFKFB3 

using siRNA may result in the transition to utilization of glutamine as an 

alternative energy source.  The subsequent metabolism of glutamine could be 

used to increase GSH, thus limiting reactive oxygen species.  In fact, in data not 

shown, PFKFB3 knockdown was observed to result in less reactive oxygen 

species and in stabilization of the intracellular GSH pool.  Conversely, the rapid 

decline in glucose uptake resulting from PFKFB3 inhibition using 3PO may lead 

to excessive reactive oxygen species that causes utilization and a decrease in 

the GSH pool, occurring before the cell has the time to utilize glutamine and 

counteract oxidative stress with increased GSH synthesis.   Clearly it would be of 

great interest to study glutaminolysis in the setting of both PFKFB3 knockdown 

and PFKFB3 inhibition.  As part of this endeavor, 14C-labeled glutamine might be 

used to measure glutamine uptake via scintillation counts in cells that treated 

with either PFKFB3 siRNA or with pharmacologic PFKFB3 inhibitors.  

Additionally, 13C-labeled glutamine could be used by nuclear magnetic resonance 

studies to understand how glutamine metabolism is altered in cells in which 

PFKFB3 is manipulated.  Depending on the results of these studies, 

glutaminolytic modulators may be combined with PFKFB3 inhibitors to look for 

synergistic effects on tumor cell proliferation and viability. 
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EXPLOITING OXIDATIVE STRESS 

Another combination approach that may result in more effective cancer 

therapies is that of PFKFB3 inhibitors and drugs known to cause oxidative stress.  

The induction of ROS by PFKFB3 inhibition, and the additive effects on tumor 

cell death upon combination with chloroquine, a compound that, itself, has been 

shown to increase ROS, may mean that the combinatorial effects on cell death 

are due to a massive increase in ROS that tumor cells cannot battle [196].  There 

are a number of examples where utilization of drugs known to increase reactive 

oxygen species and oxidative stress have been successfully combined with 

chemotherapeutic drugs, a topic that has previously been reviewed [197].  Thus, 

it is possible that the combination of PFKFB3 inhibitors with these pro-oxidative 

agents will have even greater success than the combination with chloroquine.  In 

fact, glucose-withdrawal induced oxidative stress has been observed to be 

greater in some tumor cells relative to normal cells which could indicate 

increased tumor specificity of this type of combination with PFKFB3 inhibitors 

[198] 

In order to gain a greater understanding of how PFKFB3 manipulation 

affects oxidative stress, the source of stress must be elucidated.  As previously 

stated, changes in glutamine metabolism may have a role in the production of 

GSH and, thus, the mitigation of damage that could be caused by ROS.  

Additionally, it will be important to measure the changes in mitochondrial mass, 

and function, by measuring membrane potential, oxygen consumption, and the 
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production of mitochondrial-specific reactive oxygen species, after PFKFB3 

manipulation. 

 

THE HUMAN PERSPECTIVE 

In vitro culture systems and in vivo animal modeling can only take us so 

far in the search for a cure to cancer.  To treat human cancers we need to better 

understand their characteristics and functional requirements in their natural 

environment.  Observing that some measure of metabolism or that expression of 

an activated protein in a pathway presumed to be important in cancer cells is 

changed after 6, 12, or 24 hours of treatment is not as meaningful as looking at 

what is happening in the majority of tumor cells at any point in time within the 

human body.  Perhaps even more importantly, determining how tumors, as a 

whole, react to treatment with chemotherapeutics is critical to how we will move 

forward to treat tumors and to modify treatments based on a tumor’s response to 

treatment.  As part of this mission, it would be of great interest to examine 

samples taken from a variety of human tumors and measure PFKFB3 expression 

and markers of autophagy to look for correlations between glycolytic and 

autophagic activity.  Additionally, once PFKFB3 inhibitors enter human cancer 

trials, tumor samples could be examined after treatment for assessment of 

autophagy markers.  Correlations between the response of particular tumors, 

growth, shrinkage, or stabilization of tumor size with these autophagic markers 

could be used to make therapeutic modifications, for example, the addition of 

chloroquine or another inhibitor of autophagy. 
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 Work presented herein supports the protective role of autophagy in cancer 

cells following inhibition of PFKFB3, a key enzyme involved in the regulation of 

glycolysis.  Treatment using PFKFB3 inhibitors and autophagy inhibitors, such as 

chloroquine, have shown promise as a combinatorial approach to tumor therapy.  

Still, as detailed above, a considerable amount of work needs to be 

accomplished to gain a better grasp on how to effectively target tumors by 

inhibiting PFKFB3.  Hopefully the studies presented in this dissertation will serve 

as the groundwork for the development of novel and successful cancer anti-

cancer strategies. 
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