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ABSTRACT 

A NUMERICAL STUDY OF EXPRESSIONS FOR FILL RATE FOR SINGLE STAGE 

INVENTORY SYSTEM WITH PERIODIC REVIEW 

Peiyu Luo 

July 19, 2013 

Fill rate is one of the most important measurements for inventory systems in the 

supply chain management. The primary goal of this thesis is to give a comprehensive 

review of existing analytical expressions for the system fill rate, and provide numerical 

comparison for all relevant expressions in terms of their accuracy against (simulated) fill 

rate from the Monte Carlo simulation. We prove relationships between several 

expressions. Although majority of the expressions discussed herein are designed for 

standard periodic review system, we conduct numerical simulations for the general 

periodic review system. Under this general periodic review setting, numerical results 

indicate that all else being equal, replenishment lead time has larger effect on the 

system‟s fill rate than does the review interval. In addition, numerical comparison 

suggests that Johnson et al.‟s approach, Zhang and Zhang‟s approach, Hadley and 

Whitin‟s approach dominate the traditional approach, exponential approximation and 

Silver‟s modified approach. The dominance is especially true for cases with high demand 

variability. For general periodic review system, our numerical results indicate that scaling 
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is necessary for Silver‟s modified, Johnson et al.‟s and Johnson et al.‟s modified 

approaches.
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CHAPTER 1 INTRODUCTION 

Fill rate, also known as service level, measures the performance of the inventory 

system in a supply chain. It is widely used by operations and/or inventory managers in 

real-world businesses (e.g., Tempelmeier 2000). Particularly, fill rate calculates the 

probability for a retailer or manufacturer to meet the customers‟ demands with on-hand 

inventory, or, equivalently not to face a stock out situation. For example, how many of 

the total demands can be satisfied without delay at a Best Buy‟s retail store? What is the 

probability for a Honda automobile dealer to meet various customers‟ demands during 

the whole sale year? It is inevitable that sometimes the inventory on hand is not sufficient 

to satisfy the customer demands immediately, especially under stochastic customer 

demands. As a result, these unfilled demands will be counted as “lost sales,” which will 

not only result in penalty costs due to stock-out situation currently, but may also cause 

the retailer to lose the opportunity to sell to the same customers potentially in the future 

because of the reduced customer satisfaction. Thus, today‟s inventory management in 

supply chains requires the decision makers to focus on minimizing the total cost while 

achieving a desired service level in an inventory optimizing model. 

In the literature (e.g., Tempelmeier 2000), service level can be categorized into 

three types.  First, the α-service level is an event-based measurement which describes the 

probability that all customers‟ demands can be satisfied immediately by the on hand 

inventory within a given period. In particular, two definitions of α-service level are given
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with respect to different time intervals when customers‟ demands occur. Within a single 

demand period (e.g., one week, one month, etc.), α-service level is the probability that the 

random customer demand during each single period is less or equal to the on hand 

inventory within the same period. On the other hand, if taking an ordering cycle as a 

demand period, α-service level denotes the probability that the demand during 

replenishment lead time is less or equal to the on hand inventory at the beginning of lead 

time. In other words, in the latter definition, once a replenishment order is placed, the 

stock on hand must meet the demand during the lead time until previous orders arrival. 

Second, the β service level is a quantity-based measurement that not only 

describes the probability of a stock-out, but also provides an average expected number of 

backorders for every single demand period. Mathematically, β service level is equal to 

the proportion of the total demand that is satisfied immediately by the on hand inventory. 

The β service level is the most common service level measurement used in industry, thus 

it is the focus of the current thesis.  

Finally, the γ-service level is defined as the proportion of total demand which is 

satisfied within each time period level. It not only calculates the amount of backorders 

but also the time until the backorders are filled. Compared to the above two service 

levels, this measurement is rarely used in industry. 

In addition to the three different ways of calculating a firm‟s ability of meeting 

customers‟ demands immediately, the inventory literature also adopts two most common 

ways to track inventory for accounting and reordering purposes. They are the periodic 

review and continuous review inventory systems. Particularly, the periodic review system 
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only tracks the inventory and makes ordering decision at every review interval. Such a 

system can help to reduce the reviewing cost while adding more uncertainty to the 

inventory, especially along with high-volume sale products. Accurate demand forecasting 

is required to prevent stock-out from occurring.     

On the other hand, the continuous review system keeps tracking system inventory 

and updating inventory information all the time. A replenishment decision will be 

released when the inventory drops to a pre-determined level (i.e., reorder point). 

Continuous review system allows real-time updates for inventory counts, consequently it 

provides higher accuracy to the system inventory. However, the review of 

implementation cost is relatively higher than periodic review system.  

Due to the important role service level plays in supply chain management and 

inventory management, researchers have worked extensively on developing formulas for 

calculating service level in a given inventory system. Such analytical formulas will 

facilitate relevant inventory optimizing models in quantitative supply chain management 

analysis. However, a comprehensive performance comparison among all formulas is 

lacking in the literature, which is greatly needed for inventory managers to make 

replenishment decisions. Thus, the current thesis aims to: 1) provide a state-of-the-art 

literature survey on analytical formulas for calculating the β service level; 2) study the 

behavior of the β service level for inventory systems under various settings (i.e., different 

base stock level, different lead times and review intervals, different coefficients of 

variation for stochastic demand); and 3) compare the accuracy of existing formulas under 

various settings. As a result, operations/inventory managers will be able to decide which 
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formula(s) suits their inventory best, and ways (i.e., change of review interval; change of 

base stock level) to improve their customer service level.  

In studying the true β service level for a given inventory system, this thesis uses 

Monte Carlo simulation to create normally distributed random demand under the general 

periodic review using MATLAB (MATLAB 2002). In comparing existing formulas for 

fill rate, eight formulas in the literature are studied. They include tradition formula, 

exponential approximation, Hadley and Whitin‟s formula (1963), Silver‟s modified 

formula (1970), Johnson et al.‟s formula and its modified form (1995), Zhang and 

Zhang‟s formula and its approximation (2006). All these formulas are also implemented 

in MATLAB (MATLAB 2002). The accuracy of these formulas is measured by the 

absolute value of the difference between the “true” (simulated) β service level by the 

Monte Carlo simulation and the “calculated” β service level by applying a formula. 

Furthermore, sensitivity analysis is performed to study the impact of lead time, review 

interval, coefficient of variation and base stock level on the accuracy of all relevant 

formulas. Finally, a unique discussion on how to properly scale an inventory system to 

best utilize various formulas is given in this thesis.  

The rest of the thesis is organized as follows. Chapter 2 reviews the literature of 

inventory service level and supply chain optimization problems with service level 

constraints. Chapter 3 introduces the above-mentioned eight beta fill rate expressions 

from existing literatures; Chapter 4 presents the design of the Monte Carlo simulation. 

Chapter 5 discusses the numerical results of the Monte Carlo simulation and expressions 

presented in Chapters 3 and 4. Finally, Chapter 6 summarizes the thesis and discusses 

possible future work. 
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CHAPTER 2 LITERATURE REVIEW 

Service level, as an important performance measure in inventory management in 

supply chains, has been studied from several areas, including: availability monitoring in 

inventory control, service level constraints supply chain optimization and supply chain 

output performance measures (Beamon, 1999), to name a few. We will begin our 

literature review with these papers on the application of fill rate in inventory optimization 

models. 

An earlier paper on service level effect on order levels in inventory model is 

published by Schneider in 1981. In practice, because of the uncertainty of stock-out cost, 

it is difficult to determine the optimal ordering policy. Consequently, the inventory 

analysis often faces two major problems: when to order and how much to order. Given a 

random demand variable which follows a particular distribution, by comparing three 

types of service level corresponding to fixed, proportional, time-independent stock out 

cost, Schneider successfully presented a method for determining an optimal or good 

inventory policy, using the appropriate measurements of effectiveness involving cost 

minimization. 

Similarly, Silver (1995) investigated service and inventory implication with a 

heuristic rule which is commonly used by materials managers in North American 

distributor. That is, given the demands which are assumed to follow independent, 
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identical distribution in n periods, and the current value of reorder point is estimated by 

multiplying the maximum number of those observed demands with the replenishment 

lead time. Two service levels, α service level and β service level are employed to evaluate 

the performance of manager‟s heuristic rule. They pointed out that both measurements 

can be converted to the functions of two parameters, i.e., the number of observed periods 

n and the length of replenishment lead time, L. More specifically, both alpha service level 

and beta service level will increase as the observation number n increases. However, 

when the replenishment lead time L increases, only alpha service level increases while 

beta service level will decrease, which means the probability for a stock out situation will 

be decreased but the expected backorders will increase. Alternatively, one can determine 

an appropriate number of observation periods n for a desired service level with given lead 

time.   

On the other hand, service level can be employed in a constraint in inventory 

optimization models. For example, Bashyam and Fu (1998) considered stochastic lead 

time for order crossing and service level constraint in an (s,S) inventory system (where 

the inventory level is tracked periodically, once the inventory level falls below reorder 

point s, a new order will be placed to bring the inventory back to S.) with a penalty cost 

for unsatisfied demand. They developed a simulation based algorithm using the feasible 

directions approach from nonlinear programming. Particularly, the feasible direction 

approach in their work first applied an analytical approximation to initially set up the 

order quantity Q by the well-known economic order quantity (EOQ) model. Secondly, 

their approach did a line search on various reorder point s while keeping the order 

quantity Q constant by simulation. Finally, the feasible direction is updated using 
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gradient estimation for the next iteration. Overall, their approach dominates current 

approaches to deal with managing (s,S) inventory system that are subjected to high 

frequency of order crossing and can yield reasonable solutions within very short 

computation times. 

Similarly, Ouyang and Wu (1996) proposed that lead time and order quantity can 

be modeled as decision variables in a “mixture” inventory system where backorders and 

lost sales are both allowed and taken into consideration in their model. Instead of a stock-

out term in the objective function, service level is a constraint of the minimization of the 

expected annual cost. Under their proposed algorithm, the expected annual cost is a 

function of order quantity Q and replenishment lead time L. By setting the partial 

derivative of the expected annual cost function with respect to Q to be zero, one obtains 

the optimal order quantity Q* for each value of the lead time L* subject to the service 

level constraint.  Consequently, the optimal inventory policy can be found by comparing 

expected annual cost under different scenarios, i.e., combinations of (Q*, L*). 

Aside from fill rate application in inventory optimization models, other literatures 

concentrate on the development of exact fill rate formulas and how to use these formulas 

properly. 

In reviewing existing formulas in the literature for computing the beta fill rate, 

perhaps the most simplistic formula is the so-called “traditional” formula for a periodic 

review inventory system under base stock policy (Nahmias, 1989). This “traditional” 

approach tracks the amount of demand that is not satisfied immediately by the on hand 

inventory in the system and its associated approximation is commonly used in operation 
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management texts (e.g., see Chase et al, 1992; Vollman et al, 1988). Even though the 

traditional approach is easy to understand and apply, it will lead to two major concerns 

under some specific conditions. First, when the standard deviation of demand in lead time 

is high, this approach could produce negative fill rate value.  This is because the standard 

deviation is one of the coefficients in calculating the expected shortage, and a sufficiently 

large value for the standard deviation can produce a negative fill rate.. Second, the 

traditional approach accounts the total shortage for every single period. Thus, if demand 

shortage occurs continuously in the system (which is very likely when the replenishment 

is not sufficient to fill the backorders), the estimated fill rate by this approach tends to 

overestimate the actual backorders for each period, thus underestimating the actual 

system fill rate. 

Since the traditional approach, a more accurate approach has been developed by 

Hadley and Whitin (1963). The Hadley and Whitin‟s method uses Poisson distributed 

random demand and can be extended to normal distribution. In Hadley and Whitin‟s 

work, the expected shortage units for period is the average number of demands exceeds 

the base stock level within time L+R (the lead time L plus the review interval R) minus 

the average number of demands exceeds the base stock level within the lead time. This 

approach is accurate when the standard deviation of demand is small enough and when 

the review interval is smaller than the lead time.  

In the literature, De Kok (1990) and Silver and Bischak (2011) use a similar 

approach as in Hadley and Whitin (1963). In particular, Silver and Bischak (2011) 

developed an exact fill rate formula which is essentially equivalent to Hadley & Whitin‟s 

(1963). On the other hand, De Kok (1990) only proposed a similar approach without 
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giving an exact fill rate formula. Furthermore, Silver and Bischak (2011) also provides an 

approximation method to determine the safety factor. Particularly, by omitting some 

terms in their formula, Silver and Bischak expressed the safety factor as a function of 

review interval, replenishment lead time and beta fill rate. Consequently, the 

approximation would overestimate the expected shortage units, thus the estimated safety 

factor will lead to a higher fill rate. Lastly, they indicate the relationship between 

expected shortage unit and safety factor could be used in a cost minimization model if the 

expected shortage units can be incorporated to the cost per unit short. 

As experienced in the traditional as well as Silver and Bischak‟s approach, double 

counting re-occurring shortages is a lingering issue for an accurate computation of the fill 

rate. One potential solution is to divide the on hand inventory level for a periodic review 

system into three parts. Let V denote to the amount of inventory that is available to satisfy 

further demands after any backorders are refilled, and µ denote the mean demand during 

lead time. Hence, there are three cases as follows: 

1. If the demand x during the replenishment lead time is less than base stock level S, 

then V is equal to the demand during replenishment lead time µ*R. 

2. If the demand x during the replenishment lead time exceeds the base stock level S 

plus demand during replenishment lead time µ*R, then V is equal to 0.  

3. If the demand x during the replenishment is between the base stock level S and the 

base stock level S plus the demand during replenishment lead time µ*R, then V is 

equal to S+ µ*R -x. 
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With these three parts, one can calculate the expected shortage for each part individually. 

As a result, the maximum number of backorders is limited to be within µ, thus the system 

fill rate avoids the double counting. However, this approach will overestimate the system 

fill rate because it limits the maximum shortage at µ, whereas in practice the expected 

shortage will exceed the average demand per period. 

Another solution to avoid double counting is offered by Johnson et al. (1985). In 

their paper, Johnson et al. who commented  that the traditional expression for line item 

fill rate perform well for high rates (fill rates above 90%) but consistently underestimate 

the true fill rate and will produce poor estimates as the fill rates decreases, again due to 

double counting previous backorders. Hence, based on their review and study of the 

expressions developed by Hadley and Whitin (1963), Johnson et al. (1985) developed an 

exact fill rate expression in periodic inventory systems, which can be expended to 

account for negative demand caused by high demand variability. The authors successfully 

showed that the modified version of their proposed formula dominates all other fill rate 

expressions when the demand variability is high.  

Thus far, all the above-mentioned works deal with the standard (unit) periodic 

review system, in which the review interval is one unit of time. Although it can be argued 

that a general periodic review system (R≠1) can be converted into a standard periodic 

review system by simple scaling, i.e., redefining the period demand to be the demand 

over R periods, this scaling approach will not work when the lead time (L) is not a 

multiple of review interval cycle (R). In order to address this issue, Zhang and Zhang 

(2006) developed an exact fill rate of single-stage for general periodic review inventory 

systems, which introduce the general review inventory model and provides fill rate 
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formulas for general demand distributions. In addition, Zhang and Zhang (2006) 

presented the specialized formulas when demand is normally distributed and two 

simplified approximations under normal demands.  One approximation was based on 

basic properties of normal distribution and the other was based on a logistic distribution 

for the random demand. 

Finally, we review several works on calculating fill rates for multi-stage inventory 

systems in supply chains. In today‟s competitive global supply chain environments, 

almost all end customers „demands are met through a multistage system consisting of 

multiple tiers of suppliers, logistics brokers, wholesalers and retailers; such a multi-stage 

supply chain system could help to raise range from contractually distinct entities to 

multiple-stages of production in a single system. One effort to investigate the fill rate for 

multi-stage inventory systems is by Sobel (2004). He presented formulas to solve the fill 

rate problem of periodic review system on single-stage and multistage respectively.   

In addition, Zhang et al. (2010) developed an exact fill rate expression of a 

general periodic review two-stage inventory system, which provides a much more general 

treatment for computing the fill rate computation method than other previous researchers. 

The numerical studies in Zhang et al. (2010) indicated that decreasing the lead time and 

increasing the echelon base stock level in the lower stage are more effective than 

adjusting these parameters in the upper stage level. The lead time and review period of 

lower stage plays a more critical role than higher stage as well when a higher system fill 

rate is desired. Finally Zhang et al. noted that their results could be extended to N stage 

inventory system and a supply chain optimization problem where fill rate serves as a 

service-level constraint. 
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Lastly, in a related work Thomas (2005) studied theoretical properties on the 

effect of review cycle in finite horizon on fill rate. Although most textbooks and software 

always assume the demand is stationary and serially independent for an infinite horizon, 

in practice, it is more likely to have a minimum fill rate realized within some finite 

review horizon, such as monthly or quarterly. His study suggested that the review cycle 

could affect a supplier‟s probability of achieving the target fill rate significantly over a 

fixed review horizon by implementing a finite horizon for measuring item fill rate 

performance. Furthermore, the utilization of finite-horizon, service-level contract could 

lead to a better performance of fill rate over the contractually specified target for a 

supplier.    

In summary, this chapter reviews the existing literature on calculating the β 

service level for single-stage as well as multi-stage inventory systems. Due to the limited 

works on the multi-stage inventory fill rate, this thesis focuses solely on simulating and 

evaluating the formulas for calculating the fill rate for single-stage inventory systems. In 

Chapter 3, we will discuss in detail the eight formulas for the β service level under the 

normally distributed demand. Subsequently, in Chapter 4, we will design a Monte Carlo 

Simulation to simulate the inventory systems under various scenarios, aiming to evaluate 

the accuracy of all formulas reviewed in this chapter. 
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CHAPTER 3 EXPRESSIONS OF THE β SERVICE LEVEL 

3.1 Assumptions and Parameters 

This chapter focuses on presenting in details the eight main approaches to 

calculate the system fill rate for a periodic review system under the order up to policy. 

There are several common major assumptions made by all these approaches, and we list 

them as follows: 

 The periodic demand is normally distributed with constant mean and standard 

deviation. 

 Demands for different periods are identically and independently distributed. 

 There is no lost sale and all demands exceeding on hand inventory are 

backlogged. 

 The standard deviation for demand is sufficiently small to ensure no negative 

demand occurs. 

 A replenishment order is placed once on hand inventory is tracked at every 

review interval. 

 The replenishment lead time is constant. 

 The parameters in the following sections are defined as: 

 µ denotes the mean value of the normally distributed demand  
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 σ denotes the standard deviation of the normally distributed demand  

 R denotes the length of the review interval in terms of numbers of time units 

(e.g., weeks, months, quarters) 

 L denotes the length of the replenishment lead time in terms of numbers of 

time units 

 S denotes the order up to level (a.k.a., the base stock level) 

 f(x) denotes the probability density function for the standard normal 

distribution 

 F(x) denotes the cumulative density function for the standard normal 

distribution 

 G(x) denotes the unit normal loss function 

 ESPC denotes the expected shortage per reviewing cycle 

 β denotes the system β β service level 

3.2 Traditional Approach and Its Exponential Approximation 

 The traditional approach is one of the most commonly used methods to estimate 

the system fill rate by measuring the units of demand that cannot be satisfied from the on 

hand inventory. The expected shortage per cycle (ESPC) is defined as:  

     ∫ (    )  (  )  
 

 
                                              (3-1) 

       
    (   )

 √   
  ( )  

   (   )

 √   
 

                                Thus      √       
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Substituting new variables into equation (1), one can obtain: 
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 Applying the unit normal loss function  ( )  ∫ (   ) ( )  
 

 
 to equation (3-

2), the system β service level by the traditional approach, denoted as   , is given as: 

     
 √    ( ( ))

 
                               (3-3) 

 In order to simplify the calculation, several approximations haven been developed 

by eliminating the use of unit normal loss function G(K(S)). For example, Parr (1978) 

approximated equation (3-3) using the following: 

     
 √      (           ( )       ( ))

 
               (3-4) 

Indeed, equation (3-4) essentially uses exponential functions to express the β service 

level, thus is referred to as the “exponential approximation” in the literature. Thus, we 

denote it as   . 

 Note that “double counting” is the most significant drawback of the traditional 

approach. We illustrate the issue of double counting using an example from Templmeier 

(2000) in the following table. 
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Table 3-1:  An Illustrative Example of “Double Counting” 

Periods Demand Stock on hand 

(after satisfying 

demands) 

Backorders per 

period 

Unsatisfied 

demands 

1 50 350 - 0 

2 58 292 - 0 

3 44 248 - 0 

4 59 189 - 0 

5 54 135 - 0 

6 50 85 - 0 

7 83 2 - 0 

8 44 -42 42 42 

9 57 -99 99 57 

Note that in both periods 8 and 9, stock on hand is negative. Particularly, period 8 starts 

the backlog with 42 units, which will not be refilled after period 9. Thus, when demand in 

period 9 arrives, the total backlog for the system is 99 units and the actual backlog for 

period 9 is only 57. However, the traditional approach would take all the demands that 

exceed base stock level (e.g., 42 and 99 in this example) into the integral. The latter 

implies that negative values of “stock on hand” will be accumulated via multiple periods 
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and will be integrated for multiple times in the calculation.  Thus, the “double counting” 

of back orders will overestimate the expected shortage per cycle.  

3.3 Hadley and Whitin’s Approach 

 As discussed in Chapter 2, several drawbacks of the traditional approach have inspired 

works for more accurate computation of the system fill rate. In 1963, Hadley and Whitin (1963) 

presented an approach to more accurately estimate the system fill rate by eliminating the 

double counting units. The ESPC in their approach is defined as: the total amount of 

backorders at the end of a particular cycle (review interval plus replenishment lead time) 

minus the total amount of backorders after replenishment arrival (lead time), and it can be 

expressed as: 

     ∫ (    )  (  )    
 

 
∫ (    )  (  )   
 

 
                (3-5) 

where x0 is the demand during replenishment lead time plus review interval and fx(x) is 

the associated demand distribution density function, while y0 is the demand during 

replenishment lead time and fy(y) is the associated demand density function. Similar to 

the traditional approach, Hadley and Whitin (1963) introduce new variables as:       
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                        √               
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 √ 
           √    . 

Substituting these new variables into equation (3-5), one obtains: 
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Using the unit normal loss function ( )  ∫ (   ) ( )  
 

 
, the β service level is 

given as: 

     
 √    (    ( ))  √  (  ( ))

 
                  (3-6) 

3.3.1 An alternative approach by Silver and Bischak 

 More recently, Silver and Bischak (2011) proposed another formula which 

essentially is equivalent to Hadley and Whitin‟s formula. In Silver and Bischak (2011), 

the β service level is defined as: 

       
   

  
                       (3-7) 

where ESU represents the expected shortage units and is calculated as     

√     ( )  √   4
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5 with    
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  (   ) 

√    
, and G(k) being the unit normal loss function. When substituting ESU, k, and CV 

into equation (3-7), one obtains: 

       *
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+                                 (3-8) 

Finally, it is worth mentioning the scaling issue associated with Silver and Bischak 

(2011). Note that in (3-8), parameter R is the review interval and can be eliminated, i.e., 

scaled to a unit length 1, by redefining the inventory system‟s unit time to be R.  If one 

redefines R as the unit time, then equation (3-8) becomes: 

       *
√     .

  (   ) 

√    
/ √   .

    

√  
/ 

 
+                                  (3-9) 

Theorem 3.1. Silver and Bischak (2011)‟s expression is equivalent to Hadley and Whitin 

(1963)‟s. 

Proof. Compare equations (3-9) with (3-6), the result follows immediately.    ■ 

3.4 Modified Silver’s Approach 

 Like Hadley and Whitin (1963), Silver (1970) also attempted to eliminate the 

problem of double counting previous backorders for a continuously reviewed inventory 

system. Silver (1970)‟s approach is to examine the inventory immediately after a 

replenishment order (of size Q) arrives.  In particular, let V denote the item units 
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available after any previous backorders are satisfied and x denote the demand during the 

replenishment lead time, thus the amount of available units V can be expressed as: 

 ( )  {
     

             
                        

 

 Accordingly, the expected value of units that can be used to satisfy demand is:  

 ( ( ))  ∫   ( )   
 

  
∫ (     ) ( )   ∫   ( )  

 

   

   

 
             (3-10) 

 Consequently, β service level for the continuously reviewed system is: 

  
 ( )

 
                                                 (3-11) 

 Note that equation (3-10) is the expected value of units that can be used to satisfy 

demand after any backorders are refilled. When discussing a periodic review system, 

Johnson et al. (1995) made the following transformations and the resulting formula is 

termed as the “modified Silver‟s approach” in their paper.  

 The reorder point s in a continuous review system is equal to the base stock 

level S in the corresponding periodic review system. Since both of reorder 

point and base stock level are the maximum inventory level when a 

particular cycle begins with. 

 The replenishment lead time in a continuous review system is equal to 

review interval plus replenishment lead time in the corresponding periodic 

review system (R+L). Thus R+L becomes “effective” replenishment lead 
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time and the inventory level is tracked all the time in the periodic review 

system. 

 The replenishment order quantity Q in a continuous review system is equal 

to demands occur during the review interval in the corresponding periodic 

review system (μR). This is because we have converted the review interval 

plus the replenishment lead time to become the “effective” lead time. 

With the above transformations between continuous and periodic review systems, the 

expected value of units that can be used to satisfy demand after any backorders refilled in 

a periodic review system can be expressed as: 

 ( ( ))  ∫    ( )   
 

  
∫ (      ) ( )   ∫   ( )  

 

    

    

 
   

(3-12) 

Note that in (3-12) x is the demand during the “effective” lead time. Therefore, the 

“modified Silver‟s” β service level for the periodic review system is given as: 

    
 ( ( ))

  
                                            (3-13) 

 However, Johnson et al. (1995) note that equation (3-13) is not the accurate fill 

rate for a periodic review system due to the assumption that one orders exact Q 

replenishment units for each review interval. In fact, for a practical periodic review 

system, the order quantity can vary due to anticipated change of stochastic demand. 

Furthermore, Johnson et al. (1995) illustrated the potential problem with a special case 

when R=1.When R=1,  
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Note that  (   ) represents the expected shortage per cycle, thus the following holds: 
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As noted by Johnson et al. (1995), the above special case shows that Silver‟s 

modified method essentially truncates the maximum number of back orders at  , thus 

underestimating the true expected shortage and overestimating the true system fill rate. 

3.5 Johnson et al.’s approach  

 Upon acknowledging the effort of eliminating the problem of double counting by 

Silver (1970) and discovering the potential inaccuracy issue with Silver‟s approach, 

Johnson et al.  (1995), derived an exact fill rate expression by calculating the expected 

shortage units for one period of demand which is not fulfilled. In particular, at a given 

time period t, let w be the demand in one period and z be the total demand in R+L-1 

periods. Hence there are two cases:  



23 

 

1. If the demands at time period t+R+L-1 are more than the base stock level S, 

then stock out will occur for period t+R+L, and the demand for this period 

will be backordered. 

2. If the inventory at period t+R+L-1 is positive, then the backorder units is the 

expected value of total demand w+z that exceeds base stock level S within 

time period t+R+L. 

With the above considerations, Johnson and coauthors gave their ESPC expression as: 
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Additionally, letting    √     , the original double integral can be re-expressed 

as: 

 

  
∫ ∫ 4  

     (     ) 

 
5    4 

     

 
5    

 

  
     (     ) 

 

  (     ) 
 

    

 

Using the unit normal loss function  ( )  ∫ (   ) ( )  
 

 
 and adding the probability 

term, one then has: 
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Thus, system fill rate is given as: 
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                                    (3-16)  

3.5.1 Johnson et al.’s modified approach 

 Johnson et al (1995) noted that their approach produces the same estimates as 

Hadley and Whitin‟s approach for cases of low demand variability. Thus, their modified 

approach attempts to address the case of high demand variability. When the demand 

variability is high, i.e., the standard deviation of demand is large relative to its mean, the 

probability of incurring negative demand is also high. One practical example used by 

Johnson et al. (1995) for this scenario is the case from Hewlett-Packard, where it is not 

unusual to observe high volume of customer returns that makes the period demand 

negative. In order to address high demand variability, Johnson et al.  slightly modified 

their exact fill rate expression as: 

             ∫ ∫ (       )  (  )  (  )      

 

       

 

     

                           

 ∫     (  )
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  (     ) 

 √     
) 

Consequently, the modified formula for the system β service level becomes: 

      
            

∫     (  )
 
    

                                            (3-17) 

3.6 Zhang and Zhang’s approach 

 Thus far, all formulas introduced only deal with the standard (or unit) review 

interval for the periodic review inventory system. It has been argued that a general 
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periodic review system (where the review interval R≥1) can be converted to the standard 

(unit) periodic review system (where review interval R=1) by the simple scaling 

technique. However, this scaling technique only works when the replenishment lead time 

L is a multiple of the review interval R. For instance, consider a periodic review system 

with the replenishment lead time L=4 days, the review interval R=2 days, and the normal 

demand with mean μ=200 per day and standard deviation σ=100 per day. If we scale the 

time for this inventory system by redefining the unit time to be 2 days instead of 1 day, 

then the effective review interval becomes R’=1 and replenishment lead time L’=2, and 

the effective period demand mean μ’=200*2=400 and standard deviation 

σ’=100*√ =141.4. However, if the replenishment lead time is not a multiple of the 

review interval (e.g., L=5 and R=2), this simple scaling approach is hard to implement. 

In fact, our simulation results in Chapter 5 suggest that using effective lead time L’= 2.5, 

or L’= 2 (rounding down), or L’= 3 (rounding up) will likely lead to inaccurate fill rate.  

In order to address the general review for an inventory system, Zhang and Zhang 

(2006) presented an exact fill rate formula for the so called “general periodic review 

system”. Unlike above mentioned exact fill rate formulas, they estimate β service level by 

counting the long run average fraction of total demand that can be satisfied from on hand 

inventory rather than the amount of expected shortage units, which is given as: 

    
 

  
∫ . ( )(  )   (   )(    )/   
 

 
       (3-18) 

where  ( )( )  (   )( ) are the L-fold and L+R-fold convolution of the cumulative 

density function of normal distribution;         represent the demand during 

replenishment lead time and replenishment lead time plus review interval, respectively. 
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In order to keep the consistency in this thesis, we use F(x) and  f(x) to replace the 

cumulative density function and probability density function of demands  ( )      ( ), 

respectively. Because    
    

 √ 
          

  (   ) 

 √   
  ,      √              

 √       Thus, (3-18) reduces to: 
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According to Hadley and Whitin (1963), ∫ *   ( )+    ( )    ( )   
 

 
, thus one 

obtains the following:  
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It follows from simple algebra after substituting (3-20) into equation (3-19) that: 
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Note that equation (3-21) only involves the probability density function and 

cumulative density function of the normal distribution, thus it is easy to implement in a 

spread sheet in practice. Apart from the exact fill rate expression, Zhang et al. (2006) also 

presented an approximation based on the properties of the normal distribution. 

Particularly, the following approximations are appropriate given the normally distributed 

demand. Additionally,   
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in a periodic review system, the base stock level usually satisfies       , which 

implies: .
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With the above simplifications, the approximated fill rate expression can be rewritten as: 
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Recalling  ( )  
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 and the unit normal loss function, one then obtains: 
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Finally note that when R is to be eliminated by redefining R to be the time unit of 

the inventory system, Zhang and Zhang‟s approximation (3-22) is equivalent to the 

traditional approach (3-3), which is supported by our numerical results in Chapter 5.  

Theorem 3.2. The traditional approach (3-3) is equivalent to Zhang and Zhang’s 

approximation, i.e., equation (9) in Zhang and Zhang (2006). 

Proof. Let   
  (   ) 

√    
  ( )          then the approximation expression (9) in 

Zhang and Zhang (2006) is as follows: 
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On the other hand, for a general periodic review with    , one can redefine the unit 

time interval to be R periods instead of 1. After this scaling, directly applying βT as in 

equation (3-3) becomes: 

     
 √    ( ( ))

  
                                             (3-24) 

Then it follows that (3-23) is equivalent to (3-24), thus the equivalency between Zhang 

and Zhang‟s approximation and the traditional approach for a general periodic review 

inventory system.  ■ 

Next we discuss the relationship between Zhang and Zhang‟s approach, its approximation 

and Silver and Bischak (2011)‟s results. 
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Proof. Recall Equation (3-7), the exact β fill rate expression in Silver and Bischak (2011) 

can be expressed as: 
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Recall Zhang and Zhang‟s exact fill rate expression in Equation (3-21)  
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Note that for a standard normal distribution  .
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Observe that Equation (3-26) is essentially the Silver and Bischak (2011) exact fill rate 

expression in Equation (3-24), thus one have               In words,     can be 

obtained from dropping several terms from Zhang and Zhang‟s exact formula    . 

Compare     in (3-24) (or equivalently (3-26)) and     in (3-25), if   √  .
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In fact, (3-27) is Zhang and Zhang‟s approximation as in (3-23a).  

Compare (3-26) to (3-27) (or equivalent (3-23a)), if √  .
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Proof. The result follows immediately from Lemmas 3.1 and 3.2.  ■ 

Finally, we note that both conditions (i) and (ii) are fairly mild and they hold for almost 

all cases we have tested. As a result, our simulations support                    

3.7 Scaling a General Periodic Review System 

Now we have demonstrated all the eight formulas covered in this thesis. However, 

among these eight formulas, only some of them can be used in a general periodic review 

system directly while others need to be implemented in a standard periodic review system. 

But in a realistic world, most of the companies adopt general periodic review system 

rather than standard periodic review system due to relative high review cost of standard 

periodic review system. Thus, in this thesis, we consider a general periodic review system 

with review interval R=2 and replenishment lead time L=4. In order to test all these 

formulas under same criterion, we need to scale the general periodic review system into 

standard periodic review system as: 

Table 3-2:  The Scaling Technique for General Periodic Review 

Parameters General periodic review 

system 

Standard periodic review 

system 

R 2 1 

L 4 2 

µ 200 200*2=400 

σ 100 100*√  = 141.4 
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Following this method, a general periodic review system can be easily converted to a 

standard periodic review system, and therefore we can implement all the formulas 

equivalently.  

3.8 Chapter Summary 

 This chapter provides an overview of all the fill rate formulas to be evaluated in 

this thesis, which includes the origin of each expression, major derivations of each 

expression and the relationships among them. Table 3-1 below provides a more concise 

theoretical comparison for these eight formulas.   In the next chapter, we will discuss the 

design and implementation of the Monte Carlo Simulation for a periodic review 

inventory system with the order up to policy. The Monte Carlo simulation results are then 

used as a basis for evaluating all formula involved in this thesis.   
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CHAPTER 4 DESIGN OF THE MONTE CARLO SIMULATION FOR 

SINGLE-STAGE INVENTORY SYSTEMS WITH PERIODIC 

REVIEW AND BASE STOCK POLICY 

In this chapter, we discuss how the design of the Monte Carlo Simulation via 

MATLAB (MATLAB 2002) that imitates an inventory system under the periodic review 

and order up to policy. First, we discuss the inventory dynamics for the periodic review 

system based on a pre-determined chronology of events. Second, we will introduce the 

basic concepts and principles for the working of the Monte Carlo Simulation for 

inventory systems. Lastly, we briefly mention the random number generation with 

pseudo random number. 

4.1 Inventory Dynamics and Chronology of Events 

 Notations 

 Dt denotes the demand in period t 

 S denotes the base stock level 

 Itb denotes on hand inventory at the beginning of period t 

 Ite denotes on hand inventory at the end of period t 

 Qt  denotes the replenishment order size placed in period t 
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In addition, the chronology, i.e., the sequence of events occurring in a particular 

period, is defined below. Note that if an inventory system follows a different chronology, 

the long run average nature of the β service level implies that the system fill rate remains 

unchanged at any given time period t, the events occurs in the following order: 

Firstly, previously placed replenishment order arrivals and will be added to the on 

hand inventory level immediately. 

Secondly, if period t is a review period, then the inventory level will be observed 

and another replenishment order will be placed if the physical inventory level (on hand 

inventory plus in-transit inventory) is lower than the base stock level S. If, on the other 

hand, the current period t is not a review period or the physical inventory level exceeds 

the base stock level, then no replenishment order will be placed. 

Lastly, demands for period t will be realized. If the amount of on hand inventory 

is larger than the amount of the period t‟s demand, then all this demand will be satisfied. 

If, however, the on hand inventory is less than period t‟s demands, then only part of the 

demand is satisfied and the remaining will be backlogged. Finally, if the on hand 

inventory is already negative, then all period t‟s demand will be backlogged. Accordingly, 

the inventory dynamics are as follows: 

 (   )                                   (4-1) 

         ∑   
 
                                     (4-2) 

                                (4-3) 
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In the next section, we will discuss how we design the Monte Carlo simulation to imitate 

the above inventory dynamics. 

4.2 Monte Carlo Simulation 

  Monte Carlo Simulation, also as known as Monte Carlo method, is invented by 

Stanislaw Ulam in late 1940s while he was working on nuclear weapon projects at the 

Los Alamos National Laboratory (see, e.g., Anderson, 1987). Monte Carlo Simulation is 

a computational algorithm that obtains numerical results based on repeated random 

sampling. Sawilowsky (2003) notes that a high quality Monte Carlo Simulation must 

include the following characteristics: 

 The pseudo random number generator has certain characteristics;  

 The pseudo random number generator produces values that pass the test of 

randomness; 

 There are enough samples to ensure accurate results; 

 The proper sampling technique is used; 

 The algorithm used is valid for what is modeled;  

 The simulation simulates the phenomenon in question. 

The Monte Carlo simulation in this thesis treats the periodic demand as the 

random variable, which follows normal distributions with constant mean and variance. 

We implement this using the “normrnd(µ,σ)” command in MATLAB (MATLAB 2002) 

with pseudo random seeds. The procedure of simulating these random demands and the 

afore-mentioned chronology of event are discussed below.  
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First, we create an original matrix including, demand for each period, and 

beginning and ending “stock on hand” for each period, where the ending stock on hand 

equals the beginning stock on hand minus the demand for each period. For a particular 

period t, if demand is less than or equal to the beginning stock on hand, then all of the 

demand is satisfied without any backorders.  If, however, the period demand exceeds the 

beginning stock on hand beginning and the beginning stock on hand is positive, then this 

demand less the beginning stock on hand will be backlogged. If, in a third scenario, the 

beginning stock on hand is already negative before this period‟s demand arrivals, then all 

this period‟s demand is backlogged. Consequently, the ending stock on hand will be 

updated accordingly.   

Furthermore, if t=n*R, i.e., the current period is a review period, then the 

inventory level will be assessed.  If the on hand inventory plus the in-transit inventory is 

smaller than the base stock level, an order will be placed.  

Finally, the Monte Carlo simulation counts the total number of demands satisfied 

and the total number of demands over a long term (e.g., three years), and calculates the 

long run fraction of demands that are satisfied  immediately by on-hand inventory as the 

simulated system β service level. Our Monte Carlo simulation indeed simulates 156 

weekly (3 year worth of length) inventories and omits the first 52 weeks of results, in 

order to calculate a more accurate long run fraction by excluding the transient period. 

Each scenario in the numerical experiments is simulated for 30 replications and the 

average of the 30 replications is reported as the β service level for the corresponding 

scenario.    
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In order to study the effect of various factors including review interval, lead time, 

demand variability and base stock level on the system fill rate, numerous scenarios were 

simulated. In particular, we use the α service level as the driver to vary the base stock 

level S by employing the following equation:  

   (   )      √   , 

where    is a critical point such that Prob(Z≤  )    for the standard normal variable Z. 

In other words,  

      ( )  

 For each experimental scenario, we performed m=30 replications of the 

simulation, the period length of which is n=153 periods. In order to eliminate the large 

deviations from initial transient periods, we dropped the first k=52 periods as “warm up” 

periods from the final simulation analysis. For each replication of the simulation, we 

estimate the system‟s β service level as follows: 

   
∑   (         )

 
     

∑   
 
     

, where   (         ) is the amount of demand satisfied 

immediately by the on-hand inventory for period t. 

Therefore, the final estimated fill rate from the Monte Carlo simulation is: 

    
∑   

 
   

 
. 

Finally, all random periodic demands are generated by using the “random number 

seeds” enabled in MATLAB (MATLAB 2002). Once the coefficient variance is pre-
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determined, all the period demands are determined as well. In this way, our Monte Carlo 

simulations are controllable and replicable. 
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CHAPTER 5 NUMERICAL RESULTS 

In this chapter, we report numerical results with two foci: the behavior of the β 

service level for single-stage periodic review inventory system, and the comparison of 

accuracy for eight formulas documented in the literature and discussed extensively in 

Chapter 3. All the computational tests are implemented by MATLAB (MATLAB 2002) 

and Maple (Char 1988), and run on a Dell computer with Inter Pentinum R CPU 3.40 

GHz and 3GB Ram. 

The first part of this section is dedicated to observing the behavior of the β service 

level under various settings of an inventory system. These include: 1) various base stock 

levels driven by a changing α service levels; 2) various combination of replenishment 

lead time L and review interval R such that L+R is a constant; 3) various levels of 

demand variation driven by the so-called “coefficient of variation,” i.e., CV= .



 Lastly, 

numerical comparisons between “properly scaled” and “improperly scaled” inventory 

systems will show how the eight formulas adapt to general periodic review system.   

Furthermore, for the cases with high demand variability, possible negative 

demand is a challenging issue inherited from the normal distribution. Under this 

circumstance, we perform two sets of Monte Carlo simulations. One accepts negative 

demand as it is, deeming these negative demands as “customer returns” as in Johnson et 

al. (1995). The other simulation, however, truncates all negative demands to zero, and 
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calculates the system β service level accordingly. These two sets of simulations 

are referred to as “MC results” and “Truncated MC results” respectively in this section.   

The second part of this section focuses on comparison the accuracy of the eight 

formulas we reviewed in Chapter 3. The evaluation is based on the mean square error 

from the Monte Carlo simulation results, which is calculated as follows:  

                  
 

 
∑ (                           )  

   , 

where n is the number of sample observations. 

5.1 Results for the behavior of the system β fill rate  

 Firstly, we create our baseline scenarios as: Lead Time L=4 weeks, Review 

interval R=2 weeks. Normally distributed period demand with mean µ=200, standard 

deviation σ=100, and the corresponding base stock level S=1200. To create 50 

experiments for high β service level scenarios, we vary α service level from 0.5 to 0.99; 

to create 42 experiments for low β service level scenarios, we vary α service level from 

0.0015 to 0.5. Lastly, we also vary lead time and review interval respectively to see how 

they affect the β beta fill rate. All of our results from Monte Carlo simulations show that 

as base stock level S increases, the corresponding β service level increases, the expected 

shortage units trend to be decreased as more units of goods holding on hand, however, 

this would obviously increase the inventory holding cost and it requires the inventory 

manager to make a trade-off between high β service level and high inventory holding cost. 

Figure 5-1 shows that the α service level changes slightly more rapidly than the β 

service level for the same increment of base stock level. This means that the α service 
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level, an event-based measure, is more sensitive to the change of base stock level, than 

the β service level, which is a quantity-based measure.  

 

Figure 5-1: Alpha Fill Rate versus Beta Fill Rate 

 

Table 5-1: β service level vs. Review Interval R 

S L R µ  σ β service level 

3000 10 1 200 60 1.0000 

3000 10 2 200 60 0.9999 

3000 10 3 200 60 0.9960 

3000 10 4 200 60 0.9714 

3000 10 5 200 60 0.9076 

3000 10 6 200 60 0.8211 

3000 10 7 200 60 0.7250 

3000 10 8 200 60 0.6338 
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3000 10 9 200 60 0.5550 

3000 10 10 200 60 0.5179 

 

Table 5-2: β service level vs. lead time L 

S L R µ  σ β service level 

3000 1 10 200 60 1.0000 

3000 2 10 200 60 0.9999 

3000 3 10 200 60 0.9986 

3000 4 10 200 60 0.9879 

3000 5 10 200 60 0.9501 

3000 6 10 200 60 0.8807 

3000 7 10 200 60 0.7997 

3000 8 10 200 60 0.7067 

3000 9 10 200 60 0.6113 

3000 10 10 200 60 0.5179 
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Figure 5-2 Various Lead Time versus Review Interval 

 

Tables 5-1 and 5-2 summarize the results for the β service level as we vary the 

review interval R and the lead time L. Particularly, in Table 1 L is set to be a constant 10, 

and R varies from 1 to 10. As a result, the system fill rate decreases from 100% to 

approximately 52%. On the other hand, when R is set to be a constant 10 as in Table 2, 

increasing the lead time L from 1 to 10 results in the same reduction for the fill rate (from 

100% to 52%). This is because essentially the fill rate depends more on the value of L+R. 

However, Figure 5-2 provides more insights on which of the L and R has larger impact on 

the system fill rate. Clearly, from Figure 5-2, one observes the slope of the curve 

corresponding to varying the replenishment lead time is larger than that of the curve 

corresponding to varying the review interval. Thus, we conclude that the replenishment 

lead time has larger effect on the β service level than does the review interval. 
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 Aside from the base stock level, replenishment lead time and review interval, 

coefficient of variation for the random demand also has a significant impact on the β 

service level. As coefficient of periodic demands increase, β service level decreases. 

Moreover, the α service level is lower than β service level in general, but when the 

coefficient of variation is as high as 3, it is very likely that the α service level is higher 

than the β service level (see appendix for details). Table 5-3 below summarize the results 

for various CV under baseline scenario L= 4, R=2, µ=200. In order to detect how CV 

affect β service level, we restrict the base stock levels constant and are equal to 1200. 

From Table 3, we can see that as CV increase from 0.1 to 0.7, the corresponding β 

service level decrease from 0.9510 to 0.6792, and this is because with high CV, period 

demands trend to be more unstable. In other words, high CV will cause more stock out 

situations by producing more actual period demand larger than mean value of period 

demands. 

Table 5-3: Various CV versus β service level 

cv L R µ σ α  S β 

0.1 4 2 200 20 0.5  1200 0.9510 

0.2 4 2 200 40 0.5  1200 0.9113 

0.3 4 2 200 60 0.5  1200 0.8557 

0.4 4 2 200 80 0.5  1200 0.8042 

0.5 4 2 200 100 0.5  1200 0.7613 

0.6 4 2 200 120 0.5  1200 0.7231 

0.7 4 2 200 140 0.5  1200 0.6792 
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5.2 Results for evaluation of the β service level expressions 

5.2.1 Performance comparison with High Fill Rate  

 We first investigate the accuracy of all formulas in a relatively easy case where 

the system fill rate is medium to high, i.e., the β service level is 0.7 or higher. Table 5-3 

summarizes the results from the Monte Carlo simulation as well as the eight fill rate 

expressions, namely, traditional, exponential approximation, Hadley and Whitin‟s 

approach, Silver‟s modified approach, Johnson et al.‟s approach, Johnson et al.‟s 

modified approach, Zhang and Zhang, and Zhang and Zhang‟s approximation. The 

baseline scenario is again, L= 4, R=2, µ=200 and σ=100. In addition, we vary the α 

service level from 0.5 to 0.99 with an increment of 0.01 in order to obtain more sample 

points. Note that the resulting β service level ranges from 0.76 to 0.999. From Table 5-3, 

we observe that when base stock level S change from 1200 to 1770, our Monte Carlo 

simulation indicates system β service level increase from 0.7613 to 0.9979 as well. In 

particular, all eight formulas can produce relatively accurate β service level by comparing 

them with Monte Carlo simulation results. The mean square error, on the other hand, 

decreases in the sequence as: Exponential approximation, Traditional approach, Zhang 

and Zhang‟s approximation, Silver‟s modified, Johnson et al.‟s modified approach, 

Johnson et al.‟s approach, Hadley & Whititn‟s, Zhang and Zhang‟s approach. Lastly, 

numerical results also indicate that traditional approach and Zhang and Zhang‟s 

approximation is equivalent to each other.  
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Table 5-4: Performance Comparison with High Fill Rate (β≥0.7) 

α S MC result Tradition Exp Hadley Silver J. et al. J. et al. mod Z&Z Z&Z app 

0.5 1200 0.7613 0.7557 0.7560 0.7599 0.7689 0.7600 0.7600 0.7599 0.7557 

0.51 1206 0.7684 0.7631 0.7630 0.7670 0.7756 0.7671 0.7671 0.7670 0.7631 

0.52 1212 0.7755 0.7704 0.7700 0.7740 0.7821 0.7741 0.7741 0.7740 0.7704 

0.53 1218 0.7824 0.7775 0.7768 0.7809 0.7886 0.7809 0.7809 0.7809 0.7775 

0.54 1225 0.7904 0.7857 0.7847 0.7887 0.7960 0.7887 0.7888 0.7887 0.7857 

0.55 1231 0.7971 0.7925 0.7913 0.7953 0.8022 0.7953 0.7954 0.7953 0.7925 

0.56 1237 0.8037 0.7992 0.7978 0.8017 0.8083 0.8018 0.8018 0.8017 0.7992 

0.57 1243 0.8101 0.8057 0.8042 0.8080 0.8143 0.8081 0.8081 0.8080 0.8057 

0.58 1249 0.8163 0.8121 0.8105 0.8142 0.8201 0.8143 0.8143 0.8142 0.8121 

0.59 1256 0.8234 0.8193 0.8176 0.8213 0.8268 0.8213 0.8214 0.8213 0.8193 

0.6 1262 0.8293 0.8254 0.8237 0.8272 0.8325 0.8272 0.8273 0.8272 0.8254 

0.61 1268 0.8351 0.8313 0.8295 0.8330 0.8380 0.8330 0.8330 0.8330 0.8313 

0.62 1275 0.8417 0.8381 0.8363 0.8396 0.8442 0.8396 0.8396 0.8395 0.8381 

0.63 1281 0.8473 0.8437 0.8419 0.8451 0.8495 0.8451 0.8451 0.8450 0.8437 

0.64 1288 0.8535 0.8501 0.8483 0.8513 0.8554 0.8513 0.8514 0.8513 0.8501 

0.65 1294 0.8587 0.8554 0.8536 0.8565 0.8604 0.8566 0.8566 0.8565 0.8554 

0.66 1301 0.8646 0.8615 0.8597 0.8625 0.8661 0.8625 0.8625 0.8625 0.8615 

0.67 1308 0.8703 0.8673 0.8656 0.8682 0.8716 0.8682 0.8683 0.8682 0.8673 

0.68 1315 0.8759 0.8730 0.8713 0.8738 0.8770 0.8738 0.8739 0.8738 0.8730 

0.69 1321 0.8806 0.8777 0.8761 0.8785 0.8814 0.8785 0.8785 0.8785 0.8777 
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0.7 1328 0.8859 0.8831 0.8816 0.8837 0.8865 0.8838 0.8838 0.8837 0.8831 

0.71 1336 0.8918 0.8890 0.8875 0.8895 0.8921 0.8896 0.8896 0.8895 0.8890 

0.72 1343 0.8967 0.8940 0.8926 0.8945 0.8968 0.8945 0.8945 0.8945 0.8940 

0.73 1350 0.9015 0.8988 0.8975 0.8992 0.9014 0.8993 0.8993 0.8992 0.8988 

0.74 1358 0.9067 0.9041 0.9029 0.9045 0.9065 0.9045 0.9045 0.9045 0.9041 

0.75 1365 0.9111 0.9085 0.9074 0.9089 0.9108 0.9089 0.9089 0.9089 0.9085 

0.76 1373 0.9160 0.9134 0.9124 0.9137 0.9155 0.9138 0.9138 0.9137 0.9134 

0.77 1381 0.9207 0.9181 0.9172 0.9184 0.9200 0.9184 0.9184 0.9184 0.9181 

0.78 1389 0.9253 0.9226 0.9218 0.9229 0.9243 0.9229 0.9229 0.9229 0.9226 

0.79 1398 0.9302 0.9275 0.9268 0.9277 0.9290 0.9277 0.9277 0.9277 0.9275 

0.8 1406 0.9344 0.9316 0.9309 0.9317 0.9329 0.9318 0.9318 0.9317 0.9316 

0.81 1415 0.9388 0.9359 0.9354 0.9361 0.9372 0.9361 0.9361 0.9361 0.9359 

0.82 1424 0.9430 0.9401 0.9397 0.9402 0.9412 0.9403 0.9403 0.9402 0.9401 

0.83 1434 0.9474 0.9445 0.9441 0.9446 0.9454 0.9446 0.9446 0.9446 0.9445 

0.84 1444 0.9515 0.9486 0.9483 0.9487 0.9494 0.9487 0.9487 0.9487 0.9486 

0.85 1454 0.9553 0.9525 0.9523 0.9525 0.9532 0.9526 0.9526 0.9525 0.9525 

0.86 1465 0.9594 0.9564 0.9563 0.9565 0.9571 0.9565 0.9565 0.9565 0.9564 

0.87 1476 0.9631 0.9602 0.9601 0.9602 0.9607 0.9602 0.9602 0.9602 0.9602 

0.88 1488 0.9668 0.9639 0.9639 0.9639 0.9644 0.9640 0.9640 0.9639 0.9639 

0.89 1500 0.9701 0.9674 0.9674 0.9674 0.9678 0.9674 0.9674 0.9674 0.9674 

0.9 1514 0.9735 0.9710 0.9711 0.9711 0.9714 0.9711 0.9711 0.9710 0.9710 

0.91 1528 0.9766 0.9744 0.9745 0.9744 0.9746 0.9744 0.9744 0.9744 0.9744 
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0.92 1544 0.9798 0.9778 0.9779 0.9778 0.9780 0.9778 0.9778 0.9778 0.9778 

0.93 1561 0.9829 0.9810 0.9811 0.9810 0.9811 0.9810 0.9810 0.9810 0.9810 

0.94 1581 0.9860 0.9842 0.9843 0.9842 0.9843 0.9842 0.9842 0.9842 0.9842 

0.95 1603 0.9890 0.9872 0.9873 0.9872 0.9873 0.9872 0.9872 0.9872 0.9872 

0.96 1629 0.9918 0.9901 0.9902 0.9901 0.9902 0.9901 0.9901 0.9901 0.9901 

0.97 1661 0.9944 0.9929 0.9930 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929 

0.98 1703 0.9967 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955 

0.99 1770 0.9990 

MSE 

0.9979 

1.07*10-5 

0.9979 

1.75*10-5 

0.9979 

4.91*10-5 

0.9979 

8.77*10-5 

0.9979 

4.79*10-5 

0.9979 

4.69*10-5 

0.9979 

4.92*10-5 

0.9979 

1.07*10-5 

 

 

Figure 5-3: MC results versus Computation Results with High fill Rate 



51 

 

 

Figure 5-4: plot for Computation Results over MC results 

 Figure 5-3 displays the performances for all the formulas when the α service level 

increases from 0.5 to 0.99. From this figure, one observes that all the formulas perform 

well because they all produced a fill rate that matches with the MC simulation. From a 

slightly different perspective, Figure 5-4 calculates the ratio between the fill rate 

produced by a formula and by the Monte Carlo simulation, i.e., .
MC

i

ir



 Thus, if ri > 1 

then the corresponding formula i  overestimates the system fill rate, and vice versa. 

From Figure 5-4, Silver‟s approach tends to overestimate the β service level when the 

base stock level is low, and starts to underestimate when the base stock level is high. On 

the other hand, traditional approach and the exponential approximation underestimate the 

system‟s β service level. Furthermore, Hadley and Whitin‟s, Johnson et al. and Zhang 
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and Zhang‟s approaches only underestimate the β service level very slightly, and they 

dominate all other formulas in terms of accuracy. 

5.2.2 Performance comparison with Low Fill Rate  

We now examine the performance of all formulas when the system‟s β service level is 

relatively low, i.e., 0.7 or below. We achieve this by varying the α service level from 

0.0015 to 0.5, thus varying the base stock level accordingly. Table 5-4 summarizes the 

results for the Monte Carlo simulation as well as the eight fill rate expressions when L= 4, 

R=2, µ=200 and σ=100. As shown in Table 5-4, when the α service level changes from 

0.0015 to 0.5, the β service level changes from 0.009 to 0.76, respectively. Furthermore, 

Table 5-4 shows that only Hadley and Whitin‟s approach, Johnson et al.‟s approach, 

Johnson et al.‟s modified approach, Zhang and Zhang‟s approach provide accurate results, 

with the mean square error values of 1.15*10
-6

, 1.16*10
-6

, 1.25*10
-6

, 1.14*10
-6

, 

respectively. Also, one observes that when the base stock level is low, traditional 

approach, and Zhang and Zhang‟s approximation produce negative values. This is 

because sufficiently small base stock level would make the “double counting” even worse 

and produce more shortage than the total demand. Thus, these two approaches would 

provide negative β service level, which is wrong. 

Table 5-5: Performance Comparison with Low Fill Rate (β≤0.7) 

α S MC result Tradition Exp Hadley Silver J. et al. J. et al. mod Z&Z Z&Z app 

0.0015 473 0.0091 negative 0.6797 0.0104 0.0256 0.0104 0.0104 0.0104 negative 

0.002 495 0.0122 negative 0.6504 0.0135 0.0309 0.0135 0.0135 0.0135 negative 

0.0025 512 0.0151 negative 0.6275 0.0163 0.0356 0.0163 0.0163 0.0163 negative 
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0.003 527 0.0182 negative 0.6072 0.0192 0.0403 0.0192 0.0193 0.0192 negative 

0.0035 539 0.0211 negative 0.5910 0.0219 0.0443 0.0219 0.0219 0.0219 negative 

0.004 550 0.0239 negative 0.5762 0.0245 0.0483 0.0245 0.0246 0.0245 negative 

0.0045 560 0.0266 negative 0.5629 0.0272 0.0521 0.0272 0.0272 0.0272 negative 

0.005 569 0.0291 negative 0.5510 0.0298 0.0558 0.0298 0.0298 0.0298 negative 

0.0055 577 0.0316 negative 0.5405 0.0322 0.0592 0.0322 0.0323 0.0322 negative 

0.006 585 0.0342 negative 0.5302 0.0348 0.0628 0.0349 0.0349 0.0348 negative 

0.0065 592 0.0366 negative 0.5213 0.0373 0.0661 0.0373 0.0373 0.0373 negative 

0.0075 604 0.0411 negative 0.5063 0.0417 0.0721 0.0418 0.0418 0.0417 negative 

0.008 610 0.0436 negative 0.4990 0.0441 0.0752 0.0442 0.0442 0.0441 negative 

0.0085 615 0.0458 negative 0.4929 0.0462 0.0778 0.0462 0.0463 0.0462 negative 

0.009 621 0.0485 negative 0.4858 0.0488 0.0811 0.0488 0.0489 0.0488 negative 

0.01 630 0.0528 negative 0.4754 0.0529 0.0863 0.0529 0.0529 0.0529 negative 

0.015 668 0.0566 negative 0.4664 0.0568 0.0911 0.0568 0.0568 0.0567 negative 

0.02 697 0.0926 negative 0.4098 0.0921 0.1323 0.0921 0.0922 0.0921 negative 

0.025 720 0.1095 negative 0.3932 0.1094 0.1514 0.1094 0.1095 0.1094 negative 

0.03 739 0.1255 negative 0.3822 0.1253 0.1685 0.1253 0.1254 0.1253 negative 

0.035 756 0.1410 negative 0.3745 0.1408 0.1847 0.1408 0.1409 0.1408 negative 

0.04 771 0.1552 negative 0.3696 0.1554 0.1999 0.1554 0.1555 0.1554 negative 

0.045 785 0.1692 negative 0.3665 0.1699 0.2146 0.1699 0.1700 0.1699 negative 

0.05 797 0.1821 negative 0.3651 0.1829 0.2278 0.1830 0.1830 0.1829 negative 

0.055 809 0.1956 0.0082 0.3648 0.1965 0.2413 0.1966 0.1966 0.1965 0.0082 
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0.06 819 0.2072 0.0317 0.3654 0.2083 0.2530 0.2083 0.2084 0.2083 0.0317 

0.065 829 0.2191 0.0552 0.3668 0.2204 0.2649 0.2205 0.2205 0.2204 0.0552 

0.07 839 0.2316 0.0785 0.3690 0.2329 0.2771 0.2330 0.2330 0.2329 0.0785 

0.075 847 0.2417 0.0970 0.3713 0.2432 0.2870 0.2432 0.2433 0.2432 0.0970 

0.08 856 0.2535 0.1178 0.3744 0.2550 0.2984 0.2550 0.2551 0.2550 0.1178 

0.085 864 0.2642 0.1361 0.3777 0.2657 0.3087 0.2657 0.2658 0.2657 0.1361 

0.09 872 0.2749 0.1544 0.3815 0.2766 0.3191 0.2766 0.2767 0.2766 0.1544 

0.095 879 0.2844 0.1703 0.3852 0.2863 0.3284 0.2863 0.2864 0.2863 0.1703 

0.1 886 0.2942 0.1860 0.3892 0.2962 0.3377 0.2962 0.2963 0.2961 0.1860 

0.15 946 0.3832 0.3175 0.4369 0.3853 0.4214 0.3854 0.3855 0.3853 0.3175 

0.2 994 0.4591 0.4166 0.4890 0.4607 0.4912 0.4607 0.4608 0.4607 0.4166 

0.25 1035 0.5243 0.4961 0.5401 0.5256 0.5511 0.5256 0.5257 0.5256 0.4961 

0.3 1072 0.5830 0.5631 0.5892 0.5831 0.6043 0.5831 0.5832 0.5831 0.5631 

0.35 1106 0.6349 0.6205 0.6352 0.6341 0.6515 0.6341 0.6342 0.6341 0.6205 

0.4 1138 0.6810 0.6705 0.6779 0.6798 0.6939 0.6798 0.6799 0.6798 0.6705 

0.45 1169 0.7227 0.7150 0.7180 0.7214 0.7327 0.7214 0.7215 0.7214 0.7150 

0.5 1200 0.7613 

MSE 

0.7557 

 

0.7560 

0.1253 

0.7599 

1.15*10-6 

0.7689 

0.0012 

0.7600 

1.16*10-6 

0.7600 

1.25*10-6 

0.7599 

1.14*10-6 

0.7557 
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Figure 5-5: Performance Comparison with Low Fill Rate 

 In Figure 5-5, due to negative β service level value produced by the traditional 

approach, and Zhang and Zhang‟s approximation, we exclude these two approaches from 

the our evaluation. From the figure, the exponential approximation performs the worst. In 

addition, Silver‟s approach again overestimates the system β service level with relatively 

large discrepancy. It is concluded that when the system fill rate is low, Johnson et al.‟s 

approach and Zhang and Zhang‟s method produce the most accurate results.  

5.2.3 Performance comparison when varying the CV 

 After discussing the performance of the eight formulas (against the Monte Carlo 

simulation) when the system fill rate is either high or low in section 5.2.1 and 5.2.2, we 

now compare their performances against varying level of demand variation. In particular, 

we vary the coefficient of variation (CV) of the normal random demand from 0.1 to 3 

while keeping other system parameters (L, R, µ and S) the same as in the baseline 

scenario. As mentioned previously, when negative demands occur due to high values of 
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CV, we present both Monte Carlo simulation as well as “truncated” Monte Carlo 

simulation. In the latter, negative demands are truncated to zero in order to resemble real-

life situations. Tables S-1 through S-12 and Figure S-1 through S-12 in the Appendix 

summarize and plot all numerical results under various CVs.  

Table 5-5 below summarizes all results in Tables S-1 through S-10  in an attempt 

to identify which method is more accurate, i.e., has smaller mean square error, for 

different CV settings.  The mean square error in Table 5-5 is calculated against the Monte 

Carlo simulation for CV from 0.1 to 3. Similarly, Table 5-6 summarizes the mean square 

error that compare all formulas against the “truncated” Monte Carlo simulation for CV 

from 0.8 to 3 (where negative demands becomes significant). Again, when a method (e.g., 

traditional, exponential approximation and Zhang and Zhang‟s approximation) produces 

negative β service level, it is dropped from any further analysis. Table 5-5 displays that 

when CV is low, for instance, when CV=0.2, the MSE for all eight formulas is as low as 

5.08*10
-5

, except exponential approximation with a relative high MSE value of 3.15*10
-5

. 

As CV increases to 0.7, the MSE for Hadley and Whitin‟s approach, Johnson et al‟s 

approach and Johnson et al‟s modified approach and Zhang and Zhang‟s approach still 

remain low with values of 1.95*10
-5 ,1.96*10

-5
, 2.34*10

-5
, 1.7*10

-5
, respectively. 

However, the MSE of other formulas increases significantly. Finally, when CV is 1 or 

higher, Johnson et al‟s modified approach has the lowest MSE of 3.58*10
-5

, performing 

better than Hadley and Whitin‟s, Johnson et al.‟s original, and Zhang and Zhang‟s 

approaches.  

Table 5-6: Mean Square Error For Various CV 
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MC 

CV 

Tradion Exp Hadley Silver J. et al. J. et al. 

mod. 

Z&Z Z&Z app 

0.1 1.29*10-7 4.47*10-6 1.29*10-7 1.29*10-7 1.29*10-7 1.29*10-7 1.29*10-7 1.29*10-7 

0.2 5.08*10-5 3.15*10-5 5.08*10-5 5.08*10-5 5.08*10-5 5.08*10-5 5.08*10-5 5.08*10-5 

0.3 9.01*10-6 1.17*10-5 8.36*10-6 5.55*10-6 8.36*10-6 8.35*10-6 8.38*10-6 9.01*10-6 

0.4 4.56*10-6 3.39*10-5 8.05*10-7 1.62*10-5 8.05*10-7 8.06*10-7 7.8*10-7 4.56*10-7 

0.5 7.21*10-5 1.82*10-5 3.29*10-6 8.68*10-5 3.28*10-6 3.20*10-6 3.38*10-7 7.21*10-7 

0.6 
0.0004 0.0001 1.42*10-5 0.0002 1.40*10-5 1.41*10-5 1.5*10-5 0.0004 

0.7 0.0012 0.0005 1.95*10-5 0.0007 1.96*10-5 2.34*10-5 1.7*10-5 0.0012 

0.8 0.0045 0.0028 0.0001 0.0005 0.0001 9.11*10-5 0.000149 0.0045 

0.9 0.0076 0.0053 0.0001 0.0010 0.0001 9.01*10-5 0.0002 0.0070 

1 0.0120 0.0091 0.0001 0.0010 8.82*10-5 3.58*10-5 0.0002 0.0120 

2   0.0012 0.0081 0.0004 0.0001 0.0049  

3   0.0077 0.0128 0.0027 0.0007 0.0121  

Table 5-6 below shows the mean square error calculated agianst truncated Monte 

Carlo simulation when CV=0.8 or higher due to frequent negative demands.  From Table 

5-6, it is clear that when CV=0.8, Hadley‟s approach, Johnson et al‟s approach and 

Johnson et al‟s modified approach and Zhang and Zhang‟s approach dominate other 

formulas in comparison with “truncated” Monte Carlo simulations. Their respective MSE 

values are 2.18*10
-5

, 2.42*10
-5

, 4.26*10
-5

, and 1.41*10
-5

. But when CV increases to 1 

and higher, all MSE of these formulas increases significantly, and thus are not suitable 
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for application. Note, however, Zhang and Zhang‟s approach has a rally when CV=3 

against Johnson et al.‟s original and modified approaches. 

Table 5-7: Mean Square Error versus Monte Carlo simulation (truncated) 

    MCT 

CV 

Tradion Exp Hadley Silver      J. et al. J. et al. 

mod 

Z&Z   Z&Z app 

0.8 0.0027 0.0014 2.18*10-5 0.0014 2.42*10-5 4.26*10-5 1.41*10-5 0.0027 

0.9 0.0050 0.0031 0.0001 0.0024 0.0001 0.0002 0.0001 0.0050 

1 0.0067 0.0042 0.0006 0.0054 0.0006 0.0008 0.0005 0.0067 

2   0.0058 0.0402 0.0085 0.014 0.0027  

3   0.0035 0.0651 0.0098 0.0270 0.0017  

From Tables 5 and 6 and Figures S-1 to S-10 (see Appendix), as CV increases 

from CV=0.6 and onwards ( with low β service level), the accuracy of the eight formulas 

is sorted from low to high as follows: exponential approximation, traditional approach, 

Silver‟s modified approach, Hadley and Whitin‟s approach, Zhang and Zhang‟s 

approach, Johnson et al.‟s approach.  Especially, Johnson et al.‟s modified approach is 

significantly better to deal with high values of CV. 

5.2.4 Scaling issues for the general periodic review system 

 This subsection focuses on the proper implementation of Silver‟s modified 

approach, Johnson et al.‟s approach and Johnson et al.‟s modified approach when facing 

the situation where the review interval R>1, i.e., a situation described as the “general 

periodic review.” In particular, we implement all three formulas two ways: with and 

without scaling the relevant inventory system. As discussed in Section 3.7, for example, 
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in a general period review system where L=4, R=2, µ=200 and σ=100, “scaling the 

system” implies the use of the effective parameters L’=2, R’=1, µ‟=2*200 and 

σ‟=√  100. 

Table 5-7 summarizes the results for the three methods (with and without scaling) 

when compared to the Monte Carlo simulation. This table indicates that one will get an 

inaccurate β service level when adopting Silver‟s modified approach, Johnson et al.‟s 

approach and Johnson et al.‟s modified approach without scaling. For instance, when the 

base stock level is 1200 units, the simulated system β service level is 0.7613, while 

silver‟s modified yields 0.8272, Johnson et al.  gives 0.8125, and Johnson et al. modified 

returns 0.8129. However, when proper scaling is done as illustrated in Table 3-2, silver‟s 

modified approach yields 0.7689, Johnson et al.‟s approach gets 0.7600, and Johnson et 

al.‟s modified approach gives 0.7600. Similar observations can be made from plots in 

Figures 6 and 7. Thus, we conclude that scaling is necessary for these three approaches to 

obtain accurate results. 

Table 5-8: Unscaled parameter versus Scaled parameter  

S α Silver J. et al. J. et al. mod MC result 

Silver 

(unscaled) 

J. et al. 

(unscaled) 

J. et al. mod 

(unscaled) 

1200 0.5 0.7689 0.7600 0.7600 0.7613 0.8272 0.8125 0.8129 

1206 0.51 0.7756 0.7671 0.7671 0.7684 0.8316 0.8172 0.8176 

1212 0.52 0.7821 0.7741 0.7741 0.7755 0.8359 0.8218 0.8222 

1218 0.53 0.7886 0.7809 0.7809 0.7824 0.8402 0.8265 0.8268 

1225 0.54 0.7960 0.7887 0.7888 0.7904 0.8451 0.8318 0.8321 
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1231 0.55 0.8022 0.7953 0.7954 0.7971 0.8493 0.8363 0.8366 

1237 0.56 0.8083 0.8018 0.8018 0.8037 0.8534 0.8407 0.8411 

1243 0.57 0.8143 0.8081 0.8081 0.8101 0.8575 0.8451 0.8455 

1249 0.58 0.8201 0.8143 0.8143 0.8163 0.8615 0.8495 0.8498 

1256 0.59 0.8268 0.8213 0.8214 0.8234 0.8661 0.8545 0.8548 

1262 0.6 0.8325 0.8272 0.8273 0.8293 0.8700 0.8587 0.8590 

1268 0.61 0.8380 0.8330 0.8330 0.8351 0.8739 0.8629 0.8632 

1275 0.62 0.8442 0.8396 0.8396 0.8417 0.8783 0.8676 0.8680 

1281 0.63 0.8495 0.8451 0.8451 0.8473 0.8820 0.8716 0.8720 

1288 0.64 0.8554 0.8513 0.8514 0.8535 0.8862 0.8763 0.8766 

1294 0.65 0.8604 0.8566 0.8566 0.8587 0.8898 0.8801 0.8804 

1301 0.66 0.8661 0.8625 0.8625 0.8646 0.8938 0.8846 0.8849 

1308 0.67 0.8716 0.8682 0.8683 0.8703 0.8978 0.8889 0.8892 

1315 0.68 0.8770 0.8738 0.8739 0.8759 0.9017 0.8932 0.8934 

1321 0.69 0.8814 0.8785 0.8785 0.8806 0.9050 0.8967 0.8970 

1328 0.7 0.8865 0.8838 0.8838 0.8859 0.9087 0.9008 0.9010 

1336 0.71 0.8921 0.8896 0.8896 0.8918 0.9129 0.9053 0.9056 

1343 0.72 0.8968 0.8945 0.8945 0.8967 0.9164 0.9091 0.9094 

1350 0.73 0.9014 0.8993 0.8993 0.9015 0.9198 0.9129 0.9131 

1358 0.74 0.9065 0.9045 0.9045 0.9067 0.9236 0.9171 0.9173 

1365 0.75 0.9108 0.9089 0.9089 0.9111 0.9269 0.9206 0.9208 

1373 0.76 0.9155 0.9138 0.9138 0.9160 0.9305 0.9245 0.9247 
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1381 0.77 0.9200 0.9184 0.9184 0.9207 0.9339 0.9283 0.9285 

1389 0.78 0.9243 0.9229 0.9229 0.9253 0.9373 0.9319 0.9321 

1398 0.79 0.9290 0.9277 0.9277 0.9302 0.9409 0.9359 0.9361 

1406 0.8 0.9329 0.9318 0.9318 0.9344 0.9440 0.9392 0.9394 

1415 0.81 0.9372 0.9361 0.9361 0.9388 0.9473 0.9429 0.9431 

1424 0.82 0.9412 0.9403 0.9403 0.9430 0.9505 0.9464 0.9465 

1434 0.83 0.9454 0.9446 0.9446 0.9474 0.9539 0.9501 0.9502 

1444 0.84 0.9494 0.9487 0.9487 0.9515 0.9571 0.9535 0.9537 

1454 0.85 0.9532 0.9526 0.9526 0.9553 0.9601 0.9569 0.9570 

1465 0.86 0.9571 0.9565 0.9565 0.9594 0.9632 0.9603 0.9604 

1476 0.87 0.9607 0.9602 0.9602 0.9631 0.9662 0.9635 0.9636 

1488 0.88 0.9644 0.9640 0.9640 0.9668 0.9692 0.9668 0.9669 

1500 0.89 0.9678 0.9674 0.9674 0.9701 0.9720 0.9698 0.9699 

1514 0.9 0.9714 0.9711 0.9711 0.9735 0.9750 0.9731 0.9732 

1528 0.91 0.9746 0.9744 0.9744 0.9766 0.9777 0.9761 0.9762 

1544 0.92 0.9780 0.9778 0.9778 0.9798 0.9806 0.9791 0.9792 

1561 0.93 0.9811 0.9810 0.9810 0.9829 0.9833 0.9820 0.9821 

1581 0.94 0.9843 0.9842 0.9842 0.9860 0.9860 0.9850 0.9851 

1603 0.95 0.9873 0.9872 0.9872 0.9890 0.9886 0.9878 0.9879 

1629 0.96 0.9902 0.9901 0.9901 0.9918 0.9911 0.9905 0.9906 

1661 0.97 0.9929 0.9929 0.9929 0.9944 0.9936 0.9932 0.9932 

1703 0.98 0.9955 0.9955 0.9955 0.9967 0.9955 0.9955 0.9955 
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1770 0.99 0.9979 0.9979 0.9979 0.9990 0.9979 0.9979 0.9979 

 

  

Figure 5-6: Modified Silver and Johnson et al.‟s  with Scaling 

 

Figure 5-7: Modified Silver and Johnson et al.‟s without Scaling 
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CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH  

6.1 Conclusions 

 In this thesis, we study the β service level as a measure for a supply chain‟s ability 

to meet customers‟ demands immediately by its on-hand inventory. Among three service 

levels, α, β and γ service levels, the system β service level is most commonly used in 

practice in the supply chains and logistics industry. The focus of this thesis is on the 

single-stage periodic review inventory system. Through the Monte Carlo simulation 

implemented in MATLAB, we investigate the behavior of the β service level under 

various scenarios as well as compare the numerical performance of the eight existing fill 

rate expressions in the literature.  

 In our first set of experiments, we model a general periodic review system in 

order to observe the behavior of β service level under different scenarios. From a base 

setting of the underlying inventory system, we vary one parameter at a time, which 

includes: the base stock level, the review interval, the replenishment lead time and the 

coefficient of variation for the random demand. The observations are summarized as 

follows. 

 Firstly, as the base stock level increase, the β service level increases. Secondly, 

the α service level changes slightly more rapidly than the β service level given the same 

increment of base stock level, which indicates that the α service level is more sensitive to 
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the change of base stock level. Third, as the coefficient of variation for the random 

periodic demand increases, the β service level decreases. Lastly, both the replenishment 

lead time and review interval have negative effect on the system‟s β service level, with 

the replenishment lead time imposing larger effect than the review interval. 

 In the second set of our experiments, the goal is to numerically evaluate the 

accuracy of the eight fill rate expressions, benchmarking against either the Monte Carlo 

simulation or “truncated” Monte Carlo simulation (when appropriate). The research 

questions center around: which formula(s) perform the best under certain conditions? We 

give considerations for an inventory system with: high or low fill rate, high or low 

demand variability and unit or general period review. Several observations are made and 

they are summarized below.  

First, all formulas perform well when the β service level is as high as 70%. 

However, when the β service level falls below 60% or lower, Zhang and Zhang, Hadley 

and Whitin, Johnson et al.‟s and Jonson et al.‟s modified approaches produce accurate β 

service level, whereas Silver‟s modified, traditional, exponential approximation and 

Zhang and Zhang‟s approximation do not. 

 Second, when the CV for random demand is 0.5 or lower, all formulas perform 

well. However, when CV increases to 0.6 or higher, the accuracy of various formulas is 

sorted from low to high as follows: Exponential approximation, traditional approach, 

Silver‟s  modified, Hadley and Whitin‟s, Zhang and Zhang‟s, Johnson et al.‟s, and 

Johnson et al.‟s modified approach. It is worth noting that when CV becomes 2 or higher, 

the traditional, exponential approximation and Zhang and Zhang‟s approximation all 
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experience negative fill rate occasionally.  Thus, they should not be considered for use if 

CV is as high as 2. Finally, Johnson et al.‟s modified approach is significantly better than 

others for dealing with high values of CV. 

 In addition, we also use the Monte Carlo simulation to study the fill rate for the 

so-called “general periodic review system.” Our numerical results indicate that scaling is 

necessary for Silver‟s modified, Johnson et al.‟s and Johnson et al.‟s modified 

approaches. On the other hand, traditional approach, exponential approximation and 

Hadley and Whitin‟s approach require very minimum treatment in order to handle the 

general periodic review system. Finally, Zhang and Zhang‟s approach is designed to 

handle the general system directly and thus is the most versatile. 

6.2 Future Research  

 There are several directions for future research. First, while the current thesis 

demonstrates the accuracy of existing fill rate formulas are mostly of high quality, little 

research is done for expressing the system fill rate for multi-stage inventory systems. 

Sobel (2004) and Zhang et al. (2010) are among the few publications in this endeavor, we 

plan to study this topic in the near future.  

 Second, while the current thesis demonstrates that a “general period review 

system” can be treated as a “unit periodic review system” for a single-stage inventory 

system by simple scaling technique, it remains open whether such technique would work 

for multi-stage inventory system. For example, when the review intervals of upstream 

and downstream supply chains do not match, the choice of a proper “scaling factor” may 
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be challenging. In other words, the legitimacy of the notion of “general periodic review” 

is still an open question. We would like to at least investigate it numerically.  

Third, even if “scaling” a multi-stage inventory system is feasible, the implication 

of holding cost may be interesting to examine as well.  

 Last but not least, it would be an interesting topic to develop efficient numerical 

algorithms for supply chain optimization problems with service level constraints. Due to 

the underlying complexity involving the evaluation of fill rate in the constraints, one 

expect heuristics such as genetic algorithm and simulated annealing to be suitable for its 

solution.    
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APPENDIX 

Table S-1: MC Results versus Computation Results When CV=0.1 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. MC  

0.1 0.3 1174 0.9117 0.9119 0.9173 0.9119 0.9119 0.9119 0.9119 0.9119 0.9119 0.9117 

0.1 0.4 1188 0.9345 0.9347 0.9361 0.9347 0.9347 0.9347 0.9347 0.9347 0.9347 0.9345 

0.1 0.5 1200 0.9510 0.9511 0.9512 0.9511 0.9511 0.9511 0.9511 0.9511 0.9511 0.9510 

0.1 0.6 1212 0.9648 0.9647 0.9643 0.9647 0.9647 0.9647 0.9647 0.9647 0.9647 0.9648 

0.1 0.7 1226 0.9772 0.9769 0.9766 0.9769 0.9769 0.9769 0.9769 0.9769 0.9769 0.9772 

0.1 0.8 1241 0.9869 0.9862 0.9861 0.9862 0.9862 0.9862 0.9862 0.9862 0.9862 0.9869 

0.1 0.9 1263 0.9949 0.9943 0.9943 0.9943 0.9943 0.9943 0.9943 0.9943 0.9943 0.9949 

0.1 0.99 1314 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9995 

 

Table S-2: MC Results versus Computation Results When CV=0.2 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. MC  

0.2 0.3 1149 0.8365 0.8256 0.8360 0.8256 0.8256 0.8256 0.8256 0.8256 0.8256 0.8365 

0.2 0.4 1175 0.8783 0.8679 0.8709 0.8679 0.8679 0.8679 0.8679 0.8679 0.8679 0.8783 

0.2 0.5 1200 0.9113 0.9023 0.9024 0.9023 0.9023 0.9023 0.9023 0.9023 0.9023 0.9113 

0.2 0.6 1225 0.9375 0.9304 0.9297 0.9304 0.9304 0.9304 0.9304 0.9304 0.9304 0.9375 
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0.2 0.7 1251 0.9587 0.9531 0.9525 0.9531 0.9531 0.9531 0.9531 0.9531 0.9531 0.9587 

0.2 0.8 1282 0.9760 0.9724 0.9722 0.9724 0.9724 0.9724 0.9724 0.9724 0.9724 0.9760 

0.2 0.9 1326 0.9902 0.9885 0.9885 0.9885 0.9885 0.9885 0.9885 0.9885 0.9885 0.9902 

0.2 0.99 1428 0.9993 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9993 

 

Table S-3: MC Results versus Computation Results When CV=0.3 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  

0.3 0.3 1123 0.7441 0.7375 0.7533 0.7378 0.7393 0.7378 0.7378 0.7378 0.7375 0.7441 

0.3 0.4 1163 0.8067 0.8026 0.8070 0.8027 0.8034 0.8027 0.8027 0.8027 0.8026 0.8067 

0.3 0.5 1200 0.8557 0.8534 0.8536 0.8535 0.8538 0.8535 0.8535 0.8535 0.8534 0.8557 

0.3 0.6 1237 0.8952 0.8951 0.8940 0.8951 0.8952 0.8951 0.8951 0.8951 0.8951 0.8952 

0.3 0.7 1277 0.9283 0.9300 0.9291 0.9300 0.9301 0.9300 0.9300 0.9300 0.9300 0.9283 

0.3 0.8 1324 0.9571 0.9592 0.9588 0.9592 0.9592 0.9592 0.9592 0.9591 0.9592 0.9571 

0.3 0.9 1388 0.9826 0.9825 0.9826 0.9825 0.9825 0.9825 0.9825 0.9825 0.9825 0.9826 

0.3 0.99 1542 0.9993 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.9994 0.9988 0.9993 

 

 

Table S-4: MC Results versus Computation Results When CV=0.4 



72 

 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  

0.4 0.3 1097 0.6547 0.6494 0.6706 0.6544 0.6633 0.6544 0.6544 0.6544 0.6494 0.6547 

0.4 0.4 1150 0.7380 0.7358 0.7418 0.7378 0.7430 0.7378 0.7378 0.7378 0.7358 0.7380 

0.4 0.5 1200 0.8042 0.8046 0.8048 0.8054 0.8083 0.8054 0.8054 0.8054 0.8046 0.8042 

0.4 0.6 1250 0.8597 0.8608 0.8594 0.8611 0.8626 0.8611 0.8611 0.8610 0.8608 0.8597 

0.4 0.7 1303 0.9063 0.9069 0.9057 0.9070 0.9077 0.9070 0.9070 0.9070 0.9069 0.9063 

0.4 0.8 1365 0.9451 0.9454 0.9449 0.9454 0.9456 0.9454 0.9454 0.9454 0.9454 0.9451 

0.4 0.9 1451 0.9756 0.9768 0.9768 0.9768 0.9768 0.9768 0.9768 0.9768 0.9768 0.9756 

0.4 0.99 1656 0.9973 0.9983 0.9984 0.9983 0.9983 0.9983 0.9983 0.9983 0.9983 0.9973 

 

Table S-5: MC Results versus Computation Results When CV=0.5 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  

0.5 0.3 1072 0.5830 0.5631 0.5892 0.5831 0.6043 0.5831 0.5832 0.5831 0.5631 0.5830 

0.5 0.4 1138 0.6810 0.6705 0.6779 0.6798 0.6939 0.6798 0.6799 0.6798 0.6705 0.6810 

0.5 0.5 1200 0.7613 0.7557 0.7560 0.7600 0.7689 0.7600 0.7600 0.7599 0.7557 0.7613 

0.5 0.6 1262 0.8293 0.8255 0.8237 0.8272 0.8325 0.8272 0.8273 0.8272 0.8255 0.8293 

0.5 0.7 1328 0.8859 0.8831 0.8816 0.8838 0.8865 0.8838 0.8838 0.8837 0.8831 0.8859 

0.5 0.8 1406 0.9344 0.9316 0.9310 0.9318 0.9329 0.9318 0.9318 0.9317 0.9316 0.9344 
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0.5 0.9 1514 0.9735 0.9710 0.9711 0.9711 0.9711 0.9711 0.9711 0.9710 0.9710 0.9735 

0.5 0.99 1770 0.9990 0.9979 0.9979 0.9979 0.9979 0.9979 0.9979 0.9979 0.9979 0.9990 

 

Table S-6: MC Results versus Computation Results When CV=0.6 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  

0.6 0.3 1046 0.5228 0.4750 0.5065 0.5227 0.5577 0.5227 0.5232 0.5226 0.4750 0.5228 

0.6 0.4 1126 0.6311 0.6051 0.6141 0.6292 0.6546 0.6293 0.6296 0.6291 0.6051 0.6311 

0.6 0.5 1200 0.7231 0.7069 0.7072 0.7188 0.7362 0.7188 0.7191 0.7187 0.7069 0.7231 

0.6 0.6 1274 0.8014 0.7901 0.7880 0.7956 0.8067 0.7956 0.7958 0.7955 0.7901 0.8014 

0.6 0.7 1354 0.8676 0.8600 0.8582 0.8622 0.8685 0.8622 0.8624 0.8621 0.8600 0.8676 

0.6 0.8 1447 0.9225 0.9178 0.9171 0.9184 0.9214 0.9184 0.9185 0.9184 0.9178 0.9225 

0.6 0.9 1577 0.9686 0.9653 0.9654 0.9654 0.9662 0.9654 0.9654 0.9653 0.9653 0.9686 

0.6 0.99 1884 0.9979 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9963 0.9975 0.9979 

 

Table S-7: MC Results versus Computation Results When CV=0.7 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  

0.7 0.3 1020 0.4742 0.3870 0.4238 0.4732 0.5220 0.4734 0.4747 0.4728 0.3870 0.4742 
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0.7 0.4 1113 0.5854 0.5383 0.5489 0.5847 0.6224 0.5848 0.5859 0.5843 0.5383 0.5854 

0.7 0.5 1200 0.6792 0.6580 0.6584 0.6821 0.7095 0.6822 0.6832 0.6817 0.6580 0.6792 

0.7 0.6 1287 0.7614 0.7558 0.7534 0.7674 0.7859 0.7675 0.7683 0.7670 0.7558 0.7614 

0.7 0.7 1380 0.8346 0.8370 0.8348 0.8419 0.8530 0.8419 0.8424 0.8414 0.8370 0.8346 

0.7 0.8 1489 0.8997 0.9045 0.9037 0.9061 0.9116 0.9061 0.9065 0.9057 0.9045 0.8997 

0.7 0.9 1639 0.9558 0.9593 0.9594 0.9596 0.9613 0.9596 0.9597 0.9592 0.9593 0.9558 

0.7 0.99 1998 0.9968 0.9971 0.9971 0.9971 0.9972 0.9971 0.9971 0.9967 0.9971 0.9968 

 

Table S-8: MC Results versus Computation Results When CV=0.8 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  

0.8 0.3 994 0.4549 0.2989 0.3411 0.4324 0.4941 0.4330 0.4356 0.4311 0.2989 0.4244 

0.8 0.4 1101 0.5646 0.4730 0.4850 0.5475 0.5975 0.5480 0.5504 0.5462 0.4730 0.5416 

0.8 0.5 1200 0.6626 0.6092 0.6096 0.6496 0.6876 0.6499 0.6520 0.6483 0.6092 0.6466 

0.8 0.6 1299 0.7477 0.7205 0.7177 0.7410 0.7677 0.7411 0.7429 0.7396 0.7205 0.7385 

0.8 0.7 1406 0.8221 0.8139 0.8115 0.8229 0.8397 0.8230 0.8242 0.8215 0.8139 0.8174 

0.8 0.8 1530 0.8912 0.8907 0.8898 0.8938 0.9027 0.8939 0.8947 0.8925 0.8907 0.8884 

0.8 0.9 1702 0.9559 0.9536 0.9537 0.9541 0.9571 0.9542 0.9545 0.9528 0.9536 0.9544 

0.8 0.99 2112 0.9986 0.9967 0.9967 0.9967 0.9968 0.9967 0.9967 0.9954 0.9967 0.9981 
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Table S-9: MC Results versus Computation Results When CV=0.9 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  

0.9 0.3 969 0.4049 0.2126 0.2598 0.3992 0.4729 0.4005 0.4048 0.3961 0.2126 0.3728 

0.9 0.4 1088 0.5266 0.4062 0.4198 0.5144 0.5765 0.5153 0.5196 0.5113 0.4062 0.5011 

0.9 0.5 1200 0.6371 0.5603 0.5608 0.6207 0.6695 0.6214 0.6252 0.6176 0.5603 0.6179 

0.9 0.6 1312 0.7361 0.6862 0.6830 0.7176 0.7531 0.7181 0.7212 0.7145 0.6862 0.7224 

0.9 0.7 1431 0.8249 0.7901 0.7873 0.8045 0.8278 0.8047 0.8072 0.8014 0.7901 0.8157 

0.9 0.8 1571 0.8848 0.8770 0.8759 0.8821 0.8948 0.8822 0.8838 0.8791 0.8770 0.8955 

0.9 0.9 1765 0.9510 0.9478 0.9480 0.9488 0.9534 0.9489 0.9496 0.9436 0.9478 0.9566 

0.9 0.99 2226 0.9960 0.9963 0.9963 0.9963 0.9965 0.9963 0.9963 0.9932 0.9963 0.9959 

 

Table S-10: MC Results versus Computation Results When CV=1 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  

1 0.3 943 0.3748 0.1245 0.1771 0.3698 0.4549 0.3722 0.3747 0.3642 0.1245 0.3181 

1 0.4 1076 0.4932 0.3409 0.3559 0.4862 0.5600 0.4880 0.4945 0.4805 0.3409 0.4458 

1 0.5 1200 0.6092 0.5115 0.5120 0.5948 0.6544 0.5961 0.6021 0.5891 0.5115 0.5691 

1 0.6 1324 0.7118 0.6509 0.6474 0.6954 0.7401 0.6963 0.7014 0.6898 0.6509 0.6844 

1 0.7 1457 0.8005 0.7670 0.7639 0.7880 0.8180 0.7885 0.7924 0.7823 0.7670 0.7857 
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1 0.8 1612 0.8799 0.8632 0.8619 0.8710 0.8880 0.8712 0.8739 0.8653 0.8632 0.8737 

1 0.9 1828 0.9497 0.9421 0.9422 0.9437 0.9500 0.9438 0.9450 0.9380 0.9421 0.9481 

1 0.99 2340 0.9968 0.9959 0.9959 0.9959 0.9961 0.9959 0.9960 0.9902 0.9959 0.9966 

 

Table S-11: MC Results versus Computation Results When CV=2 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  

2 0.3 686 0.2411 negative negative 0.1973 0.3751 0.2239 0.2304 0.1613 negative 0.0855 

2 0.4 952 0.3539 negative negative 0.3039 0.4806 0.3280 0.3592 0.2679 negative 0.1879 

2 0.5 1200 0.4608 0.0229 0.0240 0.4184 0.5803 0.4384 0.4805 0.3823 0.0229 0.3165 

2 0.6 1448 0.5754 0.3018 0.2948 0.5379 0.6751 0.5531 0.5927 0.5018 0.3018 0.4569 

2 0.7 1714 0.6964 0.5340 0.5279 0.6600 0.7654 0.6701 0.7040 0.6239 0.5340 0.6063 

2 0.8 2025 0.8117 0.7268 0.7244 0.7814 0.8506 0.7869 0.8119 0.7453 0.7268 0.7569 

2 0.9 2456 0.9135 0.88418349 0.8845 0.8982 0.9300 0.9001 0.9135 0.8621 0.8842 0.8952 

2 0.99 3479 0.9952 0.99170071 0.9917 0.9919 0.9940 0.9920 0.9932 0.9559 0.9917 0.9958 

 

 

Table S-12: MC Results versus Computation Results When CV=3 

CV α S MC Tradition EXP Hadley Silver J. et al. J. et al. 

mod 

  Z&Z Z&Z app Trunc. 

MC  
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3 0.3 429 0.1621 negative negative 0.0906 0.3492 0.1542 0.2226 0.0662 negative 0.0268 

3 0.4 828 0.2909 negative negative 0.1847 0.4536 0.2450 0.3256 0.1603 negative 0.0967 

3 0.5 1200 0.4183 negative negative 0.2970 0.5540 0.3493 0.4350 0.2725 negative 0.2078 

3 0.6 1572 0.5367 negative negative 0.4238 0.6510 0.4653 0.5491 0.3994 negative 0.3500 

3 0.7 1971 0.6670 0.3009 0.2918 0.5625 0.7450 0.5917 0.6660 0.5380 0.3009 0.5141 

3 0.8 2437 0.7809 0.5900 0.5864 0.7089 0.8352 0.7259 0.7831 0.6844 0.5900 0.6870 

3 0.9 3083 0.9007 0.8260 0.8264 0.8589 0.9212 0.8652 0.8976 0.8345 0.8260 0.8546 

3 0.99 4619 0.9912 0.9876 0.9876 0.9882 0.9930 0.9883 0.9917 0.9638 0.9876 0.9863 

 

 

 

Figure S-1: V=0.1 Computation Results versus MC Results 
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Figure S-2: CV=0.2 Computation Results versus MC Results 

 

 

Figure S-3: CV=0.3 Computation Results versus MC Results 
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Figure S-4: CV=0.4 Computation Results versus MC Results 

 

 

Figure S-5: CV=0.5 Computation Results versus MC Results 
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Figure S-6: CV=0.6 Computation Results versus MC Results 

 

 

Figure S-7: CV=0.7 Computation Results versus MC Results 
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FigureS-8: CV=0.8 Computation Results versus MC Results 

 

 

Figure S-9: CV=0.9 Computation Results versus MC Results 
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Figure S-10: CV=1 Computation Results versus MC Results 

 

Figure S-11: CV=2 Computation Results versus MC Results 
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Figure S-12: CV=3 Computation Results versus MC Results 
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