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ABSTRACT 

WATER TREATMENT AND DISTRIBUTION SIMULATION FOR A SCADA 
SECURITY TESTBED 

Kyle Moss 

July 24th, 2012 

Supervisory Control and Data Acquisition (SCADA) systems are used in almost 

all industrial processes including use in the nation's critical infrastructure. The electric, 

water, and gas industries are merely a few that rely heavily on the use of SCADA 

systems in order to provide reliable service to the public. Any disruption in these systems 

would lead to major issues in day to day life and could produce a hazardous environment 

until the services are restored. SCADA equipment was first implemented decades ago, 

and in some cases the equipment deployed at that time is still in use today. As network 

technology emerged and advanced over the last several years, SCADA systems were 

adapted in order to provide network access and control from remote locations. This led 

to vulnerabilities in limiting access to the system and provided a means for hackers, 

hactavist, and nation-states to gain control of critical infrastructure SCADA systems in 

order to cause both physical and economical damage. 

New technologies and research areas have emerged in an effort to thwart these 

possible intrusions and attacks. However, there is a need to have adequate means of 

IV 



testing new security devices since it would be impractical to test on a functioning 

SCADA system. This leads to the development of simulations and testbeds that can 

provide a low-cost, easily configurable means of testing new cyber security devices. 

A water treatment and distribution simulation was developed in order to provide 

this means of testing. The simulation encompasses two components. The first is a 

software simulation that provides virtualized components typically found in water 

systems such as pumps, valves, and water tanks. The second is a hardware component 

that provides an interface from the software to actual SCADA equipment such as remote 

terminal units and human machine interfaces. The simulation was tested with a prototype 

cyber security device to ensure functionality. Attacks were carried out on the SCADA 

system with and without the security device in place. The simulation allowed for both a 

virtualized and physical response to the attacks. The simulation provided a robust, cost­

effective testbed for verifying the functionality of the security device. 
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I. INTRODUCTION 

Modem day processes are automatically controlled by computer systems. A 

combination of embedded systems, sensors, and software are used to increase efficiency 

and decrease cost. Almost all industrial processes, from electricity production and 

distribution, water treatment and distribution, transportation, oil and gas pipelines, and 

even the financial industry use Supervisory Control and Data Acquisition (SCADA) 

systems. SCADA systems allow for accurate monitoring of the overall process in near­

real time for many cases, and allow operators to control and monitor systems at remote 

sites. 

As new technologies have emerged, the use of remote monitoring and random 

access to the SCADA system by multiple operators and departments within a utility has 

increased the vulnerability of the system to cyber attacks. SCADA technology is 

expensive to deploy so components in the system are rarely upgraded. Many legacy 

systems have controllers and communication systems that are approaching 30 years old; 

designed in a time that cyber attacks were not an issue, which leaves them extremely 

vulnerable. More modem systems that utilize IP based communication techniques 

implement firewalls in order to provide a separation between the business local area 

network (LAN) and SCADA LAN. However many times the firewalls are configured 

inappropriately, with ports opened in order to allow remote access into the SCADA 
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network. Attackers are then able to exploit the holes in the firewall and gain access to the 

SCADA side through the business network. It is also important to note that security risks 

come from both outside threats, such as nation states, hacker groups, and independent 

hackers, as well as insider threats such as disgruntled employees. 

In 2010, one of the most successful and highly noted attacks on a SCADA system 

was discovered. STUXNET used a rootkit to infect Siemens programmable logic 

controllers (PLCs) in Iranian nuclear facilities. The worm traversed Windows based 

operating systems until it found specific controllers configured with variable frequency 

drives and eventually caused severe damage to uranium enrichment centrifuges. The 

worm exploited three zero-day vulnerabilities [1]. 

For these reasons, there has been an increased push for research and development 

in the area of SCADA security. The University of Louisville is currently working on a 

field device security preprocessor using a microkemel running on a Gumstix® embedded 

processor [2]. The research efforts are focused on adding security to legacy systems used 

in the water sector. Other university labs, government labs, and private sector 

organizations are also performing research in this area. 

A challenge for those testing devices that are under development arises because it 

would be impractical, and possibly extremely hazardous, to test the units on a functioning 

SCADA system. In the water sector, for example, errors in the hardware could lead to 

lose of control in the SCADA system or inability to collect data from remote sensors. 

Even more dangerous, the device could lead to damage of pumps, values, and water lines 
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in the system leaving the area without consumable water for an extended period. For this 

reason it is necessary to have a test bed for developing security devices. 

In this thesis, the design and development of a water treatment and distribution 

simulation will be discussed. The simulation incorporates both software and hardware to 

mimic a water system and interfaces to a remote terminal unit (R TU) similar to those 

used in an actual process. By using a software-based approach to simulate a water 

system, there is not a need to purchase expensive hardware to test the prototype in 

development. A software simulation also allows for easy reconfiguration of the system. 

This research is directly for use with the hardened remote terminal unit security 

pre-processor currently being developed at the University of Louisville. The security 

device is considered a "bump in the wire" approach, being connected to the R TU in line 

with the MTU/HMI. The simulation provides both a virtual and physical response to 

simulated attacks that are carried out on the SCADA network. Figure 1.1 shows a block 

diagram of how the simulation software and hardware fit into the system. The individual 

components will be discussed in more detail in later chapters. 

Water Treatment and Water Treatment and 
Distribution .. RS-232 ~ Distribution 

Simulation Software Simulation Hardware 

Windows PC 
I t i 

Physical 1/0 Connections 

~ + I 
Master Terminal Hardened 

Unit(MTU) I Human 
~ODBUS'" 

Remote 
"MODBUS. 

Remote Terminal 
Machine Interface Security Unit 

(HMI) Preprocessor 

Figure 1.1: Illustration of Simulation Integration with SCADA Network 
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The remaining chapters in the thesis are organized as follows. Chapter 2 presents 

an overview of relevant literature in this research area. Chapter 3 presents the model 

development for the water sector simulations. Chapters 4 and 5 discuss the 

implementation of the water sector model in both a software and hardware simulation. 

Testing and results of the simulation are presented in chapter 6. Finally, conclusions and 

future work are discussed in chapter 7 of the thesis. 
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II. LITERATURE REVIEW 

This chapter provides an overview of the published literature which is relevant to 

this thesis. It is divided into three parts. Part one is an overview of the water treatment 

and distribution system; the processes involved, the topology of typical systems, and 

standard operations. Part two is an overview of SCADA systems used in the water sector 

including the hardware used, communication systems implemented, operator interfaces, 

and the cyber threat to these systems. Finally, an overview of existing water simulations 

will be presented. 

A. Water Treatment and Distribution Systems 

Understanding the operation of a water treatment and distribution system is 

necessary in order to develop a model simulating their functions. Although no two 

systems are identical, there are many similar functions and components in the systems 

regardless of size or geographical location. Water systems involve two main processes, 

treatment and distribution. To understand the operations more thoroughly, these two 

processes will be discussed separately. 
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1. Water Treatment Process 

Water treatment is the process of taking groundwater or surface water from a 

stream, lake, or river and removing harmful bacteria, viruses, dirt and other contaminates 

in order to provide safe drinking water to the public. The process varies depending on 

location and the source of the water, but usually involves five steps: coagulation, 

sedimentation, filtration, disinfection, and storage as shown in Figure 2.1. 

Coagulation is the process of adding chemicals such as Alum to the water to help 

dirt and other particles stick together. As the particles combine together they become 

heavier and sink to the bottom of the tank in the sedimentation phase. With the dirt 

removed, the water is then passed through a filtration process. Most typically, sand, 

gravel, and charcoal are used to filter the water; removing smaller particles that were not 

removed during sedimentation. 

Chlorine is then added in the disinfection phase in order to kill bacteria and other 

microorganisms in the water. Next, the water is tested to ensure it meets the 

Environmental Protection Agency's (EPA) standards and then is stored for distribution 

into the water system [3]. 
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Figure 2.1: Water Treatment Process (EPA, 2012) 

2. Water Distribution Process 

After treatment, the water must be distributed to homes, businesses, and industries 

for use. Similar to the treatment process, the distribution system can vary greatly 

depending on its size and location, but there are many commonalities with all distribution 

systems. A distribution system is comprised of water pipes (lines), storage tanks, pumps, 

and valves. The distribution system provides uninterrupted, pressurized drinking water to 

the community it serves. Large capacity pumps transport water from the treatment 

storage tanks to large elevated water towers or ground tanks throughout the coverage area 

using water mains. Once pumped into elevated tanks, gravitational force exerted on the 

water pushes the water out into the distribution pipes at a pressure directly related to the 

difference in elevation of the water in the tank to the pipe system. The pressurized water 
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travels through the pipes of varying diameter branching off through smaller lines to water 

meters and eventually into the customer's building. In certain cases, additional pump 

stations may be connected to the distribution lines in order to maintain adequate pressure 

in the system. [4]. 

Each elevated storage tank includes at least two pumps; both are equipped with a 

valve that prevents backflow through the pump. An alternating switch attached to both 

pumps helps distribute the load on each pump equally over time. The pump which is 

scheduled to turn on during the next request is known as the lead pump and the secondary 

is known as the lag pump. During operation, the system will call for the lead pump to 

turn on when water levels in the tank drop below a set value, known as the lead minimum 

level. The pump will fill the tank until it reaches a second set value known as the tank 

maximum level. These two limits define the normal operating levels of the tank. In the 

event that the lead pump fails to turn on, or the demand for water exceeds the capacity of 

the lead pump to fill the tank, the water level in the tank will continue to drop. A lag 

pump minimum level is predefined in the system. When the tank reaches that point, the 

lag pump will turn on in order to maintain sufficient water in the tank. Once the tank 

reaches its maximum level, the pump(s) will shut off. 

The water in the storage tanks must flow out into the distribution system to 

customers. This is done through various types and sizes of pipes buried underground. 

There are two topologies to water distribution pipe lines: branch architecture and loop 

architecture. Branch architecture is used in rural distribution where homes and 

businesses are widely separated. Large diameter water mains are distributed from the 

elevated tanks and smaller diameter pipes branch off into subdivisions or industrial parks. 
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These lines branch into smaller lines, which run to water meters at individual homes and 

businesses. This is similar to branches on a tree, their diameter and lengths become 

shorter at each branch point. 

Loop architecture is used in more densely populated areas utilizing a large 

diameter water main that circles the area and loops back into itself. Small lines branch 

out of the loop into homes and businesses. Depending on the size of the area, multiple 

loops can be used. Figure 2.2 shows a water system with loop architecture for 

distribution. 

Figure 2.2: Water Distribution System (EPA, 2012) 

B. SCADA Systems in Water Sector 

1. Hardware 

Throughout the treatment and distribution system, SCADA systems are 

implemented in order to: control pumps and values, measure and control the addition of 

chemicals to the treatment process, and to monitor tank levels and pressure levels. 
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Remote terminal units (RTU's) are used to collect sensor data such as tank levels and 

operation status of pumps, as well as to control relays, which turn pumps on and off. 

Intelligent RTUs are able to do control automatically based on predetermined metrics of 

the system but still provide telemetry and in-turn operators maintain control. The RTUs 

are programmed to run the system with little input from operators. 

In most cases, pumps in a distribution system operate at a constant flow rate 

(either on or off), but some systems implement variable frequency drives in order to 

regulate the flow of water into storage tanks. Control of the pump' s velocity would be 

controlled by the RTU as well. The RTU at each remote site transmits data and the 

system status to a master control unit (MTU) usually located at the control center for the 

water system. In many situations this is collocated with the treatment facility or 

treatment control center. 

Valves 
Firewall 

Master Terminal 

_ _ -., 7 Remote Terminal 
::--'-_ --1 Unit (RTU) 

Pumps 

Pressure Meter 

Level Meter 

Figure 2.3: Typical SCADA System Diagram 
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2. Communication 

Various communication mediums can be used within a SCADA system. For rural 

or large area distribution, radio frequency (RF) based technologies are the most practical 

form of communication. These systems use a modern connected to the R TU 

communication interface to convert from a digital to analog signal. The output is then 

connected to a radio and large antenna to transmit the data to another location. For 

metropolitan or smaller service areas, fiber optic, plain old telephone service (POTS), or 

IP based communication (Ethernet or Wi-Fi) can be used. Most water systems are unique 

and these methods of communication are only a few examples of what may be found. 

In addition to various communication medium, there are also many SCADA 

protocols. MODBUS is a popular protocol and is one of only a few open protocols. 

MOD BUS is an application layer messaging protocol which allows it to operate on any 

lower layer architecture and with devices connected on different types of networks or 

buses [5]. It operates on a client/server model with the MTU functioning as the server 

and the RTU as the client. As previously mentioned, RTUs have the functionality to 

control analog and discrete outputs (i.e. turning pumps on/oft) and read sensor data on 

both analog and digital inputs (i.e. pressure levels, tank levels). Communication between 

the MTU and RTU use a specific set of function codes and other data in a MODBUS 

packet. This is outlined in detail in the MODBUS RFC. 
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III 
ADU 

Additional address Error check 

PDU 

Figure 2.4: MODBUS Frame Architecture 151 

Primary tables Obj ect type Type of Comments 

Dlscretes Input Smgle bit Read-Only 
This type of data can be provided by on I 0 system 

COi ls Smgle bit Read-Write 
This type of data can be alterable by an application 
program 

Input Registers 16-blt word Read-Only 
This type of data can be provided by on I 0 system 

Holdmg Registers 16-blt word Read-Write 
This type of data can be alterable by on application 
program 

Figure 2.5: MODBUS Data Types [51 

In its original form, MODBUS utilized RS-232 or RS-485 communication 

standards in the transport layer. Legacy systems in the water treatment and distribution 

system will probably implement this form. A TCPIIP version of MODBUS is also 

available. Figure 2.6 shows the MODBUS TCP/IP stack. 
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3. Operator Interface 

41 
~ a 
III 
III 
41 
II:: 

TCP/IP staCk 

Figure 2.6: MODBUS TCP/IP Stack (5( 

Once the data is received by the MTU, there is a need to display this information 

to operators in the control center. This is done by use of human machine interfaces 

(HMI). The HMI provides the operator with the ability to manually turn pumps on and 

off and indicates any errors in the system such as low pressure levels. This may indicate a 

water main break, or failure of pumps and other devices in the system. In most cases, 

data recording devices are attached to the SCADA system to provide a record of 

operation. Figure 2.7 shows what a typical water treatment HMI would look like. 
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Figure 2.7: Water Treatment RMJ (6( 

4. Cyber Vulnerabilities in SCADA Systems 

In 2005, a joint meeting of several Congressional Subcommittees was held to 

focus on the threat of a cyber attack on SCADA systems. At that meeting, experts, 

including government officials, national lab scientist, and other experts in the field, 

testified about the serious threat that was posed to critical infrastructure. Dr. Sam 

Varnado, Director of Information Operations Center at Sandia National Lab, outlined 

some of the research they were conducting using a Red Team approach. At that time 

several vulnerabilities in SCADA systems were uncovered [7]. 

In most cases, cyber threats are classified into one of the following categories: 

insider intentional threats, internal unintentional threats, external nontargeted threats, or 

malicious actors [8]. Insider intentional threats are those that occur from individuals 

working inside the utility, or those who have an expansive knowledge of the SCADA 
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system. An example of this type of attack occurred in Queensland, Australia in 2000 in 

which 800,000 liters of raw sewage was intentionally discharged from a wastewater 

treatment plant into local parks and rivers. Vitek Boden, a previous employee of the 

company that installed the SCADA system at the treatment facility, used his knowledge 

and access of the system to generate the spill [9]. 

As SCADA networks have slowly become integrated into corporate networks 

with access to the Internet and company internetworks, the threat of internal unintentional 

threats has increased. These threats occur due to inappropriate design of the networks, 

such as the lack of firewalls between the SCADA and business LAN, and improper IT 

procedures such as using default passwords and allowing broad access to the network to 

individuals that don't require it. These threats pose a real danger to SCADA security. 

The third type of threat is generated from computer viruses and worms that are 

not targeted directly at industrial control systems (ICS). Improper application of security 

updates and patches by IT personnel can cause failure in critical system equipment such 

as safety systems and HMI computers. These viruses can also open pathways for 

intrusion to outside threats. 

Finally, malicious actors are those who are targeting the ICS directly. This may 

include hackers, hactivist, and nation-states. Many times these are well financed groups 

with long backgrounds in malicious cyber activity. These attacks are difficult to prevent 

due to their complexity and sophistication [10] [11] [12] [13]. 

Cyber vulnerabilities exist in many areas of the SCADA system. Attacks could 

be directed on the HMI to provide the operator with incorrect information or take control 
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of the system. An attacker could also take control of the RTU directly, forcing pumps on 

or off which could lead to water tanks overflowing or completely emptying. Both could 

cause major disruption to the system. An attacker could gain access to the network to 

launch an attack through interception of wireless data via RF radios, or through a 

physical connection at a remote site. 

C. Simulation of Water Treatment and Distribution 

There are several technical areas in water resource management that require 

modeling the water treatment and distribution process. Many of these focus on system 

hydraulics and water quality. Since individual water systems are unique, meeting the 

specific requirements of its user base, it is important to have an accurate method of 

predicting the behavior of the system as changes are made, as well as identifying any 

issues that occur as a result of a simulated cyber attack. 

Several simulations have already been developed to address some of these issues 

such as EPANET and KYPipe [14] [15]. EPANET was developed by the Environmental 

Protection Agency as a way to perform extended period simulations of hydraulic and 

water quality behavior within a pressurized pipe network. This software tracks the flow 

of water in pipes, the pressure at nodes, the height of water in each tank, and the 

concentration of chemicals throughout the network. The software can also simulate 

water age and source tracing. KYPipe is similar to EP ANET in modeling the hydraulic 

properties of a pipe network. It offers a graphical user interface (GUI) which allows 

users to develop pipe system models easily. It can provide hydrant flow calculations and 

water quality analysis in addition to many other features. 
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Figure 2.8: KYPipe Simulation GUI 

These software packages focus on the flow of water throughout the distribution 

system in order to model water quality and hydraulic flow. These models and 

simulations help researchers who are investigating methods to prevent and analyze how 

chemicals can transverse the pipe network in the event that toxins were intentionally 

introduced into the water system in order to cause harm to customers. 

EPANET and KYPipe are excellent modeling packages for this type of research, 

but do not address the specific needs required for testing prototypes directed at 

preventing cyber attacks on the equipment itself. They only provide a numerical 

analysis and output and do not actually address the system operation such as control of 

pumps and sensor data throughout the network. They also do not provide any interface to 

actual equipment controlling the system hardware, the HMI, or connect to the 

communication network in any way. 

The National SCADA Test-Bed program was established by the Department of 

Energy (DOE) at Idaho and Sandia National Laboratories. This test-bed was designed to 
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address issues with cyber security in the nation's electricity, oil, and gas industries. 

There has also been work in the development of test-beds that incorporate both a 

virtualized component that works in unison with a hardware component. These 

simulations allow for most of the intelligence and processing to occur within the software 

while interfaces to physical SCADA components is accomplished with additional 

hardware [16] [17] [18]. 

In order to develop a simulation that can be used to test the security preprocessor 

developed at the University of Louisville as well as other prototypes, a simulation is 

needed that incorporates components of EP ANET and KYPipe such as flow throughout 

the pipe network and tank levels, but must also include control and simulated operation 

of pumps and valves in the system, and can interface with actual SCADA components. 

Also, these I/O parameters and analysis for the distribution side of the system must be 

carried into the treatment side in order to form a better simulation. The combination of 

all of these components will provide a robust model software package that can be easily 

configured and reconfigured for testing purposes. 
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III. MODEL DEVELOPMENT 

Due to the complexity of water systems, model development began by clearly 

identify the necessary functions required for testing the target security device. Trying to 

model all aspects of the treatment and distribution process would be extremely difficult 

and beyond the scope of this project. To reduce the complexity, several assumptions are 

made which are outlined for each subset of the water system. Although the systems are 

explained separately, the final model includes all described. 

A. Water Treatment 

1. Calculations and Parameters 

As outlined in Section 2.1, the water treatment process is normally comprised of five 

steps: coagulation, sedimentation, filtration, disinfection, and water storage. In addition 

to this, there must be a mechanism to bring water from the fresh water source (i.e. lake, 

river) to the treatment facility. This is accomplished through the use of pumps and water 

lines. Most of the processes in the treatment phase are time oriented, and their 

importance to the overall security of the system is less. There are a limited number of 

processes which are needed to be included in the model in order to provide adequate 

operations for testing. These are: 

1) Provide a uninterrupted supply of fresh water to the treatment facility as needed 

19 



2) Provide chlorine to the filtered water for disinfection 

3) Monitor the chlorination level of the water 

4) Flow chlorinated drinkable water into the distribution system 

Figure 3.1 shows the system components for the treatment system. This model 

assumes that water entering the treatment facility has passed through the coagulation, 

sedimentation, and filtration stations without issue. A reservoir of filtered clear water is 

stored for disinfection and then held until it is needed in the distribution system. In 

addition, the fresh water source and the chlorine source is assumed to be infinite; that is 

the water source will not empty as water is pumped into the treatment process and 

chlorine will always be available for disinfection. All calculations are performed every 

simulated one minute, which is defaulted to everyone second in true time. This 

simulation interval can be changed. 

Fresh Water Source 

• Denotes SCADA component 

Figure 3.1: Water Treatment Model Flow Chart 
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Variables are assigned for the flow rate of the pumps in and out of the 

chlorination tank and the capacity of the tank. The volume of water (gallons) in the tank 

is calculated based on its current volume, the flow of water in (flow rate of pump), and 

the flow of water into the distribution system. 

Vwater = Vcurrent + (Vflow in - V[lOW out)t 

Tanks in treatment facilities are usually in-ground with rectangular pnsm 

geometry. Thus, the height of water in the reservoir can be calculated by 

h Vwater 
water =~, 

tank 

where Vwater is the volume of water in the tank in cubic feet (1 fe = 7.4805 gallons) and 

A'tank is the cross sectional area of the tank (l x w). 

Various forms of chlorine are added to filtered water in order to kill micro-

organIsms. The levels of chlorine are strictly regulated by the U.S. Environmental 

Protection Agency under the Safe Drinking Water Act of 1974 [19]. Table 1 shows the 

maximum amount of chlorine allowable in drinking water. 

Table I: Standards on Chlorine Levels 1191 

Disinfectant MRDLG MRDL 

Chloramine 4 milligrams per liter (mg/L) or 4 parts per 4.0 mg/L or 4 ppm as an 

million (ppm) annual average 

Chlorine 4 mg/L or 4 ppm 
4.0 mg/L or 4 ppm as an 

annual average 

Chlorine 
0.8 mg/L or 800 parts per billion (ppb) 

Dioxide 
0.8 mg/L or 800 ppb 
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From this rate the ideal concentration of chlorine between 3.5 and 4 ppm can be 

set. The chlorination rate of the system is variable to maintain an acceptable chlorine 

level as the flow rate of water in and out of the tank changes. Assume that the chlorine is 

uniformly distributed throughout the water tank. Thus, the concentration of chlorine in 

the water leaving the tank is equal to the concentration of the entire tank so that the 

concentration of chlorine does not change based on the outflow. Also assume the 

concentration of the filtered water entering the tank to be zero. The new chlorine 

concentration of the tank is then calculated to be 

Cl MClold + MClnew , 
concentration = V water old V old+new 

where MClold is the current amount of CI (mg) in the water, Vwater old is the amount of 

water in the tank minus any that was pumped into the distribution system, MCl new is the 

amount ofCI(mg) added during the time frame (chlorination rate), and VOld+new is the 

volume of water in the tank minus any outflow into the distribution system and adding 

any inflow (flow rate of pump). The chlorination can be configured to automatically 

change based on concentration levels or set to be manually updated by the operator. 

2. Required Model Inputs and Outputs 

There is a limited amount of equipment required for the operation of the treatment 

component of the simulation. A reservoir pump is required to provide water into the 

treatment facility for treatment. A valve is also required at the pump site in order to 

prevent backflow. A second pump is required to pump chlorine into the filtered water for 

disinfection. A level sensor is also required in order to measure the amount of water in 

the treatment tank. 
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Corresponding parameters or variables are required for each of these components. 

Each pump has a flow rate which should be configurable by the user. The maximum tank 

level and ideal chlorine levels are also configurable by the user. Each calculated value 

can be set to a default prior to running the simulation. Thus, the current treatment tank 

level can be set to any value less than or equal to the maximum tank level parameter. 

Each ofthe control (pumps, values) and sensor (tank levels) parameters has a 

corresponding physical connection to the R TU, whether it is a digital or analog signal. 

These connections are more thoroughly described in Chapter 4. 

B. Water Distribution 

1. Calculations and Parameters 

Distribution systems vary widely based on the number of customers the water 

system serves, as well as the geographical layout of the area. The number of tanks, 

pumps, water lines, and even the topology of the water lines is independent to a specific 

system. The distribution model needs to be robust enough to allow for complete testing 

of the hardened security device while not being redundant in its features. Several 

assumptions are made in order to accomplish this task. First, a branch architecture 

system was chosen. This allows for pressure calculations at various points to be 

performed easily. From the treatment model, it can be assumed that a separate storage 

tank for treated water is not needed before being sent to distribution storage tanks. For 

simulation purposes the pump and water lines leaving the chlorinated water tank are the 

same as those that pump into the distribution system. Modeling a separate storage system 

23 



will not improve the simulation. It was determined that two elevated water storage tanks 

and their associated pumps and valves would be adequate for the distribution model. 

Chlorination Tank 

Elevated Storage Tank 

Elevated Storage Tank 

• Denotes SCADA component 

Denotes Pressure Sensor 

Figure 3.2: Distribution Model Flow Chart 

Variables are assigned to flow rates of each pump in the system and for the capacity of 

each storage tank. Each tank is assumed to be a cylinder of varying height. Thus to 

calculate the capacity (volume) of the tank the equation is: 

Vcylinder = Trr2 h, 

Where r is the radius of the tank and h is the varying height based on the capacity 

variable assigned. 

Water systems do not measure the amount of water in the storage tank: in gallons, 

but instead in feet of water in the tank:. The height of the water in the tank: can be 

measured by determining the static head pressure of the water using a sensor located in 

the bottom of the standpipe ofthe tank. The pressure at any given point is dependent 

only on the height of the column of water, and independent of the total volume of water 
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(in this paper height of water is defined as the difference in elevation between the top of 

the water column and the pressure sensor). For this reason set the radius ofthe tank to a 

constant value and only change the height of the tank in order to increase capacity for the 

model. Since the specific gravity of water is known, a linear relation can be made 

between the measured pressure (psi) in the stand pipe and the height of the water in the 

tarue 

hwater = 2.31 ft/psi 

Flow in and out of the tank is measured in gallons/min. Thus, calculate the 

volume of water in the tank based on its current volume in gallons, the flow of water into 

the tank based on the flow rate of the pumps, and the flow of water out of the tank based 

on demand. 

Vwater = Vwater current + (Vf10W rate in - Vf10w rate out)t 

The cross-sectional area of the tank is set so the pressure can be inversely calculated by 

p = (Vwater) C, 
Altank 

Where P is the pressure read by the sensor in psi, Vwater is the volume of water in the 

tank in cubic feet (1 ft3 = 7.4805 gallons), A'tank is the cross sectional area of the tank in 

square feet, and C is a constant conversion factor between pressure and height of water (1 

psi /2.31 ft). 

2. Required Model Inputs and Outputs 
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Based on the assumptions discussed previously, the equipment required for the 

distribution component includes four pumps and four valves, two storage tanks and their 

associated level meters. As with the treatment component, all of the parameters for pump 

flow rates, maximum tank levels, and the default or starting values for current tanks 

levels can be defined by the user prior to running the simulation. Also, each of these 

parameters has a physical connection to the RTU used in testing as outlined in Chapter 4. 

C. Water Demand 

Several factors are considered to determine water usage in the system, 1) the 

number of customers served, 2) the time of day the usage is occurring, 3) the number of 

high use peripheral devices in the system (i.e. fire hydrants). Variable are assigned for 

the number of customers for each branch of the distribution system, each being 

independent of the other. For time of day data, a 24 hour demand curve, shown in Figure 

3.3, was taken from previous work completed on a similar simulation [20]. Usage is 

extracted from this curve and used to calculate current demand along with the number of 

customers in each branch. 
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Figure 3.3: Time of Day Demand Curve 

For this basic 24 hour model, demand in the system is calculated to be 

where D is the demand for each branch, N is the number of customers, and is the 

coefficient of usage based on the time of day. This graph, shown in Figure 3.3 , also 

distinguishes winter from summer months. However, seasonal information is not 

currently used in the model. 

High use devices such as fire hydrants place additional usage on the system. 

These devices are random instantaneous surges on the demand of the distri.bution system 

and are not time varying. To model these, a simple Boolean function is implemented 

telling the system whether they are on or off. This generates peaks in the demand. 
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Pressure levels throughout the system are also an important consideration for a 

simulation. For the customer, acceptable water pressure ranges between 40-70 psi. The 

pressure throughout the system is determined based on the pressure at the water tower, 

and the losses due to friction through pipes, valves, elbows, and meters. To simplify the 

model we can assume straight pipes and no loses at branch points. This can be done 

because line breaks and tank levels are the most important pressure aspects to consider 

from a security aspect. Also, pipes are assumed to be at zero elevation with respect to the 

pressure sensor at each tank. Calculations are made assuming uniform pipe types and 

pipe diameters, thus friction loses are only dependent on distance from the tank. 
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IV. SIMULATION SOFTWARE 

Previous work on a water treatment and distribution system had been completed 

at the University of Louisville. This work was developed for earlier versions of a 

security device. The model was similar, including control of pumps and valves, 

chlorination levels, and tank levels throughout the system. However, the hardware used 

to interface to the RTU used in testing had limited 10, thus limiting the functionality of 

the software simulation. The simulation also used two different programming languages 

to create the full simulation [20]. In order to improve on this work, the simulation was 

written in a single language, Microsoft Visual C#. This was chosen due to its ease of 

integration with external hardware and familiarity with the programming software. New 

hardware was also developed which described in Chapter 5. These changes allowed for a 

more robust simulation to be developed. 

The models outlined in Chapter 3 were implemented in C# code using Microsoft 

Visual Studio (MVS) 2010. The designer feature of MVS allowed for a user-friendly 

graphical user interface (GUI) to be developed that displayed all important calculations 

and statuses of the simulation. The user interface also allows for simulation variables to 

be entered as discussed in the following section. These values can be modified as the 

simulation runs. 
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1. Simulation Parameters and Controls 

The first component of the simulation contains the basic parameters required to 

run the simulation. These include: 

l. Hour of Day 

2. Minute of Day 

3. Customers 

4. Belknap Outflow 

5. Medical Outflow 

The hour and minute of day is defaulted to 0 but can be changed to any acceptable 

value before the simulation is started. As the simulation runs, the minute of day will 

increment once per second as defined by a timer running in the simulation. After 60 

seconds in real time (60 minutes in the simulation), the hour of day will increment by 

one. This timing sequence can be changed by changing the timer settings in the code to 

allow a simulated minute and hour to be configured to any real world timing interval. 

The timing structure of the simulation is important if the model needs to replicate real 

world events in which the timing mechanism is crucial. If the simulation needs to run in 

real-time, the timer in the simulation should be set to true time or a 1: 1 ratio. This would 

correspond to a timer tick every 60 seconds. For simulations were the chlorine 

concentration and rate of addition is crucial this timing scheme should be used. 

The number of customers is also defaulted to 0, but should be changed prior to 

running the simulation. The number of customers and time of day are used to calculate 

the outflow for the two distribution subsystems, Medical and Belknap. This naming 
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convention is used for the two downtown campuses of the University of Louisville. The 

outflows are calculated using the formula outlined in Chapter 3. 

The Parameters section also contains the simulation controls. These include: 

I. Connect 

2. Disconnect 

3. Run Model 

4. Stop 

5. Reset 

The front panel for the parameters section is shown in Figure 4.1. The connect 

button opens the serial port defined in part by the user and within the code of the 

simulation software. The disconnect button closes this port. The COM port number can 

be entered by the user into the COM Port textbox available in the parameters section. 

The default value is "I"; indicating "COM1" will be addressed when establishing a 

connection. All of the other parameters such baud rate, parity, stop bits, and flow control 

are defined within the code of the software and cannot be easily changed by the user. 

This is to prevent modifications of these parameters which will prevent a correct 

connection with the hardware. In order to run the simulation, the communication port 

must be open. The simulation uses the System.lO.Ports namespace in Microsoft Visual 

Studio C#, which contains classes needed to establish a serial communications 

connection to the external hardware. 

ASCII characters and sequences of characters are passed between the software 

and hardware. These characters are used to initialize hardware settings, and exchange the 

status of pumps, tank levels, chlorination levels, and any other important information 

between the two components ofthe simulation. The COM value textbox displays the last 
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ASCII sequence received from the hardware. This can be used for troubleshooting issues 

with the simulation or for simply monitoring the exchange of data between the software 

and hardware. The simulation is configured to only run once a connection is established, 

i.e. the simulation control buttons (RUN, STOP, and RESET) are not enabled unless a 

connection is made. 

With a connection established, the run button becomes enabled. When pressed, 

an initialize character is sent from the software to the hardware, which resets any analog 

or discrete value to their defaults. The hardware then responds with the status of all of 

the discrete inputs from the RTU which are updated in the software. After initialization, 

the model timer starts which causes the time of day values to increment and all other 

calculations to occur. Calculations are updated every simulated minute. The Stop button 

stops the model timer and all calculations. Reset sets all analog values in the simulation 

to their defaults and sends a new initialization character to the hardware. 

Parameters 

o 
o 
o 

Hour of Day 

Min of Day 

Customers 

Connect I ( Disconnect I 

Belknap Outflow 

Medical Outflow 

Com Value 

Run Model I ( Stop I r-( - R-e-set- ...... 

Figure 4.1: Parameters and Simulation Controls 

2. Water Treatment Component 
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The water treatment component is comprised of two simulated pumps: one for 

pumping water into the treatment tank (RES Pump) and one for pumping chlorine into 

the treatment tank:. The reservoir pump includes a valve that opens and closes as the 

pump turns on and off. All of these components have a Boolean logic which is 

transmitted from the hardware to the simulation via the communication port. When the 

pumps are active, the pump symbol and valve change to a green color; when there are not 

active they are represented by a red symbol. 

Using the formulas outlined in Chapter 3, the tank level and chlorine level in the 

tank is calculated when the simulation is running. The max tank level, current tank level, 

and pump flow rates can be adjusted by the user before the simulation runs. The default 

levels are shown in Figure 4.2. Chlorine level and tank level are analog outputs from the 

simulation software to the hardware which can be read by the RTU and HMI if desired. 

600 

Figure 4.2: Water Treatment Simulation Component 

3. Water Distribution Component 

The water distribution component is comprised of four pumps and four valves, 

flow parameters for each of the pumps, and two tanks and their associated tank levels. 
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The tank levels are calculated using the formulas outlined in Chapter 3. The pump 

statuses are a Boolean logic controlled by the simulation hardware connected to the RTU. 

When the pumps are active, the pump symbol and valve symbol change to green; when 

there are not active they are represented by a red symbol. 

BElKNAP 
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Figure 4.3: Water Distribution Simulation Component 

4. Distribution Adjustments and Pressure Values 

An important aspect to the simulation is to be able to adjust the normal operating 

conditions of the water system. This section allows for instantaneous spikes in outflow 

from each distribution subsystem as well as monitoring of pressure in the lines and a 

given distance from the elevated tank. As described in the previous chapter, assumptions 

are made that the entire pipe network is distributed on an even elevation and with a given 

pipe diameter and type. Thus, the pressure drop can be calculated as described using a 

simple linear reduction based on distance. These parameters cannot be changed via the 
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GUI by the user, but can only be changed within the code of the simulation. Each 

subsystem allows for two virtual pressure nodes to be placed at any distance from the 

tank. Fire hydrants provide a method of creating an instantaneous surge in outflow and 

the flow rate of the hydrant can be modified by the user. The pressure level at each node 

is an analog output from the simulation software to the hardware and can be read by the 

RTU and HMI if desired. 

This section also contains four control buttons that can create simulated breaks in 

the pipe network at each pressure node. If the break button is used, the pressure at that 

node drops to O. The corresponding analog output will also read O. This can be used by 

the HMI to signal to the operator that there is an issue in the system. 

Belknap 

Distance 1 1000 It ( BREAK I P,=ue 1 

Distance 2 1000 It ( BREAK I P,essue 2 

Fie Hydrant 100 gal/min (ONIOFF I 

psi 

psi 

MeQcaI 

Distance 1 1000 It (BREAK I P,eu ue 1 

Distance 2 1000 It (BREAK I P,essue 2 

Fire Hydrant 100 gallmin I ONIOFF I 

Figure 4.4: Distribution Adjustments and Pressure Values 

The completed simulation GUI is shown in Figure 4.5 
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Figure 4.5: Graphical Interface of Treatment and Distribution Simulation 

2. Human Machine Interface CHMD 

In order for the RTU to function appropriately and the simulation to be used, an 

HMI is needed to provide a method of controlling the RTUs outputs and reading the 

inputs. As described in Chapter 2, the common SCADA protocol for communicating 

with most RTUs is the MODBUS protocol. This is the case for the VersaTRAK used in 

this research, which allowed for both MODBUS RTU and MODBUS ASCII, two 

standard forms of the protocol. An HMI is needed which can communicate via these 

standards. Many off the shelf products were available, including several freeware 

options. 

After testing the functionality and adaptability of some of these options, it was 

determined that a customized HMI could be developed using National Instruments 
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Laboratory Virtual Instrumentation Engineering Workbench or LabVIEW®. LabVIEW 

is a graphical, 'G', programming language that is used to expedite the development of 

programs for data acquisition, instrumentation control, and industrial process control. A 

MODUBUS virtual instrument (VI) is available as an add-on which reduced the amount 

of time to develop an HMI for use with the simulation and RTU. The HMI uses a VISA 

resource subVI to establish a connection to the RTU using the appropriate parameters. 

The HMI references this resource in the front panel as shown in Figure 4.6. 

BI~ ~dit Yi~w froject Qperat~ lools 

.~~[I[ill 
VISA resource name 

!l) COM10 

Baud Rat~ Parity 
Mod~ 

~ 19600 I INon~ I 
Flow Control nm~ut Slav~Add~s 

~ INone I 110000 I 

Figure 4.6: VlSA Resource Parameters 

Modifications to the existing interface have been made to increase the number of 

digital output controls as well as to read multiple input registers from the RTU which 

store the analog data from the simulation hardware. Also, the number of digital inputs 

has been expanded in order to match those of the RTU. Figure 4.7 shows the Boolean 

control buttons on the front panel of the HMI for the four coils used on the RTU. Figure 

4.8 shows the twelve digital input indicators associated with the digital inputs of the 

RTU. 
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Figure 4.7: Digital and Analog Output Control 

Slave Discrete Inputs 2 

Figure 4.8: Digital Inputs from RTU 
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V. SIMULATION HARDWARE 

This chapter describes specialized hardware which was designed, developed, and 

tested to support a more robust simulator for SCADA security evaluations. The hardware 

works alongside the software simulation component but was designed so that it can 

interface with other software developed for similar tasks easily_ 

1. RTU and 110 

The second component to the simulation is the hardware, which is used to 

interface to the RTU used for testing of the hardened security device. For this research 

project, the VersaTRAK® mIPm RTU/Controller is used. It is equipped with 12 discrete 

inputs, four discrete outputs, eight analog inputs, and two analog outputs. The RTU is 

connected to a computer equipped with a HMI, which is used to turn on digital outputs 

and display the status of both digital and analog inputs. The security of the 

communication between the HMI and the RTU is the area of interest for security testing. 
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Figure 5.1: RTU used for Testing 

In a water treatment and distribution system, the RTU will be the controller 

connected to the relays, which turn pumps on and off, close valves, and to sensors that 

monitor tank levels and other system conditions. The purpose of the simulation is to 

replace the pumps, valves, and sensors, with virtualized components, which are 

accomplished in the software portion of the simulation. In order to interface with the 

RTU; however additional hardware is needed. 

The types of inputs and outputs, both discrete and analog, need to be assessed 

before any hardware design begins. Reviewing the simulation and models outlines, it is 

determined that the I/O shown is Table 5.1 is required. Input/output listed in the table is 

from the point-of-view of the simulation hardware that interfaces with the RTU. It is 

worth noting that the specific RTU used in this research is not equipped with enough 

digital outputs (coils) or analog inputs to accommodate all of the variables used in the 

simulation. Instead of reducing the functionality of the simulation, the physical 

connections between the simulation hardware and the RTU will simply be left 
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unconnected. In the event a new R TU is acquired, the connections can be made and the 

simulation can be fully controlled. 

Table 5 1· Simulation Hardware 110 .. 
Description Input I Output Analog or Discrete 

Pump lA Belknap Input Discrete 
Pump 2A Belknap Input Discrete 
Pump 1 B Medical Input Discrete 
Pump 2B Medical Input Discrete 
Tank Belknap Level Output Analog 
Tank Medical Level Output Analog 
Treatment Tank Level Output Analog 
Chlorine Concentration Output Analog 
Res Pump Input Discrete 
Chlorine Pump Input Discrete 
Pressure Nodel Belknap Output Analog 
Pressure Node 2 Belknap Output Analog 
Pressure Node 1 Medical Output Analog 
Pressure Node 2Medical Output Analog 

2. Hardware Circuitry and Controller 

With the required 110 determined, and a method for controlling the RTU 

developed, the hardware required to interface from the simulation software to the RTU 

had to be developed. This hardware needed to be able to accomplish the following tasks: 

1. Communicate over a RS-232 serial connection to the software 

2. Store analog data from the simulation (i.e. tank levels, line pressure, 

chlorination levels) 

3. Output analog signal to the R TU based on stored analog data from 

software 

4. Read digital output signals from the RTU and store as Boolean variables 

5. Send Boolean values from (4) to software via communication port 

6. Output digital signal to RTU (for future use) 
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In order to accomplish these tasks, an embedded controller was required. A 

Microchip® PIC 18F8722 microcontroller was used in order to process discrete and 

analog values from the R TV and communicate them to the software simulation via a RS-

232 serial connection. The microcontroller was also used to process serial data received 

from the software simulation and output discrete and analog values to the RTU. The 

microcontroller serial port interfaced to a MAX232 TTL level-shifter in order to match 

appropriate signal voltage levels between the microcontroller and computer. The serial 

connection was full-duplex enabling the rnicrocontroller to send and receive data 

simultaneously. 

Additional electronics and circuits were required in order to interface from the 

rnicrocontroller to the RTV. The input voltage range on the discrete I/O for the 

microcontroller was 0-5 V and the range on the R TV was 0-15 V. In order to prevent 

over voltage on the microcontroller and ensure a minimum threshold voltage for the 

RTV, a transistor switching circuit was used. 

Vin 

01 
2N39r 

a) 

Vout 

Vin 

Figure 5.2: Transistor Switch Circuits 
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Figure 5.2 shows the two transistor circuits used in order to convert the digital 

output voltages between the RTU and microprocessor. Figure 5.2a was used for signals 

originating at the microprocessor and figure 5.2b was used for signals originating at the 

RTU. In both cases, Yin was connected to the output pin of the originating device. When 

Yin was low (or OV) no current flowed from the collector, which was connected to R2 in 

the figure, and the emitter, which was connected to ground. Thus, there is no voltage 

drop across R2 and the output voltage Vout is equal to the supply voltage, 15V or 5V 

depending on the case. When Yin is high, the base current becomes non-zero so the 

collector current becomes non-zero as well. For a 2N3904 npn transistor, the voltage 

drop across the base and collector is 0.7V. Thus the voltage drop across R2 is equal to 

the supply voltage minus 0.7V. The output Vout is then equal to 0.7V which is equivalent 

to a logical 0 or off. The transistor switch operates on an inverting topology [21]. 

The PIC 18F8722 did not include any analog outputs, similar to most 

microcontrollers. In order to interface the simulation to the RTU, a method of generating 

analog outputs for the tank levels, chlorine levels, and line pressure had to be developed. 

It was determined that there were two methods to accomplish this goal. 

The first option utilized the microcontroller's pulse-width modulation (PWM) 

modules. PWM is a common method used for digital-to-analog conversion (DAC). 

PWM is the generation of a series of pulses at a fixed amplitude, period, and frequency. 

The duty cycle of the signal is defined by the width of each pulse which can be varied. 

Figure 5.3 shows a PWM waveform. By adding a low-pass filter to a PWM signal, an 

analog output signal can be generated. The output voltage is proportional to the average 

time the PWM signal is spent in the "HIGH" state. For example, a 50% duty cycle would 
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correlate to a 2.5V analog output if the supply voltage was 5V as in the case with the 

microcontroller used in the hardware. A passive filter is adequate to produce an 

acceptable output if the frequency of the PWM signal is high enough. If not, an active 

filter design can be used [22]. 
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Figure 5.3: Pulse Width Modulation Waveform 
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Figure 5.4: DAC using PWM and Passive Filter 
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PIC 17C42 

Figure 5.5: DAC using PWM and Active Filter 

A second method to creating an external DAC is to use a resistor network which 

is driven by digital outputs [22]. This method is often referred to as an R2R ladder. In a 

typical application, eight discrete outputs are wired to a ladder configuration of resistors, 

with the resistors wired in series with the output pins being 2X the value as the rail 

resistors. This provides an equivalent 8-bit DAC. Figure 5.6 shows a single port R2R 

configuration with a microcontroller similar to the one used in this project. Figure 5.7 

shows the output response of the R2R ladder. 

The PIC18F8722 has mne I/O ports, each 8 bit, or equivalently, 72 possible 

digital I/O. Since a single port can support the necessary digital inputs required for the 

simulation, the remaining eight can be used for analog outputs, exactly the number of 

analog inputs available on the RTU. For this reason, and the limited number of PWM 

modules on the PIC, the R2R ladder options were used for this project. 
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Figure 5.7: Output Response of Single Port R2R Ladder 

Although the simulation does not currently include reading analog outputs from 

the RTUs two AD ports, consideration was made in adding this option. The 
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microcontroller does have 16, 10-bit analog-to-digital converters (ADC) that can operate 

with a single-ended or differential voltage reference. However, as with most industrial 

controls equipment, the RTU used a 4-20mA current loop for analog outputs. In order to 

convert from current to voltage an operational amplifier circuit is required. 

+ 

Figure 5.8: Current to Voltage Converter 

Figure 5.8 shows the current to voltage converter circuit required. Vin is connected to the 

RTU. As the current from the current loop increases, Vout increases. This allows the 

microcontroller to have a voltage input based on a current output from the RTU. Rf must 

be a precision resistor for this circuit to function properly but the exact resistor values can 

vary due to the high impedance of the RTU VO. [21]. Figure 5.9 shows the overall 

conversions and connections to interface the RTU and microcontroller. Figure 5.10 

shows a simplified schematic of the microcontroller and additional electronics. 

47 



,- -

Analog Outputs of RTU I Analog Inputs to RTU 

I 
L_~ __ ~ _: __ , __ _ 

Current to Voltage Digita~to-Analog 

Converter Circuits Converter J 
~ 1 -
'------~ 

. W~ter.Treatment/ i+-RS-232-+ 
Distribution Simulation I Microcontroller 

L--____ J 

J 
TIL _Le_ve_I_Sh_ift_ e_r_s _ -y--__ -_l 

I Discrete Outputs of RTU 
(Coils) 

Discrete Inputs to RTU 

Figure 5.9: Block Diagram of I/O Interfaces with Microcontroller 

Figure 5.10: Simplified Schematic ofI/O and Communication Circuits with Microcontroller 

An additional software component was needed in order to program the 

microcontroller to process data received from the simulation software and on I/O pins 

connected to the transistor switches. A C compiler from CCS Inc® was used to program 

and load the code onto the microcontroller. This code was simplistic, toggling output 
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pins when specific ASCII characters were received on the serial port, and sending ASCII 

characters to the simulation depending on the state of its digital input ports. A 

PIC18F8722 development kit from CCS was used for compatibility with the 

programming software and ease of integration. 
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VI. TESTING 

This chapter presents results from testing the simulator for proper operations, and 

also some representative SCADA security testing indicative of have the simulator will be 

used. 

A. Software Simulation Testing 

There are several items that were tested in order to check the functionality of the 

water treatment and distribution simulation. Testing included the simulation software, 

simulation hardware, the VersaTRAK RTU, and the LabVIEW HMI. The simulation 

software was run on a Windows 7 PC located in the Information Security Research 

Laboratory at the University of Louisville. The software was initially run in Microsoft 

Visual Studio so that any issues with the program could be debugged. After completion, 

an executable file was generated. Testing of the simulation was divided into the 

following test criteria: 

I. Communication setup 

II. Model calculations without external inputs (i.e. time of day, outflow) 

III. Software indicator functionality from hardware outputs (i.e. pump status) 

IV. Model calculations with external inputs (i.e. tank levels with pumps 

running) 

V. Hardware signal generation from software variables (i.e. analog outputs to 

RTU) 

50 



1. Serial Port Connection Testing 

The first aspect to testing the simulation software is to make sure that a 

connection can be made on the COM port specified in the parameters section. In cases 

where the PC has an available COM port on board, typically COM1 , this can be 

accomplished by simply connecting a serial cable from the COM port located on the back 

of the machine to the DB9 connector available on the simulation hardware breadboard 

and verifying that the COM port number entered in the simulation matches the available 

port of the machine. In situations where the PC does not have a standard serial port, a 

USB to serial converter cable can be purchased. Once the physical connection has been 

made and power is provided to the hardware, the connect button can be pressed and the 

simulation control buttons will become enabled. 
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Figure 6.1; Control Buttons before Connection Established 
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When the connect button is pressed, the software will send a sequence of ASCII 

characters to the simulation hardware. The hardware will then respond with a sequence 

of ASCII characters which will be displayed in the COM value textbox of the software. 

This will indicate that a successful connection has been established. If the connection 

fails, an error message will appear on the screen. 

51 



! IOElCception was unhandled x 

The port 'COM4' does not exist. 

Troubleshooting tips: 

L§~L9.~n~r~b~!l?JQf..ll:l!~?£~.~P.!!9n".l 

v 

Search for more Help Online ... 

Actions: 

View Detail ... 

Copy exception detail to the chpboard 

Figure 6.2: Example Error Message during Connection Process 

2. Model Calculations without External Inputs 

With a successful connection established, the remammg elements of the 

simulation can be tested. Pressing the "RUN" button will start the simulation and enable 

the "STOP" and "RESET" control buttons. As soon as the simulation begins, the "Min 

of Day" text box should begin to increment each second. To test the simulation model 

calculations without inputs from the hardware, the inputs to the transistor switching 

circuits were disconnected from the RTU, generating an "OFF" status for all of the 

pumps. This test examined the functionality of the model timer, and calculations of the 

outflow based on time of day and number of customers, the treatment tank level, and 

chlorine level in the tank. 
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Figure 6.3: Outflow Calculations 
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Figure 6.4: Chlorine and Tank Level Calculation 

3. Software Indicators 

The status of the pumps in the simulation is dependent on the inputs to the 

simulation hardware from the RTD. When a discrete output of the RTU is turned on 

using the HMI, the transistor switching circuit will pull an input pin on the simulation 

micro controller low. The rnicrocontroller will then send a character indicating the status 

of that pump which will change the color of the pump and value in the software. If the 

pump is running, the tank level will change in accordance with the formulas outlined in 

Chapter 3. As shown in Figure 5.5, turning on discrete outputs 1-3 turn on one pump of 

the Belknap Tank and both pumps of the Medical tank. The forth output is connected to 

the reservoir pump. As noted previous, the specific RTU used in testing is not equipped 

with enough discrete outputs to take full advantage of the simulation. Testing the other 

digital input based components of the hardware and software was completed by pulling 

the transistor switching circuits "HIGH" and "LOW" directly. 

53 



BELKNAP 

400 

PUMP} 

400 400 

PUMP2 

400 

Figure 6.5: RTU Outputs Controlling Simulation Pumps 

4. Model Calculations with External Input 
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As seen in Figure 5.3, when both pumps on tank Belknap are running, the rate at 

which the tank fills is increased. It is also important to note the flow rates of each pump 

which can be adjusted by the user must be set in proper proportions. If the flow rate of 

the reservoir pump is set to that of each of the elevated tank pump flow rates then the 

treatment tank will drop dramatically. This will also have a direct impact on the chlorine 

level in the tank. 

It is important to note that all calculations in the simulation are made with each 

tick of the model timer. Pump statuses are updated based on ASCU characters received 

from the simulation hardware. When a character is received, an interrupt occurs which 
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reads in the character or characters on the serial port buffer and then analyzes the 

character to perform the appropriate operation. This execution occurs much faster than 

the 1 second interval between ticks. For that reason, there is no noticeable delay in the 

update of the pump status and the calculation of variables in the program. 

400 

5. Hardware Output 

Figure 6.6: RTU Control of All Pumps 
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On each tick of the model timer, the new value of all variables (analog values) in 

the program is sent over the communication port to the simulation hardware after the 

completion of their calculation. The microcontrol1er parses these values and updates the 

output accordingly. Since the RTU and HMI have no understanding of what the signal 

voltages received are in relation to (i.e. height, pressure), the values passed to the 

microcontroller from the software are a ratio of the current value to the maximum value. 

This fraction is then used to calculate the output of the associated PORT in order to 

generate the proportional analog signal to the RTU. The R2R ladder output was 
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measured to ensure that the proper voltage was being supplied to the RTU as seen in 

Figure 6.7. 
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Figure 6.7: Scope Trace of R2R Ladder Output 

B. SCADA Security Testing 

Testing of the simulation with the hardened remote security preprocessor was 

completed to demonstrate the full functionality of the simulation. The simulation allows 

for both a virtual and physical realization of the operation of the SCADA system (i.e. 

status of pumps, tank levels, chlorine levels) as cyber attacks are carried out on the 

SCADA system. A compromised SCADA network was used in which a rogue computer 

gained access to the network and was able to issue MODBUS commands. For testing, 

the following scenarios were examined: 

1. Turn on pump without security device (Write coils attack) 

2. Falsify discrete input data without security device (Read request attack) 

3. Turn on pump with security device (Write coils attack) 
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4. Falsify discrete input data with security device (Read request attack) 

In scenario 1, a write coil command was issued on a compromised network from 

an unauthorized computer. In an ideal case, the RTU would only authorize and execute 

this command when issued from an authorized HMI. Without a security device in place, 

the command was successfully executed and a simulated pump was activated, filling one 

of the storage tanks in the simulation as seen in Figure 5.7. The HMI on the SCADA 

network indicated no pumps running as shown in Figure 5.8. 

BelKNAP 

200 

Max Tank Level 

500 

Figure 6.8: Unauthorized Pump Turn On (Write Coils Attack) 

57 



.. 
Blud RIte 

:9600 I 
Flow Control T IfTl«OUt 

: "None J 

Om to write to the slive 

~rstersto 

10 0 

Figure 6.9: HMl Showing No Coils Written During Attack 

A read request attack was also tested. In this scenario, a read discrete inputs 

request was issued from the MTUIHMI. The unauthorized computer intercepted this 

command and issued a false response indicating a true value for one of the inputs. For 

testing purposes, the simulation hardware was programmed to turn on a digital output of 

the simulation when a digital input from the RTU went high. When a pump was turned 

on using the HMI, a coil would go high on the RTU which would be detected by the 

simulation. The simulation would then output a high value back into the R TU which 

could be read by the HMI. Essentially a feedback loop was created to verify the 

simulation hardware understood to turn on a pump. Figure 5.9 shows the HMI which 

indicated that no coils have been written, yet shows a high status on a digital input. 

Figure 5.10 shows the simulation, also indicating no coils (pumps) have been turned on" 
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Figure 6.11: Simulation Showing No Pumps Running 

Both of these scenarios were repeated with the security device in place (refer to 

Figure 1.1). In these cases, the security device challenged the write and read commands. 

Since the commands were not authorized, the MODBUS messages were not passed to the 

RTU thus no execution occurred in any part of the system including the simulation. 
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VII. CONCLUSIONS AND FUTURE WORK 

Traditional IT security measures are insufficient for securing SCADA systems. 

The development of new SCADA security devices and approaches requires sector 

specific simulations for assessing and evaluation new SCADA security technology. The 

University of Louisville is currently developing a hardened remote terminal security pre­

processor. In order to test this device, a water treatment and distribution simulation was 

designed due to the low cost of implementation and the versatility that a virtualized test 

bed offers. 

Background research was conducted in order to more completely understand the 

operations of both the treatment process and distribution process that occur in the water 

system. Assumptions were made in order to focus the development of the simulation to 

best fit the testing criteria of the security device. Models for both the treatment and 

distribution subsystems were developed. These models were implemented in a user­

friendly GUI based software simulation. Calculations and system statuses were 

transmitted over a serial connection to hardware designed to work in conjunction with the 

software component. This hardware interfaced multiple discrete and analog I/O to a R TU 

used for testing the security device. Testing of the complete system assured that the 

simulation performed according to specifications and provided adequate testing vectors 

for the security system. 
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There are several additions to the simulation that are planned that will increase the 

functionality of the system. First, the RTUs analog outputs can be used to control 

variables within the simulation software. The circuit design for interfacing the R TU and 

microcontroller in this manner has already been completed and outlined in previous 

chapters. The chlorination rate of the simulation is currently controlled by the user of the 

software. A slight modification to the code would allow for the HMI and RTU to control 

this variable for example. 

The VersaTRAK RTU used in testing was not running any logic; its inputs and 

outputs were read and controlled by the HMI. Additional testing should be performed 

with a RTU running some type of operational logic. Work has been started on 

programming an Allen Bradley PLC using the associated RSLogix software. A simple 

ladder logic program can be developed that will allow the RTU to automatically tum on 

and off pumps as the tank levels change much like a typical system would do as outlined 

in chapter two. This would provide a fully functional testing system for cyber security 

devices that are being developed. 

The water treatment and distribution simulation outlined will be used as a testbed 

for new devices aimed at securing SCADA systems. It offers a large amount of VO that 

can be connected to a wide variety of RTUs that are used in the field today. Using a 

simple serial interface between the software and hardware, the system can be easily 

transported and set up in laboratories or industrial settings for additional testing. This 

testing system will offer a unique method of testing new cyber security devices and offer 

insight into any issues or problems that should be resolved before the device is deployed 

in a real world setting. 
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APPENDIX I - Glossary 

ADC - Analog to Digital Converter 

ADU - Application Data Unit 

ASCII - American Standard Code for Information Interchange 

COM - Communication 

DAC - Digital to Analog Converter 

DAQ - Data AcQuisition 

EPA-Environmental Protection Agency 

GUI - Graphical User Interface 

HMI - Human Machine Interface 

I/O - Inputs/Outputs 

IP - Internet Protocol 

Lab VIEW - Laboratory Virtual Instrumentation Engineering Workbench 

LAN - Local Area Network 

MTU - Master Terminal Unit 

MVS - Microsoft Visual Studio 

PC - Personal Computer 

PDU - Protocol Data Unit 

PWM - Pulse Width Modulation 

PLC - Programmable Logic Controller 

POTS - Plain Old Telephone Service 

PPB - Parts Per Billion 

PPM - Parts Per Million 

PSI - Pounds per Square Inch 
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R2R - Resistor to Resistor 

RES - Reservoir 

RF - Radio Frequency 

RFC - Request for Comments 

RTU - Remote Terminal Unit 

SCADA - Supervisory Control and Data Acquisition 

TCP/IP - Transmission control Protocol/Internet Protocol 

TTL - Transistor-Transistor Logic 

USB - Universal Serial Bus 

VI - Virtual Instrument 

VISA - Virtual Instrument Software Architecture 
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APPENDIX II - Mathematical Equations for Simulation Variables 

Vwater = V current + (VIlow in - VIlow out)t 

Vwater is the volume of water in the tank in cubic feet (1 fe = 7.4805 gallons) 

Vcurrent is the current volume of water in tank 

VIlow in is the flow of water into the tank 

VIlowout is the flow of water out of the tank 

Vwater 
hwater = -A-:-'-­

tank 

hwater is the height of the water in the tank 

A'tank is the cross sectional area ofthe tank (l x w) 

CI MClold + MClnew 
concentration = V water old V old+new 

MClold is the current amount of CI (mg) in the water 

Vwater old is the amount of water in the tank minus any that was pumped into the 
distribution system 

MCl new is the amount ofCI (mg) added during the time frame (chlorination rate) 

Vold+new is the volume of water in the tank minus any outflow into the distribution 
system and adding any inflow (flow rate of pump) 

Vcylinder = nr2 h, 

r is the radius of the tank 

h is the varying height based on the capacity variable assigned 

hwater = 2.31 it/psi 
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p = (Vwater) C, 
A'tank 

P is the pressure read by the sensor in psi 

Vwater is the volume of water in the tank in cubic feet (1 fe = 7.4805 gallons) 

A'tank is the cross sectional area of the tank in square feet 

C is a constant conversion factor between pressure and height of water (1 psi / 2.31 ft). 

D = N * UTOD, 

D is the demand for each branch 

N is the number of customers 

UTODis the coefficient of usage based on the time of day 
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APPENDIX ill - Microcontroller and Electronics Information 

PICt8F8527 
PIC 18F81>22 
PIC 18F8627 
PICt8F8722 

PIC18F8722 Microcontroller Pin Definitions 
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2 3904 

TO-92 

ESC 

Absolute Maximum Ratings· Ta = 25°C unless otherwise noted 

Symbol Parameter Value Units 
VCEO Collector-Emitter Voltage 40 V 

Vcso Collector-Base Voltage 60 V 

VEBO Emitter-Base Voltage 6.0 V 

Ic Collector Current - Continuous 200 rnA 

TJ. Tstg Operating and Storage Junction Temperature Range -55 to +150 °C 

2N3904 NPN Transistor 

Vos TRI Vos 

V+ 

UC 

flC = tlO comiECT 

OPt77 Ultra Precision Op-Amp Pin Definitions 
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DIP/SO 

CAPACITANCE (11F) 
DEVICE (1 G2 C3 C4 C5 
MAX220 o.orr 0.33 0.33 0.33 033 
MAX232 10 1.0 1.0 10 1.0 
MAX232A 0.1 G.l 01 0.1 0.1 

MAX232 Driver/Receiver 

12345 

o o 

DB9 Connecter Pinout 
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