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Predictive power of wastewater for nowcasting infectious disease 
transmission: A retrospective case study of five sewershed areas in 
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A B S T R A C T   

Background: Epidemiological nowcasting traditionally relies on count surveillance data. The availability and 
quality of such count data may vary over time, limiting representation of true infections. Wastewater data 
correlates with traditional surveillance data and may provide additional value for nowcasting disease trends. 
Methods: We obtained SARS-CoV-2 case, death, wastewater, and serosurvey data for Jefferson County, Kentucky 
(USA), between August 2020 and March 2021, and parameterized an existing nowcasting model using combi
nations of these data. We assessed the predictive performance and variability at the sewershed level and 
compared the effects of adding or replacing wastewater data to case and death reports. 
Findings: Adding wastewater data minimally improved the predictive performance of nowcasts compared to a 
model fitted to case and death data (Weighted Interval Score (WIS) 0.208 versus 0.223), and reduced the pre
dictive performance compared to a model fitted to deaths data (WIS 0.517 versus 0.500). Adding wastewater 
data to deaths data improved the nowcasts agreement to estimates from models using cases and deaths data. 
These findings were consistent across individual sewersheds as well as for models fit to the aggregated total data 
of 5 sewersheds. Retrospective reconstructions of epidemiological dynamics created using different combinations 
of data were in general agreement (coverage >75%). 
Interpretation: These findings show wastewater data may be valuable for infectious disease nowcasting when 
clinical surveillance data are absent, such as early in a pandemic or in low-resource settings where systematic 
collection of epidemiologic data is difficult.   
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Introduction 

Epidemiological nowcasting is an important tool for understanding 
infectious disease trends, and could be used to produce real-time esti
mates of the transmission rate and reproduction number (Rt) of an in
fectious pathogen (Wu et al., 2021). This information is critical for 
informing risk assessment and the subsequent public health response. 

To-date, nowcasting methods rely on surveillance count data (e.g., 
case reports, hospitalizations, vaccination records) that have limitations 
for describing disease trends (Rossman and Segal, 2022). First, 
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asymptomatic and mild infections may not be diagnosed, and so may be 
missing from clinical surveillance data. Second, variation in healthcare 
access or sampling methods can mean that available data are not 
representative of the whole population (Pitzer et al., 2021; Bilal et al., 
2021). A third limitation is the lag between the time transmission occurs 
and when the consequences of transmission become apparent in 
measured quantities. For instance, a coronavirus disease 2019 
(COVID-19) diagnosis typically occurs after symptoms have developed, 
around five days after infection with severe acute respiratory syndrome 
coronavirus 2 (SARS-COV-2) (Lauer et al., 2020). There may be addi
tional lags between the development of symptoms and the time of 
diagnosis, and between diagnosis and reporting. Finally, surveillance 
data are often aggregated over large geographical areas or time periods, 
which may mask heterogeneities in transmission patterns and prevent 
prompt geographic targeting of mitigation measures. For example, in the 
initial stages of the COVID-19 pandemic, states and counties generally 
reported daily surveillance data by city, county and state. Over time 
reporting frequencies decreased to weekly or biweekly, reducing the 
temporal resolution of the data and increasing the lag between infection 
and reporting. 

Wastewater-based epidemiology (WBE) has been used for infectious 
disease surveillance of for example polio (Kilaru et al., 2022) and was 
increasingly relied upon during the COVID-19 pandemic (Kilaru et al., 
2022; Shah et al., 2022). Samples from wastewater provide passively 
collected information from a population group linked geographically to 
the sewer network, and if collected at a regular frequency, wastewater 
data can have a strong temporal and geographical correlation with 
changes in disease incidence (Smith et al., 2022; Wu et al., 2022). The 
promise of improved temporal signal in the wastewater data is a major 
potential benefit given the importance of accurate information on cur
rent transmission dynamics in informing prompt action or policy re
sponses. In the United States (USA), several large, publicly accessible 
wastewater databases have been developed during the SARS-CoV-2 
pandemic (Pulicharla et al., 2021; Centers for Disease Control and Pre
vention, 2023; Biobot Analytics). 

Wastewater data has been used in nowcasts of large metropolitan 
areas, but there is no definitive agreement on a case count to wastewater 

concentration quantification (Smith et al., 2022; Schenk et al., 2023; 
Phan et al., 2023; Jeng et al., 2023). Nevertheless, WBE for surveillance 
has its own unique challenges, including variation in sampling and 
quantification methods, and challenges mapping wastewater concen
tration to estimates of local disease burden (Farkas et al., 2020; Ahmed 
et al., 2022; Rondeau Nicole et al., 2023). As a result, the value of 
wastewater data for nowcasting disease transmission in sub-populations 
in addition to, or instead of, traditional surveillance data remains un
clear. To assess the added utility of using WBE to count-based now
casting, we examine SARS-CoV-2 surveillance data from Louisville, KY, 
which were available for five distinct sewersheds and could be combined 
for an aggregate countywide view. We used these data and a published 
nowcasting model to evaluate the utility of wastewater data for 
improving the accuracy of nowcasts. 

2. Methods 

4.1. Data 

We used temporally and spatially paired data from Louisville/Jef
ferson County, Kentucky, covering the period between August 2020 and 
March 2021, prior to public vaccine access, across clinical case and 
death reports, wastewater concentration data, and four stratified simple 
random serosurvey waves (Smith et al., 2022; Keith et al., 2023). Data 
were geocoded to five wastewater treatment plant catchment areas or 
“sewersheds”, named MSD0 [1–5], that cover 97% of the county pop
ulation (Fig. 1 and Table S1). (Holm et al., 2022a) Data were addi
tionally aggregated for a total countywide level comparison. Finally, all 
data sources were aggregated to a weekly level, to match the lowest 
sampling frequency of the wastewater data. 

Case reports. Louisville Metro Department of Public Health and 
Wellness (LMPHW) provided daily positive case reports, that were then 
geocoded to sewersheds based on reported address or zip code. Due to 
irregularities in the reporting frequency a weekly aggregate of daily 
positive case reports was used for the analysis. The first reliable reports 
were available for the week starting on July 6, 2020. The last available 
weekly report included was for the week starting on March 29, 2021 

Fig. 1. Five studied wastewater treatment plant zones (sewersheds), Jefferson County, KY (USA).  
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(ending April 4, 2021). 
Death reports. LMPHW also provided death reports, including date 

and reported address or zip code. Data were filtered for August 1, 2020 
to March 31, 2021. Total deaths for this period were 1090. Nearly 90% 
(978/1090) of the death records had address information able to be 
geocoded to the studied sewersheds. For the 112 reports that could not 
be assigned, due to either absence of address and/or zip code informa
tion or a recorded address outside a treatment plant area but still re
ported within the county, we probabilistically assigned these deaths to 
one of the five sewersheds, weighted by the relative population sizes. We 
assumed the risk of death from SARS-CoV-2 was the same across the 
sewersheds (Table S3). Deaths were aggregated by week and geocoded 
to sewersheds, matching the frequency of the observed case data. 

Wastewater data. Wastewater samples were collected two to four 
times a week, between August 2020 through December 2020, and once a 
week from January 2021 through March 2021. The five studied sew
ersheds include both combined and separated network pipes. Samples 
were typically from a 24-h time-weighted composite sampler in an ice 
bath, though in the event of a composite sampler equipment malfunc
tion, a grab sample was collected. All wastewater samples were analyzed 
at the University of Louisville, using previously published methods 
(Holm et al., 2022a, 2022b; Rouchka et al., 2021) for SARS-CoV-2 (N1) 
and the fecal indicator pepper mild mottle virus (PMMoV) (Holm et al., 
2022a). In brief, samples were concentrated with polyethylene glycol 
precipitation, and quantified in triplicate by reverse transcription po
lymerase chain reaction (RT-PCR) and reported as copies/milliliter 
(mL). The threshold value of SARS-CoV-2 (N1) assays was 7.5 copies per 
ml. 

Weekly average COVID-19 concentrations were computed from 
quantifiable data. We used raw data (copies of SARS-CoV-2 (N1)/mL) 
for our main analyses. To account for possible wastewater system dilu
tion we used the normalized ratio of copies of SARS-CoV-2 (N1)/mL 
divided by the copies of PMMoV/mL in a supplementary analysis. Pre
vious studies investigated calibration of the statistical noise arising from 
changes in PMMoV and flow rate in these five sewersheds (Holm et al., 
2022b; Kanneganti et al., 2022). 

Wastewater data for the last two weeks of December 2020 were not 
available due to a laboratory holiday closure. 

Serosurvey data. We used aggregated data from a stratified simple 
random sampling serosurvey that was executed in the study area over 
four discrete time periods, for which 18,000 to 36,000 invitations were 
mailed in each wave, with an overall response rate of around 3% (Keith 
et al., 2023). Data were aggregated by wave and sewershed area at the 
four dates within the current study period. These data contain the 
number of serosurvey samples taken in a wave for each sewershed, the 
number of seropositive positive samples, and a weighted estimated 
percentage (with 95% CI) of the seropositivity in the population. We 
used these data to validate the cumulative infection estimates from the 
nowcasting models. 

Ethics. For the seroprevalence and data on COVID-19 deaths and 
infected individuals provided by the LMPHW under a Data Transfer 
Agreement, the University of Louisville Institutional Review Board 
approved this as Human Subjects Research (IRB number: 20.0393). For 
the wastewater data, the University of Louisville Institutional Review 
Board classified this as non-human subjects research (reference #: 
717,950). 

4.2. Model 

Nowcasting model. We used a published Bayesian mathematical back- 
calculation model that estimates SARS-CoV-2 infections and effective 
reproduction number (Rt) from observed case and death data (Chitwood 
et al., 2022). The model is anchored on the observed deaths, and 
back-calculates the transmission rates and infections from the observed 
cases and the assumed progression probabilities and delays. This model 
includes a time varying probability of diagnosis if infected to account for 

changes in testing numbers and testing behavior over time. We modified 
this model to a weekly timeframe, in line with the changes made in 
Klaassen et al. (2023) (Supplementary Methods). With these adjust
ments, the basic version of this nowcasting model estimates weekly in
fections and transmission using reported case and reported death counts. 

4.2.1. Four variations of nowcasting model 
To compare nowcasts produced with or without wastewater data, we 

made additional adjustment to the nowcasting model to fit to four 
combinations of input data: (1) a ‘Cases-Deaths Model’, using cases and 
deaths data, consistent with the published version of the nowcasting 
model; (2), an ‘Additive Model’, using wastewater data in addition to 
cases and deaths data; (3) a ‘Substitutive Model’, using wastewater and 
deaths data; and (4) a ‘Deaths-Only Model’, using only deaths data, 
representing a worst-case scenario where no wastewater or case data are 
available. For the models without case data (Substitutive and Deaths- 
Only Models), we simply omitted the likelihood evaluation of the case 
data. For the models that include wastewater (Additive and Substitutive 
Models), we added an additional likelihood to the model. We used a 
sequential approach, where we first determined the transformation of 
wastewater data with the strongest correlation with the modeled 
infection estimates from the Cases-Deaths Model across the five sew
ersheds. We then correlated the raw measurements of the SARS-CoV-2 
(N1) (copies per mL) with the infection estimates, and correlated the 
first-order differenced wastewater data (rate of change in the waste
water levels) with the estimates of Rt. The best fitting model informed 
our implementation of the model including wastewater. We also 
assessed the same correlations using the SARS-CoV-2 (N1)/PMMoV ratio 
and the first order difference of this ratio. The strongest correlation 
existed for the raw SARS-CoV-2 (N1) concentration to the infection es
timates, resulting in our decision to model the wastewater data using a 
Student’s T distribution with 10 degrees of freedom and a linear rela
tionship to the modeled infection estimates. 

Analytic approach. We fitted the four models to the timeseries data for 
each of the five sewersheds as well as their combined aggregate (Total), 
rendering six geographies. We ran the four models for each of the six 
geographies for each cumulative month of data after an initial first two 
months of data. There were 8.5 months of data available, and we created 
monthly snapshots of the data from month 2 to month 8, as well as the 
complete 8.5 months. We compared the Cases-Deaths Model to the 
Additive Model to assess the effects of adding wastewater data to 
existing case and death data. We compared the relative performance of 
the Substitutive Model and the Deaths-Only Model to the Cases-Deaths 
Model to assess the effects of including wastewater data when case 
data are absent. Finally, we compared the deviation of each of the five 
sewersheds from the Total to assess geographical variation. 

5. Outcomes 

For each of the model runs, we extracted the estimated infections and 
Rt timeseries. We compared predictive accuracy of these estimates be
tween models, using four measures used by the COVID-19 Forecast Hub 
to evaluate the accuracy of forecasts (Bracher et al., 2021; Cramer et al., 
2022): (1) the Absolute Difference between the point estimates (median 
of posterior distribution) of two models where a smaller Absolute Dif
ference indicates a better agreement of two models; (2) the Sharpness, 
which is the weighted average of the widths of Credible intervals across 
K = 11 coverages (10%, 20%, 30%, …, 90%, as well as 95% and 98%), 
with weights of 12 ×

(
1 −

coverage%

100
)

where a smaller Sharpness indicates a 
more precise prediction; (3) the Coverage, defined here as the coverage 
of the 95% credible interval from one nowcasting model of the posterior 
distribution of the nowcasts from the comparison model; and (4) the 
Weighted Interval Score (WIS), which is the weighted penalized average 
of the Absolute Difference of the K Credible intervals from the median 
estimate of the target model (Supplementary Methods). We adapted 
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these measures to allow for the comparison between two sets of pre
dictions, or estimated quantities, rather than a prediction against a 
ground truth (Supplementary Methods). To assess the predictive value 
of the wastewater compared to or in addition to the case data, we 
computed these measures across two dimensions of our analyses. First, 
we computed the predictive within models across the snapshots of data, 
that is, assessing the predictive value of the nowcasts on the last date of 
each of the snapshot nowcasts to the estimates on that date from the 
complete data. Second, we calculated the predictive performance be
tween models, that is, the difference between the two models, to 
quantify the agreement between models. We used the Cases-Deaths 
Model as a reference model, as this is representing the current 

standard in nowcasting infections, and this allows us to compare the 
precision of a model that adds wastewater data or replaces cases data 
with wastewater data. Finally, we assessed the historic reconstruction of 
each model by comparing the historic estimates qualitatively, by visual 
inspection, and quantitatively, by computing the overlap of the 95% 
credible intervals of the two posterior distributions. For models that 
included wastewater data (Substitutive and Additive models), we also 
assessed the fit of the model to the observed SARS-CoV-2 (N1) waste
water concentration. 

Sensitivity analysis. We tested the sensitivity of the results to outliers 
in the wastewater data, by refitting nowcasting models after removing 
outliers. To identify outliers, we fitted a smoothing spline to the daily 

Fig. 2. Relationship between wastewater SARS-CoV-2 (N1) concentration and modeled estimates of infections and Rt. (ab) Relationship between estimated 
infections per 100,000 inhabitants and SARS-CoV-2 (N1) (copies/mL); (cd) Relationship between estimated Rt versus SARS-CoV-2 (N1) (copies/mL, first order 
difference). (ac) Overlapping timeseries of wastewater (purple dots and lines) and estimated epidemic outcomes (orange points and lines); (bd) Scatterplot and fitted 
linear model, for the full dataset. Datapoints are colored by sewershed. 
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wastewater timeseries data, and classified observations as outliers if 
their deviation from the spline was greater than three times the inter
quartile range of the deviations. Between 2% and 19% of the data points 
were marked as outliers (Table S2). We removed outliers, re-calculated 
weekly averages, and re-ran analyses on the adjusted data (Fig. S1). 

We also tested the sensitivity of our results to our implementation of 
probabilistically assigning deaths with an unknown sewershed using the 
relative frequency of reported SARS-CoV-2 deaths instead of the relative 
population size (Table S3). While the relative probabilities are slightly 
different, the estimated infection estimates are not strongly subject to 
either implementation (Fig. S5). 

Validation. To validate the nowcast estimates, we compared the cu
mulative infection estimates against the serosurvey data and against the 
estimates produced by the published nowcasting model using daily case 
and deaths data compiled by Johns Hopkins University, since the 
beginning of reporting up until December 2021 (Dong et al., 2020; 
covidestim: COVID, 2022). 

We present results estimated for the Total sewershed, without out
liers removed, and focus on the infections outcome. By default, we 
present nowcast estimates for the complete timeseries, and refer to other 
snapshots where relevant. The results for individual sewersheds and 
each snapshot are available for both the infections and the Rt outcomes 
in the supplementary materials and referenced where relevant. 

Software. Data were analyzed using R (version 4.1.0) and the rstan 
package (version 2.21.5) (R Core Team. R, 2021; Stan Development 
Team, 2020). Figures were rendered using ggplot (version 3.3.6) 
(Wickham, 2016). Model code and documentation is available on 
GitHub (https://github.com/fayetteklaassen/ww-nowcasting). Fig. 1 
was made with ArcGIS Pro 2.5.2. 

6. Results 

6.1. Correlation of wastewater with epidemiological outcomes 

The timeseries of wastewater data SARS-CoV-2 (N1) (copies/ml) 
correlated positively with reported cases (r = 0.393 [955%CI, 
0.261–0.511], Fig. S2 a-d), and with the estimated infections from the 
Cases-Deaths Model (r = 0.362, [95% CI, 0.285–0.434], outliers 
removed r = 0.486, [0.415–0.551], Fig. 2 a-b). The first order difference 
of the SARS-CoV-2 (N1) timeseries had no correlation with Rt estimates 
(r = 0.032 [− 0.057 – 0.121], outliers SARS-CoV-2 (N1) removed r =
0.092, [− 0.003 – 0.185], Fig. 1 c-d). Based on these results, we modeled 
the wastewater data assuming a linear relationship to the infection es
timates (Supplementary Methods). 

6.2. Predictive performance of each model: within model comparison 

In comparison to the Deaths-Only model, the addition of case data 
(Cases-Deaths model) resulted in smaller Sharpness, Absolute Deviation 
and WIS for within model predictive performance (Fig. S3, Fig. S4, 
Table 1). Similarly, a model fit to cases, deaths and wastewater data had 
improved performance metrics relative to a model using only deaths and 
wastewater data (Additive versus Substitutive Models). The addition of 
wastewater data resulted in improved performance metrics when case 
data were present (Additive Model versus Cases-Deaths Model), but not 
when case data were absent (Substitutive Model versus Deaths-Only 
Model). The relative reductions in Absolute Deviation, Sharpness and 
WIS were larger for the addition of case data than for the addition of 
wastewater data. The coverage across the snapshots of the complete data 
was similar for each of the four models. 

6.3. Addition of wastewater: between model comparison 

Using wastewater data in the nowcasting model in addition to the 
cases and deaths data or to the deaths data did not result in any quali
tative differences in the timeseries of infection estimates (Fig. 3). While 

the 95% credible intervals of the Additive Model’s historic reconstruc
tion of estimated infections covered only 76.8% of the Cases-Deaths 
Model’s posterior distribution, across the snapshots, the 95% credible 
intervals of the last date’s nowcasts covered on average 93.9% of the 
Cases-Deaths Model’s posterior distribution. The Additive Model esti
mated a higher overall incidence of infections, but this difference was 
not statistically significant. Similarly, in the Substitutive Model the 
estimated incidence of infections was higher than in the Deaths-Only 
Model. 

We found no strong differences in the within-model predictive per
formance of the Additive Model and the Cases-Deaths Model. The Ad
ditive Model had slightly lower scores on the Absolute Deviance, 
Sharpness and WIS, indicating stronger internal consistency of the es
timates as data accrued. Out of the three alternatives to the Cases-Deaths 
Model, the Additive Model has the lowest WIS scores, indicating the best 
tradeoff in precision and certainty relative to the Cases-Deaths Model. 

6.4. Substitution of wastewater: between model comparison 

The Deaths-Only Model outperformed the Substitutive Model in the 
within-model assessment. While the average Coverage of the historic 
last estimates to the complete estimates was similar, Absolute Differ
ence, Sharpness and WIS were less for the Deaths-Only Model (Table 1), 
indicating a more consistent prediction when only deaths data were used 
compared to wastewater and deaths data. However, relative to the 
Cases-Deaths Model, the Substitutive Model had slightly better predic
tive and historic reconstruction power. The Absolute Difference of the 
median estimated log (infections) from the Substitutive Model to the 
Cases-Deaths Model across historic runs was 0.321, while the Deaths- 
Only Model has an Absolute Deviation of 0.397 (Table 1). The WIS 
was lower for the Substitutive Model than the Deaths-Only Model both 
when comparing to the Cases-Deaths Model across the snapshots and in 
the historic reconstruction. 

6.5. Geographic granularity and wastewater data: between sewershed 
comparison 

The 95% credible interval of the timeseries estimates for the com
plete county covered MSD02 best (Coverage of 89.8% for the Cases- 

Table 1 
Predictive and historic performance of log (infections) nowcasts, within and 
between models.  

Comparison Statistic Cases- 
Deaths 

Additive Substitutive Deaths- 
Only 

Within model 
predictive 
performance 

Absolute 
Deviation 

0.325 0.291 0.757 0.667 

Sharpness 0.0168 0.0165 0.0435 0.0477 
Coverage 99.3% 99.3% 99.3% 99.3% 
WIS 0.223 0.208 0.517 0.500 

Between model 
predictive 
performance 

Absolute 
Deviation 

– 0.246 1.18 1.35 

Sharpness 0.0168 0.0165 0.0435 0.0477 
Coverage – 93.9% 98.7% 96.9% 
WIS 0.149 0.188 0.691 0.789 

Between model 
historic 
reconstruction 

Absolute 
Deviation 

– 0.280 0.321 0.397 

Sharpness 0.0069 0.0064 0.0112 0.0125 
Coverage – 76.8% 91.2% 92.5% 
WIS 0.059 0.156 0.185 0.231 

For within-model comparisons, the last estimates from each model using the 
snapshots are compared against the timeseries estimates from the same model 
using the complete data. For the between model comparison of predictive per
formance, each the last estimates from each snapshot from each model are 
compared against the last estimates from the same snapshot of the Cases-Deaths 
Model. For the between model historic reconstruction, the timeseries estimates 
from each model using the complete data are compared against the estimates 
from the Cases-Deaths Model using the complete data. 
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Deaths Model, and 89.6% for the Additive model), and MSD04 worst 
(Coverage of 69.7% and 72.1% respectively; Table 2, Fig. 4). While the 
historic reconstruction of the timeseries estimates of infections and Rt 
was on average not statistically different, smaller population level 
sewersheds had larger Absolute Deviations and lower Coverage from the 
Total estimates. Notably, for MSD01, the largest sewershed in terms of 
population and area, the Coverage of the Total estimates was lower and 
the WIS was higher for the Additive Model compared to the Cases- 
Deaths Model, indicating that the wastewater data increased the vari
ability in estimates between the sewersheds. 

6.6. Validation 

Modeled cumulative infection estimates from the available data were 
higher than the cumulative infection estimates for the entire county 
rendered using the JHU data from March 2020 until December 2021. 
Comparing the modeled cumulative infection estimate to the serosurvey 
data from Keith et al. shows that for Wave 2 and 3, the serosurvey data 
and error bars overlap with the cumulative infection estimates, and for 
Wave 4, all cumulative infection estimates exceed the seroprevalence 
(Fig. 5). For MSD02-05 the serosurvey data and the cumulative infection 
estimates follow a similar trend, while for MSD01 the serosurvey data 
flattens out over the last two observations, while the modeled estimates 
continue to increase. 

7. Discussion 

This study assessed the value of wastewater data for infectious dis
ease nowcasting. We used SARS-CoV-2 case, death and wastewater data 
from Jefferson County, Kentucky and an adapted version of a published 
nowcasting model to evaluate the predictive and historic performance of 
wastewater data if they were used in addition or as a replacement for 
case data. 

The results of our study showed a positive association between 
wastewater concentration and infection estimates from the nowcasting 
model fit to cases and death data. There were no significant differences 
in the within-model predictive performance, other than the expected 
improvements in Sharpness and WIS as more data were included. The 
addition of case data resulted in a greater relative improvement in the 
performance than the addition of wastewater data. The model contain
ing all three data sources had the highest predictive performance. 
Nonetheless, the additive benefit of wastewater data was limited, as 

Fig. 3. Timeseries of estimated infections per 100K for the total sewershed. The left panel shows results from models including case data (Cases-Deaths Model in 
orange and Additive Model in purple), and the right panel shows results from models without case data (Deaths-Only Model in orange and Substitutive Model in 
purple). The solid lines mark the median of the posterior distribution, and the shaded area, marked by the dashed lines, the 95% Credible Interval. 

Table 2 
Historic overlap of log (infections) estimates for each sewershed to the estimates 
for the total sewershed.  

Model Statistic MSD01 MSD02 MSD03 MSD04 MSD05 

Cases- 
Deaths 
Model 

Absolute 
Deviation 

0.106 0.157 0.178 0.330 0.206 

Sharpness 0.0092 0.0093 0.0113 0.0121 0.0142 
Coverage 89.5% 89.8% 82.2% 69.7% 70.4% 
WIS 0.086 0.098 0.127 0.206 0.131 

Additive 
Model 

Absolute 
Deviation 

0.270 0.136 0.185 0.289 0.213 

Sharpness 0.0088 0.0085 0.0097 0.0108 0.0110 
Coverage 77.1% 89.6% 80.9% 72.1% 75.5% 
WIS 0.156 0.089 0.127 0.185 0.131 

All statistics are calculated comparing the historic estimates from the complete 
data for each sewershed to the historic estimates from the complete data for the 
total area. Coverage is defined as the average percentage of the posterior dis
tribution from each sewershed covered by the 95% Credible Interval from the 
Total dataset. 
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these data did not improve the predictive performance substantially. 
This work demonstrates that wastewater data may be a viable sub

stitute for case data, as estimates using death and wastewater data 
approximated the estimates from a cases and deaths model closer than 
when only deaths were used. As the availability of traditional clinical 
surveillance data deteriorates during an ongoing pandemic, the possi
bility of using wastewater data in nowcasts and monitoring transmission 
is of high public health interest and underlines the potential utility of 
these data for future pandemic preparedness. This approach will have 
additional relevance in low-resource settings where systematic collec
tion of epidemiologic data is likely to be severely limited regardless of 
the disease being studied. Such low-resource areas are likely not only 
low- and middle-income countries, but rural areas within both the 
United States and Europe. Further research is needed to examine the 
relationship between wastewater and infection estimates across multiple 
locations and longer timeseries to confirm our findings and to evaluate 
their applicability in different social and geographic contexts. 

We found that the models that include wastewater concentration 
consistently estimated higher infections than the models without 

wastewater data included, which may be an artefact of a different esti
mated probability of progressing to symptomatic and severe disease. 
Additionally, we considered the question of the potential use of waste
water in smaller populations (sewersheds), where count surveillance 
data (e.g., case, death, hospitalizations) may not be as readily available 
as in larger county or state areas, yet wastewater data can still be ob
tained. The epidemiological trends estimated for the smaller sewersheds 
in our study area deviated more from the aggregate estimates than the 
larger sewersheds. This highlights the importance of high frequency 
local (sub-countywide) surveillance data for guiding future public 
health responses, as transmission may differ by area, and local granular 
data might help monitor disease trends more closely. 

This study is a first attempt to assess the value of adding wastewater 
data in a nowcasting model. Several limitations should be considered. 
First, the study had a limited scope in time and geography, and we only 
considered a single nowcasting model. When we compared estimates of 
cumulative infection generated by this study to other estimates, we 
found sewershed-specific estimates as well as the aggregated county
wide estimates exceeded the estimates from the nowcasting model using 

Fig. 4. Infection and Rt estimates for each sewershed. Median estimates of the infection timeseries (top panes) and Rt timeseries (bottom panels) of the Cases- 
Deaths Model (left panels) and the Additive Model (right panel) for each sewershed. For the total sewershed (yellow), the 95% Credible Interval is plotted as a 
shaded interval. 
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a longer case and death timeseries, indicating the contribution of his
torical transmission to cumulative infection estimates. At the end of the 
period under consideration, the estimated cumulative infections were 
around 2–3 times higher than the estimates from the seroprevalence 
survey. Seroprevalence data only included the population older than 18 
years whereas wastewater captures a wider portion of the population. 
Furthermore, the low response rate of 3% could have impacted the 
comparability of these data to estimates of cumulative infections. The 
quality of these data is discussed in more detail in Keith et al. (2023) We 
assumed a positive antibody test could be from one or more infections, 
whereas the nowcasting model did not account for multiple infections, 
and the count surveillance could have double counted individuals. It is 
unclear whether the differences in the estimates of modeled cumulative 
infections and the seroprevalence estimates reflects overestimation on 
the part of the model, incomparability of the data to the estimates, or 
losses in seropositivity among previously infected individuals. 

Another potential set of limitations is linked to our decisions 

regarding outliers and not normalizing the wastewater data by flow or a 
fecal indicator. Past WBE research demonstrates a wide range of quan
tification and normalization methods, and normalization may not 
improve the signal in the wastewater data (Maal et al., 2023; Greenwald 
et al., 2021). The correlations of the normalized wastewater data 
SARS-CoV-2 (N1) (copies/ml) divided by PMMoV (copies/ml) with 
infection estimates (r = 0.393, [95% CI, 0.261–0.511]) and of the 
normalized wastewater data SARS-CoV-2 (N1) (copies/ml) divided by 
flow (millions of gallons per day, MGD) with the infection estimates (r =
0.244, [95% CI, 0.100–0.379]) were similar to the correlation between 
the raw wastewater data SARS-CoV-2 (N1) (copies/ml) and the infection 
estimates (Fig. S5). Across the sewersheds, up to 19% of the wastewater 
observations could be marked as outliers using a spline timeseries. 
Wastewater data may detect local events, such as festivals or confer
ences, which may be an indication of transmission at a short timescale, 
but not of infections or sustained transmission in the population. This 
could have been a factor in the current study, as the Kentucky Derby 

Fig. 5. Serosurvey and cumulative incidence estimates for Jefferson County, KY (USA). Colored lines show the estimated cumulative incidence (% of the 
population infected) for MSD01, MSD02 and for MSD03-05 jointly, for each of the four models As a reference, in pink, estimates of the nowcasting model are 
included, that were rendered using the Johns-Hopkins daily case and death data (Dong et al., 2020; covidestim: COVID, 2022), starting the first reported case on 
March 2020 up until December 2021, to render estimates based on a more complete set of surveillance data. Black dots and 95% error bars show the seroprevalence 
estimates and uncertainty bounds at four time points from data serosurvey conducted by Keith et al. (Keith et al., 2023). 
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took place in Louisville, Kentucky, on September 5, 2020, which co
incides with some of the extreme datapoints in the wastewater data 
(Fig. S1). Nonetheless, the sensitivity analyses that excluded wastewater 
data outliers did not result in different conclusions in this study. 

One potential reason for the limited additive value of the wastewater 
timeseries is that these data were much less smooth compared to the 
case data (Fig. S2a). In other words, while adding information, the 
wastewater data also introduced further uncertainty, and consequently 
add less information in the nowcasting than the case data. The option of 
considering what smoothing function would be appropriate to use 
wastewater data in infectious disease surveillance is beyond the scope of 
this article. For future use of wastewater data in infectious disease sur
veillance, it is important to investigate the sampling frequency and data 
quality needed. 

The results from this study of a strong correlation between the 
wastewater data and estimated infections correspond to other studies 
where wastewater data were used to predict case or hospitalization re
ports (Smith et al., 2022; Schenk et al., 2023; Jeng et al., 2023). The 
strength of this relationship appears to be stronger when daily moving 
averages of the wastewater data are available (Klaassen et al., 2023). 
Despite potential bias introduced by using the wastewater data to inform 
the parameterization of those data in the model, the additive and sub
stitutive power in this study were not very strong, when compared with 
a study in nowcasting SARS-CoV-2 infections in the Boston metropolitan 
area, covering a much larger population (Phan et al., 2023). This further 
supports the need for future research into the conditions required for 
using wastewater data in infectious disease nowcasting. Finally, our 
models included a simple linear relationship between wastewater data 
and modeled infections. There is a range of additional assumptions and 
more complex modeling choices that can be made to further support the 
use of wastewater in nowcasts (Jiang et al., 2022). This might compli
cate models and might make them less versatile across various infectious 
diseases, as these assumptions are disease specific, or require much 
additional data, like temperature and flow rates. The presence and level 
of viral load in wastewater data is a function of many other variables 
(such as temperature, sample type, flow rates, distance from house
holds), and the association between the viral load and the transmission 
in the population is a function of the amount and length of viral shed
ding at various disease stages (Arts Peter et al., 2023). 

In conclusion, in this case study, we found that the use of wastewater 
data improved the performance of COVID-19 nowcasts for Jefferson 
County, Kentucky. However, these improvements were modest, partic
ularly when case data were available. Future research on the value of 
wastewater data for nowcasting when case data are absent or unreliable 
would be beneficial. For public health officials this is critical informa
tion in balancing the focus of surveillance efforts – while wastewater 
may offer early detection, it’s incremental value for nowcasting may be 
limited if high-quality case reports are available, providing a reminder 
of the value of investments in traditional surveillance data. It is also 
possible that wastewater data will provide stronger evidence in other 
settings where case data is absent, and research on approaches to 
strengthen the value of these data for surveillance proposes is important 
for ongoing pandemic preparedness. 
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