
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

7-2012

Microkernel security evaluation. Microkernel security evaluation.

Kevin C. Kurtz
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Kurtz, Kevin C., "Microkernel security evaluation." (2012). Electronic Theses and Dissertations. Paper 784.
https://doi.org/10.18297/etd/784

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/784
mailto:thinkir@louisville.edu

MICROKERNEL SECURITY EVALUATION

By

Kevin C. Kurtz
B.S., University of Louisville, 2011

A Thesis
Submitted to the Faculty of the

University of Louisville
J. B. Speed School of Engineering

As Partial Fulfillment of the Requirements
For the Professional Degree

MASTER OF ENGINEERING

Department of Electrical and Computer Engineering

July 2012

i

ii

MICROKERNEL SECURITY EVALUATION

Submitted By:__________________________________

Kevin C. Kurtz

A Thesis Approved On

(Date)

by the Following Reading and Examination Committee

James H. Graham, Thesis Co-Director

Jeffery L. Hieb, Thesis Co-Director

John Naber, Committee Member

iii

Acknowledgements

I would like to thank Dr. James Graham for providing me with the

opportunity to undertake this research as well as his patience and time during

the experiment. I must also thank Dr. Jeffrey Hieb, without whom this thesis

would have never materialized. His endless patience throughout the last several

months and great guidance have been the basis for my motivation. My surrogate

father, John Pensy, is responsible for my choice of majors and research. He got

me interested in electrical experimentation long before I knew what an engineer

was or how far I would eventually take my education. I have him to thank for my

love of experimentation and all of my interest in the electronic and programming

worlds. Finally, I could not have come this far without my mother and father,

Rhonda and Kevin Kurtz. My mother’s belief that I can do whatever in life I

choose, no matter the hurdles, got me here today and my father’s work ethic

and push towards higher education. He would settle for nothing less than for me

to receive a college degree and live a happy life. His help and guidance will never

be forgotten, may he rest in peace.

iv

Abstract

This thesis documents the successful development and testing of a more

secure industrial control system field device architecture and software. The

implementation of a secure field device has had limitations in the past due to a

lack of secure operating system and guidelines. With the recent verification of OK

Labs SEL4 microkernel, a verified operating system for such devices is possible,

creating a possibility for a secure field device following open standards using

known security protocols and low level memory and functionary isolation. The

virtualized prototype makes use of common hardware and an existing secure

field device architecture to implement a new level of security where the device is

verified to function as expected. The experimental evaluation provides

performance data which indicates the usefulness of the architecture in the field

and security function integration testing to guarantee secure programs can be

implemented on the device. Results of the devices functionality are hopeful,

showing useful performance for many applications and further development as a

fully functional secure field device.

v

Contents
Acknowledgements... iii

Abstract .. iv

List of Tables .. 1

List of Figures ... 2

Chapter I ... 3

Introduction .. 3

Chapter II ... 6

Literature Review ... 6

SCADA Security for Field Devices .. 6

OPSAID .. 7

LEMNOS .. 8

Microkernel Architecture ... 9

Microkernel History .. 9

Microkernel Design .. 11

Microkernels for Secure Field Devices .. 13

OKL4 Microkernel ... 14

SEL4 Microkernel ... 16

Chapter III .. 17

System Design ... 17

Security Model .. 17

Prior Work ... 22

Memory Isolation ... 23

Communication .. 25

Summary of Design Consederation... 25

Chapter IV... 27

System Implementation .. 27

Hardware Emulation .. 28

Software .. 29

Security Isolation and Communication ... 31

CHAPTER V ... 35

vi

Performance Evaluation .. 35

Cell IPC .. 35

Linux VPN Server ... 39

Linux VPN Client .. 42

Linux IPC Program ... 43

CHAPTER VI .. 45

Conclusion ... 45

Summary ... 45

Future Research ... 47

References .. 50

Appendices ... 51

Build Configurations .. 51

Config.mk .. 51

system_two_wombats.h ... 52

Custom Code .. 53

main.c (for IPC Cell) .. 53

ipc.c (IPC inside Linux) ... 58

1

List of Tables

Table 5.1 – IPC Message Performance..……………………………………………… 38

2

List of Figures

Figure 2.1: Layered kernel architecture...…………………………………….……… 10

Figure 2.2: Microkernel architecture.…..……………………………………………… 12

Figure 4.1: Communication in SEL4 and Memory Segmentation …………… 30

Figure 4.2: Isolated cell approach, including security cells..………..………… 33

3

Chapter I

Introduction

This thesis documents the design, development, and testing of security

software in a secure microkernel device. The device could alter the way industrial

control system field devices are currently implemented, adding many layers of

additional security to common devices without the need for hardware upgrades

by using a modern architecture system and open source security software. The

software tested will be shown to have more secure access to other devices, its

own hardware, networking resources, and communication between its own local

software.

Field devices are a critical component of industrial control systems. They

are used in many industries, especially utilities, and historically these devices

have lacked cyber-security features. In the past, physical access to the device

was necessary to attack it; in the last decade there have been networking

advances that allow high speed networking to almost any location, no matter

how remote. Advances currently available for devices, previously isolated, mean

many of them now have remote access and are connected to the Internet. Field

devices and subsequently industrial control systems are vulnerable to malicious

attacks that could damage their physical systems and have serious

environmental impacts, without additional security.

4

Added security to the networking interface of field devices is not enough. A

separate hardware firewall could be added to deter attackers, but this raises

additional hardware costs, another device to support, and does not

comprehensively secure the device. It is suggested that the device must be

secured from every logical point of attack, not just the network interface. The

device must be secured from physical access via its own terminal or directly

connected serial programming devices, from unwanted network access by a

firewall or other discriminating software for both outward and inward

communications, and the device must be secured from its own internal software

that may have been modified for malicious intent.

A secure device would be an unreasonable goal without guarantee of

secure software. This starts at the most basic level of operation; the device

kernel. A secure microkernel for which to build the other software systems is a

requirement for the entire project. A verified correct microkernel exists for the

use in a more secure experiment. The SEL4 microkernel has been formally

verified and will be used for the experiment. The kernel is open source and is

able to be modified if necessary. However, any modifications will not be verified

and therefore should be avoided if at all possible.

This thesis presents a review of literature and research related to this

experiment. Chapter II details the extent of the literature review describing the

architecture of the system based on previous work, the security features hoping

to by implemented in the system, and the microkernel used. Chapter III

5

discusses the design architecture of the build system, a more in-depth analysis of

the security features necessary of a secure device, and the use of memory

isolation in the secure microkernel. Chapter IV is an overview of the experiment

and how it was designed, showing the operation of the system and the

implemented software. It details the use of the software and how it should be

implemented to best secure the device. Chapter V shows the software that was

implemented before the end of the experiment, testing, performance, barriers

overcome through the experimentation process, and how software verification

might be used to complete the project. The final chapter explains the outcomes

of the experiment, presents conclusions drawn about the project and secure

devices, and indicates future research and experimentation directions that may

be beneficial for the project.

6

Chapter II

Literature Review

SCADA Security for Field Devices

SCADA (Supervisory Control And Data Acquisition) systems are currently

vulnerable to cyber-security attacks. Many SCADA systems are insecure by

today’s Internet standards; they have chronic and pervasive vulnerabilities [1].

Many of the current efforts in security assessment involve searching for known

vulnerabilities [2]. Computer controlled systems should be subjected to scrutiny

and this is often ignored at the management level. With the upgrade of electrical

grids (smart grids); transportation systems; and water distribution systems; now

is the time to upgrade the security scheme as well. [1]

Field devices are small embedded computers running their own operating

system, discussed in a later section. The recent Stuxnet attack shows the

importance of securing these devices [3]. SCADA devices control major

processes in utilities and industry. An attack on these systems could be

devastating. Hijacking of SCADA and field devices can disrupt processes and shut

down utilities. In some systems, a simple technique known as SQL injection can

be a successful weapon. This is inadequate protection and needs to advance as

devices join IP networks.

SCADA systems can have remote vulnerabilities, but can also be affected by

inside users that are trained improperly or are malicious. Only authorized

7

personnel should have access to the interior features of the devices. This shows

a need for IP security (firewalls), authentication, secure remote access, and

intrusion detection without a significant cost upgrade for vendors. [1]

OPSAID

OPSAID (Open PCS Security Architecture for Interoperable Design) is a

program intended to overcome security issues in the short term for SCADA

devices. PCS (Process Control Systems) weren’t designed with adequate regard

for security issues. Communication was typically through serial links at a single

location segregated from the outside network. As industry has evolved, so has

the need for remote control and diagnostics of systems. PCS devices are now

moving to using TCP/IP as the standard communication and off the shelf

software for their firmware. Without an added layer of security, anyone with

knowledge of the widely used software can control the system. Typical IT

systems incorporate secure event logging, authentication, and firewall services;

PCS rarely uses any of these.

The OPSAID project was designed to address security issues using

established and available IT standards for a corporate network. Using mini-itx

computers and the open source Linux operating system Ubuntu, the project has

confirmed that it is possible and cost effective to build a more secure PCS field

security appliance using open source software with thorough testing. OPSAID is

not meant to be a standard for security, as networks and security needs will

change in the future. An “all or nothing” standard is inappropriate. The purpose

8

is to provide a roadmap and proof of concept for vendors to address their own

security issues and maintain interoperability with other OPSAID components. [4]

The security features in the OPSAID implementation include:

 Virtual Private Networking/Encryption

 Firewall Services

 Network Intrusion Detection Systems

 Host Intrusion Detection Systems

 Event Logging

 Event Database Storage, Alert Generation & Visualization

 End-device Configuration Session Logging

 Authentication

 Device Management [4]

LEMNOS

The Lemnos project was built upon the OPSAID projects component

modules for interoperability. The purpose of the project is to output artifacts

referred to as Interoperable Configuration Profiles. The asset is defined by the

needs of the owner, both functionality and security. The Lemnos approach is

focused on interoperability for secure modules. Much like the OPSAID project,

Lemnos is built on open source software, but allows for “best in class” cyber

security solutions for various points in their infrastructure. [5]

9

Microkernel Architecture

A kernel is the lowest level of software abstraction on hardware. Its duties

include managing system resources and connecting applications to actual data

processing on the hardware level. In a monolithic kernel device drivers, file

systems, and many other features are a part of the operating system kernel.

These services require privileged access to system resources, usually access to

physical memory , and only kernel code can accesses these resources.

In microkernels, most of the features, such as device drivers, file IO, etc.

are implemented outside of the privileged mode of the processor. This allows for

improved security since these software services are limited to only specific

resources. The drawback of this approach is performance. A microkernel will

implement the smallest set of operations and abstractions in the kernel and the

drivers, file systems, and other functions in user-space. [6]

Microkernel History

In monolithic kernel design, programs in the kernel can access any

resources the kernel has access to, all of the physical memory. They are

“trusted” not to violate their memory boundaries. This structure grew beyond

usability as operating systems grew to enormous proportions. To help calm this

growing beast in kernel space, layered operating systems were developed.

Modular programming techniques helped to handle the scale of software

development. Functions in layered operating systems are organized in a structure

10

to allow communication and interaction between adjacent layers only. Still, most

layers were implemented and executed in kernel mode.

The layered approach, shown in Figure 2.1, helped simplify programming

and the size of the kernel, but each layer possessed a great deal of functionality.

A change in one layer could cause undesirable effects in adjacent layers, difficult

to trace bugs, and numerous other problems. The interaction between these

layers made it exceptionally difficult to build in security due to every layer being

able to access all functions of the adjacent layers. A bug in one layer could allow

malicious code to gain control of the hardware or disrupt operation of the device

entirely.

Figure 2.1: Layered kernel architecture [7]

11

The microkernel was created under the philosophy that only the essential

functions of the operating system were implemented in the actual kernel. Less

essential functions and applications are built on top of the microkernel. These

functions operate in user mode as opposed to the more secure kernel mode.

There is no concrete rule as to what is essential and should be compiled into the

kernel, but the common definition is for most services that were previously part

of the operating system are now external to the kernel as a separate module or

subsystem that interacts with the kernel and with each other; these services can

include security services, windowing systems, virtual memory managers, file

systems, and device drivers. [7]

Microkernel Design

The design of a microkernel is implemented to solve some of the problems

mentioned in monolithic kernels and layered operating systems mentioned

above. A microkernel architecture is a horizontal implementation of the

abstraction system, as opposed to the vertical model of a layered architecture.

All operating system components external to the microkernel are implemented as

server processes that interact with one another on a peer basis in user mode,

shown in Figure 2.2. To communicate, typically they will send messaged through

the microkernel via IPC calls. This allows bugs and unintended actions to be

more easily traced since layers are not talking to each other, but instead can only

interact by way of loggable messages through the microkernel. This allows for a

higher level of security, accountability, and more controllable operation.

12

Figure 2.2: Microkernel architecture [7]

The microkernel is required to act as the message exchange between the

user mode components. The microkernel will validate the messages, relay them

to the user mode recipients, and grants access to hardware. The microkernel

adds extra security by performing message transfers through a protection

function; it prevents messages from being passed unless exchange between the

components is allowed. This prevents hijacking of drivers or other system

resources by unauthorized components. This is a client/server architecture within

a single computer, where each component can be thought of a peer client on a

network and they can only transmit messages, which can be filtered, through the

server. These messages can be sent to other components and request the

primitive functions compiled into the microkernel.

13

Microkernel design creates a uniform interface for processes to make

requests. A component does not need to make a distinction between kernel-level

and user-level services as all requests will be processed by the kernel. This

allows for easy extensibility; newer components or modules can be installed on

the microkernel to allow for the use of newer hardware, alternative file systems,

and new software techniques come to light. Allowing a modest microkernel to be

programmed once and used even after computer upgrades or software

technologies change. The upgraded services do not require all the services to be

updated.

A Microkernel architecture is more efficient by design. Components can be

easily removed for a smaller footprint or replaced for a system lacking powerful

hardware. The memory manager can be easily replaced to deal with small

amounts of RAM and a lack of swap space if the hardware requires it. [7]

Microkernels for Secure Field Devices

Field devices connect sensors, actuators, and other input/output peripherals

to a control network. This provides remote measuring and control capabilities.

These devices must be secured to avoid unauthorized control of utilities and

other applications. The security of these devices directly reflects to the safety of

the operators and everyone involved with the use of the utility. Unauthorized

access to field devices can also cause massive physical damage to expensive

equipment.

14

To secure field devices, the microkernel controlling the hardware has to be

secure. No device is impenetrable, but care can be taken to make it as difficult as

possible. This was less necessary when devices were on isolated networks; many

devices are now accessible via the Internet and therefore must the security

scheme must change. Modern secure microkernels employ isolated partitions,

each with its own isolated memory and contact to other hardware, software, or

instrumentation; This is referred to as the partitions protection domain. This

protection domain allows for software of varying levels of security to be

decoupled from the microkernel and other less secure applications. [8]

A microkernel for a secure field device will compartmentalize components

and allow the trusted computing base (TCB) to consist of only the kernel and

trusted security-critical code in kernel mode. All other applications reside in user

mode with limited access to the secure areas of the device. The microkernel will

determine what trusted resources can be accessed from these less secure

compartments and only allow access to security critical code or data when

absolutely necessary, all through IPC calls to the kernel [9]. This small amount of

secure code and the small size of the kernel allow for the code to be thoroughly

checked for possible errors and unintended operation, even allowing for

mathematical proof of the code’s operation. [8]

OKL4 Microkernel

To use a microkernel for security purposes, the IPC must be fast and

efficient or else other process communications might be used, bypassing the

15

security of the kernel. Most microkernels exhibit poor IPC performance. The L4

microkernel is built to improve the IPC performance of L3 and other pre-existing

microkernels [10].

The OKL4 microkernel was designed by OK Labs as a highly flexible, high

performance microkernel. Providing a minimal layer of hardware-abstraction on

which modules can be built. Each component is isolated in the system from

programming errors or malicious code introduced to the system by other

components. A feature is only implemented in the kernel if it was impossible to

provide the service outside of the microkernel with the same level of security.

OKL4 provides a trust and security implementation using hardware and

software mechanisms to enforce security. The API provides time,

resource/memory, communication protection, and fault isolation. Using address

space control and IPC for each component or thread to communicate the kernel

can create separate memory spaces for each component that are independent of

one another. These cells are completely isolated and can only communicate

through IPC. Each call is verified through the security model that the component

has access rights to the hardware, data, or other component it is trying to

communicate with, therefore containing malicious code or activity to an

individual cell. [11]

16

SEL4 Microkernel

SEL4 is a mathematically verified version of the OKL4 microkernel. Since the

microkernel is the only part of the operating system that executes in the

privileged mode of the hardware, there is no protection from faults occurring in

the kernel. Every bug could potentially cause physical damage. The kernel is a

major part of the TCB that can bypass security.

Using an interactive, machine-assisted and machine-checked proof the SEL4

microkernel was formally verified. This does not mean it is necessarily secure,

but that it has been mathematically verified that the C code operates specifically

as the kernel should behave. The verification was run on the C code itself.

Therefore, the kernel itself is not verified, but the code that it was compiled from

was verified to operate as specified. To declare the kernel as verified, one must

also assumed the correctness of the C compiler, linker, assembly code,

hardware, and boot code. [12]

17

Chapter III

System Design

It is shown in Chapter II that operating system security in field devices

cannot be guaranteed. To help deal with this issue, the microkernel was

designed as a horizontal approach to abstraction based on modules instead of a

layered monolithic kernel approach. This allows the kernel to segregate memory

and permissions based on the needs of the module and can help unwanted

access by a corrupt piece of software from accessing all areas of the device.

The SEL4 microkernel is designed and verified as correct, and operates

discussed in Chapter II. The experiment is designed around the SEL4 microkernel

to determine speed in which communication can be achieved between processes

in a secure environment.

Security Model

The security for this project is based off the OPSAID [4] security project

discussed in Chapter II. The several aspects of field device security provided by

OPSAID are listed below and their relevance to the project is stated. Using these

security upgrades for field devices the security and performance of devices can

be tested.

Virtual private networking and encryption is necessary in modern devices.

Any device operating on the Internet should be located behind a firewall

preventing unwanted access. To enter these networks and gain full access to

18

their resources it is necessary to virtualize a private network. A private network is

intended to be used only by the devices physically connected to the local

network, where security should be less of a concern. These networks were

common before the Internet. Now, with the invent of virtualized networking, it is

possible to encrypt a tunnel into a network and allow remote devices to be

included in a private network. Only devices on the private, hopefully encrypted,

network are authorized to communicate with the device. This does not need to

be supported by the device directly, but by some gateway device on the

network, although, it can be internalized to the device as it is in the OPSAID

project.

Firewall services are included in the OPSAID standard architecture. A

firewall is a software tool used to deny communications from certain processes,

programs, ports or specific devices. This is useful for blocking unwanted

programs from finding an open port on a device or a network. Only approved

processes have access to the network. Malicious software running on the device

will not be able to create an outside connection without meeting the policy of the

firewall. Most home computers and home routers will have some firewall policy

that will try and protect the machine. This is common in the PC network

environment and should be used for field devices as well. A custom policy can be

implemented to not hinder the current functions of the device, but protect from

dangerous software and DDOS attacks.

19

Network intrusion detection systems are used to detect and notify the

network administrator of an unauthorized program or user on the network.

Typically, these systems operate by analyzing network traffic for suspicious or

malicious activity. The use of these systems can be beneficial to any network,

but particularly to those that control expensive/dangerous equipment or contain

sensitive information. The software can potentially detect an intruder and in

some cases severe the connection to the network. In the event that a program

or user has bypassed the virtual network security and the firewall for the

network, this additional software could be the added layer necessary to finally

stop communication with the device.

If a user can get on the network and send commands to a device, the

network intrusion detection has a chance to stop them. However, if they

penetrate software on the device itself, there may not be suspicious network

activity. Host intrusion detection systems cover this base by monitoring and

analyzing internals of the system. Host security typically consists of watching

memory for unverified modifications, be it to a database or program memory

depending on the device and its uses. Using checksums of file sizes, date

attributes, and permissions, the system can check for changes that were not

authorized. Host security may not prevent access to sensitive information, but it

can warn the owner of the information that it has been accessed and possibly

distributed. Detection systems are a notification system, not necessarily a

prevention mechanism.

20

Event logging can be useful in determining the fault when a problem does

occur. Problems in electronic devices occur for many reasons; sometimes these

reasons cannot be determined. For security, the device or the owner needs to

know if the error was a software/hardware fault or was caused by mischievous

activity. Event logging allows for the device to keep records of errors. These

records can contain timestamps, user with access, the process that initiated the

error, and other vital information that can help the owner determine if the

device’s security has been compromised. Event logging is also helpful if an

accident occurs in the vicinity of a piece of equipment. The device may have

logged activities in the error, from its current operating level, process, or duty to

sensor data at the time of the accident; which can be useful for troubleshooting

or to determine user error.

Event storage and alert generation are related to event logging. The logged

data can be stored in a database for later analysis and any error logs can

generate an alert for the device owner. The owner can be notified in real time of

an error instead of having to discover the event own their own. If an error occurs

the device can instantly send an alert via the Internet or internal network so that

the error can be dealt with without unnecessary downtime, be it an intruder,

hardware failure, or software error.

Session logging is used to determine what commands were sent to the

device and when. When the device is accessed remotely or physically, all actions

are logged to determine when a configuration problem was caused. The device

21

can benefit from logging changes, as the owner knows what was changed and

can quickly and successfully reconfigure the device. The reconfiguration can be

automated to return the device to a previous configuration with ease when a

fault is detected.

Field devices, which originally were accessed only via an isolated a physical

network, are now connected using Internet technologies. When isolated, access

to the device was granted by lock and key; now these devices can be remotely

accessed, potentially through corporate networks, from anywhere in the world.

No need to identify a user was necessary if they had physical access to the

device, but this is no longer standard. Every electronic network needs some sort

of authentication to keep access limited to only privileged users. A minimalistic

user authentication and password protection is standard on most PC networks

and that is the level of security trying to be reached by the OPSAID project for

field devices. Therefore, there needs to be a built in software mechanism to

authenticate the user on the device, whether this be a username and password

or some other means of verified user authentication.

Remote device management already exists, but could be much more

secure. Device management is an important part of having a device, occasionally

it will need to be reconfigured or the logs accessed. This should be done through

secure software that has access rights to all of the software listed above. This

software should be used to view or download the logs, sessions, alerts, firewall

22

policy, and any other device configuration from one easy resource that can be

accessed securely and remotely.

All of this software already exists. It is waiting to be installed and

configured for use in field devices and SCADA systems to help protect the device

and ensure normal operation. Without these additional software products, a

device is vulnerable to many types of attacks and the results can be devastating.

Every device should be secured in some way, but Internet enabled devices or

any that can accessed remotely need to have many added layers of security to

prevent unwanted access and malicious software actions.

Prior Work

Security has been a concern in field and SCADA devices for some time. This

is not a new area of research. The OPSAID project sets a plan for implementing

better security in these devices. The Lemnos project adds to the security of the

modules installed on the device and interoperability between the devices without

the added level of security impeding the functionality of the device.

There has been work done in security hardened field devices and operating

system security for the devices. Some of the work mentioned in Chapter II needs

to be detailed further as it is important to the development of the experiment

and the need for the research. Graham and Hieb [8] have researched the need

for SCADA security and the inherent issues of securing the devices. Through

23

their research they have concluded a number of possible future research

directions for the field. Using an isolated kernel, the device could possibly be

much more secure. Using the OKL4 microkernel as a means of isolating separate

processes, the experiment explored IPC communication on hardware and its

effectiveness for security applications.

The research of Graham and Hieb was continued by Luyster [9]. His

research involved developing a prototype based on the hardened security

research using the OKL4 microkernel for RTU control devices and industrial

embedded systems. The research suggested that the added layers of security

added 20 to 100 milliseconds of delay to IPC calls that typically took 500

microseconds to complete. The research suggests there is a need to test how

security additions and IPC calls function on a more secure verified kernel, such

as the SEL4 microkernel, now commercially available.

Memory Isolation

The SEL4 microkernel allows for all cells to be isolated from each other

within memory. No process may read or modify the memory space of another

process. The only communication between the processes is via IPC through the

kernel. This allows for a more secure environment than one user space for all of

the components of the system to access.

A cell is a concept unique to security software. The OKL4 microkernel

isolates specific memory for usage in the cells and allocates these addresses to

24

only one process. The memory used in these cells is stored in the large bank of

memory for the device, typically RAM. This is virtual addressed by the processor

and then allocated to a thread, process, or to an entire cell. This allocation is

referred to as a protection domain. This is a memory segment that is completely

isolated from all other memory segments virtually. There is no way for memory

within a protection domain to be accessed by any other processes than the one

to which it was allocated.

For this isolation to be possible, no software can have access to direct

memory mapping except the kernel. Any other software must use virtual memory

addresses that are mapped one to one with physical memory. These virtual

memory addresses are then translated by the kernel. The processes and cells

have no way of determining absolute memory locations, this is vital to the

security of the memory segments. This is in contrast to typical monolithic kernels

which allow device drivers and other software modules in the kernel space

unrestricted access to the entirety of the system memory.

Like cells, threads operate within a protection domain. However, multiple

threads can exist within a single protection domain, whereas multiple cells

cannot. A cell can be thought of more like a program, that can have a single

running process or consist of multiple threads within its protection domain.

25

Communication

In the OKL4 and SEL4 microkernels, all communication between different

components must be done through IPC calls. There are two types of IPC calls in

the OKL4 architecture. These calls are referred to as blocking and non-blocking

calls. Blocking calls will stop a process or thread until the corresponding IPC call

has completed, either sending or receiving. This is useful if the thread is waiting

on access to a locked component and needs the information to continue,

however, the possibility exists for a race condition in this situation and it should

be avoided where possible. Non-blocking calls will immediately attempt to send

or receive the desired IPC call, but may fail if the other component is locked or

unready for the call. The failure can be handled in software and the component

can wait to send or receive again or continue with the process. This is important

to avoid race conditions as a failure is easy to deal with, but a locked process

waiting on a device that may never be ready can be devastating to a system

unless designed to operate where these situations cannot exist, such as a state

machine.

Summary of Design Consederation

It has been suggested that using existing security software available now

that the security of field and SCADA devices can be greatly enhanced. By using

some or all of the layered security described by the OPSAID project above, a

device may be updated/upgraded to be compatible with corporate secure

26

computer networks without posing significant security risks from outside users

and malicious software on the network.

However, these network and device protocols are not secure enough. The

device must also protect itself from malicious components installed on the device

itself. Using microkernels and software designed for memory isolation the device

can protect from unwanted access to hardware and secure data. These

components must be able to communicate securely with the device and the

other components in the system. This is all possible and an experiment will be

designed in Chapter IV to show some of the features of these more secure

devices and their performance.

27

Chapter IV

System Implementation

The purpose of this thesis is to evaluate whether, or not, while using proper

security protocols and methodologies, reasonable performance can still be

achieved in kernel communication. The design is based on the OKL4 wombat

Linux kernel and its provided image. This para-virtualized distribution of Linux

runs on the OKL4 kernel, more specifically on the SEL4 microkernel in this

experiment, and is an entire functional operating system with virtualized

hardware that can communicate with the actual hardware through the base

microkernel. The operating system can also communicate with other system

components that are running in separate cells.

Using two wombat distributions and the SEL4 microkernel, it can be shown

that secure communication can be achieved, that its performance is reasonable,

and that isolated components can operate independently of each other without

risk of corruption from the other component.

The SEL4 system image was built on an Ubuntu Linux machine using a

dedicated cross compiler for the x86 architecture designed for compiling for a

generic x86 machine using only the most basic generic hardware. The tool is

Crosstool-ng and has cross compiling capabilities for many architectures. The

cross compiler compiled the wombat supervisor, timing server, and all other

28

SEL4 components to be run on the kernel. The kernel was delivered precompiled

and was not rebuilt during this experiment.

The kernel modules for this experiment were compiled using the same cross

compiler. The default module settings were used with the exception of one. Net

filter was not compiled due to compiler errors and was unnecessary for the

experiment, therefore was excluded. The module configuration is included in the

appendix.

Many different IPC and other SEL4 programs were compiled. The wombat

supervisor, the program used to load a paravirtualized Linux image into memory,

was compiled and configured to load two identical images in parallel. The timing

server was compiled using the default settings and is included with every

Wombat Linux image as Linux cannot function without a system clock and the

hardware clock is unavailable to the SEL4 kernel.

Hardware Emulation

The Ubuntu Linux machine used to compile the test system was emulated

using Sun Virtualbox. This was for convenience as it is entirely portable between

the different locations and computers used for the testing. The test system itself

was emulated using Qemu as the generic x86 system. An emulated system was

chosen, originally, to easily start and stop the system multiple times during

testing. It was shown in later testing that the system could be booted on actual

29

hardware, however serial output was garbled, and efforts to correct this were

unsuccessful.

The Qemu machine must be operated in a Linux environment, because the

Windows build of Qemu cannot display the debug output from the SEL4 kernel.

As no Linux machines were easily available for the experiment and the Virtualbox

Ubuntu machine used for compiling was already configured for testing and

included the compiled image, it was used for the Qemu test machine as well.

The Qemu SEL4 hardware is therefore emulated in the Ubuntu virtual machine.

Meaning, for the tests, the program is running on an emulator in an emulator.

This will affect the overall performance of the results. If the experiments are

compared to each other, the performance should be affected equally and

therefore the relative results will show a feasibility and performance increase or

decrease even in a doubly emulated test bed.

Software

The software for this experiment includes the SEL4 microkernel, the

Wombat Linux image, and custom IPC examples running on the microkernel. The

code for IPC examples is included in an appendix. The Wombat images will be

used for in operating system testing of IPC speeds and cell to cell IPC

communication between two Wombat images.

The IPC examples will show the speed and effectiveness of IPC on the

lowest level of the SEL4 kernel. Building a program directly on the kernel will

30

yield the best results. The IPC program will make use of multiple threads to

communicate through the kernel between the memory segregated threads via

IPC.

Figure 4.1: Communication in SEL4 and Memory Segmentation

The experiment will contain IPC calls from the userland built on the

Wombat Linux cell. This program will run within the paravirtualized Linux

environment and make IPC writing and reading calls to the kernel. The program

can only communicate with the Linux API, as if it was a standard distribution,

and cannot access directly any other cell or hardware. The Linux cell must then

relay the information to the kernel that will write the IPC call to the appropriate

31

register on hardware. The IPC cell, if it wished to read this message, would

contact the kernel and request an IPC message. This is the only means of

communication between cells. All programs and threads in the userland are

dedicated to the Linux cell and cannot communicate with or be aware of the

memory space of other cells.

An IPC cell will also be designed to communicate with the Linux

environment in the manner described above. This will test both the IPC

performance in an operating system environment and directly on the kernel.

Tests will show both performance of cell to cell, Linux to cell, and Linux to Linux

IPC communication.

Security Isolation and Communication

In SEL4 memory is semi-isolated in threads and completely isolated in cells.

The only communication between memory isolated processes is by IPC through

the kernel API as described in Figure 4.1. For the system to be considered more

secure than its predecessors, the software must take advantage of this isolation

and operate within its dedicated memory space.

Software running in the user-space of the Linux cell will be considered

insecure on the basis that Linux is a robust monolithic operating system, even

the small version of embedded Linux used for Wombat. There are many areas of

the operating system that could have memory overflows or other vulnerabilities

allowing attack or control of the system. For this reason, no program operating

32

within the Linux cell shall have access to vital data or I/O devices unless

specifically designed and allowed to control said device. In this situation, the

device should be dedicated to the Linux cell and not accessible from other cells

to avoid communication bypassing IPC.

All security software should be kept minimal as to not introduce bugs and

operate directly on the kernel in a cell parallel to the IPC cell in Figure 4.1. See

Figure 4.2 for visualization of security software. These secure programs can

operate completely independent of the other cells and can control hardware,

through microkernel calls of course. For example, a firewall cell might operate on

the kernel and have complete control of any networked devices. The firewall

would guard all incoming and outgoing communication. Other cells may use the

network by IPC calls to the firewall cell. Any incoming communication would

have to meet strict security protocols implemented in the firewall policy and be

restricted from communication without formal authentication. This firewall cell

could be referred to as a secure network manager.

33

Figure 4.2: Isolated cell approach, including security cells.

Authentication and configuration of the device can also be isolated to its

own secure cell. This makes the likelihood of introducing a security flaw into the

software much less than running all of the security programs on the same

system where they must interact with each other. Complexity of the

programming can be exploited to introduce security bugs. This configuration cell

will allow a user to log into the device, perhaps remotely via the firewall/limited

VPN features, and configure the device. No configuration should be possible

except through this cell if it is to be a secure device. Logging programs can also

be implemented in the same way, as parallel cells.

A less secure VPN could be possible into the Linux environment. There

would be no security risk in allowing this unless critical data or processes are

implemented within the Linux environment. Any VPN access to Linux would not

34

be able to communicate outside of the cell. This should be done only through a

dedicated networking interface or virtualized networking interface to avoid

contact with other cells or hardware they are using. The VPN features in the

firewall or networking manager could be programmed to allow for a virtualized

device that would be able to reach Linux via IPC. This would be complex, but

more secure than allowing Linux direct access to the network where other device

might be less secure and on a closed network.

This experiment was conducted to test the IPC performance and usability of

these secure cells. As stated above, all cells will communicate by IPC. If this

system of communication is too slow or suffers from excessive use and the

number of possible cells must be limited, the whole security scheme of this

device may be impractical. The architecture example used above hinges on the

ability to isolate every security component in its own virtual space. Without a

secure, readily available, and efficient method of communication, the

architecture would be useless.

35

CHAPTER V

Performance Evaluation

To test the security of the software, the added layers of security must first

be integrated into either a cell or the Linux image. The cell programs, running

directly on the microkernel, are written in the C programming language and

compiled using the SEL4 library. They are then loaded into memory immediately

after the microkernel. Dite is a memory mapping program used to integrate the

cells into the kernel image. Dite is used to make the kernel executable from a

boot loader such as Grub. Grub was used in all of the testing in this experiment

to load the kernel, which then took possession of the hardware and loaded the

security cells or Linux paravirtualized kernel and image. Four security programs

were tested in the experiment and are described in the following sections.

Cell IPC

IPC was implemented in a separate security cell for performance testing.

Running IPC straight on the kernel has added benefits to performance and

shows how cell to cell communication will be handled and preform in a secure

field device. The IPC program uses two threads within the same cell to

communicate via IPC through the SEL4 microkernel.

The IPC test was modified from the included IPC cell example distributed

with the SEL4 microkernel and was understood using the SEL4 microkernel

manual explaining all of the available kernel calls in the API. Modifications were

36

made to include timing for performance testing. The added timing component

was never completed due to the faux calls in the API. The time.h and clock.h

files included with the kernel never contact the hardware clock available to the

system. This created complications. The first attempt was to write code that

would display the time passed between sending and receiving IPC messages in

microseconds. This yielded a return of 0, which was obviously incorrect. The

code was then modified to return the clock cycles past between sending and

receiving. Knowing that the system was running at 100MHZ allowed the user to

calculate the time passed between calls. This as well returned 0. Upon further

investigation it was found that the clock and time functions existed in the API,

but were set to do nothing but return 0. It appears that these functions were

included for completeness so that compiling errors were not caused by lack of

proper available headers, but the code in the headers was never actually

connected to the hardware. This is not documented in the API, but was

discovered when viewing the header files in the API itself. Without a hardware

clock, cell timing performance data could not be gathered.

After completing the cell code, the code is then compiled using the standard

GCC C compiler on Linux configured to cross compile for the target system. Dite

then integrates the compiled program with the microkernel. The image is put

onto a bootable memory stick or hard drive containing the GRUB boot loader.

GRUB is instructed to boot the image on hardware, which consists of placing the

microkernel and cell data into memory and passing off rights to the processor

37

and other hardware to the microkernel. The microkernel prepares itself for

operation and starts the secure cell program. The IPC program runs and outputs

the test message transmitted from one thread to another. The first thread writes

a message to the IPC register, which is hardware dependent, and then the

second thread reads the register through kernel calls. The message is displayed

and if transmitted properly should be the same from sending to receiving. This is

done three times and then the program exits.

It was found that the Qemu machine allows for the ttyS0 output data to be

redirected to a telnet server. This was used to analyze the performance of the

IPC calls. Since it was not feasible to time the calls directly in on the microkernel,

timing data was taken in between the written string data that attempted to send

the message and the string data that successfully received the IPC message.

This is less accurate due to the overhead required for writing the messages,

sending the data across the virtualized network interface to the telnet client, and

the extra components of the IPC message program that had to run between

sending and receiving messages, but is favorable to not receiving any

performance data. Table 5.1 shows the results collected from the telnet log.

Putty, an open source telnet client, was modified to write timestamp data to the

log file allowing for timing calculations. Putty was modified for the experiment to

timestamp in seconds, this was not accurate enough and Windows operating

systems do not have a timer that is more accurate than milliseconds. It was

attempted to accurately time to the microsecond level, but the microsecond file

38

timer in Windows calculates accurately, but only updates every 10 or more

milliseconds rendering it useless for timing calculations. It was found that a

precompiled fork of Putty named ExtraPutty timestamps correctly on the

millisecond level, therefore this program was used to collect the streaming data

from the microkernel and log it in text file for the experiment. Since millisecond

timing was not preferable, the IPC program was again modified to complete

more than three iterations between the threads and the average time was

calculated for IPC messages.

Table of IPC Message Performance

Iterations Total Time Time (ms) Average Time (ms)

1,000 00:02:165 2165 2.165

10,000 00:20:647 20647 2.065

128,000 04:02:565 242565 1.895

128,000 04:03:692 243698 1.904

500,000 17:29:266 1049266 2.099

1,000,000 34:11:824 2051824 2.052

Table 5.1 – IPC Message Performance

As shown in Table 5.1, the average time to send and receive an IPC

message is between 1.895 ms and 2.165 ms. The performance can be increased

if timing took into account only the sending and receiving of a message.

However, this data, including the overhead for timing and the running IPC

program, shows that the performance on a 100MHz field device is not too

39

constrained to obstruct the cells from operating in a useful manner and finding

an alternative means of speedier communication between cells is unnecessary.

The IPC cell operates as expected. The messages transmitted are identical

to the messages received. However, the actual speed performance data was not

gathered in the virtualized machine due to microkernel constraints; we must rely

on the external timing data. This proves that it is possible to write a secure cell

and implement it on the microkernel, that IPC functions do work as expected,

and that other security software should be written from scratch and not rely on

the API if at all possible as there may be other unexpected functions that are

unavailable.

Linux VPN Server

Other security features are implemented inside the Linux image to be run

on a higher level operating system. A VPN program was compiled and installed

within Linux. For the purposes of this experiment it is unnecessary to be able to

access the VPN from the actual network, it was compiled and configured to allow

access only from the loopback networking device. This security addition shows it

is possible to add LEMNOS/OPSAID suggested programs within the embedded

Linux installation making access to the device easier and more secure.

The VPN server program, PeerVPN 0.023, is open source and distributed in

C. It was compiled on the Ubuntu testing machine using the standard GCC

compiler configured to cross compile for the target architecture. A configuration

40

file is also necessary for the program to run successfully. This is configured from

the test machine. The program and config file are then entered into the static

Linux image and can be run from the Linux environment.

The Linux image used in this experiment contains a basic root file system

structured as a standard Linux operating system, known as “/”. Programs that

need to accessed by Linux must be located in this file system. It was decided

that any added programs would be put in the folder located at “/bin” which is

already included in the root users “path” so that it can be called from the

command line without added navigation through the file system. Almost all of the

commands available to the root user are located in the “/bin” directory, or

included as a symbolic link if they are elsewhere located. This is standard

practice in Linux environment configuration.

To add an item to the “/bin” directory in the already preconfigured image

requires one of two processes; either the entire image is recreated for the target

architecture using a program called Bitbake for embedded systems and testing,

or the image must be unpacked, modified, and repacked in a format that Linux

will recognize. The first process was initially tested, however several of the

source servers for Bitbake (of which there are 165) were consistently

unavailable. This made compiling Bitbake for testing impossible, causing this

process to be abandoned for the second option of unpacking and manually

modifying the image.

41

The image is packed in a CPIO image. Using the CPIO tool in Linux, it is

possible to unpack the image into a directory. The compiled program and

configuration file can then be moved to the “~/image/bin” directory if the image

directory is located in the users home directory. It is necessary to copy the VPN

program with root privileges, as all of the image directory will have root only

access rights and a normal user will be unable to add programs. This can be

done from the command line by tediously typing the directories out or from a

GUI program if the test machine has a program file exploring program with root

access. The Ubuntu test machine does not have such a program, but if the user

is comfortable on the command line it should not be a problem. Almost

everything, including programming, in this experiment was done from the

command line. After the program is successfully copied to the images binary

directory, the image can be repacked. Repacking is slightly more difficult than

unpacking, it must be done with root access rights, find all files recursively in all

subdirectories, and be put into “newc” format. Using the MAN pages of the CPIO

command will instruct the user how to pack into the “newc” format required for a

Linux image. The format for images was not documented anywhere for SEL4,

but was discovered later when images refused to boot. The provided static

image for use with the Wombat Linux kernel was received with no

documentation or explanation for modification.

With a successfully modified file system image, the system can be

instructed to MAKE the wombat supervisor, timing server, and use Dite to

42

package them both along with the microkernel and the file system image just

created. The location of the image is specified in the make file for the whole

wombat image. The microkernel image will be made and can be booted similarly

to the IPC image in the previous section, by placing it in memory accessible from

the GRUB boot loader.

Once the microkernel has finished setup and boots the paravirtulized Linux

kernel, the Linux kernel will find the root file system and leave the user at a login

prompt. The only user in the Wombat kernel is “root”. Once logged in, the user

is left at a standard BASH command prompt. The “PeerSVN” program can then

be accessed by calling it directly from the command line. It will start and leave

the server waiting for a connection on the loopback Ethernet device.

Linux VPN Client

Running a VPN server on the field device is useful if it is a primary SCADA

device, however if it is used for collection and sensors it may have to respond to

an outside server for instruction and reporting. In this case, it would be

necessary for the device to contain a VPN client to connect to the main servers

VPN server to create a secure connection.

Similar to the previous section, an open source VPN client package was

cross compiled for the target device and configured. It was then placed in the file

system image exactly as the VPN server was implemented. This yielded

successful results proving that both client and server programs may be ran on

43

the device as required. A successful VPN connection was not tested for the

experiment, but the client ran and reported correctly. It is believed that the client

is fully functional, but more testing is required to make certain that it was

implemented correctly and can be used to create a secure connection from the

device to an OPSAID server.

Linux IPC Program

An IPC program was written to be operated from within the Linux

environment, in hopes of testing cell to cell communication between two Linux

Wombat kernels operating in separate cells. The SEL4 API library was completely

modified to allow it to compile a standard Linux application. The modification of

the SEL4 library was successful from a compilation standpoint, however the

microkernel has denied access to many of these functions from higher operating

systems. The software was written similar to the IPC cell program, it would send

an IPC message to the register specified for the target architecture and then try

to read the message.

The program was successfully compiled and placed into the Linux image via

the same process listed in the previous two sections. The system was then

booted and the program was tested. The timing functions, being that the

program is now in an environment with proper time and clock functions using the

Linux timing server, now work as expected. The IPC message is sent, but the

microkernel responds with an message interpreted as an access denied error and

the read function finds a 0 instead of the intended message. It is believed that it

44

is impossible to access microkernel functions from within Linux, at least not by

the method described above. Little help could be found on the subject and the

Linux IPC cell to cell experiment was abandoned. The code, along with all other

custom code for the experiment can be found in the appendix.

45

CHAPTER VI

Conclusion

This thesis demonstrated the design, implementation, and testing of a

secure field device based on a verified microkernel. The SEL4 microkernel and

software can be implemented on real hardware and further tested using the

previous chapters as a guide for set-up and software configuration. It is hoped

that this research and experimentation has built the foundation for a more

secure device.

Summary

The virtual prototype presented in this thesis has shown that a secure,

memory isolated field device can be implemented. Using open source software,

the device can be affordable and configured for any data collection or control

device. The OPSAID system requirements can be met or exceeded without any

additional hardware. The x86 hardware architecture used in the prototype could

be ported to ARM without much difficulty using similar methods to the building

and compiling of the current x86 system.

The security software implemented in the current design shows that nearly

any necessary software can be implemented as well. If the secure rules outlined

in Chapter II for communication are followed most software could be ported to

the device. It was shown that programs can be compiled for either the higher

Linux operating system or to run directly on the microkernel for an efficient and

46

secure program with its own isolated memory space. Programs were created for

and tested in both the Linux environment and directly on the microkernel.

It was observed that if the security program required any outside libraries,

or was not fairly straight forward to implement, that it was much less labor

intensive to create the program for the Linux environment. The microkernel

libraries are limited and incomplete in some places such as access to any sort of

clock or timer. Programs created to run in their own cell directly on the

microkernel should have a specific intended purpose and perform that purpose in

the simplest possible way to avoid creating security bugs. Only security critical

processes, or those that require direct hardware access, should be implemented

in their own cells. A program or process that is convoluted and has additional,

unnecessary features would be best placed in the Linux environment. The Linux

system offers a full-fledged operating system API for a virtualized set of

hardware and interaction with the operating system. This allows for less

challenging programming and cross compilation.

The programs tested performed well for their intended functions. The two

VPN programs compiled for the Linux environment show that a secure device can

be used as both a client and a server device; this shows the flexibility of the

security software. Most standard Linux applications could be compiled for the

device. The VPN software was standard open source software available freely on

the Internet for use in any Linux system, opening the door for any security

application available to be implemented in the device. The microkernel

47

application was a modified version of the multi-threaded IPC example included

with the SEL4 microkernel. Until it become a standard architecture, it is unlikely

that an implementation of this device would be able to make use of off-the-shelf

software for single purpose secure cells. These cells would have to be custom

created for the purposes of the device, but it was shown that the software can

function in a private cell. The limitations of these security cells are determined by

the hardware, the microkernel API, and the creativity of the programmer.

Future Research

There is a great need for a secure field device. This experiment and the

prior work is a great start, but there is still much to be done. The road to an

effective security device is not a short one. With small strides, each contributing

researcher is moving the field ahead, with the goal being a completely secured,

inexpensive field device with interchangeable security programs and a

standardized design.

If this experiment were to continue there are a few things that should still

be tested. The most important next step is implementing the device in real

hardware. The virtualized environment worked great for the experiment, but it

would be a leap forward to actually create the device in a useable state. A

generic x86 computer was used for hardware testing, but the output was garbled

for some reason. This was not a problem on the virtual console. For the design

presented in the previous chapters to be useful it would have to be shown to

work on hardware.

48

Further research into the current design of this device should also test cell

to cell IPC messages. The prototype described in chapter V showed IPC

communication in a single cell between multiple threads. This is a great start for

microkernel secure communication, but is not of much use without continuing

experimentation. For IPC to be useful, it needs to be used to communicate

between memory isolated processes as it was intended. Preferably, the device

would communicate between two dedicated security cells that had a purpose

other than testing the IPC; for instance, the firewall cell would successfully send

messages to and authentication cell.

It was not determined whether it was possible for the Linux environment to

communicate with outside cells using IPC. If this is possible, two wombat Linux

cells should be created side by side as detailed in chapter V, but have an

additional IPC application to communicate with one another. It would be

beneficial to the device to have multiple Linux environments for the programs

that require Linux libraries to still be isolated, but be able to communicate with

each other and all of the other secure cells directly on the microkernel. Two

wombat images were designed and tested during the experiment, but the IPC

communication could not be shown to function correctly inside the Linux

environment.

The software used in the experiment should be ported to the ARM

architecture. It seems common for SCADA devices to use ARM processors for the

price and power consumption. The SEL4 microkernel is available on both ARM

49

and x86. It would be beneficial to test all of the software on both systems to

reach the greatest possible audience for the secure device. This should not be a

difficult task, but was not included in the experiment due to time constraints.

Finally, the device should be thoroughly tested for vulnerabilities. Unless all

of the software on the device is tested, the device cannot truly be considered

secure. It should be reasonable to assume that any intrusion into a single cell

should not compromise the other software, but that is no reason not to test each

component individually.

50

References

[1] Rautmare, S.; , "SCADA system security: Challenges and
recommendations," India Conference (INDICON), 2011 Annual IEEE , vol.,

no., pp.1-4, 16-18 Dec. 2011

[2] V. Igure, “Taxonomies of attacks and vulnerabilities in computer

systems,” Communications Surveys & Tutorials,, pp. 6-19, 2008.

[3] Langner, R.; , "Stuxnet: Dissecting a Cyberwarfare Weapon," Security &
Privacy, IEEE , vol.9, no.3, pp.49-51, May-June 2011.

[4] S. A. Hurd, J. E. Stamp, and A. R. Chavez, “OPSAID Initial Design and
Testing Report,” Department of Energy, 2007.

[5] B. P. Smith, J. Stewart, R. Halbgewachs, A. Chavez, R. Smith, and D.
Teumim, “Cyber Security Interoperability - The Lemnos Project,” 53rd
Annual ISA Power Industry Division Symposium, 2010.

[6] R. I. Mutia, “Evaultaion and Analysis of OKL4-Based Android,” Lund
University, 2009.

[7] W. Chengjun, “Research on the Microkernel Technology,” in 2009
Second International Workshop on Computer Science and Engineering,

2009, pp. 199-202.

[8] J. L. Hieb and J. H. Graham, “Designing Security-Hardened Microkernels
For Field Devices,” in Critical Infrastructure Protection II, M. Papa and S.
Shenoi, Eds. Boston, MA: Springer, 2009, pp. 129-140.

[9] J. H. Hieb, J. H. Graham, and B. Luyster, “A Prototype Security
Hardened Field Device for Industrial Control Systems,” in Proceedings of the
International Conference on Advanced Computing and Communications,
2010, pp. 95-100.

[10] J. Liedtke, “Improving IPC by kernel design,” ACM SIGOPS Operating
Systems Review, vol. 27, no. 5, pp. 175-188, Dec. 1993.

[11] OK Labs, “OKL4 Microkernel Reference Manual,” no. 12, 2008.

[12] G. Klein, “The L4 . verified Project — Next Steps,” Verified Software:
Theories, Tools, Experiments, 2010.

51

Appendices

The appendices section contains the build configurations for the SEL4

microkernel system and any custom code developed and used during the

experiment. Any code not included was not used to collect data, not original to

this thesis, or a derivation of included code too similar to require a separate

attachment.

Build Configurations

Config.mk

This file contains build configuration variables

Architecture and platform to build for
export ARCH?=ia32
export PLAT?=pc99
export CFLAGS=-fno-stack-protector
#export ARCH?=arm
#export PLAT?=imx31

Comment out the line below to build a non-debug kernel and userland
export SEL4_DEBUG_KERNEL=1

Compile in IOMMU functions
export IOMMU=1

Tell the build where the toolchain is
ifeq ($(ARCH),arm)
export TOOLPREFIX=arm-oe-linux-gnueabi-
export TOOLSUFFIX=
CROSSBINPATH=opt/arm-2010.09/bin
DITEPATH=${PWD}/../tools/dite/build
else
export TOOLPREFIX=i386-unknown-elf-
export TOOLSUFFIX=
CROSSBINPATH=/home/kevin/x-tools/i386-unknown-elf/bin
DITEPATH=${PWD}/../tools/dite/build
endif

Sanity check the toolchain to ensure it really does exist.
ifeq($(strip$(wildcard${CROSSBINPATH}/${TOOLPREFIX}gcc${TOOLSUFFIX})),)
$(error "Could not find your toolchain. Please check your 'config.mk'.")

52

endif

Capability dumps (used by the CapDL Extrator tool) go out on this second
serial port.
export SEL4_CMDLINE="debug=0x2f8"

Tell the build where Wombat's prebuilt root filesystem image (in "cpio"
format) is located. If a root filesystem image is not provided, wombat
will panic on boot. A full path must be specified.
ROOTFS=${PWD}/misc/image.cpio

The Linux config file. These are found in source/wombat and are named
similarly.
LINUX_CONFIG=sel4linux_config_ia32

The supervisor config file. There are found in:
source/wombat-supervisor/include/wombat-supervisor/configs/
SUPERVISOR_CONFIG=system_one_wombat

system_two_wombats.h

#ifndef _SYSTEM_TWO_WOMBATS_H_
#define _SYSTEM_TWO_WOMBATS_H_

void assemble_system(void)
{
 enum device_name wombat0_devices[] = {
 HARDWARE_NIC_0, HARDWARE_CONSOLE, 0};
 enum device_name wombat1_devices[] = {
 HARDWARE_NIC_1, HARDWARE_CONSOLE_NO_IRQ, 0};

 /* Setup a timer server, and two wombats. */
 struct component *timer = register_timer_server_component(
 DEFAULT_TIMER_SERVER_PRIO);
 struct component *wombat0 = register_wombat_component(
 0, "rdinit=/sbin/init wombat0", wombat0_devices, 200,
 DEFAULT_WOMBAT_PRIO);
 struct component *wombat1 = register_wombat_component(
 1, "rdinit=/sbin/init wombat1", wombat1_devices, 200,
 249);

 /* Connect the timer server to the wombats. */
 SYSTEM_CONNECTIONS[0] = (connection_t)
 {timer, wombat0, VIRTUAL_IRQ, {.irq=0}, seL4_CanWrite,
seL4_AllRights};

53

 SYSTEM_CONNECTIONS[1] = (connection_t)
 {timer, wombat1, VIRTUAL_IRQ, {.irq=0}, seL4_CanWrite,
seL4_AllRights};
};

#endif /* _SYSTEM_TWO_WOMBATS_H_ */

Custom Code

main.c (for IPC Cell)

#include <stdio.h>
#include <sel4/sel4.h>
#include <sel4/bootinfo.h>
#include <assert.h>

#include <sel4/sel4.h>
#include <sel4/arch/syscalls.h>

#include <iwana/interrupts.h>
#include <iwana/boot_data.h>
#include <iwana/timer_server.h>

#define STACK_SIZE (1 << seL4_PageBits)
static seL4_CPtr ipc_endpoint = 0;

#define MASK(x) ((1<<(x))-1)

//The new thread will begin executing this function
static void my_other_thread(void) {
 printf("\nHello World, this is \"%s\"\n",__FUNCTION__);

 //Create a message tag that specifies that the first message
 //register should be transferred when an IPC message is sent
 seL4_MessageInfo tag = { {.length = 1} };
 seL4_Word mr0 = 0;

 //Loop forever calling the endpoint
 while(1){
 printf("%s: Sent message %d of length %d to endpoint %p.\n\n",
 __FUNCTION__,
 mr0,
 tag.length,
 (void *)ipc_endpoint);

54

 //Set the contents of the first message register.
 seL4_SetMR(0,mr0);
 //Make the call
 tag = seL4_Call(ipc_endpoint,tag);
 //Get the contents of the first message register. This was
 //transferred from the thread that replied to the call.
 mr0 = seL4_GetMR(0);

 printf("%s: Received message %d of length %d from endpoint %p.\n",
 __FUNCTION__,
 mr0,
 tag.length,
 (void*)ipc_endpoint);

 mr0++;
 }
}

int main(void) {

 //Get a pointer to the bootinfo structure from libsel4
 seL4_BootInfo* info = seL4_GetBootInfo();
 unsigned int i;

 printf("\n IPC Test\n\n");

 //Find the first free slot in the CSpace
 printf("Finding the first free slot in the CSpace...");
 seL4_CPtr free_slot = 0;
 for (i = 0; i < info->regionCount; i++) {
 if(info->regions[i].type == seL4_Region_FreeSlots){
 free_slot = info->regions[i].base;
 printf("found at %p.\n", (void *)free_slot);
 break;
 }
 }
 assert(i != info->regionCount);

 //Find the first empty region in the CSpace
 printf("Finding the first free empty in the CSpace...");
 seL4_CPtr empty_slot = 0;
 for (i = 0; i < info->regionCount; i++) {

55

 if(info->regions[i].type == seL4_Region_Empty){
 empty_slot = info->regions[i].base;
 printf("found at %p.\n", (void *)empty_slot);
 break;
 }
 }
 assert(i != info->regionCount);
 seL4_Word vaddr = empty_slot;

 //Find the first small block cap
 printf("Finding the first Small Block (4K Untyped Capability) ...");
 seL4_CPtr four_k_untyped = 0;
 for (i = 0; i < info->regionCount; i++) {
 if(info->regions[i].type == seL4_Region_SmallBlocks){
 four_k_untyped = info->regions[i].base;
 printf("found at %p.\n",(void *)four_k_untyped);
 break;
 }
 }
 assert(i != info->regionCount);

 //Retype the a small block to a TCB
 printf("Retyping small block to a TCB...");
 seL4_Untyped_Retype_t rresult = seL4_Untyped_Retype(
 four_k_untyped,
 seL4_TCBObject,
 0,
 seL4_SelfCSpace,
 free_slot >> seL4_PageBits,
 seL4_WordBits - seL4_PageBits,
 free_slot & MASK(seL4_PageBits),
 1);
 printf("created %d cap(s) at %p.\n",rresult.result,(void*)free_slot);
 seL4_CPtr thread_TCB = free_slot;
 assert(!rresult.error);

 //Go to the next small block and the next free slot
 four_k_untyped++;
 free_slot++;

 //Retype the small block into an endpoint object
 printf("Retyping small block to an endpoint object...");
 rresult = seL4_Untyped_Retype(
 four_k_untyped,

56

 seL4_EndpointObject,
 0,
 seL4_SelfCSpace,
 free_slot >> seL4_PageBits,
 seL4_WordBits - seL4_PageBits,
 free_slot & MASK(seL4_PageBits),
 1);
 assert(!rresult.error);
 printf("created %d cap(s) at %p.\n",rresult.result,(void*)free_slot);
 ipc_endpoint = free_slot;

 //Go to the next small block and the next free slot
 four_k_untyped++;
 free_slot++;

 //Retype the small block into a 4K frame for the IPC buffer
 printf("Retyping small block to an 4K frame...");
 rresult = seL4_Untyped_Retype(
 four_k_untyped,
#ifdef IA32
 seL4_IA32_4K,
#else
 seL4_ARM_SmallPageObject,
#endif
 0,
 seL4_SelfCSpace,
 free_slot >> seL4_PageBits,
 seL4_WordBits - seL4_PageBits,
 free_slot & MASK(seL4_PageBits),
 1);
 assert(!rresult.error);
 printf("created %d cap(s) at %p.\n",rresult.result,(void*)free_slot);
 seL4_Word four_k = free_slot;

 printf("Mapping 4K frame (%p) to free vadd (%p).\n", (void *)four_k,
(void*)empty_slot);
#ifdef IA32
 int result = seL4_IA32_Page_Map(
#else
 int result = seL4_ARM_Page_Map(
#endif
 four_k,
 seL4_SelfVSpace,
 empty_slot,

57

 seL4_AllRights,
#ifdef IA32
 seL4_IA32_Default_VMAttributes);
#else
 seL4_ARM_Default_VMAttributes);
#endif
 assert(!result);

 //Set up new thread's IPC buffer
 printf("Setting up IPC buffer on new thread...");
 result = seL4_TCB_SetIPCBuffer(
 thread_TCB,
 vaddr,
 four_k);
 assert(!result);

 //Set up the VSpace and CSpace on the new thread
 printf("Setting TCB CSpace and VSpace..");
 result = seL4_TCB_SetSpace(
 thread_TCB,
 0,
 seL4_SelfCSpace,
 seL4_NilData,
 seL4_SelfVSpace,
 seL4_NilData);
 assert(!result);

 //Write the registers of the new thread.
 //This sets a new thread running at the
 //default priority
 printf("Starting up new thread...");
 static char stack[STACK_SIZE];
#ifdef IA32
 seL4_UserContext frame = {.regs = {.eip = (unsigned int)my_other_thread,
.esp = (unsigned int)&stack[STACK_SIZE] }};
#else
 seL4_UserContext frame = {.regs = {.pc = (unsigned int)my_other_thread, .sp
= (unsigned int)&stack[STACK_SIZE] }};
#endif
 result = seL4_TCB_WriteRegisters(
 thread_TCB,
 true,
 0,

58

 sizeof(seL4_UserContext) / sizeof(seL4_Word),
 &frame);
 assert(!result);

 //Wait for someone to send us an IPC
 seL4_Word sender_badge = 0;
 printf("%s: Waiting on IPC...\n",__FUNCTION__);
 seL4_MessageInfo tag = seL4_Wait(ipc_endpoint, &sender_badge);
 seL4_Word mr0 = seL4_GetMR(0);
 printf("%s: Recv'd message %d of length %d from endpoint %p.\n",
 __FUNCTION__,
 mr0,
 tag.length,
 (void *)ipc_endpoint);

 //Repeat the cycle three times
 for(i = 0; i < 250000; i++){
 //Reply to the IPC and wait for another
 seL4_SetMR(0,++mr0);
 printf("%s: Sent message %d of length %d to endpoint %p.\n\n",
 __FUNCTION__,
 mr0,
 tag.length,
 (void *)ipc_endpoint);

 tag = seL4_ReplyWait(ipc_endpoint,tag, &sender_badge);
 mr0 = seL4_GetMR(0);

 printf("%s: Recv'd message %d of length %d from endpoint %p.\n",
 __FUNCTION__,
 mr0,
 tag.length,
 (void *)ipc_endpoint);
 }

 printf("\nDone.\n\n");
 return 0;
}

ipc.c (IPC inside Linux)

#include <stdio.h>
#include <time.h>

59

#include "sel4/sel4.h"
#include "sel4/bootinfo.h"
#include <assert.h>

int main(void)
{
 time_t now;
 time(&now);

 printf("%s", ctime(&now));

 printf("\nHello World, this is \"%s\"\n","testipc");

 //Create a message tag that specifies that the first message
 //register should be transferred when an IPC message is sent
 seL4_MessageInfo tag = { {.length = 1} };
 seL4_Word mr0 = 129;

 printf("%s: Sent message %d of length %d to endpoint %p.\n\n",
 "test2",
 mr0,
 tag.length,
 (void *)0x0000006d);

 //Set the contents of the first message register.
 seL4_SetMR(0,mr0);
 //Make the call
 tag = seL4_Call(0,tag);
 //Get the contents of the first message register. This was
 //transferred from the thread that replied to the call.
 mr0 = seL4_GetMR(0);

 printf("%s: Received message %d of length %d from endpoint %p.\n",
 "test3",
 mr0,
 tag.length,
 (void*)0x0000006d);

 return 0;
}

	Microkernel security evaluation.
	Recommended Citation

	tmp.1423685735.pdf.toIRH

