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Abstract 

This thesis documents the successful development and testing of a more 

secure industrial control system field device architecture and software. The 

implementation of a secure field device has had limitations in the past due to a 

lack of secure operating system and guidelines. With the recent verification of OK 

Labs SEL4 microkernel, a verified operating system for such devices is possible, 

creating a possibility for a secure field device following open standards using 

known security protocols and low level memory and functionary isolation. The 

virtualized prototype makes use of common hardware and an existing secure 

field device architecture to implement a new level of security where the device is 

verified to function as expected. The experimental evaluation provides 

performance data which indicates the usefulness of the architecture in the field 

and security function integration testing to guarantee secure programs can be 

implemented on the device. Results of the devices functionality are hopeful, 

showing useful performance for many applications and further development as a 

fully functional secure field device. 
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Chapter I 

Introduction 

This thesis documents the design, development, and testing of security 

software in a secure microkernel device. The device could alter the way industrial 

control system field devices are currently implemented, adding many layers of 

additional security to common devices without the need for hardware upgrades 

by using a modern architecture system and open source security software. The 

software tested will be shown to have more secure access to other devices, its 

own hardware, networking resources, and communication between its own local 

software. 

Field devices are a critical component of industrial control systems. They 

are used in many industries, especially utilities, and historically these devices 

have lacked cyber-security features. In the past, physical access to the device 

was necessary to attack it; in the last decade there have been networking 

advances that allow high speed networking to almost any location, no matter 

how remote. Advances currently available for devices, previously isolated, mean 

many of them now have remote access and are connected to the Internet. Field 

devices and subsequently industrial control systems are vulnerable to malicious 

attacks that could damage their physical systems and have serious 

environmental impacts, without additional security. 
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Added security to the networking interface of field devices is not enough. A 

separate hardware firewall could be added to deter attackers, but this raises 

additional hardware costs, another device to support, and does not 

comprehensively secure the device. It is suggested that the device must be 

secured from every logical point of attack, not just the network interface. The 

device must be secured from physical access via its own terminal or directly 

connected serial programming devices, from unwanted network access by a 

firewall or other discriminating software for both outward and inward 

communications, and the device must be secured from its own internal software 

that may have been modified for malicious intent. 

A secure device would be an unreasonable goal without guarantee of 

secure software. This starts at the most basic level of operation; the device 

kernel. A secure microkernel for which to build the other software systems is a 

requirement for the entire project. A verified correct microkernel exists for the 

use in a more secure experiment. The SEL4 microkernel has been formally 

verified and will be used for the experiment. The kernel is open source and is 

able to be modified if necessary. However, any modifications will not be verified 

and therefore should be avoided if at all possible. 

This thesis presents a review of literature and research related to this 

experiment. Chapter II details the extent of the literature review describing the 

architecture of the system based on previous work, the security features hoping 

to by implemented in the system, and the microkernel used. Chapter III 
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discusses the design architecture of the build system, a more in-depth analysis of 

the security features necessary of a secure device, and the use of memory 

isolation in the secure microkernel. Chapter IV is an overview of the experiment 

and how it was designed, showing the operation of the system and the 

implemented software. It details the use of the software and how it should be 

implemented to best secure the device. Chapter V shows the software that was 

implemented before the end of the experiment, testing, performance, barriers 

overcome through the experimentation process, and how software verification 

might be used to complete the project. The final chapter explains the outcomes 

of the experiment, presents conclusions drawn about the project and secure 

devices, and indicates future research and experimentation directions that may 

be beneficial for the project.  
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Chapter II 

Literature Review 

SCADA Security for Field Devices 

SCADA (Supervisory Control And Data Acquisition) systems are currently 

vulnerable to cyber-security attacks. Many SCADA systems are insecure by 

today’s Internet standards; they have chronic and pervasive vulnerabilities [1]. 

Many of the current efforts in security assessment involve searching for known 

vulnerabilities [2]. Computer controlled systems should be subjected to scrutiny 

and this is often ignored at the management level. With the upgrade of electrical 

grids (smart grids); transportation systems; and water distribution systems; now 

is the time to upgrade the security scheme as well. [1] 

Field devices are small embedded computers running their own operating 

system, discussed in a later section. The recent Stuxnet attack shows the 

importance of securing these devices [3]. SCADA devices control major 

processes in utilities and industry. An attack on these systems could be 

devastating. Hijacking of SCADA and field devices can disrupt processes and shut 

down utilities. In some systems, a simple technique known as SQL injection can 

be a successful weapon. This is inadequate protection and needs to advance as 

devices join IP networks.  

SCADA systems can have remote vulnerabilities, but can also be affected by 

inside users that are trained improperly or are malicious. Only authorized 
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personnel should have access to the interior features of the devices. This shows 

a need for IP security (firewalls), authentication, secure remote access, and 

intrusion detection without a significant cost upgrade for vendors. [1] 

OPSAID 

OPSAID (Open PCS Security Architecture for Interoperable Design) is a 

program intended to overcome security issues in the short term for SCADA 

devices. PCS (Process Control Systems) weren’t designed with adequate regard 

for security issues. Communication was typically through serial links at a single 

location segregated from the outside network. As industry has evolved, so has 

the need for remote control and diagnostics of systems. PCS devices are now 

moving to using TCP/IP as the standard communication and off the shelf 

software for their firmware. Without an added layer of security, anyone with 

knowledge of the widely used software can control the system. Typical IT 

systems incorporate secure event logging, authentication, and firewall services; 

PCS rarely uses any of these.  

The OPSAID project was designed to address security issues using 

established and available IT standards for a corporate network. Using mini-itx 

computers and the open source Linux operating system Ubuntu, the project has 

confirmed that it is possible and cost effective to build a more secure PCS field 

security appliance using open source software with thorough testing. OPSAID is 

not meant to be a standard for security, as networks and security needs will 

change in the future. An “all or nothing” standard is inappropriate. The purpose 
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is to provide a roadmap and proof of concept for vendors to address their own 

security issues and maintain interoperability with other OPSAID components. [4] 

The security features in the OPSAID implementation include: 

 Virtual Private Networking/Encryption 

 Firewall Services 

 Network Intrusion Detection Systems 

 Host Intrusion Detection Systems 

 Event Logging 

 Event Database Storage, Alert Generation & Visualization 

 End-device Configuration Session Logging 

 Authentication 

 Device Management [4] 

LEMNOS 

The Lemnos project was built upon the OPSAID projects component 

modules for interoperability. The purpose of the project is to output artifacts 

referred to as Interoperable Configuration Profiles. The asset is defined by the 

needs of the owner, both functionality and security. The Lemnos approach is 

focused on interoperability for secure modules. Much like the OPSAID project, 

Lemnos is built on open source software, but allows for “best in class” cyber 

security solutions for various points in their infrastructure. [5] 
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Microkernel Architecture 

A kernel is the lowest level of software abstraction on hardware. Its duties 

include managing system resources and connecting applications to actual data 

processing on the hardware level. In a monolithic kernel device drivers, file 

systems, and many other features are a part of the operating system kernel. 

These services require privileged access to system resources, usually access to 

physical memory , and only kernel code can accesses these resources. 

In microkernels, most of the features, such as device drivers, file IO, etc. 

are implemented outside of the privileged mode of the processor. This allows for 

improved security since these software services are limited to only specific 

resources. The drawback of this approach is performance. A microkernel will 

implement the smallest set of operations and abstractions in the kernel and the 

drivers, file systems, and other functions in user-space. [6] 

Microkernel History 

In monolithic kernel design, programs in the kernel can access any 

resources the kernel has access to, all of the physical memory. They are 

“trusted” not to violate their memory boundaries. This structure grew beyond 

usability as operating systems grew to enormous proportions. To help calm this 

growing beast in kernel space, layered operating systems were developed. 

Modular programming techniques helped to handle the scale of software 

development. Functions in layered operating systems are organized in a structure 
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to allow communication and interaction between adjacent layers only. Still, most 

layers were implemented and executed in kernel mode. 

The layered approach, shown in Figure 2.1, helped simplify programming 

and the size of the kernel, but each layer possessed a great deal of functionality. 

A change in one layer could cause undesirable effects in adjacent layers, difficult 

to trace bugs, and numerous other problems. The interaction between these 

layers made it exceptionally difficult to build in security due to every layer being 

able to access all functions of the adjacent layers. A bug in one layer could allow 

malicious code to gain control of the hardware or disrupt operation of the device 

entirely. 

 

Figure 2.1: Layered kernel architecture [7] 
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The microkernel was created under the philosophy that only the essential 

functions of the operating system were implemented in the actual kernel. Less 

essential functions and applications are built on top of the microkernel. These 

functions operate in user mode as opposed to the more secure kernel mode. 

There is no concrete rule as to what is essential and should be compiled into the 

kernel, but the common definition is for most services that were previously part 

of the operating system are now external to the kernel as a separate module or 

subsystem that interacts with the kernel and with each other; these services can 

include security services, windowing systems, virtual memory managers, file 

systems, and device drivers. [7] 

Microkernel Design 

The design of a microkernel is implemented to solve some of the problems 

mentioned in monolithic kernels and layered operating systems mentioned 

above. A microkernel architecture is a horizontal implementation of the 

abstraction system, as opposed to the vertical model of a layered architecture. 

All operating system components external to the microkernel are implemented as 

server processes that interact with one another on a peer basis in user mode, 

shown in Figure 2.2. To communicate, typically they will send messaged through 

the microkernel via IPC calls. This allows bugs and unintended actions to be 

more easily traced since layers are not talking to each other, but instead can only 

interact by way of loggable messages through the microkernel. This allows for a 

higher level of security, accountability, and more controllable operation. 
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Figure 2.2: Microkernel architecture [7] 

The microkernel is required to act as the message exchange between the 

user mode components. The microkernel will validate the messages, relay them 

to the user mode recipients, and grants access to hardware. The microkernel 

adds extra security by performing message transfers through a protection 

function; it prevents messages from being passed unless exchange between the 

components is allowed. This prevents hijacking of drivers or other system 

resources by unauthorized components. This is a client/server architecture within 

a single computer, where each component can be thought of a peer client on a 

network and they can only transmit messages, which can be filtered, through the 

server. These messages can be sent to other components and request the 

primitive functions compiled into the microkernel. 
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Microkernel design creates a uniform interface for processes to make 

requests. A component does not need to make a distinction between kernel-level 

and user-level services as all requests will be processed by the kernel. This 

allows for easy extensibility; newer components or modules can be installed on 

the microkernel to allow for the use of newer hardware, alternative file systems, 

and new software techniques come to light. Allowing a modest microkernel to be 

programmed once and used even after computer upgrades or software 

technologies change. The upgraded services do not require all the services to be 

updated. 

A Microkernel architecture is more efficient by design. Components can be 

easily removed for a smaller footprint or replaced for a system lacking powerful 

hardware. The memory manager can be easily replaced to deal with small 

amounts of RAM and a lack of swap space if the hardware requires it. [7] 

Microkernels for Secure Field Devices 

Field devices connect sensors, actuators, and other input/output peripherals 

to a control network. This provides remote measuring and control capabilities. 

These devices must be secured to avoid unauthorized control of utilities and 

other applications. The security of these devices directly reflects to the safety of 

the operators and everyone involved with the use of the utility. Unauthorized 

access to field devices can also cause massive physical damage to expensive 

equipment. 
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To secure field devices, the microkernel controlling the hardware has to be 

secure. No device is impenetrable, but care can be taken to make it as difficult as 

possible. This was less necessary when devices were on isolated networks; many 

devices are now accessible via the Internet and therefore must the security 

scheme must change. Modern secure microkernels employ isolated partitions,  

each with its own isolated memory and contact to other hardware, software, or 

instrumentation; This is referred to as the partitions protection domain. This 

protection domain allows for software of varying levels of security to be 

decoupled from the microkernel and other less secure applications. [8] 

A microkernel for a secure field device will compartmentalize components 

and allow the trusted computing base (TCB) to consist of only the kernel and 

trusted security-critical code in kernel mode. All other applications reside in user 

mode with limited access to the secure areas of the device. The microkernel will 

determine what trusted resources can be accessed from these less secure 

compartments and only allow access to security critical code or data when 

absolutely necessary, all through IPC calls to the kernel [9]. This small amount of 

secure code and the small size of the kernel allow for the code to be thoroughly 

checked for possible errors and unintended operation, even allowing for 

mathematical proof of the code’s operation. [8] 

OKL4 Microkernel 

To use a microkernel for security purposes, the IPC must be fast and 

efficient or else other process communications might be used, bypassing the 
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security of the kernel. Most microkernels exhibit poor IPC performance. The L4 

microkernel is built to improve the IPC performance of L3 and other pre-existing 

microkernels [10]. 

The OKL4 microkernel was designed by OK Labs as a highly flexible, high 

performance microkernel. Providing a minimal layer of hardware-abstraction on 

which modules can be built. Each component is isolated in the system from 

programming errors or malicious code introduced to the system by other 

components. A feature is only implemented in the kernel if it was impossible to 

provide the service outside of the microkernel with the same level of security. 

OKL4 provides a trust and security implementation using hardware and 

software mechanisms to enforce security. The API provides time, 

resource/memory, communication protection, and fault isolation. Using address 

space control and IPC for each component or thread to communicate the kernel 

can create separate memory spaces for each component that are independent of 

one another. These cells are completely isolated and can only communicate 

through IPC.  Each call is verified through the security model that the component 

has access rights to the hardware, data, or other component it is trying to 

communicate with, therefore containing malicious code or activity to an 

individual cell. [11] 
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SEL4 Microkernel 

SEL4 is a mathematically verified version of the OKL4 microkernel. Since the 

microkernel is the only part of the operating system that executes in the 

privileged mode of the hardware, there is no protection from faults occurring in 

the kernel. Every bug could potentially cause physical damage. The kernel is a 

major part of the TCB that can bypass security. 

Using an interactive, machine-assisted and machine-checked proof the SEL4 

microkernel was formally verified. This does not mean it is necessarily secure, 

but that it has been mathematically verified that the C code operates specifically 

as the kernel should behave. The verification was run on the C code itself. 

Therefore, the kernel itself is not verified, but the code that it was compiled from 

was verified to operate as specified. To declare the kernel as verified, one must 

also assumed the correctness of the C compiler, linker, assembly code, 

hardware, and boot code. [12] 
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Chapter III 

System Design 

It is shown in Chapter II that operating system security in field devices 

cannot be guaranteed. To help deal with this issue, the microkernel was 

designed as a horizontal approach to abstraction based on modules instead of a 

layered monolithic kernel approach. This allows the kernel to segregate memory 

and permissions based on the needs of the module and can help unwanted 

access by a corrupt piece of software from accessing all areas of the device.  

The SEL4 microkernel is designed and verified as correct, and operates 

discussed in Chapter II. The experiment is designed around the SEL4 microkernel 

to determine speed in which communication can be achieved between processes 

in a secure environment. 

Security Model 

The security for this project is based off the OPSAID [4] security project 

discussed in Chapter II. The several aspects of field device security provided by 

OPSAID are listed below and their relevance to the project is stated. Using these 

security upgrades for field devices the security and performance of devices can 

be tested. 

Virtual private networking and encryption is necessary in modern devices. 

Any device operating on the Internet should be located behind a firewall 

preventing unwanted access. To enter these networks and gain full access to 
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their resources it is necessary to virtualize a private network. A private network is 

intended to be used only by the devices physically connected to the local 

network, where security should be less of a concern. These networks were 

common before the Internet. Now, with the invent of virtualized networking, it is 

possible to encrypt a tunnel into a network and allow remote devices to be 

included in a private network. Only devices on the private, hopefully encrypted, 

network are authorized to communicate with the device. This does not need to 

be supported by the device directly, but by some gateway device on the 

network, although, it can be internalized to the device as it is in the OPSAID 

project. 

Firewall services are included in the OPSAID standard architecture. A 

firewall is a software tool used to deny communications from certain processes, 

programs, ports or specific devices. This is useful for blocking unwanted 

programs from finding an open port on a device or a network. Only approved 

processes have access to the network. Malicious software running on the device 

will not be able to create an outside connection without meeting the policy of the 

firewall. Most home computers and home routers will have some firewall policy 

that will try and protect the machine. This is common in the PC network 

environment and should be used for field devices as well. A custom policy can be 

implemented to not hinder the current functions of the device, but protect from 

dangerous software and DDOS attacks. 
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Network intrusion detection systems are used to detect and notify the 

network administrator of an unauthorized program or user on the network. 

Typically, these systems operate by analyzing network traffic for suspicious or 

malicious activity. The use of these systems can be beneficial to any network, 

but particularly to those that control expensive/dangerous equipment or contain 

sensitive information. The software can potentially detect an intruder and in 

some cases severe the connection to the network. In the event that a program 

or user has bypassed the virtual network security and the firewall for the 

network, this additional software could be the added layer necessary to finally 

stop communication with the device. 

If a user can get on the network and send commands to a device, the 

network intrusion detection has a chance to stop them. However, if they 

penetrate software on the device itself, there may not be suspicious network 

activity. Host intrusion detection systems cover this base by monitoring and 

analyzing internals of the system. Host security typically consists of watching 

memory for unverified modifications, be it to a database or program memory 

depending on the device and its uses. Using checksums of file sizes, date 

attributes, and permissions, the system can check for changes that were not 

authorized. Host security may not prevent access to sensitive information, but it 

can warn the owner of the information that it has been accessed and possibly 

distributed. Detection systems are a notification system, not necessarily a 

prevention mechanism. 
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Event logging can be useful in determining the fault when a problem does 

occur. Problems in electronic devices occur for many reasons; sometimes these 

reasons cannot be determined. For security, the device or the owner needs to 

know if the error was a software/hardware fault or was caused by mischievous 

activity. Event logging allows for the device to keep records of errors. These 

records can contain timestamps, user with access, the process that initiated the 

error, and other vital information that can help the owner determine if the 

device’s security has been compromised. Event logging is also helpful if an 

accident occurs in the vicinity of a piece of equipment. The device may have 

logged activities in the error, from its current operating level, process, or duty to 

sensor data at the time of the accident; which can be useful for troubleshooting 

or to determine user error. 

Event storage and alert generation are related to event logging. The logged 

data can be stored in a database for later analysis and any error logs can 

generate an alert for the device owner. The owner can be notified in real time of 

an error instead of having to discover the event own their own. If an error occurs 

the device can instantly send an alert via the Internet or internal network so that 

the error can be dealt with without unnecessary downtime, be it an intruder, 

hardware failure, or software error. 

Session logging is used to determine what commands were sent to the 

device and when. When the device is accessed remotely or physically, all actions 

are logged to determine when a configuration problem was caused. The device 
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can benefit from logging changes, as the owner knows what was changed and 

can quickly and successfully reconfigure the device. The reconfiguration can be 

automated to return the device to a previous configuration with ease when a 

fault is detected.  

Field devices, which originally were accessed only via an isolated a physical 

network, are now connected using Internet technologies. When isolated, access 

to the device was granted by lock and key; now these devices can be remotely 

accessed, potentially through corporate networks, from anywhere in the world. 

No need to identify a user was necessary if they had physical access to the 

device, but this is no longer standard. Every electronic network needs some sort 

of authentication to keep access limited to only privileged users. A minimalistic 

user authentication and password protection is standard on most PC networks 

and that is the level of security trying to be reached by the OPSAID project for 

field devices. Therefore, there needs to be a built in software mechanism to 

authenticate the user on the device, whether this be a username and password 

or some other means of verified user authentication. 

Remote device management already exists, but could be much more 

secure. Device management is an important part of having a device, occasionally 

it will need to be reconfigured or the logs accessed. This should be done through 

secure software that has access rights to all of the software listed above. This 

software should be used to view or download the logs, sessions, alerts, firewall 
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policy, and any other device configuration from one easy resource that can be 

accessed securely and remotely. 

All of this software already exists. It is waiting to be installed and 

configured for use in field devices and SCADA systems to help protect the device 

and ensure normal operation. Without these additional software products, a 

device is vulnerable to many types of attacks and the results can be devastating. 

Every device should be secured in some way, but Internet enabled devices or 

any that can accessed remotely need to have many added layers of security to 

prevent unwanted access and malicious software actions. 

 

Prior Work 

Security has been a concern in field and SCADA devices for some time. This 

is not a new area of research. The OPSAID project sets a plan for implementing 

better security in these devices. The Lemnos project adds to the security of the 

modules installed on the device and interoperability between the devices without 

the added level of security impeding the functionality of the device. 

There has been work done in security hardened field devices and operating 

system security for the devices. Some of the work mentioned in Chapter II needs 

to be detailed further as it is important to the development of the experiment 

and the need for the research. Graham and Hieb [8] have researched the need 

for SCADA security and the inherent issues of securing the devices. Through 
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their research they have concluded a number of possible future research 

directions for the field. Using an isolated kernel, the device could possibly be 

much more secure. Using the OKL4 microkernel as a means of isolating separate 

processes, the experiment explored IPC communication on hardware and its 

effectiveness for security applications.  

The research of Graham and Hieb was continued by Luyster [9]. His 

research involved developing a prototype based on the hardened security 

research using the OKL4 microkernel for RTU control devices and industrial 

embedded systems. The research suggested that the added layers of security 

added 20 to 100 milliseconds of delay to IPC calls that typically took 500 

microseconds to complete. The research suggests there is a need to test how 

security additions and IPC calls function on a more secure verified kernel, such 

as the SEL4 microkernel, now commercially available. 

Memory Isolation 

The SEL4 microkernel allows for all cells to be isolated from each other 

within memory. No process may read or modify the memory space of another 

process. The only communication between the processes is via IPC through the 

kernel. This allows for a more secure environment than one user space for all of 

the components of the system to access. 

A cell is a concept unique to security software. The OKL4 microkernel 

isolates specific memory for usage in the cells and allocates these addresses to 
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only one process. The memory used in these cells is stored in the large bank of 

memory for the device, typically RAM. This is virtual addressed by the processor 

and then allocated to a thread, process, or to an entire cell. This allocation is 

referred to as a protection domain. This is a memory segment that is completely 

isolated from all other memory segments virtually. There is no way for memory 

within a protection domain to be accessed by any other processes than the one 

to which it was allocated.  

For this isolation to be possible, no software can have access to direct 

memory mapping except the kernel. Any other software must use virtual memory 

addresses that are mapped one to one with physical memory. These virtual 

memory addresses are then translated by the kernel. The processes and cells 

have no way of determining absolute memory locations, this is vital to the 

security of the memory segments. This is in contrast to typical monolithic kernels 

which allow device drivers and other software modules in the kernel space 

unrestricted access to the entirety of the system memory. 

Like cells, threads operate within a protection domain. However, multiple 

threads can exist within a single protection domain, whereas multiple cells 

cannot. A cell can be thought of more like a program, that can have a single 

running process or consist of multiple threads within its protection domain. 
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Communication 

In the OKL4 and SEL4 microkernels, all communication between different 

components must be done through IPC calls. There are two types of IPC calls in 

the OKL4 architecture. These calls are referred to as blocking and non-blocking 

calls. Blocking calls will stop a process or thread until the corresponding IPC call 

has completed, either sending or receiving. This is useful if the thread is waiting 

on access to a locked component and needs the information to continue, 

however, the possibility exists for a race condition in this situation and it should 

be avoided where possible. Non-blocking calls will immediately attempt to send 

or receive the desired IPC call, but may fail if the other component is locked or 

unready for the call. The failure can be handled in software and the component 

can wait to send or receive again or continue with the process. This is important 

to avoid race conditions as a failure is easy to deal with, but a locked process 

waiting on a device that may never be ready can be devastating to a system 

unless designed to operate where these situations cannot exist, such as a state 

machine. 

Summary of Design Consederation 

It has been suggested that using existing security software available now 

that the security of field and SCADA devices can be greatly enhanced. By using 

some or all of the layered security described by the OPSAID project above, a 

device may be updated/upgraded to be compatible with corporate secure 
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computer networks without posing significant security risks from outside users 

and malicious software on the network.  

However, these network and device protocols are not secure enough. The 

device must also protect itself from malicious components installed on the device 

itself. Using microkernels and software designed for memory isolation the device 

can protect from unwanted access to hardware and secure data. These 

components must be able to communicate securely with the device and the 

other components in the system. This is all possible and an experiment will be 

designed in Chapter IV to show some of the features of these more secure 

devices and their performance. 
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Chapter IV 

System Implementation 

The purpose of this thesis is to evaluate whether, or not, while using proper 

security protocols and methodologies, reasonable performance can still be 

achieved in kernel communication. The design is based on the OKL4 wombat 

Linux kernel and its provided image. This para-virtualized distribution of Linux 

runs on the OKL4 kernel, more specifically on the SEL4 microkernel in this 

experiment, and is an entire functional operating system with virtualized 

hardware that can communicate with the actual hardware through the base 

microkernel. The operating system can also communicate with other system 

components that are running in separate cells. 

Using two wombat distributions and the SEL4 microkernel, it can be shown 

that secure communication can be achieved, that its performance is reasonable, 

and that isolated components can operate independently of each other without 

risk of corruption from the other component.  

The SEL4 system image was built on an Ubuntu Linux machine using a 

dedicated cross compiler for the x86 architecture designed for compiling for a 

generic x86 machine using only the most basic generic hardware. The tool is 

Crosstool-ng and has cross compiling capabilities for many architectures. The 

cross compiler compiled the wombat supervisor, timing server, and all other 
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SEL4 components to be run on the kernel. The kernel was delivered precompiled 

and was not rebuilt during this experiment.  

The kernel modules for this experiment were compiled using the same cross 

compiler. The default module settings were used with the exception of one. Net 

filter was not compiled due to compiler errors and was unnecessary for the 

experiment, therefore was excluded. The module configuration is included in the 

appendix. 

Many different IPC and other SEL4 programs were compiled. The wombat 

supervisor, the program used to load a paravirtualized Linux image into memory, 

was compiled and configured to load two identical images in parallel. The timing 

server was compiled using the default settings and is included with every 

Wombat Linux image as Linux cannot function without a system clock and the 

hardware clock is unavailable to the SEL4 kernel.  

Hardware Emulation 

The Ubuntu Linux machine used to compile the test system was emulated 

using Sun Virtualbox. This was for convenience as it is entirely portable between 

the different locations and computers used for the testing. The test system itself 

was emulated using Qemu as the generic x86 system. An emulated system was 

chosen, originally, to easily start and stop the system multiple times during 

testing. It was shown in later testing that the system could be booted on actual 
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hardware, however serial output was garbled, and efforts to correct this were 

unsuccessful. 

The Qemu machine must be operated in a Linux environment, because the 

Windows build of Qemu cannot display the debug output from the SEL4 kernel. 

As no Linux machines were easily available for the experiment and the Virtualbox 

Ubuntu machine used for compiling was already configured for testing and 

included the compiled image, it was used for the Qemu test machine as well. 

The Qemu SEL4 hardware is therefore emulated in the Ubuntu virtual machine. 

Meaning, for the tests, the program is running on an emulator in an emulator. 

This will affect the overall performance of the results. If the experiments are 

compared to each other, the performance should be affected equally and 

therefore the relative results will show a feasibility and performance increase or 

decrease even in a doubly emulated test bed. 

Software 

The software for this experiment includes the SEL4 microkernel, the 

Wombat Linux image, and custom IPC examples running on the microkernel. The 

code for IPC examples is included in an appendix. The Wombat images will be 

used for in operating system testing of IPC speeds and cell to cell IPC 

communication between two Wombat images. 

The IPC examples will show the speed and effectiveness of IPC on the 

lowest level of the SEL4 kernel. Building a program directly on the kernel will 
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yield the best results. The IPC program will make use of multiple threads to 

communicate through the kernel between the memory segregated threads via 

IPC.  

 

Figure 4.1: Communication in SEL4 and Memory Segmentation 

The experiment will contain IPC calls from the userland built on the 

Wombat Linux cell. This program will run within the paravirtualized Linux 

environment and make IPC writing and reading calls to the kernel. The program 

can only communicate with the Linux API, as if it was a standard distribution, 

and cannot access directly any other cell or hardware. The Linux cell must then 

relay the information to the kernel that will write the IPC call to the appropriate 
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register on hardware. The IPC cell, if it wished to read this message, would 

contact the kernel and request an IPC message. This is the only means of 

communication between cells. All programs and threads in the userland are 

dedicated to the Linux cell and cannot communicate with or be aware of the 

memory space of other cells. 

An IPC cell will also be designed to communicate with the Linux 

environment in the manner described above. This will test both the IPC 

performance in an operating system environment and directly on the kernel. 

Tests will show both performance of cell to cell, Linux to cell, and Linux to Linux 

IPC communication. 

Security Isolation and Communication 

In SEL4 memory is semi-isolated in threads and completely isolated in cells. 

The only communication between memory isolated processes is by IPC through 

the kernel API as described in Figure 4.1. For the system to be considered more 

secure than its predecessors, the software must take advantage of this isolation 

and operate within its dedicated memory space. 

Software running in the user-space of the Linux cell will be considered 

insecure on the basis that Linux is a robust monolithic operating system, even 

the small version of embedded Linux used for Wombat. There are many areas of 

the operating system that could have memory overflows or other vulnerabilities 

allowing attack or control of the system. For this reason, no program operating 



32 
 

within the Linux cell shall have access to vital data or I/O devices unless 

specifically designed and allowed to control said device. In this situation, the 

device should be dedicated to the Linux cell and not accessible from other cells 

to avoid communication bypassing IPC. 

All security software should be kept minimal as to not introduce bugs and 

operate directly on the kernel in a cell parallel to the IPC cell in Figure 4.1. See 

Figure 4.2 for visualization of security software. These secure programs can 

operate completely independent of the other cells and can control hardware, 

through microkernel calls of course. For example, a firewall cell might operate on 

the kernel and have complete control of any networked devices. The firewall 

would guard all incoming and outgoing communication. Other cells may use the 

network by IPC calls to the firewall cell. Any incoming communication would 

have to meet strict security protocols implemented in the firewall policy and be 

restricted from communication without formal authentication. This firewall cell 

could be referred to as a secure network manager.  
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Figure 4.2: Isolated cell approach, including security cells. 

Authentication and configuration of the device can also be isolated to its 

own secure cell. This makes the likelihood of introducing a security flaw into the 

software much less than running all of the security programs on the same 

system where they must interact with each other. Complexity of the 

programming can be exploited to introduce security bugs. This configuration cell 

will allow a user to log into the device, perhaps remotely via the firewall/limited 

VPN features, and configure the device. No configuration should be possible 

except through this cell if it is to be a secure device. Logging programs can also 

be implemented in the same way, as parallel cells. 

A less secure VPN could be possible into the Linux environment. There 

would be no security risk in allowing this unless critical data or processes are 

implemented within the Linux environment. Any VPN access to Linux would not 
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be able to communicate outside of the cell. This should be done only through a 

dedicated networking interface or virtualized networking interface to avoid 

contact with other cells or hardware they are using. The VPN features in the 

firewall or networking manager could be programmed to allow for a virtualized 

device that would be able to reach Linux via IPC. This would be complex, but 

more secure than allowing Linux direct access to the network where other device 

might be less secure and on a closed network. 

This experiment was conducted to test the IPC performance and usability of 

these secure cells. As stated above, all cells will communicate by IPC. If this 

system of communication is too slow or suffers from excessive use and the 

number of possible cells must be limited, the whole security scheme of this 

device may be impractical. The architecture example used above hinges on the 

ability to isolate every security component in its own virtual space. Without a 

secure, readily available, and efficient method of communication, the 

architecture would be useless. 
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CHAPTER V 

Performance Evaluation 

To test the security of the software, the added layers of security must first 

be integrated into either a cell or the Linux image. The cell programs, running 

directly on the microkernel, are written in the C programming language and 

compiled using the SEL4 library. They are then loaded into memory immediately 

after the microkernel. Dite is a memory mapping program used to integrate the 

cells into the kernel image. Dite is used to make the kernel executable from a 

boot loader such as Grub. Grub was used in all of the testing in this experiment 

to load the kernel, which then took possession of the hardware and loaded the 

security cells or Linux paravirtualized kernel and image. Four security programs 

were tested in the experiment and are described in the following sections. 

Cell IPC 

IPC was implemented in a separate security cell for performance testing. 

Running IPC straight on the kernel has added benefits to performance and 

shows how cell to cell communication will be handled and preform in a secure 

field device. The IPC program uses two threads within the same cell to 

communicate via IPC through the SEL4 microkernel.  

The IPC test was modified from the included IPC cell example distributed 

with the SEL4 microkernel and was understood using the SEL4 microkernel 

manual explaining all of the available kernel calls in the API. Modifications were 
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made to include timing for performance testing. The added timing component 

was never completed due to the faux calls in the API. The time.h and clock.h 

files included with the kernel never contact the hardware clock available to the 

system. This created complications. The first attempt was to write code that 

would display the time passed between sending and receiving IPC messages in 

microseconds. This yielded a return of 0, which was obviously incorrect. The 

code was then modified to return the clock cycles past between sending and 

receiving. Knowing that the system was running at 100MHZ allowed the user to 

calculate the time passed between calls. This as well returned 0. Upon further 

investigation it was found that the clock and time functions existed in the API, 

but were set to do nothing but return 0. It appears that these functions were 

included for completeness so that compiling errors were not caused by lack of 

proper available headers, but the code in the headers was never actually 

connected to the hardware. This is not documented in the API, but was 

discovered when viewing the header files in the API itself. Without a hardware 

clock, cell timing performance data could not be gathered. 

After completing the cell code, the code is then compiled using the standard 

GCC C compiler on Linux configured to cross compile for the target system. Dite 

then integrates the compiled program with the microkernel. The image is put 

onto a bootable memory stick or hard drive containing the GRUB boot loader. 

GRUB is instructed to boot the image on hardware, which consists of placing the 

microkernel and cell data into memory and passing off rights to the processor 
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and other hardware to the microkernel. The microkernel prepares itself for 

operation and starts the secure cell program. The IPC program runs and outputs 

the test message transmitted from one thread to another. The first thread writes 

a message to the IPC register, which is hardware dependent, and then the 

second thread reads the register through kernel calls. The message is displayed 

and if transmitted properly should be the same from sending to receiving. This is 

done three times and then the program exits. 

It was found that the Qemu machine allows for the ttyS0 output data to be 

redirected to a telnet server. This was used to analyze the performance of the 

IPC calls. Since it was not feasible to time the calls directly in on the microkernel, 

timing data was taken in between the written string data that attempted to send 

the message and the string data that successfully received the IPC message. 

This is less accurate due to the overhead required for writing the messages, 

sending the data across the virtualized network interface to the telnet client, and 

the extra components of the IPC message program that had to run between 

sending and receiving messages, but is favorable to not receiving any 

performance data. Table 5.1 shows the results collected from the telnet log. 

Putty, an open source telnet client, was modified to write timestamp data to the 

log file allowing for timing calculations. Putty was modified for the experiment to 

timestamp in seconds, this was not accurate enough and Windows operating 

systems do not have a timer that is more accurate than milliseconds. It was 

attempted to accurately time to the microsecond level, but the microsecond file 
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timer in Windows calculates accurately, but only updates every 10 or more 

milliseconds rendering it useless for timing calculations. It was found that a 

precompiled fork of Putty named ExtraPutty timestamps correctly on the 

millisecond level, therefore this program was used to collect the streaming data 

from the microkernel and log it in text file for the experiment. Since millisecond 

timing was not preferable, the IPC program was again modified to complete 

more than three iterations between the threads and the average time was 

calculated for IPC messages. 

Table of IPC Message Performance 

Iterations Total Time Time (ms) Average Time (ms) 

1,000 00:02:165 2165 2.165 

10,000 00:20:647 20647 2.065 

128,000 04:02:565 242565 1.895 

128,000 04:03:692 243698 1.904 

500,000 17:29:266 1049266 2.099 

1,000,000 34:11:824 2051824 2.052 

Table 5.1 – IPC Message Performance 

As shown in Table 5.1, the average time to send and receive an IPC 

message is between 1.895 ms and 2.165 ms. The performance can be increased 

if timing took into account only the sending and receiving of a message. 

However, this data, including the overhead for timing and the running IPC 

program, shows that the performance on a 100MHz field device is not too 
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constrained to obstruct the cells from operating in a useful manner and finding 

an alternative means of speedier communication between cells is unnecessary. 

The IPC cell operates as expected. The messages transmitted are identical 

to the messages received. However, the actual speed performance data was not 

gathered in the virtualized machine due to microkernel constraints; we must rely 

on the external timing data. This proves that it is possible to write a secure cell 

and implement it on the microkernel, that IPC functions do work as expected, 

and that other security software should be written from scratch and not rely on 

the API if at all possible as there may be other unexpected functions that are 

unavailable. 

Linux VPN Server 

Other security features are implemented inside the Linux image to be run 

on a higher level operating system. A VPN program was compiled and installed 

within Linux. For the purposes of this experiment it is unnecessary to be able to 

access the VPN from the actual network, it was compiled and configured to allow 

access only from the loopback networking device. This security addition shows it 

is possible to add LEMNOS/OPSAID suggested programs within the embedded 

Linux installation making access to the device easier and more secure. 

The VPN server program, PeerVPN 0.023, is open source and distributed in 

C. It was compiled on the Ubuntu testing machine using the standard GCC 

compiler configured to cross compile for the target architecture. A configuration 
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file is also necessary for the program to run successfully. This is configured from 

the test machine. The program and config file are then entered into the static 

Linux image and can be run from the Linux environment. 

The Linux image used in this experiment contains a basic root file system 

structured as a standard Linux operating system, known as “/”. Programs that 

need to accessed by Linux must be located in this file system. It was decided 

that any added programs would be put in the folder located at “/bin” which is 

already included in the root users “path” so that it can be called from the 

command line without added navigation through the file system. Almost all of the 

commands available to the root user are located in the “/bin” directory, or 

included as a symbolic link if they are elsewhere located. This is standard 

practice in Linux environment configuration. 

To add an item to the “/bin” directory in the already preconfigured image 

requires one of two processes; either the entire image is recreated for the target 

architecture using a program called Bitbake for embedded systems and testing, 

or the image must be unpacked, modified, and repacked in a format that Linux 

will recognize. The first process was initially tested, however several of the 

source servers for Bitbake (of which there are 165) were consistently 

unavailable. This made compiling Bitbake for testing impossible, causing this 

process to be abandoned for the second option of unpacking and manually 

modifying the image. 
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The image is packed in a CPIO image. Using the CPIO tool in Linux, it is 

possible to unpack the image into a directory. The compiled program and 

configuration file can then be moved to the “~/image/bin” directory if the image 

directory is located in the users home directory. It is necessary to copy the VPN 

program with root privileges, as all of the image directory will have root only 

access rights and a normal user will be unable to add programs. This can be 

done from the command line by tediously typing the directories out or from a 

GUI program if the test machine has a program file exploring program with root 

access. The Ubuntu test machine does not have such a program, but if the user 

is comfortable on the command line it should not be a problem. Almost 

everything, including programming, in this experiment was done from the 

command line. After the program is successfully copied to the images binary 

directory, the image can be repacked. Repacking is slightly more difficult than 

unpacking, it must be done with root access rights, find all files recursively in all 

subdirectories, and be put into “newc” format. Using the MAN pages of the CPIO 

command will instruct the user how to pack into the “newc” format required for a 

Linux image. The format for images was not documented anywhere for SEL4, 

but was discovered later when images refused to boot. The provided static 

image for use with the Wombat Linux kernel was received with no 

documentation or explanation for modification. 

With a successfully modified file system image, the system can be 

instructed to MAKE the wombat supervisor, timing server, and use Dite to 
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package them both along with the microkernel and the file system image just 

created. The location of the image is specified in the make file for the whole 

wombat image. The microkernel image will be made and can be booted similarly 

to the IPC image in the previous section, by placing it in memory accessible from 

the GRUB boot loader. 

Once the microkernel has finished setup and boots the paravirtulized Linux 

kernel, the Linux kernel will find the root file system and leave the user at a login 

prompt. The only user in the Wombat kernel is “root”. Once logged in, the user 

is left at a standard BASH command prompt. The “PeerSVN” program can then 

be accessed by calling it directly from the command line. It will start and leave 

the server waiting for a connection on the loopback Ethernet device. 

Linux VPN Client 

Running a VPN server on the field device is useful if it is a primary SCADA 

device, however if it is used for collection and sensors it may have to respond to 

an outside server for instruction and reporting. In this case, it would be 

necessary for the device to contain a VPN client to connect to the main servers 

VPN server to create a secure  connection. 

Similar to the previous section, an open source VPN client package was 

cross compiled for the target device and configured. It was then placed in the file 

system image exactly as the VPN server was implemented. This yielded 

successful results proving that both client and server programs may be ran on 
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the device as required. A successful VPN connection was not tested for the 

experiment, but the client ran and reported correctly. It is believed that the client 

is fully functional, but more testing is required to make certain that it was 

implemented correctly and can be used to create a secure connection from the 

device to an OPSAID server. 

Linux IPC Program 

An IPC program was written to be operated from within the Linux 

environment, in hopes of testing cell to cell communication between two Linux 

Wombat kernels operating in separate cells. The SEL4 API library was completely 

modified to allow it to compile a standard Linux application. The modification of 

the SEL4 library was successful from a compilation standpoint, however the 

microkernel has denied access to many of these functions from higher operating 

systems. The software was written similar to the IPC cell program, it would send 

an IPC message to the register specified for the target architecture and then try 

to read the message. 

The program was successfully compiled and placed into the Linux image via 

the same process listed in the previous two sections. The system was then 

booted and the program was tested. The timing functions, being that the 

program is now in an environment with proper time and clock functions using the 

Linux timing server, now work as expected. The IPC message is sent, but the 

microkernel responds with an message interpreted as an access denied error and 

the read function finds a 0 instead of the intended message. It is believed that it 
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is impossible to access microkernel functions from within Linux, at least not by 

the method described above. Little help could be found on the subject and the 

Linux IPC cell to cell experiment was abandoned. The code, along with all other 

custom code for the experiment can be found in the appendix. 
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CHAPTER VI 

 

Conclusion 

This thesis demonstrated the design, implementation, and testing of a 

secure field device based on a verified microkernel. The SEL4 microkernel and 

software can be implemented on real hardware and further tested using the 

previous chapters as a guide for set-up and software configuration. It is hoped 

that this research and experimentation has built the foundation for a more 

secure device.  

Summary 

The virtual prototype presented in this thesis has shown that a secure, 

memory isolated field device can be implemented. Using open source software, 

the device can be affordable and configured for any data collection or control 

device. The OPSAID system requirements can be met or exceeded without any 

additional hardware. The x86 hardware architecture used in the prototype could 

be ported to ARM without much difficulty using similar methods to the building 

and compiling of the current x86 system. 

The security software implemented in the current design shows that nearly 

any necessary software can be implemented as well. If the secure rules outlined 

in Chapter II for communication are followed most software could be ported to 

the device. It was shown that programs can be compiled for either the higher 

Linux operating system or to run directly on the microkernel for an efficient and 
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secure program with its own isolated memory space. Programs were created for 

and tested in both the Linux environment and directly on the microkernel. 

It was observed that if the security program required any outside libraries, 

or was not fairly straight forward to implement, that it was much less labor 

intensive to create the program for the Linux environment. The microkernel 

libraries are limited and incomplete in some places such as access to any sort of 

clock or timer. Programs created to run in their own cell directly on the 

microkernel should have a specific intended purpose and perform that purpose in 

the simplest possible way to avoid creating security bugs. Only security critical 

processes, or those that require direct hardware access, should be implemented 

in their own cells. A program or process that is convoluted and has additional, 

unnecessary features would be best placed in the Linux environment. The Linux 

system offers a full-fledged operating system API for a virtualized set of 

hardware and interaction with the operating system. This allows for less 

challenging programming and cross compilation.  

The programs tested performed well for their intended functions. The two 

VPN programs compiled for the Linux environment show that a secure device can 

be used as both a client and a server device; this shows the flexibility of the 

security software. Most standard Linux applications could be compiled for the 

device. The VPN software was standard open source software available freely on 

the Internet for use in any Linux system, opening the door for any security 

application available to be implemented in the device. The microkernel 
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application was a modified version of the multi-threaded IPC example included 

with the SEL4 microkernel. Until it become a standard architecture, it is unlikely 

that an implementation of this device would be able to make use of off-the-shelf 

software for single purpose secure cells. These cells would have to be custom 

created for the purposes of the device, but it was shown that the software can 

function in a private cell. The limitations of these security cells are determined by 

the hardware, the microkernel API, and the creativity of the programmer. 

Future Research 

There is a great need for a secure field device. This experiment and the 

prior work is a great start, but there is still much to be done. The road to an 

effective security device is not a short one. With small strides, each contributing 

researcher is moving the field ahead, with the goal being a completely secured, 

inexpensive field device with interchangeable security programs and a 

standardized design. 

If this experiment were to continue there are a few things that should still 

be tested. The most important next step is implementing the device in real 

hardware. The virtualized environment worked great for the experiment, but it 

would be a leap forward to actually create the device in a useable state. A 

generic x86 computer was used for hardware testing, but the output was garbled 

for some reason. This was not a problem on the virtual console. For the design 

presented in the previous chapters to be useful it would have to be shown to 

work on hardware. 
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Further research into the current design of this device should also test cell 

to cell IPC messages. The prototype described in chapter V showed IPC 

communication in a single cell between multiple threads. This is a great start for 

microkernel secure communication, but is not of much use without continuing 

experimentation. For IPC to be useful, it needs to be used to communicate 

between memory isolated processes as it was intended. Preferably, the device 

would communicate between two dedicated security cells that had a purpose 

other than testing the IPC; for instance, the firewall cell would successfully send 

messages to and authentication cell. 

It was not determined whether it was possible for the Linux environment to 

communicate with outside cells using IPC. If this is possible, two wombat Linux 

cells should be created side by side as detailed in chapter V, but have an 

additional IPC application to communicate with one another. It would be 

beneficial to the device to have multiple Linux environments for the programs 

that require Linux libraries to still be isolated, but be able to communicate with 

each other and all of the other secure cells directly on the microkernel. Two 

wombat images were designed and tested during the experiment, but the IPC 

communication could not be shown to function correctly inside the Linux 

environment. 

The software used in the experiment should be ported to the ARM 

architecture. It seems common for SCADA devices to use ARM processors for the 

price and power consumption. The SEL4 microkernel is available on both ARM 
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and x86. It would be beneficial to test all of the software on both systems to 

reach the greatest possible audience for the secure device. This should not be a 

difficult task, but was not included in the experiment due to time constraints.  

Finally, the device should be thoroughly tested for vulnerabilities. Unless all 

of the software on the device is tested, the device cannot truly be considered 

secure. It should be reasonable to assume that any intrusion into a single cell 

should not compromise the other software, but that is no reason not to test each 

component individually.  
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Appendices 

The appendices section contains the build configurations for the SEL4 

microkernel system and any custom code developed and used during the 

experiment. Any code not included was not used to collect data, not original to 

this thesis, or a derivation of included code too similar to require a separate 

attachment. 

Build Configurations 

Config.mk 

# This file contains build configuration variables 
 
# Architecture and platform to build for 
export ARCH?=ia32 
export PLAT?=pc99 
export CFLAGS=-fno-stack-protector 
#export ARCH?=arm 
#export PLAT?=imx31 
 
# Comment out the line below to build a non-debug kernel and userland 
export SEL4_DEBUG_KERNEL=1 
 
# Compile in IOMMU functions 
export IOMMU=1 
 
# Tell the build where the toolchain is 
ifeq ($(ARCH),arm) 
export TOOLPREFIX=arm-oe-linux-gnueabi- 
export TOOLSUFFIX= 
CROSSBINPATH=opt/arm-2010.09/bin 
DITEPATH=${PWD}/../tools/dite/build 
else 
export TOOLPREFIX=i386-unknown-elf- 
export TOOLSUFFIX= 
CROSSBINPATH=/home/kevin/x-tools/i386-unknown-elf/bin 
DITEPATH=${PWD}/../tools/dite/build 
endif 
 
# Sanity check the toolchain to ensure it really does exist. 
ifeq($(strip$(wildcard${CROSSBINPATH}/${TOOLPREFIX}gcc${TOOLSUFFIX})),) 
$(error "Could not find your toolchain. Please check your 'config.mk'.") 
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endif 
 
# Capability dumps (used by the CapDL Extrator tool) go out on this second 
# serial port. 
export SEL4_CMDLINE="debug=0x2f8" 
 
# Tell the build where Wombat's prebuilt root filesystem image (in "cpio" 
# format) is located. If a root filesystem image is not provided, wombat 
# will panic on boot. A full path must be specified. 
ROOTFS=${PWD}/misc/image.cpio 
 
# The Linux config file. These are found in source/wombat and are named 
# similarly. 
LINUX_CONFIG=sel4linux_config_ia32 
 
# The supervisor config file. There are found in: 
#  source/wombat-supervisor/include/wombat-supervisor/configs/ 
SUPERVISOR_CONFIG=system_one_wombat 

system_two_wombats.h 

#ifndef _SYSTEM_TWO_WOMBATS_H_ 
#define _SYSTEM_TWO_WOMBATS_H_ 
 
void assemble_system(void) 
{ 
    enum device_name wombat0_devices[] = { 
        HARDWARE_NIC_0, HARDWARE_CONSOLE, 0}; 
    enum device_name wombat1_devices[] = { 
        HARDWARE_NIC_1, HARDWARE_CONSOLE_NO_IRQ, 0}; 
 
    /* Setup a timer server, and two wombats. */ 
    struct component *timer = register_timer_server_component( 
            DEFAULT_TIMER_SERVER_PRIO); 
    struct component *wombat0 = register_wombat_component( 
            0, "rdinit=/sbin/init wombat0", wombat0_devices, 200, 
            DEFAULT_WOMBAT_PRIO); 
    struct component *wombat1 = register_wombat_component( 
            1, "rdinit=/sbin/init wombat1", wombat1_devices, 200, 
            249); 
 
    /* Connect the timer server to the wombats. */ 
    SYSTEM_CONNECTIONS[0] = (connection_t) 
        {timer, wombat0, VIRTUAL_IRQ, {.irq=0}, seL4_CanWrite, 
seL4_AllRights}; 
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    SYSTEM_CONNECTIONS[1] = (connection_t) 
        {timer, wombat1, VIRTUAL_IRQ, {.irq=0}, seL4_CanWrite, 
seL4_AllRights}; 
}; 
 
#endif /* _SYSTEM_TWO_WOMBATS_H_ */ 
 

Custom Code 

main.c (for IPC Cell) 

#include <stdio.h> 
#include <sel4/sel4.h> 
#include <sel4/bootinfo.h> 
#include <assert.h> 
 
#include <sel4/sel4.h> 
#include <sel4/arch/syscalls.h> 
 
#include <iwana/interrupts.h> 
#include <iwana/boot_data.h> 
#include <iwana/timer_server.h> 
 
#define STACK_SIZE (1 << seL4_PageBits) 
static seL4_CPtr ipc_endpoint = 0;  
 
#define MASK(x) ((1<<(x))-1) 
 
//The new thread will begin executing this function 
static void my_other_thread(void) { 
  printf("\nHello World, this is \"%s\"\n",__FUNCTION__); 
 
  //Create a message tag that specifies that the first message  
  //register should be transferred when an IPC message is sent 
  seL4_MessageInfo tag = { {.length = 1} }; 
  seL4_Word mr0 = 0; 
    
  //Loop forever calling the endpoint 
  while(1){ 
    printf("%s: Sent message %d of length %d to endpoint %p.\n\n", 
      __FUNCTION__, 
      mr0, 
      tag.length, 
      (void *)ipc_endpoint); 
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    //Set the contents of the first message register.  
    seL4_SetMR(0,mr0); 
    //Make the call 
    tag = seL4_Call(ipc_endpoint,tag);       
    //Get the contents of the first message register. This was 
    //transferred from the thread that replied to the call. 
    mr0 = seL4_GetMR(0);    
     
    printf("%s: Received message %d of length %d from endpoint %p.\n", 
      __FUNCTION__, 
      mr0, 
      tag.length, 
      (void*)ipc_endpoint); 
 
    mr0++; 
  }  
} 
 
 
int main(void) { 
 
  //Get a pointer to the bootinfo structure from libsel4 
  seL4_BootInfo* info = seL4_GetBootInfo(); 
  unsigned int i; 
 
  printf("\n IPC Test\n\n"); 
   
  //Find the first free slot in the CSpace 
  printf("Finding the first free slot in the CSpace...");  
  seL4_CPtr free_slot = 0; 
  for (i = 0; i < info->regionCount; i++) { 
    if(info->regions[i].type == seL4_Region_FreeSlots){ 
      free_slot = info->regions[i].base; 
      printf("found at %p.\n", (void *)free_slot); 
      break; 
    } 
  } 
  assert(i != info->regionCount); 
 
  //Find the first empty region in the CSpace 
  printf("Finding the first free empty in the CSpace...");  
  seL4_CPtr empty_slot = 0; 
  for (i = 0; i < info->regionCount; i++) { 
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    if(info->regions[i].type == seL4_Region_Empty){ 
      empty_slot = info->regions[i].base; 
      printf("found at %p.\n", (void *)empty_slot); 
      break; 
    } 
  } 
  assert(i != info->regionCount); 
  seL4_Word vaddr = empty_slot;  
 
  //Find the first small block cap 
  printf("Finding the first Small Block (4K Untyped Capability) ...");      
  seL4_CPtr four_k_untyped = 0; 
  for (i = 0; i < info->regionCount; i++) {    
    if(info->regions[i].type == seL4_Region_SmallBlocks){ 
      four_k_untyped = info->regions[i].base; 
    printf("found at %p.\n",(void *)four_k_untyped); 
    break; 
    } 
  } 
  assert(i != info->regionCount); 
 
  //Retype the a small block to a TCB 
  printf("Retyping small block to a TCB..."); 
  seL4_Untyped_Retype_t rresult = seL4_Untyped_Retype(  
    four_k_untyped,  
    seL4_TCBObject,  
    0,  
    seL4_SelfCSpace,  
    free_slot >> seL4_PageBits, 
    seL4_WordBits - seL4_PageBits,  
    free_slot & MASK(seL4_PageBits),  
    1); 
  printf("created %d cap(s) at %p.\n",rresult.result,(void*)free_slot); 
  seL4_CPtr thread_TCB = free_slot;   
  assert(!rresult.error); 
 
  //Go to the next small block and the next free slot 
  four_k_untyped++; 
  free_slot++; 
   
  //Retype the small block into an endpoint object 
  printf("Retyping small block to an endpoint object..."); 
  rresult = seL4_Untyped_Retype(  
    four_k_untyped,  
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    seL4_EndpointObject,  
    0,  
    seL4_SelfCSpace,  
    free_slot >> seL4_PageBits, 
    seL4_WordBits - seL4_PageBits,  
    free_slot & MASK(seL4_PageBits),  
    1); 
  assert(!rresult.error);  
  printf("created %d cap(s) at %p.\n",rresult.result,(void*)free_slot); 
  ipc_endpoint = free_slot;   
  
  //Go to the next small block and the next free slot 
  four_k_untyped++; 
  free_slot++; 
 
  //Retype the small block into a 4K frame for the IPC buffer 
  printf("Retyping small block to an 4K frame..."); 
  rresult = seL4_Untyped_Retype(  
    four_k_untyped,  
#ifdef IA32 
    seL4_IA32_4K,  
#else 
    seL4_ARM_SmallPageObject, 
#endif 
    0,  
    seL4_SelfCSpace,  
    free_slot >> seL4_PageBits, 
    seL4_WordBits - seL4_PageBits,  
    free_slot & MASK(seL4_PageBits),  
    1); 
  assert(!rresult.error);  
  printf("created %d cap(s) at %p.\n",rresult.result,(void*)free_slot); 
  seL4_Word four_k = free_slot;   
   
  printf("Mapping 4K frame (%p) to free vadd (%p).\n", (void *)four_k, 
(void*)empty_slot); 
#ifdef IA32 
  int result = seL4_IA32_Page_Map( 
#else 
  int result = seL4_ARM_Page_Map( 
#endif 
    four_k, 
    seL4_SelfVSpace, 
    empty_slot, 
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    seL4_AllRights,  
#ifdef IA32 
    seL4_IA32_Default_VMAttributes); 
#else 
    seL4_ARM_Default_VMAttributes); 
#endif 
  assert(!result);  
   
  //Set up new thread's IPC buffer 
  printf("Setting up IPC buffer on new thread..."); 
  result = seL4_TCB_SetIPCBuffer( 
    thread_TCB, 
    vaddr, 
    four_k); 
  assert(!result);  
   
  //Set up the VSpace and CSpace on the new thread 
  printf("Setting TCB CSpace and VSpace.."); 
  result = seL4_TCB_SetSpace( 
    thread_TCB,  
    0, 
    seL4_SelfCSpace, 
    seL4_NilData, 
    seL4_SelfVSpace, 
    seL4_NilData); 
  assert(!result);  
 
   
  //Write the registers of the new thread. 
  //This sets a new thread running at the  
  //default priority 
  printf("Starting up new thread..."); 
  static char stack[STACK_SIZE];  
#ifdef IA32 
  seL4_UserContext frame = {.regs = {.eip = (unsigned int)my_other_thread, 
.esp = (unsigned int)&stack[STACK_SIZE] }}; 
#else 
  seL4_UserContext frame = {.regs = {.pc = (unsigned int)my_other_thread, .sp 
= (unsigned int)&stack[STACK_SIZE] }}; 
#endif 
  result = seL4_TCB_WriteRegisters(  
    thread_TCB, 
    true, 
    0, 
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    sizeof(seL4_UserContext) / sizeof(seL4_Word), 
    &frame); 
  assert(!result); 
   
  //Wait for someone to send us an IPC 
  seL4_Word sender_badge = 0;    
  printf("%s: Waiting on IPC...\n",__FUNCTION__); 
  seL4_MessageInfo tag = seL4_Wait( ipc_endpoint, &sender_badge);   
  seL4_Word mr0 = seL4_GetMR(0);    
  printf("%s: Recv'd message %d of length %d from endpoint %p.\n", 
    __FUNCTION__, 
    mr0, 
    tag.length, 
    (void *)ipc_endpoint); 
   
  //Repeat the cycle three times 
  for(i = 0; i < 250000; i++){ 
    //Reply to the IPC and wait for another 
    seL4_SetMR(0,++mr0);  
    printf("%s: Sent message %d of length %d to endpoint %p.\n\n", 
      __FUNCTION__, 
      mr0, 
      tag.length, 
      (void *)ipc_endpoint); 
    
    tag = seL4_ReplyWait(ipc_endpoint,tag, &sender_badge);       
    mr0 = seL4_GetMR(0);    
     
    printf("%s: Recv'd message %d of length %d from endpoint %p.\n", 
      __FUNCTION__, 
      mr0, 
      tag.length, 
      (void *)ipc_endpoint); 
  } 
 
  printf("\nDone.\n\n"); 
  return 0; 
} 
 

ipc.c (IPC inside Linux) 

#include <stdio.h> 
#include <time.h> 
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#include "sel4/sel4.h" 
#include "sel4/bootinfo.h" 
#include <assert.h> 
  
int main(void) 
{ 
  time_t now; 
  time(&now); 
  
  printf("%s", ctime(&now)); 
 
 printf("\nHello World, this is \"%s\"\n","testipc"); 
 
  //Create a message tag that specifies that the first message  
  //register should be transferred when an IPC message is sent 
  seL4_MessageInfo tag = { {.length = 1} }; 
  seL4_Word mr0 = 129; 
    
    printf("%s: Sent message %d of length %d to endpoint %p.\n\n", 
      "test2", 
      mr0, 
      tag.length, 
      (void *)0x0000006d); 
 
    //Set the contents of the first message register.  
    seL4_SetMR(0,mr0); 
    //Make the call 
    tag = seL4_Call(0,tag);       
    //Get the contents of the first message register. This was 
    //transferred from the thread that replied to the call. 
    mr0 = seL4_GetMR(0);    
     
    printf("%s: Received message %d of length %d from endpoint %p.\n", 
      "test3", 
      mr0, 
      tag.length, 
      (void*)0x0000006d); 
 
  return 0; 
} 
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