
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2010

Implementation of a Microsoft Windows embedded standard Implementation of a Microsoft Windows embedded standard

system. system.

Kristopher L. Kumler
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Kumler, Kristopher L., "Implementation of a Microsoft Windows embedded standard system." (2010).
Electronic Theses and Dissertations. Paper 783.
https://doi.org/10.18297/etd/783

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/783
mailto:thinkir@louisville.edu

IMPLEMENTATION OF A MICROSOFT
WINDOWS EMBEDDED STANDARD SYSTEM

By

Kristopher L. Kumler
B.S., University of Louisville, 2002

A Thesis
Submitted to the Faculty of the

University of Louisville
J.B. Speed School of Engineering

in Partial Fulfillment of the Requirements
for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science

December 2010

 ii

IMPLEMENTATION OF A MICROSOFT
WINDOWS EMBEDDED STANDARD SYSTEM

Submitted by: _______________________________
Kristopher L. Kumler

A Thesis Approved On

_______________December 8, 2010_______________
(Date)

by the Following Reading and Examination Committee:

Ahmed H. Desoky, Thesis Director

Adel S. Elmaghraby

John F. Naber

 iii

ACKNOWLEDGMENTS

I would like to express my appreciation to my advisor, Dr. Ahmed Desoky,

for his guidance and patience. I also thank my committee, Dr. Adel Elmaghraby

and Dr. John Naber.

Special thanks to Mr. David Goffinet and Image Vault, LLC. for the use of

equipment and the use of Image Vault’s software product as an example host

application. Thanks to Eric Kramer, for his help with advice, proofreading, and

editing.

I want to express my appreciation to my wife, Mandy Kumler, for pushing

me to finish. Her tremendous love and dedication throughout the past twelve

years is ineffable.

 iv

ABSTRACT

Many dedicated-use computer systems sold as complete products require a

turn-key design delivered to the customer. This requires a system which is stable,

secure, and serviceable. Adaptability of the system to existing software

applications is a key consideration for many vendors.

This thesis attempts to establish and gather best practices for designing,

configuring, and building a Microsoft Windows Embedded Standard 2009

system. An existing real-world system will be used as a case study and example

implementation. The end result will be a relatively compact, secure, and efficient

Microsoft Windows Operating System image to support the target software

application.

 v

TABLE OF CONTENTS

APPROVAL PAGE.. ii
ACKNOWLEDGMENTS ...iii
ABSTRACT .. iv
TABLE OF CONTENTS.. v
LIST OF TABLES .. vi
LIST OF FIGURES ... vii
LIST OF FIGURES ... vii
I. INTRODUCTION.. 1
II. LITERATURE REVIEW..4
A. System Reliability...4
B. System Security .. 7
C. Microsoft Windows Embedded Products ..8
D. Windows Embedded Standard.. 10

III. INSTRUMENTATION AND EQUIPMENT..15
A. Hardware Platform ...15
B. Hosted Application..17
C. Windows Embedded Tools ...17

IV. DEVELOPMENT OF AN EMBEDDED OPERATING SYSTEM PLATFORM 20
A. Motherboard ...20
B. Device Drivers ...23
C. Host Application ...26
D. AutoUpdate Application..29
E. Image Configuration ...30
F. Target Image Preparation ...36

V. DISCUSSION OF RESULTS..39
VI. CONCLUSIONS.. 41
VII. RECOMMENDATIONS..42
APPENDIX I. TARGET ANALYSIS RESULTS..44
APPENDIX II. RECORDER APPLICATION DEPENDENCY SPECIFICATION .46
APPENDIX III. RECORDER APPLICATION ANALYZED DEPENDENCIES48
APPENDIX IV. IVRECORD COMPONENT CREATION...................................... 54
APPENDIX V. AUTOUPDATE COMPONENT CREATION58
APPENDIX VI. WINDOWS SECURITY DIALOG PREFERENCES60
APPENDIX VII. IMAGE CONFIGURATION CREATION....................................64
LIST OF REFERENCES...69
VITA ..71

 vi

LIST OF TABLES

TABLE I. WINDOWS EMBEDDED FAMILY COMPARISON................................9
TABLE II. BOOT AND STORAGE OPTIONS ...11
TABLE III. HARDWARE DEVICES ...15
TABLE IV. REQUIREMENT RESOLUTIONS ..39

 vii

LIST OF FIGURES

FIGURE 1. SYSTEM RELIABILITY FAILURE FAULT TREE...6
FIGURE 2. TARGET ANALYZER PROBE EXECUTION ... 21
FIGURE 3. SELECTOR PROTOTYPE USED FOR MACRO COMPONENT22
FIGURE 4. COMPONENT DATABASE MANAGER IMPORT ..23
FIGURE 5. VIDEO CAPTURE DEVICE RESOURCES ..24
FIGURE 6. COMPONENT REPOSITORY SELECTION... 25
FIGURE 7. DEPENDENCY WALKER ANALYSIS.. 27
FIGURE 8. RECORDER SOFTWARE COMPONENT DEPENDENCIES28
FIGURE 9. CONFIGURATION SETTINGS – RUN-TIME IMAGE LICENSING..................... 31
FIGURE 10. ACPI MULTIPROCESSOR PC CONFIGURATION32
FIGURE 11. WINDOWS FIREWALL CONFIGURATION ..33
FIGURE 12. SYSTEM CLONING TOOL CONFIGURATION ..34
FIGURE 13. CONFIGURATION DEPENDENCY CHECK.. 35
FIGURE 14. FIRST BOOT AGENT EXECUTING ..36
FIGURE 15. FIRST BOOT AGENT COMPLETE ... 37
FIGURE 16. FINAL SYSTEM RUNNING IMAGE VAULT’S RECORDER APPLICATION........38
FIGURE 17. DEPENDENCY WALKER PROFILING CONFIGURATION48
FIGURE 18. IVRECORD COMPONENT PROPERTIES ... 57
FIGURE 19. AUTOUPDATE COMPONENT PROPERTIES ... 59
FIGURE 20. COMPONENT DESIGNER REGISTRY DATA ..60
FIGURE 21. IMAGE CONFIGURATION EXTRA REGISTRY DATA....................................68

 1

I. INTRODUCTION

Modern dedicated computer systems are in use throughout the consumer

marketplace. Devices such as ATMs, retail kiosks, gaming or security systems,

medical devices, or other application-dedicated systems require a stable and

secure platform for their Operating System. The repercussions of failures in

either system stability, with crashes or denial of service, or security, with user or

external breaches, can result in the loss of life, money, or business-related

licenses.

The popularity of the Microsoft Windows XP Operating System (OS) as a

target for applications has led to numerous software solutions in the marketplace.

Image Vault has publicly marketed Digital Video Recorders (DVRs) for security

surveillance since 1998. The flagship Image Vault DVR solution is the PRO-

Command product, targeted toward numerous operations: convenience stores,

groceries, banks, restaurants, retail stores, and several other markets. The PRO-

Command product interfaces with analog cameras, network-based cameras,

Point-of-Sale (POS) devices, safes, and alarm systems. It is desirable to utilize

existing software applications with minimal changes in a more secure and stable

operating system. In 2004, the PRO-Command codebase was ported to operate

on a Windows XP-based platform.

The Windows XP OS, while being extremely popular, can still suffer from

many security vulnerabilities and stability issues. For Windows XP, device

 2

drivers total 85% of failure reports [1]. By strictly controlling hardware devices,

device drivers, and software applications, a higher degree of system stability can

be obtained. In addition, this stability can be improved by carefully testing all of

these components.

The primary goals in most companies are to generate a profit and deliver a

quality product. In the case of an existing software application, porting it to

another more economical or secure OS may be commonly suggested. Porting an

existing application, or developing a new application while an existing solution

exists, for an alternative OS can be prohibitively expensive for many

organizations. Additionally, not all desired implementation or programming

options may be present on alternative OS options. For these reasons, the cost of

porting a software application seldom outweighs the benefits.

Microsoft markets several products for embedded systems, with a wide

range of applicable target devices. The Windows Embedded family includes:

Windows Embedded CE, for small footprint (300KB at minimum), typically

portable devices; Windows Embedded Standard, for reduced footprint systems

(40 MB OS at minimum) with full 32-bit Windows functionality, compatible with

Windows XP Professional; Windows Embedded for Point of Service, an OS

optimized for Point of Service Devices (cash registers, etc.); Windows Embedded

Enterprise, which is Windows XP Professional or Windows Vista with a

restrictive license; and Windows Embedded NavReady, for portable navigation

devices. Windows Embedded for Point of Service and Windows Embedded

 3

NavReady are specializations of Windows Embedded Standard and Windows

Embedded CE, respectively. [2] Microsoft Windows Embedded Standard 7, based

on the Windows 7 product, is targeted toward similar applications as Windows

Embedded Standard 2009. However, Windows Embedded Standard 7 does not

scale to the smaller PC devices that WES 2009 supports. [19]

The solution presented in this thesis is to demonstrate a reliable and

secure Windows Embedded Standard (e.g. Windows XP-compatible) Operating

System configuration and implemented for the Image Vault PRO-Command

DVR. The configuration will be designed with Windows Embedded Standard

2009, released November 2008, and incorporates Windows XP Professional

Service Pack 3 (SP3) files and features. This solution includes the initial

hardware configuration and analysis; requirements for the hosted software

application, which will be observed as a black-box system for this project; and

best practices for configuration and future maintenance.

Chapter two will include an overview of relevant literature concerning this

project. The third chapter will describe the system and discuss the overall

requirements along with all equipment. The fourth chapter will cover the project

implementation details. The implementation details will serve as a tutorial and

guide for implementations by others with a systems engineering background.

The fifth chapter will show the final implementation results, and discuss and

expand on the best practices utilized in the implementation. The final chapter

will show possible paths for future work.

 4

II. LITERATURE REVIEW

A. System Reliability

For a security system of any type, let alone video surveillance, system

reliability is a topmost concern. With software systems, reliability is defined as

“the probability of failure-free software operation for a specified period of time in

a specified environment.” [3] A complete system consists of both software and

hardware, and each much be addressed independently, as well as in conjunction

with each other. As well, the aspect of cost must be addressed, as with all

engineering endeavors.

As previously discussed, for the Windows XP Operating System, hardware

device drivers total 85% of OS failure reports and as such must be a large

consideration in overall system reliability. [1] The first priority in limiting

exposure to unstable device drivers is to only make required device drivers

available to the Operating System. This limits the number of devices that may be

connected, but in the case of this closed security system, that will also be a design

goal. With a limited set of hardware devices and associated drivers, it may be

possible to have a close relationship with the driver vendor, allowing for more in-

depth research and feedback with issues. A final and more hands-on approach to

ensuring reliability of device drivers is to perform independent testing of the

driver. Microsoft provides the Driver Verifier tool to detect illegal function calls

or actions that may corrupt or de-stabilize the system. Use of the Driver Verifier

 5

is highly involved, but can reveal many potential issues before they are realized in

the final product. [4]

The hardware platform used for the system is also highly important.

Hardware designed for high-availability systems also tends to have with it a very

high cost. However, the use of individual parts intended for industrial

applications, that carry a longer mean-time-to-failure (MTTF), can be quite

advantageous in increasing hardware reliability and balancing the cost of the

system. [5] The inclusion of an Uninterruptible Power Supply device can extend

the operational life of the system and maintain uptime. [6] Prudent

requirements include adequate testing of the hardware components before

integration into a shipping product. Testing of individual components within an

integrated system can be made easier by simplifying the software used in the

scenario.

 6

System Failure

Hardware

Motherboard

Custom I/O

Hard Disk Drive(s)

Video Capture

Application Software

Internal User

Network Playback

Network POS

IP Camera

Platform Software

(Operating System)

System Services

Device Drivers

Supporting Services

Temperature

FIGURE 1. System Reliability Failure Fault Tree

A simplistic fault tree for system reliability failure is represented in

FIGURE 1. The root causes of failure for many commodity computer systems will

be quite similar. For this design application, the additional portions are related

to video capture, supporting services, and the application software itself. The

aforementioned figure includes all of the items discussed concerning system

reliability.

 7

B. System Security

Closely related to, and a component of, the topic of system reliability, is

that of security vulnerabilities. External threats to the security and stability of

the system come primarily from physical access, internal or “trusted” users of the

system, and network exposure. Limiting physical access in the DVR scenario is

primarily the responsibility of the end-user during installation. Utilizing the

front access panel lock or placing the entire system within a locking container box

is one step that may be taken. Also, the DVR units in a retail scenario are usually

in a security room or the business manager’s office. Reducing problems

introduced by malicious internal users is a pervasive problem, but this will rely

primarily in the hosted software application, and as such will not be introduced

here.

The vulnerabilities possible by the system network exposure may be

addressed via several standard methods. The first method is to not run or

execute system services or applications that operate or listen on the network in

the first place. Good network firewall practices can block access to open ports for

services that cannot be disabled due to various circumstances or requirements.

[7] The Microsoft Windows XP Service Pack 2 Firewall primarily controls ingress

network traffic, and also has several pertinent features: excepted traffic by

program or destination port, excepted traffic by source scope, startup (boot)

security, and programmatic control. [8]

 8

C. Microsoft Windows Embedded Products

The Image Vault PRO-Command system was designed for a Microsoft

Windows-based system. The current target platform is Windows XP

Professional-compatible. The implementation is ordinarily restricted to pure

language standards-compliant functions, except where necessity or performance

requires specialization. Because of the high cost of porting the application to any

other Operating System, such as Linux, this product must be deployed on a

Microsoft Windows XP-based system. In the future the application may be

adapted for later Windows releases.

Microsoft’s Windows Embedded family of products is targeted toward

several different markets and architectures. Determination of the correct

Operating System product for a project is of critical importance. The Microsoft

product family contains several “core” Windows Embedded products. Windows

Embedded for Point of Service and Windows Embedded NavReady, while distinct

products are essentially specialized versions of other family products (Windows

Embedded Standard and Windows Embedded CE, respectively). The core

Windows Embedded products are listed in TABLE I, and are Windows

Embedded CE, Windows Embedded Standard, and Windows Embedded

Enterprise. Windows Embedded Enterprise is itself a family of three different

product offerings: Windows XP Professional for Embedded Systems, Windows

Vista Business for Embedded Systems, and Windows Vista Ultimate for

Embedded Systems. The Windows Embedded Enterprise family products consist

 9

of the full version of the Operating Systems, with restricted licensing for

embedded situations. [2]

TABLE I.
WINDOWS EMBEDDED FAMILY COMPARISON

Product
Smallest
Footprint

Component
Granularity

Processor
Architectures

Example
Applications

Windows
Embedded

CE

300 KB 700
Components

ARM, MIPS,
SHx, x86

Digital Picture
Frames,
Portable

Media Players,
Portable

Navigation
Devices, Voice
Over Internet

Protocol
(VoIP)
Phones,
Handheld
Terminals

Windows
Embedded
Standard

40 MB 12,000
Components

x86 Media
Servers,

Digital Video
Recorders,
Automatic
Teller

Machines,
Point of

Service Kiosks
Windows
Embedded
Enterprise

XP
Professional:
128 MB RAM, 1.5
GB Hard Drive

Vista: 1 GB
RAM, 40 GB
Hard Drive

N/A XP: x86

Vista: x86, x64

Existing
applications
with no

customization
possibilities.

Windows
Embedded
Standard

7

~500 MB ~150 OS
feature sets

x86, x64 Feature-rich
kiosks, video
applications

 10

D. Windows Embedded Standard

Windows Embedded Standard (WES) is the current product, in November

2008 replacing Windows XP Embedded (XPe), which is a more well-known

trademark. Most existing documentation references the trademark Windows XP

Embedded. Additionally, all documentation and knowledge concerning XPe will

apply to WES. The release of WES contains several API features and updated

components that XPe did not include, such as Microsoft Silverlight, .NET

Framework 3.5, Windows Server 2008 features, Windows Media Player 11,

Internet Explorer 7, Internet Explorer 8, and Microsoft Baseline Security

Analyzer. [9]

2.4.1 Boot and Storage Options

Microsoft identifies several features in the Windows Embedded Family as

Embedded Enabling Features (EEF’s). These are features which are unique to

the embedded products and design scenarios. The EEF’s related to system boot

and storage are listed in TABLE II, although not all options may be able to be

used at the same time, while others may need to be used in combination. [10]

For flexibility of boot options throughout a product lifetime, the OS image

 11

footprint should be minimized if at all possible, to enable changes to the boot

operation.

TABLE II.
BOOT AND STORAGE OPTIONS

Feature Name Feature Example
Remote Boot Boot image from network

server
Boot device from PXE

server
Enhanced Write Filter Prevent write access at

volume-level
Enables boot from read-

only media
File Based Write

Filter
Prevent write access to
files or directories

Protection of critical
system files

Flash Technology
Support

Support for booting from
flash technology

Flash devices such as
PCMCIA-ATA, Compact
Flash, MultiMediaCard, or

Memory Stick
El Torito Support Bootable CD-ROM format

specification
Boot from CD-ROM

USB Boot Booting from USB flash
device

Boot from USB flash
device. e.g. “thumb drive”

2.4.2 Deployment and Management Technologies

It is necessary, when building the system, to be able to deploy the

Operating System image to the target software. Additionally, servicing and

management tools are required to maintain the system. Microsoft has provided

several tools and technologies with the WES product to assist in the serviceability

aspect.

The deployment features include the First Boot Agent (FBA), System

Deployment Image (SDI) Manager, and the Windows Pre-Installation

Environment (WinPE). The FBA allows the designer to perform tasks that must

be executed on the run-time image and cannot be authored offline using

 12

development tools. [10] The SDI Manager allows for the deployment of WES

images to virtual disks and later delivery to target Hard Disk Drives in the field.

The WinPE feature is a hardware independent Windows environment that gives a

bootable platform to access the target hardware, allowing tools such as the SDI

Manager to operate.

Service and management features include the Device Update Agent

(DUA), and the Active Directory Client. Additionally, a highly useful Windows

XP Embedded utility is the Image Difference Engine. The DUA tool allows for

running local or remote scripts to modify device settings or update system

binaries and applications. The Active Directory Client allows for the deployed

device to participate in a Microsoft Active Directory domain and be maintained

by domain administrators. [10] The Image Difference Engine is an advanced tool

to compare two deployed images in order to identify specific changes to facilitate

binary updates.

2.4.3 Platform Development Tools

The Windows Embedded Standard product includes several development

tools required to facilitate the design process. The Target Analyzer tool operates

on the target hardware, under a Windows XP Professional or Windows Pre-

Installation Environment, to catalog the hardware devices in the system. The

Target Designer is the primary development tool, used to select all components of

 13

the configuration along with their dependencies, estimate the storage footprint,

and assemble the binary files to be deployed for the image. The command-line

application, XPECMD, is analogous to Target Designer and allows for scripting

configurations. The Component Designer allows for the creation of components

to be used in the system configuration and can be leveraged to build a library of

specialized components to allow for speedy delivery of unique configurations.

The Component Database Manager runs primarily in the background of the

development system, tracking all components and relationships, along with their

physical location in the repository of files. The Command Line Tool can be used

to automate the entire process and investigation of component relationships.

2.4.4 Windows Embedded Component System

Windows Embedded Standard 2009 enables the creation of customized

Operating System run-time images by the breakdown of Windows XP

Professional (WES 2009) into a set of discrete components. A set of components

in an image configuration with specific additional settings, fully describe the

features of the Operating System image. An individual component may contain

information on files, registry data, and particular resources, such as commands to

be executed during the build process, actions, Device IDs, help documents, or a

dependency on another component. The component may describe one small

portion of a larger application, or the entire application. A component may

 14

inherit all properties from another component, utilizing it as a prototype.

Additionally, a macro component is one that groups other components together

and has no files or other data included.

Windows Embedded Standard controls the order in which components are

built during the run-time image build process by utilizing a dependency on a

build order. The build order dependency allows a component to modify data

placed by a previously built component. The build proceeds with the build order,

determined by dependencies, and then by an ordinal phase number, from 0 to

65,535, going from initial build through the device boot process. The phase

number is optional for most components, but required for advanced components

where exact control is needed on its execution in system startup.

 15

III. INSTRUMENTATION AND EQUIPMENT

A. Hardware Platform

The target hardware consists of the base devices that usually compromise

a modern x86 computer system along with some specialized devices. Of the base

devices, the motherboard and processor are the core defining components, and

the rest, ordinarily, may safely be considered generic and are supported by

Microsoft-provided function drivers. [12] The specialized devices are few: one or

more video capture cards, and custom Image Vault I/O board (FK-145). The list

of major hardware devices is presented in TABLE III.

TABLE III.
HARDWARE DEVICES

Device Type Instance

Motherboard Advantech AIMB-763
Processor Intel Pentium 4 651, 3.4 GHz
I/O Board Image Vault FK-145

Video Capture Card UDP Technology NCP3000V2: 16 Channel, 120 FPS
Hard Disk Drive Seagate, SATA, 250 GB

Memory 512 MB DDR2
Optical Optiarc DVD+RW AD-7200A

The specific processor is of particular importance at the time of image

configuration. Since WES runtime executed on target hardware does not provide

for dynamically selecting the Hardware Abstraction Layer (HAL) automatically

by any setup program, the correct architecture must be selected at configuration.

The HAL choices include: Advanced Configuration and Power Interface (ACPI)

PC, MPS Uniprocessor PC, ACPI Uniprocessor PC, Standard PC (non-ACPI),

 16

ACPI Multiprocessor PC, and MPS Multiprocessor PC. [14] For a system with a

single processor, the Uniprocessor components will have a performance benefit.

Most modern configurations will support ACPI, and with the proliferation of

multi-core processors, the multiprocessor components will be desired.

Therefore, the most common HAL component in use will be the ACPI

Multiprocessor PC.

The system motherboard for the target hardware, the Advantech AIMB-

763, utilizes a chipset provided by Intel Corporation, the Intel 945G. Also on the

motherboard is the Intel I/O Controller Hub 7 (ICH7). [15] These devices are

responsible for much of the system operation and drivers required. Favorably,

they are commonly encountered devices and, as such, much information is

known about them and drivers are readily available.

The video capture card for the target system is one of several models

provided by the same vendor (UDP Technology) for use in Image Vault systems.

The drivers are provided by the vendor as standard Windows driver packages.

Public access to documentation is restricted.

The additional I/O board is a custom board and a generic driver interface

and package is provided by an existing Image Vault project. [17] The I/O board is

extremely basic, providing support for RS-485 communication, used for serial

Pan-Tilt-Zoom (PTZ) cameras; general purpose input/output (GPIO) channels,

for communicating with devices such as alarm panels or door sensors; and a

 17

watchdog alarm, which will sound a piezo buzzer if the software application is

non-responsive. [13]

B. Hosted Application

The primary purpose of the complete system is to host the Image Vault

PRO-Command Recorder application (the “server” process). The software suite

for the Image Vault PRO-Command Recorder consists of two primary

applications and their dependent files: IVRecord, the PRO-Command Recorder

server process; and AutoUpdate, a device servicing and update application. The

IVRecord application consists of the main executable, IVRecord.exe, and

numerous file dependencies included with the application. The OS directly

executes the AutoUpdate application on startup, which in turn handles any

system updates and then executes the IVRecord application. A certain amount of

documentation and specification is provided for the external dependencies of

these applications.

C. Windows Embedded Tools

Several useful tools are provided in the Windows Embedded Studio

distribution, which will almost always be used in the process of an image

configuration. The WES tools are the Target Analyzer Probe (TAP), the Windows

Pre-Installation Environment (WinPE), Component Designer, and Target

Designer. Some additional third-party tools are commonly employed in order to

 18

more easily produce higher quality configurations, such as Dependency Walker

or InCtrl5.

The Target Analyzer Probe (TAP) utility is responsible for gathering

information on known devices in a computer system. TAP executes on the target

hardware system with an existing Operating System and generates a device

information file (PMQ) which contains a comprehensive list of identified system

devices. [14]

Microsoft also provides the Windows Preinstallation Environment

(WinPE), a basic distribution of Windows XP which may be booted from CD-

ROM. WinPE allows a developer to execute TAP on target hardware without an

existing, permanently installed Operating System.

The determination of any dependent file modules for a desired application

is necessary so that those dependencies can be added to the final image. This is

foremost provided by the vendor or engineering specification documents.

Otherwise, the applications must be analyzed to determine what modules are

necessary. Dependency Walker is a free utility that can scan and analyze a

Windows executable, statically or via observation at run-time, to generate a list of

dependent modules, as well as which functions of those modules are used. [16]

Dependency analysis on Windows systems can also extend beyond the

installation or program execution. Post-reboot actions commonly take place and

prove more difficult to discover. The InCtrl5 program records system state –

including file locations, registry data, and INI or text file contents – at two

 19

separate temporal points. The difference of the two system states details the

installation and configuration of a program and its actions. [18]

 20

IV. DEVELOPMENT OF AN EMBEDDED OPERATING SYSTEM PLATFORM

The implementation begins with the hardware analysis for each device, and

the creation of custom Windows Embedded components when necessary.

Likewise, the analysis of software components continues in the same fashion,

with analysis of software execution for dependencies.

A. Motherboard

The motherboard, and its on-board components, represents the bulk of the

workload for hardware analysis and component creation. Only the bare

minimum components are included in the system at this time, to create more

purely representative data for the motherboard – this is very important for

component re-use. The execution of the Target Analyzer Probe (TAP) within the

Windows PE environment on the motherboard device generates a complete

listing of devices present. The TAP execution is very straightforward, as can be

seen in FIGURE 2. Some of the devices listed may be software-enumerated

devices and are rarely desired in the final image. However, using Windows PE as

the Operating System during the target probe does leave out several of the

possible software-enumerated devices. See APPENDIX I for the TAP output

(PMQ file) and modifications.

 21

FIGURE 2. Target Analyzer Probe Execution

To proceed with the creation of a component for the motherboard, the

Component Designer tool will be used to import the modified PMQ file from the

analysis phase. It is advisable to log the import process for later error

investigation and verification. Component Designer creates a basic component

with dependencies on all hardware devices from the previously created PMQ file.

Any devices without a matching compatible component will be listed as errors or

warnings at the conclusion of the import process. The motherboard component

is completed by assigning correct description data (e.g. device name,

manufacturer, author name, etc.), and applying the Selector Prototype

Component as a prototype, as seen in FIGURE 3. The Selector Prototype

Component allows the individual components of the motherboard to be enabled

 22

or disabled during the Target Designer implementation, allowing for a more

flexible building block.

FIGURE 3. Selector Prototype Used for Macro Component

The final step of creating the component, as with all components, is to make it

available for configurations by its import into the Component Database via the

Microsoft Component Database Manager, available via the Tools menu in

Component Designer, as seen in FIGURE 4. Importing the component adds it to

the component database and, when applicable, copies specified files into the

server repository.

 23

FIGURE 4. Component Database Manager Import

B. Device Drivers

The drivers for the video capture card consist of two sets of drivers, one for

the audio portion and one for the video portion, including driver files (*.SYS files)

and their associated information files (*.INF files). Retaining the distribution

driver files in a unique directory is a good practice for maintainability. The

 24

import of the INF file into Component Designer is straightforward. Some drivers

include definitions for multiple PNP Device ID entries when this is not necessary,

such as when all files, services, and registry keys are otherwise identical. To

correct this, the PNP Device ID entries may be copied from the Resources entry

in the component design. This has been done, as can be seen in FIGURE 5, for

the video capture card component, which includes “A,” “B,” “C,” and “D” entries

for multiple devices presented to the PCI subsystem from a single card.

FIGURE 5. Video Capture Device Resources

One important aspect is creating a Repository entry for the driver files. This

repository is associated with the physical directory on the development system

containing the driver files, and it is re-used for any device driver definitions

 25

requiring the same set of files. For the purposes of the video capture card audio

drivers (CapAM), the file directory and repository is located in a relative directory

of CapAM/files. The repository is defined under the Repositories tree in the

component configuration file (sld) and referenced from each component in the

repository field of the component properties (FIGURE 6). The component file is

saved into a separate directory at CapAM/sld and imported into the Component

Database. The same process is repeated for the video capture card video drivers

(CapSV).

FIGURE 6. Component Repository Selection

 The custom Image Vault I/O Card utilizes a generic Windows kernel

driver, provided by Jungo Systems’ WinDriver product. The driver INF import

was quite seamless, especially considering the age of the driver implementation.

 26

The driver was recognized as a non-Plug and Play device but no errors

manifested during component creation.

C. Host Application

The dependency analysis for the host application (IVRecord) is broken into

two distinct portions: software specifications, provided by the software

developers; and run-time execution observation. A good software specification

will provide most, if not all, direct dependencies on shared libraries or other

system resources. However, there may be dependencies overlooked by the

developers or hidden by the development tools themselves, but which can be

revealed during run-time execution.

The dependency specification for the Recorder application may be found in

APPENDIX II. The specification includes both files that may be considered

dependencies but included in the deployment package as well as known

Operating System library dependencies. Any additional dependencies required

for associated utilities should be included in the specification.

The run-time execution for the Recorder application will be observed

through the Dependency Walker application. It is necessary to fully exercise the

application to expose all modules that are loaded later in the program execution.

The resultant listing, as partially seen in FIGURE 7, of loaded modules for the

application is rather large and must be manually analyzed afterward (see

 27

APPENDIX III). Some amount of experimentation or research may be needed to

separate actual dependencies from modules that the Operating System, or

software components, may load simply if they are present in the file system at

execution time. Any further dependencies will easily be revealed during testing

of the complete Windows Embedded image. The inclusion, as dependencies, of

standard Operating System components that will be included in nearly every

configuration can be a desirable best practice. With the great variability and

future upgrade paths of Windows Embedded products, this will ensure no issues

at upgrade points, or with other developers.

FIGURE 7. Dependency Walker Analysis

 28

The implementation of the IVRecord component begins with the file

repository and the addition of the package files to the ‘Files’ section of the

component. The Operating System component dependencies are added to the

‘Component or Group Dependency’ section of the component, as seen in FIGURE

8. Multiple raw file dependencies may be included in the same system

component.

FIGURE 8. Recorder Software Component Dependencies

Further exploration of dependencies will reveal system level components

that should be used instead of dependencies on primitive libraries. For example,

instead of directly depending on the WinSock 2 DLL, WS2_32.dll, having a

 29

dependency on the system component “Windows Sockets” would usually be

preferable. The full steps undertaken to create the IVRecord component may be

found in APPENDIX IV.

D. AutoUpdate Application

The maintenance of the deployed device is a serious issue to be considered.

There is an impact on security, customer service, and software upgrades with the

maintenance system. Image Vault’s aforementioned AutoUpdate program is able

to add and modify files on the device, execute programs, and make registry

modifications. All actions are specified in proprietary XML document files for

which AutoUpdate will search and process upon execution. The creation of the

AutoUpdate component specification is beyond the scope of this treatment.

However, the final image will be required to execute the AutoUpdate application

on startup and treat it as the first shell of the Windows system. The steps

required to create the AutoUpdate component may be found in APPENDIX V.

 30

E. Image Configuration

The configuration of the target image will begin with the basic components

already built from the analyzed hardware devices and software applications,

overall configuration settings, and dependency checks. The original, minimal set

of components included in the saved configuration should be maintained in that

state. Maintaining this minimal set separate from the later configuration which

includes all dependencies will allow for longer-term usage of the image

configuration while retaining a smaller set of components. The full detail of the

steps may be found in APPENDIX VI. For this study, the Product Identification

Key (PID) field, as seen in FIGURE 9, which activates the run-time license of the

image, is left blank and will therefore create a limited-time evaluation version of

the run-time image.

 31

FIGURE 9. Configuration Settings – Run-time Image Licensing

Several base components are added to the base configuration for further

settings customization. These are components that would have been added via

dependencies otherwise, but only with default settings. The “Administrator

Account” and “Automatic Logon” components are used to create an account and

configure the system to logon without user interaction. Additionally, the

customization of the “Windows Logon (Standard)” component prevents many of

the graphical logon dialogs from being presented. The “Windows subsystem”

component is customized, via the ErrorMode registry value, to suppress system

messages (e.g. low virtual memory errors”) and instead record the errors in the

system event log.

 32

FIGURE 10. ACPI Multiprocessor PC Configuration

The “ACPI Multiprocessor PC” component is customized to enable a system

paging file and, regarding security, forcing Data Execution Protection (DEP) for

all processes (see FIGURE 10). Further security-related, the “Windows

Firewall/Internet Connection Sharing (ICS)” component as seen in FIGURE 11

allows the firewall exception for the host application and prevents the notification

that may allow unauthorized access for other programs.

 33

FIGURE 11. Windows Firewall Configuration

The System Cloning Tool is a very important feature of the Windows

Embedded system and care should be taken to configure properly.. The tool is

used during the manufacturing process to ensure that each target device

possesses a unique computer security identifier (SID) and name, which is

required on Windows-based networks. This device customization is performed

both during the reseal phase, as the master device is configured, and primarily

during the cloning phase, which takes place on each target device as it boots the

first time. Disabling the reseal option “Remove AutoLogon Settings” keeps intact

the Automatic Logon settings described earlier.

 34

FIGURE 12. System Cloning Tool Configuration

The next major steps in the image configuration process are the dependency

check and executing the image build command. For the dependency check,

Target Designer will examine each component already in the base configuration

and add all dependent components, as can be seen in FIGURE 13. After the

dependency check completes without error, the image should be in a component-

complete state. Building the target image can be immediately executed. The

target image will be generated and placed in the desired directory. It is desirable

to save this completed, built image configuration as a separate file (e.g.

appending “-built” to the filename) for system configuration management.

 35

FIGURE 13. Configuration Dependency Check

To assist image maintenance, it is important to identify image

configurations after deployment. This is possible through the use of the

Deployment Identification Settings in the image configuration settings tree. The

device model information is a GUID format string which may be used for this

purpose. It may only be necessary to utilize a few characters of this string for

identification, reserving the others for a future use. In a nearby field, a Runtime

OEM revision may be set, assisting in the deployment of patches and service

packs to devices. [14]

 36

F. Target Image Preparation

The target image is prepared by allowing the First Boot Agent (FBA) to

execute and reseal on the target device hardware. For this device, the target

image is copied to a clean disk drive and placed into the target device. After

powering on, the FBA executes and will take a non-trivial amount of time to

complete. The FBA goes through the process of adding all hardware devices

found to the Windows Device Manager, installing PNP devices (see FIGURE 14),

activating drivers, running specified actions, etc.

FIGURE 14. First Boot Agent Executing

 Once the First Boot Agent has resealed the unit, a dialog will be presented

notifying the developer (see FIGURE 15). After powering down the target device,

the disk drive is removed, and all files copied and stored as the “master image.”

This master image is ready to be deployed onto numerous target devices in

production.

 37

FIGURE 15. First Boot Agent Complete

The first boot on a production system begins with a momentary delay as a

short First Boot Agent process initializes the unique hardware devices (differing

addresses, serial numbers, etc.). This delay does not occur again on the same

instance of hardware after deployment. The system will boot immediately and

proceed to run the specified AutoUpdate and Recorder applications, as seen in

FIGURE 16, with little indication of the underlying Operating System.

 38

FIGURE 16. Final System Running Image Vault’s Recorder Application

 39

V. DISCUSSION OF RESULTS

The final image generated from the configuration developed will be applied

to ongoing development and production of shipping product at Image Vault. The

requirements set forth in this thesis have been met through the resolutions as

listed in TABLE IV.

TABLE IV.
REQUIREMENT RESOLUTIONS

Requirement Reference Resolution

Hosted software application I. Analyzed, all dependencies met

Future maintenance I., 2.4.2 Available between proprietary
AutoUpdate, OS support
functions

Configuration best practices I. Componentization and image
configuration practices
documented

Hardware testing II. A. Reduced OS software variables
for better isolation

System reliability II. A. Fewer running drivers, system
services, supporting services,
and applications

System security II. B. Removal of network and
software execution vectors

OS footprint 2.4.1 Complete image size 252 MB +
optional 1024 MB page file.

The OS footprint represents both a reduction in the Operating System file

size, as well as an increase in system functionality from the previous

configuration. This image configuration creates a fixed page file on the deployed

system during operation. For this reason, the deployment is limited to hard disk

 40

drives (a given requirement). To enable use on a flash drive, the page file would

be disabled and file-based protection filters utilized.

Integrated hardware component testing will be eased with reduced

variables from software overhead. As well, system reliability is far greater; with

no direct Operating System faults recorded to date (all recorded faults are due to

hardware or application software failure). The application software is more

reliable with fewer services and applications interfering.

Numerous best practices are expressed through component design and

image configuration design. Utilizing a minimal, non-dependency checked image

configuration allows for a quick turnaround for changing hardware requirements

while controlling image footprint growth. As well, it allows for easier

maintenance of image configuration revisions, along with easier utilization within

version control systems. The built-in macro components are a design tool that

should be frequently used to ensure maximum reusability of created components.

 41

VI. CONCLUSIONS

The usage of Windows Embedded Standard product for the Operating

System on Image Vault Recorders has led to increased system reliability and

security. The streamlined installation of the Recorder software in the image will

allow for easier creation of systems in the unit manufacturing process. The

serviceability of deployed systems allows for the ongoing usage of systems

without unit returns for Operating System or software upgrades. All of the

requirements from stakeholders in the production development process have

been met in this configuration.

The best practices set forth in this thesis allow for enhanced developer

productivity, image configuration maintenance, and configuration control. The

advantages become evident through the production lifetime and are

characterized by a consistent footprint and feature set.

 42

VII. RECOMMENDATIONS

Microsoft released the next version of desktop-class embedded Operating

System, Windows Embedded Standard 7, during the course of this research.

Both Windows Embedded Standard 2009 and Windows Embedded Standard 7

will be offered for sale; the increased options to the developer are beneficial.

Many developers will choose the Operating System product based upon existing

application design as their first criterion.

Exploration of Windows Embedded Standard 7 (WES7) is worthwhile, but

the product is significantly different from Windows Embedded Standard 2009.

Foremost, the larger granularity available in WES7 provides lesser control over

system components – WES7 includes approximately 150 OS feature sets to WES

2009’s approximately 1000 components. Driver granularity is also decreased,

with WES7 including approximately 500 driver packages to WES 2009’s

approximately 9000 driver components. The minimum image footprint changes

accordingly, with the smallest possible image in WES7 to be ~500 MB versus

WES2009’s ~40 MB. The remote and optical boot options available in WES

2009 (remote, PXE, and CD/DVD) are not available in WES7. [19]

Windows Embedded Standard 7 does introduce numerous features

previously unavailable in Microsoft’s desktop embedded offerings, beginning

with 64-bit (x64) processor support. Serviceability options are also expanded,

allowing for the use of automatic servicing via Microsoft Windows Update in

 43

addition to the OEM and manual device servicing functions. Security options are

greatly increased through full certified IPv6 support, AppLocker (access control

for allowed applications), and BitLocker (full disk encryption). The Dialog Filter

feature of WES7 allows for tight control of dialog messages with customized

responses, as well as expandable custom actions through software. [19]

For the developer productivity, Windows Embedded Standard 7 offers one

very notable feature, for the automatic updating of the development tools via the

Windows Embedded Developer Update tool. “Windows Embedded Developer

Update automatically checks the development environment to ensure developers

have the most current product revisions and updates, categorizes the available

downloads and readies the product updates for download by subscribers.” [20]

This tool will remove the disruption of twice-monthly updates to be considered

and manually applied by the developer.

For both Windows Embedded Standard versions, a further exploration of

the disk write filters available is worthwhile to explore security and reliability

improvements. The File-Based Write Filter (FBWF) allows for maintaining a

stateless disk during system execution and with intervening restarts.

 44

APPENDIX I. TARGET ANALYSIS RESULTS

Advantech AIMB-763 Target Analysis Probe Devices

o ACPI Fan
o ACPI Fixed Feature Button
o ACPI Multiprocessor PC
o ACPI Power Button
o ACPI Thermal Zone
o CD-ROM Drive
o Communications Port
o Direct memory access controller
o Disk drive
o Intel Processor
o Intel® 82801 PCI Bridge – 244E
o Intel® 82801G (ICH7 Family) PCI Express Root Port – 27D0
o Intel® 82801G (ICH7 Family) PCI Express Root Port – 27D2
o Intel® 82801G (ICH7 Family) SMBus Controller – 27DA
o Intel® 82801G (ICH7 Family) USB Universal Host Controller – 27C8
o Intel® 82801G (ICH7 Family) USB Universal Host Controller – 27C9
o Intel® 82801G (ICH7 Family) USB Universal Host Controller – 27CA
o Intel® 82801G (ICH7 Family) USB Universal Host Controller – 27CB
o Intel® 82801G (ICH7 Family) USB2 Enhanced Host Controller – 27CC
o Intel® 82801GB/GR (ICH7 Family) LPC Interface Controller – 27B8
o Intel® 82801GB/GR/GH (ICH7 Family) Serial ATA Storage Controller

– 27C0
o Intel® 82802 Firmware Hub Device
o Intel® 82945G Express Chipset Family
o Intel® 945G/GZ/GC/P/PL Processor to I/O Controller – 2770
o Intel® PRO/1000 PL Network Connection
o ISAPNP Read Data Port
o Logical Disk Manager
o Microsoft ACPI-Compliant System
o Microsoft UAA Bus Driver for High Definition Audio
o Motherboard resources
o Numeric data processor
o PCI bus
o Plug and Play Software Device Enumerator
o Primary IDE Channel
o Printer Port
o Printer Port Logical Interface
o Programmable interrupt controller
o PS/2 Compatible Mouse

 45

o Secondary IDE Channel
o RAS Async Adapter
o Standard 101/102-Key or Microsoft Natural PS/2 Keyboard
o System board
o System CMOS/real time clock
o System speaker
o System timer
o USB Mass Storage Device
o USB Root Hub
o Volume Manager

Advantech AIMB-763 Removed Devices

o RAS Async Adapter

 46

APPENDIX II. RECORDER APPLICATION DEPENDENCY SPECIFICATION

This listing represents internal engineering specifications as to the dependent
files needed for the Recorder software application in the deployed image.

Software Package Contents:

IVRecord.exe
borlndmm.dll [vendor]
cc3250mt.dll [vendor]
DUNZIP32.DLL [vendor]
Trace_Mgr.dll
dlls\Audio_Mgr.dll
dlls\Audit_Mgr.dll
dlls\CapAM.dll [vendor]
dlls\CapSeries.dll [vendor]
dlls\Capture_Mgr.dll
dlls\Catalog_Mgr.dll
dlls\Config_Mgr.dll
dlls\Connect_Mgr.dll
dlls\Daughter_Card_Mgr.dll
dlls\ECPSV.dll [vendor]
dlls\ErrorLog_Mgr.dll
dlls\IVPOS_Mgr.dll
dlls\lame_enc.dll [vendor]
dlls\POS_Mgr.dll
dlls\PreEvent_Mgr.dll
dlls\Process_Mgr.dll
dlls\Rem_Disk_Mgr.dll
dlls\SmartDisk.dll
dlls\tmp4core.dll [vendor]
dlls\UserAudit_Mgr.dll
dlls\UUCore.dll [vendor]

Non-package file dependencies:

iphlpapi.dll [Microsoft]
setupapi.dll [Microsoft]
user32.dll [Microsoft]
cmd.exe [Microsoft]

 47

Non-package Operating System component dependencies:

Windows Management Instrumentation (core functionality)

 48

APPENDIX III. RECORDER APPLICATION ANALYZED DEPENDENCIES

The execution of Dependency Walker [16] is:
1. Execute depends.exe
2. File->Open…, select IVRecord.exe (see FIGURE 17)
3. Profile->Start Profiling…
4. Execute OK button
5. Exercise application functionality
6. Exit application
7. Analyze tool output (see FIGURE 7)

FIGURE 17. Dependency Walker Profiling Configuration

The analysis of the Dependency Walker output is primarily a matter of

identifying into which category each module falls. The first column of the module

list view seen in FIGURE 7 identifies the classification. A detailed text listing for

each classification follows.

 49

Category: Loaded / warning
KERNEL32.DLL
CAPSERIES.DLL
MIDIMAP.DLL
MPR.DLL

Category: Normal
ADVAPI32.DLL
AVIFIL32.DLL
BORLNDMM.DLL
CC3250MT.DLL
COMCTL32.DLL
COMDLG32.DLL
DCIMAN32.DLL
DDRAW.DLL
DUNZIP32.DLL
GDI32.DLL
GLU32.DLL
IPHLPAPI.DLL
IVRECORD.EXE
MSACM32.DLL
MSVCRT.DLL
MSVFW32.DLL
NTDLL.DLL
OLE32.DLL
OLEAUT32.DLL
OPENGL32.DLL
RPCRT4.DLL
SECUR32.DLL
SHELL32.DLL
SHLWAPI.DLL
USER32.DLL
VERSION.DLL
WINMM.DLL
WINSPOOL.DRV
WS2_32.DLL
WS2HELP.DLL
WSOCK32.DLL

Category: Marked as delay-load dependency
ADVPACK.DLL
APPHELP.DLL
AUTHZ.DLL
BROWSEUI.DLL
CABINET.DLL

 50

CDFVIEW.DLL
CERTCLI.DLL
CFGMGR32.DLL
CLUSAPI.DLL
CREDUI.DLL
CRYPTDLL.DLL
CRYPTUI.DLL
CSCDLL.DLL
DBGHELP.DLL
DEVMGR.DLL
DHCPCSVC.DLL
DOT3API.DLL
DOT3DLG.DLL
DUSER.DLL
EAPOLQEC.DLL
EAPPCFG.DLL
EAPPPRXY.DLL
EFSADU.DLL
ESENT.DLL
GDIPLUS.DLL
HLINK.DLL
IMGUTIL.DLL
IMM32.DLL
INETCOMM.DLL
LINKINFO.DLL
LSASRV.DLL
LZ32.DLL
MFC42U.DLL
MLANG.DLL
MOBSYNC.DLL
MPRUI.DLL
MSGINA.DLL
MSHTML.DLL
MSI.DLL
MSIMG32.DLL
MSLS31.DLL
MSOERT2.DLL
MSRATING.DLL
MSSIGN32.DLL
MSVCP60.DLL
NETCFGX.DLL
NETMAN.DLL
NETPLWIZ.DLL
NETRAP.DLL
NETSHELL.DLL

 51

NETUI0.DLL
NETUI1.DLL
NETUI2.DLL
NTDSAPI.DLL
NTLANMAN.DLL
ODBC32.DLL
OLEACC.DLL
OLEDLG.DLL
OLEPRO32.DLL
ONEX.DLL
PAUTOENR.DLL
POWRPROF.DLL
PRINTUI.DLL
PSAPI.DLL
QUERY.DLL
QUTIL.DLL
RASDLG.DLL
REGAPI.DLL
SAMSRV.DLL
SCECLI.DLL
SHDOCVW.DLL
SHSVCS.DLL
URLMON.DLL
USP10.DLL
UTILDLL.DLL
UXTHEME.DLL
W32TOPL.DLL
WINHTTP.DLL
WININET.DLL
WINSCARD.DLL
WINSTA.DLL
WMI.DLL
WTSAPI32.DLL
WZCDLG.DLL
WZCSAPI.DLL
WZCSVC.DLL

Category: Dynamically Loaded
ACTIVEDS.DLL
ADSLDPC.DLL
ATL.DLL
AUDIO_MGR.DLL
AUDIT_MGR.DLL
CAPAM.DLL
CAPTURE_MGR.DLL

 52

CATALOG_MGR.DLL
COMCTL32.DLL
CONFIG_MGR.DLL
CONNECT_MGR.DLL
CRYPT32.DLL
DAUGHTER_CARD_MGR.DLL
DIGEST.DLL
DNSAPI.DLL
DSOUND.DLL
ECPSV.DLL
ERRORLOG_MGR.DLL
HNETCFG.DLL
IMAGEHLP.DLL
IVPOS_MGR.DLL
KSUSER.DLL
LAME_ENC.DLL
MPRAPI.DLL
MSACM32.DRV
MSAPSSPC.DLL
MSASN1.DLL
MSNSSPC.DLL
MSV1_0.DLL
MSVCRT40.DLL
MSWSOCK.DLL
NETAPI32.DLL
POS_MGR.DLL
PREEVENT_MGR.DLL
PROCESS_MGR.DLL
RASADHLP.DLL
RASAPI32.DLL
RASMAN.DLL
REM_DISK_MGR.DLL
RICHED20.DLL
RICHED32.DLL
RTUTILS.DLL
SAMLIB.DLL
SCHANNEL.DLL
SETUPAPI.DLL
TAPI32.DLL
TMP4CORE.DLL
TRACE_MGR.DLL
USERAUDIT_MGR.DLL
USERENV.DLL
WDMAUD.DRV
WINRNR.DLL

 53

WINTRUST.DLL
WLDAP32.DLL
WSHTCPIP.DLL
ES1371MP.SYS
UUCORE.DLL

 54

APPENDIX IV. IVRECORD COMPONENT CREATION

The steps for creating the IVRecord component are as follows:

1. Create new file in Microsoft Component Designer

2. Add new Repository

a. Name “IVRecord Repository”

b. Set Source Path to “.\..\FILES”

3. Add new component

a. Name “IVRecord” (see FIGURE 18)

b. Set Version “9.3.6”

c. Set Repository to “IVRecord Repository”

d. Add Files from “Software Package Contents” in APPENDIX II.

e. Add Component or Group Dependencies (see FIGURE 8):

i. Audio Control Panel

ii. CDFS

iii. Client for Microsoft Networks

iv. CMD – Windows Command Processor

v. Common Control Libraries

vi. Common File Dialogs

vii. Control Panel Command Line Support

viii. Cryptographic Network Services

ix. Device Manager

 55

x. DirectSound

xi. Disk Management Command Line Utility

xii. Disk Management MMC Snap-In

xiii. Display Control Panel

xiv. Dr. Watson Debugger

xv. English Language Support

xvi. Error Reporting

xvii. FAT

xviii. FAT Format

xix. FAT/NTFS Common Format/Tools Files

xx. Internet Authentication Service (IAS) and Remote Access

Common Files

xxi. Kernel Audio Support

xxii. Kernel Streaming User Mode Support

xxiii. Microsoft Visual C++ Run Time

xxiv. Microsoft WINMM WDM Audio Compatibility Driver

xxv. Misc. Command Line Tools

xxvi. Misc. File System Utilities

xxvii. Multi-Protocol Router Service Messages Library

xxviii. Network Command Shell

xxix. Network Command Shell Interface Context

xxx. Network Routing

 56

xxxi. NTFS

xxxii. NTFS Format

xxxiii. NTFS Management Utility

xxxiv. OpenGL Support

xxxv. Primitive: Ntdll

xxxvi. Primitive: Ole32

xxxvii. Primitive: Oleaut32

xxxviii. Primitive: Secur32

xxxix. Primitive: Shell32

xl. Primitive: Shlwapi

xli. Primitive: Version

xlii. Realtek High Definition Audio

xliii. Remote Access Monitor

xliv. RPC Local Support

xlv. Save Dump

xlvi. Service Command Line Tool

xlvii. TCP/IP Utilities

xlviii. USB Mass Storage Device

xlix. USB User Interface

l. Video For Windows Core

li. Windows API – Advanced

lii. Windows API – GDI

 57

liii. Windows API – Kernel

liv. Windows API – User

lv. Windows Firewall Control Panel

lvi. Windows Firewall/Internet Connection Sharing (ICS)

lvii. Windows Sockets

lviii. WMI Scripting

lix. WMI View provider

lx. WMI Win32 Provider

FIGURE 18. IVRecord Component Properties

 58

APPENDIX V. AUTOUPDATE COMPONENT CREATION

1. Create new file in Microsoft Component Designer

2. Add new repository

a. Name “AutoUpdate Repository”

b. Set Source Path to “.\..\FILES”

3. Add new component (see FIGURE 19)

a. Name “IV AutoUpdate”

b. Set Repository to “AutoUpdate Repository”

c. Set Prototype to “Shell prototype component”

d. Edit Advanced Properties, adding extended property

“cmiShellPath” as a String with value of “C:\iv\autoupdt.bat”

e. Add Group Membership to “Shell” group.

f. Add Group Membership to the “Software\System\User

Interface\Shells” category.

g. Add AutoUpdate files (AutoUpdate.exe, autoupdt.bat,

autoupdt.ini), with destination path of “C:\iv\”

 59

FIGURE 19. AutoUpdate Component Properties

 60

APPENDIX VI. WINDOWS SECURITY DIALOG PREFERENCES

The process for creating the Windows Security Dialog Preferences component

follows the same pattern as previous components created. See FIGURE 20 for

the registry data view of the Component Designer.

FIGURE 20. Component Designer Registry Data

1. Create new file in Microsoft Component Designer

2. Add new component

a. Name “Windows Security Dialog Preferences”

3. Add Registry Data, to disable to the “Lock Workstation” button:

 61

a. Root: HKEY_LOCAL_MACHINE

b. Key Name: SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon

c. Value Name: DisableLockWorkstation

d. Type: REG_DWORD

e. Value: 0x1

4. Add Registry Data, to disable status messages on logon and logoff:

a. Root: HKEY_LOCAL_MACHINE

b. Key Name:

SOFTWARE\Microsoft\Windows\CurrentVersion\policies\system

c. Value Name: DisableStatusMessages

d. Type: REG_DWORD

e. Value: 0x1

5. Add Registry Data, to disable the “logoff” button:

a. Root: HKEY_USERS

b. Key Name:

.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Policies

\Explorer

c. Value Name: NoLogoff

d. Type: REG_DWORD

e. Value: 0x1

6. Add Registry Data, to disable the Windows hotkeys:

 62

a. Root: HKEY_USERS

b. Key Name:

.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Policies

\Explorer

c. Value Name: NoWinKeys

d. Type: REG_DWORD

e. Value: 0x1

7. Add Registry Data, to disable the “shutdown…” button:

a. Root: HKEY_USERS

b. Key Name:

.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Policies

\Explorer

c. Value Name: NoClose

d. Type: REG_DWORD

e. Value: 0x1

8. Add Registry Data, to disable the “Change password” button:

a. Root: HKEY_USERS

b. Key Name:

.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Policies

\system

c. Value Name: DisableChangePassword

d. Type: REG_DWORD

 63

e. Value: 0x1

 64

APPENDIX VII. IMAGE CONFIGURATION CREATION

The following is a list of detailed steps for the image configuration process

discussed in CHAPTER IV. DEVELOPMENT OF AN EMBEDDED OPERATING

SYSTEM PLATFORM.

1. Create new configuration within Microsoft Target Designer

2. Under the Configuration Settings page, set Target Device Settings -> Boot

partition size (MB) to “5000”

3. Add component “Advantech AIMB-763 Motherboard”

4. Add component “IVRecord”

5. Add component “IV AutoUpdate”

6. Add component “IV FK-145 (WinDriver Virtual device)”

7. Add components “NCP3000 Audio (Multi)”

8. Add components “NCP3000 Video (Multi)”

9. Add component “Windows Security Dialog Preferences”

10. Add component “Generic USB Input Device Support”

11. Add component “System Cloning Tool” (see FIGURE 12)

a. Edit Reseal Option: uncheck “Remove AutoLogon Settings”

12. Add component “Administrator Account”

a. Edit setting Password: PitEpEksOvbogVopbedk [randomly

generated]

13. Add component “Automatic Logon”

 65

a. Edit settings

i. User name: Administrator

ii. Password: PitEpEksOvbogVopbedk

14. Add component “NT Loader”

15. Add component “Device: Display”

a. Edit settings

i. Screen resolution: 1024 by 768 pixels

ii. Screen refresh rate: 75 Hertz

16. Add component “Windows Logon (Standard)”

a. Edit settings

i. uncheck “Show Friendly Winlogon”

ii. uncheck “Show `Welcome to Windows’ screen before

Winlogon”

17. Add component “Windows Firewall/Internet Connection Sharing (ICS)”

(see FIGURE 11)

a. Edit settings

i. Check “ICMP Settings->Allow incoming echo request”

ii. Uncheck “Windows Firewall Settings->Notifies when

Windows Firewall blocks a program”

b. Add Authorized Application

i. Program Name: IVRecord

ii. Program Path: C:\iv\IVRecord.exe

 66

iii. Scope: Any source

18. Add component “ACPI Multiprocessor PC” (see FIGURE 10)

a. Edit settings

i. “System Identification->Registered Owner”: IV

ii. “System Identification->Registered Organization”: IV

iii. Check “System Pagefile->Enable pagefile support”

iv. “System Pagefile->Pagefile initial size (MB)”: 1024

v. “System Pagefile->Pagefile maximum size (MB)”: 1024

vi. Check “Data Execution Prevention Settings->Turn on DEP

for all programs and services”

19. Add component “Windows subsystem”

a. Edit registry data, for suppressing system messages

i. Edit properties for

“HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Contr

ol\Windows\ErrorMode”

ii. Value: 0x1

20. Add Extra Registry Data (see FIGURE 21), for suppressing the New

Hardware Wizard:

a. Root: HKEY_LOCAL_MACHINE

b. Key Name:

System\CurrentControlSet\Services\PlugPlay\Parameters

c. Value Name: SuppressUI

 67

d. Type: REG_DWORD

e. Value: 0x1

21. Add Extra Registry Data (see FIGURE 21), for suppressing system status

messages:

a. Root: HKEY_LOCAL_MACHINE

b. Key Name:

SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System

c. Value Name: DisableStatusMessages

d. Type: REG_DWORD

e. Value: 0x1

22. Add Extra Registry Data (see FIGURE 21), for changing desktop

background color to red:

a. Root: HKEY_USERS

b. Key Name: .DEFAULT\Control Panel\Colors

c. Value Name: Background

d. Type: REG_SZ

e. Value: 128 0 0

23. Run Tools -> Dependency Check

 68

FIGURE 21. Image Configuration Extra Registry Data

 69

LIST OF REFERENCES

[1] Swift, M., Bershard, B., Levy, H. 2004. Improving the Reliability of
Commodity Operating Systems. ACM Transactions on Computer Systems,
Vol. 23, No. 1, February 2005.

[2] Microsoft Corporation. “Which Windows Embedded Product is Right for
Me?” Internet source, Available at
http://www.microsoft.com/windowsembedded/en-
us/products/whichproduct/default.mspx; access 28 October 2008.

[3] ANSI/IEEE, Standard Glossary of Software Engineering Terminology, STD-
729-1991, ANSI/IEEE, 1991

[4] Microsoft Corporation. 2008. “Driver Verifier,” Windows Driver Kit: Driver
Development Tools Documentation. Redmond, Washington.

[5] Advantech Corporation. “Industrial Motherboards and Embedded Systems
Solutions,” Advantech Corporation Press Room, Available at
http://www.advantech.com/pressroom/corporate_news.aspx?doc_id={5F
D2A138-6F1A-4128-8775-A4EA53A2B33, published 4 June 2008

[6] Siddens, S. 1 February 2007. “UPS on the front line.” Plant Engineering, Oak
Brook, Illinois.

[7] Ingham, K., Forrest, S. 2002. A History and Survey of Network Firewalls.
Computer Science Department, University of New Mexico.

[8] Davies, J., 2005 “Manually Configuring Windows Firewall in Windows XP
Service Pack 2,” TechNet Library, The Cable Guy. Microsoft Corporation,
Redmond, Washington.

[9] Microsoft Corporation. 2008. Windows Embedded Standard Datasheet.
Redmond, Washington.

[10] Microsoft Corporation. 2008. Windows Embedded Standard: Product
Overview. Redmond, Washington.

[11] Chamberlain, M. 2008. Microsoft Windows XP Embedded Developer
Resource Kit. Microsoft Corporation, Redmond, Washington.

 70

[12] Russinovich, M., Solomon, D. 2005. Microsoft Windows Internals.
Microsoft Press. Redmond, Washington.

[13] Image Vault PRO-Command Product Manual. 2008. Image Vault, LLC.
New Albany, Indiana.

[14] Microsoft Corporation. 2007. Windows XP Embedded Documentation.
Redmond, Washington.

[15] AIMB-763 User Manual, 2nd Edition. 2007. Advantech Corporation. Taipei,
Taiwan.

[16] Miller, S. 2006. Dependency Walker 2.2 Help. Microsoft Corporation.
Redmond, Washington.

[17] Image Vault Internal Project. I/O Daughter Card. 1998-2009. Image
Vault, LLC. New Albany, Indiana.

[18] InCtrl5. 2000. Neil J. Rubenking, Ziff-Davis Media, Inc. San Francisco,
California.

[19] Microsoft Corporation. April 2010. “Feature Comparison of Windows
Embedded Standard 7 vs. Windows Embedded Standard 2009” Microsoft
Corporation. Redmond, Washington.

[20] Microsoft Corporation. “Windows Embedded Developer Update (WEDU),”
Internet source. https://www.microsoft.com/windowsembedded/en-
us/products/westandard/developer-update.mspx; access 17 November
2010

 71

VITA

Name: Kristopher L. Kumler

Address: 9615 Long Rifle Ln
 Louisville, KY 40228

Education: B.S., Computer Engineering and Computer Science
 University of Louisville
 1998-2002

Awards: Raymond I. Fields Award
 ACM Distinguished Student Award

Professional
Societies: Association for Computing Machinery

 Association for Computing Machinery,

University of Louisville Chapter;
Linux Users Special Interest Group

 Upsilon Pi Epsilon Computer Engineering Honor Society

 Order of the Engineer

	Implementation of a Microsoft Windows embedded standard system.
	Recommended Citation

	Kumler

