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ABSTRACT

This thesis describes the development of a prototype security hardened field device (such 

as a remote terminal unit) based on commodity hardware and implementing a previously 

developed security architecture.  This security architecture has not been implemented in 

the  past  due  to  the  difficulty  of  providing  an  operating  system  which  meets  the 

architecture's  isolation  requirements.   Recent  developments  in  both  hardware  and 

software  have  made  such  an  operating  system  possible,  opening  the  door  to  the 

implementation and development of this  new security architecture in physical devices 

attached to supervisory control and data acquisition  (SCADA) systems.  A prototype is 

developed  using  commodity  hardware  selected  for  similarity  to  existing  industrial 

systems  and making  use  of  the  new  OKL4  operating  system.  Results  of  prototype 

development are promising, showing performance values which are adequate for a broad 

range for industrial applications.
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GLOSSARY OF TERMS

Capabilities – A security construct which contains both the reference required to access an 

object, as well as access rights assigned to the capability holder.  Ownership of a 

capability implies permission to access a given resource.

Cell – A virtual construct in the OKL4 operating system.  A logical set of a running  

thread, a memory space, and a zone.

Dnp3 – Distributed Network Protocol, a common communication protocol in industrial 

control systems. 

I2C – Inter-IC bus

IDE – Integrated development environment

IPC – Interprocess communication

Kernel  –  An  operating  system's  lowest  level  abstraction  code,  interfacing  between  

hardware and application code, often performing other duties such as memory  

management, task scheduling and file system management, among others.

MTU – Master terminal unit

Macrokernel  –  An  operating  system  kernel  which  places  code  such  as  file  system  

management, device drivers, and server daemons in kernel-mode code.

Memory space – An OKL4 construct which separates a given section of virtual memory 

from all other sections of virtual memory. 

Microkernel – An operating system kernel which seeks to minimize code which runs in 

kernel-mode.

Modbus – A common communication protocol used in industrial control systems.
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OKL4 – A commercially available microkernel operating system, currently the primary 

focus of research on the L4 family of microkernels.

Points – A distinct input or output on a field device.  Examples include digital inputs and 

analog outputs.

Pre-shared Secret – a secret shared previously shared between two systems using a secure 

communications channel, used for authentication and verification of credentials.

RBAC – Role based access control

RTU – Remote terminal unit

RPC – Remote procedure call

SCADA – Supervisory control and data acquisition

SDK – Software development kit

SHA-256 – A cryptographic hashing function which encodes a given set of data as a  

unique 256 bit value.

TFTP – Trivial file transfer protocol

TCP – Transmission control protocol, a core protocol of the Internet protocol stack.

Thread – A piece of code executing concurrently with other pieces of code, switched in 

and out in a “timesharing” manner.

UDP – User datagram protocol. A simpler alternative to TCP which sacrifices reliability 

for speed and simplicity.

XML – Extensible markup language

Zone – A construct in OKL4 defining which memory spaces may access each-other.
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CHAPTER I

INTRODUCTION

This thesis describes the design, development, and testing of a security hardened 

field  device,  such  as  a  remote  terminal  unit  (RTU)  for  supervisory  control  and  data 

acquisition  (SCADA)  systems.   This  prototype  RTU  is  developed  using  several 

previously  researched,  but  as-of-yet  unconstructed,  architectural  features  which  are 

designed  to  provide  additional  layers  of  security  to  industrial  control  systems which 

control this nation's energy, water and fuel supplies (among many other systems).  This 

thesis will review the pitfalls of existing SCADA systems, explore the possibilities of 

security  hardened  systems  using  new  architectural  structures,  and  describe  the 

development and testing of a prototype RTU utilizing these structures.

1.1 Background

SCADA systems are used in the operation of many industrial systems, from the 

power grid to  potable water distribution: large, monolithic systems which are critical to 

the health and well-being of the citizenry.  These systems are widely distributed, and 

require a large number of remote terminals, each controlling a small number of devices, 

and gathering data from a small number of sensors.  Many of these systems are connected 

to a central control location by a variety of possible commodity communications systems, 

ranging  from radio  links  to  industrial  Ethernet  connections.   Unfortunately,  as  these 

systems have grown larger, the pervasiveness and public awareness of these commodity 

communications systems has also grown.  Corporations and utilities can no longer rely on 

security  through obscurity  to  protect  these  systems.   Further,  with  the  growth of  the 
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Internet, these systems have become increasingly connected, forcing industries to defend 

against security threats well outside these systems' design parameters.

Network security and an understanding of these communications problems can 

only  provide  a  modest  amount  of  security.   Drop in  modules  can  provide  additional 

security,  but  these  control  systems  have  product  lifetimes  measured  in  decades.  The 

security solutions used in these modules may find themselves outmoded or broken in a 

few months or years, becoming a huge expense to any company maintaining a device's 

security.

1.2 Problem

Part  of  the  security  problem  is  endemic  to  the  architecture  utilized  by  these 

devices.  The monolithic kernels used by the operating systems integrated into the RTUs 

currently  on the  market  are  fundamentally  incapable  of  providing the  high  assurance 

security required of such critical control devices.  Formal verification is a key component 

of high assurance systems.  For many years, this verification has been out of reach for 

operating-system kernels.  Several operating systems since the 1970's have attempted to 

claim the crown of verified security, and several certifications exist which provide some 

subjective measurement of security.  For many systems, these measures are sufficient – 

such operating systems are used in the aerospace and defense industries.

Due to the important role kernels play in providing device security, building an 

RTU with high assurance requires the use of a trusted kernel.  A verified operating system 

allows for the development of verifiable security structures.  If these structures operate as 

intended,  then  a  deterministic  level  of  security  can  be  architected,   transcending  the 
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security of any drop-in device or network security solution.  As a result, it is possible to 

create an RTU whose security is absolutely guaranteed over the lifetime of the device. 

1.3 Motivation

The  creation  of  a  prototype  would  be  impossible  without  the  existence  of  a 

verified secure operating system.  Until now, many architectures for verified operating 

systems have been proposed, and many have endured rigorous testing and certification 

procedures,  only  to  fall  just  short  of  completely  verifiable  performance.   Recently,  a 

research  group  in  Australia  has  reportedly  achieved  the  rigorous  mathematical 

verification of a microkernel based operating system.  Using this operating system, a 

prototype  can  be  developed  using  previously  researched  architectures,  and  its 

performance  measured  in  order  to  determine  the  viability  of  such  an  architecture 

implemented with modern hardware and software.  A security architecture developed by 

Hieb  and  Graham  [33]  considers  the  features  provided  by  a  microkernel  operating-

system, and the possibilities of a formally verified kernel.  Until the development of this 

new  kernel,  the  implementation  of  a  prototype  based  on  this  architecture  has  been 

impossible.

1.4 Organization

The second chapter of this thesis presents a detailed review of related literature 

and research, more clearly defining and developing the summary provided in this chapter. 

Chapter three presents the design architecture, explores the security features developed in 

prior  work,  and  examines how  such  an  architecture  can  be  applied  to  the  verified 

operating  system.   Chapter  four  is  an  in-depth  exploration  of  the  development 
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environment and the prototyping process, reviewing the implementation of the prototype 

from  hardware  to  software.   Chapter  five  describes  the  methods  and  results  of 

performance testing the RTU prototype.   Chapter six summarizes the findings of this 

thesis, and explores some possible future directions for continued research in this area.
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CHAPTER II

LITERATURE REVIEW

This review of existing literature provides an overview of the current state and 

history of SCADA security research.  The following sections will detail the work and 

research which has led to the need for the development of a prototype as described in the 

following  chapters.  Section  2.1  provides  an  overview  of  SCADA systems  and  their 

associated security deficiencies. Section 2.2 examines the insufficiencies and failures of 

existing solutions.  Section 2.3 explores  separation and microkernels  in  the context  of 

security solutions, and Section 2.4 explores the existing work done in using microkernels 

in industrial systems.

2.1 SCADA Security

Supervisory Control and Data Acquisition (SCADA) is a term that has come to 

refer  to  any and all  devices  involved in  a  computerized,  automatic  industrial  control 

system.  The IEEE defines SCADA systems as “A system operating with coded signals 

over  communication  channels  so  as  to  provide  control  of  remote  equipment  (using 

typically one communication channel per remote station). The supervisory system may be 

combined  with  a  data  acquisition  system,  by  adding  the  use  of  coded  signals  over 

communication channels to acquire information about the status of the remote equipment 

for display or for recording functions[2].”  These systems rose to prominence concurrent 

to microcomputers,  beginning  in  the  1960s.   As  SCADA became  more  popular,  the 

different  architectures  used  became  codified  in  IEEE  Standard  C37.1-2008  [3]. 
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Principally,  there are  three different  SCADA system architectures,  the first  two being 

primarily of historical interest.

Initially,  SCADA systems  were  completely  centralized,  with  a  single  master 

controller station connected directly to sensors, actuators, and other intelligent electronic 

devices (IEDs).  These systems had no connectivity to a greater network of sensors or 

devices.  Eventually, these SCADA systems developed into decentralized systems, with 

one  or  more  master  terminal  units  (MTUs),  and  one  or  more  remote  terminal  units 

(RTUs) [4].  These RTUs were connected to a larger network of MTUs using proprietary, 

industrial  communication  links.  Following  a  period  of  decentralization  in  SCADA 

architecture, these networks transitioned from using proprietary hardware, software and 

communication links,  to using commodity,  commercial  and public hardware,  software 

and communications links, gaining larger connectivity to a network of SCADA devices. 

These  networks  gradually  became  integrated  with  larger  corporate  intranets,  and  the 

Internet [5].

6
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As  these  SCADA networks  became  part  of  a  larger  network  of  standardized 

hardware and software, the communications protocols used were also standardized.  The 

amount of information that these early links were able to carry limited the amount of 

information that could be expressed using these protocols.  As a result of the initially 

proprietary nature of the links, the bandwidth limitations of the links, and the real-time 

nature of the processes being controlled by SCADA systems, these protocols were not 

designed  with  any  built-in  security  features.   The  protocols  currently  in  broad  use, 

including ModBus, and IEC 60870-5-101 do not include any inherent security features, 

while DNP3 includes provisions for security which remain in draft form [6, 7].

2.1.1 SCADA Security Issues

SCADA security  hasn't  been  a  large  concern  through  the  history  of  SCADA 

systems.  SCADA systems initially used proprietary hardware and software on closed 

networks.  As a result, security was provided by the obscurity of the system, and the lack 

of  general  knowledge as  to  how these  systems operated.   As  a  result,  a  majority  of 

SCADA security threats came from employee sabotage.  As SCADA system have shifted 

from obscure, closed systems, to open, commodity-based systems on open networks, the 

attack vectors have appropriately shifted. A study conducted by Byres and Lowe in 2003 

found that attacks from insiders represented 38% of SCADA  security breaches in 2000, 

with external attacks accounting for 31%, while in 2003, internal attacks represented only 

5% of security breaches and external attacks accounted for another 70% [8].

In summary,  network connectivity and standardization has infiltrated the industry 

in a bid to increase awareness and control. While this has decreased costs, it has also 
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resulted  in  the  pervasive  distribution  of  SCADA systems  which  are  susceptible  to 

electronic attack [9]. In addition to using hardware and software which contains known 

and unknown vulnerabilities, the documentation for these systems is now freely available 

[10],  showing  that  security  through  obscurity  is  no  longer  a  trustworthy  method  for 

maintaining the integrity of SCADA networks.

2.1.2 Securing SCADA Systems

With  the  general  acceptance  that  SCADA systems  have  inherent  insecurities 

which are acting as vectors for outside attack, it is crucial that strategies be developed in 

order to solve these problems.  Because of the commodity hardware being used in these 

SCADA networks,  many sources  suggest  using  common information  technology (IT) 

based  security  practices,  such  as  enabling  WEP on  wireless  devices  [11],  increasing 

network connectivity in order to provide more resiliency to attack [10, 11], implementing 

role based access control  [12], and segmenting the SCADA networking using firewalls 

and virtual private networks [10, 11, 13].

While these methods provide some security, they are insufficient by themselves. 

They fail to properly differentiate between the security needs of a SCADA control 

network and a typical corporate network.  Although the resources used in creating and 

managing these SCADA networks are increasingly similar to the solutions used in 

traditional corporate IT environments, these solutions fail to understand the key 

differences between SCADA systems and IT based systems.

SCADA systems require high data integrity, high up-time and high security at all 

points in the network.  If any leaf of the SCADA network (any RTU, or MTU sub-tree)  
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fails, then the entire SCADA system may have its operation compromised.  The IT based 

solutions focus on high data throughput, with a tolerance for data corruption or loss, and 

principally focus on the confidentiality of data.   As a result,  adopting these IT based 

solutions  in a SCADA environment can be costly, and may not provide the necessary 

protection.  IT based solutions generally focus on making the core of the network secure, 

reliable,  and  robust,  while  security  among  the  leaves  of  the  network  is  allowed  to 

languish.  In  the  SCADA network,  this  cannot  be  tolerated  because  the  leaves  of  the 

network connect  to physical  control systems.   Unfortunately,  the vast  majority  of the 

solutions being deployed and developed today focus on these IT based solutions.

Other systems architectures advocate securing the communication links between 

SCADA  devices  with  drop-in  encryption  modules  [14]. These  modules  provide  a 

reasonably high level of protocol-layer security without adversely affecting performance, 

as  the  IT  based  solutions  might.   Unfortunately,  these  modules  only  encrypt  the 

communication  link,  and  do  not  guard  against  vulnerabilities  in  the  hardware  or  the 

commodity operating  systems running on these SCADA devices.   Furthermore,  these 

devices add a focus on data confidentiality, while data integrity is usually a higher priority 

for SCADA:  an attacker need only understand that these link encryption modules block 

intrusion at only one layer of the SCADA system stack.

2.2 Architectural Security In Kernel Models

Unfortunately,  the  basic  design  architecture  of  using  off-the-shelf  operating 

system software adds an inherent level of risk to the system in question.   Traditional 

operating systems are hugely complicated pieces of software.  The operating system itself 

9



can be logically divided into  the  sections which operate in user mode, and  the  sections 

which operate in kernel mode.  The sections which operate in kernel mode provide direct 

abstractions to the hardware that the operating system is running on.  As a result, the 

kernel mode code has special access to the hardware of the system, and operates without 

the  safety  of  memory  segmentation  and  protection.   The  kernel  mode  code  of  any 

operating system must be part of that system's trusted code – that is, the kernel mode code 

must be trusted to perform its duty with certainty and integrity.  

Unfortunately,  the  majority  of  commodity  operating  systems  today  use  a 

monolithic kernel architecture, including massive amounts of code in the kernel of the 

operating system, such as file system code, device driver code, and many many other 

services.  The Linux kernel, as of version 2.6.35, contained over 13.55 million lines of 

code[15].  Some sources estimate the number of lines of code in Windows XP at 40 

million[16].  More code is a direct vector for taking advantage of a system.  Hackers with 

an understanding of the systems being used can exploit bugs, both known and unknown, 

and  larger  systems  inherently  contain  more  bugs.  Various  sources  place  the  average 

number of bugs in a given piece of code between 2 and 75 bugs per 1000 lines of code. 

[17,  18].  Even conservative estimates at the number of errors in a code-base this large 

place  the  number  of  bugs  in  the  tens  of  thousands.   As  a  result,  there  are  inherent 

insecurities and instabilities in operating system kernels of this magnitude.
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2.2.1 Separation Kernels And Microkernels

There is an alternative to this monolithic kernel architecture.  A microkernel is a 

kernel  architecture  which  seeks  to  provide  minimal  kernel  level  abstractions  to  the 

hardware of a given platform.  As a result, these kernels provide minimal services, and 

force  items  like  file  systems  and  device  drivers  to  operate  in  user  mode,  without 

privileged access to all the resources of a system.  

Dr. Jochen Leidtke formalized this concept of minimalist design thusly:

A concept is tolerated inside the microkernel only if moving it outside the  

kernel, i.e., permitting competing implementations, would prevent the  

implementation of the system's required functionality.[19]

As  a  result,  modern  microkernels  provide  very  few  services  familiar  to  monolithic 

kernels.   Figure  2.2  shows  some  of  the  differences  between  monolithic  kernels  and 

microkernels.

Figure 2.2: Monolithic and Micro- Kernel Architectural Differences.
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In Liedtke's implementations, these services were limited to management and protection 

of memory spaces; thread creation, destruction,  management and scheduling; interrupt 

management; and inter-process communication. Due to these cutbacks, a microkernel can 

be  implemented  in  under  ten  thousand lines  of  code.   This  immediately  reduces  the 

number of possible  bugs which can be used as an attack vector by several  orders of 

magnitude.  Additional services must be implemented in user-mode, but much of this 

code need not operate in a completely error-free manner in order to provide a secure 

system.  Tanenbaum,  original  author  of  the  MINIX  operating  system,  advocates  the 

implementation of microkernels as the basis of a secure and reliable system[20].

Although the concept of placing critical operating system services in user space 

has  existed  since  at  least  the  1960s  [21], UNIX  and  BSD  remained  the  dominant 

operating systems of the era, and these operating systems made a design decision to place 

services  such  as  device  drivers  and  file  systems  in  the  kernel.   As  a  result  of  the 

popularity  of  UNIX  and  BSD,  many  other  operating  systems  followed  suite  in  this 

monolithic design.

In the 1970's, Tymshare Inc. began development of a new operating system called 

GNOSIS,  (The  Great  New  Operating  System  in  the  Sky)  which  would  evolve  into 

KeyKOS, and later EROS, as the concept and source code were bought and sold.  The 

EROS operating system, a self-claimed “nanokernel” operating system, was designed to 

be an extremely reliable and secure operating system.  This operating system provides 

security and separation through the communication of “capabilities.”  These capabilities 

are unforgeable representations of the rights which a program has for a specific operating-
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system object.  Although the foundations of EROS were laid in the 1970s, development 

and implementation of these concepts took place primarily in the late 1980s and early 

1990s.  EROS has two successor projects, CoyotOS and  CapOS.  These projects are lead 

by two of the principal developers of the EROS project..  As of 2010, development for 

both these projects remain inactive.  Despite being proclaimed a “nanokernel,” the source 

tree for the final release of EROS is over twice as large as modern microkernels.

To  block  all  layers  of  possible  intrusion,  an  operating  system  known  as  a 

“separation kernel” was proposed as early as 1981 by  Dr. John Rushby [22].  This kernel 

would  treat  software  components  as  if  they  were  pieces  of  a  physically  distributed 

system.  Each piece of software must have no interaction with software extant to itself, 

save  for  a  known quantity  of  communication  paths.   Thus,  the  flow  of  information 

between components of a separation kernel system may be completely known.  As of 

2010, only a single separation kernel has received any sort of formal certification [23].

In 1984,  development began on the Mach kernel at Carnegie Mellon[24]. This 

kernel  is  one  of  the  first  examples  of  a  kernel  designed with  microkernel  principals 

throughout.  Unfortunately, the purpose of this kernel was to support operating system 

research, primarily in the areas of parallel and distributed computing.  As a result, this 

kernel  was  not  designed  with  minimality  and  security  in  mind,  but  rather  sought  to 

emulate the UNIX kernel in whole.  As a result, the source tree became extremely large, 

the  result  of  attempting  to  fit  monolithic  kernel  attributes  into  the  microkernel 

architecture.  Additionally, during the early 1990s, CPU speed grew at over 60% per year, 

while  memory  speed  grew  at  only  7%  during  this  same  period.   The  necessity  of 
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switching in and out of kernel mode in order to perform routine microkernel tasks like 

memory  space  management  and interprocess  communication  requires  more  access  to 

memory  than  a  comparable  monolithic  kernel.   As  a  result  of  this  rising  difference 

between  CPU and  memory  speed,  performance  of  microkernels  waned.  Between  the 

increasing size of code, and the waning kernel performance, the interest in microkernels 

spurred by Mach and  other projects declined.

Roughly concurrent to the development of the Mach kernel, Tanenbaum released 

MINIX, a microkernel operating system designed to be a minimal implementation of a 

UNIX operating system.  This operating system was designed to be a companion for a 

textbook on operating systems.  As a result,  security and minimality were not design 

goals.   The first  version of  the operating system, however,  was implemented in  only 

12,000 lines of code, which is comparable with modern microkernels. 

The QNX operating system is another example of a microkernel based operating 

system.  This operating system began as a research project at University of Waterloo in 

1980.  This project has evolved, and changed hands many times, however.  Some versions 

of the QNX operating system have been available as open-source products, while others 

have not.  The most recent version, which has received a certificate of security evaluation, 

is currently closed source and owned by Research in Motion[25]. QNX has seen used in 

many  high  reliability  systems.   Although  this  operating  system  has  been  proven 

commercially, and achieves similar performance to the L4 Microkernel, its certificate of 

verification is based on informal criteria of evaluation.

Following the decline of the Mach microkernel, Liedtke began research on a new 

14



generation of microkernels.  Throughout the mid 1990s, until his death in 2001, Leidtke 

developed several new microkernel paradigms that would prove that microkernels were 

not  required  to  perform badly  [21,  26]. The  L3  and  L4  microkernels  achieved  their 

performance goals by tightly  coupling the algorithms used to  perform memory space 

management  and IPC to the target  system architecture.   Earlier  work had focused on 

creating a microkernels which weren't bound to a specific set of hardware, as well as 

creating a kernel which could place important services in user mode.  Liedtke's kernels 

were the first to be designed specifically with performance in mind.  The L4 operating 

system was written primarily in assembly language and C.  Porting this operating system 

to other architectures was a daunting task.   The L4::Hazelnut project was the first  to 

successfully  translate  the L4 operating  system into  C++ without  a  great  performance 

penalty.  The L4::Pistachio project would further build on the success of the L4 kernel, 

and  generalize  the  architecture  specific  algorithms  and  programming  interface, 

decoupling the kernel code from the target architecture, with the exception of only a few 

required assembly-language function implementations [29].

2.2.2 The OKL4 Microkernel

The OKL4 Microkernel is a descendant of the L4::Pistachio kernel, implementing 

a  capability  based  security  system similar  to  the  one  implemented  by  EROS.   This 

microkernel is a good example of a third-generation microkernel [27].  In order to more 

fully explain the operating principals of a modern microkernel, OKL4 will be used as an 

example.  The current version of OKL4 is Version 3.0, and is available as open-source 

software from NICTA.
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The OKL4 microkernel, as a direct descendant of Liedtke's L4 kernel, implements 

minimal  operating  system abstractions,  including  memory  space  management,  thread 

management,  and  interprocess  communication  (IPC).   Additionally,  the  OKL4 kernel 

exports  management  of  kernel  resources  to  user  mode  processes  using  a  modified, 

simplified  capability  system  from  the  EROS  operating  system.   These  capabilities 

represent a non-forgeable token of an object,  as well  as the program's permissions to 

operate  on  or  with  the  object.  As  a  result,  memory  spaces,  thread,  and  IPC can  be 

controlled from user mode processes with a measurable assurance of security [28].

In the OKL4 operating system, threads may have one or more memory spaces 

mapped to them.  These  memory spaces  present  themselves  as  virtual  memory to  the 

thread.  This virtual memory, however, must be backed by physical memory allocated to 

the  OKL4 kernel  or  a  delegating  user-mode  program.   The  specific  mapping  of  this 

memory is known only to the kernel, or a user-mode memory delegation implementation. 

As a result, in order to learn about this specific  memory mapping, a thread must have 

appropriate capabilities, ensuring that threads cannot inspect or modify memory to which 

they  have  no  capabilities.  Threads  are  switched  in  a  round-robin  fashion,  based  on 

priority.

Interprocess communication (IPC) is the basis of interrupt management, remote 

procedure call (RPC) implementations, and data transfer between threads.  In OKL4, IPC 

is abstracted depending upon its specific use.  In all cases, in order for IPC to take place,  

the communicating cell must have capabilities to the recipient cell.  If so desired, the 

communicating cell can transmit temporary “reply” capabilities to the recipient cell in 
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order to receive a response.  These reply capabilities are temporary.  If IPC takes place 

between threads in the same memory space,  then a full  kernel-mode switch need not 

occur, saving CPU cycles.  If an IPC takes place between threads existing in different 

memory spaces, then the OKL4 operating system uses a system-specific implementation 

of the IPC algorithms pioneered by Leidtke in developing the L4 microkernel, and later 

L4::Pistachio.   Determining  the  fastest  method  of  transmitting  information  between 

threads is very important in a microkernel environment.  

Performance  completely  drives  the  design  decisions,  since  in  a  microkernel 

environment, every IPC transfer between memory spaces requires a transition into kernel 

mode  and  back  again,  which  requires  a  large  number  of  CPU cycles.  Interrupts  are 

handled just like any other IPC.  The cell which is configured to receive a given interrupt 

must have capabilities to this interrupt.  As a result, whenever this interrupt is triggered, 

the kernel will send an IPC message to the thread receiving the interrupt.  Requiring IPC 

to trigger interrupt service further drives the need for fast IPC.  It is also worth noting that 

particular implementations of the IPC API and algorithms used by Liedtke are strongly 

architecture dependent.  A presentation by Gernot Heiser in 2008 summarizes the actual 

L4 IPC performance for different architectures as shown in table 2.1.
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Table 2.1: Cost of Minimal L4 IPC Transfer on Various Architectures[29]

Architecture Intra Address 

Space

Inter Address Space

Pentium 113 Cycles 305 Cycles

AMD-64 125 Cycles 230 Cycles

Itanium 36 Cycles 36 Cycles

MIPS64 109 Cycles 109 Cycles

ARM Xscale 170 cycles 180Cycles

2.2.3 The SeL4 Kernel

In addition to providing fewer possible vectors for software-level attack,  these 

second generation  microkernels  are  small  enough to  go  through a  process  of  formal 

verification, whereby the code implemented by the operating system is proven to operate 

without any bugs by a set of mathematical proofs.  With only a few thousand lines of 

code, and a minimal number of operating system hooks into user space, this verification 

is no longer as daunting as it would be if performed on a code base of 15 million lines of 

code.  Researchers at  National Information and Communications Technology Australia 

(NICTA) have developed an operating system based on L4::Pistachio called the seL4 

kernel.  After over seven man-years of labor, they have  reportedly performed a formal 

verification on this microkernel, with over two hundred thousand human-and-computer 

generated proofs.[30]

This  verification  is  a  tremendous  leap  forward  in  creating  secure  and reliable 

computer systems.  However, it is not without assumptions.  One must trust the compiler, 

the  hardware,  and  the  proof  generator.   The  compiler  used  for  this  verification  is  a 
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derivative of the freely available GCC C-compiler, which is monolithic enough that a 

formal verification would be daunting, at best.  Gerwin Klein has performed some initial 

work at NICTA in the use of a verified C compiler to compile the seL4 kernel [26], which 

shows promise at being a viable alternative to GCC.  The seL4 kernel is designed to 

adhere to most ANSI C standards.  This avenue is one road that could be taken to extend 

the research being performed at NICTA.  Klein suggests that another avenue is to begin 

the  implementation  of  large-scale  trusted  systems,  such as  the  long-theoretical  MILS 

architecture. [31]

As a result of this verification, secure, trusted software can be built on top of the 

kernel, with the separation between user-mode memory spaces abstracted as trustworthy. 

This makes the creation of a minimal trusted computing base (the parts of code which can 

bypass and compromise system security [32]) possible.  Now, the formal verification of a 

minimalist TCB can build on the verification of the kernel itself, to create a larger secure 

system.

2.3 A Secure Industrial System Using Microkernels

As   a  result  of  the  minimalist  nature  of  these  microkernels,  and  the  formal 

verification to which they can be subjected, they can be used to create secure embedded 

systems.  Demanding real-time requirements  exist  in almost  all  SCADA applications. 

IEEE and IEC standards state that many SCADA applications require a response time as 

low as 2-4 ms [33].  As a result, the microkernel based solution cannot be performance 

bound.  Initial research in the implementation of a microkernel based industrial control 

system suggest that this is not an impossible task, with raw IPC times as low as 69.54 
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microseconds  [1]. Additionally,  the seL4 microkernel represents a basis upon which a 

secure  separation  kernel  can  be  built,  implementing  with  measurable  certainty,  a 

mathematically proven method for implementing such an architecture.
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CHAPTER  III

DESIGN APPROACH

This  chapter  details  the  design  goals  of  the  security  hardened  RTU prototype 

based on the architecture described by Hieb and Graham [1].  Many of these design goals 

are  derived from earlier  work,  as  described in  Chapter  II.   While  the  body of  work 

contained in Chapter II describes the security vulnerabilities in existing SCADA systems 

and  explores  the  possibilities  for  a  security  hardened  RTU  based  on  microkernel 

operating  systems,  this  chapter  details  a  specific  target  architecture,  designed  with 

consideration for the needs of actual development,  as well  as the hardware available. 

Section 3.1 outlines the  architectural model, developed by Hieb and Graham [1] of a 

security-hardened RTU, with respect  for  the possible  avenues  of implementation,  and 

Section  3.2  details  some of  the  prior  work  performed  in  creating  an  RTU with  this 

architecture.  Section 3.3 details how OKL4 design paradigms may be utilized for for the 

specified  implementation,  Section  3.4  details  a  simplified  SCADA communications 

protocol created for testing the security features and performance of the RTU, Section 3.5 

explains  the  operation  of  interprocess  communication  (IPC)  and  the  communications 

paths through the RTU, Section 3.6 explains the usage and design of a challenge-response 

algorithm, and Section 3.7 describes the role based access control model utilized in this 

prototype.

3.1 Architecture Model And Security Features

The security hardened RTU is based on an iterative design model proposed by 

Hieb,  Graham and Patel  in  a  series  of  papers  on possible  security  enhancements  for 
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SCADA systems.  Through several papers and dissertations, this design model became 

increasingly specific to the architecture which could be implemented under the OKL4 

operating system, as described in section 2.3.1.  The model targeted at the beginning of 

the project was described by Hieb and Graham in [1], as shown in figure 3.1.

Research performed by Graham, Hieb and Patel, among many others (See Section 

2.1)   has  shown  that  the  current  monolithic  kernel   architectures  contain  inherent 

insecurities which cannot be easily mitigated through software.  The above architecture, 

developed by Hieb and Graham is an alternative to the predominant architectures. In this 

new architecture, all components  need not reside in the trusted computing base (TCB). 

The security benefits of such an architecture have been reinforced by Klein, among the 

primary developers of the OKL4 family of operating systems [31], in describing the use 

of a system very similar to this for providing security to embedded devices in a more 
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general sense (not just SCADA systems).

The architecture modeled in figure 3.1 visualizes the software infrastructure of a 

security hardened RTU. There are three isolated components: Network IO, Security, and 

Physical IO.  This architecture decouples principal RTU functions from each other.  The 

Network IO layer  is  part  of  the untrusted computing base (UTCB),  and is  a  generic 

interface  to  the  physical  method  of  communicating  with  the  RTU,  whether  this  is 

industrial Ethernet, RS485, wireless data, or some other medium.  This portion of the 

UTCB is  only capable  of  sending inter-process  communication (IPC) to  the Security 

segment.  There is no direct path of communication or memory manipulation between the 

Network IO and the Physical IO.

The use of a microkernel based operating system opens the possibility of creating 

a trusted computing base (TCB) which can be formally and rigorously verified.   The 

security layer contains all  of these necessary trusted components, including the kernel 

code. The security layer is capable of communicating with both the Network IO and the 

Physical IO.  As a result, this trusted layer must mediate  all communications between 

these two untrusted components.  This layer ensures the integrity of clients across the 

network layer with features such as hashing and handshaking.  The security module also 

ensures that clients posses the appropriate permissions to perform a given action, using 

role based access control.  Although these functions are linked logically, they are, in fact, 

separate;  hashing  and  handshaking  verifies  the  integrity  of  the  communication  path, 

ensuring resistance against threats such as man-in-the-middle and replay attacks, while 

the role based access control layer ensures that the end user is performing appropriate 

23



actions  (a  vendor,  for  example,  cannot  change  set-points,  but  may  be  able  to  view 

operations).  Since the security layer is part of the trusted component of the system, it 

must be fast.  In order to be feasibly verifiable, it must be small.  The security layer must 

be built to facilitate later verification of functionality.

Finally, the physical IO layer consists of software which interfaces with a set of 

external  hardware in  order  to  generate  outputs  and accept  inputs  from the  connected 

control  system.   The  code  to  operate  this  subsystem  is  untrusted,  and  may  only 

communicate with the security layer.  Otherwise, the hardware and functionality of this 

portion is comparable to currently available and legacy commercial RTUs.

This architecture may be realized using the OKL4 operating system described in 

Chapter  2.   As described in  section 2.2.2,  the  OKL4 operating  system makes use of 

memory segments, protection domains, and zones.  These are combined in a logical unit 

called a “cell.”  These cells are logically separate– in fact, during the compilation process, 

they are compiled and linked as though they were  independent programs.  A  utility 

called “Elf Weaver” combines these separate programs with the kernel code to create 

a  bootable system image.   Thus,  when considered with the verification model  of  the 

OKL4 kernel describe in section 2.3.2, we can understand a cell as a realization of the 

kind of separation architecture described above, with the exception of two trusted “cells”– 

in OKL4, the kernel remains in a separate memory space and protection domain.

Each of the segments described above resides in its own cell. The physical IO 

resides in a cell with the remainder of the untrusted computing base.  This includes utility 

functionality,  such  as  hardware  management,  and  debug  interfaces.   Much  of  this 
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functionality is a side-effect of creating a device which must be intricately monitored for 

development reasons.  Security must reside in its own cell to perform trusted IPC with 

network  and  physical  IO.   Network  IO  resides  in  a  third,  separate  cell.   Utility 

functionality,  such  as  hardware  management,  debug  interfaces,  and  test  code  reside 

separate from network IO due to the complexity of the network IO code and the desire to 

keep  possible  bugs  as  deconvolved  as  possible.   This  design  decisions  simplifies 

development, and is otherwise arbitrary.

3.2 Prior Work

This  section  highlights  and  details  some  sections  of  Chapter  II  which  are  of 

particular import to the development of the prototype using the OKL4 operating system, 

based on an architecture described by Hieb and Graham [1].  In 2007, Graham, Hieb and 

Patel investigated the SCADA security issues described previously, and reached a number 

of conclusions regarding possible directions for future research, briefly investigating the 

feasibility  of  minimizing  an  existing  real  time  operating  system  kernel,  developing 

enhanced  SCADA protocols,  and  implementing  role  based  access  control  on  top  of 

existing access control and security-hardening layers [34].  Hieb and Graham continued 

this line of research in 2008, exploring the benefits that an isolation kernel (described 

briefly in 2.3.2) would provide to a security enhanced SCADA system[1].  Importantly, 

they also performed initial experimentation using the OKL4 operating system,  exploring 

the speed of IPC calls on real hardware.  These investigations served as initial steps at 

developing the architecture,  demonstrating that IPC overhead would not be a limiting 

factor  in  development.   Hieb  further  described  the  architecture  modeled  above,  and 
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continued to describe (in great detail) a role based access control system  for SCADA 

systems, providing a framework for a role based access control system suitable for the 

prototype  RTU considered  herein  [35].   A patent  application  has  been  filed  for  this 

technology. [36]

3.3 Isolating Components With Cells And Threads

As mentioned above, there are two primary methods of dividing up the computing 

resources of a system running the OKL4 operating system – cells and threads.  Threads in 

OKL4 are identical to threads in other operating systems.  A program executed as a thread 

shares time on the CPU by well-understood principals of context switching.  A cell, on 

the other hand, is a combination of many other constructs in the OKL4 Operating System. 

“Cell” is a glossary term, and does not actually exist as a programmatic interface in the 

operating system.  A cell is a combination of a memory segment and protection domain, 

within which runs one or more threads.

A memory segment is simply an allocation of virtual memory, carved from the 

larger physical memory of the system.  The address spaces of this virtual memory maps in 

a one-to-one basis with the physical memory, and must be page-aligned with the physical 

memory, but its addressing schema is different.  A protection domain is a set of memory 

segments which are isolated from all other memory segments on the system.  Memory 

segments inside a given protection domain have no way of being accessed from outside, 

and threads executing inside a protection domain have no access to memory segments 

outside their protection domain.  As a general rule, memory segments cannot be mapped 

into  more  than  one  protection  domain.   Although  there  are  exceptions  to  this,  the 
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utilization of these features is not necessary for the completion of this project.

The distinction between physical and virtual memory is important.  In the OKL4 

operating system, all non-kernel operations exist in virtual memory space, which allows 

for  the  levels  of  isolation  which  make  it  possible  to  implement  critical  security 

components.   The hardware utilities  and various low-level  faculties  of  the device are 

accessed using memory-mapped hardware.  The configuration and data registers for these 

various devices reside in physical memory.  This physical memory can be mapped into 

the virtual memory space, and the running program can discover its location at runtime 

without a great deal of trouble.  Unfortunately, the same set of physical memory cannot 

be mapped in a read/write manner to two protection domains, which enforces this verified 

memory segment protection.  As a result, there are some utility functions, such as power 

and clock management, which must reside in a central location.  In the case of functions 

like these, a hardware manager thread is necessary.  This hardware manager responds to 

requests over IPC from other cells, configuring common memory-mapped peripherals, 

and responds when these actions are complete.  Compare this to a traditional (macro) 

kernel in which all driver operations have unfettered access to the  entirety of physical 

memory.

For  the  purpose  of  debugging during  development,  it  is  necessary  to  create  a 

thread with access  to  a common serial  output.   This serial  output  provides  a way to 

display debug messages from multiple cells concurrently.  This debug data can then be 

transmitted through IPC to the serial debug thread, which then utilizes the hardware of 

the device to generate actual output.  Otherwise, the physical serial device would map to a 
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single memory space, limiting the debug output.  This becomes an issue when trying to 

debug IPC communications calls across multiple threads and protection domains.

Threads in OKL4 must execute within the context of a protection domain.  More 

than one thread can exist within a protection domain, and if this is the case, each thread 

has unfettered access to the virtual memory mapped within that protection domain.  From 

3.1, a deliberate decision was made to place utility functionality separate from network 

functionality, in the same cell as the physical IO.  This is partially due to the complexity 

of the network code.  For the development phase of the project, it is desirable to minimize 

the possible source of multiply conflicting, convoluted bugs in the network code.

Threads in the OKL4 operating system can either be declared and initialized at 

compile time, using the elfweaver utility,  or created at  run-time.   Creating threads at 

compile time is  relatively simple.   These threads begin at  the start  of execution,  and 

continue until they terminate themselves.  Capabilities, required to send IPC calls to these 

threads, can be declared at compile time, and assigned to other threads with which they 

must interact.  Unfortunately, there is no built-in manner to spawn, fork, or externally 

terminate new threads of this type.  Run time threads are better suited for applications 

requiring these features.  Run time threads are created by another thread.  This originating 

thread must carve out a memory space for these new threads, and must take care of their  

operation  and  termination.   The  major  down  side  to  this  method  is  the  creation  of 

capabilities, which are required to communicate with the new threads.  Upon starting, 

only  the  originating  thread  has  any  knowledge  of  the  capabilities  required  to 

communicate to these threads.  As a result,  in order for disparate cells and threads to 
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communicate, the originating thread must express this capability through IPC.  As the 

features  of  run  time  threads  were  not  required  for  the  construction  of  the  target 

architecture, they were not used in favor of the easy of compile time threads.

In summary, for the purposes of development, there are three cells implemented in 

the prototype.  The network IO and security cells  run a single thread each, while the 

utility cell operates three threads-- one for network IO, one for hardware management, 

and one for serial debug.  All threads, across all cells run at the same priority level.  These 

threads are context switched in a round-robin fashion, without respect for their  given 

protection domains or memory segments.

3.4 Inter-Cell Communication Using IPC

All communication between  components must occur through IPC, and the IPC 

structures  in  the  OKL4 operating  system are  critical  to  the  implementation  of  more 

complex structures, such as remote procedure call (RPC). The rules of communication 

must be well planned out and understood before development.  Due to the complexity of 

initializing hardware in an operating system which provides such strong protection across 

memory segments, the startup sequence must be planned separate from the steady-state 

IPC methodologies.   There is  a large amount  of synchrony between and among cells 

which must be planned for and understood in order to avoid race conditions which could 

cause the RTU to deadlock, either in operation or during startup.

There are two types of IPC calls in OKL4: blocking and non-blocking.  Blocking 

calls will halt a process until the conditions for sending or receiving a given IPC are met. 

Non-blocking calls will attempt to deliver or receive an IPC message, and if the parter in 
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the communication is not ready, the attempt will fail.   There are two communications 

primitives: send and receive.  In order for a thread to send data to another thread, it must 

have a capability to the target thread.  The capability is an object which can be passed 

from thread to thread, or declared at compile time.  This capability is a combination of 

both the location of the receiving thread, as well as permissions to access this thread.  The 

sending thread may opt to send “reply” capabilities alongside an instance of IPC.  These 

reply capabilities are temporary capabilities to return data to the sending thread.  They are 

invalid after the conclusion of the IPC.

These send and receive primitives combined with the ability  to  transmit  reply 

capabilities can be combined in complex ways in order to achieve the security goals of 

the project.  For the security hardened RTU, only blocking primitives are necessary.  The 

flow of IPC through cells can be modeled as a finite state machine.  Because of this, 

threads have no need to continue operating while they are awaiting a message,

As mentioned above, there are two “time periods” of interest for IPC.  During 

startup,  the hardware manager  must  enable hardware and alert  cells  to the initialized 

hardware in an order which does not halt the system.  Race conditions must be avoided. 

During startup, the communication taking place is as shown in Figure 3.2.
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The  hardware  manager  initializes  hardware  for  serial  debug,  physical  IO,  and 

network IO.  The hardware manager then permanently halts.  Subsequently, the physical 

IO and Network IO communicate with the serial debug thread.  All threads then enter a 

wait  state.   The serial  debug may receive an IPC message from any thread,  and will  

output this message to the terminal.  Blocking “send” calls are used in order to ensure that 

all debug output will be seen.  If a cell cannot deliver its output, it will wait until the 

serial debug is available.  As a side-effect, however, the serial debug must be stable.  Any 

crashes in the serial debug thread will halt  the system.  This ensures that testing and 

debugging remain consistent and simple, but provides a method for halting the system 

abruptly.  In a production device, there would be no serial debug, so this is not a security 

issue.  The serial debug is simply a reality of development.  During steady-state, the chain 
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of IPC events can be modeled as in Figure 3.3.

In  figure  3.1,  a  message  is  delivered  to  the  network  cell,  and  relayed  to  the 

security cell.  The security cell flags this as a critical point, and demands that the request 

be authenticated.  It relays this demand to the network IO layer.  A valid authentication is 

returned  and  verified  by  the  security  cell.   The  queued  operation  is  then  internally 

recalled, and its permissions are checked inside the security cell.  These permissions are 

valid, and the security cell passes the command to the Physical IO layer, which returns 

some data.  This data is then passed through the security layer to the network IO cell for 

relay to the original client.
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Figure 3.4 shows a similar attempt to request some data.  This time, the given 

RBAC credentials  disallow the operation.  As a result,  the security cell replies to the 

network  cell  to  re-enter  its  wait  state,  without  sending a  response.   From these  two 

examples,  it's  very easy to  see the statefullness of  the system.  Figure 3.5 shows all 

possible states.

33

Figure 3.4: IPC from network event to physical IO, given improper  role based 

access control credentials



This IPC ties the handshaking and role based security features together.  All of 

these operations are performed in the security cell, after being received by the network 

cell.

3.5 Security Features

The security hardened prototype will utilize several layers of security which have 

been implemented on devices in the past.  With the ability to place these features inside a 

verified trusted computing base, these features become much more trustworthy.  First, a 

simplified  SCADA  protocol  was developed.  This  protocol reasonably  emulates 

commercial SCADA protocols, allowing for easy expansion with new security features, 
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which can then be tested for security, performance and reliability.  This protocol is used 

internally  and externally.  External transit is provided by the UDP protocol.  A standard 

handshaking authentication method is used to verify the integrity of users attempting to 

use the communication link, and a role base access control layer ensures that they users 

are permitted to perform the actions they are requesting.

3.5.1 A Simplified SCADA Protocol

Modern  SCADA devices  utilize  a  large  number  of  different  communications 

protocols over a large number of different potential communications media.  The RTU 

prototype  will  communicate  solely  over  Ethernet.   In  order  to  test  the  security  and 

performance  of  this  RTU,  a  full  suite  of  SCADA functionality  is  unnecessary,  and 

developmentally  burdensome.   Protocols  like  ModBus  and  DNP3  can  very  quickly 

become  complicated,  and  the  prototype  RTU  will  not  support  the  majority  of  these 

protocols'  features,  in  any case.   For  development  and testing,  a  very basic  SCADA 

protocol is needed.

This  protocol  must   implement  the minimum number of features  necessary to 

properly emulate a typical RTU, and remain extensible for the addition and testing of 

security features.  SCADA operations affect control points, and control points may be 

either  read,  selected,  or  operated  upon.   Modern  SCADA protocols  require  a  select 

followed by an operate (with identical data payloads) in order to alter the setting of a 

given  point.   In  addition  to  this,  we  must  generate  responses  to  read  request,  and 

implement our hashing and handshaking algorithm.  Operate and select operations do not 

require a response.  In order to verify the operation of an operate  or select, the user 
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performs a  read operation.  This write-then-read paradigm is common to many SCADA 

systems,  and  is  not  unique  to  this  prototype.   With  this  description,  our  simplified 

SCADA protocol must implement only five operations.  Protocols such as ModBus and 

DNP3 derive their respective complexities through support for complex addressing, CRC 

and  data  integrity  verifications,  and  standardized  maps  of  points  and  operations  and 

implementations of a variety of  standardized data expression techniques.

In  order  to  implement  the  role  based  access  control  mechanisms described in 

section 3.7, each operation must be associate to a specified user.  Beyond this, the data 

required for an operation is dependent on the operation.  A read operation requires only 

the  point  which  must  be  acted  upon.   A select  or  an  operate  operation,  meanwhile, 

requires  both  a  point  and  data.   Read  responses  include  only  return  data,  without 

notification of which point the read response is for.  Challenge requests include a payload 

of a server nonce, while  challenge responses include a client nonce, as well as a SHA-

256 hash.

For the prototype, the payload size for user identification will be one byte, point 

identification will be one byte, point data will be one byte, nonces will be 4 bytes, and the 

SHA-256 is 32 bytes.  The total size of the packet payloads, as well as operation ID is 

summarized in Table 3-1.
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Table 3.1: Summary of Simplified SCADA Communications Protocol used in RTU Design

Operational Type Operation ID Data

Read Point 0x00 3 bytes

Select Point 0x01 4 bytes

Operate Point 0x02 4 bytes

Demand Challenge-

Response

0x03 4 bytes

Challenge-Response 0x04 36 bytes

Read Response 0x05 4 bytes

The data size indicated above includes the user and point ID bytes, but does not 

include the operation ID byte.

For reading a point, the data format is:

<Operation ID>+<User ID>+<Point ID>,

each a one-byte field.

For select or operate operations, the format is:

<Operation ID>+<User ID>+<Point ID>+<Data>

For initial testing, Select simply operates as a “write” operation, although typical SCADA 

systems require a select followed by an operate, containing identical data.

For demand-response operations, the format is: 

<Operation ID>+<Server Nonce>

with the server nonce being a 4 byte field.

For challenge-response operations, the format is

<Operation ID>+<Client Nonce>+<Hash>
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The client nonce is a four byte field, while the  hash is a four byte field.  Although 

the SHA-256 hash is 32 bytes in length, many commercial SCADA devices compare only 

the first  four bytes for authentication. In this implementation, neither the client nor the 

server require the originating message to be hashed along with the nonce.   This was 

excluded for simple testing and rapid development,  but is a trivial  addition given the 

current state of the code base.

For read response operations, the format is

 <Operation ID>+<User ID>+<Point ID>+<Data>.

In all of the above cases, '+' indicates bit concatenation.  There is no delimiter of 

information, other than the knowledge that each field is a strictly fixed length.

Below is an example of a “Read Response” packet, sent using user ID two, from 

point ID ten:

0x05 0x02 0x0A 0x01

Read User ID Point ID
Returned 

Data

This information will be wrapped in the payload of a standard UDP packet. The 

port 1200 is selected arbitrarily.  UDP is selected due to its simplicity and ubiquity in 

modern Ethernet  networks.   A stateless  UDP engine can be trivially  constructed,  and 

many, many programming languages and development environments include methods for 

interacting with standard UDP packets.  Additionally, these UDP packets are routeable 

across the larger  Internet.
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On the RTU, the code which sends and receives these simplified SCADA packets 

is very simple.  The decision tree for this functionality is shown in Figure 3.6.

As can be seen, there are only a handful of decisions points in the packet reception 

mechanism.  This greatly simplifies the network layer code required.  This decision tree is 

simplified and does not represent the role based access control decisions being made by 

the security layer.  This diagram also does not represent the role the security cell must 

play  in  generating  hashes  and  performing  handshaking.   The  simple  SCADA packet 

reception code does not need any awareness of state in order to perform its duties– it is 

not required to keep track of authentications, points read, or any other state.  For read 
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requests, the RTU will send a response, and allow the client to sort out which packet for 

which response is  directed.   For  handshaking,  the requested operation is  placed on a 

queue, and if the client responds with valid authentication, this action is removed from 

the queue, and placed through the simple SCADA decision tree as though it were any 

other packet.  Failed attempts to authenticate are simply ignored.

3.5.2  User Authentication And Handshaking

The method for determining the authenticity of the clients is a simple challenge-

response  handshake  using  a  pre-shared  secret.   This  is  computationally  simple,  and 

actively used in commercial SCADA devices.  The only prerequisites for this method of 

authentication are the ability to generate random numbers, and the ability to perform a 

SHA-256 hash.  The algorithm itself is trivially simple.

For the purpose of the prototype, it is sufficient to demonstrate that hashing can be 

performed,  and  that  it  is  both  fast  and  reliable.   For  the  prototype,  hashing  is  only 

performed on points which are declared “critical.”  If a critical point is manipulated, an 

authentication  is  demanded  of  the  client,  regardless  of  how  recent  a  previous 

authentication may have occurred.  Future implementations and expansions of this system 

may  consider  more  complex  methods  of  determining  when  a  challenge-response 

handshake should occur, and include features such as caching of credentials.

If  a  critical  point  is  requested,  this  operation is  cached,  and the server  (RTU) 

demands a response from the client. This response includes a nonce generated by the 

server.  The client receives this request, and generates its own nonce.  These values are 

bitwise-concatenated with a pre-shared secret.  A SHA-256 hash is generated on this bit 
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concatenation, and the hash value, along with the client nonce are returned to the server. 

Upon reception, the server verifies the authenticity of the hash, and if the hash is valid, 

pulls the operation off the queue, and executes the operation as though it were a new 

request.  If the hash is invalid, no response is sent, and the RTU re-enters a wait state.

3.5.3  Role Based Access Control

The  role  based  access  control  to  be  implemented  on  this  RTU  prototype  is 

modeled after the access control  system described in Hieb[35].  In order  to facilitate 

prototyping,  this  system has  been simplified from the system Hieb describes.   These 

changes  facilitated  the  rapid  development  of  a  system  which  can  demonstrate  the 

capability of a limited RTU to perform complex security operations using IPC of the sort 

found  in  the  OKL4  operating  system.   The  principal  sacrifice  is  that  of  future 

expandability. Although the role based access control system described herein implements 

most  of  the  features  described  by  Hieb,  they  will  not  be  expandable  without  some 

sacrifice in performance.

There are several object types in this role based access control system.  “User” 

refers to the credentials passed to the RTU and “Points” represent the physical IO to be 

manipulated or read. Users maintain membership to one or more roles, and these roles 

have access to one or more sets of permissions.  A permission is a set consisting of a point 

combined with point access controls.  A point is a physical IO (or abstraction of physical 

IO) whose state may be altered, while a permission represents the actions that may be 

performed on the IO.  In the target implementation, permissions may be read-only access 

or full-access.
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Points have associated point types, which are labels used to more broadly control 

permissions.   Roles  have,  in  addition  to  associated  permissions,  point  type  controls, 

which govern whether or not a role may have access to a given point type regardless of 

permission.  Roles further have point access constraints, which are further restrictions on 

how a role may access a given point.  In the target implementation, only time-of-day and 

day-of-week  point  access  constraints  are  considered,  while  Hieb  describes  further 

restrictions, such as terminal location, among others.

Users have a similar constraint in the form of role access constraints.  Users may 

have restrictions placed on how they may use a particular role to which they are assigned. 

The goal targeted only temporal restrictions, while Hieb further expands on the possible 

implementations of such restrictions.  Permissions in this manner are assigned in a logical 

OR fashion:  If any of the  set of permissions assigned to a user allow an action, this 

action is allowed to occur.  If the action is not allowed to occur, the client is not notified 

of this failure.  Only later reinspection will inform the user that their access permissions 

have been denied.

In  order  to  simplify  development,  roles,  users,  points  and  all  other  controls 

relating to the RBAC feature are hard-coded into the system, and cannot be modified at 

run-time.  Any access constraints which depend on information other than time of day 

have not been designed into this system.  In order to check permissions and easily iterate 

through  sets  of  permissions,  users,  and  points,  many  access  controls  are  stored  as 

bitfields.  This allows the use of native bitwise logic operations in order to determine 

positions.  Since these permissions are permissive by default, their inspection is simple.
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3.6 Design Summary

The  security  hardened  prototype  architecture  makes  use  of  several  security 

features available with a microkernel like OKL4, which provides the ability the separate 

thread  and  memory  spaces.   Figure  3.1  provides  a  high  level  overview  of  this 

architecture, which will be implemented in the OKL4 operating system using thread and 

cells as units of separation between the zones defined in this figure.  These cells will 

consist of a network IO cell, a security cell, and a physical IO cell. The physical IO cell  

will also include all utility functionality which is local to the RTU prototype, including 

debug outputs and hardware management.  This is the bulk of the untrusted computing 

base.   The security  cell  contains  the entirety of  the trusted computing base,  with the 

exception  of  the  operating  system kernel.   This  kernel  is  abstracted  from user-mode 

access,  but  for  architectural  purposes  can  be  visualized  as  a  separate  cell  running  a 

separate  thread.   The remainder  of  the  untrusted  computing  base  lies  in  the  network 

communication cell.   Although this  code is in the UTCB just as the physical IO, the 

network  and  physical  IO  reside  in  different  memory  spaces.   The  only  method  of 

transferring information and messages from physical IO to network IO (and vice versa) is 

through the security cell.  This is where the verifiable security of the prototype RTU is 

defined.  Chapter IV will continue to detail the implementation of the features described 

above.
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CHAPTER  IV

IMPLEMENTATION

This chapter describes the implementation of the design described in Chapter III. 

This  will  include  an  overview of  the  hardware  selected,  and the  OKL4 development 

environment in Section 4.1, a description of the IO hardware and software in Section 4.2, 

and the  necessary implementation of  some utility  functions in  Section  4.3.   Network 

hardware  and  software  is  discussed  in  Section  4.4,  and  finally,  security  software 

descriptions  are  located  in  Section  4.5.   These  subsections  will  briefly  review  the 

architectural choices from Chapter III, then discuss the actual implementation, along with 

any necessary architectural changes.

4.1 Hardware, Build System, And Workflow

The primary hardware platform for this project is the Gumstix Verdex Pro XM4 

COM board.  The  Gumstix  platform is  a  simple,  embedded  computer  module  which 

includes an Intel Xscale PXA microprocessor, 64 megabytes of RAM, and 16 megabytes 

of flash memory. The module also includes  expansion connectors which are used general 

purpose  IO  (GPIO)  and  network  connectivity.  This  module  includes  a  PXA270 chip 

clocked  at  400MHz.  The  PXA270  is  a  32-bit  microcontroller  based  on  the  ARMv5 

architecture. Although dated (from 2007), the processor compares favorably to existing 

RTU devices. Datasheets and application manuals are commonly available from Marvell 

and Intel [37].

The Gumstix Platform was selected for its expandability and compatibility with 
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available OKL4 Distributions, as well as its similarity to existing RTU hardware. The 

OKL4 microkernel is currently targeted towards the cell phone and mobile device market. 

Although the PXA270 was designed principally as a mobile device chip, its specifications 

are not dissimilar from RTUs already on the market. This chip is compatible with both 

Linux and the OKL4 Development Environment,  allowing for testing in  a  real-world 

environment. 

Along with the Gumstix, the  console-VX and  netpro-VX expansion boards are 

used.  The  console-VX  provides  pin  headers  for  all  three  universal  asynchronous 

receiver/transmitters (UART) on the PXA270 Chip,  as well  as pin-headers for Audio, 

inter-IC Bus (I2C), and several GPIOs. The  netpro-VX includes an SMC9118  network 

PHY/MAC interface for network connectivity. 

In order to boot the Gumstix board, a bootloader (Uboot) resides in flash memory. 

The remainder of flash is utilized by the JFFS2 file system.  This file system is designed 

for flash storage, and in the gumstix environment, is pre-loaded with a Linux distribution. 

Uboot executes a startup script, which loads a program image from flash, microSD, or 

over the network into RAM, and then begins execution at that location. RAM begins at 

memory address 0xA2000000 and ends at address 0xA3F00000.  In order to properly 

boot the Gumstix board, an image must be loaded into memory in either ARM ELF or 

Intel Hex format. The factory default bootloader script has been modified for this project 

to load an image over the network, via TFTP, load it into RAM, and execute.

The OKL4 operating system used for this prototype is version 3.0.  The verified 

kernel which branches from the OKL4 project is based on version 3.0 of the operating 
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system.  The operating system is provided as a precompiled ELF file.  The devleopment 

kit includes a C and C++ compiler chain based on GCC.  This GCC compiler is modified 

to cross-compile for the ARM chip on the Gumstix board, and the SDK includes  Make 

files which abstract the inclusion of OKL4 Libraries and ElfWeaver calls. GCC and its 

linker produce output ELF files individually for each cell in the source tree structure. 

Each cell has associated XML files which define characteristics such as default priority, 

heap and stack sizes, and capabilities.  There are further XML files which describe the 

structure of  a complete  project,  and still  more XML files which define the hardware 

available on the development platform.  These XML files are used after the compilation 

process by the ElfWeaver tool.

The operation of the compiler and linker are unremarkable.  The OKL4 libraries 

included make use of basic kernel structures and system calls, and may be compiled into 

each cell independent of the kernel code.  Each cell is compiled as its own individual 

program.  Thus, the compilation tools and methods are independent of the OKL4 

operating system.  It is the ElfWeaver tool which manipulates these compiled ELF files in 

order to create a working OKL4 system. Elfweaver uses the XML files in order to 

determine the manner in which the resulting ELF files must be linked to the kernel. This 

linking takes place in an inside-out order. First, the compiled output files from GCC and 

its linker are combined with the per-cell XML file, relocating the memory space of the 

program, and making note of required cell characteristics such as capabilities, threads, 

memory sections, and other attributes. 

Next, the cells are linked to the kernel, with the kernel getting assigned memory sections 
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with low addresses, and cells coming in above that. Next, Elfweaver takes note of the 

earlier XML file specifications combined with a description of the machine architecture, 

and statically writes kernel memory to inform the kernel thread of the capabilities and 

permissions of each memory space, the location of hardware memory segments, as well 

as starting threads. This is how the final ELF file is generated. 

The  result  of  these  operations  is  a  single  ARM  ELF  file  which  contains  the 

operating system and user code.  This is loaded onto the RTU prototype using the trivial 

file transfer protocol (TFTP)  and  the bootloader mentioned previously.  The code then 

begins immediate execution.   The “debug” kernel mode is  used to provide additional 

information  on the working state of the system.  This includes a kernel debugger which 

can interrupt all running threads to provide state information.  Threads may invoke this 

debugger, which provides a simple mechanism to generate breakpoints while the program 

is running on the prototype hardware.

The prototype RTU must be physically connected to a serial port for debug, and 

utilizes  its  network  connection  for  loading  compiled  code.   In  order  to  facilitate 

development,  a  dedicated  machine  is  used  for  this  serial  debug  interface,  as  well  as 

compiling the code.   This machine also serves as a code repository, allowing multiple 

people  to  seamlessly  contribute  code  to  the  project,  and  synchronizing  development 

across several computers.

The  architecture  description  describes  the  logical  cell  breakdown.   The 

development tree is laid out in a similar fashion: Each cell resides in its own directory, 

with its own Make script and XML ElfWeaver description.   This XML tree is shown in 
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figure 4.1.   This make script is capable of compiling the files within the cell independent 

of  other cells.  Above all these cell directories lies a directory which contains a Make 

script and  a project description XML file.  This Make script recursively calls the Make 

scripts for each cell, then assembled the appropriate ElfWeaver calls, resulting in a single 

output ELF file.

As an example, the cell XML file for the network IO cell is as follows:

<okl4 priority="255" clists="256" file="access" 
kernel_heap="0x400000" mutexes="256" name="access" spaces="64">

<use_device name="serial_dev"/>
<use_device name="timer_dev"/>
<use_device name="cs_dev"/>
<environment>

<entry cap="/security/main" key="SECURITY_CAP"/>
</environment>
<heap size="0x100000"/>
<commandline/>

</okl4>

The first line declares configuration set-points for the OKL4 operating system, such as 

thread priority, heap size, and arbitrary names by which the cell will be referred in the 

Elfweaver utility, and which must correspond to the output ELF file generated by the C 

compiler.  Under this declaration exist other declarations.  Among these, device tags tell 
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the Elfweaver utility to search the machine.xml file for the memory space and interrupts 

which correspond to a given device name, and assign them to virtual memory with the 

cell.   Envrionment entrys with the keyword “cap” indicate capabilities to communicate 

with another cell.  These capabilities are given a location within the build tree (in this 

example, the “main” thread in the “security” cell), and a key to which these capabilities 

can be referred by the running thread.  This is a small example of the sort of declarations 

which can be made within cell-specific XML file.

In order to access specific hardware devices,  the running thread must have an 

awareness  of  how the  device-specific  memory  registers  get  mapped into  the  thread's 

virtual memory.  As code changes, these virtual memory locations may be moved around, 

although pages are always mapped in a one-to-one manner.  Although the start location of 

a given page of memory may change, locations within that page will  retain the same 

offset from the start of the virtualized page.  This code, from the physical IO cell, shows 

how this mapping takes place.

okl4_memsec_t * i2c_memsec;
okl4_env_segment_t * i2c_seg;
okl4_static_memsec_t * i2c_static_memsec;
okl4_static_memsec_attr_t i2c_static_memsec_attr;
okl4_virtmem_item_t i2c_virtmem;

okl4_init_thread(); //this sets up okl4 lib, call for each thread
//   may not need this due to weaver call 
L4_KDB_SetThreadName(L4_Myself(), "I2C");

i2c_seg=okl4_env_get_segment("MAIN_I2C_MEM0");
assert(i2c_seg);

okl4_static_memsec_attr_init(&i2c_static_memsec_attr);

okl4_static_memsec_attr_setsegment(&i2c_static_memsec_attr,i2c_se
g);

i2c_static_memsec=malloc(OKL4_STATIC_MEMSEC_SIZE_ATTR(&i2c_static
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_memsec_attr));
assert(i2c_static_memsec);

okl4_static_memsec_init(i2c_static_memsec,&i2c_static_memsec_attr
);

i2c_memsec=okl4_static_memsec_getmemsec(i2c_static_memsec);

i2c_virtmem=okl4_memsec_getrange(i2c_memsec);

//Need these offsets, since OKL4 Page-aligns everything to the 
nearest
//Smallest page size (which is 0x1000).
IBMR = okl4_range_item_getbase(&i2c_virtmem)+ (okl4_word_t)0x680;
IDBR = okl4_range_item_getbase(&i2c_virtmem) + 
(okl4_word_t)0x688;
ICR = okl4_range_item_getbase(&i2c_virtmem) + (okl4_word_t)0x690;
ISR = okl4_range_item_getbase(&i2c_virtmem) + (okl4_word_t)0x698;
ISAR = okl4_range_item_getbase(&i2c_virtmem) + 
(okl4_word_t)0x6A0;

In the last block of code, virtual memory is assigned to global variables which represent 

device memory registers.  These are declared by finding a base memory location from the 

given virtual memory object, and applying an offset which is determined by the specific 

device, and can be found in the data sheet for the processor.  This process is repeated for 

each hardware device which a cell must implement.

4.2 IO Hardware And Software

While  the  Gumstix  is  a  powerful  and  versatile  computing  platform,  it  is  not 

suitable for directly generating the sort of digital and analog output typical of SCADA 

systems.  For this, the project requires additional hardware and interfacing software.  The 

existing digital IO utilizes 3.3v logic levels with no isolation.  With the exception of a 

sound  driver,  the  Gumstix  has  no  analog  operating  capability.   A survey  of  existing 

commercial RTUs shows a number of isolated nine volt digital IO, as well as analog in 

and analog out.  In order to safely generate this output, additional hardware is necessary.
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In order to provide flexibility in the selection of components, as well as reduce 

possible avenues of catastrophic failure, an I2C-based IO system was devised. The I2C 

bus is an Inter-IC communication bus, with many thousands of available peripherals in 

many thousands of configurations. The bus has a maximum speed of 400KHz, and can 

support up to 127 slave devices. Using an I2C based input/output system for the project 

had  multiple  advantages.  Changing  the  specifications  of  the  IO  no  longer  required 

retooling of complex analog components, and the PXA270. Rather, a cheap commodity 

IC could  be  replaced and some minor  code changes  made.  Furthermore,  GPIO were 

conserved, and the risk of destroying the PXA270 is greatly reduced as a result of placing 

the I2C chips between the PXA and the field components.

This  also  allows  for  the  simple  isolation  of  IO  software.  All  built-in  GPIO, 

including the IRQ lines, and GPIO function registers, exist in the same memory space. As 

a  result,  only  a  single  OKL4  cell  may  have  access  to  these  functions.  This  is  a 

disadvantage, as many hardware devices require interaction with these registers. The net 

result  would  be  requiring  the  IO  code  to  exist  in  the  same  execution  space  as  the 

utility/hardware manager.  The I2C memory space, however, exists as its own page. As a 

result,  the  architecture  of  the  prototype  as-written  can  more  closely  match  the  target 

architecture in meeting segmentation goals, allowing for a more verifiably secure device.

All  development and hardware build-out has been performed on a breadboard. 

Initial development of the I2C hardware was tested with an Arduino Microprocessing 

Environment. The Arduino is a simple, easy-to-use microcontroller development kit, with 

a simplified IDE. Although this device primarily targets the hobbyist market, it was useful 
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in this case to get development started quickly. Without a complex understanding of the 

OKL4  operating  system,  and  the  PXA270  chip,  the  IO  breakout  board  could  be 

completed and tested. The code generated to test the devices on this breadboard greatly 

sped up the process of transferring the IO code to the PXA platform.

The project as-built has eight analog inputs, two analog outputs, and eight digital 

IO spread across three chips. Without modification, all of these chips operate at the 3.3 

volts provided by the PXA270 and the Console-VX breakout board. The Serial Data and 

Serial Clock lines of the I2C bus must be pulled to a high logic level. Nominally, 4.7 

kOhm resistors are used. Steps must also be taken to minimize bus capacitance. With 

another layer of signal conditioning, these I/O can be easily converted into the 0-9v/0-

20mA signals needed for interaction with control devices. The chips were selected for 

their speed, accuracy, and availability. The digital IO chip used the Microchip 

MCP23009. This chip provides 8 GPIO at up to 400KHz.  The pinout of this chip is 

shown in figure 4.2
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The analog output chips are both Microchip MCP4725.  Two are included, each  provides 

a single 12-bit DAC. The output is provided by a high-speed, high-accuracy resistor 

ladder.  The pinout of this chip is shown in figure 4.3.

The analog input chip  is the Analog Devices AD7997. This chip provides eight 10-bit 

analog inputs.  The pinout of this component is shown in figure 4.4.

These components are mounted on a breadboard, along with appropriate external 

passive  components  (such  as  decoupling  capacitors  and  pull  up  resistors).   This 

breadboard is connected to the console-VX breakout board, which includes standard pin 

headers for the I2C bus, as well as serial outputs.  The circuit diagram of all IO hardware 

is shown in figure 4.5.
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Figure 4.4: Pinout of the AD7997 Analog Input IC.



As mentioned earlier, the bit-level interfacing for the IO hardware was initially 

developed using a simple 8-bit microcontroller platform.  Transferring this to the Gumstix 

required driver code for the I2C hardware of the Gumstix.  This peripheral device has two 

main operating modes: buffered and unbuffered.  While buffered mode provides greater 

reliability  in  an  environment  with  many  sensors  and  devices  operating  in  a  highly 
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threaded environment, unbuffered mode provides more direct access to the hardware.  In 

this mode, a single byte is loaded into a transmit register, the appropriate configuration 

bits are set, and the byte is shifted onto the communication media.  The configuration 

register is polled to determine the transmission status of the data.  In the case of all the 

hardware described above, no data transmission requires more than three bytes of data, to 

either receive or transmit a given piece of data.

The I2C bus operates a clock speed for 400khz, with a single acknowledge bit to 

each byte of data, and a single address byte for each transmission of data.  This results in 

a maximal channel bandwidth of 44 kilobits per second. For the purpose of the prototype, 

this is an acceptable method for generating IO.  

The driving software for the I2C peripheral controller was simply generated.  The 

major hurdle through this part of development was the discovery of clock distribution and 

power saving hardware within the Gumstix processor.  This hardware shut down non-

critical systems by default in order to save power.  This was only discovered after sifting 

through the Linux driver for the I2C peripheral on the Gumstix board.  The functionality 

required to  initialize the I2C peripheral was added to the  utility functions described in 

Section 4.3.

4.3 Utility Functionality

For the purposes of development, utility functionality includes any functionality 

which  is  not  specifically  related  to  the  task  of  accepting  control  input  from  a 

communication device (in this case, Ethernet), and generating output through a security 

layer.  The OKL4 microkernel takes care of the large part of this debug functionality. 
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Unfortunately, some additional features are required specific to this hardware and target 

architecture  which  necessitate  additional  utility  threads.   During  development,  these 

threads consist of a hardware manager, and a serial debug thread.

4.3.1 Hardware Management

During the architectural planning phase, it was discovered that the memory layout 

of the Gumstix processor would require a hardware manager in order to facilitate the 

configuration of  various peripherals on the gumstix board, including the I2C hardware, 

the network hardware, timer functionality, and serial ports.  This could not be done by the 

individual cells due to the complexities of mapping memory into each cell on a read/write 

basis.  Such a mapping is not only difficult to implement under OKL4, but it undermines 

the principals of separation which allow such a device to remain secure.  The mechanisms 

of IPC within the OKL4 operating system allow us operate this hardware from a separate 

thread and memory space.  The original design placed the hardware management thread 

within its own cell,  for even stronger segmentation.   Unfortunately,  bugs in the build 

system rendered  this  solution  untenable.   The  total  number  of  cells  in  the  operating 

environment is limited by errors in the memory allocation subsystem of the Elfweaver 

program.  As a result, the hardware management functionality is placed in the untrusted 

computing base, in the same memory space as the physical IO.  This is not a critical 

architectural change, and does not affect the security or performance features of the RTU. 

The IPC calls required are abstracted by the libraries.  The function call do not behave 

differently based on the locality of the memory space to which the communication is 

destined.
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Thus,  the  operation  and  implementation  of  the  hardware  management  cell  is 

simple.  The hardware manager alters some configuration registers according to the needs 

of  the  remote  cell.   This  alteration  is  statically  defined– the  cell  which  requires  this 

notification cannot request specific changes in system state.  The remote threads simply 

wait until they are given a message.  This message is sent after all hardware has been 

initialized.  In reality, these messages are not sent concurrently, and if they are not sent in 

a specifically calculated order, race conditions could result.  For prototyping purposes, 

these race conditions are avoided by inserting calculated execution delays prior to thread 

operation.  This allows for simple insertion and removal of test frameworks.

4.3.2. Serial Debug

The need for serial debug was immediately apparent after some initial tests and 

research  into  the  operation  of  the  OKL4 microkernel.   The  existing  kernel  debugger 

operated alongside the stdout structure in the development environment.  This required 

the assignment of a serial device to a specific and single cell.  Although this is useful for 

debugging  a  single  thread,  in  many  instances  the  interaction  of  threads  and  the 

communications between them was the interesting subject of debugging.   In order to 

generate usefully verbose output from more than one cell, messages would be passed to a 

central thread which would implement and use the serial device.  IPC calls will pass the 

desired ASCII data to the serial debug cell, which will be printed to the terminal, along 

with the originating cell name.

The  implementation  of  such functionality  is  simple.   ASCII  message  must  fit 

within a single IPC call, and are thus limited to approximately 160 bytes.  The client 
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thread must first call an initialization function which declares the cell's name in a human 

readable format.  A new function, lprintf, is written which implements vnsprintf 

to generate a string output based on a variable argument input.  This output byte string is 

then passed to the serial debug cell.  The serial debug cell receives this communication, 

and displays the message along with the previously declared thread name.

From the client cell, the calls are blocking.  As a result, output to the debug cell is 

guaranteed.  If the debug cell is in the process of printing data from another thread, the 

second thread simply waits until the debug cell is able to process the request.  While this 

results in decreased performance for cells printing data, this is not critical.  An operational 

device would not include such debug functionality.

4.4 Network IO

Network IO is a critical component of the RTU, providing greater connectivity 

which allows for the demonstration of the security and performance capabilities described 

herein.  The Gumstix board includes a network device based on the SMC9118 chipset. 

This chipset provides access to the physical and MAC network layers.  All other layers of 

communication must be implemented in software.  This network device is designed for 

high throughput performance in a  monolithic kernel  operating system such as real-time 

Linux.  As a result, the hardware includes faculties for deep packet buffers and interrupt 

based  functionality.   For  the  development  of  the  prototype,  these  high  performance 

features  are  toilsome  rather  than  helpful.   Unfortunately,  the  existing  device  drivers 

implement the complete feature set of capability included for this hardware.

In order to boost progress, the least comprehensive drivers available were used in 
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the development of the RTU software.  These drivers are derived from a dated version of 

the  Uboot  bootloader.   This  program is  normally  used  as  a  minimal  bootloader  for 

embedded systems.  In fact, the Gumstix itself loads boot code from a newer version of 

this software package.  This device driver is neatly stratified into layers which support 

raw Ethernet frames, and higher level program structures which implement TCP/IP, UDP 

and other standard protocols.  This is beneficial to development of the prototype RTU, as 

we have principal need of a driver stack which implements hardware drivers to send and 

receive Ethernet frames.

Although  the  uboot  drivers  operate  in  privileged  mode  in  their  native 

environment,  the  page  structure  of  the  physical  memory  associate  with  the  network 

device allows seamless virtualization of the physical memory with minimal modification. 

This  memory becomes an offset  subsection  inside the  thread's  virtual  memory space. 

Other changes are more endemic to the structure of the driver.  The uboot code operates 

in an interrupt driven mode, and maintains a sense of statefulness between packets.  In 

order to minimize points of failure while modifying the driver, both of these features are 

undesirable.  It is necessary to remove the interrupt drive structures, and circumvent the 

packet buffers built into the driver code.  This results in no net performance detriment 

when implementing the simplified SCADA protocol described in Section 3.4, as the data 

throughput during testing is not large enough to necessitate such buffers.

In order to change from interrupt driven mode to polled mode, each piece of code 

which  would  block  for  an  impending  interrupt  would  instead  inspect  configuration 

registers in an endless loop.  Throughout these changes, it is necessary to remain vigilant 
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of memory which must be declared volatile.  In order to circumvent the packet buffers, 

the  packet  reception  code,  which  would  rotate  through  these  memory  locations  in  a 

round-robin fashion instead simply deposits all data in the first buffer.  Data must be read 

from  this  buffer  as  soon  as  it  is  made  available.  This  is  not  appropriate  for  high-

throughput links, but this has no effect on the performance of the prototype RTU.

Following these modifications, it  was possible to send and receive raw unicast 

Ethernet frames. In order to interface with more complex systems, some basic network 

layers must be implemented at a higher level.  In order to establish socket connections 

with  Windows  and  Linux  machines,  it  is  necessary  to  implement  address  resolution 

protocol (ARP), a standard protocol which allows IP addresses to be associate with MAC 

addresses in the link-local context.  In order to deliver data in a more standards compliant 

manner, UDP is preferred due to the simplicity of implementation.

The micro-IP project is a comprehensive source of networking code designed for 

small real-time systems.  The basic micro-IP stack includes an implementation of ARP, 

Ping and UDP.  With careful efforts, this stack was modified to operate within the OKL4 

operating system, utilizing the send and receive primitives of the polled-mode network 

driver.  Unfortunately, the network driver as-implemented does not support addressing by 

means of multicast MAC addresses.  In order to reduce network traffic on large local area 

networks, many implementations of ARP will only request responses via a specified local 

multicast address.  As a result, the prototype RTU cannot respond to ARP request of this 

nature.  In order to circumvent this issue, the prototype generates gratuitous, unrequested 

ARP responses.  The responses are discovered by the link-local network devices, and 
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retained for a short period of time (5-15 minutes).  The UDP implementation does not pay 

attention to checksum or header information, excepting that all data must fit within a 

single Ethernet frame (including IP overhead).

Once a packet is received by the prototype RTU, it is inspected for utility.  If it is 

an ARP or a Ping packet, it is immediately acted upon, and the network IO thread reenters 

a packet wait state.  If the packet is UDP, it must be addressed to the correct port (1200, 

chosen arbitrarily, from Section 3.4).  User code then inspect the packet for the proper 

formatting, according to the simple SCADA protocol specification in Section 3.4.  If the 

request is properly formatted, the packet is passed up to security code as IPC.  Security 

code processes this request, and informs the network code of the proper response.  If the 

proper response if no response, the network code again enters a wait state.  If the proper 

response is a packet, the packet is generated and transmitted.  The UDP layer generates 

the UDP and IP header, as well as any necessary checksums.

4.5 Security Cell

The Security Cell  is the only portion of code which may transmit information 

between the physical IO and the network IO.  This layer must ensure that the network IO 

can be trusted, and is authorized to perform as commanded.  This layer is the only portion 

of code which must be trusted to some degree.  All other code (with the exception of the 

kernel) may be untrusted.  Furthermore, operations performed by SCADA systems are 

time  sensitive.   While  the  project  need  not  conform  to  strictly  deterministic  timing 

requirements, the performance must not be unsuitable for any SCADA application.  The 

security cell must therefore be designed and written with an eye towards transparency, 
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verifiability, and speed.  In further pursuit of these goals, the security cell maintains no 

permissions to any hardware faculties, apart from RAM. In all cases, less code is better 

than more code.

Aside from passing message between the physical and network IO, the security 

cell has two main functions: performing the necessary network authentication required to 

trust the client messages, and perform role based access control to ensure that the remote 

user has permission to perform the operations desired.  While these two functionalities 

are related, they are functionally independent.  As implemented, all functions are highly 

layered, with data passing between layers, allowing additional functionality, or alteration 

of functionality at every level.

Data enters the security cell through the network IO cell.  The network IO cell 

delivers the simple SCADA contents of the incoming packet to the security cell in an IPC 

message.  If the security cell  is currently preoccupied processing another request, the 

incoming request is denied.  No response is sent to the remote machine.  This minimizes 

the amount of time spent in a state which cannot receive packets.  This is a deliberate 

decision to mitigate the risk of denial of service attacks.  The security cell firsts passes 

this  message  into  a  layer  which  determines  whether  it  is  necessary  to  demand  an 

authentication handshake with the client.  Currently, necessity is determined based on a 

set list of “critical points.”  If any user attempts to perform any operation on a critical 

point,  handshaking  authentication  is  demanded.   This  logic  is  easily  expandable  to 

include other system states.  If this handshaking is necessary, the operation is placed on a 

one-deep  queue,  and  the  process  of  authenticating  the  client  is  performed.   If  this 
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handshaking  is  performed  successfully,  the  operation  is  passed  up  to  the  role  based 

authentication layer.  If handshaking is unsuccessful, the operation is not passed up.

Next, if authentication is successful, or no authentication is necessary, the packet 

is passed up to the role based authentication layer.  This consists of a single monolithic 

function which compares the desired operation and associate user, combined with current 

system state, with the role based authentication policy.  If this operation is allowed by role 

based authentication controls, then it is passed to the physical IO cell.  If the operation 

necessitates a response, the security cell waits for the response, and passes it back to the 

network IO cell.  This is the entire operation  of the security cell.

If handshaking is necessary, the operation is placed on a one-deep queue.  The 

security cell then generates a server nonce value.  This nonce value is transmitted to the 

network IO cell.  The network IO cell formats this into a demand-response packet, and 

transmits to the client.  The client must generate its own nonce, and perform a SHA-256 

hash of the server nonce, the client nonce, and a pre-shared secret.  The client nonce and 

the first 4 bytes of the calculated SHA-256 hash are transmitted back to the server.  Upon 

reception, the network IO cell transmits this information to the security cell.  The security 

cell then generates its own SHA-256 hash based on server nonce, client nonce, and pre-

shared secret.  If the first 4 bytes are identical the authentication is successful and the 

queued packet is passed to the role based authentication layer.  If the authentication is not 

successful, the queued operation is simply ignored.  No response is sent to the client 

regarding the success or failure of the operation.

The next step taken by the prospective operation is then subject to the role based 
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access  control  layer.   The role  based access controls  are  programmed statically  (hard 

coded) for simplicity  and speed.  The functions which make use of these controls are 

agnostic to the source of access control data.  Expanding on the descriptions from section 

3.7,  points  represent  physical  IO  or  system state.   Points  have  a  unique  ID,  and an 

associated point type.  This point type is an arbitrary descriptor with no programmatic 

meaning.  Permissions are a combination of a point and an operation.  Operations are 

coded as bit fields in order to allow easy inspection by logic operations.  (For example, 

read is 0x01,  operate is 0x02  and select is 0x04.  A logical AND operation can easily 

mask out desired operations.)

Roles are buit of permissions, combined with point type controls, and permission 

access  constraints,  along with a  unique  role  ID.   Point  type  controls  exist  as  unique 

bitmasks, similar to operations within permissions.  These point types indicated which 

points may be manipulated, regardless of permissions.  For example, a role might have 

permission to read and operate on point three, but point three is of point type two, and 

this role does not have access to point type two.  As a result, no operations are allowed,  

despite  permissions.   This  allows  for  larger  redefinition  of  points  without  altering 

individual  permissions.   Permission  access  constraints  are  descriptors  which  consider 

system state when allowing a role access to its permissions.  Although Hieb's description 

of  an  RTU  based  RBAC  configuration  includes  consideration  for  many  types  of 

permission access constraints,  the prototype RTU only considers constraints  based on 

time of day and day of week.  Hieb also adds constraints based on location within factory, 

location of terminal, and the data payload of the operation.
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Users are the highest level construct in this hierarchy.  Users contain information 

about roles, as well as unique pre-shared secrets (used in the authentication step described 

above), and permission access constraints.  Role access constraints are logically identical 

to the permission access constraints described above, but instead  limit a users ability to 

access roles.  Role ID numbers are assigned in a bitmask fashion, as described above.  As 

a result, a user may have access to multiple roles.  If any single role gives a user access to  

a point, the user is allowed to perform the permitted operation on the given point, even if 

another role would result in  failed permissions.

In order to determine access for a given incoming operation, access controls are 

inspected in order of granularity.  First, the incoming user is inspected for membership to 

any role.  If the user has an associated role, this role is inspected for access to the given 

point.  The role is then inspected for point type access.  If the role has access to the given  

point type, its associated permission is inspected for access to the desired operation.  If 

the  permission  has  access  to  the  desired  operation,  role  access  constraints  are  then 

inspected.  If no role access constraint prevents  access, permission access constraints are 

inspected.  If no permission access constrains prevent access, the operation is allowed to 

proceed. Failures at any level in this hierarchy prevent continuation into higher levels of 

inspection.   As a result,  failed access is the fastest  possible operation.   This prevents 

bogus requests from occupying too much processing time in the security cell.

If  permission is  granted,  the  data  is  then  passed  into  the  physical  IO cell  for 

further processing.  If permission is not granted, the security cell and network cell re-

enter a wait state, and no communication is sent to the client.
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CHAPTER V

PERFORMANCE ANALYSIS

After implementing the basic role based access controls, testing was carried out in 

order  to  determine  the  performance  overhead of  the  implementation  of  such  an 

architecture.   This  testing  provides  a  baseline  level  of  performance  which  could  be 

improved and optimized.  The intent was to develop an understanding of the performance 

of a device which security enhancements based on the isolation of threads and memory 

spaces.  Section 5.1 will provide and overview of the test goals and constraints, Section 

5.2 will  describe the test   methodologies,  Section 5.3 will  review initial  performance 

tests,  and  Section  5.4  will  detail  the  performance  testing  of  the  entire  software 

configuration.

5.1 Test Goals And Constraints

This performance testing  was designed to provide an overview of the overhead 

that should be expected when implementing the security architecture as built.  It was not 

intended to certify or verify the prototype or the architecture's suitability for a specific 

control system application.

In general, it is desirable to spend a minimum amount of time performing security 

operations.  It is not so critical for timing to remain consistent across points.  It is also not 

critical  for  all  points  to  remain  constant  in  response  time.   Initial  performance 

measurements  were taken between the network IO cell and the physical IO cell, with a 

dummy cell in the middle, playing the role of  the security cell.  This provides a baseline 
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level of performance which will allow for insight into the specific time overhead of the 

security operations.  In this initial testing, the dummy “security” cell merely passes the 

messages on to the physical IO cell, without any modification or inspection.  The time 

overhead required for this operation consists of the time required to inspect the incoming 

packet, pass the data to the security cell via IPC, combined with the time required to pass 

this IPC through the security cell, to physical IO, and for the physical IO to return via the 

same path.  Testing for this phase measured performance based on digital operation, an 

analog read,  or  and analog write,  due to the differing amounts  of data,  and different 

software  drivers  required  to  manipulate  each of  these  physical  IO components.   The 

SCADA protocol described in Chapter IV was further simplified in order to eliminate as 

many variables as possible.  Messages were injected into raw Ethernet packets, without 

the overhead of a UDP protocol stack.  For testing, the RTU did not perform verification 

or inspection of packet contents.

Further testing probed the performance penalties imposed by the SCADA protocol 

processing and security features.  These measurements focused primarily on the end-to-

end performance of the device, without consideration for outside factors such as client 

code, or network conditions.  The important timing data is the time between the reception 

of a request and the response sent.  Testing for this phase will cover a broad region of 

possibilities, in order to explore possible bottlenecks.  Considerations were made for the 

acquisition of time data for the challenge-handshake authentication, as well as the role 

based access control.  Due to the nature of the RBAC algorithm used for the prototype 

RTU, different points respond in differing amounts of time depending on which user and 
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which role  is  accessing  the  given point.   The  timing  data  for  failed  requests  is also 

considered.

5.2 Test Methodologies

Performance testing as  described above takes place within the software of  the 

RTU.  In order to generate this timing data, a stable time base which remains consistent 

across cells will be required.  The Gumstix processor has multiple counter peripherals. 

The OKL4 operating system makes use of one of these timing  peripherals in order to 

handle  operating  system  tasks  such  as  context  switches  and  IPC.   The  other  timer 

peripheral  is  unused.   In  order  to  track  timing  across  multiple  cells  and  in  multiple 

situations,  the  memory  space  assigned  to  this  timer  peripheral  must  be  mapped  into 

multiple cells simultaneously.  This is impossible in to do if both cells must have read-

write access to the memory segment in question.  Fortunately, it is possible to map the 

same memory segment into a single cell in a read-only fashion.  In order to make use of 

the timer, it is only necessary to read the current state of the timer.  Although other timer 

features are useful, for the purposes of generating performance results, this will suffice. 

The remaining timer is configured by the hardware manager as a 3.25 MHz free-

running 32-bit counter.  The counter timebase is generated from the main CPU clock, 

which is driven by a 13MHz crystal oscillator, which is fed into a PLL circuit which 

multiplies the input frequency to a CPU clock of 416 MHz.  The total error in this system 

is +/- 50PPM, amounting to +/- 50 microseconds over a one second measurement. A 3.25 

MHz  free-running  counter  which  increments  a  32-bit  register  results  in  a  maximum 

timebase of approximately 22 minutes without overflowing.  There is a slight chance of 
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overflow  when  simply  observing   the  before-and-after  state  of  the  counter.   As  the 

timebase of measurement  is  very small  compared to the full  range of measurements, 

overrun data will appear be calculated as negative.  These negative measurements will 

simply be discarded if they appear.

A single  inline  function  was written  to  make  note  of  the  timer  value  at  the 

beginning and end of the testing period. This inline function simply writes the value of 

the timer to a local variable.  After the timer is read, the amount of time can be calculated  

without worry of altering the results.  Creating this function as a C Code inline insures 

that it is compiled without requiring the use of the stack pointer, reducing the required 

CPU overhead.   In  the  ARM architecture,  this  function  compiles  to   three  assembly 

instructions, requiring 12 cycles of execution at 400 MHz.  This is below the minimum 

time increment detectable on the prototype RTU.

During the testing process, all serial output was disabled.  The design of the serial 

output in both the kernel debugger, as well as the included serial debug cell require bits to 

be  loaded sequentially  into a shift register.  As a result, generating serial IO requires a 

large number of CPU cycles, because the speed of serial output is a mere 19200 bits per 

second.  Additionally, it is necessary for any non-running tasks to cede processing time as 

early as possible.  For example, the hardware management cell should cease execution 

immediately following the configuration of peripherals. Failure to cede unused CPU time 

to  time-critical  processes  could  lead  to  as  much  as  a  third  of  the  CPU  time  doing 

absolutely nothing.  In implementation, C preprocessor defines are used to enable and 

disable these features at compile time, as this code is necessary for debugging.
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Initial  performance  test  measured the  performance  from  the  reception  of  an 

incoming packet to the response packet.  This considers the time spent reading the packet, 

sending  the  message  through  two  IPC  links,  generating  the  appropriate  IO,  and 

responding.  This provided a baseline level of performance for I2C IO operations, as well 

as IPC messages between cells.

Additional performance data was measured from the reception of a packet to the 

response packet.  This  considers the decoding of the UDP payload, IPC between cells, 

security operations, and generating IO.  This  was performed using a set of test users. 

These users have access to between zero and two simultaneous roles, and have different 

associated role  and  permission  access  constraints.   Performance  of the  handshaking 

algorithm was measured  as well.  For handshaking, only the time spend processing the 

request on the RTU  was considered.   The time required for the client to generate  an 

appropriate response is not considered as part  of a performance test  for the prototype 

RTU.

5.3 Initial Performance Measurements

Hieb showed that performance could be as good as 65 microseconds for an IPC 

request.[35]  This high level of IPC performance on a similar platform implies that it 

should not be impossible to implement an RTU using verified IPC calls of such speed. 

Hieb's example, however, was reduced in scope and complexity compared to what would 

be required for a complete RTU.  In order to properly simulate the calls necessary to 

implement a functional RTU prototype, IPC is routed through multiple cells, and used to 

generate a physical IO response before responding to the original cell.
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For the purposes of initial performance measurement, IPC was routed from the 

network IO cell, through a dummy cell, into the physical IO cell.  During this test, the 

performance  of  security  algorithms  was  not  considered.   This   test  displayed  the 

performance of the OKL4 operating system in an architecture similar to that defined in 

Chapter  3,  establishing  a  baseline of  performance on top  of  which security  could be 

added.

The IPC message passing is illustrated in Figure 5.1.

Initial results  were  several  orders  of  magnitude  different from  the  results 

discovered by Hieb in 2008.  The time required by the IPC routines (represented in figure 

5.1  as  t 1 and  t 3 )  consists  of  95-98  percent  of  the  total  time  required  for  the 

operation.   This  was suspicious,  as  the  complexity  of  the  software  tested  was not 

significantly greater than that tested by Hieb in 2008 [35].  Investigation provided a great 

deal of insight into the operation of the OKL4 operating system, and revealed that these 
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performance measures were invalid.  An errant thread (operating the hardware manager, 

in this case) failed to cede its CPU time after its critical operations had been completed, 

resulting in large delays while the hardware manager utilized the CPU by idling.  Fixing 

this issue required major changes in the architecture of the utility functionality.  These 

changes are reflected by the results in Table 5.1

Table 5.1: IPC Performance measurements

Metric Analog Read 

Performance

Analog Write 

Performance

Digital Read-Write 

Performance

Value Units Value Units Value Units

I2C + 

IPC

Mean Time 533.65 µs 334.39 µs 441.66 µs

St. Deviation 3.12 µs 2.41 µs 3.03 µs

N 999 999 999

Max 553.85 µs 344.92 µs 458.77 µs

Min 528.92 µs 329.75 µs 436.62 µs

I2C

Mean Time 503.46 µs 304.24 µs 411.39 µs

St. Deviation 2.88 µs 2.32 µs 2.58 µs

N 999 999 999

Max 520.92 µs 314.15 µs 421.85 µs

Min 499.69 µs 300.31 µs 407.38 µs

IPC 

Overhead

5.66% 9.02% 6.86%

With the removal  of the errant  thread,  which utilized a  large number of CPU 

cycles, the IPC performance was vastly improved, with round-trip results on the order of 

30 µs.  Considering the time required to generate the physical IO, IPC overhead accounts 
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for a mere five to ten percent of total required overhead.  This performance is well within 

the time performance requirements of many SCADA system applications.

5.4 Security Feature Performance Measurements

Following the initial performance measurements, which show the capabilities of 

the OKL4 operating system in the context of the target architecture, the security layer was 

developed  and  inserter  between  the  network  IO  and  the  physical  IO.   Although  the 

security  layer  is  designed  to  minimize  performance  penalties,  the  many  checks  and 

parsing layers imposed by the system as developed in chapter IV imparts a delay in the 

passing of messages.  It should be noted that the performance results described herein do 

not include any amount of optimization beyond what is described in chapter 4.  In order 

to gain adequate insight into the operation of this cell, several outside cases were tested.

The testing is performed in the same manner as described in figure 5.1, with the 

dummy cell replaced by the actual security code.  The communications which take place 

between the network IO, security, and physical IO processes is described more fully in 

Chapter III.  The performance measurement is taken from the moment of packet receipt to 

the moment of reply packet transmission.  If no packet is to be transmitted to the remote 

host, the end point of time measurement is taken as the moment the network IO cell re-

enters  a  wait  state,  awaiting  the  reception  of  new  packets.   This  performance 

measurement  considers the  overhead  of  parsing  and  generating  UDP  packets, 

disassembling  the  data  payload  and  forwarding  the  message  to  the  security  layer, 

performing  any  necessary  security  operations,  generating  the  physical  IO  and/or 

generating a response.  This method of testing deconvolutes the potential network delays 
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from the performance of the RTU hardware.

Four test cases are used in this test measurement.  User  one is used for the test 

cases involving operations which are permitted to occur.  Due to the ordering of roles and 

users within the security data structures, user  one must undergo the maximal possible 

number of inspections and iterations in order to generate a “permission granted” response. 

For tests involving operations which are not permitted, user five is utilized.  User fivve 

has no permissions to any point or operation, and due to its placement in the security data 

structures, undergoes the maximal possible number of inspections and iterations for an 

operation which is not permitted.

The test cases used are user one reading and writing to point one, user one reading 

point  two,  and user  five reading point  one.   Point  one  does  not  require  handshaking 

authentication,  and  is  placed  as  an  outside  case  among  point  which  do  not  require 

handshaking authentication, while point two is an outside case of points which do require 

handshaking authentication.  In order to properly test the time required to generate and 

verify a challenge-handshake demand and response conversation, the time required from 

the original request to the authentication demand is summed with the time required from 

the reception of the response to the transmission of the operation response.  The removes 

from consideration  the  amount  of  time required  for  the  client  to  receive  a  challenge 

request and reply appropriately.
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Table 5.2: Performance Summary of Security Operations

User One, 

Point One, 

Read Units

User One, 

Point One, 

Write Units

User One, 

Point Two, 

Read Units

User Five, 

Point One, 

Read Units

Average 44.98 ms 44.99 ms 67.34 ms 22.36 ms

St. Deviation 0.35 ms 0.33 ms 0.33 ms 0.28 ms

N 1000 1000 1000 1000

Min 45.22 ms 45.23 ms 67.852 ms 22.54 ms

Max 40.49 ms 43.09 ms 66.69 ms 21.61 ms

Pursuant to design goals, user five experiences a minimal delay from request to 

response,  corresponding  with  the  very  fast  denial  of  permission  associated  with  the 

design of the security cell.  Predictably, access to point two, which requires handshaking 

authentication, requires more time than access to point one.  As points one and two take 

approximately the same number of inspections and iterations to work through the role 

based access control system, these results show that the handshaking algorithm imposes 

an  additional  delay  of  approximately  23  milliseconds.   The  representative  numbers 

summarized in table 5.3 are acceptable for a wide variety of SCADA applications.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

This thesis presented an overview of the design, implementation, and testing of a 

prototype  based on a  new security  architecture  for  remote  terminal  units  attached to 

SCADA systems. Using the OKL4 microkernel operating system, it is now possible to 

implement this architecture in hardware, and begin to perform security and performance 

testing  on  this  prototype  device.   The  preceding  chapters  have  detailed  this  process. 

Section 6.1 will summarize the procedures and findings in this prototype development, 

while  Section  6.2  will  briefly  discuss  possible  future  directions  to  this  line  of 

development.

6.1 Summary Of Results

The architecture developed by Hieb and Graham [33] is uniquely applicable to 

RTU  control  devices  and  similar  industrial  embedded  systems.   This  architecture 

separates the physical IO from the communications layers with a security piece which 

provides trusted isolation.  Monolithic kernels cannot provide this trusted isolation, due to 

their architecture.  The architecture of the microkernel lends itself to this development 

very well by providing a minimal basis upon which a secure system can be built.  The 

security  pieces  of  the  target  architecture  aim  for  minimal  interaction  with  untrusted 

pieces, which can be provided through a microkernel.  This minimization of the security 

components simplify the procedure of formal verification, which requires an operating 

system which can be objectively trusted.
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Fortunately, the OKL4 operating system has  reportedly undergone the rigors of 

formal verification, providing an ideal microkernel platform upon which such a system 

can be developed.  The verified kernel discussed in Chapter II is not yet commercially 

available, though this piece can easily be replaced. The verified version of the kernel is 

almost identically similar in code-base and operation [29].  The basic libraries used to 

build the prototype device have not yet withstood the rigors of formal verification, but the 

task of building a minimal library necessary to implement the trusted features of this 

device  is  trivial  compared  to  the  implementation  and  verification  of  a  specific 

construction of the target architecture.

This OKL4 microkernel operates on modern hardware which is not dissimilar to 

hardware being used for commercial RTU devices today.  As a result, this prototype can 

be built with reasonable similarities to existing control devices, with the added benefits of 

the proposed security architecture.

The actual implementation of the prototype closely follows the target architecture, 

with some shifting of utility functionality within the untrusted components of the system. 

The memory management architecture of the OKL4 operating system requires the careful 

placement of utility functionality in order to maintain the separability requirements of a 

secure industrial system. Minor issues in the Elfweaver tool have reduced options for 

placement of utility functionality for the purposes of building a prototype,  but this  is 

neither a permanent issue, nor one endemic to the concept. This prototype makes use of 

commodity hardware for both computational power and the generation of physical IO. 

Throughout  the development,  effort  and care was taken to minimize contact  between 
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cells,  and  simplify  the  costly  inter-process  communications  (IPC)  calls  which  have 

plagued microkernel operating systems in the past.  The net result is a prototype which 

closely  follows  the  target  architecture,  implemented  with  the  OKL4  microkernel 

operating system, paired with commodity hardware.  The device created is not dissimilar 

from existing RTU devices, and can be used to judge performance, security and feasibility 

of the proposed architecture when applied to real hardware with one example of a secure 

microkernel based operating system.

During basic performance testing of the prototype device, as described in Chapter 

V,  the  results  are  acceptable  for  a  wide  variety  of  SCADA applications.   The  IPC 

interactions and IO hardware require on the order of 500 microseconds to perform their 

duties, while the security layer imposes a delay between 20 and 100 milliseconds.  These 

tests have sought to eliminate external interference, and solely represent the time required 

by the prototype software. The device meets a basic level of performance necessary to 

move on to more complex testing and development of security and performance features 

within the target architecture.

6.2 Future Directions

The development of a security architecture and prototype which can achieve an 

objective degree of security opens up a realm of many possibilities.  Moving forward, it  

will become necessary to perform additional testing with the devices in a simulated plant 

environment,  for  a  more  complete  understanding  of  performance.   This  can  also  be 

extended into the control of a real plant, utilizing commodity control devices in a larger 

control  network.   This  will  require  the  implementation  of  industry  standard  SCADA 
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communications protocols,  implementing the role based access control features of the 

prototype device.

Additional  development  and  testing  could  explore  the  use  of  the  device  as  a 

security layer in an existing SCADA network.  In this  case,  the security layer would 

remain unchanged, while a network IO layer resides on either side of the security layer. 

One network interface would be exposed to the larger “untrusted” network of control 

devices, while the second network interface would connect directly to an existing control 

device, allowing for the retrofitting of verifiable security into networks of existing, legacy 

control devices.

Currently, the prototype firmware is loaded directly into RAM on the flash device. 

While this is useful for development, future prototypes may choose to optimize long term 

performance  by  placing  firmware  on  the  Gumstix's  built  in  flash,  or  implementing 

execution-in-place  from a  secure  digital  memory  card.   This  memory  card  adds  the 

benefit  of being field replaceable,  resulting in a  device which can easily  be updated, 

without compromising network security with “over-the-air” update features.

While  the  OKL4 team has  reached a  major  milestone  in  formally  verifying  a 

kernel, there are many additional avenues of research which must be followed before the 

OKL4 “system” can lay claim to total verification.  The verified kernel makes two basic 

assumptions:  The compiler is trustworthy, and the hardware performs deterministically. 

Although some initial research has been performed in the area of compiler verification, 

no verified compiler yet exists.  As the OKL4 operating system is written in standard C, a  

minimal verified compiler will compile the OKL4 operating system.  The Elfweaver tool 
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is  another  component  of  the  compilation  stack  which  has  not  been  verified.   As  an 

integral  part  of  the  OKL4 build  system,  it  must  be a  trusted  component.   The  most  

difficult assumption to follow through the path of verification, however, is the hardware. 

The microprocessor, and particularly the memory management unit (MMU) must behave 

precisely as designed in order for the verified software pieces to achieve trustworthiness.

Following further performance testing, security testing utilizing a broad range of 

possible  attack  vectors  will  verify  the  architecture  fundamentally,  as  well  as  its 

implementation.   With the use of a  formally verified kernel,  the eventual  goal of the 

architecture and its prototype should be to achieve a similar level of formal verification. 

This  process  is  uniquely  cumbersome,   especially when  using  the  unverified  kernel 

derivative,  with  unverified  libraries.    While  replacement  of  these  components  with 

verified analogs is eventually necessary, the first steps of verification can begin before 

this point.  Performing attacks is simply one step in this process which should provide 

high-level feedback about the implementation of the architecture.
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APPENDIX I

LAB MANUAL

Intelligent Systems Research Laboratory

Secure RTU Prototype

Lab Manual

3/29/2011

Brad Luyster

Section 1 – Introduction

This laboratory manual will serve as an introduction to the prototype hardware 

and firmware for the security hardened remote terminal unit for SCADA systems.  This 

provides a “state of the project” type of overview, and is not meant to outline any strict 

rules which must be adhered to.  Rather, this document should serve as a reference to the 

state of the build tools as of Spring 2011.  All information is subject to change, and if it is  

developmentally convenient to effect such a change, it would be wise to deprecate any 

information contained herein.  Section 2 will provide an overview of the hardware used, 

including the custom IO hardware assembled for the prototype.  Section 3 will provide 

configuration details for the OKL4 build system.  Section 4 contains a short overview of 

the code versioning software used for tracking this project.

All  the  information  contained  herein  is  accurate  to  April,  2011.   With  the 

exception  of  the  version  of  the  OKL4  operating  system  used,  all  other  information 
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contained in this document is freely mutable.  This document is intended to provide a 

brief  introduction to  the systems used in  the past and present  of this  project,  so that 

informed choices may be made regarding future development.

Before reading this manual, it is assumed that the reader has a basic understanding 

of the C programming language,  and has previously read the Summer and Fall  2010 

progress reports, as well as “A Security Hardened Field Device for SCADA Systems.” 

This document expands and extends on the information presented previously.  More detail 

on  various  progression  caveats  and  stumbling  blocks  may  be  found  in  those 

aforementioned documents.

Section 2 – Hardware

There are two primary components to the hardware  used in the development of 

the  prototype  RTU.   The  Gumstix  boards  and  associated  accessories  are  commercial 

development tools which provide an out-of-box turnkey solution for ARM development. 

Although these tools are intended for embedded Linux development, the OKL4 operating 

system supports the Gumstix hardware out-of-the-box.  The second major component is 

the  in  house  developed  IO  hardware.   This  IO  hardware  generates  IO  signals  not 

dissimilar from existing commercial devices.  The Gumstix board is unable to generate 

analog IO out of box, and the additional hardware provides a further separation layer for 

IO, in both software and firmware.  Should the custom IO hardware fail, it is unlikely to 

also destroy the more expensive Gumstix board.
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Section 2.1 – Gumstix

The Gumstix board is  the basis  of the prototype RTU.  This board contains  a 

400MHz ARM Xscale processor, with 16 MB of Ram and 64 MB of Flash memory.  A 

micro sd socket is also included.  Importantly, the Gumstix board includes provisions for 

expansion  through  two  external  connectors.   These  connectors  allow  boards  to  be 

attached to the front and back of the Gumstix board using ZIF sockets and screws with 

spacers.  Care must be taken to align the modules and the screws holding the assembly 

together.

The  prototype  Gumstix  stack  includes  the  Netstix  expansion  board,  which 

provides  an  SMC9117  ethernet  adapter  chip.   The  prototype  firmware  implements  a 

minimal number of a features for this network chip, forgoing software or hardware based 

queuing, or interrupt receive and transmit management.  Although these features would 

enhance the performance of the prototype device, they have not yet been implemented 

due to the difficulty of doing so.

A Console VX extension is also attached to the prototype device.  This extension 

provides headers for the three serial ports provided by the Xscale processor, and breakout 

pins  for  the I2C IO devices  described in  Section  2.2.   Additional  digital  IO may be 

provided  by  this  board,  if  desired.  More  information  about  the  configuration  of  the 

prototype  hardware,  including  pinouts  and  documentation  of  which  UART  port  it 

connected  where  may  be  found  in  the  Summer  2010  progress  report.   Resources 

pertaining to the Gumstix board are located in Section 6 of this document.
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Section 2.2 – IO Hardware

For IO generation, the prototype RTU uses four ICs.  These devices are connected 

to  the Inter-IC bus  of  the  Xscale.   The  I2C bus is  designed to  be  a  simple,  easy  to 

implement communication standard for local IC communications.  This bus is pulled high 

by two 4.7 kilo-ohm resistors, allowing bus contention to be automatically discovered by 

the attached devices.  If a device attempts to send a logic high, but observes a logic low 

on the bus, contention has occurred, and the contending device ceased communication. 

As a result, devices transmitting the most zeros will tend to “win” contentions.

These IO devices have been chosen for their  similarity to existing commercial 

examples of RTUs.  These include a digital IO chip, an analog input chip, and two analog 

output chips, for a total of eight digital IO, eight analog in, and two analog out.  Although 

the Gumstix board can generate its own digital IO, a digital IO IC is utilized to keep all  

external IO in the same memory space, and to isolate digital IO from the Xscale chip 

itself.  These IO chips operate at a bus speed of 400kHz.

I2C is an extremely well documented method of communicating with embedded 

devices.   Some resources to  this  effect  are  found in Section 5 of this  document.  In 

summary, a master device is attached to several slave devices.  When the master device 

wishes to communicate, it sends an I2C Start command, followed by a seven bit address, 

with a single bit indicating the direction of desired communication (read or write).  If a 

device with the given address is attached to the bus, it sends an acknowledgment. If the 

direction is read, the slave device begins transmitting data, and the master acknowledges 

the data.  If the master is done reading data, it simply ceases acknowledging incoming 
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bytes, and sends a stop command.  If the data direction is write, the master begins sending 

data, followed by an acknowledgement from the slave device.  If the slave cannot handle 

any further incoming data, it does not acknowledge.  If the master does not wish to send 

any more data, it simply sends a stop.  All transactions must terminate in a stop command 

to avoid bus contention.

Each  device  implements  different  command  sets  on  the  I2C  bus,  requiring 

different  arrangements of  reads  and writes.   The  data  sheet  for  each  component  will 

include multiple examples of interfacing with the device.

Section 2.2 – Development PC

The development PC is running the Ubuntu Linux operating system, and contains 

all the utilities required to actively write code within the OKL4 / Gumstix environment, 

as well as code versioning and debug interface software.  Although the build tools for 

OKL4 are specific to Linux, the choice of PC and Linux distribution are arbitrary.  The 

build system consists  of  a  custom GCC cross  compiler,  the  ElfWeaver  software,  and 

OKL4 SDK.  Other necessary tools include a TFTP server, and the git version tracker.

After code is compiled,  the ElfWeaver program generates a bootable ELF file. 

The prototype hardware loads code into RAM upon each system reboot by using TFTP. 

The Make files in the project automatically upload a bootable ELF file to the TFTP server 

root  directory.   The bootloader  on  the  prototype  requests  this  file,  and boots.   More 

information is provided in Section 4.
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Section 3 – The Build System

The tools required to build the firmware for the prototype RTU are available on 

the OKL4 Website  (http://www.okl4.org/). The OKL4 SDK for Xscale  and the EABI 

toolchain are required, while the OKL4 base system is helpful when trying to determine 

the  operation  of  some  base  functionality.   These  tools  must  run  under  Linux. 

Documentation is provided, with detail  on how to install and integrate with the build 

environment.  Section 3.1 will detail the specifics of the Linux environment currently 

being used, Section 3.2 will provide an overview of the GCC tool-chain used to compile 

individual  cells.  Section  3.3  discusses  the  OKL4 SDK,  and  Section  3.4  reviews  the 

Elfweaver tool, and all its caveats.

Section 3.1 – Build PC

Currently,  the  Linux  configuration  used  for  development  includes  a  base  of 

Ubuntu 10.10.  Aside from the OKL4 tools, the only necessary tools are git,  a TFTP 

server, and a serial port terminal such as minicom.  The configuration of git and the serial 

port terminal are trivial and self-evident.  The TFTP server is slightly more complicated, 

and it would be prudent to test remotely using a TFTP client located on the local network. 

Problems tend to arise in unix file permissions for the TFTP directory, and its contents. 

Currently,  permisisons  for  the  TFTP server  directory  and  all  files  therein  are  777, 

although this is traditionally bad practice.

With the build system configured in this manner, it is possible to develop code 

from any environment,  commit  this  code to  the server  using git  (see Section 5),  and 
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remotely  compile  the  code  using  this  development  machine.   Simply  rebooting  the 

prototype RTU will refresh the code loaded into RAM.  If local compilation is desired, it 

must be done under Linux.

Section 3.2 – Uboot and TFTP

The Gumstix board uses the Uboot boot loader to load code into the RAM of the 

Gumstix and begin  execution.   The bootloader  automatically  executes  a  script  which 

loads code from the custom development PC via TFTP.  In order to stop this process, 

follow the on screen instructions before boot. From the factory, this bootloader uses the 

following commands to load a Linux operating system from Flash memory:

setenv bootargs console=ttyS0,115200n8 root=1f01 rootfstype=jffs2 

reboot=cold,hard 

fsload a2000000 boot/uImage 

bootm a2000000 

Runing this code at the uboot prompt restores the factory default linux installation. 

The modified boot script loads code over TFTP. 

ipaddr = 192.168.1.77 

serveriip = 192.168.1.16 

tftpboot a2000000 image.boot 

bootelf a2000000 

The server IP is the IP address of the PC containing the boot code.  “image.boot” is the 

file name in the TFTP directory of the development PC.  If either of these things change, 
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the boot script must be changed.  This can be done from the uboot command line.

Section 3.2 – Code Organization and Compilation

Within the project source tree, there are directories for each cell.  There is also a 

central directory of libraries which can be utilized by all cells.  Under the cell directory, 

there is a central Makefile, and an XML file which determines how the cell is weaved 

with all other cells.  A “src” directory contains the “src” tree, while the “inc” directory 

includes  headers  and  includes  files.   The  “build-debug”  directory  contain  previously 

compiled source code. The exception to this rule is the “Utility” cell.

The utility cell is designed to spawn multiple child threads through ElfWeaver. 

These are compiled as a single cohesive unit, and each threads' start point is loaded at 

run-time after ElfWeaver generates the appropriate initialization code.  As a result, each 

thread has its own directory which is analogous to the “cell” subtree described above. 

The  Makefile  located  in  the  Utility  directory  handles  the  traversal  of  all  sub-tree 

directories.

Code is compiled using the GCC cross compiler.  Each cell is compiled as through 

it were completely independent from all other cells: its own independent elf is created by 

GCC and the linker.  These are weaved together with the kernel code later.  As a result,the 

make  scripts  located  throughout  the  source  tree  simply  traverse  deeper  levels  of  the 

source tree until they encounter a single cell, which is compiled singly.  The next cell is  

then similarly compiled, until all cells are compiled.
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Section 3.3 – The OKL4 SDK

The  OKL4  SDK  contains  precompiled  kernel  images  which include  different 

features of the kernel.  The prototype uses the micro-debug kernel.  This kernel includes 

provisions for a kernel debugger, which can be accessed by hidding the “Escape” key 

during operation.  All commands are accessed through a menu, which is nagivated by 

various upper and lower case alphanumeric characters.  A question mark character (“?”) 

will display all available options under the current menu tree.

All versions of the kernel use the same machine.xml.  This machine.xml is used to 

define the hardware available to the operating system.  This includes physical memory 

sections,  their  start  addresses  and  size,  and  the  available  memory  page  sizes.   The 

machine.xml  file  also  defines  all  memory  mapped  hardware,  and  their  associated 

interrupts.  These device defines allow the use of the “use_device” tag in cell-specific 

XML files.   This  simply maps the memory spaces  and interrupts  to  a  particular  cell 

without requiring any complicated configuration of memory access constraints.  The cell 

is simply granted unfettered access to the resources alloted to that device, and no  other 

cells may map the same device.  Interestingly enough, these cell's memory spaces may be 

mapped in a read-only manner to other cells, which is used in the prototype for timing 

testing.  Timing operations simply observer a free-running counter value, and calculate 

the difference in time.

Section 3.4 – ElfWeaver

The  ElfWeaver  tool  gathers  the  ELF  files  generated  during  the  compilation 
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process, and combines them with the selected kernel image, using the XML files in each 

cell's directory to generate the correct cell environment (priority, threads, heap and stack 

size, and so on).  ElfWeaver is executed immediately following the linking proceess, and 

gathers all the XML files in the directory structure (as defined by the first lines in the 

main Makefile), and begins to divvy up system resources.  These XML files must exist in 

the root directory of each cell pointed by the make file.  The ELF files for each cell may 

be located elsewhere, as is indicated by the XML file header.

There  are  dozens  of  possible  XML tags  that  may  be  used  to  configure  the 

environment  generated  for  each  cell. The  ElfWeaver  tool  performs  a  remarkably 

complicated job, essentially providing the separation and security that makes the OKL4 

operating system appealing.  This process requires a lot of CPU time, and is not enhanced 

by multiple cores.  Unfortunately, the ElfWeaver tool is a miasma of python scripts, and 

contains  quite  a  few  bugs,  ranging  from  annoying  to  critical.   Among  the  bugs 

encountered through the development  of  the  prototype RTU, two required significant 

effort to work around.

The first  bug causes secondary threads to spawn improperly.   In the prototype 

RTU, utility functionality and physical IO are combined in a single cell.  All of these 

processes operate as separate threads.  Although the OKL4 SDK includes examples of 

spawning threads from within a cell, this process is not trivial, and would require that 

capabilities be passed around through IPC, in order for remote cells to communicate with 

these run-time generated threads.  Threads which are spawned in ElfWeaver are much 

simpler  to  execute.   All  that  is  required  is  a  simple  XML tag  which  passes  the  star 
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locatoin of a thread to the ElfWeaver.  Unfortunately, this does not work properly with the 

base release of Elfweaver.  Instead, ElfWeaver simply writes the start location of these 

newly spawned threads as the same locatoin as the Idle thread.  This results in a group of 

threads which appear to do nothing.  This problem was caused by a function call in the 

ElfWeaver failing to pass the start location defined in the XML file.  The default start 

location is the location of the idle thread.  Simply adding this declaration in the functino 

call solved the bug.

The remaining bug has been far more insidious.   This bug causes a failure to 

compile if more than three cells are built in ElfWeaver.  Regardless of heap and stack 

assignments, no more than three cells will make it through the weaving process.  The 

error halts weaving, and results in no new image being generated.  This bug is located in 

the  virtual  to  physical  memory  mapping  process.   This 

file, /tools/pyelf/weaver/allocator.py , handles the segmentation of physical memory, and 

the  division  into  virtual  memory  segments.   This  segmentation  results  in  “slices”  of 

memory which do not neatly fit the page boundary.  These slices cannot be used, and are 

essentially  wasted.   For  some  reason,  excessive  waste  is  occurring,  resulting  in 

insufficient memory to support more than three cells.

Section 4 – Using GIT

GIT is a tool for managing revisions and changes to source code.  Devleoped by 

Linus Torvalds for the Linux Kernel, this tool is uniquely suited for projects with many 

disparate contributors, operating with many disparate workflows.  The basic unit of trade 
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in GIT is a change.  A change made to a file is tracked, and when this file is committed,  

the change is recorded.  A local copy of all files is always maintained.  If GIT is not 

desired, it may simply be disregarded.  For a much better explanation of GIT's usage, see 

the ProGit ebook listed in Section 6.

Section  5 – Resources

Microchip, Datasheet for MCP23009, 

http://ww1.microchip.com/downloads/en/DeviceDoc/22121b.pdf

Microchip, Datasheet for MCP4725, 

http://ww1.microchip.com/downloads/en/DeviceDoc/22039c.pdf

Analog Devices, Datasheet for AD7997, http://www.analog.com/static/imported-

files/data_sheets/AD7997_7998.pdf

Marvell/Intel, Datasheet for Xscale PXA 270, 

http://www.marvell.com/products/processors/applications/pxa_family/pxa_27x_emts.pdf

Scott Chacon, “Pro Git”, E-book, http://progit.org/book/

OKL4 3.0 Documentation and Downloads, http://wiki.ok-labs.com/Microkernel
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APPENDIX II

SELECTED CODE

This appendix contains selected code samples from throughout the build system, 

including more  examples  of  XML declarations,  a  summary of  the  data  structure  and 

algorithms used in the role-based access control system, and the physical IO interfacing.

Appendix 2.1 – Utility Cell Elfweaver XML File

<okl4 priority="255" clists="256" file="utility" kernel_heap="0x400000" 
mutexes="256" name="utility" spaces="32">

<use_device name="clock_manager_dev"/>
<use_device name="gpio_dev"/>
<use_device name="stuart_dev"/>
<use_device name="i2c_dev"/>
<heap size="0x100000"/>

<thread name="serial" start="serial_main" priority="255"/> 
<thread name="i2c" start="i2c_main" priority="255"/> 
<thread name="test" start="test_main" priority="255"/>
<thread name="hwman" start="hwman_main" priority="255"/>
<memsection cache_policy="uncached" name="timer_vaddr" 

phys_addr="0x40A00000" size="0x1000" attach="r" />

<environment>
<!-- Need both these caps for backwards compatibility /-->
<entry cap="/utility/serial" key="SERIAL_CAP"/>
<entry cap="/utility/i2c" key="I2C_CAP"/>
<entry cap="/utility/serial" key="SERIALSERVER_CAP"/>

</environment>
<commandline/>

</okl4>

Appendix 2.2 – Data Structures Use In Role-based Access Control

struct point
{

bitfield ppt;
pointID pointid;

} point;

struct permission
{

bitfield operations_allowed;
struct point *ppoint;

} permission;
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struct permission_access_constraint
{

int pacType;
struct point *pacpoint;
struct timeconstraint *timec;
struct dayconstraint *days;
//locationconstraint location;

} permission_access_constraint;

struct role_access_constraint
{

bitfield roles;
struct timeconstraint *timec;
struct dayconstraint *days;
//struct locationconstraint location;

} role_access_constraint;

struct role
{

bitfield point_type_controls;
struct permission permissions[NUMPOINTS];
int numPacs;
struct permission_access_constraint *PACS;
int testArray[NUMPOINTS];

} role;

struct user
{

userID myId;
uint32_t *secret;
bitfield roles;
int numRacs;
struct role_access_constraint *RACS;

} user;

struct authedUser
{

userID myUser;
struct authedUser * nextUser;

} authedUser;
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Appendix 2.3 – Physical IO Interfacing

char requestDigital(char selected)
{

char retval;

retval = getAllDigital();

switch(selected) {
case 0x00:

return retval & 0x01;
case 0x01:

return (retval & 0x02)>>1;
case 0x02:

return (retval & 0x04)>>2;
case 0x03:

return (retval & 0x08)>>3;
case 0x04:

return (retval & 0x10)>>4;
case 0x05:

return (retval & 0x20)>>5;
case 0x06:

return (retval & 0x40)>>6;
case 0x07:

return (retval & 0x80)>>7;
default:

return 0xff;
}

}

char setDigital(char selected, char state)
{

char current = getAllDigital();
char result;
if(state == 0)
{

result = current & ~(1<<selected);
} else {

result = current | (1<<selected);
}
i2c_start(MYGPIO);
i2c_send(0x09);
i2c_send((okl4_word_t)result);
i2c_stop();

return 0x00;
}
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okl4_u16_t getAnalog(char selected)
{

okl4_u8_t data1;
okl4_u8_t data2;
okl4_word_t channel;

if(selected > 0x07)
{

return 0;
} else {

channel = (selected << 4) | 0x80;
i2c_start(MYADC+0);
i2c_send(channel);
i2c_start(MYADC+1);
data1 = (okl4_u8_t)i2c_get_ack();
data2 = (okl4_u8_t)i2c_get_nak();
i2c_stop();

return data1<<8 | data2;
}

}

char setAnalog(char selected, okl4_u16_t data)
{

if(selected == 0x00)
{

dac(MYDAC1, (okl4_word_t)data);
} else if(selected == 0x01)
{

dac(MYDAC2, (okl4_word_t)data);
}
return 0x00;

}
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