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ABSTRACT

In today's world of private information and massnoaunication, there is an ever
increasing need for new methods of maintaining @rmodecting privacy and integrity of
information. This thesis attempts to combine thaatic world of cellular automata and
the paranoid world of cryptography to enhance 8wox of many Substitution
Permutation Network (SPN) ciphers, specificallyndgel/AES. The success of this
enhancement is measured in terms of security aridrpence.

The results show that it is possible to use Cellalstomata (CA) to enhance the
security of an 8-bit S-box by further randomizihg structure. This secure use of CA to
scramble the S-box, removes the "9-term algebrapression” [20] [21] that typical
Galois generated S-boxes share. This cryptosystecarely uses a Margolis class,
partitioned block, uniform gas, cellular automaiacteate unique S-boxes for each block
of data to be processed.

The system improves the base Rijndael algorithmténfollowing ways. First, it
utilizes a new S-box for each block of data. Téfiectively limits the amount of data
that can be gathered for statistical analysis ellocksize being used. Secondly, the
S-boxes are not stored in the compiled binary, Wwhoecotects against an "S-box
blanking" [22] attack. Thirdly, the algebraic egpsion hidden within each galois
generated S-box is destroyed after one CA genetatichich also modifies key
expansion results. Finally, the thesis succeedsombining Cellular Automata and

Cryptography securely, though it is not the mofitieint solution to dynamic S-boxes.
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1. INTRODUCTION

Since their conception by Stanislaw Ulam and Jobim Meumann in the 1940's
[1], researchers have successfully utilized Cell#atomata (CA) for many different
purposes. The simple structure and the propeofi€3A suggest various uses in many
fields of study. However, it has proven quite idifft to integrate CA with the field of
cryptography. Despite previous results, new use<A in cryptographic applications
are often investigated. This thesis will attemptehhance the security of the Rijndael
encryption algorithm by using the perceived perfance and randomness of CA to
modify the typically static S-Box structure. Whilee strength of the existing Rijndael
algorithm may not reside entirely with the S-Boxesearch suggests room for
improvement in both implementation and the desigi-8ox dependent algorithms.

The thesis will consist of three main chapters daaving several sub chapters.
The introduction will provide relevant backgroumdarmation over the topics of Cellular
Automata and cryptography. The typical operationcommon types of CA will be
explained, as well as their perceived uses in ogaphy. Similarly, common
cryptographic networks and primitives, like the 8xBwill be introduced. This first
chapter will finally provide a look at some prevaby proposed Cellular Automata
Cryptosystems (CACs) and their shortcomings.

The second chapter of the thesis will focus onddsign and implementation of

the proposed system. The proposal integrates gparate systems into one and was



designed similarly. In the first part of the sedochapter, the Rijndael algorithm is
explained. This section details the structures @petations that work together to make
Rijndael a secure algorithm. The chapter thenamplthe S-Box modifying CA. The
design and operation of the CA as well as its ptogse and selection criteria are
rationalized. The chapter finally shows the in&igm of the two parts, as the proposal
suggests.

The proposed CAC is analyzed in the third chapssedd on a number of criteria.
The two halves of the CAC, the cipher and the G&,analyzed independently to verify
their operation and fulfillment of their selectionteria. Finally, the combined system is
evaluated based on strength of the generated SsBthessecurity of the implementation,
and the processing performance. The final resiltee analysis lead to the conclusion
that the CAC operates correctly, offers improvermemot Rijndael's S-Box, and has a
moderate impact on performance.

1.1. Cellular Automata

Cellular Automata typically exist on a finite offimte regular grid of cells. Each
cell, or automata, has a finite number of possdtétes. These automata cells are each
modified independently by the transition functiom @ discrete time step. The
application of the transition function to each delthe grid leads to the next 'generation’
for the grid. Transition functions typically op&dbased on the state of the cell and the
cells around it. Though these functions dependheir input states, every cell follows

the same rule for determining these transitionsrnfally, a CA is a 4-tuple [1] [2]:



CA=(, S, N,f)
whered = is a triple determining the size of dimensions
S = the finite set of possible states
N = the neighborhood vector for each cell
f = the local transition function

1.1.1. CA Dimensions.

The dimensions defined liycould be described asiNyxN,, where (N, Ny, N,)
are members of the natural numbetg/pically CA are limited to one or two dimensions
(N;z = 9 and a finite size for the dimensiong Bind N. In an attempt to emulate an

infinite grid, the border cells typically have theieighbors wrap to the other side of the

grid, creating a Ndimensional torus [2], as shown in the image [BFigure 1.

Figure 1. Toroidal result of wrapping borders &-B plane. [3]

1.1.2. CA States.

The finite set of stateS = (&, S, ..., S..1) where n is the size of the st Most
CA based on Margolus's Lattice Gas Automata or GytsnGame of Life will have only
two states. For Lattice Gas Automata, the twoestare seen as the existence or
non-existence of a particle. In Conway's Gameifd, lthe two states indicate whether a

cell isalive or dead. Few automata have more than two states, asefigrdcomplexity



of the transition functiotf increases with the number of states. The tramsftiactionf

transforms a cell's state to another state baséis$ cnrrent state and its neighbor's states
defined byN. The combined states of the cells in the neighbod is called the
configuration. The number of possible configurations for a hbayhood depends on the
size of the state s&and the number of cells in neighborhdédwhich amounts t&"
total configurations for a specific CA.

1.1.3. CA Neighborhoods.

For the standard 2-dimensional cellular automatonaocsquare grid, there are
three standard choices of neighborhood vetMor Edward F. Moore proposed one
method [4] for defining neighborhoods. A Mooregtgorhood of range is defined by
Nmoor(Xo:Yo) = [(X, ¥) = X = %[ <1, |y - w| < r], and the number of cells in each
neighborhood is @+ 1Y. A r value of one is typically used which yields eight
neighbors to each cell, for a total of nine cefisthe Moore neighborhood as seen in
Figure 2a. The Moore neighbor-hooding schemees irs John Conway's Game of Life,
and many related CA [2]. The second most commdrerse is the von Neumann
neighborhood [5]. A von Neumann neighborhood ohgear is defined by
NvonNeumanfXo,Yo.) = [(X, ¥) @ [x — %] + |y - ¥| < r], and the number of cells in each
neighborhood isZr + 1) + 1. A range of one is typically used whigields four
neighbors to each cell, for a total of five celighe von Neumann neighborhood, as seen

in Figure 2b.



Xx-layy-l XXayy-l Xx+lyyy-l XXryy—l

Xx-1: Yy Xxi Yy Xx+1,Yy Xx-1,Yy Xx: Yy Xx+1,Yy
Xx-1,Yy+1 Xxs Yy+1 Xy+1,Yy+1 Xxs Yy+1
Figure 2a. Figure 2b.
Moore Neighborhood with = 1. von Neumann Neighborhood with= 1.
Odd Odd

Xx-layy-l XXayy-l

Odd XY Even
Xx-luyy 0y X><+1-yy
Even Even

Xnyy+l Xx+1ayy+l

Figure 2c.
Alternating Margolus Neighborhood

The third common neighborhood is quite a bit ddfé. Designed to model
physical systems (Lattice Gases [6]), the Margahesghborhood has the smallest
neighborhood with just 4 members. However, Margaiaighborhood automata operate
with an alternating partitioning scheme [7]. The22partitioning scheme effectively
groups four cells together into what can be loo&eds a macro-cell. Figure 2c. shows
the neighbors of the central cell with the altemgfartitions indicated by the odd and
even labels. Without the alternating partitionirsgheme, transitions between
configurations would not propagate beyond the idial partitions [7]. In a Margolus
neighborhood based CA, the states of the four aellse macro-cell indicate the current

configuration of that macro-cell. For Margolus@uhta, the current configuration of the



macro-cell is seen as the state, and the transftiontion works on macro-cells as
opposed to individual cells. The number of posgsibbnfigurations for these two
dimensional neighborhoods ar€8"?, S * 1 *1 and 2 for Moore, von Neumann, and
Margolus neighborhoods respectively.

For all neighbor-hooding schemes, the wrapping aflér cells must be taken
into consideration when determining the indiceshef neighbors of the central cell [2].
Most software implementations of CA elect to emailain infinite grid of cells by
wrapping the borders. Formally, calculating theeidor a neighbor could be described
as a modulo operation. For example, the neighbtreoN.;'th cell would be written as
Nesnyoene Where % represents the arithmetic modulo operatioequiring that
mod(-1,32)=31 for example. Figure 3 illustratestidea for the Moore neighborhood

with ranger = 1.

X(x-1)%Nx1 Y (y-1)%Ny Xy, Y(y-1)%Ny X(x+1)%Nx: Y(y-1)%Ny
X(x-1)%Nx: Yy Xx: Yy X(x+1)%Nx: Yy
X(x-1)%Nx: Y (y+1)%Ny X Y (y+1)%Ny X(x+1)%Nx Y (y+1)%Ny
Figure 3.

Moore Neighborhood indexing with wrapping of borsler

Though most software implementations of 2-dimemaicCellular Automata wrap
the borders of the grid, special precautions masiaken for hardware implementations.
In hardware, each CA cell would be an identicatwit The cells would each have
connections to their neighbors. Connecting eaclddyccell to the other side of the grid

would increase the cost and scalability of the anpmntation. As such, it is often



advised that CA systems destined for hardware tlaikeinto account [2]. Because the
operation of the CA still requires that each celvé the same neighborhood, some
special-case null-value must be chosen as transftiactions for those non-existent
neighbors to avoid leaking information in or outloé CA grid.

1.1.4. CA Transition Function.

The last member of the 4-tuple, the local transitionction f, defines the
behavior of the automataf is directly dependent upon the number of statesthad
chosen neighbor-hooding scheme. L&t,Slenote the current state of the cell in a
2-dimensional grid field [2]. f transforms a cell to its next state based on it
neighborhood:

f:Shy— Sy

Let Grid. be the current configuration of the entire griéffter applying the local
transition functionf to all cells in the field, the global transitionnttion F evolves [2],
changing Gridinto GridR,.

F : Gridk. — GridF,
When choosingf for applications that are information preservingmust be

specially crafted to avoid destroying informatiofkor example, in Conway's Game of
Life, which has a Moore neighborhood with rangel, = living cell with zero neighbors

will die, or transition from state 1 to state Oinc there are no complimentary rules for
the spontaneous birth of a cell, Conway's rulesnatenformation preserving. For some

cryptographic purposes (i.e. not random patterreggion), f must be designed to be

injective. The injective property simply requirdsat all inputs to the function have



specific outputs. If the CA state values are basedits current neighborhood
configuration, as opposed to an aggregate sum ighbers, then creating one-to-one
functions that preserve all information is sim@di Injective transition functions
inherently imply the existence of the inversefoff™*, which definess* as the inverse
operation on the entire grid field= is reversible if and only iF is a bijection. [2] If a
CA requires reversible rules, then the functfomust be its own inverse. For example, if
configuration (or state) ‘A’ is changed to 'B',ihB' must also change to 'A". A CA with

a bijective functiorf can be described as a reversible cellular autooradRCA.

1.1.5. Example of a Cellular Automata.

The standard example of cellular automata is Jabmav@y's Game of Life. This
automata uses a Moore neighborhood with r = 1ngiight total neighbors to each cell
for a total of nine in a neighborhood. The trapsitfunction is based on the number of
'living' neighbors and the state of the current.célnder Conway's rules, if a dead cell
has exactly three neighbors, it will be born; ifivee cell has two or three, neighbors it
survives to the next generation; in all other casies cell dies. Formally, Conway's

Game of Life can be described as a 4-tuple CA S(d, f).



d = (Nx, Ny, Nz) = (X, Y, 0) where X and Y are nalnumbers.
S={0,1} with 0 and 1 representing dead and livosils respectively.
N = Nwmoore,1@ Moore neighborhood with range 1.

f =is described by the following table.

State |Live Meighbors Mext State
001, or2
03
04567 ard
10 ar1
12 0r3
1/4,5,6,7 or 8

= D —

Table 1. Conways' Transition Rules

Figure 4 illustrates five generations of Conwaules with grey tiles representing
the living cells (cells in state 1) and the numbadicating the count of living neighbors
for the chosen cell. During each generation, ewsly counts the number of living
neighbors in its neighborhood. Next, the locahsiaon function is applied to each cell,
which determines the next state of the cell basedt® current state and its' living
neighbor count. From the first randomly selectedegation shown in Figure 4, all the
non-living white cells with a value of three (indt;ng the number of living neighbors)
will be born in the next generation. In the secgederation, all the cells with the values
four and five will die in the next generation, iddition to the usual births. The map
continues to evolve via Conway's rules until italees a stable configuration in the fifth

generation.
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1.2. Cryptography

Cryptography is the process of encoding and scragnlolata for confidentiality
purposes. The strength of a cryptographic algarithipher) is not specifically in the
algorithm itself; instead, its strength is deteredrby the 'secret keys' and the type of
network used (SPN, feistel, data-dependent rots}tig8]. The most basic way of
differentiating cryptographic algorithms is by thember of keys used. A symmetric key
cipher requires only a single key to encrypt ther'ssdata. This single key is mixed into
the data in such a way that the same key is useddo the mixing. This property
implies that the way in which the key is mixed s own inverse, and most likely the
XOR operation described later. The second bagie tf cipher uses two keys to do its
work. These are typically called public-key crygpgstems. The operation of such
two-key asymmetric ciphers are fundamentally défgrfrom their single-key cousins.
Besides providing confidentiality of data, thesgnasetric ciphers also offer integrity
checking and verification of author for non-repdigia. Focusing on symmetric ciphers,
like Rijndael, there are some basic components raathods used that require some

introduction.

10



Encryption: Decryption:

Plaintext Ciphertext

K, [F] K.+ F]
e . ’
Ki~[F] K [F]
etci-.i etc
oF o)

Ciphertext Plaintext

Feistel Cipher

Figure 5a. A Feistel Network [10]

1.2.1. Types of Ciphers.

There are a few main structures to crypto algorgtlimuse today. They all seek
to create what Claude Shannon calls "confusion diffdsion” of the input data [9].
Diffusion is the process of scrambling and swapitg among bytes within a block of
data. This is typically done before a confusiocgpst On the other hand, Confusion is
performed by byte substitutions, meaning each ts/teplaced by a different byte. An
advantage of feistel networks is that their desggnearly identical for encryption and
decryption, only requiring the key-schedule to lewersed. Figure 5a illustrates a
simplified process of encrypting and decryptinglamext block [10]. For encryption,
the block is split into two halves. One of theveal is processed by the function F. This
function F performs the diffusion and confusiontlué data, using whichever method the
feistel cipher has chosen. Next, either as anditegy or as part of the function F, a
portion of the key K is mixed into the data with A®R. The resulting half block is

XORed with the other half, and the process consniies way. The two half blocks
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swap positions, and continue utilizing F and K utite entire key has been used. For

decryption, the exact same algorithm is used, lmikey stream is reversed.
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Figure 5b. The four steps of AES, a SPN Cipher [12]

Substitution Permutation Network (SPN) cipherse IRijndael, borrow a lot from
the mixing functions of Feistel ciphers. Howevéne encryption and decryption
processes differ by more than a simple key reverBaindael consists of steps that mix
the key, substitute bytes using an S-box, shiftsramithin the block and then mix
columns within each block (Figure 5b) [11]. Figd&b, shows each of the confusion and

diffusion steps used in the SPN cipher, in no paldr order. The first confusion step in
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the figure shows how the plaintext block,state, is XORed with some of the Key. This
is represented as Mat®& MatK = MatB. The second step shown in Figure Snshthe

second confusion step, called SubBytes, which &dus Rijndael and similar SPN
ciphers. This process uses an S-Box to produaparoutputs for each input. The next
step in the figure is simply the ShiftRow diffusistep, which deterministically rotates
rows in the state, which move bits from their arailocation in thestate. The second
diffusion step illustrated in Figure 5b, is the Mislumns function. This function uses
matrix multiplication in the Galois field to diffesbits within each column among all four
column entries. Thus, for an SPN cipher like Rajell confusion and diffusion functions
(and their inverses) work together and in a certaier to provide security. The SPN
decryption process differs from the encryption mattonly the inverse functions are
called and in the opposite order, which makes a@sig SPN ciphers slightly more
involved than a Feistel cipher.

The S-box, mentioned above, is the heart of mobt 8phers and responsible for
a large amount of the confusion aspect of the cipl&eBox is a term that simply means
substitution box. An 8-bit S-box contains 256 wmacentries: one for each of the 256
8-bit numbers. The input byte is used as an indexthe table, and the value at that
index is the substitution value. To undo the stlggins indicated by the S-box, there
must also be an inverse S-box. These boxes mamgtistsync (remain inverts) for

encryption and decryption to work.

A B A®B
T T F
T F T
F T T
F F F

Table 2. Truth table for XOR operation.
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A 10010011 C 00100111 C 00100111
B 10110100 B 10110100 A 10010011

A®B=C 00100111 C®B=A 10010011 C®A=B 10110100
Figure 6. Example of XORs properties with an 8shiing.

1.2.2. Basic Boolean Operations.

Both SPN and Feistel networks (and nearly all adiphe existence) depend
heavily on the XOR operation to do most of theudrtible operations. XORH), which
means Exclusive OR, is a Boolean operation thatitees true if and only if one of the
inputs is true (Table 2). This exclusive disjuantallows two pieces of data to be mixed
invertibly as long as one of the original piecesnddrmation is known. Thus, if ® B =
C, then C® B = A, and C® A = B (Figure 6). At the simplest level, all epption
algorithms XOR the plaintext and the key togetleelgét the cipher text. This naive
example has the obvious problem that if an attavlese able to guess the content of a
plaintext block, they could retrieve the encryptikey. Thus, algorithms have diffusion
aspects as well. These properties and the perfarenaf bit-level operations make XOR

a perfect fit with cryptographic applications.
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Key = Encryption Key = Encryption Key = Encryption
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Electronic Codebook (ECB) mode encryption

Ciphertext Ciphertext Ciphertext
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Block Cipher Block Cipher Block Cipher
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T e B

Plaintext Flaintext Plaintext

Electronic Codebook (ECE) mode decryption

Figure 7. ECB block mode operation [12]

1.2.3. Block Cipher Modes of Operation.

All block ciphers operate on fixed sized chunksdata, or blocks. Because of
this, any two identical blocks encrypted under saene key will output the same cipher
text. Since this is a flaw inherent in any blocgher, a number of "modes" exist to
increase the security implementations of block eiph In Electronic Codebook (ECB)
mode (Figure 7) [12], each input block is encrgpteturn. A block of data is first read
into a buffer. The encryption algorithm is themfpemed on that buffer, which mixes the
key into the data. This processed block is thapuduo the cipher text file, and the next
plaintext block is encrypted in turn. For examplgjou were to encrypt a large image
with ECB mode, the input blocks for identical raggowould show through in the cipher
text (Figure 8) as per the inherent flaw. ECBa$ recommended for any cryptographic

implementation because of this reason [13].
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Scaled Original Scaled RC5 Encrypted ECB Scaled AES CB
Figure 8.
Comparison of ECB and CBC mode for a 6885 x 100868l jmage. (Non-Interpolated Post Scaling)

A much better choice of mode for a block ciphethis Cipher Block Chaining
(CBC) mode. Figure 9 illustrates this mode. CB@dmrequires an initialization vector
(IV), which is simply a random block of data thaillbe XORed with the plaintext
before encrypting a block. To create an 1V, fiita block-sized buffer with random
data from any random number source. The secomdist® encrypt this IV with the
users' key. The resulting IV should be uniformd@m after encryption. The IV does
not need to be kept secret; it only needs to béamnand never re-used for the same key.
The initial IV is now ready for use in processingiptext blocks. It is used and updated
exactly as shown in Figure 9 [12]. First, a plakitblock is read in from the file, the
plaintext block is modified by XORing with the IVThe block is then encrypted, and the
IV is set to the values of the encrypted block. isTprocess continues until the file is
exhausted. However, in order to decrypt a filehv@BC mode the initial IV needs to be

stored as the first block in the cipher text.
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The main advantage of CBC over ECB is that all jomev blocks affect the
current block in one way or another [13]. Thusaisingle bit is changed in the first
block of the file (and the algorithm has good pkrck avalanche effect), every other
block will also be changed. There are other mofdesblock ciphers like Cipher
Feedback, Output Feedback, and Counter mode, bat afothem focus on creating

stream ciphers from block ciphers, which is outsifithe scope of this thesis.

Plaintext Flaintext Plaintext
[TTTTTT 6 6 O O
Initialization Vector (IV)
1 1 - o= o it

1 L A

Block Cipher [ Block Cipher Block Cipher

Key =| Encryption Key =|  Encryption Key *|  Encryption
' v 4

|G R FETT T 5

Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

Initialization Vectar {IV) Ciphertext Ciphertext Ciphertext
LITTTTT
i A v
Block Cipher Elock Cipher Block Cipher

Key = Decryption Key =~ Decryption Key = Decryption

Al ¥ |'
[CTTTTITT I
Plaintext Plaintext Plaintext
Cipher Block Chaining (CBC) mode decryption
Figure 9. CBC block mode operation [12]

1.2.4. Cryptographic Keys and Keyspace.

The key itself is one of the most important parts of algodthm, as it provides
‘instructions’ for encrypting and decrypting thead@]. In any symmetric cryptosystem,
the key must be kept secret by the user. Typicllys range from 64-256 bits, with
more bits suggesting more security. THeg space is the number of possible keys that
could be used for input. For a key of 256 bitgréhare 2° available keys. The most

obvious step toward security is removing the pakisiior someone to do a brute force
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attack in which the attacker tries many keys uatiplain text matching a known

distribution is generated. Statistically, a bridece attack would need to try half of the
key space before finding a match, &2V trials for a 256-bit key. Due to the enormous
number of keys to try (Table 3), it is usually cartggionally infeasible to use brute force

on most of today's algorithms.

KeyBits Total Keys Single (1) Distributed (1mil)

1 2 1.15741E-11 1.15741E-17

2 4 2.31481E-11 2.31481E-17

4 16 9.25926E-11 9.25926E-17

8 256 1.48148E-09 1.48148E-15
16 65536 3.79259E-07 3.79259E-13
32 4294967296 0.024855135 2.48551E-08
64 1.84467E+19 106751991.2 106.7519912
128 3.40282E+38 1.96923E+27 1.96923E+21
256 1.15792E+77 6.70093E+65 6.70093E+59
512 1.3408E+154 7.7591E+142 7.7591E+136

Table 3. Relationship between keylength, totakkeyd days to test 50%
of keys at 1 peps and at 1 per picosecond.

Internally, keys are usually larger than the usgptied key due to key-expansion
or key-scheduling functions built within a stronigher [14] [15]. Such key expansion
functions also serve another important role, byidiag weak keys. In some algorithms,
there exist key patterns that could output parthef message or part of the key in the
cipher text. Or even cause no encryption to beedanall. These key expansion
algorithms typically do not directly increase keyase, as they are deterministic and
based on the users small input key. However, kgamsion allows an algorithm to
perform morerounds of encryption on the data with a different key ledone. In
Rijndael/AES, key expansion relies on the S-box ignitherefore related to the S-boxes
current configuration, yet it is still deterministi

One place that researchers have attempted to aee@A with Cryptography, is

in key-expansion. The authors of [1] [16] [17B]1all used one-dimensional CA to
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generate a key-schedule based on the pseudo-rapddt@rn properties ofnany

one-dimensional CA rules, as illustrated in Figie Thus, the first line of pixels in
Figure 10 represents the first generation, or tker usupplied key. Subsequent
generations provide keys further in the key-schedwhich are claimed to be
pseudo-random. While a truly random expanded kewylavb ideal for encryption (like a
one-time-pad cipher), pseudo-random is the norm nasst algorithms use the

user-supplied key as an initialization vector feylexpansion.

1.2.5. Other Parameters of Encryption Algorithms.

Many symmetric key ciphers have parameters fornim@ber of rounds, block
size, word size, and for CA based systems the nupflgenerations. A user modifiable
block size, for example, is often a parameter ofg@d algorithm and allows
modifications to be made based on memory and tiorestcaints. Typically, a larger

block size will encrypt faster, but block sizesedtty depend on the word size the
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algorithm or user supplies and their architecturéor example, the RC5 algorithm
parameterizes word size to allow 16, 32 or 64 bitslata for each entry in the block.
Providing parameters to the internal workings & #igorithms effectively increase the
key-space, as the attacker must know these valkesstly in order to decrypt a file.
Another common parameter, the number of roundgrehetes the number of times the
encryption functions are performed on a block dhddn RC5, this parameter is variable
from 1-255; in Rijndael, it is typically a functioof the key-length but can be
parameterized. Increasing the number of roundeases the convolution of the data.

1.2.6. Padding Methods for Block Ciphers.

Any block cipher using ECB or CBC modes must padphaintext to fill out the
block before encryption; the other modes requirgpadding, as they are stream ciphers.
If the final block is not padded prior to encrymtjdhen it will not decrypt properly. One
typical method of padding suggests filling the tfitmused byte with 128 (0x80, or
10000000 binary) and all other bits/bytes with ser@he other primary method is to fill
all N, bytes with the value §thus if you have four padding bytes they willladl padded
with 04, as shown in Figure 11, Case 1, MethodHawever, there is a problem with this
scheme. If the plaintext ends on a block boundad/ has the last bytes (0x01) or (0x02,
0x02), or even (0x03,0x03,0x03) then these bytdisbeiindistinguishable from padding
and will be removed as padding. This is illustdate Figure 11, Case 2, Method 1.
Thus, it is highly recommended to add a full blagkpadding to the cipher text in
addition to filling out the last block with paddifiytes. In this scheme, all padding bytes

are filled with the value, N+ BlockSize. This allows the padding to be proper
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removed after decryption and is illustrated in Fegil in Method 2 for both cases. This

method will always work unlike Method 1.

Case 1 Case 2
Padding Needed No Padding Needed

01 2 3 4 5 6 7 01 2 3 4 5 6 7
0jiF A D THI |S 0|50 41 44 |32 54 48 49 |53
1 MIE |S|S A |G E 132 4D |45 153 53 |41 47 45
2 T O 3 2- |B 2|32 54 4F |32 63 |62 |20 |42
JY T [E |5 3169 |54 |45 (532103 [03 |03
Message that needs 4 bytes padding. Messageetbas 0 bytes padding.

01 2 3 4 5 6 7 0 1 2 3 4 5 6 71
0|50 41 44 |32 54 48 49 |53 0150 41 44 32 54 48 |49 |53
1132 40 45 |53 53 |41 47 |45 1132 4D |45 |53 |53 |41 |47 |45
2|32 54 4F |32 63 |62 |20 |42 2|32 54 4F 32 63 62 2D |42
3159 54 45 53 04 04 |04 04 3|59 54 45 53 210303 |03
Method 1. Padding with Np = 04h| Method 1. Padding with Np = Oh
Depadding will remove 4 bytes. Depaddinijremove 3 bytes.

01 2 3 4 5 6 7 01 2 3 4 5 6 7
0|50 41 44 |32 54 48 49 |53 0|50 41 44 |32 54 48 49 |53
1(32 |40 |45 |53 |53 |41 |47 |45 1(22 4D |45 153 53 |41 47 45
2(32 |54 |4F 32 63 |62 |2D 42 2(32 |54 |4F |32 63 |62 2D 42
3|69 54 45 53 24 24 |24 |24 3|69 |54 |45 (53 21|03 [03 |03
124 24 24 24 24 24 |24 |24 120 20 2020 20 20 20 20
224 24 24 24 24 24 |24 |24 220 20 2020 20 20 20 20
324 24 24 24 24 24 |24 |24 320 20 2020 20 20 20 20
4124 24 24 24 124 24 24 24 4120 20 20 20 20 20 20 20
Method 2. Padding with Np = 24h Method 2. Padding with Np = 20h
Depadding will remove 36 bytes. Depaddiniyremove 32 bytes.

Figure 11. Two padding methods.

1.2.7. Common Cryptanalysis Technigues.

Besides ensuring an adequate key space, thereaarngarperimental methods for
analyzing the general strength of a cipher. Thmethods can target weaknesses in the
algorithmic design, software implementation, ordveare implementations. The most
basic test of the algorithm is a data histograniterAprocessing a block or file of data,

there should have been adequate confusion andidiffdio produce a uniform frequency
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histogram for all byte values, regardless of trerpéxt input. This uniform property is
necessary to avoid first order language attackshvhare based on the probability and
statistics of the original data, like frequencyetters in the English language. Obtaining
this uniformity even with the use of a uniform ingey and uniform plaintext is the first
step to showing a cipher may not be trivially biegalk.

Another property of all modern algorithms is thé&ical avalanche effect (CAE).
CAE says that for a single bit change in input pgtdeast 50% of bits should change in
the output byte [2]. In the AES/Rijndael algoriththis is handled by the diffusion steps,
namely the ShiftRow and MixColumn operations. TMixColumn operation
specifically performs matrix multiplication usingnaatrix [19] which ensures that every
byte of the input affects all four bytes of themutt This method is elegant, and its affine
property does not weaken the cipher. These typeparations, coupled with an S-box,
provide the critical avalanche criterion and bytegtiency uniformity. An algorithm
design that meets these criteria — in an inteligeder — has the possibility of being a
secure algorithm.

Many attacks focus on weaknesses in the implemengatof algorithms as
opposed to the actual design of the algorithm. &ammmple, in AES and Rijndael
S-boxes are supposedly generated in such a ways o &ave good non-linearity
properties. However, According to [20] and [21]e tS-boxes generated by Rijndael's
algorithms only have 9 algebraic terms, which magve to be vulnerability in the
design. It is also suggested in [22] that a st&Hoox — which most implementations
store in the binary — allows an attacker to simplgdify the binary and discover the

secret key and plaintext.
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The authors argue that most implementations ofecgphvith static S-boxes are
vulnerable to blanking, resulting in key discoveryn addition to their examples and
proofs of AES's vulnerability to this scheme, tlaso suggest that all SPN ciphers with
"Unprotected Implementations, Static S-boxes irheipround, Key whitening (XOR)
operation after the final round, A suitable rourey lexpansion," are likely vulnerable to
S-box Blanking. In the case of AES, if an attackere to blank the S-box with zeroes
on the victims machine, then due to the XORinghef data with an entry from the key
schedule, the key would be directly outputted ia tipher text. Kerins and Kursawe
offer methods to defend against S-box blankinghsagphysical protection of the cipher
binary by the operating system, code obfuscatioexacutable packers, dynamic static
S-box generation at run time, and dynamically modg a generated S-box. These
suggestions are useful, as the dynamic modifiecergéed S-box offers protections
against both S-box blanking as well as the weakr@tarithmetic complexity of the
standard AES S-box as mentioned in [20] [21].

1.3. Cellular Automata Properties for Cryptography

There are many properties of Cellular Automata thaly help or hinder their
usefulness in cryptographic applications. For eplamany cellular automata that is not
injective is said to be a non-reversible CA [2ucB a non-reversible CA loses data each
generation, which lowers its usefulness for eneoyppurposes. It may be possible to
find a use for these automata where reversibgityat important, such as random number
generation and hashing functions. Yet in the cdseversible cellular automata (RCA),
it is easy to see one simple use in cryptographg.RCA could be used as a diffusion

step. Each cell would represent a bit from a &leg the global transition functiofsand

23



F* would be used for performing diffusion of bits kit a block of data. However,
running a RCA on a block of data for an arbitranynter of generations does not make a
cryptographically secure algorithm. The use of R@@A as the 'diffusion’ step in a
substitution permutation cipher (SPN) seems obyvibus a single static RCA rule does
not offer much more diffusion than the typical RdwfEand ColumnMix operations.
Even with the existence of techniques for crealR@A (tiling techniques, and second
order CA) [23] the information preserving propeafyRCA may be of more interest for
some cryptographic applications than reversibilitd. final property — and one of the
most critical for cryptographic purposes — is tlffena property. If a Cellular Automata
Cryptosystem (CAC) depends heavily on weak affirmmdformations, the low linear
complexity of the transformations will most likelgad to an insecure algorithm when
used as a diffusion step [24].

s Con 1 e

Rule 0

e unuiunRin" pln EMEnala s i

Rule 51

Figure 12. Defining rules for 1-Dimensional autaaa

1.3.1. Previous Research in Combining CA and Ciysiiohy.

As mentioned previously, there have been many ateia creating a CAC. In
[16] S. Nandi, et al, propose a class of block sindam ciphers based on what they call
"fundamental transformations”. The scheme offeceghtes an alternating group of
permutations using EXNOR logic, various programraabhe dimensional cellular
automata (PCA) rules (51, 153, and 195), and agselection function based on a given

key. One-dimensional automata rules were define8tephen Wolfram [25], as shown
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in Figure 12. The three top cells indicate theentr configuration of the central cell and
its two neighbors. The single cell in the secomd mdicates what color the central cell
will have in the next generation. The binary pattef the next generation defines the
rule number from 0 to 255. For example, in Figl& the top example has a next
generation pattern of 00000000, or rule O, while bottom example has the pattern
00110011, or rule 51. A rebuttal to their propasabffered in [26], where Blackburn
and Murphy rigorously analyze the scheme and calectbat all the transformations are
of the affine group and are therefore cryptograghicweak. They state that they can
determine the initial state of the automata (is tase, the key) by solving a set of linear
equations with L — 2 variables and with only%trials, where the initial key is an LxL
bit matrix and the proposed value of L by Nandiés

Nandi, et al, also claim the ability to use PCA"agh quality pseudorandom
pattern generators” as well as for dynamic key gaima and manipulation for stream
ciphers. Their proposed use of CA as pseudo rangattern generators was not
guestioned and is supported by the finding in Sifi&im's research [18]; yet [24] argues
that the Komogorov complexity theory proves that #imple local rules of cellular
automata cannot create true randomness and thus noi@aybe good enough for
cryptographic applications. Nandi, et al, questio& absolute terms of insecurity based
on their affine transformations, inquire about waysabsolutely secure such a system,
and re-iterate their correct statements about GArakfit with VLSI design in [27].

In his paper "Cryptosystems Based on Reversiblil@elAutomata”, Jarrko Kari
offers another CA based cryptosystem which offermesuseful suggestions to any future

attempts. He proposes both a secret-key and acgkey cryptosystem using cellular
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automata. The proposed symmetric key system u€&sta modify the key each block.

Kari suggests that each application of the CA ® khy offers increased security. As
with most systems, special precautions must benta&eavoid weak keys. A simple

solution to the problem of homogenous input keylaintext is offered. Kari suggests
always forcing some of the cells to certain staed using input data to populate the
other cells. This suggestion and parameterizaifdhe k value offer an avalanche effect
that results in largely different output if a siadfit of the key or plain text is changed.

Kari also offers an asymmetric or public key CAClhe general theory of
public-key encryption using CA is to craft a compéintary pair of automata that are hard
to find the inverses of individually. Finding theverse of a given automata, is an
NP-Hard problem according to Toffoli and Margolus[R3]. However, going against
traditional methodology, Kari suggests the use ahynsimple self-inverting "marker
automata", or transformations, which will decrygtem run in reverse. This sounds more
like a single key system, as the key is simplydhger in which to run the data through
the "automata" (forward or backward). Calling #hessmple and linear transformation
rules an automata, let alone a crypto system, s¢eamling.

In [1], the authors propose a private key blockheipsystem that moves away
from simply using a 1-dimensional CA to generate key stream and XOR logic as
previous research in [17] and [16] did. The altjon's key consists of the number of
RCA, the iteration®, andp input vectors. The two transition matrices getegtdased
on this data are inverses of each other and hassilpje uses in encryption. However,
the transition matrices generated are assumedhg@yadthor) to be linear, which may

prove to be a weakness. The authors suggesthbemtalgorithm is more resistant to
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exhaustive search attack than other CACs due fariger key space lower bound 6f2
As most other offered solutions, their real foctism fast parallel operation for hardware
VLSI designs. As such, their boundary neighboesadways considered with a null state
as previously suggested.

Efforts to use CA for cryptography seek to takeadage of the fact that simple
rules can generate complex pseudorandom pattechthahthey can be implemented in
hardware for very fast and efficient operation. ithere have been many attempts in
using CA for cryptography, not many have been pnoteebe cryptographically secure.
On the contrary, any cryptosystem based on affiimear, simple, or "fundamental
transformations" is cryptographically weak and oalyproblem of solving a system of
equations with the support of trial data. Using@-@iimensional pseudorandom patterns
generated by CA for a key stream is argued to befficient for cryptography [24]. The
use of non-homogenous cellular automata for pltgig-systems also suffers from the
challenge of generating complimentary pairs of mata and the fact [24] that
NP-hardness does not necessarily guarantee sefauragyptosystems.

1.3.2. Other Possible Uses of CA in Cryptography.

Researchers have made many attempts at creatipgosygtems based nearly
entirely on cellular automata. Some of the prolslemthese CACs lead researchers to
guestion the true applicability of CA for any crggtaphic use. While the idea of using
CA as a cryptographic primitive, like a key expamsalgorithm, or as the confusion and
diffusion steps themselves may seem like a losseaGA may still have some possible
application. For example, in [28] the author preg®the use of CA to generate new and

unique S-boxes for block ciphers. While it remainse shown that CA can generate
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good non-linearity in an S-box, S-boxes are a pnoaed very powerful cryptographic
primitive. In this sense, while developing entrelew algorithms based on cellular
automata might be questionable based on prior pteenCA surely have some use in
further enhancing existing and proven cryptogragiimitives like an S-box. While
S-boxes are typically generated deterministicatlly,even hard-coded into the binary,
there is an opportunity for increased security ymaimic S-boxes that are kept secret
from the attacker.

Thus, based on the conclusions of [20] [21] [22d aaggestions of [28], the S-box
cryptographic primitive, and specifically the AE3fiRlael implementation, could

possibly be improved in the following ways:

1. Dynamically generate S-boxes at runtime, do noestcsingle static S-box in the
binary. Dynamic generation protects against Sitdarking.

2. The 9-term algebraic expression for the S-box cbeldemoved with some
dynamic modifications of the S-box.

3. Having more than one initial S-box based on useicehor key, as opposed to
AES's single static S-box, increases complexityBo& choice also modifies the

key-expansion process.
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2. CRYPTOSYSTEM DESIGN AND PROCEDURES

Initially there were several ideas that could hibgen used to develop this cellular
automata cryptosystem. The base encryption algorithosen for the cryptosystem is
Rijndael with some restrictions placed on its patars. The chosen parameters
guarantee a very high level of security and all@w & simpler implementation. The
choice of CA for S-box mixing was based on the semplargolus neighborhood.
Margolus, which was the first cellular automataastgated for this purpose, ended up
being a very suitable method due to the simpli@tyd elegance of its alternating
partitioning scheme. The following section prowdeetails on the design and
implementation of the proposed CAC.

This thesis proposes a CAC based on Rijndael synumbklock cipher that
implements:

1. Dynamic S-box generation, generating up to 128usand valid initial
S-boxes.

2. A Cellular Automata that dynamically, reversiblydauniformly
redistributes S-box and Inverse S-box values.

3. The option of modifying the S-box before key expandgor generating

different expansions based on the input parameters.
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4. User parameters controlling the Initial S-box clecamd the number of

generations the Automata should modify the S-babpeek, as well as a
threshold parameter of the CA.

256-bit block size, 256-bit key size, CBC mode wifhgenerated from
clock drift calculations, double padding.

Optional key shuffling CA is also provided.

7. All user input parameters must be known to propeegrypt a file.

There are many steps in developing and testing @.Ch this system, there are

two main parts: the encryption system and the S4baxlifying CA. Each part has

multiple steps; thus a modular unit-tested desigs wsed throughout. Each function

was rigorously tested during the implementatioretsure the proper operation and to

avoid debugging nightmares where encryption andygéon just do not work properly.

/ Flain Text

/ .< AddRoundKey(1} >
|

Figure 13. Rjindael Encryption Flowchart for presig a single block. doRounds
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2.1. Rijndael Implementation.

Implementing Rijndael with specific parameters 656-bit key and 256-bit blocks
was the first step towards realizing the designthef eventual CAC. A systematic
approach was taken, with each function being teateti verified before moving to the
next (Figure 13). The Galois mathematics functimese based on and verified with the
example C++ code, tutorials, and lookup tablesassdd into the public domain on Sam
Trenholme's website [19]. Specifically, the puldiemain Rijndael code utilized in the
CAC deals with generating multiple supporting tabl& his code was utilized because it
is highly optimized for performing various Galoiel mathematics in GF{p, and to re-
write these base functions into less optimized &b tested versions would be
counterproductive.

Specifically, the public domain functions that warglemented generate the log
table, exponentiation table, division table, ana tkey expansion table. These
initialization functions generate 8-bit 256 entmgbles for performing GF{R math
quickly. These functions were modified at variduses during their integration into a
working Rijndael implementation. Most of these mp@s were data type and data
structure changes, for example making all datasypesigned 8-bit (for the 8-bit field)
and making all two dimensional tables one dimeradiorAnother function that utilizes
public domain C++ code is the mixColumn operati@nce again, the existence of high
quality public domain source code for this crugtdp in implementing the Rijndael half
of the CAC makes re-implementation pointless. Public domain functions were

mainly used for convenience in the early stagegeotlopment, and on their own they do
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nothing. They serve as initialization and mathecsatoutines only. Charts showing
functions source and their use in the process edound in Appendix A5 and A6.

2.1.1. Generating Rijndael's Galois Field.

The first step of the Rijndael implementation dasdgalt with generating the
Galois Field used throughout the AES/Rijndael athar. A Galois Field is typically
described with the notation GFfpwhere p is the characteristic prime number, drd t
value () represents the order (total elements) of thel figh the case of AES\Rijndael,
the field used has order 256 and characteristimeorof n=2, thus a GF{R Doing
mathematics in a Galois field requires that allulssfit within the field, i.e. 8-bits.
Adding and subtracting in Rijndael's Galois fiel& aepresented by an XOR operation.
In contrast, multiplication, division, exponentati and logarithms require operations
that are more complex. Luckily, these operaticas loe handled with lookup tables. In
the implementation, five tables are generated based user chosen Galois generator.
These generators are numbers that , traversesslilpe values in the Galois field (except
zero) when exponentiated 255 times. There are@&l8is generators in GF{2 The
chosen Galois generator affects all five look-ugds in the implementation, the S-box,
and the later key-expansion. Making it a user ipatar increases key-space and hides
the initial S-box of the CAC from the attacker,cagposed to AES's single S-box.

2.1.1.1. Multiplying in GF(3).

As mentioned, multiplication in GF{Ris more complicated than the simple XOR
that is used for addition and subtraction. The nalamt Galois field theory and
supporting information in the AES proposal for Rigel [9] can be implemented with a

surprisingly simple algorithm, shown in Figure 14:
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set product =0
set highbit =0
forx=0to 7
if(operandB AND '01")
product = producd operandB
highbit = (operandA AND '80")
bitShiftLeft(operandA, 1)
if(highbit)
operandA = operand® '1b’
bitShiftRight(operandB,1)
return product

Fig. 14 Multiplying in Rijndael's Galois Field

2.1.1.2. Generating the Exponentiation and Log dabl

The generator is first used to build the exponéntiatable and the log table as

per the following algorithm shown in Figure 15:

set expTable[0] =1

set expTable[255] =1

for x =1 to 255 do
set expTable[x] = expTable[x-1] * galoisGenerdigalois multiplication)
set logTable[expTable[x]] = x

set expTable[255] =1

Figure 15 Generating the Exponetiation and Logdsab

The exponentiation table and the log table candeel to multiply two numbers in
the Galois field much more quickly than the staddaalois multiply (which was used to

generate the tables). This is done with the megihadvn in Figure 16:

set a = logTable[X]

set b = logTable[Y]

set sum =a+ b mod 255 (normal addition, notiggalo
set product = expTable[sum]

Figure 16 Multiplication of X and Y in the GF ugitables.
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2.1.1.3. Generating the Multiplicative Inverse [Eab

Division in Rijndael's Galois Field is performed kaking the logarithm of the
numerator and subtracting the logarithm of the danator modulo 255 and looking it
up in the exponentiation table. The only divisioperations actually performed in
Rijndael always have one as the numerator; thusggemerate the multiplicative inverse
table as shown in Figure 17. The log of 1 (the exator) always has a value of 255.
The log of the denominator is subtracted from 2&%] the result is looked up in the
exponentiation table. These tricks for quickly fpeming mathematics in the Galois
Field were found on Sam Trenholme's website, ampdaces the typical generalized
Galois Field polynomial based calculations for ¢éalolok ups. These tables will be used

to build the initial S-box and inverse S-box.

set mulinv[0] =0
for x =1 to 255
mulinv[x] = expTable[255 — logTable[x]]

Figure 1° Generating the Multiplicative Inver:

2.1.1.4. Generating the S-box and Inverse S-box.

The S-box, handles Shannon's confusion step ofS#PE cipher Rijndael. It
simply handles all byte substitutions and thus ireguan inverse table. It is generated by
taking the multiplicative inverse of a given numlaerd transforming it with a simple
affine transformation matrix. A single value fdret S-box can be transformed and

calculated with the algorithm shown in Figure 18:
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set s = mulinv[inputByte]
set x = mulinv[inputByte]

forc=0to 3
s = ROTL(s,1) (circular rotate s left by one)
X=X®s @ =XOR)

outputByte = x® galoisGenerator

Figure 18 Getting an S-box Entry (SUB)

Using the SUB algorithm (Figure 18) the S-box amderse S-box tables were

generated, as shown in Figure 19:

for x =0 to 255
Sbox[x] = SUB(x)
SboxInv[Sbox[x]] = x

Figure 19. Generating the S-box and Inverse S-ladteB

2.1.2. Performing the MixColumn Operation.

The MixColumn operation performs half of Shannatiffusion step in Rijndael,
with ShiftRow performing the other half. It accolmspes this diffusion of bits by using
matrix multiplication within the Galois field. FRige 5b, showed a graphical
representation of this function. The MixColumn @i®n is performed on every column
of the state. The state represents the current block of datagboperated on. In this
case, the 256-bit block size being implementedahstate of 4x8 bytes. Each of the eight
4x1 column matrices are multiplied by one of the #@x4 matrices shown in Figure 20,
depending on whether encryption or decryption iadpeerformed. Multiplying by these
matrices ensures that all four entries in the coluwill mix with each other and
reversibly so. The creators of Rijndael chosedheatrices based on the fact that within
the Galois field the columns are considered polyiatsnover GF(®), which are

multiplied modulo the irreducible polynomiaf x x* + 3 + x + 1 [9]. This constant
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polynomial is co-prime to %k+ 1 and thus invertible as per standard GaloiddFie
methodology [9], which this thesis largely ignoresth its optimized table based

approach to Galois Field mathematics.

2 3 1 1 14 9 13 11

1 2 3 1 11 14 9 13

1 1 2 3 13 11 14 9

31 1 2 9 13 11 14
Fig 20. Rjindael's 4x4 Matrix Rjindael's Inv 4x4 Matrix

Multiplication and addition during the matrix opgoas are performed within the
GF(%), with addition and subtraction being the XOR @pien [9]. These kinds of
operations quickly lead toward meeting the Critigalalanche Criterion [29] which
requires that any bit change in the input affectsagerage of 50% of the bits in the
output. The MixColumn operation moves a fair numifebits to different positions, as
can be seen in Figure 21. Figure 22 shows thénatigattern representing the four rows

of data shown in Figure 21, and the bit patterrerafiterforming the MixColumn

operation.
00 08 10 18 20 28 30 38 80 88 90 98 a0 a8 b0 b8
40 48 50 58 60 68 70 78 , dbd3cbc3fbi3ebe3
80 88 90 98 a0 a8 b0 b8 00 08 10 18 20 28 30 38

c0 c8 d0 d8 e0 e8 fO 8 5b 53 4b 43 7b 73 6b 63

Fig. 21 MixColumn Effects in Hexadecimal on anuhplock.

36



Fig 22. Mix column effect on the bits of the stak®wn in Figure 21.
1) Original Bit Pattern, 2) Resulting MixColumn Biattern

2.1.3. Performing the ShiftRow Operation.

The ShiftRow operation performs the second halftled diffusion of bits
throughout thestate. The prime operation of ShiftRow is a one-bytewar shift of the
row: left or right for encryption or decryption pesctively. The number of times each
row is shifted depends on the block size and themomber itself. For the fixed 256-bit
block size being implemented, the 8-byte rows &2l 1, are shifted 4, 3, and 1, times
respectively. Figure 5b, showed a simple graphesaimple of this process. Row O is
never shifted with any block size. These operatiogsult in yet more diffusion, as
shown in Figure 23 and Figure 24. You will nottbat the first row remains unchanged,
the second row was shifted once, and the thirdfamdh rows are shifted 3 and 4 times
respectively. Figure 24 shows the data from Fig2Berepresented as bits, with an

asterisk representing a bit that is turned on.

00 08 10 18 20 28 30 38 00 08 10 18 20 28 30 38
40 48 50 58 60 68 70 78 48 50 58 60 68 70 78 40
80 88 90 98 a0 a8 b0 b8 9098 a0 a8 b0 b8 80 88
c0 c8 d0 d8 e0 e8 fO f8 d8 e0 e8 f0 f8 cO ¢8 dO

Fig. 23 ShiftRow Effects in Hexadecimal on an inplock
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2)

Fig 24. ShiftRow effects on the state shown iruFeg23.
1) Original Bit Pattern, 2) Resulting ShiftRow Biattern

2.1.4. Performing Key Expansion.

Key expansion is the process of taking the usenallsand possibly weak input
key and procedurally expanding it into a much largad stronger key. The key
expansion functions for Rijndael differ slightlydsal on the size of the input key. For a
256-bit key, the algorithm generates an additidd& bytes for the key schedule. In this
implementation, forcing a fixed sized 256-bit keljglstly simplifies the process of
generating the key schedule. However, the prastdssequires several functions. These
functions consist of an 8-bit circular rotate on32-bit word, the RCON operation
(exponentiation of 2), a substitution using the d%;band finally the key schedule
function. While the first two functions may bevial (Figure 25, 26), they are illustrated

in pseudo-code along with the others for completene

set a =in[0]
forc=0to 3

in[c] = in[c+1]
in[3] =a

Fig. 25 Circular left rotate of a four byte word.
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setresult =1
if(inputExponent == 0) return 0
while(inputExponent I= 1)
result = gmul(result, 2)
inputExponent = inputExponent — 1
return result

Fig. 26 Rcon operation, exponentiation of 2 in Z5F(

The ScheduleCore function (Figure 27) does mosthef work during key
expansion. It takes four input bytes (32-bitskted key and uses the rotate and RCON
operations to do some mixing of the key. This mixis necessary to avoid weak keys

and weak expansions.

rotate(FourlnputBytes)
forc=0to0 3

FourlnputBytes[c] = Sbox[FourlnputBytes|c]]
FourlnputBytes[0] = FourlnputBytes[@ rcon(inputExponent)

Fig. 27 ScheduleCore scrambles four bytes and uses rcthredirst byte

The final algorithm (Figure 28) in key expansiorsiScheduleCore to do most of
its work. However, in the case of 256-bit keyss thlgorithm also does some extra
mixing by adding an extra S-box substitution. Téidra step is necessary to maintain
strength in larger input keys that is not requifed small keys. For the 256-bit key
expansion, the ScheduleCore algorithm expects its¢ 32-bytes of the 480-byte
InputKey array to contain the user supplied keyhisTexpectation allows in place

expansion to the final 480-byte key.
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array FourTempBytes[4]
set keyOffset = 32
set inputExponent = 1
while(keyOffset < 480)
fora=0to3
FourTempBytes[a] = inputKey[a + ¢ — 4]
if( c mod 32 == 0)
ScheduleCore(FourTempBytes, inputExponent)
inputExponent = inputExponent + 1
if( c mod 32 == 16)

fora=0to 3
FourTempBytes[a] = Shox[FourTempBytels[a]
fora=0to3
inputKeyl[c] = inputKey[c — 32p FourTempBytes|a]
c=c+1

Fig. 28 The KeyExpansion algorithm performs incgl@xpansion of the key.

2.1.5. AddRoundKey Function.

With the key expansion complete, most of the caretions of Rijndael have been
implemented. The only core function that remambé implemented deals with actually
utilizing the key to furtheconfuse the input data and thus tie the cipher text touser's
secret key. This function performs a simple XORerapion (addition) between the
intermediatestate (block of data) being operated on and a part efetkpanded key. The
key added with AddRoundKey (Figure 29) is dependentthe currentround of
encryption that is being performed. With the 2%6Key expansion performed in this
implementation, 14 rounds of encryption are peranon each block, with each round

adding a different 32-byte round key from the exjmhkey.

set keyOffset = inputRound * 32
fori=0to 31
state[i] = state[ifp inputKey[keyOffset]
keyOffset = keyOffset + 1

Fig. 2¢ AddRoundKey modifies the state by XORing with arrdikey
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2.1.6. Other Rijndael Implementation Detalils.

With the core Rijndael functions finished, only ewf more functions were
required to have a working Rijndael implementatiofhe functions outlined here deal
with background processes like, CBC mode, paddiagyell as the basic doRounds and
dolnvRounds functions that use all core functianpdrform the encryption.

2.1.6.1. Implementing doRounds and dolnvRounds frams

The doRounds function (and inverse function) penforall the confusion and
diffusion functions previously explained. The arde which these core functions are
called by doRounds were carefully chosen by Rijiislaeithors to maintain high security
and secrecy. For decryption, the inverse of eawk €unction is used in an opposite
calling order. The doRounds function is exactlysaswn in Figure 30, and directly
operates on the current block of data (state). ddievRounds function performs actions
in the opposite order, with the opposite key orded calls inverse functions to undo the

encryption (Figure 31).

addRoundKey(0)
for i =0 to Rounds — 1 (14 rounds for 256-bit st
SubstituteBytes()
ShiftRows()
MixColumns()
addRoundKey(i)
SubstituteBytes()
ShiftRows()
addRoundKey(14)

Fig. 30 doRounds performs Rijndael encryptiont@ndurrent block of data.
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addRoundKey(14)

invShiftRows()

for i = Rounds — 1 downto 1
invSubstituteBytes()
addRoundKey(i)
invMixColumns()
invShiftRows()

invSubstituteBytes()

addRoundKey(0)

Fig. 31 dolnvRounds performs Rijndael decryptiortte current block of data.

2.1.6.2. Implementing CBC Mode.

CBC mode, outlined by Figure 9, requires the germraof an initialization
vector (IV). As mentioned previously, the IV dosst need to be kept secret from the
attacker. In fact, it cannot be kept secret frbmn dttacker as it is required to decrypt the
file properly. For this reason, the IV is typigalitored as the first block in the cipher
text. As a rule, the final IV must be random amder re-used with the same key. This
unique IV can be achieved from non-uniform randowput data by encrypting the IV
with the user's key. For platform independence, ithplementation uses clock drift

calculations to generate the IV as shown in Fi@zre

array 1V[32]
set clockTime = 0
fori=0to 31
IV[i]=0
clockTime = clock()
while(clockTime == clock())
IV[i] = IV[i] + 1

Fig. 32 Utilizing clock drift for cross platformBL IV generation.

Though the entropy of the clock drift IV calculatics dependent on the current
system usage, its output is typically not uniforamdom (Figure 33). After encryption

with the user's key, the output (as per typicahéael encryption) is uniform random and
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appropriate for use as an IV. For extra mixingzBC style XOR is also performed

during IV generation (Figure 34).

Frequency of Byte Values in ClockDrift Output

250

200 ~

150

Count

100 -

50

0

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241
Byte Value

Fig 33. Frequency of Bytes in clock drift output.

array 1V[32]
array Temp[32]

ClockDriftFill(1V) //Fill IV with clock drift values
doRounds(IV) //Do Encryption rounds on the

copy(lV, temp) /[Copy the IV array to theriie array
ClockDriftFill(IV) //Fill IV with clock drift values

XOR(IV, temp)  /IXOR all 32 IV entries with thieemp entries
doRounds(IV) /IDo Encryption rounds on thte |

return IV IV is ready.

Fig. 34 InitlV function utilizes clock drift, engption, and CBC to create IV.

With the IV generated, the basic functionality dB@ mode only requires two
trivial functions: one to update the current CB&tst(a memcopy) and one to XOR each
entry of the CBC state with the encryption staiéese simple functions were even used

in the InitlV function (Figure 34).
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2.1.6.3. Implementing the Padding Functions.

The basics of the padding functions are trivialnature but quite tedious in
implementation. The general idea employed hedeiailed in Figure 11. The idea is to
pad the last block of data with a value equal sortamber of padding bytes plus the size
of a complete block. In addition, a complete blotlpadding is always encrypted as the
final block; this method avoids the problem of remmg padding bytes mentioned earlier.
After padding and encrypting the final block, am®t complete block of padding (with
the same value) is encrypted and outputted. ForydBon, the second to last block is
decrypted, and then the last block's decrypted datsed to remove padding. Testing
and perfecting the padding functions required afdtial and error, which seems typical

regardless of the simplicity of the method.
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Figure 35. a. Possible Configurations
b. Billiard Ball Transition Rules
c. Bounce Gas Transition Rules

2.2. Implementing Margolus Automata

The original inspiration to use a Margolus styletoawata came from the
undeniable reversibility of the standard billiarallomodel (BBM) (Figure 35b) [6]. The
BBM is a two state Margolus automata that simulgeasicle interactions as if they were
bouncing balls. The BBM is interesting becaussiitgple rules are reversible and can be
run forward or backward in time. It was thoughdtth the BBM were tied to an S-box or
bits of data as a diffusion step, it would be palssto use the BBM modify and restore
the data. Reversibility of this kind is due to sgetry between transition rules and
symmetrical states. With such a symmetrical Margoheighborhood automata,

reversing the calculation of generations only reggiian inversion of the current
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EvenOdd variable state. Though it seems nice,typis of reversibility turned out to be
unnecessary for S-boxes because the S-box, autgeataation, and current block of
data are all dependent. This means that the llenig processed and the S-box must be

synchronized between encryption and decryptionthmoteversed order.
1E EE 3E
4 E | E | E
Figure 36 Billiard ball model interactions.

After taking a closer look at the mixing performaraf the BBM, it was observed
that some configurations remained static for eastetation, namely 2x2 blocks of living
cells (Figure 36) and any cluster of living cellslaving many configurations with null
transition rules would limit the amount of scramigliperformed; thus it was decided that

automata rules that mix more uniformly would bef@rable for this application.

Figure. 37 Weak Margolus rule showing clusteringpas generations.
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Finding rules with certain properties can be diffian some automata systems.
This difficulty increases with the size of the r@grhood and number of possible states.
In this system, there was the option of allowing tisers to generate their own rules key.
However, based on visual results of random rulemespatterns emerge that severely
weaken the S-box's uniformity (Fig 37.). The rutesen for the final design was the
Bounce Gas rule invented by Tim Tyler [7] (Figufgc® This rule is described by the
author as a uniform gas rule, and based on expetahneesults, it does distribute 'on' and
'off' cells, or particles, uniformly (Figure 38Due to symmetries in its transition rules
(Figure 39), it also is reversible and thus appliesas a uniform bit-diffusion step in a

different CAC design.

5 6 5 6

Symmetrical starting pattern Non-symmetrical initial pattern
diffusion retains symmetry single cell added causes eventual
seen in rule: uniform diffusion of cells

Fig. 38. Visualization of uniform distribution oh and off cells
under theuniformbounce gas rule in 100 generation st
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The main advantage of the Margolus neighborhoodstox modification is the
simple 2x2-block design. This partitioning scheatlewed all rules to be simple swaps
between horizontal, vertical, or diagonal paircelfs. For each of the 16 configurations

possible with 2x2 blocks, any number of the six gsvanay be performed.

Vert2 TRTII T TR TR TR TIRTE TR TR TR TR TR TR T TS
Yerld TRITRITRITRITRITRITRITH TR TRITR I TRITR I TR TS
Horiz2 o w e e w o e o el ww w
Horiz1  ww o w e o fu fefoe i ww

Diag? w wfE]eF]oe wowfe wiv[F]uFlw w

Diag1 T [ TR TN TR TRITIRITRITR TS [

State 0123 4|5/6(7|8/ 9 A|B|ICIDIEF

Swaps

Figure 39 Symmetry in BounceGas Rules allowingriaersibility, uniform
dispersion, and symmetrical pattern propagation.

Though the implementation only uses the Bounce@bs having a swapping
design allows all possible rules, weak or not,éaibed for S-box modification, as losing
data is impossible. Of course, due to this featsoee transitions possible in a normal
Margolus implementations are impossible, a tramsitirom state zero to fifteen for
example. There was also the inverse S-box to swap,maintaining invertibility
between the S-box and Inverse S-box was a triyparation. The order in which the

swaps are processed is fixed and may affect thdtses
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Figure 40. S-Box viewed as a CA grid with thresh@x7f,
1:1 alive to dead ratio.

Another useful feature of the design is the thribkalue. This value is used to
determine which cells are considedéee and which are considerettad, state 1 and O
respectively. The default value is '127' for umfidy purposes. With this setting, half
the cells in the S-box will beve and half will bedead. Figure 40 shows how a typical
S-Box looks when this threshold value is applieglight modification of the threshold
value drastically alters the results, hence its as@ user parameter. As the threshold
varies further from the half-way value of 127, fewaaps will be performed. When the
threshold value reaches a value of 0 or 255, ngpswall be performed. No swaps are
performed when a partition is in configuration OFgras per the BounceGas rules shown
in Figure 35c. Thus, the threshold values aretéichto a range to ensure the ratio of live
to dead cells is not too skewed, which would hirgi#usion.

2.2.1. Determining the Rule Structure.

The 16*6 possible swapping rules available for mafj the transition function

were designed as a 16x6 array of Booleans. Fdr efthe 16 configurations, or states
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as it is used here, there are six Boolean valugisating whether to perform that swap.
This method can easily perform the swaps on the vegh the algorithm shown in

Figure 41:

for swapType =0to 5
if(rulesMatrix[currentState][swapType] == true)
switch(swapType)

case 0
swapDiagl
case 1
swapDiag?2
case 5
swapVert2
Figure 41. DoTransition function based on 'curgéste’

2.2.2. Determining the Configuration.

Determining the configuration of a 4x4 block is fpemed very often and
therefore needs to be fast. The way the stateswaréered in Figure 35a follows a
binary pattern. This numbering scheme coupled Wt rule matrix implemented,
allows the current configuration value to be cadted very efficiently. In the
implementation it is calculated with a single lidefine statement, encompassing the
general formula shown in Figure 42 which sums @pdécimal value of the four 'bits' in

the configuration. This gives the state number.

set currentState = 0

currentState = currentState + getCellValue(x+1,y+threshHold ? 8 : O
currentState = currentState + getCellValue(x,y+1hreshHold ? 4 : 0
currentState = currentState + getCellValue(x+1,hreshHold ? 2 : 0
currentState = currentState + getCellValue(x,yhireshHold ? 1 : 0

Figure 42. GetConfiguration function, where "&presents the C/C++ tertiary
operator and threshHold is an 8-bit value with difh27.
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2.2.3. Making Margolus Move.

With the simple algorithms for applying the swaps #r determining the current
configuration, there comes an equally simple metioodnaking it all work. As shown
previously in Figure 2c., the alternating even add partitioning scheme inherent in the
Margolus neighborhood creates an environment wheneg cells, or particles, are
constantly moving. The partitioning scheme canlygas handled by processing the map
starting from position (0,0) or position (1,1), bdson the even or odd state. Border
handling is another concern for partitioning, aradunally wrapping the borders into a
torus was preferred for this software implementatioThe complete procedure for
processing a generation of an XxY map is quite 8rmag Margolus intended (Figure 43).
The S-box is simply an array; thus, the CA was lggsiogrammed to work within

one-dimensional arrays by using the basic formaffset = x + y*width.

evenOdd = levenOdd
for x = evenOdd to X-1
for y = evenOdd to Y-1
doTransition(x, y, getConfiguration(x, y))
y=y+2
X=X+2

Figure. 43 Processing the map where doTransitidn an
getConfiguration are defined by Figures 41 andetpectively.

2.3. CAC Construction.

Combining the cellular automata to the crypto gysteas painless with this
solution. Once the automata is initialized, it®i@ion only requires per block calls to
perform generations on the S-boxes. The additiotme CA to the encryption process
yields the flowchart in Figure 44, and Appendix p®vides a more detailed flowchart.

Figure 44, displays the process of encrypting dimeefile, where CBC, padding, and CA
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generations are all performed. At this point, tlué being a trivial modification of the
CA source class, a key modification automata with $ame rules was also added. This

addition alone has the potential of increasing sgcan many ciphers.

InitIv()

/ 'u‘.frltafériph,IV] /
L 3 l

/ ReadiText, state) /

Mo IfilastBlock) Yes ¥

l Last Block
Standard Block o
deCBCXOR() e
v | padState() |
L
LTI [ doCBCXOR() |
* ¥
doGenerations() False | dﬂﬁa:ndﬁﬂ |
¥ | doGenerations() |
¥
doCBCUpdate(State, V) [ doCBCUpdate({State,V) |
¥
L] / Wiite{Ciphstate)
/ Write(Ciph,state) / v
——»|  pacFullsiae) |

EndQiFila? No

Yes, Exit

Figure 44. Flow chart showing the process of guitng a
file where doRounds does the operations performédgure 13.
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3. ANALYSIS OF CRYPTOSYSTEM

During the implementation of the CAC, the modulgstematic approach was
used to verify the proper operation of each alparit With the implementation complete
and working, analysis of the results needs to hdéopeed. The hypothesis of this
analysis is that the CAC designed will offer impeawents to the S-box cryptographic
primitive with a minimal performance impact. Theadysis of security focuses on the
differences between Rijndael and the CAC. The ragcwf the specific binary
implementation of the CAC is not a major focusyasor coding mistakes and insecure
user input methods do not reflect on the secufith® actual design.

3.1. Analyzing the Cellular Automata.

The Margolus automata was analyzed in a numberagbwo ensure it meets the
criteria for which it was chosen. Tim Tyler, thatlaor of the BounceGas rule [7], claims
that the rule simulates a "uniform gas". Thisrolaif true, benefits the CAC by ensuring
no bias or clustering of values in the S-box. hié initial S-box is sufficiently random,
then a uniform gas rule strongly suggests the ioreaif equally random S-boxes. To
verify this uniformity claim, specifically for th2-state automata, a number of tests were
designed and performed.

3.1.1. Distribution of States.

In the most basic sense, all Margolus automatas mdsult in 1-bit bitmaps. The

S-box also must be viewed like this, which is wime tthreshold value is required.
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Looking at the S-box as a 1-bit bitmap, it was tiftuthat if the BounceGas rule is in
fact uniform, then the average mid-point for thee®mand the zeros should be roughly
equal and near the center of the map at all tilesimple experiment was performed to
test this idea. The experiment required startirigp \@ non-uniform map with roughly

one-half all 'ones' and the other half all 'zera¥fith the BounceGas rules, a symmetrical
starting state will always remain symmetrical; thasfew random cells on either side
were inverted from the start. After the map waisidlized, single generations were
performed (Figure 45). Based on the visualizatérthe data, it is obvious that the

non-uniform starting state quickly becomes unifgrmixed and remains that way.

Distribution of Average Mid-Points in 2.D Bitmap
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Figure. 45 Distribution of average Mid-Points bmth states,
from a non-uniform initial state in a 16x16 bitmap/82 trials.

After each generation the automata modified S-bw&s analyzed to find the
average location of the two states. This meansgdch S-box entry, the threshold was
applied to determine if the entry is consideree tou false (on or off, alive or dead, etc).
Based on this state, the coordinates for that eareyadded to one or the other running

average. These averages represent the overdiloloacd the two possible states. If the
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two states are equally spread among the map, tlegnwill both have values near the
center of the map (7,7). This would also sugdest from a non-uniform starting state
the distance of the midpoints from the center @f tiiap (7,7) for both 'true' and 'false’
states would approach zero, after some number rigrggons (Figure 46). Due to the
non-uniform starting states, the distance from eebiegins large but decreases each
generation for both data sets. The data also slagstowards one set over the other
because the number of true states is not equedetmumber of false states. When the
same tests are performed on a uniform initial S;bdee those generated in the

implementation, the S-boxes bitmaps remain uniform.

Midpoint Distance from Center Location (7,7)
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Figure. 46 Midpoint distance from center locatifsom a non-uniform
initial state. 140 of 5143 trials shown.

3.1.2. Distribution of Swap Counts.

The operation of the Margolus automata was invastjin terms of the number of
swaps performed per generation. It was expectat ttie data would be normally
distributed. Any results other than normal would fit the operation of a uniform and

chaotic system. Figure 47 indicates that theibigion is normal with a large variance
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and an average of 48 swaps per generation undé&aeceGas rules. Theoretically, it
may be possible for an attacker to determine ther'susnitial S-box based on the
deterministic swap counts, though the availabihtyl 28 threshold values and 128 initial

S-boxes makes this unlikely. Even then, the CAS§lgieis as strong as Rijndael.

Distribution of Swap Counts per Generation
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Figure 47. BounceGas rules swap count per genaraiih threshold at 127.

3.2. Analyzing the Generated S-boxes.

S-boxes, a major part of the confusion step ofcthker, require some properties
to avoid leaking information into the cipher teXthe S-boxes initially generated with the
Galois generators are said — with some argumertif [L] — to be strong in some
properties like the strict avalanche criterion aoa-linearity [9]. Based on the previous
analysis of the CA uniform dispersion properties] $hus randomness in byte values, it
was expected that the generated S-boxes wouldoal$orm well in the same tests. One
direct result of using a new S-box every blockhis ¢ffect it has on the data histogram of

a file. If a large file of English text were sinypdubstituted with the static S-box values,
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frequency analysis could easily be used to dedhgtipher text. However, if the same
file data were substituted with different values éach 32-byte block, this attack would
be difficult due to the limited sample size of 3@ds for frequency analysis. Some of
these tests could possibly be redundant becaussvaSrbox is used for every block;
however, a single weak S-box could theoreticalljkenthe CAC weaker than Rijndael
alone.

3.2.1. Bit Change and Avalanche Ciriteria.

S-boxes are typically compared with various avaiencriteria. In his paper
"Avalanche and Bit Independence Properties folghgembles of Randomly Chosen nxn
S-Boxes" [29] Isil Virgili found that it is unrealistic to expechost S-boxes to meet the
strict avalanche criterion (SAC) and more realisicaccept S-boxes within an error
range. This interpretation of the SAC and CAC tedhe design of two simpler tests
strictly for S-box avalanche testing, as opposedrire cryptosystem testing. To meet
the criteria of this interpretation of SAC and CA@sed on Isil Virgili's research, the
numbers should always indicate about 50% bit chamgthe results.

The first test counts the number of bit changesafbP56 input and output byte
combinations in the generated S-box. Figure 48vshbe results of the first tests when
comparing the 128 possible generated S-boxes addl@tamic S-boxes. Based on the
limited data for Static S-boxes, the results suggiest the dynamic S-boxes perform

nearly as well with just a little more variance.
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Figure 48. Average per byte bit changes in sttt dynamic S-boxes.

The second test counts the number of bit chang®geba each input byte and its
outputs when each bit is flipped. Figure 49 shawsmparison between the 128 static
and 256 dynamic S-boxes. This test, while closelgted to the first, is closer to a
second order bit-independence test. Interestieghyugh, the Galois generated S-boxes
have a constant avalanche of 0.504883, which is wueheir 9-term arithmetic
construction [20]. The dynamic S-boxes perfor@anty as well, with a similar mean

and slightly more variance.
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Avalanche of Dynamicvs Static S-Boxes
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Figure 49. Comparison of dynamic and static S-b@walanche.

3.2.2. Non-Linearity Measures

Non-linearity is a typical measure of S-boxes, dhd S-boxes generated by
Rijndael are said to have [9] "optimum worst-casen-finearity properties".
Non-linearity seems like a good metric for the cammgons of dynamic and static
S-boxes.  Typically, accidental affine operationse aften weaknesses in new
cryptosystems. Non-linearity can be thought ofreesabsence of that type of weakness.
It is basically a measure of the number of bitg thast change in the truth table of a
Boolean function to reach the closest affine fuorc{30]. According to Terry Ritter [31],
non-linearity is measured by forming the 1-bit wideth tables for each output bit and
then performing a Fast Walsh-Hadamard transformTJF@h the truth table to find the
correlation count between the truth table and #teo$ affine functions. The functions
for measuring non-linearity were ported to C++ fréerry Ritter's JavaScript FWT and
non-linearity testing sources with the authors pssion. The FWT calculates the
difference away from the affine functions, and thmest distance possible from any

affine function is plus or minus one half of thésbor 128 in this 8-bit case.
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That said, the reported minimum non-linearity for &-Box is calculated as
2"/2 — abs(maxDist), where n is the number of bifsough each entry in the S-box will
have a non-linearity measure, only the minimunesorted for a worst-case comparison.
Based on the results of this test, it is intergstion note that all 128 of the statically
generated S-boxes have the same minimum non-liggarinNL = 112). This is a direct
result of the way the S-box is generated by iter@italgebraic expression [20]. Figure
50 shows the resulting minimum non-linearity measuwn some dynamically generated
S-boxes. A value of 128 is the unreachable best-agpper bound of non-linearity.
While the 128 static S-boxes perform very well &R 1the dynamic S-boxes perform

decently with an average minimum non-linearity 8ftthsed on 256 trials.

Minimum Non-Linearity for Dynamic and Static 5-
Boxes
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Figure 50. Comparison of minimum non-linearity étynamic and static S-boxes.

Based on research by Terry Ritter [30] (Figure B, distribution of minimum
non-linearity for random 8-bit S-boxes has an ageraf 100, which is supported by the

experimental results of the dynamic S-boxes (Figie One of the original indicators
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showing the importance of the uniform dispersioopgrties of the BounceGas rule

comes from comparing the distribution of MinNL undandomly chosen Margolus

rules.
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Figure 51. Nonlinearity Distribution in random 8tBiables as

reported in Terry Ritters Research. [30][31]
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Figure 52. Experimental results showing distribntof MinNL for CA
generated S-boxes under the BounceGas rule wigshbid 127. 500 trials.
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Figure 53. Distribution of MinNL for CA generat&boxes under
random rules with threshold 127. 500 Trials

The results (Figure 53) of this test clearly shdihet some Margolus rules can
lead to very linear S-boxes, which would be useless a security standpoint. The test
modified the S-box based on a random rule for 50egdions. It then output the
minumum non-linearity on the CA modified S-box Thiss the test that showed the
importance of having good CA rules (like BounceGas)the Margolus CA transition
function.

Though the BounceGas rule performs decently welbexterating non-linear
S-boxes, it still has a lower non-linearity thae 8pecially crafted Galois generated static
S-boxes which had non-linearity 112. Terry Rigtertsearch [30] on random 4-bit
permutation S-boxes for DES-like Feistel ciphemgves that randomizing the S-boxes is
a very bad idea. He does conclude, however, #matam 8-bit permutation S-boxes are
very rarely weak, and the bad stigma about randedn&-boxes is most likely for the
special case of DES or 4-bit S-boxes. That s&id,GA generated S-boxes with the

average MinNL of 99 appear to be acceptable.
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3.3. Analyzing the CAC Output and Performance.

The overall performance of the resulting CAC carabalyzed and compared to
Rijndael in many ways. If the CAC design is noy aveaker than the Rijndael design,
then the results should be very similar in bothesas

3.3.1. Maurer's Universal Statistical Test.

Maurer's universal statistical test is typicallled4o measure the performance of
random bit generators [32]. It reports a valugesenting how well the bit stream could
be compressed by looking for patterns in the inpMith enough input data, Maurer's test
is said to be universal in that it can be perfornmestead of the five common tests:
mono-bit test, two-bit test, runs test, poker tastl the auto-correlation test [32]. If we
assume any well-encrypted cipher text will lookelikandom data, then this test can be
applied to compare cipher text outputs. The atgori(Figure 54.) [32] reports a value of
about 7.18 for true uniform random 8-bit data streawith lower values showing less
random data. An internal parameter to the statistthe number of bits in each entry,
represented by L. Computing the test statisticireg a large amount of data, or roughly
1000 * 2 L-bit blocks. Q represents the number of blocksduto initialize the '2table
entries, and should be of size at least 10 represents the other 990 * Blocks to be

processed, and;Aepresents the actual L-bit entries from the ramgdource.

Figure 54. Computing Maurer's Test Statistic [32]
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The results of Maurer's Universal Statistical t@gth L=8) on the cipher text
outputs with various encryption parameters showouam random outputs across the

board (Table 4), which implies that the CAC is waiaker than Rijndael alone.

Generations | Maurer's
Moby-Dick.txt 0 3.8891
Ciph-Rijndael 0 7.1848
Ciph-CAC 1 7.1878
Ciph-CAC 2 7.1824
Ciph-CAC 3 7.1809
Ciph-CAC 4 7.1867
Ciph-CAC 5 7.1868
Ciph-CAC 10 7.1831
UniformRandom 0 7.1850

Figure 55. Maurer's experimental results comparing
CAC outputs to enaglish text and random uniform ¢

3.3.2. Entropy and Conditional Entropy.

Shannon entropy, or information entropy, is a measof the amount of
information contained in a random variable [33A constant pattern has zero entropy,
indicating that zero bits of data are requiredrtmsfer such a message. English text
typically has entropy of about 1.5 bits per lettenjle a truly random string of characters
would have entropy of 8.0. The standard entropyntda [34] (Figure 56a) provides
nearly the same information the Maurer's test tspbut the conditional entropy (Figure
56b) [35] formula is often used as a measure afesgc Conditional entropy provides a
measure of the similarity between two discrete oamd/ariables, which can be used to
determine whether the two variables are indepenaletat what extent they are dependent
on each other. The conditional entropy betweenamtext and its cipher text would
report a value of zero if the cipher text were tovide all the information necessary to
undo the encryption, as is the case with the sirspift affine cipher. A cryptosystem is

said to have complete secrecy if the condition&logry between the texts and the entropy
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of the original file are equal, which implies thatone-time pad (OTP) is the only

perfectly secret cipher.
H(X)=E(I(X)) = Y _plz)log, (1/p(z:))
i=1
= —Z p(z;) logy p(x;)
i=1

H(Y|X) =) px) HY|X = 2)

e

=— p(x))_ p(ylz) log p(ylz)

reX weyY

= -2 pl,y) log p(ylz)
reX yel
b) = —Ey(zy) log p(Y]X).
Figure 56. Definition of entropy

a) H(X) and conditional entropy [34]
b) H(Y|X) [35]

The entropy and conditional entropy were used @mpipher texts produced by
Rijndael, the CAC, and an OTP cipher. To providaeae clear comparison between the
systems, the input data was aligned along a blackdary and all CBC and padding
code was removed. The OTP cipher was simulategebgrating a random block of data
for the cipher text. The results (Table 4) indecaéhat the CAC is no weaker than
Rijndael and that both perform nearly as well as TP, which was somewhat
unexpected. The results also suggest that incigaise number of CA generations does
not have much effect on the results. Thus asdaoaditional entropy and secrecy are
concerned, the CAC and Rijndael perform extremedl,vand the differences between

them are statistically insignificant.
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* Y Entropy ¥ Entropy ' | Cond Entropy | Diff

magna-carta.dat magna-carta-fake-OTP dat 44147 799284 418532 022938
magna-carta.dat magna-carta-ciph-Rijndael dat 44147 799436 406934 0.34536
magna-carta.dat magna-carta-ciph-CA1.dat 44147 799384 412897 028473
magna-carta.dat magna-carta-ciph-CAZ2 dat 44147 799344 4 06829 0.34641
magna-carta.dat magna-carta-ciph-CA3 dat 44147 799404 410717 0.30743
magna-carta.dat magna-carta-ciph-CA4 dat 44147 799504 414187 027283
magna-carta.dat magna-carta-ciph-CAS dat 44147 799389 4 07648 033822
magna-carta.dat magna-carta-ciph-CA10 dat 4 4147 79943 4156784 0.25B636
magna-carta.dat ‘magna-carta dat 4 4147 4 4147 0 4 4147
* Y Entropy X | Entropy % | Cond Entropy | Diff

moby-dick.dat  moby-dick-fake-OTP dat 449714 799972 4.48107 0.01607
moby-dick.dat | moby-dick-ciph-Rijndasl dat 449714 7.99973 447943 0.01771
moby-dick.dat  moby-dick-ciph-CA71 . dat 449714 7.99973 4 46895 0.023819
moby-dick.dat  moby-dick-ciph-CAZ2 dat 449714 799973 446718 0.02996
moby-dick.dat  moby-dick-ciph-CA3 dat 449714 7.99969 4 47666 0.02048
moby-dick.dat  moby-dick-ciph-CA4 dat 449714 7.99974 447919 0.01795
moby-dick.dat  moby-dick-ciph-CA5 dat 449714 7.99974 447805 0.01909
moby-dick.dat  moby-dick-ciph-CA10 dat 449714 7.99972 4 46592 003122
moby-dick.dat | moby-dick dat 449714 449714 0 449714

Table 4. Experimental Conditional Entropy Results

3.3.3. Data Histogram Results.

As mentioned previously, the simplest and most eanethod of judging the
strength of a cipher is the data histogram approay cipher with a chance of being
better than the weakest affine shift ciphers wéll’é a uniform data histogram for all its
cipher text output. Statistical analysis of th@har text output distributions would
merely repeat the results of the entropy and Maurests, therefore only a simple
graphical check was performed (Figure 57). It ngportant to point out that all
algorithms that utilize an S-box — ignoring theiifukion steps — are all nearly as weak as
shift ciphers. Simply performing the same substihs for each byte of the file allows
the input and output frequencies to be directly parad. While this is only a weakness
in a cipher that doesn’t have a diffusion stephdalock will have a unique histogram if
this CAC had no diffusion step. This fact redutles amount of data that can be

collected for frequency attacks to the size oihglei block, as opposed to the entire file.
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Figure 57. Comparison of original and output dastograms.
The two ciphertext histograms appear equally unifor

3.3.4. Compression Results.

The compression test is a simple test that shaybgpat the conclusions of the
Maurer's and entropy tests. Based on the entrémround 7.99 for all of the cipher
texts, the compressed file should be larger tham dincompressed file. If the

compression of a cipher text ever reduces thesfile, the cipher or implementation is
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flawed (as in ECB mode). Based on the resultoofgressing with BZIP2 (Table 5), the

CAC passes this simple compression test.

File Mame Uncompressed Size |(Compressed Size Diff

magna-carta dat 29824 9635 -20186
magna-carta-ciph-rijndasl.dat 29824 20304 480
magna-carta-ciph-cal.dat 29824 30302 473
magna-carta-fake-0OTF dat 29824 30319 485
moby-dick dat 643232 200486 442746
muoby-dick-ciph-rijndael dat 643232 B46597 3365
maby-dick-ciph-cal.dat B43232 646299 3067
moby-dick-fake-OTF .dat 543232 B46571 3334

Table 5. Experimental Results of BZIP2 compressésh

3.3.5. Time Analysis and Profiling Results.

Based on the analysis done thus far, the cryptesys not weaker than Rijndael.
If the perceived weaknesses in the standard s&abox approach ever lead toward a
cryptanalysis technique for breaking Rijndael, thka CAC design will be the more
secure algorithm. If this were to happen, therstiisthe question of whether or not the
extra processing required to dynamically modify $ibox in this way is worth the added

security. For this, a profile of the code whilesmpting a file was performed (Table 6).

Initly/ InitCipher Encrypt Decrypt E-DTime
NoCA | 0635239 0.000087 11.763086 11.281403 0.481683
CA 0.640645 0.000083 17366768 16.731485 0.635283

CA -NoCA Time 5.603682 5.450082

NoCA Bytes/sec JhB6564.94| 371789 22
CA Bytes/sec 241513.22| 250683.31
Reduction % 32.266695 32.573809

Table 6. Temporal differences between static amziohic
S-boxes while encrypting a 4mb file with one getierdgblock.

These timings were taken to microsecond accuradytlam offer some startling
results. The processing of the simple CA code with generation per block adds quite a
bit of overhead when encrypting a 4MB file. A 32%duction in throughput was

unnexpected. There are a lot of factors causiegetlperformance issues. With a 4MB

68



file, there are 131,072 256-bit blocks, which csp@nds directly to the number of
generations performed. The overhead of generatingw S-box for each block of data,
was much larger than expected.

A simple modification to the design would provideother user parameter to
control the number of blocks processed between @&xSmodifications. Another factor
is the large number of swaps being performed byBbenceGas rule. As shown in
Figure 47, there is an average of 48 swaps perfbrpee generation with the default
threshold value of 127. Retaining synchronizabetween the S-Box and Inverse S-Box
doubles this to an average of 96 swaps per geapratWith a 4MB file with 131,072
blocks, the algorithm would perform 12,582,912 ssvaym average with the default
threshold of 127, meaning 12 million function callslowever, if the user modifies this
threshold away from the default mid-way point of712he number of swaps per
generation will always be reduced (on average).

The time analysis also points out the existenceaohypothetical problem
somewhere in the implementation. The differencenaryption and decryption time is a
commonly warned against problem. If an attackerevable to perform similar profiling
or timing analysis, they may be able to explois thhformation to gain limited knowledge
of the plaintext or internal state. While this Higunlikely situation is mostly a hardware
issue, timing attacks should not be ignored. kotl, each encryption and decryption
function should use the same number of cpu cycles.

Based on these results and the typical non-lineaneasures of random 8-bit
S-boxes (Figure 51) [30], one idea stands ous flfture novel cryptosystem were to use

dynamic S-boxes, it may be more efficient to justfgrm random permutations on the
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S-box. It may be even more efficient to do thidyoonce per file based on some

parameters.
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4. CONCLUSIONS

The Cellular Automata Cryptosystem designed fos thiesis has been shown to
operate as it was intended. The analysis perforimdidates that the CAC design is not
weaker than the original Rijndael algorithm. Whilee implementation may not be
perfectly secure, as it wasn't a major focus, gdoffer enhancements over numerous
currently deployed AES/Rijndael products. Thishased on the implementations'
dynamic generation of the initial S-Box, which pally defeats the S-Box blanking
attacks described by Kerrins and Kursawe [22]s important to note, however, that the
implementation requires static table of the Galjeaerators to be stored in the binary.
Though there is a minor checksum and verificatieffggmed on this table at program
load, truly protecting the implementation from SxBaanking requires further operating
system level protections as Kerrins suggested. s Tha design only partially protects
against S-Box blanking.

On the subject of the possible weaknesses of RijisdeS-Box [20] [21],
specifically the "9-term algebraic expression” nmmed by Jingmei and Fuller, the
design fully protects against this. If the algebr@onstruction of Rijndael's S-Box was
ever used to successfully attack AES/Rijndael, as @iscovered to be an advantage for
the NSA, a cryptosystem that implements dynamicofeb will undoubtedly be

preferred. This of course assumes that the CArgetk S-boxes very rarely have an
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algebraic expression at all. The results of thaiMum Non-Linearity tests, wherein the
CA generated S-boxes had an average of 99 andifiaBl S-Boxes had a static value
of 112, may raise some questions about the strefdilA S-boxes even though research
suggests it is a non-issue for 8-bit S-boxes [31].

All data suggests that this system is far morestast to cryptanalysis than the
already "unbreakable" 256-bit Rijndael implememtativith a single S-Box. However, it
should be noted that choice of the standard S-bas whosen for programmatic
performance tricks. This design removes the ghititcut corners on performance, and
also adds significant overhead. The 32% redudticencryption and decryption speed,
with only a single generation per block, was quitexpected. In its current form, the
Margolus automata rules add too much overheade@tbcess, especially since a main
idea behind this thesis was that CA are very fadt Margolus Automata are the fastest
of the fast. This was a disappointing realizatidfurthermore, taking advantage of the
blistering speeds obtained using Cellular Automiathardware ASICs, would require a
major change to the design. It is not known as titine how the border wrapping
Margolus functions could be modified to work on dwaare without requiring excess
connections to create the torus-like wrapping aulyebeing used. Moreover, as Terry
Ritter's research [31] was verified here, any ramg@rmutation of an 8-bit S-box will on
average have a minimum non-linearity of 100. The&ans that there may be no point to
using a CA to modify the S-box at all if you carogrammatically generate random
permutations (based on some key) more efficienfis could remove the need for a

generator table, the entire automata, the perfocmasues, and the ASIC deficiencies.
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Having successfully solved some of the perceivedds with Rijndael's S-box and
showing a secure use of CA in cryptography, theigdess a success in all but
performance and efficient hardware implementati8howing one possible secure use of
CA in cryptography was a major focus of this theaswas enhancing Rijndael's already
powerful S-box. The ideas employed here, may bmtefest to future cryptographers

and cellular automata addicts alike.
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Al. Galois Class (Rinjdael) Design

0.1 -theCAa

-thefeyCA
margolisSingle
I

galois

- Itable : uintd t

- etable : uint8 t

- gmullmy : uintd t

- 5Box : uintl t

- SBoxInv : uintd_t

- key : uintd_t

- state : uint8 t

- IV uintd t

- WTemp : uint8_t

- rounds : int

- encryptBool : bool

- runzensBeforekey : bool
- galoisGenSeed : int

- generationsPerBlock @ int
- keyGenerationsPerBlock : int
- threshCA : int

- ciphFile : char

- textFile : char

- userkey : char

- theCA : margolis*

- theKeyCA : margelisSingle*
- theTest : tests*

+ galois()

+ ~ galoisl)

- gmul(a : uint8 _t, b : uint8_t) : uintd t
- gmulLookup(a : uint8_t, b uintd t) : uintd_t
- gmulinversefin : uint8_t) : uintd t

- subfin: uint8 t) : uintd_t

- rcondin : uint8_t) : uintd t

- ROTL{x : uint8 t, s : uint8_t) : uintd t
- ROTRIx : uintB_t, s : uint8_t) : uintd t
- gmixColumnir : uint8_t¥)

- invGmixColumnir : uint@ t¥)

- rotateStatel (offset : int)

- rotateStateRioffset : int)

- shiftRowsi)

- invShiftRows()

- mixColumns()

- imMixColumnsi()

- substituteBytes()

- invSubstituteBytes()

- addRoundKey(i : int)

- textUserPrompt()

- initCipher()

- initvi)

- doEncryptDecrypt()

- generateLogTables()

- generateGmullnverse()

- generateSBoxes()

- schedule_core(in : uint8_t*, i : uintf_t)
- rotate(in : uint8_t*)

- expand_key()

- doRoundsi()

- delnvRounds()

- encrypt()

- decrypt()

- doCBCXOR()

- doCECUpdate|source[] : uint8_t, dest[] : uintd_t)
- padStatelpadVal : int)

- padFullState(padval : int)

- hexTolnt(first : char, secend : char) : uint8_t
- verifyGenerators() : bool
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A.2 Margolis Class (Automata)

margolisSingle

+ swap(x]1:int, ¥1:int, x2 :int, ¥2 : int)
+ setParamsikeyBoxz : uintd t*, widthz : int, heightz : int, threshz : int)

-

margolis

# SBox :uintd t*

# invsBox : uintd_t*
# rules : bool

# evenodd : bool

# thresh : int

# height : int

# width : int

+ margelis()

+ ~ margolis()

+ setParams(sboxz : wintd t*, invsboxz : uintd_t* widthz : int, heightz : int, threshz : int)
+ doGenerations{numGens : int)

# swap(x]l :int, y1:int, 22 :int, ¥2 : int)

# doTransition(x : int, ¥ : int, currState : uint8 t)

# getConfiguration(i : int, j : int) : uintd_t

# setupRules()

A.3 Tests Class

tests

- sbox @ uintd t*

- imvsbox @ uintd t*

- bits : int

+ tests{sboxz : uintB t*, invsboxz : uint8_t¥*)
+ ~ tests()

+ testinvertibilityi)

+ testMonLinearity(wverbose ; bool)

+ testBitChanges|verbose : bool)

+ BitARFWTI)

+ testDataHistogram(verbose : bool)

+ testMidPoints(verbose : bool)

+ testDistanceToCenter|verbose : bool)
+ testAvalanche(verbose : bool)

+ testAll(verbose : bool)

+ testEntropy(werbose : bool)

+ printSbox()
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A.4 Complete Class Diagram

galois

margolis

# SBox : uint_t*

# invsBox @ uintd t*
# rules : bool

# evenodd : bool

# thresh : int

# height : int

# width : int

+ margelis()
+ ~ margolis()

+ setParams(sboxz : uintd_t*, invsboxz : uintd_t*, widthz : int, heightz : int, threshz : int)

+ doGenerationsinumGens : int)

# swapixl:int, y1:int, x2 :int, y2 :int)

# doTransition(x : int, y : int, curr5tate : uintd _t)
# getConfiguration(i : int, j : int) : uintB_t

# setupRules()

- Itable : uints_t

- etable : uint8 t

- gmullny : uint8_t

- 5Box :uintd t

- SBoxInv : uint8_t

- key :uintl t

- state : uintd t

- IV o uint8 t

- WTemp : uintd t

- rounds : int

- encryptBool : bool

- runzensBeforeKey : bool
- galeisGenSeed : int

- generationsPerBlock : int
- keyGenerationsPerBleck : int
- threshCA : int

- ciphFile : char

- textFile : char

- userkKey : char

- theCA : margolis*

- theKeyCA : margolisSingle*
- theTest : tests*

margelisSingle

+ swaplx1:int, y1:int, x2 :int, y2 :int)

+ setParams(keyBoxz : uint8 t*, widthz : int, heightz : int, threshz : int)

tests

- sbox : uintd t*
- invsbax : uint t*
- bits : int

+ tests(sboxz : uint8_t*, invsboxz : uintd_t*)
+ ~ tests()

+ testimvertibility()

+ testNonLinearity(verbose : bool)

+ testBitChangesiverbose : bool)

+ BitARFWT()

+ testDataHistogram(verbose : bool)

+ testMidPoints(verbose : bool)

+ testDistanceToCenter(verbose : bool)
+ testAwvalanche(verbose : bool)

+ testAll{werbose : bool)

+ testEntropy(verbose : bool)

+ printSbox()
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-thel

-theTest

+ galaisl)

+ ~ galois()

- gmul{a : uint8 t, b uintd t) : uintd_t
- gmulLookup(a : uint8_t, b : uint8_t) : uintd t
- gmulinversefin : uintd_t) : uintd t

- sub(in: uintd t) : uintd t

- rconfin : wintd_t) - intd t

- ROTL{x : uint8 t, s : uint8 t) : uintd t
- ROTRIx : uint8 t, s : uint8_t) : uintd t
- gmixColumn(r : uint8_t*)

- invGmixColumnir : uint8_t*)

- rotateStatel (offset : int)

- rotateStateR (offset : int)

- shiftRows()

- inwShiftRows()

- mixCelumns()

- inwMixColumns()

- substituteBytesi)

- invSubstituteBytes()

- addRoundKey(i : int)

- textUserPrompt()

- initCipheri)

- initlVi)

- doEncryptDecrypti)

- generatelogTables()

- generateGmullnverse()

- generateSBoxes()

- schedule_core(in : uint8 t*, i : uintd t)
- rotate(in : uintd_t*)

- expand_key()

- doRounds|)

- dolnvRounds()

- encrypt()

- decrypt()

- doCBCXOR()

- doCBCUpdate(source[] : uint8_t, dest[] : uintd_t)
- padState(padval : int)

- padFullState(padVal : int)

- hexTolnt(first : char, second : char) : uintd_t
- verifyGeneratorsi) : bool




A.5 Function Source
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Galois

Margolis

Tests

Function

galaiz

~galois

grml

grmulLookup
grmulinverse

reon

RCOTL

ROTR
grmizColumn
inwGmixColumn
rotateStatel
rotateStateR
shiftRowrs
invshiftRows
mixCalumns
inyMixCalumnz
substituteBytes
invSubstibuteBytes
addRoundiey
textUserPrompt
initCipher

initl
doEncryptDecrypt
generateLogTahles
generateGmullnverse
generateSBoxes
schedule_core
ritate
expand_key
doRounds
dolnvRounds
encrypt

decrypt
doCBCKOR
doCBCpdate
padState
padFullState
hexTalnt
verifyGenerators
margalis
~margolis
zetParams
doGenerstions
FWaR
doTranstion
getConfigurstion
setupRules

tests

~tests
testinvertibility
testhlonLinsarity
testBitChanges
BitLRPAT
testDataHistogram
testhidPoints
testDistanceToCenter
testAvalanche
test Al
testEntropey
printSkhox

Source

Original Internet Modified

BCOMOM M M MM MM M M MM

BOM MM M M M M

MMM MM MM M M MM

»

MM MM MM

>

Totals
Percertage

45
75

100

150

60
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A.6 Functional Flowchart
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encrypiDecrypt()

InitI\V()

doRounds()

%

priate|
doCBCXOR(

3

J Write(Ciph,IV)

Last Block

True

| padState()

|  docBCUpdate(State V) [_doCBCUpdatelSiale V) |

[V

padFullState()
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APPENDIX B — Implementation Source

B1l. GaloisS Class HEAUEN ...uuuiee it it e e e e e e 86
B2. Galois Class Source File.......ccooviiiiiiiii e 87.
B3. Margolis Class Header File............ccooovii i e e 103
B4. Margolis Class Source File..........coooiiiiiiiiii e 105
B5. Tests Class Header File..........cccooviiiiiiiiiiii e 107
B6. Tests Class Source File......ccoviiiiiiiii i 081
B7. Main Class Source File.......cooviiiiiii i i e 116

Bl. Galois Class Header

#ifndef GALOIS_H
#define GALOIS H

#include <iostream>
#include <fstream>
#include <cassert>
#include <sys/stat.h>
#include <time.h>

#include "margolis.h"
#include "tests.h"

using std::cout;
using std::endl;
using std::ios;
using std::hex;
using std::dec;
using std::ifstream;
using std::ofstream;
using std::cin;
using std::fill;

const uint8_t generators[] =
{I* The Galois Generator Table */

0x03, 0x05, 0x06, 0x09, 0x0b, 0x0e, 0x11, Ox1 2, 0x13, 0x14, 0x17,
0x18, 0x19, Ox1la, Ox1c, Ox1le, Ox1f, Ox21, 0x22, 0x2 3, 0x27, 0x28, 0x2a,
0x2c, 0x30, 0x31, 0x3c, 0x3e, 0x3f, 0x41, 0x45, 0x4 6, 0x47, 0x48, 0x49,
Ox4b, Ox4c, Ox4e, 0x4f, 0x52, 0x54, 0x56, 0x57, 0x5 8, 0x59, 0x5a, 0x5b,
0x5f, 0x64, 0x65, 0x68, 0x69, 0x6d, 0x6e, 0x70, Ox7 1, 0x76, 0x77, 0x79,
Ox7a, Ox7b, Ox7e, Ox81, 0x84, 0x86, 0x87, 0x88, 0x8 a, 0x8e, 0x8f, 0x90,
0x93, 0x95, 0x96, 0x98, 0x99, 0x9b, 0x9d, Oxa0, Oxa 4, 0xab, 0xab6, Oxa7,
0xa9, Oxaa, Oxac, Oxad, 0xb2, 0xb4, Oxb7, 0xb8, 0xb 9, Oxba, 0xbe, Oxbf,
0xc0, 0xcl, 0xc4, 0xc8, 0xc9, Oxce, Oxcf, 0xdO, Oxd 6, 0xd7, Oxda, Oxdc,
Oxdd, Oxde, Oxe2, Oxe3, Oxe5, Oxe6, Oxe7, 0xe9, Oxe a, Oxeb, Oxee, 0xfO,
0xf1, 0xf4, Oxf5, Oxf6, Oxf8, Oxfb, Oxfd, Oxfe, Oxf f}
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class galois

{

public:
galois(); //Default constructor
~galois(); /Default Destructor

private:

uint8_t gmul (uint8_t a, uint8_t b ); //Functi
two numbers without lookup table

uint8_t gmulLookup (uint8_t a, uint8 th); //
multiplying two numbers with lookup table

uint8_t gmulinverse (uint8_t in ); //Function
multiplicative inverse of a number

uint8_t sub (uint8_tin); //Function for subs
the sbox

uint8_t rcon (uint8_tin); //Function for exp
used in key expansion

uint8_t ROTL (uint8_t x, uint8_t s); //Functi
shifting an 8bit number s times

uint8_t ROTR (uint8_t x, uint8_t s ); //Functi
circular shifting an 8bit number s times

void gmixColumn ( uint8_t *r); //Rijndaels Mix

void invGmixColumn (uint8_t *r); //Rijndaels
step

void rotateStateL ( int offset ); //RotateState
into one dimensional state variable

void rotateStateR ( int offset ); /RotateState
into one dimensional state variable

void shiftRows(); //Calls RotateStateL to perfo
shifts for 256-bit blocks

void invShiftRows(); /Calls RotateStateR to pe
unshifts for 256-bit blocks

void mixColumns(); //Calls gMixColumn to perfor
column

void invMixColumns(); //Calls invGmixColumn to
each column

void substituteBytes(); /Substitutes bytes wit

void invSubstituteBytes(); //UnSubstitutes byte
lookup

void addRoundKey (inti); //Adds (xors) the i
the state

void textUserPrompt(); //Prompts the user for r
void initCipher(); //Initializes the core funct
cipher
void initlV(); //nitializes the IV for CBC Mod
void doEncryptDecrypt(); //Calls encrypt or dec
on user input
void generateLogTables(); //Generates the Logar
Galois Field
void generateGmulinverse(); //Generates the gmu
void generateSBoxes(); //Generates the SBox and
void schedule_core (uint8_t *in, uint8_ti);
key expansion
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void rotate (uint8_t *in); //Rotate function

expansion

void expand_key(); //Key Expansion function

void doRounds(); //Rijndaels doRounds function
void doInvRounds(); //Rijndaels doinvRounds fun
void encrypt(); //Encryption function with File

void decrypt(); //Decryption function with File

void doCBCXOR(); //CBC function to XOR over the
void doCBCUpdate ( uint8_t source[32], uint8_t

function for updating the IV

void padState ( int padVal ); //Function for Pa
void padFullState (int padVal ); //Function fo

pad block

uint8_t hexTolnt ( char first, char second ); /

converting user hex key input into real hex numbers

bool verifyGenerators(); //Function for verifyi

generator table

uint8_t Itable[256]; //Log Table

uint8_t etable[256]; //Exponentiation Table
uint8_t gmulinv[256]; //Multiplicative Inverse
uint8_t SBox[256]; //SBox

uint8_t SBoxInv[256]; //Inverse SBox

uint8_t key[480]; //The Key and expanded key sp

uint8_t state[32]; //The state, or current bloc
uint8_t 1V[32]; //The initialization vector

uint8_t IVTemp[32]; //Space for a temporary IV
int rounds; //Number of rounds in the encryptio

bool encryptBool; //Boolean from user input
bool runGensBeforeKey; //CA Key expansion modif

user input

h

int galoisGenSeed; //Galois Generator seed from
int generationsPerBlock; //CA Generations from
int keyGenerationsPerBlock; //KeyCA Generations
int threshCA; //CA Threshold from user input

char ciphFile[33]; //Filename for ciphertext

char textFile[33]; //Filename for plaintext

char userKey[32]; //User input key space

margolis *theCA,; //The SBox and InvSBox Modifyi
margolisSingle *theKeyCA,; //The Key modifying C
tests *theTest; //Object for the tests class

#include "galois.cpp"

#endif

B2. Galois Class Source File

#ifndef GALOIS_CPP
#define GALOIS_CPP
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#include "galois.h"
galois::galois()

[*Default Constructor*/
verifyGenerators(); //Verify the Generator Tabl

[*Blank all arrays*/

fill ( key, key + 480, 0);

fill (ltable, ltable + 256, 0);

fill ( etable, etable + 256, 0);

fill ( gmulinv, gmulinv + 256, 0);
fill ( SBox, SBox + 256, 0);

fill ( SBoxInv, SBoxInv + 256, 0);
fill ( state, state + 32, 0);

fill (IV,IV+32,0);

fill (IVTemp, IVTemp + 32, 0);
fill ( userKey, userKey + 32, 0);
fill ( ciphFile, ciphFile + 33, 0);
fill ( textFile, textFile + 33, 0);

textUserPrompt(); //Prompt for User Parameters

initCipher(); //Initialize the cipher
doEncryptDecrypt(); //Perform User Function

}

void galois::initCipher()

{
rounds = 14; //Set Default Rounds
generateLogTables(); //Generate the Log Tables
generateGmullinverse(); //Generate the Multiplic
generateSBoxes(); //Generate the S-Box and Inv
theCA = new margolis(); //Create the S-Box CA i
theCA->setParams ( SBox, SBoxInv, 16, 16, thres

user chosen parameters

theTest = new tests ( SBox, SBoxInv ); //Create

if (runGensBeforeKey ) //If user chose to modi

{

theCA->doGenerations ( generationsPerBlock
Box during initialization

}

expand_key(); //[Expand the Users Key
theKeyCA = new margolisSingle(); //Create the K

theKeyCA->setParams ( key, 24, 20, threshCA );
chosen parameters

}

uint8_t galois::hexTolnt ( char first, char second

[*Method for converting ascii hex characters to
char hex|[3];
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char *stop;

hex[0] = first;

hex[1] = second;

hex[2] = 0;

return strtol ( hex, &stop, 16 );
}

void galois::textUserPrompt()

{

[*Prompt the User for their options*/
char input[129];
fill (input, input + 129, 0);

char choice = 0;

do
{

cout << "Encrypt or Decrypt? (e,d) " << end

choice = cin.get();

}
while ( ( choice !="e"') && ( choice !='d")
cin.ignore();

encryptBool = ( choice =="e");

do
{
cout << "Would you like to enter a 1)Passph
endl;
choice = cin.get();
}

while ( ( choice !="'1") && ( choice !='2")
cin.ignore();

if (choice =="1")
{

cin.getline (input, 33);

cout << "**Input 32 Ascii Characters****"

for (inti=0;i < 32;i++)

userKey[i] = input]i;

COUt << "***********************|nput 6

Key**rxxskirkrrikirrast << endl;
cin.getline (input, 65 );

rase or 2)Key? " <<

<< endl;

4 Hex Digit
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while ( cin.gcount() = 65);
for (inti=0;i<64;i+=2)

userKey[i/2] = hexTolnt (input[i], inp utfi+1]);

do
{

cout << "***TextFile Name: <=32 Chars****" << endl;
cin.getline ( textFile, 33);
}

while (cin.gcount() == 1);

do
{

cout << "***CiphFile Name: <=32 Chars****" << endl;
cin.getline ( ciphFile, 33);
}

while (cin.gcount() == 1);

do
{

cout << "Enter your galois generator number (0-127)" << end];
cin >> galoisGenSeed,;

}
while ( ( galoisGenSeed > 127) || ( galoisGenS eed<0));

cin.ignore();
galoisGenSeed = generators[galoisGenSeed];

do

{
cout << "Enter the number of generations pe r block: " << endl;
cin >> generationsPerBlock;
cin.ignore();

}

while ( ( generationsPerBlock < 0) || ( genera tionsPerBlock > 128

));

do
{ .
cout << "Enter the number of key generation s per block: " <<
endl;
cin >> keyGenerationsPerBlock;
cin.ignore();

while ( ( keyGenerationsPerBlock < 0) || ( key GenerationsPerBlock
>128));
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if ( generationsPerBlock > 0) do

{
cout << "Enter the threshold value for
192) (127 RECOMMENDED) " << endl;
cin >> threshCA,;
cin.ignore();

}
while ( ( threshCA <= 63) || (threshCA >=

choice ='n’;
if ( generationsPerBlock > 0) do

{
cout << "Would you like to run (" << de
generationsPerBlock << ") generations before key ex
endl;
choice = cin.get();
cin.ignore();

}
while ( ( choice !="y") && ( choice !="'n

runGensBeforeKey = ( choice =="y");

}
galois::~galois()

[*Default Destructor, Delete instantiated objec
delete theCA;

delete theKeyCA,;

delete theTest;

}

void galois::initlV()
{

[*CBC Initialization Vector initilization Metho
clock_t start_tick; //Create clock object
for (int x = 0;x < 32;x++ ) //For the size of

{
state[x] = 0; //Blank Entry

start_tick = clock(); //Set clocks current
while ( clock() == start_tick ) //While sti

state[x]++; //Increment this entry in t

}
}

doRounds(); //Encrypt the state with the users
doCBCUpdate ( state, IV ); //Update the IV

for (int x = 0;x < 32;x++) //For the size of

state[x] = 0; //Blank Entry
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start_tick = clock(); //Set clocks current
while ( clock() == start_tick ) //While sti

state[x]++; //Increment this entry in t

}
}

doCBCXOR(); //CBC XOR with our first IV
doRounds(); //Encrypt the IV with users key

doCBCUpdate ( state, IV); //[Update the FINAL |

}

void galois::doEncryptDecrypt()

[*Method for simply calling Encrypt or Decrypt
input*/

if ( encryptBool ) encrypt();

else decrypt();

void galois::encrypt()

{
[*The Encryption Method*/
initlvV(); //Initialize the IV

struct stat results; //Get the FileSize
int filesize = stat ( textFile, &results );
filesize = results.st_size;

ifstream text ( textFile, ios::in | ios::binary
and Output Files
ofstream ciph ( ciphFile, ios::out | ios::binar

assert (text); //Assert that the files were o
assert ( ciph);

if ( filesize == 0) //Refused to Encrypt an Em
{

cout << "Input file size is zero! Not Encry
exit (0);
}

ciph.write ( ( char*) 1V, sizeof (1V) ); /W
first block of the ciphertext

for (int z = 0;z <= filesize;z += 32) //[For a
file

text.read ( ( char*) state, sizeof ( state
of text

if (z + 32 > filesize ) //If last block

int padVal = 32 - ( filesize % 32); //
of bytes needed to fill the last block
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if (padVal !=32) //If the file didn'
multiple of the block size (32)
{
padState ( padVal ); //Pad the Last
out
doCBCXOR(); //Do CBC XOR as usual
doRounds(); //Do Encryption rounds
theCA->doGenerations ( generationsP
CA on the SBox as usual
theKeyCA->doGenerations ( keyGenera
/[Run the CA on the Key as usual
doCBCUpdate ( state, IV ); //Update
encrypted block
ciph.write ( ( char*) state, sizeo
/[Output the last block
padFullState ( padVal ); //Prepare

}

else

block

padFullState ( 0); /Only adding t
block because file was a multiple of block size
}
}

doCBCXOR(); //Either doing normal processin
padding block

doRounds(); //Do Encryption rounds

theCA->doGenerations ( generationsPerBlock
Generations

theKeyCA->doGenerations ( keyGenerationsPer
Generations

doCBCUpdate ( state, IV ); //Update the IV
block

ciph.write ( ( char*) state, sizeof ( stat
block

}

text.close(); //Close the files
ciph.close();

}

void galois::padState ( int padVval )
/*Method to pad a block to fill it up with padV
for (inti=31;i >= 32 - padVal;i-- ) //Start

write as many as needed

{
state[i] = padVval + 32; //Fill with 32 + Co

}
void galois::padFullState ( int padVal )

[*Method to pad a full block with 32 + Count*/
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for (inti=31;i >=0;i--)
{
state[i] = padVal + 32; //PadVal will be ze
multiple of 32

}
}

void galois::decrypt()
[*Method for encrypting a file*/

struct stat results; //Get the FileSize

int filesize = stat ( ciphFile, &results );

filesize = results.st_size - 64; //Subtract the
Padding block from the calculations

ifstream ciph ( ciphFile, ios::in | ios::binary
ofstream text ( textFile, ios::out | ios::binar

assert ( ciph); //Verify the files are open
assert (text);

ciph.read ( ( char*) IV, sizeof (1V)); //IRe
first block of the ciphertext

for (int z = 0;z < filesize;z += 32 ) //For al

ciph.read ( ( char*) state, sizeof ( state
ciphertext block

doCBCUpdate ( state, IVTemp ); //Backup thi
v

dolnvRounds(); //Do the Inverse Rounds

theCA->doGenerations ( generationsPerBlock
Generations

theKeyCA->doGenerations ( keyGenerationsPer
Generations

doCBCXOR(); /Do CBC XOR

doCBCUpdate ( IVTemp, IV ); //Update the IV

if (z + 32 >=filesize ) //If Final Block

{
uint8_t finalState[32]; //Create a hold
final state
memcpy ( finalState, state, 32 ); //Cop
finalState

ciph.read ( ( char*) state, sizeof (s
Final Padding Block

doCBCUpdate ( state, IVTemp ); //Update
state

dolnvRounds(); /Do the Inverse Rounds

theCA->doGenerations ( generationsPerBl|
Generations

theKeyCA->doGenerations ( keyGeneration
Key CA Generations

doCBCXOR(); //Do CBC XOR
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if ( state[0] == 32) //If the final pa
entry is 32

text.write ( ( char*) finalState,
ENTIRE final state out, original filesize % 32 was

}

else

{

text.write ( ( char*) finalState,
) ); //Otherwise write out the number of bytes that

}

else

text.write ( ( char*) state, sizeof (
out a normal block of decrypted plain-text, wasnt |

}
}

text.close(); //Close files
ciph.close();

}
void galois::doCBCXOR()

/*Do the XOR operation of CBC Mode*/
for (inti=0;i < 32;i++ ) state[i] *= IV][i];
entry with the IV
}

void galois::doCBCUpdate ( uint8_t source[32], uint

[*Wrapper Method for copying to and from state,

memcpy ( dest, source, 32);

}

void galois::doRounds()

{
/*Rijndael DoRounds*/
addRoundKey ( 0); //Add Key 0

for (inti=1;i <rounds;i++) //For all roun
{

substituteBytes(); //S-Box

shiftRows(); //Shift

mixColumns(); //Mix

addRoundKey (i); //Add Key i

}

substituteBytes(); //Final Sbu
shiftRows(); //Final Shift
addRoundKey ( 14 ); //[Final Key

}

void galois::dolnvRounds()

{
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addRoundKey ( 14 ); //Add Key 14
invShiftRows(); //UnShift

for (inti=rounds - 1;i > 0;i-- ) //For all

{
invSubstituteBytes(); /Inv S-Box

addRoundKey (i); //Add Key i
invMixColumns(); //UnMix
invShiftRows(); //UnShift

}

invSubstituteBytes(); //Inv S-Box

addRoundKey ( 0); //Add Key 0
}

void galois::substituteBytes()

[*Substitute all bytes in state with their S-Bo
for (inti=0;i < 32;i++)
state[i] = SBox|[state[i]];
}
}

void galois::invSubstituteBytes()
{

[*Substitute all bytes in the state with their
entries*/

for (inti=0;i < 32;i++)

state[i] = SBoxInv[statel[i]];

}
}

void galois::addRoundKey ( int round )
[*XOR Key block with state block*/
int location = 32 * round; //Calculate the offs
key
for (inti=0;i < 32;i++) //For all entries
state[i] "= key[location++]; /Do XOR (addi
}
uint8_t galois::ROTL (uint8_t x, uint8_t s)
[*Circular rotate a byte left by s bits*/
return (uint8 t) (((x)<<(s&(8-1)
-(s&(8-1)))))
}
uint8_t galois::ROTR (uint8_t x, uint8_ts)

[*Circular rotate a byte right by s bits*/
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return (uint8_t) (((x)>>(s&(8-1)
i(s&(8-1))))x

bool galois::verifyGenerators()

/*Method to algorithmically verfiy the generato
uint8_t check = 0xb7; //Default Check Value

for (int c = 0; ¢ < 128; c++) //For all entri
table

{
check "= ROTL ( generators[c], ROTR ( gener

/IDo some Mixing

}

uint8_t compare = 1; //Algorithmically build co

compare = ROTL ( compatre, 2 );
compare |= ROTL ( compare, 2);
compare |= ROTR ( compare, 6 );

if (check != compare ) //If not equal, tables

{

cout << "Error! Generator table has been al
hex << (uintl6_t) check << " Compare: " << hex <<
compare << endl;

}

else

{

cout << "Generator Tables Verified! Check:
uintl6_t) check << " Compare: " << hex << (uint16
endl;

}
}

uint8_t galois::gmul (uint8_t a, uint8_tb)
{

[*Perform multiplication in the galois field*/
uint8 tp=0;

uint8_t hi_bit_set;

for (int counter = O; counter < 8; counter++)

if((b&1)==1)
pr=a;

hi_bit_set = (a & 0x80);
a<<=1;

if (hi_bit_set == 0x80 )
a = 0x1b;

b >>= 1;
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return p;

}

void galois::generateLogTables()

{

[*Generate Log Tables with the given Generator
etable[0] = 1;
etable[255] = 1;

for (intc =1;c <256;c++)

etable[c] = gmul ( etable[c-1], galoisGenSe
Itable[etable[c]] = c;

}
}

/*Very fast define Method for performing multiplica
lookup tables*/

#define gmulLookupDefine(a, b)
((a==0)?0:etable[(Itable[a]+Itable[b])%6255])

uint8_t galois::gmulLookup (uint8_t a, uint8_tb)

/*Slow Method for performing multiplication wit
tables*/

return (a==0) ? 0 : etable[ ( Itable[a] + |
}

uint8_t galois::gmulinverse (uint8_tin)

[*Method for calculating the multiplicative inv
tables*/

if (in==0) return O;

else return etable[ ( 255 - ltable[in] ) ];
}

void galois::generateGmullnverse()

[*Method for generating the gmulinverse table*/
gmulinv[0] = 0;

for (int c = 1;c < 256;c++ ) //For all 256 div
gmulinv[c] = gmulinverse ( ¢ ); //Populate
}
uint8_t galois::sub (uint8_tin)
[*Method for generating the S-box entries based
Seed*/
uint8_ts, x;

s = x = gmullnv[in];

for (intc=0;c<4;c++)

{
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s=(s<<1)|(s>>7);
X N=s;

}

X "= galoisGenSeed;

return X;

}

void galois::generateSBoxes()

[*Method for generating the S-Box tables using
for (int ¢ = 0;c < 256;c++ ) //[For each byte v

SBox[c] = sub ( ¢); //Populate the S-Box w

SBoxInv[SBox|c]] = c; //Populate the SBoxIn
the sub value with the byte value

}
}
void galois::mixColumns()

[*Method for performing gmixColumn on all colum
uint8_t temp[4];

for (intj = 0;j < 8;j++) //For all 8 columns
for (inti=0;i < 4;i++) //For all 4 ent

templi] = state[i*8+i]; /Copy them fro

gmixColumn ( temp ); //Mix temp
for (inti=0;i < 4;i++) //For all 4 ent

state[i*8+]j] = temp]i]; //Restore them
temp

}
}
}

void galois::invMixColumns()

[*Method for performing invGmixColumn on all co
uint8_t temp[4];

for (intj = 0;j < 8;j++ ) //For all 8 columns
for (inti=0;i < 4;i++) //For all 4 ent

templi] = state[i*8+i]; /Copy them fro
}

invGmixColumn (temp ); //UnMix temp

for (inti=0;i < 4;i++) //For all 4 ent
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{

temp

}
}
}

void galois::gmixColumn (uint8_t *r)

state[i*8+j] = temp]i]; //Restore them

[*Perform mixColumn on a single column*/

uint8_t a[4]; //Make holding location
memcpy ( a, r, 4 ); //Copy original into holdin

/[Perform matrix multiplication by {{2,3,1,1}[15;15
r[0] = gmulLookupDefine ( a[0], 2 ) » gmulLooku

N gmulLookupDefine (a[2], 1) ~ gmulLookupDefine (
r[1] = gmulLookupDefine ( a[1], 2 ) » gmulLooku

A gmulLookupDefine (a[3], 1) * gmulLookupDefine (
r[2] = gmulLookupDefine ( a[2], 2 ) » gmulLooku

N gmulLookupDefine ( a[0], 1) ~ gmulLookupDefine (
r[3] = gmulLookupDefine ( a[3], 2 ) » gmulLooku

A gmulLookupDefine (a[1], 1) * gmulLookupDefine (

void galois::invGmixColumn (uint8_t *r)

{

[*Perform invGmixColumn on a single column*/

uint8_t a[4]; //Make holding location
memcpy (a, r, 4); //Copy original into holdin

/[Perform matrix multiplcation by

{{14,9,13,11}{11,14,9,13}{13,11,14,9}9,13,11,14}}
r[0] = gmulLookupDefine ( a[0], 14 ) » gmulLook

N gmulLookupDefine ( a[2], 13 ) » gmulLookupDefine
r[1] = gmulLookupDefine ( a[1], 14 ) » gmulLook

~ gmulLookupDefine (a[3], 13 ) * gmulLookupDefine
r[2] = gmulLookupDefine ( a[2], 14 ) » gmulLook

N gmulLookupDefine ( a[0], 13 ) » gmulLookupDefine
r[3] = gmulLookupDefine ( a[3], 14 ) » gmulLook

N gmulLookupDefine ( a[1], 13 ) » gmulLookupDefine

}

void galois::rotateStateR ( int offset )

{
[*Method used by shiftRows to scramble rows*/
uint8_t temp = state[offset+7]; //Backup last ¢

for (int c = 7;c > 0;c-- ) //Shift all once

state[offset + c] = state[offset + ¢ - 1];

}

state[offset] = temp; //Restore first character
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void galois::rotateStateL (int offset )
[*Method used by invShiftRows to unscramble row s*/
uint8_t temp = state[offset]; //backup first ch aracter
for (int c = 0;c < 7;c++) //Shift all once

state[offset + c] = state[offset + ¢ + 1];

}

state[offset+7] = temp; //Restore last Characte r (wrapped)

}

void galois::rotate (uint8_t *in)

{

[*4-byte Rotate method for use in Key Expansion */
uint8_t temp = in[0];

for (intc =0;c < 3;c++)

in[c] = in[c + 1];

in[3] = temp;
}

void galois::shiftRows()

/*ShiftRows method for performing Rijndaels shi ftrow for 256-hit
blocks*/

for (inti=1;i <4;i++) //For all 3 rows to be shifted (0 is
never shifted)

switch (i)
{

case 3:
rotateStatel (i*8 ); //Shift Row 3 4 t imes passing offset
into state

case 2:
rotateStateL (i*8 );

rotateStatel (i*8 ); //Shift Row 2 3 t imes
case 1:
rotateStatel ( i*8 ); //Shift Row one o nce
}
}
}
void galois::invShiftRows()
[*InvShiftRows method for performing Rijndaels unshiftrow for 256-
bit blocks*/
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for (inti=1;i < 4;i++) //For all 3 rows to
never shifted)

switch (i)

{

case 3:
rotateStateR ( i*8 ); //UnShift Row 3 4

offset into state

case 2:
rotateStateR (i*8 );

rotateStateR ( i*8 ); //UnShift Row 2 3

case 1:
rotateStateR ( i*8 ); //UnShift Row 1 o

}
}
}

uint8_t galois::rcon (uint8_tin)
[*Method performs the rcon operation (2 exponen
expansion*/

uint8 tc=1;

if (in ==0) return 0; //Anything to the 0 is

while (in!=1)
{ c= gmulLookupDefine ( c, 2 ); //Continuous
} in--;
return c;
}
}/0id galois::schedule_core (uint8_t *in, uint8_ti

[*Schedule core is used in key expansion*/

rotate (in); //Rotate all 4 bytes

for (inta =0; a < 4; a++) //[Substitute all
in[a] = SBox[in[a]];

in[0] ~=rcon (i ); //XOR with 2 exponentiated
}

void galois::expand_key()
[*Key Expansion Method*/
for (inti=0;i < 32;i++)
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{
keyl[i] = userKeyli]; //Set first 32 bytes t o0 be the user

inputted key
}

uint8_t t[4]; //Create temp 4 bytes

int ¢ = 32; //Start after the user inputted key
uint8_ti=1; //rcon exponentiation values sta tsatl

while (¢ < 480) //For all expanded eky bytes

for (inta=0; a<4; at++) //Base the fi rst 4 bytes on the
previous key blocks first 4 bytes

t[a] = key[a + ¢ - 4];

if (¢ % 32 ==0) //If processing the end of a key block
schedule_core (t, i); //Call schedule core to modify the
4 bytesint
i++;
}
if (¢ % 32 == 16) //If processing the mid dle of a key block
for (inta=0;a<4;at++)//DoaSu bsitute for all 4
bytes

t[a] = SBox[t[a]];

}
for(inta=0;a<4;a++)//Forall4b ytes
key[c] = key[c - 32] ~ t[a]; //Key keys current entry is
the result of xoring the last blocks 4 bytes and t
CH+;
}
}
}
#endif

B3. Marqolis Class Header File

#ifndef MARGOLIS_H
#define MARGOLIS_H

#define getCellinv(x,y) invSBox[SBox][fixX(x)+fixY (y )*width]] //Define
for getting value from InvSBox
#define getCell(x,y) SBox[fixX(x)+fixY (y)*width] // Define for getting

vlue from SBox
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#define fixX(x) ((width + (x))%width) //Define for
(border wrapping)

#define fixY(y) ((height + (y))%height) //Define fo
(border wrapping)

#define swapDiagl1(x,y) swap(x,y,x+1,y+1) //Defines

Method for different swaps

#define swapDiag2(x,y) swap(x+1,y,x,y+1)
#define swapHoriz1(x,y) swap(x,y,x+1,y)
#define swapHoriz2(x,y) swap(x,y+1,x+1,y+1)
#define swapVertl(x,y) swap(x,y,x,y+1)
#define swapVert2(x,y) swap(x+1,y,x+1,y+1)

class margolis //Basic functionality Margolis Class
and InvSBox (see MargolisSingle)
{
public:

margolis(); //Default Constructor

~margolis(); //Default Destructor

virtual void setParams ( uint8_t *sboxz, uint8_
widthz, int heightz, int threshz ); //Method for se
normal Margolis

void doGenerations ( int numGens ); //Method fo
of generations

protected:

virtual void swap (int x1, int y1, int x2, int
performing swaps of values in neighborhood

void doTransition (int x, inty, uint8_t currS
performing the neccessary transition rules for the
configuration

uint8_t getConfiguration (inti, intj); //Me
the current configuration

void setupRules(); //Method for initializing th

uint8_t *SBox; //Pointer to SBox (Normal Margol
Margolis) to be used as the CA Map

uint8_t *invSBox; //Pointer to InvSBox (Normal
(Single Margolis) to be used as the CA Map

bool rules[16][6]; //Rules Matrix 16 configurat
each

bool evenodd; //Variable for storing current ev
Margolis Neighborhood

int thresh; //Threshhold value for determining
off

int height; //Height of the CA Map (for 2d inde

int width; //Width of the CA Map (for 2d indexi

h

class margolisSingle : public margolis //Single Mar
with Key array

public:

void swap (int x1, intyl, int x2, inty2);/
Method that doesn't attempt to mix an inverse box
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void setParams (uint8_t *keyBoxz, int widthz,
threshz ); //Method for setting parameters for sing

2
#include "margolis.cpp”

#endif

int heightz, int
le Margolis

B4. Marqolis Class Source File

#ifndef MARGOLIS_CPP
#define MARGOLIS_CPP

#include "margolis.h"

margolis::~margolis()
{} //Unused Default Destructor

margolis::margolis()
{} /Unused Default Constructor

void margolis::setupRules()

[*Setup the BounceGas Rules for the Automata an
EvenOdd*/

evenodd = true;

for (inti=0;i < 16;i++ ) for (intj = 0;j
rulesli][j] = false;
rules[1][0] = true;
rules[2][1] = true;
rules[4][1] = true;
rules[6][2] = true;
rules[6][3] = true;
rules[7][0] = true;
rules[8][0] = true;
rules[9][2] = true;
rules[9][3] = true;
rules[11][1] = true;
rules[13][1] = true;
rules[14][0] = true;
}

void margolis::setParams ( uint8_t *sboxz, uint8_t
widthz, int heightz, int threshz )
{

[*Set the Parameters and S-Box pointers for the
CA*/

SBox = shoxz; //Set S-Box Pointer

invSBox = invsboxz; //Set Inv S-Box Pointer
width = widthz; //Set Width

height = heightz; //Set Height

thresh = threshz; //Set CA Threshold
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setupRules(); //Call Setup Rules
}

void margolisSingle::setParams ( uint8_t *keyBoxz,
heightz, int threshz )

[*Set the Parameters and Key Array pointers for
CA*/

SBox = keyBoxz; //Set Key Array pointer
width = widthz; //Set Width

height = heightz; //Set Height

thresh = threshz; //Set CA Threshold

setupRules(); //Call Setup Rules
}

void margolisSingle::swap ( int x1, int y1, int x2,

{
[*Swap method for Key-Modifying CA*/

uint8_t temp = getCell ( x1, y1); //Swap Key E
getCell ( x1, y1) = getCell ( x2, y2);
getCell ( x2, y2 ) = temp;

}

void margolis::swap (int x1, int yl, int X2, inty

{
[*Swap method for S-Box modifying CA*/

uint8_t temp = getCellinv ( x1, y1); //Swap In
getCellinv ( x1, y1 ) = getCellinv ( x2, y2);
getCelllnv ( X2, y2 ) = temp;

temp = getCell ( x1, y1); //Swap S-Box Entries
getCell ( x1, y1) = getCell ( x2, y2);
getCell ( X2, y2 ) = temp;

}

void margolis::doTransition (int X, inty, uint8_t

[*Apply the transition rules to the current par
based on its current state*/

for (inti=0;i < 6;i++) //Check all Six Swa

if ( rules[currState][i] ) //If swap is to

{

switch (i) //Determine Swap and Do it

case O:
swapDiagl (x,y);
break;

case 1:
swapDiag2 (x,y);
break;

case 2:
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swapHorizl (X, y);
break;

case 3:
swapHoriz2 ( x,y);
break;

case 4:
swapVertl (X, Y );
break;

case 5:
swapVert2 (X, Y );
break;

}

}
}
}

/*GetConfiguration adds up the the values of the ce
to a number between 0 and 15*/

#define getConfiguration(i,j) ((getCell(i+1,j+1)>th
(getCell(i,j+1)>thresh?4.0) + (getCell(i+1,j)>thres
(getCell(i,j)>thresh?1:0))

void margolis::doGenerations ( int numGens )
[*Method for performing a number of generations

for (int k = 0; k < numGens; k++) //For all t

{

evenodd *= 1; //Invert the EvenOdd Boolean

for (inti=evenodd; i < height;i+=2)
EvenOdd and count by 2s
{

for (int j = evenodd; j < width; j +=
EvenOdd and count by 2s

doTransition (i, j, getConfigurati
the transition for the configuration of the partiti
}
}
}
}

#endif

B5. Tests Class Header File

#ifndef TESTS_H
#define TESTS_H

#include <iostream>
#include <fstream>
#include <cassert>
#include <sys/stat.h>
#include <math.h>
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using std::cout;
using std::endl;
using std::hex;
using std::dec;
using std::cin;
using std::ifstream;
using std::ofstream;
using std::ios;

#define BIT(n) (1 << (n))

class tests //Class for performing various analysis

{

public:

tests (uint8_t *shoxz, uint8_t *invsboxz ); //
SBox and invSBox pointer

~tests(); //Default Destructor

void testinvertibility(); //Verifies invertibil
invSBox

void testNonLinearity ( bool verbose ); //Repor
measures of the SBox

void testBitChanges ( bool verbose ); //Counts
changes between sbhox inputs and their outputs

void BitARFWT(); //Performs Walsh Hadamard Tran
Linearity Measure

void testDataHistogram ( bool verbose ); //Crea
file based on an input file

void testMidPoints ( bool verbose ); //Reports
On and Off values in the CA SBox

void testDistanceToCenter ( bool verbose ); //R
to the Center of MidPoints of the On and Off values

void testAvalanche ( bool verbose ); //Reports
modifying single bits in SBox input data

void testAll ( bool verbose ); //Performs all t

void testEntropy ( bool verbose ); //[Reports th
input files and their conditional entropy

void printSbox(); //Prints out the SBox

private:
uint8_t *sbox; //Pointer to SBox
uint8_t *invsbox; //Pointer to InvSBox

int bits[256]; //Walsh-Hadamard Transform Bits
h

#include "tests.cpp”

#endif

B6. Tests Class Source File

#ifndef TESTS_CPP
#define TESTS_CPP
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#include "tests.h"

tests::tests (uint8_t *sboxz, uint8_t *invsboxz )

{
[*Initialize the Class by setting the pointers* /
sbox = shoxz;
invsbox = invsboxz;

}

tests::~tests()
{} /Unused default destructor

void tests::printSbox()
[*Function for Printing the S-Box in a 16x16 ta ble*/

for (inti=0;i < 256;i++)
{

cout << hex << (uintl6_t) sbox[i] << "\t"

if ((1+1)% 16 ==0) cout << endl;
}

cout << dec;

}

void tests::testEntropy ( bool verbose )

{
[*Function for reporting entropy of X, Y, and X [Y*/
char strXFileName[33];
char strYFileName[33];

do
{

cout << "***XFileName Name: <=32 Chars****" << endl;
cin.getline ( strXFileName, 33);

}

while ( cin.gcount() ==1);

cout << "X: " << strXFileName << endl;
do

{

cout << "***YFileName Name: <=32 Chars****" << endl;
cin.getline ( strYFileName, 33);

}
while ( cin.gcount() ==1);
cout << "Y: " << strYFileName << endl;

ifstream X ( strXFileName, ios::in | ios::binar y);
ifstream Y (' strYFileName, ios::in | ios::binar v);

struct stat inputXStats;
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struct stat inputY Stats;

stat ( strXFileName, &inputXStats );
stat ( strYFileName, &inputYStats );

int inputXByteCount = inputXStats.st_size;
int inputYByteCount = inputY Stats.st_size;

if (inputXByteCount != inputYByteCount )
cout << "Files must be the same size! " << inputXByteCount << "

I= " << inputYByteCount << endl;
return;

}

uint8_t tempDataX;
uint8_t tempDatay;

double probX[256];
double probY[256];

double jointProb[256][256];
for (inti=0;i < 256;i++)
{ probX]i] = 0.0;
probY[i] = 0.0;
for (intj = 0;j < 256;j++)
{ jointProbli][j] = 0.0;
}

for (inti = 0;i < inputXByteCount;i++)

{
X.read ( ( char*) &tempDataX, sizeof (tem pDataX) );

probX[tempDataX]++;

Y.read ( ( char*) &empDataY, sizeof ( tem pDataY ) );
probY[tempDataY]++;

jointProb[tempDataX][tempDataY]++;
}

X.close();

Y.close();

for (inti=0;i < 256;i++)
probX[i] /= inputXByteCount;

if (verbose ) cout << dec << "Xp(" <<i << ") =" << probX]i]
<< endl;
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probY[i] /= inputYByteCount;

if (verbose ) cout << dec << "Yp(" <<i<< ") =" << probY[i]
<< endl;

for (intj=0;j < 256;j++)
jointProbli][j] /= inputXByteCount;
}
double condEntropy = 0.0;
for (inti=0;i < 256;i++)

for (intj = 0;j < 256;j++)

if ( (jointProbl[i][j]!=0.0) && ( pr obY[i]'=0.0))
{
condEntropy += jointProb[i][j] * lo g (probY[i] /
jointProbli][j] );
}

}
}

condEntropy /= log (2.0 );
if ( condEntropy <= 0.0 ) condEntropy = 0.0;
cout << "Cond Entropy = " << condEntropy << end ;
double entropyX = 0.0;
double entropyY = 0.0;
for (inti=0;i < 256;i++)
if ( probX[i] !=0.0) entropyX -= probX[i] *log ( probX[i] );

if (probY][i] = 0.0) entropyY -= probY][i] *log ( probY][i] );

entropyX /=log (2.0 );

entropyY /=log (2.0);
cout << "EntropyX =" << entropyX << end|;
cout << "EntropyY =" << entropyY << end|;

}

void tests::testAll ( bool verbose )

{
testMidPoints ( verbose );
testDistanceToCenter ( verbose );
testNonLinearity ( verbose );
testAvalanche ( verbose );
testBitChanges ( verbose );
testinvertibility();
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}

void tests::testDistanceToCenter ( bool verbose )
{

double midPointTotalXT = 0;

double midPointTotalYT = 0O;

double midPointCountT = 0;

double midPointTotalXF = 0;

double midPointTotalYF = 0O;

double midPointCountF = 0;

for (inti=0;i < 16;i++)

{
for (intj=0;j < 16;j++)

if ( sbox[i*16+]] > Ox7f)

midPointCountT++;
midPointTotalXT +=
midPointTotalYT +=

}

else

{
midPointCountF++;
midPointTotalXF +=
midPointTotal YF +=

}
}
}

double distanceT = sqrt ( pow ( midPointTotalXT
7,2) + pow ( midPointTotalYT / midPointCountT - 7

—_——

R —

double distanceF = sqrt ( pow ( midPointTotalXF
7, 2) + pow ( midPointTotalXF / midPointCountF - 7

cout << "1's Distance from MidPoint = " << dist
Distance from MidPoint = " << distanceF << endl;
/lcout << distanceT << ";" << distanceF << endl;
}
void tests::testMidPoints ( bool verbose )
{

double midPointTotalXT = 0O;

double midPointTotalYT = 0O;

double midPointCountT = 0;

double midPointTotalXF = 0;

double midPointTotalYF = 0O;

double midPointCountF = 0;

for (inti=0;i < 16;i++)
{
for (intj=0;j < 16;j++)
if ( sbox[i*16+]j] > Ox7f)

midPointCountT++;
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midPointTotalXT += j;
midPointTotalYT +=

}

else

midPointCountF++;
midPointTotalXF +=
midPointTotalYF +=

}

[ —

}
}

cout << "MidPoint for 1s: (" << midPointTotalXT
"" << midPointTotal YT / midPointCountT << ") *;

cout << "MidPoint for Os: (" << midPointTotalXF
"" << midPointTotal YF / midPointCountF << ")" << e
/lcout << midPointTotalXT/midPointCountT << ";" <<
midPointTotalY T/midPointCountT << ";" << midPointTo
<< "" << midPointTotalYF/midPointCountF << endl;

}

void tests::testinvertibility()
{
for (inti=0;i<256;i++)
if (invsbox[sbox[i]]!=1i)

cout << "Wrong value at " << i << endl;

}
else
if (i ==255) cout << "OK all lookups
}
}

}

void tests::BitARFWT()

{

[*Walsh-Hadarman Transform Code from: www.ciphe
intell =0;

intel2 =0;

int stradwid = 1;

int bitARLast = 255;

int blocks = 255;

while ( stradwid !'=0)
{
ell =0;
blocks >>=1;
for (int block = 0; block <= blocks; block

el2 = ell + stradwid;
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for (int pair = 0; pair < stradwid; pa
{

inta = bits[ el1 ];

int b = bits[ el2 ];

bits[ell]=a + b;

bits[el2 ] =a - b;

ell++;

el2++;

}

ell =el2;
}

stradwid = ( stradwid + stradwid ) & bitARL

}
}

void tests::testNonLinearity ( bool verbose )
{ int minNL = O;

for (inti=0;i < 8;i++)

{ for (intj = 0;j < 256;j++)

bits[j] = ( sbox[j] & BIT (i)) ==

BitARFWT();
for (inti=1;i <256;i++)
if (abs ( bits[i] ) > minNL ) minNL =
}
minNL = 128 - minNL;

cout << "MinNL =" << dec << minNL << endl;

}

void tests::testDataHistogram ( bool verbose )

char inFile[128];
char outFile[128];

do
{

cout << "Enter the data filename: " << end|
cin.getline (inFile, 128 );
}

while (cin.gcount() == 1);
do
{

cout << "Enter the results filename: " << e
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}

cin.getline ( outFile, 128 );
}

while ( cin.gcount() ==1);

uint64_t Histogram[256];

for (inti=0;i < 256;i++ ) Histogramli] = O;

int n;

struct stat results;

n = stat ( inFile, &results );

ifstream data ( inFile, ios::in | ios::binary )

assert ( data );

ofstream resultsFile ( outFile, ios::out);

intc=0;

for (inti=0;i <results.st_size;i++)
data.read ( (char*) &c, 1);

Histogram|[c]++;

}

data.close();

for (inti=0;i < 256;i++)
resultsFile << hex <<i<<"" << dec << Hi
if ( verbose ) cout << dec << Histogram(i]

if (verbose )if ((i+1)% 16==0)c

resultsFile << "Total Bytes: " << results.st_si
if ( verbose ) cout << "Total Bytes: " << resul

resultsFile.close();

void tests::testBitChanges ( bool verbose )

{

unsigned int totalBitChanges = 0;
int count = 0;

for (inti=0;i < 256;i++)
{

count = 0;

for (intj=0;j < 8;j++)
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if ((i&BIT (j) ) != ( sbox[i]&BIT (

}

totalBitChanges += count;

if ( verbose ) cout << "BitChange count for
<<u:n<<Count<<n/n << (8)<<u:n<<count
endl;

}

cout << "AvgBitChanges =" << totalBitChanges <
<< " =" << totalBitChanges / ( float ) ( 256*8 ) <

}

void tests::testAvalanche ( bool verbose )

[*Tests the avalanche effect by counting bit ch
changes in the input for all 256 entries*/

unsigned int totalAvalanche = 0;

int count = 0;

int modified = 0;

for (inti=0;i < 256;i++)
{ count = 0;
for (intj=0;j < 8;j++)
modified =i~ BIT (j);
for (intk = 0;k < 8;k++)

if ((sbox[i]&BIT (k) ) !=(sho
) ) ) count++;

}

if ( verbose ) cout << "Avalanche for " <<
<<"/[/"<<(8*8) << " ="<<count/(float) (

totalAvalanche += count;

}

cout << "Overall Avalanche =" << totalAvalanch
8*8*256 ) << " =" << totalAvalanche / ( float ) (

}
#endif

B7. Main Class Source File

#include <iostream>
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#include <math.h>
#include <time.h>

#include "galois.h"

int main (int argc, char *argv[] )

srand (time ( 0)); //Initialize the random s eed to the time
galois *newgalois = new galois(); //Create a bl ocking instance of
galois

system ( "PAUSE"); //Pause then exit
return O;

}
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C1l. Galois Table Generation Test Source

#include <iostream>
#include <fstream>
#include <stdint.h>
#include <stdlib.h>

using namespace std;

uint8_t Itable[256];
uint8_t etable[256];
uint8_t gmulinv[256];
uint8_t SBox[256];
uint8_t SBoxInv[256];
uint8_t seed;

uint8_t expandKey[240];

const uint8_t generators[128] = {

0x03, 0x05, 0x06, 0x09, 0x0Ob, 0x0e, 0x11, 0x12, Ox1 3, 0x14, 0x17, 0x18,
0x19, Oxla, Ox1lc, Oxle, Ox1f, 0x21, 0x22, 0x23, 0x2 7, 0x28, 0x2a, 0x2c,
0x30, 0x31, 0x3c, 0x3e, 0x3f, 0x41, 0x45, 0x46, 0x4 7, 0x48, 0x49, 0x4b,
Ox4c, Ox4e, 0x4f, 0x52, 0x54, 0x56, 0x57, 0x58, 0x5 9, 0x5a, 0x5b, 0x5f,
0x64, 0x65, 0x68, 0x69, 0x6d, Ox6e, 0x70, Ox71, Ox7 6, Ox77, 0x79, 0x7a,
Ox7b, Ox7e, 0x81, 0x84, 0x86, 0x87, 0x88, 0x8a, 0x8 e, 0x8f, 0x90, 0x93,
0x95, 0x96, 0x98, 0x99, 0x9b, 0x9d, 0xa0, Oxa4, Oxa 5, Oxa6, 0xa7, 0xa9,
Oxaa, Oxac, Oxad, Oxb2, 0xb4, 0xb7, Oxb8, 0xb9, Oxb a, Oxbe, 0xbf, 0xcO,
0xc1, 0xc4, 0xc8, 0xc9, Oxce, Oxcf, O0xd0, O0xd6, Oxd 7, Oxda, Oxdc, Oxdd,
Oxde, Oxe2, Oxe3, Oxe5, 0xe6, Oxe7, 0xe9, Oxea, Oxe b, Oxee, 0xfO, Oxf1,

0xf4, Oxf5, 0xf6, 0xf8, Oxfb, Oxfd, Oxfe, Oxff

h
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uint8_t ROTL(uint8_t X, uint8_t s)
{

return (uint8_t) (((x)<<(s&(8-1))) | ((x)>>(8-(
}

uint8_t ROTR(uint8_t x, uint8_t s)

{
return (uint8_t) (((x)>>(s&(8-1))) | ((x)<<(8-(

uint8_t gadd(uint8_t a, uint8_tb)
returna” b;
uint8_t gsub(uint8_t a, uint8_t b)

return a  b;

}

uint8_t gmul(uint8_t a, uint8_t b)
{
uint8 tp=0;
uint8_t counter;
uint8_t hi_bit_set;
for (counter = 0; counter < 8; counter++)

if (b&1)==1)
p"=a;

hi_bit_set = (a & 0x80);

a <<= 1;

if (hi_bit_set == 0x80)
a "= 0x1b;

b>>=1;

}

return p;

}

void generateTables(uint8_t seed)
{

etable[0] = 1;

etable[255] = 1;

for (int c=1;c<256;c++)

etable[c] = gmul(etable[c-1],seed);
Itable[etable[c]] = c;

etable[255] = 1;
}

uint8_t gmulLookup(uint8_t a, uint8_t b)
{

ints;

int g;

intz=0;

s = ltable[a] + Itable[b];

s %= 255;

s = etable[s];
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if (@==0)
{
s=z
}
else
{
s=q;
if (b==0)
{
s=z
}
else
{
q=1z
}
return s;
}
uint8_t gmulinverse(uint8_t in)
if (in==0)
return O;
else

return etable[(255 - Itable[in])];
}

void generateGmullnverse()

gmulinv[0] = 0;
for (int c=1;c<256;c++)

gmulinv[c] = gmullnverse(c);

}

uint8_t sub(uint8_t in)

{
uint8 _tc, s, x;
s = x = gmullnv[in];
for (c =0; c<4; c++t)

s=(s<<1)|(s>>7);
X N=s;

}

X = seed;

return x;

}
void generateSBoxen()
for (int c=0;c<256;c++)
SBox|[c] = sub(c);

SBoxInv[SBox][c]] = c;
}
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}

void printTables()

}

cout << "Log Table" << endl;

for (int i=0;i<256;i++)

{
cout << hex << (uint16_t) ltable[i] << "\t"
if ((i+1)%16 == 0) cout << endl;

}

cout << end| << end| << endl;

cout << "Anti-Log Table" << endl;

for (int i=0;i<256;i++)

{
cout << hex << (uint16_t) etable[i] << "\t"
if ((i+1)%16 == 0) cout << endl;

}

cout << end| << end| << endl;

cout << "GMul Inverse Table" << endl;

for (int i=0;i<256;i++)

{
cout << hex << (uintl6_t) gmulinv[i] << "\t
if ((I+1)%16 == 0) cout << endl;

}

cout << end| << end| << endl;

cout << "SBox Table" << endl;

for (int i=0;i<256;i++)

{
cout << hex << (uintl6_t) SBox][i] << "\t";
if ((I+1)%16 == 0) cout << endl;

}

cout << endl| << endl| << endl;

cout << "Inverse SBox Table" << end|;

for (int i=0;i<256;i++)

{
cout << hex << (uint16_t) SBoxInv[i] << "\t
if ((i+1)%16 == 0) cout << endl;

cout << endl| << endl| << endl;

cout << "Key Table" << endl;

for (int i=0;i<240;i++)

{
cout << hex << (uint16_t) expandKey[i] << "
if ((i+1)%16 == 0) cout << endl;

}
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void resetTables()
for (int i=0;i<256;i++)

Itable[i] = etable[i] = gmulinv[i] = SBox([i ] = SBoxInv[i] = 0;
}
}

bool checkInvertibility()
for (inti=0;i<256; i++)

if (SBoxInv[SBox[i]] != i)
{

cout << "Wrong value at " << i;

}

else

if (i == 255) cout << "OK all lookups s ucceeded" << endl;
}
}
}

void gmixColumn(uint8_t *r)
{

uint8_t af4];

uint8_tc;

for (c=0;c<4;c++)

a[c] = rc];

}
r[0] = gmul(a[0],2) ~ gmul(a[3],1) ~ gmul(a[2], 1) ~ gmul(a[1],3);
r[1] = gmul(a[1],2) » gmul(a[0],1) ~ gmul(a[3], 1) ~ gmul(a[2],3);
r{2] = gmul(a[2],2) ~ gmul(a[1],1) * gmul(a[o], 1) " gmul(a[3],3);
(3] = gmul(a[3],2) » gmul(a[2],1) ~ gmul(af1], 1) * gmul(a[0].3);
}
void invGmixColumn(uint8_t *r)
{
uint8_t af4;
uint8_tc;

for (c=0;c<4;c++)

a[c] = rlc];

r[0] = gmul(a[0],14) ~ gmul(a[3],9) * gmul(a[2] ,13) A
gmul(a[1],11);

r[1] = gmul(a[1],14) » gmul(a[0],9) » gmul(a[3] ,13) ~
gmul(a[2],11);

r[2] = gmul(a[2],14) » gmul(a[1],9) » gmul(a[0] ,13) ~
gmul(a[3],11);

r[3] = gmul(a[3],14) » gmul(a[2],9) » gmul(a[1] ,13) A
gmul(a[0],11);

}
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void rotate(uint8_t *in)
{
uint8_t a,c;
a =in[0];
for (c=0;c<3;c++) in[c] = in[c + 1];
in[3] = a;
return;

}

uint8_t rcon(uint8_t in)
{
uint8_tc=1;
if (in == 0) return O;
while (in 1= 1)

¢ = gmul(c,2);
in--;
}

return c;

}

void schedule_core(uint8_t *in, uint8_t i)
{
char a;
rotate(in);
for (inta=0;a<4;at+)
in[a] = SBox[in[a]];
in[0] ~= rcon(i);

void expand_key(uint8_t *in)

{
uint8_t t[4];
uint8_tc =32;
uint8_ta;
uint8 ti=1;
while (c < 240)
{
for(a=0;a<4;at+)tfa]=infa+c-4
if (c % 32 ==0)
schedule_core(t,i);
i++;
}
if (c % 32 == 16)
for (a = 0; a < 4; a++) t[a] = SBox[t[a
for (a=0;a<4;at+)
in[c] = in[c - 32] " t[a];
CH+;
}
}
}
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void printkey()

{
for (int i=0;i<240;i++)
{

cout << "i=" << i<<"" << hex << (uintl16_
endl;

}
}

int main()
uint8_t test[] = { Oxdb, 0x13, 0x53, 0x45 };
for (int i=0;i<32;i++) expandKey[i] = Oxff;

[IVerify Generator Tables

[IverifyExe();
for (int i= 0;i<128;i++)
{

seed = generators|i];

cout << "Generator =" << hex << (uint16_t)
endl;

/[Zero tables for a new galois genertor

resetTables();

/IGenerate Log/Exponentiation Tables

generateTables(generators]i]);

//Generate 1/x Tables

generateGmullinverse();

/IGenerate SBox based on galois generator.

generateSBoxen();

//Check SBox to SBoxInv

checklinvertibility();

/ICheck GMix

/lgmixColumn(test);

[[for(int i=0;i<4;i++) cout << hex << (uint

/ICheck InvGMix
/linvGmixColumn(test);
[/ffor(int i=0;i<4;i++) cout << hex << (uint

expand_key(expandKey);
/lprintTables();
cout << "Generator " << i <<": " << endl;
system("pause");

/[system("pause");

return O;

}

C2. Border Wrapping Test

#include <stdio.h>
#include <stdlib.h>

#define HEIGHT 32
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#define WIDTH 32
int main()
for (int i=0;i<HEIGHT;i++)
for (int j=0;j<WIDTH;j++)

printf("Left side for i = %d = %d\n", i
1))%HEIGHT);

printf("Right side for i = %d = %d\n",
(i+1))%HEIGHT);

printf("Bottom side for i = %d = %d\n",
1))%WIDTH);

printf("Top side for i = %d = %d\n", j,
(+1))%WIDTH);

}

system("pause");

return O;

}

C3. Non-Linearity Test

#include <iostream>
#include <math.h>

using std::cout;
using std::endl;
using std::hex;

int test[256] =

{0x63, 0x7c, 0x77, Ox7b, Oxf2, Ox6b, Ox6f, Oxc5
0x2b, Oxfe, Oxd7, Oxab, 0x76, Oxca, 0x82, 0xc9, Ox7
0xf0, Oxad, Oxd4, Oxa2, Oxaf, 0x9c, Oxa4, 0x72, Oxc
0x26, 0x36, 0x3f, 0xf7, Oxcc, 0x34, 0xab, 0xe5, Oxf
0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9
Oxe2, Oxeb, 0x27, Oxb2, 0x75, 0x09, 0x83, 0x2c, 0x1
0Oxa0, 0x52, 0x3b, 0xd6, Oxb3, 0x29, Oxe3, 0x2f, Ox8
Oxed, 0x20, Oxfc, Oxb1, Ox5b, Ox6a, Oxcb, Oxbe, 0x3
Oxcf, 0xd0, Oxef, Oxaa, Oxfb, 0x43, 0x4d, 0x33, 0x8
0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8
0xf5, Oxbc, 0xb6, Oxda, 0x21, 0x10, Oxff, Oxf3, Oxd
Oxec, Ox5f, 0x97, 0x44, 0x17, Oxc4, Oxa7, 0x7e, 0x3
0x73, 0x60, 0x81, Ox4f, Oxdc, 0x22, 0x2a, 0x90, 0x8
0x14, Oxde, 0x5e, 0x0b, Oxdb, 0xe0, 0x32, 0x3a, 0x0
0x5c, 0xc2, 0xd3, Oxac, 0x62, 0x91, 0x95, Oxe4, 0x7
0x6d, 0x8d, 0xd5, Ox4e, 0xa9, Ox6c, 0x56, 0xf4, Oxe
0x08, Oxba, 0x78, 0x25, Ox2e, Ox1c, Oxa6, Oxb4, Oxc
Ox1f, Ox4b, Oxbd, Ox8b, 0x8a, 0x70, Ox3e, Oxb5, Ox6
0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xcl1, Ox1d, 0x9
0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, Ox1e, 0x87, Oxe
Oxdf, 0x8c, Oxal, 0x89, 0x0d, Oxbf, Oxe6, 0x42, Ox6
0x0f, 0xb0, 0x54, 0xbb, 0x16};

int bits[256];
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#define BIT(n) (1 << (n))

void BitARFWT()
{ *www.ciphersbyritter.com*/
intell =0;
intel2 =0;
int stradwid = 1;
int bitARLast = 255;
int blocks = 255;

while (stradwid != 0)

ell =0;
blocks >>=1;
for (int block=0; block <= blocks; block++)

el2 = ell + stradwid;
for (int pair=0; pair < stradwid; pair+

inta = bits[ ell ];
int b = bits[ el2 ];
bits[ell]=a + b;
bits[el2 ] =a - b;
ell++;
el2++;

}
ell = el2;

stradwid = (stradwid + stradwid) & bitARLas

}
}

void getNonLinearity()

{
long unsigned int avgNL=0;
int minNL = 0;
int maxNL = 256;

for (int i=0;i<8;i++)
{
for (int j=0;j<256;j++)

bits[j] = (test[j]&BIT(i))==070:1;

}
BitARFWT();
for (int i=1;i<256;i++)

if (abs(bits[i]) > minNL) minNL = abs(b
if (abs(bits[i]) < maxNL) maxNL = abs(b
avgNL += 128 - abs(bits[i]);
}
}

avgNL /= (255*8);
minNL = 128 - minNL;
maxNL = 128 - maxNL;
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cout << "AvgNL =" << avgNL << endl;
cout << "MinNL =" << minNL << endl;
cout << "MaxNL =" << maxNL << endl;

}

int main()
getNonLinearity();
system("pause");

return O;

}

C4. ShiftRow Test

#include <iostream>
#include <stdlib.h>

using namespace std;

void rotate(uint8_t *in)
{
uint8_ta,c;
a =in[0];
for (c=0;c<7;c++) in[c] = in[c + 1];
in[7] = a;
return;
}
void shiftRows(uint8_t in[4][8])
for (int i=1;i<4;i++)
for (int j=0;j<i;j++) rotate(in[i]);
}
}
void unshiftRows(uint8_t in[4][8])
for (int i=1;i<4;i++)

for (int j=4-i;j>0;j--) rotate(in[i]);
}
}

void printOut(uint8_t in[4][8])
for (int i=0;i<4;i++)
for (int j=0;j<8;j++)

if(in[i][j]<16)cout << "0";
else cout << "; cout << hex << (uint16 O in[illi] << "
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}

cout << endl;

}

cout << end| << endl;

}
int main()
for (int i=1;i<4;i++)

for (int j=0;j<i;j++) cout << "Shifting " < <i<<endl

for (int i=1;i<4;i++)

for (int j=4-i;j>0;j--) cout << "UnShifting "<<i<<endl

}

uint8_t blah[4][8] =
{{0x00,0x08,0x10,0x18,0x20,0x28,0x30,0x38},{0x40,0x 48,0x50,0x58,0x60,0x
68,0x70,0x78},{0x80,0x88,0x90,0x98,0xA0,0xA8,0xB0,0 xB8},{0xC0,0xC8,0xD0
,0xD8,0xE0,0xE8,0xF0,0xF8}};

printOut(blah);
shiftRows(blah);
printOut(blah);
unshiftRows(blah);
printOut(blah);

system("pause");
return O;

C5. Column Mix Test

#include <iostream>
#include <stdint.h>
#include <stdlib.h>

using namespace std;

uint8_t gmul(uint8_t a, uint8_t b)
{
uint8_tp =0;
uint8_t counter;
uint8_t hi_bit_set;
for (counter = 0; counter < 8; counter++)

if (b&1)==1)
p=a;
hi_bit_set = (a & 0x80);
a <<= 1;
if (hi_bit_set == 0x80)
a "= 0x1b;
b >>= ]_'
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return p;

}

void gmixColumn(uint8_t *r)
{

uint8_t af4];

uint8_tc;

for (c=0;c<4;c++)

a[c] = r[c];
}
0] = gmul(a[0],2) ~ gmul(a[3],1) ~ gmul(af2], 1) * gmul(a[1],3);
r[1] = gmul(a[1],2) » gmul(a[0],1) ~ gmul(a[3], 1) ~ gmul(a[2],3);
r[2] = gmul(a[2],2) » gmul(a[1],1) ~ gmul(a[0], 1) ~ gmul(a[3],3);
r{3] = gmul(a[3],2) * gmul(a[2],1)  gmul(a[1], 1) " gmul(a[0],3);
}
void invGmixColumn(uint8_t *r)
{
uint8_t af4];
uint8_tc;

for (c=0;c<4;c++)

alc] = r[c];

r[0] = gmul(a[0],14) » gmul(a[3],9) » gmul(a[2] ,13) ~
gmul(a[1],11);

r[1] = gmul(a[1],14) » gmul(a[0],9) » gmul(a[3] ,13) 7~
gmul(a[2],11);

r[2] = gmul(a[2],14) » gmul(a[1],9) » gmul(a[0] ,13) ~
gmul(a[3],11);

r[3] = gmul(a[3],14) » gmul(a[2],9) » gmul(a[1] ,13) A

gmul(a[0],11);
}

void mixColumns(uint8_t in[4][8])

uint8_t temp[4];
for (int j=0;j<8;j++)

for (int i=0;i<4;i++)
templi] = in[i][j];

gmixColumn(temp);

for (int i=0;i<4;i++)
infi][j] = templil;

}
}

void unmixColumns(uint8_t in[4][8])

{
uint8_t temp[4];
for (int j=0;j<8;j++)
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for (int i=0;i<4;i++)
templi] = in[i][j];

invGmixColumn(temp);
for (int i=0;i<4;i++)

in[i][j] = templi];

}
}

void printOut(uint8_t in[4][8])
for (int i=0;i<4;i++)
for (int j=0;j<8;j++)

if(in[i][j]<16)cout << "0";
else cout << "; cout << hex << (uint16 ) in[illi] << " "
}
cout << endl:
}

cout << endl << endl;

}
int main()

uint8_t blah[4][8] =
{{0x00,0x08,0x10,0x18,0x20,0x28,0x30,0x38},{0x40,0x 48,0x50,0x58,0x60,0x
68,0x70,0x78},{0x80,0x88,0x90,0x98,0xA0,0xA8,0xB0,0 xB8},{0xC0,0xC8,0xD0
,0xD8,0xE0,0xE8,0xF0,0xF8}};

printOut(blah);

mixColumns(blah);

printOut(blah);

unmixColumns(blah);

printOut(blah);

system("pause");

return O;

C6. Clock Drift IV Generation Test

#include <iostream>
#include <time.h>

using std::cout;
using std::endl;
using std::ios;
using std::hex;
using std::dec;
int main()

uint8_t data[256*64];
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clock_t start_tick;
for (int x=0;x<256*64;x++)
{
data[x] = 0;
start_tick = clock();
while (clock() == start_tick)

data[x]++;
}
}

for(int i=0;i<256*64;i++)
{
cout << i << "\t" << hex << (uintl6_t) data [i] << endl;

}

uint8_t hist[256];
for(int i=0;i<256;i++)

hist[i] = 0;
}

for(int i=0;i<256*64;i++)

hist{data[i]]++;

cout << end| << endl;

for(int i=0;i<256;i++)
{

cout << dec << i <<"" << dec << (uintl6_t ) hist[i] << endl;

}

system("pause");
return O;

C7. Padding Test and Results

#FileName: doTest.sh

#!/bin/bash

rm text.txt

cd /home/shambler/Thesis/Margalois
for((i=0;i<33;i++))

do

echo -n "A" >> text.txt;

Ja.out < runScriptEncrypt > /dev/null;
Ja.out < runScriptDecrypt > /dev/null;
Is -1 *.txt;

md5sum *.txt;

done

#FileName: runScriptEncrypt
e

131



1
myPasswordKey
text.txt

ciph.txt

0

1

0
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#FileName: runScriptDecrypt
d

1

myPasswordKey

newtext.txt

ciph.txt

#FileName: PaddingResults.txt

-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 1 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 1 2007-06-02 16:31 tex
4b5bc888e08b7¢3241dfal8564749292 ciph.txt
7fc56270e7a70fa81a5935b72eache29 newtext.txt
7fc56270e7a70fa81a5935b72eache?29 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 2 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 2 2007-06-02 16:31 tex
50fbadc7a5abc1f82b198b1f22a2599¢e ciph.txt
3b98e2dffc6ch06a89dcb0d5¢c60a0206 newtext.txt
3b98e2dffc6cb06a89dch0d5¢c60a0206 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 3 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 3 2007-06-02 16:31 tex
€62414a5cc9167f261d249176974335a ciph.txt
elfaffb3e614e6c2fba74296962386b7 newtext.txt
elfaffb3e614e6¢c2fba74296962386b7 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 4 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 4 2007-06-02 16:31 tex
9467faad9af733e43226ad85b75ca9e8 ciph.txt
098890dde069e9abad63f19a0d9e1f32 newtext.txt
098890dde069e9abad63f19a0d9e1f32 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 5 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 5 2007-06-02 16:31 tex
7d30a0a505fh38f58e4468665c9bd7b6 ciph.txt
f6a6263167c92de8644ac998b3c4ed4dl newtext.txt
f6a6263167c92de8644ac998b3cd4eddl text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 6 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 6 2007-06-02 16:31 tex
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374c4693420730ef3d655bf377d7681d ciph.txt
36d04a9d74392c727b1la9bfo7a7bcbac newtext.txt
36d04a9d74392c727bla9bfo7a7bcbac text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 7 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 7 2007-06-02 16:31 tex
a781ab5862c¢1d70b272e46e€2148777e3 ciph.txt
8430894cfeb54a3625f18fe24fce272e newtext.txt
8430894cfeb54a3625f18fe24fce272e text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 8 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 8 2007-06-02 16:31 tex
081b3a9ba33e7e278b3b4b7c05cc4a7f ciph.txt
aee9e38ch4d40ec2794542567539b4c8 newtext.txt
aee9e38ch4d40ec2794542567539b4c8 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 9 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 9 2007-06-02 16:31 tex
f3f5f53f5d9767fac37c52ab5ac4e3c3 ciph.txt
6c9395cacd317eed2777f669103b7181 newtext.txt
6c9395cacd317eed2777f669103b7181 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 10 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 10 2007-06-02 16:31 tex
8545b583d6ed814fe263d8b08469d576 ciph.txt
16¢52c6e8326c071da771e66dc6e9e57 newtext.txt
16¢52c6e8326c071da771e66dc6e9e57 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 11 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 11 2007-06-02 16:31 tex
8d9ea3b18f34dabllba25bcalleeald2 ciph.txt
aae9ed2aebd46960a986¢cfb376bcleca newtext.txt
aae9ed2aebd46960a986¢cfb376bcleca text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 12 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 12 2007-06-02 16:31 tex
568348987f6d18af058f6767a7ee8243 ciph.txt
02737e4e8c87d7466b623c1f844fdd71 newtext.txt
02737e4e8c87d7466b623c1f844fdd71 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 13 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 13 2007-06-02 16:31 tex
c1ba67d0dffo4d5ce0d1cd911fbbd254 ciph.txt
a68c7b41f873e90566acec7c22f89824 newtext.txt
a68c7b41f873e90566acec7c22f89824 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 14 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 14 2007-06-02 16:31 tex
ee563345e901b0d0862b548b2e51b4f7 ciph.txt
74d8c66251bba513d7d317dd47f556ba newtext.txt
74d8c66251bba513d7d317dd47f556ba text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 15 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 15 2007-06-02 16:31 tex
a47d0flfc70e3fcde7a7clab86151al2 ciph.txt
409c94b762769ea5fh9384eb9bddf207 newtext.txt
409c94b762769ea5fh9384eb9bddf207 text.txt
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-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 16 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 16 2007-06-02 16:31 tex
87dd2d7909afdafc67a3462d69c53d79 ciph.txt
d8a73157cel0cd94a91c2079fc9a92¢c8 newtext.txt
d8a73157cel0cd94a91c2079fc9a92c8 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 17 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 17 2007-06-02 16:31 tex
f95074577aa85825d8f38b135¢8164c3 ciph.txt
1105d53d33874fe294a18ee36398f2dc newtext.txt
1105d53d33874fe294a18ee36398f2dc text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 18 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 18 2007-06-02 16:31 tex
665a94cala36b8f011fd2854ab8e5f36 ciph.txt
9fe125b6680b43a62953d4cc6f4e08bf newtext.txt
9fe125b6680b43a62953d4cc6f4e08bf text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 19 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 19 2007-06-02 16:31 tex
0338ac039e3964b786829497914775d8 ciph.txt
7ae4d6728e33ff002bf67a2e5194ccbl newtext.txt
7ae4d6728e33ff002bf67a2e5194ccbl text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 20 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 20 2007-06-02 16:31 tex
ac3269e385c3d02ca3e94daac9f2d199 ciph.txt
76d36e98f312e98ff908c8c82c8dd623 newtext.txt
76d36€98f312e98ff908c8c82c8dd623 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 21 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 21 2007-06-02 16:31 tex
825cd1e108204ae124920b635f0f0d88 ciph.txt
59f34ff3997b416f4f2deelc9776c0cd newtext.txt
59f34ff3997b416f4f2deelc9776c0cd text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 22 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 22 2007-06-02 16:31 tex
b8222f08a01c2a4€9260c53ee65ad3f0 ciph.txt
8b4cc90d421780e7674e2a25db33b770 newtext.txt
8b4cc90d421780e7674e2a25db33b770 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip
-rw-r--r-- 1 shambler users 23 2007-06-02 16:31 new
-rw-r--r-- 1 shambler users 23 2007-06-02 16:31 tex
d8abd5eab8bdbb5b3ce87¢c1b0855¢cc06 ciph.txt
38079371e04ce549db3e4d69bc96b3ad newtext.txt
38079371e04ce549db3e4d69bc96b3ad text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip
-rw-r--r-- 1 shambler users 24 2007-06-02 16:32 new
-rw-r--r-- 1 shambler users 24 2007-06-02 16:31 tex
ab390cdh9460daf3d58f6fda3b8484d4 ciph.txt
c7c6abfa9cb508f7fc178d4045313a94 newtext.txt
c7c6abfa9cb508f7fc178d4045313a94 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip
-rw-r--r-- 1 shambler users 25 2007-06-02 16:32 new
-rw-r--r-- 1 shambler users 25 2007-06-02 16:32 tex
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h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt



13194c¢6874dab92645c98h199f6d6a54 ciph.txt
1995da96cd16a48cebcbc08424f6f945 newtext.txt
1995da96cd16a48cebchc08424f6f945 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip
-rw-r--r-- 1 shambler users 26 2007-06-02 16:32 new
-rw-r--r-- 1 shambler users 26 2007-06-02 16:32 tex
7224b7e5c0724b78f6edffflb4c39ecl ciph.txt
9894d0235313057edec272848cal93f3 newtext.txt
9894d0235313057edec272848cal93f3 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip
-rw-r--r-- 1 shambler users 27 2007-06-02 16:32 new
-rw-r--r-- 1 shambler users 27 2007-06-02 16:32 tex
€27e387e6794c203d40422b1375e7776 ciph.txt
878d9f8dea73b35e1d23570409b0a09d newtext.txt
878d9f8dea73b35e1d23570409b0a09d text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip
-rw-r--r-- 1 shambler users 28 2007-06-02 16:32 new
-rw-r--r-- 1 shambler users 28 2007-06-02 16:32 tex
7b311aa89bf0a03bbea37eald900b305 ciph.txt
35ea99843da5ff0639992be381c5b77a newtext.txt
35ea99843da5ff0639992be381c5b77a text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip
-rw-r--r-- 1 shambler users 29 2007-06-02 16:32 new
-rw-r--r-- 1 shambler users 29 2007-06-02 16:32 tex
3a4e3504c796e29¢3630e2222f9h8fc5 ciph.txt
cf5205dc20fb05145e6d1fa08166e94e newtext.txt
cf5205dc20fb05145e6d1fa08166e94e text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip
-rw-r--r-- 1 shambler users 30 2007-06-02 16:32 new
-rw-r--r-- 1 shambler users 30 2007-06-02 16:32 tex
182d0f7f9e69f23e3839600117ea2fbl ciph.txt
a8a7d9c5e31058f15d25f18d7d65404a newtext.txt
a8a7d9c5e31058f15d25f18d7d65404a text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip
-rw-r--r-- 1 shambler users 31 2007-06-02 16:32 new
-rw-r--r-- 1 shambler users 31 2007-06-02 16:32 tex
alab7389ad453f36e69bc79d4a65e26d ciph.txt
d09170db213elalfdc5effd49fd34767 newtext.txt
d09170db213elalfdc5effd49fd34767 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip
-rw-r--r-- 1 shambler users 32 2007-06-02 16:32 new
-rw-r--r-- 1 shambler users 32 2007-06-02 16:32 tex
b5cch9536¢c4b08f2a58eb4b75ce31125 ciph.txt
5216ddcc58e8dade5256075e77f642da newtext.txt
5216ddcc58e8dade5256075e77f642da text.txt
-rw-r--r-- 1 shambler users 128 2007-06-02 16:32 ci
-rw-r--r-- 1 shambler users 33 2007-06-02 16:32 ne
-rw-r--r-- 1 shambler users 33 2007-06-02 16:32 te
3d6¢c9595b8402b350aab89ac8c09d18e ciph.txt
eeda92ae5deb94f83a420113abf8db3e newtext.txt
eeda92ae5deb94f83a420113abf8db3e text.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

h.txt
text.txt
t.txt

ph.txt
wtext.txt
xt.txt

C8. Time Analysis and Profiling Results

Generator Tables Verified! Check: 54 Compare: 54
Encrypt or Decrypt? (e,d)
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Would you like to enter a 1)Passphrase or 2)Key?

***|nput 32 Ascii Characters****

***TextFile Name: <=32 Chars****

***CiphFile Name: <=32 Chars****

Enter your galois generator number (0-127)

Enter the number of generations per block:

Enter the number of key generations per block:

Enter the threshold value for the Automata: (64-192 ) (127 RECOMMENDED)
Would you like to run (1) generations before key ex pansion? (y,n)
0.000089 InitCipherTime

0.631368 InitlVTime

17.200998 Encrypt/DecryptTime

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self  total

time seconds seconds calls s/call s/cal I name
57.76 21.76 21.7613631800 0.00 0.0 0
galois::gmixColumn(unsigned char*)

18.04 28,55 6.80 6071822 0.00 0.0 0
margolis::swap(int, int, int, int)

1458 34.05 5.49 262146 0.00 0.0 0
margolis::doGenerations(int)

8.95 37.42 3.37 131075 0.00 0.0 0
galois::doRounds()

0.24 37.51 0.09 1 0.09 375 7 galois::encrypt()
0.16 37.57 0.06 1 0.06 0.0 6 galois::initlV()
0.15 37.62 0.06

margolisSingle::swap(int, int, int, int)

0.15 37.68 0.06

galois::generateSBoxes()

0.00 37.68 0.00 4 0.00 0.0 0 void
std::fillxchar*, int>(char*, char*, int const&)

0.00 37.68 0.00 2 0.00 00 0
std::hex(std::ios_base&)

0.00 37.68 0.00 1 000 0.0 0 global
constructors keyed to _ZN8margolis10setupRulesEv

0.00 37.68 0.00 1 0.00 0.0 0
galois::expand_key()

0.00 37.68 0.00 1 000 0.0 0
galois::initCipher()

0.00 37.68 0.00 1 000 0.0 0
galois::textUserPrompt()

0.00 37.68 0.00 1 0.00 375 7
galois::doEncryptDecrypt()

0.00 37.68 0.00 1 000 0.0 0
galois::verifyGenerators()

0.00 37.68 0.00 1 0.00 0.0 0
margolis::setParams(unsigned char*, unsigned char*, int, int, int)
0.00 37.68 0.00 1 000 0.0 0
std::dec(std::ios_base&)

granularity: each sample hit covers 2 byte(s) for 0 .03% of 37.68

seconds

index % time self children called name
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0.09 37.48 1/1
galois::doEncryptDecrypt() [3]
[1] 99.7 0.09 37.48 1 galois
3.37 21.76 131073/131075 ga
5.49 6.80 262146/262146
margolis::doGenerations(int) [6]
0.06 0.00 1/1 ga

<s
[2] 99.7 0.00 37.57 main [

0.00 37.57 1/1
galois::doEncryptDecrypt() [3]

0.00 0.00 1/1
galois::verifyGenerators() [23]

0.00 0.00 1/1
galois::textUserPrompt() [22]

0.00 0.00 1/1 ga
[21]

0.00 37.57 1/1 ma
[38] 99.7 0.00 37.57 1 galois
3]

0.09 37.48 1/1 ga

0.00 0.00 2/131075 ga

3.37 21.76 131073/131075 oga
[4] 66.7 3.37 21.76 131075 galois

21.76 0.00 13631800/13631800
galois::gmixColumn(unsigned char*) [5]

21.76 0.00 13631800/13631800
[4]
[5] 57.8 21.76 0.00 13631800
galois::gmixColumn(unsigned char*) [5]

5.49 6.80 262146/262146 ga
[6] 32.6 5.49 6.80 262146
margolis::doGenerations(int) [6]

6.80 0.006071822/6071822 ma
int, int, int) [7]

6.80 0.006071822/6071822
margolis::doGenerations(int) [6]
[7] 18.0 6.80 0.006071822 margol
int, int) [7]

0.06 0.00 1/1 ga
[8] 0.2 0.06 0.00 1 galois
0.00 0.00 2/131075 ga

<s
[91 0.1 0.06 0.00 margol
int, int, int) [9]

<s
[10] 0.1 0.06 0.00 galois

[10]

iencrypt() [1]
lois::doRounds() [4]
lois::initI\V() [8]

pontaneous>
2]

lois::initCipher()

in [2]
::doEncryptDecrypt()
lois::encrypt() [1]
lois::initIV() [8]

lois::encrypt() [1]
::doRounds() [4]

galois::doRounds()

lois::encrypt() [1]

rgolis::swap(int,

is::swap(int, int,

lois::encrypt() [1]
2:initlV() [8]
lois::doRounds() [4]

pontaneous>

isSingle::swap(int,

pontaneous>
;:generateSBoxes()



0.00 0.00 4/4
galois::textUserPrompt() [22]
[17] 0.0 0.00 0.00 4 void s
int>(char*, char*, int const&) [17]

0.00 0.00 2/2
galois::verifyGenerators() [23]
[18] 0.0 0.00 0.00 2 std::h
(18]

0.00 0.00 1/1 o
[80]
[10] 0.0 0.00 000 1 global

to _ZN8margolisl0setupRulesEv [19]

0.00 0.00 1/1 ga
[21]
[200 0.0 0.00 0.00 1 galois

0.00 0.00 1/1 ma
[21] 0.0 0.00 0.00 1 galois
0.00 0.00 1/1
margolis::setParams(unsigned char*, unsigned char*,
0.00 0.00 1/1 ga
[20]

0.00 0.00 1/1 ma
[22] 0.0 0.00 0.00 1 galois
[22]

0.00 0.00 4/4 /o]
int>(char*, char*, int const&) [17]

0.00 0.00 1/1
std::dec(std::ios_base&) [25]

0.00 0.00 1/1 ma
[23] 0.0 0.00 0.00 1 galois
(23]

0.00 0.00 2/2
std::hex(std::ios_base&) [18]

0.00 0.00 1/1 ga
[21]
[24] 0.0 0.00 0.00 1
margolis::setParams(unsigned char*, unsigned char*,

0.00 0.00 1/1
galois::textUserPrompt() [22]
[25] 0.0 0.00 0.00 1 std::d
[25]

Index by function name

[19] global constructors keyed to _ZN8margolis10s
galois::textUserPrompt() [6] margolis::doGeneration
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td::fill<char*,

ex(std::ios_base&)

do_global_ctors_aux

constructors keyed

lois::initCipher()
::expand_key() [20]

in [2]
::initCipher() [21]

int, int, int) [24]
lois::expand_key()
in[2]
;itextUserPrompt()

id std::fill<char?*,

in [2]
.:verifyGenerators()

lois::initCipher()

int, int, int) [24]

ec(std::ios_base&)

etupRulesEv [22]
s(int)



[9] margolisSingle::swap(int, int, int, int) [3]
galois::doEncryptDecrypt() [7] margolis::swap(int,

[20] galois::expand_key() [23] galois::verifyGe
margolis::setParams(unsigned char*, unsigned char*,

[5] galois::gmixColumn(unsigned char*) [8] galoi
std::dec(std::ios_base&)

[21] galois::initCipher() [1] galois::encrypt(
std::hex(std::ios_base&)

[10] galois::generateSBoxes() [4] galois::doRound
std::fillcchar*, int>(char*, char*, int const&)
Generator Tables Verified! Check: 54 Compare: 54
Encrypt or Decrypt? (e,d)

Would you like to enter a 1)Passphrase or 2)Key?
***nput 32 Ascii Characters****

***TextFile Name: <=32 Chars****

***CiphFile Name: <=32 Chars****

Enter your galois generator number (0-127)

Enter the number of generations per block:

Enter the number of key generations per block:
Enter the threshold value for the Automata: (64-192
Would you like to run (1) generations before key ex
0.000087 InitCipherTime

16.628243 Encrypt/DecryptTime

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/cal
57.64 21.71 21.7113631592 0.00 0.0
galois::invGmixColumn(unsigned char*)

1851 28.68 6.97 6071776 0.00 0.0
margolis::swap(int, int, int, int)

1439 34.10 5.42 262144 0.00 0.0
margolis::doGenerations(int)

9.07 37.52 3.42 131073 0.00 0.0
galois::doinvRounds()

0.17 37.58 0.07
galois::mixColumns()

0.16 37.64 0.06 1 0.06 375
0.05 37.66 0.02
margolisSingle::swap(int, int, int, int)

0.01 37.67 0.01
galois::invShiftRows()

0.00 37.67 0.00 4 0.00 0.0
std::fillxchar*, int>(char*, char*, int const&)
0.00 37.67 0.00 2 000 0.0
std::hex(std::ios_base&)

0.00 37.67 0.00 1 0.00 0.0
constructors keyed to _ZN8margolis10setupRulesEv
0.00 37.67 0.00 1 000 0.0
galois::expand_key()

0.00 37.67 0.00 1 000 0.0
galois::initCipher()

0.00 37.67 0.00 1 0.00 0.0
galois::textUserPrompt()

0.00 37.67 0.00 1 0.00 375
galois::doEncryptDecrypt()
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int, int, int)
nerators() [24]
int, int, int)
s:initlV() [25]
) [18]

s() [17]void

) (127 RECOMMENDED)
pansion? (y,n)

| name

oo

galois::decrypt()

0 void

0 global



0.00 37.67 0.00 1 0.00 0.0
galois::verifyGenerators()

0.00 37.67 0.00 1 0.00 0.0
margolis::setParams(unsigned char*, unsigned char*,
0.00 37.67 0.00 1 000 0.0
std::dec(std::ios_base&)

granularity: each sample hit covers 2 byte(s) for 0
seconds

index % time self children called name
<s

[1] 99.8 0.00 37.58 main [

0.00 37.58 1/1
galois::doEncryptDecrypt() [2]

0.00 0.00 1/1
galois::verifyGenerators() [23]

0.00 0.00 1/1
galois::textUserPrompt() [22]

0.00 0.00 1/1 ga
[21]

0.00 37.58 1/1 ma
[2] 99.8 0.00 37.58 1 galois
(2]

0.06 37.52 1/1 ga

0.06 37.52 1/1
galois::doEncryptDecrypt() [2]
[3] 99.8 0.06 37.52 1 galois

3.42 21.71 131073/131073 ga
[4]
5.42 6.97 262144/262144

margolis::doGenerations(int) [6]

3.42 21.71 131073/131073 ga
[4] 66.7 3.42 21.71 131073 galois

21.71 0.00 13631592/13631592
galois::invGmixColumn(unsigned char?*) [5]

21.71 0.00 13631592/13631592
galois::dolnvRounds() [4]
[5] 57.6 21.71 0.00 13631592
galois::invGmixColumn(unsigned char?*) [5]

5.42 6.97 262144/262144 ga
[6] 329 542 6.97 262144
margolis::doGenerations(int) [6]

6.97 0.006071776/6071776 ma
int, int, int) [7]

6.97 0.006071776/6071776
margolis::doGenerations(int) [6]
[7] 185 6.97 0.006071776 margol
int, int) [7]

<s
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0

0
int, int, int)
0

.03% of 37.67

pontaneous>
1]

lois::initCipher()
in [1]
::doEncryptDecrypt()

lois::decrypt() [3]

:decrypt() [3]
lois::dolnvRounds()

lois::decrypt() [3]

::doinvRounds() [4]

lois::decrypt() [3]

rgolis::swap(int,

is::swap(int, int,

pontaneous>



[8] 0.2 0.07 0.00 galois

<s
[91 0.1 0.02 0.00 margol
int, int, int) [9]
<s
[10] 0.0 0.01 0.00 galois

[10]

0.00 0.00 4/4
galois::textUserPrompt() [22]
[17] 0.0 0.00 0.00 4 void s
int>(char*, char*, int const&) [17]

0.00 0.00 2/2
galois::verifyGenerators() [23]
[18] 0.0 0.00 0.00 2 std::h
[18]

0.00 0.00 1/1 o
[80]
[10] 0.0 0.00 000 1 global

to _ZN8margolis10setupRulesEv [19]

0.00 0.00 1/1 ga
[21]
[200 0.0 0.00 0.00 1 galois

0.00 0.00 1/1 ma
[21] 0.0 0.00 0.00 1 galois
0.00 0.00 1/1

margolis::setParams(unsigned char*, unsigned char*,

0.00 0.00 1/1 ga
[20]

0.00 0.00 1/1 ma
[22] 0.0 0.00 0.00 1 galois
[22]

0.00 0.00 4/4 VO
int>(char*, char*, int const&) [17]

0.00 0.00 1/1
std::dec(std::ios_base&) [25]

0.00 0.00 1/1 ma
[23] 0.0 0.00 0.00 1 galois
(23]

0.00 0.00 2/2
std::hex(std::ios_base&) [18]

0.00 0.00 1/1 ga
[21]
[24] 0.0 0.00 000 1

margolis::setParams(unsigned char*, unsigned char*,

0.00 0.00 1/1
galois::textUserPrompt() [22]
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::mixColumns() [8]
pontaneous>

isSingle::swap(int,

pontaneous>
:linvShiftRows()

td::fill<char*,

ex(std::ios_base&)

do_global_ctors_aux

constructors keyed

lois::initCipher()
::expand_key() [20]

in [1]
::initCipher() [21]

int, int, int) [24]
lois::expand_key()
in [1]
;itextUserPrompt()

id std::fill<char?*,

in [1]
.:verifyGenerators()

lois::initCipher()

int, int, int) [24]



[25] 0.0 0.00 0.00 1 std::d ec(std::ios_base&)
[25]

Index by function name

[19] global constructors keyed to _ZN8margolis10s etupRulesEv [10]
galois::invShiftRows() [6] margolis::doGenerations( int)

[9] margolisSingle::swap(int, int, int, int) [5]
galois::invGmixColumn(unsigned char*) [7] margolis: :swap(int, int, int,
int)

[20] galois::expand_key() [22] galois::textUser Prompt() [24]
margolis::setParams(unsigned char*, unsigned char*, int, int, int)

[21] galois::initCipher() [2] galois::doEncryp tDecrypt() [25]
std::dec(std::ios_base&)

[8] galois::mixColumns() [23] galois::verifyGe nerators() [18]
std::hex(std::ios_base&)

[4] galois::dolnvRounds() [3] galois::decrypt( ) [17] void

std::fillxchar*, int>(char*, char*, int const&)

C9. Entropy Results

X: moby-dick.dat

Y: moby-dick-ciph-aes-sbox-only.dat
Cond Entropy =0

EntropyX = 4.49714

EntropyY = 4.49714

X: moby-dick.dat

Y: moby-dick-ciph-AESCAL1-sbox-only.dat
Cond Entropy = 4.35398

EntropyX = 4.49714

EntropyY = 7.98982

X: moby-dick.dat

Y: moby-dick-ciph-aesca2-sbox-only.dat
Cond Entropy = 4.4135

EntropyX = 4.49714

EntropyY = 7.99565

X: moby-dick.dat

Y: moby-dick-ciph-aesca5-shox-only.dat
Cond Entropy = 4.4412

EntropyX = 4.49714

EntropyY = 7.99826

X: moby-dick.dat

Y: moby-dick-ciph-aescal0-sbox-only.dat
Cond Entropy = 4.44154

EntropyX = 4.49714

EntropyY = 7.99865

X: moby-dick.dat

Y: moby-dick-ciph-aesca50-sbox-only.dat
Cond Entropy = 4.46575

EntropyX = 4.49714

EntropyY = 7.99917

C10. Mauer's Results

/*
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ULISCAN.c ---blocksize of 8

1 Oct 98

1 Dec 98

21 Dec 98

uliscan.c derived from ueli8.c

This version has // comments removed for Sun cc

This implements Ueli M Maurer's

"Universal Statistical Test for Random Bit Generato rs
using L=8

Accepts a filename on the command line;

writes its results, with other info, to stdout.

Handles input file exhaustion gracefully.

Ref: J. Cryptology v 5 no 2, 1992 pp 89-105

also on the web somewhere, which is where | found i t.

-David Honig
honig@ XXXXXXXXXXX

Usage:
ULISCAN filename
outputs to stdout
*/

#define L 8

#define V (1<<L)

#define Q (10*V)

#define K (100 *Q)
#define MAXSAMP (Q + K)

#include <stdio.h>
#include <math.h>
#include <iostream>

int main(int argc, char **argv)
{

FILE *fptr;

intij;

int b, c;

int table[V];

double sum = 0.0;

int iproduct = 1;

int run;

printf("Uliscan 21 Dec 98 \nL=%d %d %d \n", L, V, MAXSAMP);

if (argc < 2) {
printf("Usage: Uliscan filename\n");
exit(-1);
}else {
printf("Measuring file %s\n", argv[1]);
}

fptr = fopen(argv[1],"rb");
if (fptr == NULL) {
printf("Can't find %s\n", argv[1]);
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exit(-1);

}

for(i=0;i<V;i++){
table[i] = 0;

}

for(i=0;i<Q;i++) {
b = fgetc(fptr);
table[b] = i;

}

printf("Init done\n™);
printf("Expected value for L=8 is 7.1836656\n");
run =1,

while (run) {
sum = 0.0;
iproduct = 1;

if (run)
for(i=Q;run && i< Q +K; i++) {
=i
b = fgetc(fptr);

if (b <0)
run = 0;

if (run) {
if (table[b] > j)
j += K'

sum += log((double)(j-table[b]));

table[b] = i;
}
}

if (Irun)
printf("Premature end of file; read %d blocks

sum = (sum/((double)(i - Q))) / log(2.0);
printf("%4.4f ", sum);

for (i=0; i < (int)(sum*8.0 + 0.50); i++)
printf("-");

printf("\n");

[* refill initial table */
if (0) {
for(i=0;i<Q;i++) {
b = fgetc(fptr);
if (b <0){
run = 0;
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}else {
table[b] = i;

Uliscan 21 Dec 98

L=8 256 258560

Measuring file moby-dick.dat

Init done

Expected value for L=8 is 7.1836656
3.8997
3.9097
3.8891
Uliscan 21 Dec 98

L=8 256 258560

Measuring file moby-dick-ciph-aes-sbox-only.dat
Init done

Expected value for L=8 is 7.1836656

3.8997
3.9097
3.8891
Uliscan 21 Dec 98

L=8 256 258560

Measuring file moby-dick-ciph-aescal-sbox-only.dat
Init done

Expected value for L=8 is 7.1836656

4.4220
4.4297
4.4103
Uliscan 21 Dec 98

L=8 256 258560

Measuring file moby-dick-ciph-aesca2-sbox-only.dat
Init done

Expected value for L=8 is 7.1836656

4.6556
4.6627
4.6468
Uliscan 21 Dec 98

L=8 256 258560

Measuring file moby-dick-ciph-aesca5-sbox-only.dat
Init done

Expected value for L=8 is 7.1836656

4.9300
4.9401
4.9197
Uliscan 21 Dec 98

L=8 256 258560

Measuring file moby-dick-ciph-aescal0-sbox-only.dat
Init done

Expected value for L=8 is 7.1836656

5.1294
5.1403
5.1277
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Uliscan 21 Dec 98

L=8 256 258560

Measuring file moby-dick-ciph-aesca50-sbox-only.dat
Init done

Expected value for L=8 is 7.1836656

5.3950
5.4093
5.3927

C11. Conditional Entropy Results

*Removed all CBC code and padding code, and aligmeat along 32 bytes.

X: magna-carta.dat

Y: magna-carta-fakeOTP.dat
Cond Entropy = 4.18532
EntropyX = 4.4147

EntropyY = 7.99284

X: magna-carta.dat

Y: magna-carta-ciph-AES.dat
Cond Entropy = 4.06934
EntropyX = 4.4147

EntropyY = 7.99436

X: magna-carta.dat

Y: magna-carta-ciph-AESCAL.dat
Cond Entropy = 4.12997
EntropyX = 4.4147

EntropyY = 7.99384

X: magna-carta.dat

Y: magna-carta-ciph-AESCA2.dat
Cond Entropy = 4.06829
EntropyX = 4.4147

EntropyY = 7.99345

X: magna-carta.dat

Y: magna-carta-ciph-AESCAS3.dat
Cond Entropy = 4.10717
EntropyX = 4.4147

EntropyY = 7.99404

X: magna-carta.dat

Y: magna-carta-ciph-AESCA4.dat
Cond Entropy = 4.14187
EntropyX = 4.4147

EntropyY = 7.99505

X: magna-carta.dat

Y: magna-carta-ciph-AESCAb5.dat
Cond Entropy = 4.07648
EntropyX = 4.4147

EntropyY = 7.99389

X: magna-carta.dat

Y: magna-carta-ciph-AESCA10.dat
Cond Entropy = 4.15784
EntropyX = 4.4147

EntropyY = 7.9943

X: moby-dick.dat

Y: moby-dick-ciph-fakeOTP.dat
Cond Entropy = 4.48107
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EntropyX = 4.49714

EntropyY = 7.99972

X: moby-dick.dat

Y: moby-dick-ciph-AES.dat
Cond Entropy = 4.47943
EntropyX = 4.49714

EntropyY = 7.99973

X: moby-dick.dat

Y: moby-dick-ciph-AESCA1.dat
Cond Entropy = 4.46895
EntropyX = 4.49714

EntropyY = 7.99973

X: moby-dick.dat

Y: moby-dick-ciph-AESCA2.dat
Cond Entropy = 4.46718
EntropyX = 4.49714

EntropyY = 7.99973

X: moby-dick.dat

Y: moby-dick-ciph-AESCA3.dat
Cond Entropy = 4.47666
EntropyX = 4.49714

EntropyY = 7.99969

X: moby-dick.dat

Y: moby-dick-ciph-AESCA4.dat
Cond Entropy = 4.47919
EntropyX = 4.49714

EntropyY = 7.99974

X: moby-dick.dat

Y: moby-dick-ciph-AESCAS5.dat
Cond Entropy = 4.47805
EntropyX = 4.49714

EntropyY = 7.99974

X: moby-dick.dat

Y: moby-dick-ciph-AESCA10.dat
Cond Entropy = 4.46592
EntropyX = 4.49714

EntropyY = 7.99972

C12. Compression Test Results

Uncompressed Results

-rw-r-

-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--
-TW-I--r--

L L I

1 shambler users 29824 2007-05-21 23:22
1 shambler users 29824 2007-05-21 23:22
1 shambler users 29824 2007-05-21 23:23
1 shambler users 29824 2007-05-21 23:23
1 shambler users 29824 2007-05-21 23:23
1 shambler users 29824 2007-05-21 23:23
1 shambler users 29824 2007-05-21 23:23
1 shambler users 29824 2007-05-22 00:13
1 shambler users 29824 2007-05-21 21:59
1 shambler users 643232 2007-05-21 23:20
1 shambler users 643232 2007-05-21 23:21
1 shambler users 643232 2007-05-21 23:24
1 shambler users 643232 2007-05-21 23:21
1 shambler users 643232 2007-05-21 23:21
1 shambler users 643232 2007-05-21 23:21
1 shambler users 643232 2007-05-21 23:21
1 shambler users 643232 2007-05-22 00:51
1 shambler users 643232 2007-05-21 23:18
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magna-carta-ciph-AES.dat
magna-carta-ciph-AESCA1.dat
magna-carta-ciph-AESCA10.dat
magna-carta-ciph-AESCA2.dat
magna-carta-ciph-AESCA3.dat
magna-carta-ciph-AESCA4.dat
magna-carta-ciph-AESCAS5.dat
magna-carta-ciph-fakeOTP.dat
magna-carta.dat
moby-dick-ciph-AES.dat
moby-dick-ciph-AESCA1.dat
moby-dick-ciph-AESCA10.dat
moby-dick-ciph-AESCA2.dat
moby-dick-ciph-AESCA3.dat
moby-dick-ciph-AESCA4.dat
moby-dick-ciph-AESCA5.dat
moby-dick-ciph-fakeOTP.dat
moby-dick.dat



Compressed Bzip2 Results

-rw-r--r-- 1 shambler users
-rw-r--r-- 1 shambler users
-rw-r--r-- 1 shambler users
-rw-r--r-- 1 shambler users
-rw-r--r-- 1 shambler users
-rw-r--r-- 1 shambler users
-rw-r--r-- 1 shambler users
-rw-r--r-- 1 shambler users
-rw-r--r-- 1 shambler users

30304 2007-05-21 23:22
30302 2007-05-21 23:22
30303 2007-05-21 23:23
30317 2007-05-21 23:23
30304 2007-05-21 23:23
30316 2007-05-21 23:23
30317 2007-05-21 23:23
30319 2007-05-22 00:13
9638 2007-05-21 21:59

-rw-r--r-- 1 shambler users 646597 2007-05-21 23:20
-rw-r--r-- 1 shambler users 646299 2007-05-21 23:21
-rw-r--r-- 1 shambler users 646375 2007-05-21 23:24
-rw-r--r-- 1 shambler users 646345 2007-05-21 23:21
-rw-r--r-- 1 shambler users 646698 2007-05-21 23:21
-rw-r--r-- 1 shambler users 646678 2007-05-21 23:21
-rw-r--r-- 1 shambler users 646576 2007-05-21 23:21
-rw-r--r-- 1 shambler users 646571 2007-05-22 00:51
-rw-r--r-- 1 shambler users 200486 2007-05-21 23:18

magna-carta-ciph-AES.dat.bz2
magna-carta-ciph-AESCA1.dat.bz2
magna-carta-ciph-AESCA10.dat.bz2
magna-carta-ciph-AESCA2.dat.bz2
magna-carta-ciph-AESCA3.dat.bz2
magna-carta-ciph-AESCA4.dat.bz2
magna-carta-ciph-AESCA5.dat.bz2
magna-carta-ciph-fakeOTP.dat.bz2
magna-carta.dat.bz2
moby-dick-ciph-AES.dat.bz2
moby-dick-ciph-AESCA1.dat.bz2
moby-dick-ciph-AESCA10.dat.bz2
moby-dick-ciph-AESCA2.dat.bz2
moby-dick-ciph-AESCA3.dat.bz2
moby-dick-ciph-AESCA4.dat.bz2
moby-dick-ciph-AESCAS5.dat.bz2
moby-dick-ciph-fakeOTP.dat.bz2
moby-dick.dat.bz2

C13. Margolus Automata SDL Visualization Test

#include <cstdlib>

#include <iostream>

#include <SDL/SDL.h>

#include <SDL/SDL_gfxprimitives.h>
#include <math.h>

#include <time.h>

#include <stdint.h>

#define HEIGHT 64
#define WIDTH 64
#define size 4

uint8_t thresh = 0x7f;
int swapCount=0;

uint8_t testfHEIGHT*WIDTH];
bool evenodd = true;

#define getCell(x,y) (test[fixX(x)+fixY (y)*WIDTH])
#define fixX(x) (WIDTH + (x))%WIDTH)
#define fixY(y) (HEIGHT + (y))%HEIGHT)

void swap(int x1,int y1,int x2,int y2)

swapCount++;
uint8_t temp = getCell(x1,y1);
getCell(x1,y1) = getCell(x2,y2);
getCell(x2,y2) = temp;

}

#define swapDiagl(x,y) swap(x,y,x+1,y+1)
#define swapDiag2(x,y) swap(x+1,y,x,y+1)
#define swapHoriz1(x,y) swap(x,y,x+1,y)
#define swapHoriz2(x,y) swap(x,y+1,x+1,y+1)
#define swapVertl(x,y) swap(x,y,x,y+1)
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#define swapVert2(x,y) swap(x+1,y,x+1,y+1)

enum{SCREENWIDTH = WIDTH*size, SCREENHEIGHT = HEIGH T*size,
SCREENBPP = 32, SCREENFLAGS = SDL_HWSURFACE|SDL_DORBLEBUF};
SDL_Surface* pSurface;

SDL_Event keyEvent;

using namespace std;

#define T true
#define F false

bool rules[16][6] =

{F.F,F,F.F.F}{T,F.FFFF}{FTFFFF,{FFFF ,F,F}{F,T,F,F,F,F},
{F,F,F,F,FF}{F.FT,TFF{TFFFFF{TFFF, FFFFT,T,FF}H
F.F.F.FFF{FTFFFF{FFFFFF{FTFFF JFHT,F.F.FFF{F
F,F.F.FF

void doTransition(int x, int y, uint8_t currState)
for (int i=0;i<6;i++)
if (rules[currState][i])

switch (i)

{

case 0:
swapDiagl(x, y);
break;

case 1:
swapDiag2(x,y);
break;

case 2:
swapHoriz1(x,y);
break;

case 3:
swapHoriz2(x,y);
break;

case 4:
swapVertl(x,y);
break;

case 5:
swapVert2(x,y);
break;

}

}
}
}

void initMap()

srand(time(0));
for (int i=0;i<HEIGHT;i++)

for (int j=0;j<WIDTH;j++)
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[ltest[i*WIDTH+j] =
128;//j/(float)WIDTH*256;//rand()%255;//rand()%127;
if (i>= HEIGHT/4 && i < HEIGHT-HEIGHT/4

j < WIDTH-WIDTH/4) test[i*WIDTH+j] = 128 + rand()%1

}

[ltest[1600] = Oxff;

Iltest[221] = Oxff;
}

#define getConfiguration(i,j) ((getCell(i+1,j+1)>th
(getCell(i,j+1)>thresh?4:0) + (getCell(i+1,j)>thres
(getCell(i,j)>thresh?1:0))

void nextGeneration()

{

evenodd "= 1;
for (int i=evenodd;i<HEIGHT;i+=2)

{
for (int j=evenodd;j<WIDTH;j+=2)

doTransition(i, j, getConfiguration(i,j
}
}
}

void randomThresh()

thresh = rand()%255;

void draw()
for (int i=0;i<HEIGHT;i++)
for (int j=0;j<WIDTH;j++)

uint8_t ¢ = getCell(i,j);
if (c>127)
{

boxRGBA(pSurface,i*size,j*size,(i+1)*size,(j+1)*siz
}
else
boxRGBA(pSurface,i*size,j*size,(i+1)*size,(j+1)*siz
}
}
}

void randomRules()

{
srand(time(0));
for (int i=0;i<16;i++)
for (int j=0;j<6;j++)

rules[i][j] = O;
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rules[i][j] = rand()%50>257T:F;
}
int main(int argc, char *argv][])
initMap();

if (SDL_Init(SDL_INIT_VIDEO) < 0)

{
cout << "Error Initializing SDL Video" << e
SDL_Quit();
return 1;

pSurface = SDL_SetVideoMode ( SCREENWIDTH , SCR
, SCREENFLAGS ) ;

while (1)

{
/InextGeneration();
draw();
SDL_Flip(pSurface);
//ISDL_Delay(40);

SDL_PollEvent(&keyEvent);
switch (keyEvent.type)

{
case SDL_KEYDOWN:
switch (keyEvent.key.keysym.sym)

{
case SDLK_DOWN:
SDL_Quit();
return O;
break;
case SDLK_UP:
randomThresh();
break;
case SDLK_LEFT:
/linitMap();
randomRules();
break;
case SDLK_RIGHT:
SDL_SaveBMP(pSurface, "test.omp");
break;
case SDLK_SPACE:
/levenodd ~= 1;
for(int i=0;i<5;i++)
{
nextGeneration();
draw();
SDL_Flip(pSurface);
}

break;

}

break;

}
while (keyEvent.type == SDL_KEYDOWN){
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SDL_PollEvent(&keyEvent);
}
}

system("PAUSE");
SDL_Quit();
return EXIT_SUCCESS;
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7. DEVELOPMENT ENVIRONMENT

Slackware Linux 11.0:
Bash 3.1.17
GNU Nano Editor 1.3.12
GCC 3.4.6
GNU gprof 2.15.92.0.2
Windows XP SP2:
BloodShed Dev-C++ 4.9.9.2
Mingw/GCC 3.4.2
SDL1.2.8
SDL _gfx 2.0.13
Other Software:
Uliscan 21 Dec 98 (Mauer's)
PuTTY 0.58
WinSCP 4.0
Microsoft Word
Microsoft Excel
Microsoft Visio
Microsoft Paint
PDF Creator
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