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ABSTRACT

A NOVEL DIFFUSION TENSOR IMAGING-BASED COMPUTER-AIDED

DIAGNOSTIC SYSTEM FOR EARLY DIAGNOSIS OF AUTISM

Mahmoud Mostapha

August 12, 2014

Autism spectrum disorders (ASDs) denote a significant growing public health

concern. Currently, one in 68 children has been diagnosed with ASDs in the United

States, and most children are diagnosed after the age of four, despite the fact that

ASDs can be identified as early as age two. The ultimate goal of this thesis is to

develop a computer-aided diagnosis (CAD) system for the accurate and early di-

agnosis of ASDs using diffusion tensor imaging (DTI). This CAD system consists

of three main steps. First, the brain tissues are segmented based on three image

descriptors: a visual appearance model that has the ability to model a large di-

mensional feature space, a shape model that is adapted during the segmentation

process using first- and second-order visual appearance features, and a spatially

invariant second-order homogeneity descriptor. Secondly, discriminatory features

are extracted from the segmented brains. Cortex shape variability is assessed us-

ing shape construction methods, and white matter integrity is further examined

through connectivity analysis. Finally, the diagnostic capabilities of these extracted

features are investigated. The accuracy of the presented CAD system has been

tested on 25 infants with a high risk of developing ASDs. The preliminary diag-

nostic results are promising in identifying autistic from control patients.
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CHAPTER I

INTRODUCTION

The latest advances in the field of medical imaging, which include mag-

netic resonance imaging (MRI), computed tomography (CT), and ultrasound (US),

allowed the acquirement of images for almost all types and sizes of different struc-

tures with adequate degrees of contrast and resolution. Today, medical imaging

can provide 3D/4D functional as well as structural information about the scanned

organ, which allows medical imaging to play a vital role in the composition of any

current medical diagnostic tool. It has been efficiently used to support clinicians

and radiologists in diagnosis, therapy decisions, and surgery operations. Com-

pared to the other imaging modalities, MRI has become today the most powerful

and dominant non-invasive tool for clinical diagnosis of different brain disorders

(e.g., autism and dyslexia).

Based on the type of information that they provide, MRI modalities could

be classified into two categories, namely functional and structural MRI. Diffusion

tensor imaging (DTI) is a recent functional MRI method that characterize the three-

dimensional diffusion of water molecules in biological tissue using the diffusion

tensor [1,2]. DTI has a wide range of clinical applications; it is used to examine nor-

mative white matter development, neurodevelopmental disorders (e.g., autism),

and neurodegenerative disorders (e.g., amyotrophic lateral sclerosis) [3]. The re-

search presented in this thesis is concerned with developing a novel computer-

aided diagnosis (CAD) system for the early diagnosis of autism spectrum disor-

ders (ASDs). This thesis proposes a novel DTI-based CAD system for the early
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diagnosis of ASDs that integrates both shape and connectivity extracted features

in their classification process. The proposed CAD system will enable the chance of

early intervention for ASDs. With the new possibility of concentrated early inter-

vention, the manifestation of the disorder could be lessened or even eliminated [4].

In this chapter, an overview of the current medical imaging modalities will

be presented. Then, the main underlying principles of DTI will be explained in

order to get a better in-depth understanding of this recent MRI imaging modal-

ity. Finally, the main components of the proposed CAD system will be introduced

followed by the thesis overall organization.

A Overview of Medical Imaging Modalities

Medical imaging is the process of producing visual images that describe the

interior of different areas inside the human body. Medical imaging procedures al-

low for noninvasive diagnosis of disease and monitoring of therapy, and can sup-

port medical and surgical treatment planning. For many diseases, early detection,

more effective diagnosis, and improved monitoring of therapy through the use of

imaging exams may possibly lead a morbidity reduction, added treatment choices,

and improved life expectancy [5].

Each imaging modality has a different mechanism to provide the required

physiological information of the organ being imaged. Therefore, each modality has

a set of advantages and disadvantages, and the selection of the imaging technique

must be tailored to the mandatory interest. Medical images can be classified based

on their modalities (Figure 1) or based on the type of information that they provide

(i.e., the structure or the function of the organ being imaged, see Figure 2). This sec-

tion will provide an overview of familiar preoperative medical image modalities

(see Figure 3).
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Figure 1: The four main classes of medical image modalities

Figure 2: Categories of medical image modalities based on the type of information
that they provide about the organ being imaged.

3



(a) Brain MRI image (b) Kidney CT image

(c) Fetus US image (d) Lung PET image (e) Liver SPET image

Figure 3: Examples of different types of medical images.

1 Computed Tomography Imaging

Computed tomography (CT) has become one of the most common and valu-

able medical modalities in medical imaging since its introduction by the Nobel

Prize winners Sir Godfrey Hounsfield and Alan McLeod McCormick. Even though

also based on the variable absorption of X-rays by different tissues, CT imaging

provides a different form of imaging known as cross-sectional imaging. The basic

principle behind CT is that the internal structures of an object can be reconstructed

from multiple measurements (projections) of X-ray transmissions through the ob-

ject. A CT image is typically called a slice, as it corresponds to a slice from a loaf

of bread. The two-dimensional (2D) array of pixels (picture elements) in the CT

image corresponds to an equal number of three-dimensional (3D) voxels (volume

elements) in the patient. Each pixel on the CT image displays the average X-ray at-

tenuation properties of the tissue in the corresponding voxel. The most commonly

4



used CT techniques are shown in Figure 4.

Figure 4: Different specialized CT imaging acquisition techniques.

Lately, images with much greater details could be obtained in a shorter scan

time through the use of multi-detector (64 or more) CT scanners. Structural CT

imaging modality has been comprehensively used in many clinical circumstances,

such as determination of the extent of a trauma [6], localization of tumor [7], de-

tection of lung diseases [8], diagnosis of heart disease [9], diagnosis of kidney dis-

eases [10], study of dental problems [11], etc.

Although structural CT acquisition techniques provide structural (anatomi-

cal) information, they have a limited ability to provide any functional (physiolog-

ical) information. The adminstration of contrast agents before a CT scan helps in

reveling more functional information. Contrast-enhanced computed tomography

(CE-CT) has been adopted for imaging different organs for disease diagnosis and

pre-operative guidance and planning. The advantages of CE-CT include better

contrast of anatomic structures, increased sensitivity for pathological lesions de-

tection, and improved precision in lesion depiction. A distinct technique of CE-CT

is functional CT, also called dynamic contrast-enhanced CT (DCE-CT). Functional

CT has many clinical applications in brain and neck tumor diagnosis [12], lung

nodule evaluation [13], examination of prostate cancer [14], and therapy monitor-

ing [15].

CT angiography (CTA) is an optimized CT scan that is primarily concerned

with producing pictures of blood vessels in the body. The advantages of CTA

include the capability to perceive aneurysms (enlarged blood vessels), narrowed

5



blood vessels, and impaired blood vessels, in an early stage for the determination

of appropriate therapies. Moreover, CTA can reduce scan time, and lower cost

compared with other comparable imaging techniques. CTA is used to diagnose

the coronary artery disease of the heart [16], evaluate patients with acute ischemic

stroke [17], identify renal artery stenosis [18], and detect acute pulmonary em-

bolism [19].

The application of the CT was extended from the clinics to the research field.

Microtomography or micro-CT (muCT), which is a distinct technique of CT, was

able to generate high resolution images (voxel spacing of<100 µm) through longer

exposure times [20]. Clinical applications of the micro-CT include small animal

imaging [20,21], evaluation of mineralized tissues, such as insect exoskeletons [22]

and skeletal tissues [23], quantification of pulmonary fibrosis and investigation of

airway microstructures of animals lungs [24], assessment of bone and soft tissue

disease and therapeutic response of small animals [25], and assessment of induced

cardiac stress [26].

In conclusion, CT is more broadly used and faster than other imaging tech-

niques, and may be less likely to require the person to be sedated or anesthetized.

Moreover, CT scans provide good spatial resolution (the ability to distinguish be-

tween two structures at an arbitrarily small distance from each other) compared

with MRI. In addition, CT cuts a lot of noise because it is computerized. Also,

when compared to other imaging techniques like ultrasound, CT has a great pen-

etration depth. On the other hand, the main concern of CT imaging is that the

X-rays are ionized radiation, which may be harmful to patients and may induce

cancer. However, recent CT technologies use low doses of radiation in order to

reduce the radiation effects, but this usually comes with a reduced image quality.

Overall, CT scan is a valuable tool that a physician can use in combination with

other imaging modalities to reach the exact diagnosis for a patient.
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2 Ultrasound Imaging

The use of ultrasonography has been established in the medical field during

the last decade of the twentieth century, and many scientific publications stated

the lead of ultrasonography over commonly used X-ray techniques. Ultrasound

(US) is the word used to refer to sound waves of frequencies above 20,000 Hertz

(Hz), beyond the range of human hearing. Frequencies of 130 megahertz (MHz)

are typical for US imaging. Lower frequencies between 3−5 MHz are employed

for abdominal areas such as the liver, as compared to 5−10 MHz for small regions

closer to the body surface, and 10−30 MHz frequencies are used for the skin or the

eyes [27]. All different US techniques are based on the echo principle, where the

time between the emission of a pulse and reception of its echo is used to estimate

the distance between the transducer and the reflector. In addition, Doppler tech-

niques could be used to describe the reflector’s movements. The speed at which

the waves travel is highly affected by various types of body tissues. By introducing

additional mode to the ultrasound, the blood flow could be estimated. A Doppler

probe inside the transducer gauges the velocity and direction of blood flow in the

vessel by allowing sound waves to be audible. The loudness degree of the sound

waves shows the level of blood flow in a blood vessel. Also, obstruction of blood

flow could be determined by the absence of these sounds. A hierarchy of the dif-

ferent modes/types of each of the two categories is presented in Figure 5.

A-mode (A-scan, amplitude modulation) is a one dimensional (1D) scan,

which is infrequently used due to the limited information provided (distance mea-

surements only). Clinical applications of A-mode scans include the measurement

of eye dimensions prior to corneal thinning or lens replacement [28], the localiza-

tion of solid masses in the eye orbit or globe [29]. In B-mode (brightness modu-

lation), echoes are displayed as points of different grey-scale brightness. M-mode

or TM-mode (time motion) is primarily a continuous series of B-mode scans. The

main objective of M-mode scan is to provide the degree of movement of different

7



Figure 5: Different specialized ultrasound imaging acquisition techniques for both
anatomical imaging and for blood velocity measurements.

scanned tissues within the body. Applications of M-mode scans include the detec-

tion of heart valves and heart wall motion [28], the detection of valvulopathies

(calcification, etc.) and cardiomyopathies (dyskinesis, aneurysm, etc.), and the

measurement of abdominal muscle thickness [30].

Two-dimensional B-scan (2D B-scan) is an extension from the 1D B-scan us-

ing an arrangement of many one-dimensional lines in one plane. 2D B-scans are

typically used to study both stationary and moving structures. Applications of B-

mode scans include the study of atherosclerotic progression [31], characterization

of carotid artery plaques [32], and cardiac imaging [28]. Recently, 3D ultrasound

images have been introduced for anatomical imaging and diagnostics. Although

the 3D ultrasound is still not well-established, it has already shown promise in

many medical applications, such as the study of the abdomen and pelvis and imag-

ing of fetal and uterine malformation [28], measuring the kidney long axis [33], and

the estimation of the dimensions of cardiac valves [28]. In order to track the move-

8



ment of the organ of interest, recent advances attempt to obtain 4D US scans by

acquiring multiple 3D image frames in a short period of time [33].

In US Doppler techniques, the Doppler effect is used to provide further in-

formation that is specially used to examine blood flow. Continuous wave Doppler

(CWD) as the name implies, involves a continuous generation of US waves us-

ing a transmitter transducer coupled with a continuous US wave reception using

another specific transducer dedicated for receiving the US waves. The main draw-

back of the CWD is its lack of sensitivity and depth discrimination. On the other

hand, the main advantage of the CWD, is its ability to measure high blood veloci-

ties at any depth (e.g., the highest velocities in any valvular). Pulsed wave Doppler

(PMD) is a more data-selective method than the CWD mode. It is typically used

to provide a localized velocity measurement over a small area. The main draw-

back of PWD is that it has a limit for the highest frequency that can be measured

due to what is technically known as aliasing. In addition, PWD can not accurately

measure high blood flow velocities encountered in certain types of valvular and

congenital heart disease. Color Doppler (CD) and power Doppler (PD) displays

are used as duplex systems integrated into the B-scan image [27]. In CD method,

the flow map is superimposed within the high-resolution image, Doppler shifts

are measured in a few thousand sample volumes located in an image plane, and a

color is associated with each velocity and displayed on the location of the volume

on top of the B-mode image. PD is based on the combined power of the Doppler

signal, and is five times more sensitive in detecting blood flow than CD; however,

it provides no information about the flow direction [27]. To enhance the quality

of the US image, a contrast-agent can be administrated before capturing the US

image. Contrast-enhanced US (CE-US) imaging is used to further investigate the

physiological basis of diseases. Applications of CE-US include imaging the blood

perfusion in organs, measurement of the blood flow rate in the heart and other

organs, and imaging the liver to detect hepatocellular carcinoma [34].
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To conclude, US imaging has been involved in many applications. How-

ever, US drawbacks include its low image quality and thus its inability to image

the fine details of the structures. Moreover, it is limited by the inability to im-

age through air (lungs, bowel loops) or bone. Even in the absence of bone or air,

the depth of penetration of US is limited by its frequency. In addition, the ultra-

sound images are highly operator-dependent and are affected by the patient body

habitus. For example, larger patients may have a decrease in image quality due

to sound wave absorption in the subcutaneous fat layer. On the other hand, the

main advantage of ultrasound imaging in medical image diagnosis is that it offers

a safe imaging technique, which involves no ionizing radiation. This makes US

imaging the modality of choice for many applications such as gynecology and ob-

stetrics. Moreover, US is fairly inexpensive and can acquire real time images with a

high frame rate. Furthermore, recent advances in US instruments have made them

more small, portable, popular, and usable. These features, and the constant de-

velopments in image quality and resolution have extended the use of US to many

areas in medicine beyond customary diagnostic imaging.

3 Nuclear Medicine Imaging

Today, there are between 15 and 20 million nuclear medicine (NM) scans

performed annually in the USA. During an NM scan, a slight quantity (nanogrammes)

of radioactive material (radiotracer) is inserted into the patient. Eventually, the

agent will mount up in a certain body organ, and the healthiness of the tissue can

be assessed using several aspects, which include the accumulation position, quan-

tity and speed. Since NM are able to show the spatial distribution of metabolic or

biochemical activity in the body, it is an important complement to MRI, CT and

US. Typical NM imaging modalities are shown in Figure 6.

Scintigraphy is a 2D-imaging modality that produces a picture of radioac-

tive material (radiopharmaceuticals) distribution within the human body. The
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Figure 6: Different specialized NM imaging acquisition techniques.

main clinical application of planar scintigraphy is whole-body bone scan to de-

tect bone fractures as areas of increased radiation. Also, it can be helpful to detect

certain types of abnormalities that are difficult to detect with other imaging modal-

ities. For example, lesions or malignant tumors can be visually detected in plan-

ner scintigraphy as areas of concentrative distribution of radiation (brighter than

normal) or areas of absence of concentration (darker than normal). Another ap-

plication of planner scintigraphy is to image the brain. It is usually used to detect

malignant tumors, indicated by higher uptake of radiation, since the blood flow is

often higher in the malignant tumor than other tissue [28]. In addition, it is used to

confirm brain death as the carotid arteries are visualized cut off at the base of the

skull [28].

Positron emission tomography (PET) is an NM imaging technique that pro-

duces a 3D image that provides functional information about specific processes in

body. The gamma camera in the PET imaging technique detects pairs of gamma-

rays, that follow the annihilation of an emitted-positron by a positron-emitting ra-

dionuclide. Although PET imaging is known for its high cost, it is often chosen to

produce better image quality and resolution. PET has been involved in many med-

ical applications. For example, FDG-PET has been widely used in oncology ap-

plications to explore the possibility of cancer metastasis. Other positron-emitting

radionuclides are also used in PET to image the tissue concentration of many other

types of molecules of interest. For example, PET imaging with Oxygen-15 radioac-

tive molecule is used in brain imaging in order to measure regional blood flow [28].
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In addition, PET has many applications in neurology. Particularly, PET imaging is

used in brain tumor evaluation, early identification of recurrence, and in assess-

ing neuro-degenerative disorders such as Alzheimer’s. PET imaging can also be

used in cardiac studies to measure the blood flow and the metabolism inside the

heart. Applications of cardiac PET include the assessment of myocardial fatty acid

metabolism and myocardial infarction. In addition, cardiac PET can be used to

determine the need for a heart transplant or a bypass surgery [28].

Single positron emission computed tomography (SPECT) is another NM

technique, which have the same basic principle of conventional planner scintigra-

phy. However, instead of acquiring a 2D image, it produces a 3D tomographic scan

from a series of 2D nuclear medicine images from adjacent slices of tissue. Applica-

tion of SPECT images include measuring the blood perfusion in the brain, which is

clinically beneficial as indication of strokes or brain diseases like Alzheimer’s [28].

Like the planner scintigraphy, SPECT images can also be used for bone scanning

and tumor detection. In addition, SPECT images can be used to measure my-

ocardial perfusion and blood flow patterns in the heart to detect coronary artery

disease and myocardial infarct [28].

To provide anatomy information in addition to the functional information

of nuclear imaging, dedicated combined devices are designed to capture PET/CT,

SPECT/CT, and PET/MRI images sequentially, within same session from the pa-

tient, and to combine them into a single superposed (co-registered) image using

image fusion or registration. PET/CT imaging technique has been widely con-

sidered in lung cancer applications to add precision of anatomic localization to

functional imaging. In addition to PET/CT, PET/MRI is a hybrid imaging modal-

ity that incorporates MRI soft tissue imaging and PET functional imaging. Finally,

SPECT/CT is a hybrid imaging modality that incorporates CT anatomical imag-

ing and PET functional imaging in order to add the precision of anatomic localiza-

tion to functional imaging. For example, SPECT/CT is useful in locating ectopic
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parahyroid ademomas, which may not be in their usual locations in the thyroid

gland.

In conclusion, NM offers unique information, both functional and struc-

tural, which often no other imaging modality can provide. In addition, NM al-

lowed for the detection of many abnormalities in an early stage, which can lead to

better treatment and more successful outcomes. Moreover, NM images have very

high sensitivity and specificity due to the absence of any natural radioactivity from

the scanned body. On the other hand, compared to other imaging modalities, NM

scans (especially scintigraphy and SPECT) have poor signal-to-noise ratio (SNR),

low spatial resolution ( 5−10 mm) and long image acquisition times [35].

4 Magnetic Resonance Imaging

Compared to the other imaging modalities, magnetic resonance imaging

(MRI) is the most recently developed, and has become the most powerful and

dominant non-invasive tool for clinical diagnosis of different diseases [36]. The

fundamental principle of MRI is based on the use of a strong static magnetic field in

which the hydrogen nuclei (single proton) of water molecules in human tissues are

aligned parallel to that field. Then, an external radio frequency (RF) pulse (wave)

is applied to the unpaired magnetic spins (proton) aligned in the static magnetic

field, making them spin in different directions, and the acquired image intensity in

any spatial location will depend on the total number of protons as well as physical

properties of the tissue such as viscosity, stiffness and protein content [37]. The

most commonly-known specialized MRI techniques are shown in Figure 7.

The amount of signal strength on the MRI is mainly governed by the mag-

netic relaxation properties of the scanned body’s atomic nuclei. It is essential to

note that there are two relaxation times which govern the return to the equilib-

rium magnetization state. These are referred to as the longitudinal relaxation time

(T1) and transverse relaxation time (T2), based on the orientation of the component
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Figure 7: Different specialized MRI acquisition techniques.

with respect to the magnetic field. The water and macromolecules dissimilar lev-

els of protons, in various tissues, cause their T1 and T2 values to be different. T1-

weighted MRI is a commonly-run clinical MRI scan that emphasizes T1-contrast,

and is known to be the best MRI technique for demonstrating anatomical details.

T2-weighted scans are another elementary type that stresses T2 contrast. Typi-

cally, T2-weighted scans are used to show high dissimilarity between fluid, ab-

normalities (e.g., tumors, inflammation, trauma), and the surrounding tissues. Fi-

nally, since the proton density (PD) is a fixed physical value, PD-weighted images

have no T1-weighting nor T2-weighting. The main advantage of the PD-weighted

images is the better contrast between fluid and non-fluid tissues. However, PD-

weighted images typically show less contrast resolution when compared to T1- or

T2-weighted images. In general, the dynamic nature of MRI allows the optimiza-

tion possibility for it to suite any specific study in which a specific anatomical part

or disease process is targeted. For example, the signal intensities of the imaged

tissues can be controlled by selecting the type of the scan: either proton density,

T1-weighted, or T2-weighted, and for a given type of scan, a pulse sequence is

designed and imaging parameters are optimized to produce the desired image
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contrast [36, 38, 39].

Even though structural MRI offers superb soft tissue contrast, it lacks func-

tional information. Functional MRI (fMRI) is a technique to conclude which parts

of the brain are involved in specific mental tasks as well as common brain opera-

tions such as speech, language and sensory motion. The foundation of fMRI is that

MRI signal intensity varies based on the level of oxygenation of the blood in the

brain [40]. In fMRI, sequential images are acquired, one while the brain is in rest

state followed by another one after the brain is stimulated in some way. Various

different kinds of stimulus can be used: visual-, motor- or auditory-based. The

images’ intensity changes between different scans are usually small (0.2−2%) us-

ing a 3 Tesla scanner, and so experiments are repeated a number of times with rest

time (baseline) between each stimulation cycle. Different from Electroencephalog-

raphy (EEG) that provides surface information (brain waves) through electrodes

mounted on the patients’ scalp, fMRI has the advantage of providing in-depth

details about the inside the brain. Clinical applications of fMRI include epilepsy

surgery [41], and diagnosis of schizophrenia [42] and cerebral injury [43]. Dynamic

contrast-enhanced MRI (DCE-MRI) is another MRI technique, which has the capa-

bility to deliver greater information of the anatomy, function, and metabolism of

targeted tissues [44]. The technique involves the acquisition of serial MR images

with high temporal resolution before, during, and at several times after the admin-

istration of a contrast agent into the blood stream. DCE-MRI is frequently used to

increase the contrast between different tissues, mainly normal and pathological. It

has been widely used in several clinical applications, including finding of patho-

logical tissue, e.g., brain tumors [45], analysis of myocardial perfusion [46], early

detection of acute renal rejection [47–53], and detection of prostate cancer [54, 55].

Distinct from X-ray angiography, magnetic resonance angiography (MRA)

is noninvasive as it does not need the usage of contrast agents, even though they

can be used to enhance the signal dissimilarity between flowing blood and tissue.
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The two most common MRA techniques are time-of-flight (ToF) and phase contrast

(PC). Both rely on different physical effects, and so will result in scans with differ-

ent information about the vasculature [56]. Specially, PC-MRA suppresses back-

ground signals and quantifies blood flow velocity vectors for each voxel. While

TOF-MRA is less quantitative, it is fast and offers high contrast images. Perfusion-

weighted imaging (PWI) is a serial MRI technique designed to image blood flow

into brain vasculature. PWI uses an MR contrast to provide metabolic and hemo-

dynamic information in the first few hours post-stroke [57]. The most common

PWI technique is dynamic susceptibility contrast (DSC) imaging. DSC has been

comprehensively designed to quantify the cerebral blood flow of the brain for pa-

tients with vascular stenosis [58], stroke [59], and brain tumors [60].

Magnetic resonance spectroscopy (MRS) is an MRI technique that provides

important information about the biochemical changes within cells and can also be

used to detect the size and stage of a tumor. Different from conventional MRI,

MRS detects the resonance spectra of chemical compounds other than water [61].

MRS has been investigated for identification of patients with cancerous conditions

in the brain [62], prostate [63, 64], breast [65, 66], cervix [67, 68], pancreas [69],

and esophagus [70]. Tagged MRI is a well known technique for comprehensive

and noninvasive visualization of cardiac motion and deformation throughout the

heart cycle [71]. Cardiac MRI tagging places a pre-specified pattern of temporary

markers (called tags) inside soft body tissues (e.g., tag lines) created by patterns of

magnetic spin in the examined tissue so that the motion in the tagged tissue can be

measured from the images [72]. Whereas customary MRI can provide information

about the motion at the boundaries of an object, the tag lines allow the chance to

examine the strain and displacement of the interior of the tissue in more detail [73].

Therefore, tagged MRI is used to localize heart diseases (e.g., coronary atheroscle-

rosis) and global conditions (e.g., heart failure and diabetes) that cause heart wall

dysfunction.
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Diffusion MRI first came into existence in the mid-1980s, and it is a func-

tional technique that is based on the measurement of micromovements (random,

Brownian) of extracellular water molecules inside the body. These movements pro-

vide indirect information about the structures surrounding these water molecules.

Diffusion MRI is a non-invasive technique that has the advantage of being ac-

quired very rapidly, without the use of any intravenous contrast material or spe-

cialized hardware. Diffusion MRI can be classified into three main categories,

namely, diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI) and

diffusion spectrum imaging (DSI). DWI is a well-established MRI technique that

has been effectively used for tumor localization and diagnosis [74], investigation

of brain disorders, such as epilepsy, multiple sclerosis, brain abscesses, brain tu-

mors, and hypertensive encephalopathy [75], and in-vivo study of aspects of tissue

microstructure [76]. DTI is another type of diffusion MRI, which is based on the

measurement of the Brownian motion of water molecules in tissue. DTI is a recent

MRI technique used to study in-vivo tissue microstructure, such as the connectiv-

ity between different brain areas. This MRI modality allows the scientist to be able

to look at the network of nerve fibers. Nowadays, DTI has been investigated by

neuroscientists to study a number of disorders (e.g., addiction, epilepsy, traumatic

brain injury, and various neurodegenerative diseases) and to demonstrate subtle

abnormalities in a variety of diseases, (e.g., stroke, multiple sclerosis, dyslexia,

autism, and schizophrenia) [75–80]. Although DTI has been proven as a valuable

MR method in studying in-vivo fibrous connectivity, it cannot directly image mul-

tiple fiber orientations [81]. In order to overcome this drawback, DSI has been de-

veloped to image complex distributions of intravoxel fiber orientation. Therefore,

DSI permits better mapping of axonal trajectories than other diffusion imaging ap-

proaches [81]. DSI drawbacks include the additional hundreds of images needed

and the longer acquisition time when compared with DWI and DTI [82].

To conclude, the advantages of MRI includes the absence of any ionizing
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radiation, the possibility of acquiring two- or three-dimensional plane images, the

excellent contrast of soft-tissue, a high spatial resolution (< 1 mm), and the in-

significant penetration effects. In addition, MRI can highlight different compo-

nents of the scanned area using different pulse sequences: a preselected strength,

shape, and timing of defined RF and gradient pulses (external fields). On the other

hand, MRI suffers from slower image acquisition (a typical MRI clinical protocol

might last 30−40 minutes with several different types of scan being run) when

compared to CT and US. Also, the number of patients who are prohibited from

MRI scans due to metallic implants from previous surgeries cannot be ignored.

In addition, MRI systems are relatively higher in cost when compared to CT and

US equipments [35]. Also, MRI suffers from sensitivity to noise and image arti-

facts, and its signals are dependent on the imaging sequence used and can become

non-linear beyond certain concentrations leading to errors in extracted physiol-

ogy. Nevertheless, recent improvements in MRI design aim to aid claustrophobic

patients by using more open magnet designs and shorter exam times. However,

there is often a trade-off between image quality and open design.

Since this thesis is concerned with building a DTI-based CAD system for the

early diagnosis of ASDs, a brief overview of the basic principles of DTI is presented

in the next section.

B Principles of Diffusion Tensor Imaging

1 Diffusion Physics

Diffusion is the kind of motion that has nothing to do with physiological

motion, but it is due to the random motion of molecules due to thermal energy.

This motion is also called intra-voxel incoherent motion (IVIM) or Brownian mo-

tion [83]. Water diffusion in biological tissues occurs inside, outside, around, and

through cellular structures. The diffusion of water is hindered by cellular mem-
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branes causing the existence of more tortuous paths, and the diffusion tortuosity

could be amplified in the case of cellular swelling or increased cellular density.

On the other hand, intracellular water have a tendency to be more restricted by

cellular membranes, and both hindered and restricted diffusion lessen water ap-

parent diffusivity [80]. The research presented by this thesis is mainly concerned

with the human brain tissues, which could be divided into three categories, white

matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). Water molecules in

an unconstrained medium, such as in CSF regions, diffuse along any orientation

in a similar manner. This is called isotropic diffusion (Figure 8 (a)). On the other

hand, molecular diffusion in WM is more restricted by the WM tracts, and the re-

strictions depend on the tract spatial orientation. Parallel to the fiber track, water

molecules can diffuse more freely than perpendicular to it, and the diffusion be-

comes anisotropic with a privileged direction (Figure 8 (b)). As a result, the water

diffusion in that case could be used to reflect information about the underlying

anatomical architecture of brain tissues [83].

(a) Isotopic diffusion (b) Anisotropic diffusion

Figure 8: The two types of diffusion. In isotopic diffusion, motion occurs equally
and randomly in all directions (e.g., the brain ventricles). While, anisotropic diffu-
sion in a confined medium has motion oriented along one direction more than the
other directions (e.g., the brain white matter tracts).

Water molecules diffusion is modeled using a probability density function

P(r, t) which gives the existence probability of molecule in a certain position r =

[x, y, z] at a particular time t. In three dimensions, the diffusion Equation is given
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by [84]
∂P (r, t)
∂t

= ∇. (D∇P (r, t)) , (1)

where D is the diffusion coefficient (in s/mm2), a 3×3 symmetric positive semidef-

inite matrix, and in the case of free diffusion (isotropic medium), D = 4dπt3/2I3×3,

where I is identity matrix, and d is a positive diffusion constant [85]. The isotropic

case solution to Equation (1) is found to be a Gaussian distribution, and is given

by

P (r, t) =
1√
4πtd

exp
−∥r∥2

4td
. (2)

In case of an anisotropic medium, the solution of Equation (1) is given by

P (r, t) =
1

(4πt)
3
2 |D| 12

exp
−rTD−1r

4t
, (3)

where D is called the diffusion tensor matrix. In the general case of a fiber that

is oriented arbitrarily and has different diffusion coefficients along different direc-

tions, the off-diagonal elements of D appear as follows:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (4)

The diffusion tensor defines the covariance of diffusion displacements in 3D

normalized by the diffusion time. The matrix D is symmetric: Dyx = Dxy, Dzx =

Dxz, and Dzy = Dyz; therefore, the tensor matrix has six independent elements

(or six degrees of freedom), which describe the strength of the diffusion (three

degrees of freedom) and the spatial orientation of the tensor (another three degrees

of freedom).

2 Diffusion-Weighted Imaging Acquisition

Currently, the most common DWI acquisition approach is single-shot, echo

planar imaging (SS-EPI) sequences [83]. SS-EPI uses only one RF excitation to ac-
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quire the whole set of planar k-space measurements required to construct a DWI

image, which reduces the acquisition time significantly when compared to the con-

ventional pulsed-gradient, spin echo (PGSE) pulse sequence that requires the use

of several RF/phase selection repetitions [86]. Although, SS-EPI technique is con-

sidered the most common pulse sequence currently used, it suffers from several

drawbacks, including magnetic field inhomogeneities, eddy currents, and signal

loss from dephasing. Some methods that are usually used to mitigate these effects

are described in [86].

According to Stejskal and Tanner [87], the relationship between a measure-

ment without diffusion weighting S0 and one with diffusion weighting S is given

by

Si = S0 exp−bD, (5)

where b is the diffusion weighting factor (b value) [88], which is defined as

b = γ2δ2(∆− δ

3
)|g|2, (6)

where γ is the Lamor constant (42 MHz/ Tesla), |g| is the strength of the diffusion

sensitizing gradient pulses, δ is the gradient pulse duration, and ∆ is the time

between diffusion gradient RF pulses.

The diffusion values, D are also called apparent diffusion components (ADC)

values to stress the point that the diffusion values produced from depend on the

changing experimental conditions, such as the direction of the sensitizing gradient

and other sequence parameters (δ and ∆) [89]. Therefore, DWI is very sensitive

to the choice of the scanner acquisition parameters, raising the need to develop a

new modality like DTI, the next advanced generation of DWI.

3 Calculation of Diffusion Tensors

In the special case of anisotropic medium, the general form of Equation (5)

could be written as
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Si = S0 exp−bĝT
i Dĝi, (7)

where ĝ = g/|g| is the normalized gradient vectors.

Since the diffusion tensor D has six degrees of freedom, six diffusion con-

stants along six independent axes should be measured. Therefore, at least seven

diffusion-weighted images are needed (six measurements taken from different gra-

dient directions, in addition to the intensity corresponding to S0 (often called b0

image)). An example of data collection of seven images with different diffusion

weightings and gradient directions is shown in Figure 9.

Figure 9: An example of DWI data collection with seven different weightings and
gradient directions.

Since S0 is the signal when (|g| = 0), the other remaining six diffusion sig-

nals (Si, i∈1,...,6) could be related to S0 to form a set of six equations that could be

used to obtain the diffusion tensor,

lnSi = lnS0 − bĝT
i Dĝi. (8)

Solving the six obtained equations at each voxel in the DWI data set will

result in the final diffusion tensor required. Westin et al. [89] provided a compact

analytical solution to equation system (8), removing the necessity to resolve this

equation system for every data point. The compact solution provided was devel-

oped using dual tensor basis that relies only on the gradient configuration and is
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not dependent on the input data. However, the use of only six diffusion gradient

directions will result in an unacceptable low SNR for the resultant DTI derived

maps [90]. In particular, as the number of gradient directions used increase, the

higher SNR would be obtained. However, a greater number of gradient directions

means longer scanning times, which will eventually cause more artifacts due to

patient’s movements. So an optimum number of gradient directions for data ac-

quisition is needed due to both the SNR requirements and clinical limitations [90].

In the case of carrying out more than seven diffusion measurements with

various gradient strengths, gradient orientations, or signal averaging [83], an over

constrained system of equations is created, and it can be solved using least squares

methods [91, 92]. This over-constraining procedure will result in a decrease in the

amount of noise produced in the process of calculating diffusion tensors from the

diffusion weighted measurements. The resulted over-constrained system (n≥6)

can be represented in matrix form (Md = s):



x1
2 y1

2 z1
2 x1y1 y1z1 z1x1

x2
2 y2

2 z2
2 x2y2 y2z2 z2x2

...
...

...
...

...
...

xn yn
2 zn

2 xnyn ynzn znxn





Dxx

Dyy

Dzz

Dxy

Dyz

Dzy


=



−1
b
ln S1

S0

−1
b
ln S2

S0

...

−1
b
ln Sn

S0


. (9)

Many algorithms have been developed to estimate the diffusion tensor, and

these methods differ considerably in processing speed and the way they deal with

data outliers. The linear least square approach (LLS) to solve Equation (9) uses

the pseudo-inverse of M† through a process of singular value decomposition of

M [93]:

M† = Vs−1UT , (10)

where U and V are orthogonal matrices, and s is a diagonal matrix that contains
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the singular values of M. The diffusion tensor d estimate using least squares is

given by

d = M†s. (11)

Although the LLS method is widely used in DTI estimation; it may lead

to an erroneous estimation because it inaccurately assumes that data outliers are

homogenously distributed, and there is still no unified method to define and han-

dle data outliers. Therefore, more advanced estimation methods were introduced

to overcome these limitations, such as weighted linear least square (WLLS) and

nonlinear least square (NLLS). WLLS method is slower when compared with LLS

method, but it will result in the most accurate estimation because it assumes that

outliers to be heterogeneously distributed. On the other hand, NLLS method usu-

ally results in a more accurate estimation as it minimizes the error in an iterative

manner; however, it needs significantly longer processing times, and might be-

come stuck in local minima during the optimization process [94]. The choice of

the appropriate DTI estimation method is becoming more important, especially

since recent studies have revealed that the quality of WM tracts’ reconstruction in

poor-quality infant data depend on that choice [94].

4 Diffusion Tensor Analysis and Measures

In order to fully characterize anisotropic diffusion or the diffusion ellipsoid,

six parameters are needed. These parameters could be obtained by diagonalizing

the diffusion tensor D resulting in a set of three eigenvectors (v̂1, v̂2, v̂3) which de-

fines the orientation of the axes, and their associated eigenvalues that represent

the length of the longest (λ1), middle (λ2), and shortest (λ3) axes. In order for the

ellipsoid model to be physically realizable, the obtained eigenvalues of D must

be non-negative. A graphical representation of the ellipsoid model is shown in

Figure 10.

In the special case of an isotropic medium, the diffusion ellipsoid takes the
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(a) Tensor eigenvectors (b) Tensor eigenvalues

Figure 10: Graphical representation of diffusion tensor using the ellipsoid model
using three eigenvectors that define the orientation of the ellipsoid, and three
eigenvalues that define the principal axes of the ellipsoid.

shape of a sphere because λ1=λ2=λ3. While in the case of purely linear anisotropic

medium, the diffusion ellipsoid is a line pointing in the v̂1 direction as λ1 = c, and

λ2=λ3=0. Also, in a planar anisotropic medium, the diffusion ellipsoid converts

into an oblate with λ1=λ2, and λ1 = 0.

After the diffusion tensor is characterized using the six parameters of the

diffusion ellipsoid at each voxel, the next step is to show expressive measurement,

and interpretation of 3D image data at each voxel. Therefore, the image informa-

tion in the eigensystem of D must be simplified into simpler scalar maps. Next,

some of the most commonly used anisotropy and microstructural measurements

(see Figure 11) will be listed, namely mean diffusivity (MD), fractional anisotropy

(FA), relative anisotropy (RA), axial diffusivity (λ∥), and radial diffusivity (λ⊥). Af-

terwards, diffusion geometrical measurements (see Figure 12) that are linear (cl),

planar (cp), and spherical (cs) measures, and fiber orientation maps (see Figure 13)

will be explained.
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(a) b0 (b) MD (c) FA

(d) RA (e) λ∥ (f) λ⊥

Figure 11: Various anisotropy and microstructural measurements obtained from
DTI human brain. (a) Reference non-diffusion image (b0), (b) mean diffusivity
(MD) map, (c) fractional anisotropy (FA), (d) relative anisotropy (RA), (e) axial
diffusivity (λ∥), and (f) radial diffusivity (λ⊥).

Mean diffusivity (MD)

In order to get an overall assessment of the diffusion in a voxel or a re-

gion, a measurement that is orientation independent must be relied on. The mean

diffusivity (MD) (see Figure 11(b)), also called trace, is defined as average of the

eigenvalues of D:

MD =
λ1 + λ2 + λ3

3
. (12)

A slightly different definition of the MD has been used to measure the dif-

fusion descent in brain ischemia [95]. Moreover, since the values of MD are higher

in CSF than other organized brain tissue, MD is recommended for CSF-related dis-

ease studies [96].

Fractional anisotropy (FA)

Many anisotropy measures have been defined, most of which are rotation-

ally invariant. Currently, the fractional anisotropy (FA), which was first described
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by Basser [91], is the most widely used invariant measure of anisotropy. The defi-

nition of FA is given by

FA =

√
3[(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2]√

2(λ1
2 + λ2

2 + λ3
2)

. (13)

In the case of physically realizable diffusion that has non-negative eigen-

values, FA ranges from 0 in the extreme case of complete isotropy to 1 for the

opposite extreme of linear anisotropy. As illustrated in Figure 11 (c), WM appears

whiter since it has higher values of FA. Therefore, reductions in FA are usually

used as markers of a change in WM myelination or degradation of WM axonal

structure [97].

Relative anisotropy (RA)

Relative anisotropy (RA) is similar to FA, and is defined as the normal-

ized standard deviation of the eigenvalues. RA is also defined as the ratio of the

anisotropic part of D to its isotropic part [98] (see Figure 11 (d)), and is given by

RA =

√
(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2√

3MD
. (14)

The values of RA takes the range between 0 (complete isotropy) to
√
2 (com-

plete anisotropy).

Axial and radial diffusivity

In the literature, it was found that combinations of the eigenvalues reveal

more particular connections to white matter pathology [80]. The axial or the par-

allel diffusivity (λ∥) measures the diffusion along the principal axis (parallel to

axons) (see Figure 11 (e)), and is defined as

λ∥ = λ1. (15)
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The diffusion in the two minor axes are averaged to produce the radial or

the perpendicular diffusivity (λ⊥), which measures the degree of restriction due to

memberans and other effects, and is given by

λ⊥ =
λ2 + λ3

2
. (16)

These two measurements have been used to observe fiber alterations in sev-

eral developmental and pathological studies (e.g., Dysmyelinating disorders) [99].

Diffusion geometrical measurements

Based on the generic shape of the diffusion ellipsoid, diffusion could be

classified into three types, namely linear, planar, and spherical. The previously

described anisotropy measurements (e.g., FA and RA) could not differentiate be-

tween these anistropy modes. Westin et al. [89] used the principal eigenvalue for

normalization; thus creating the following shape measures, which can detect the

linear (cl), planar (cp) and spherical (cs) shapes, respectively (see Figure 12)

cl =
λ1 − λ2
λ1

, cp =
λ2 − λ3
λ1

, cs =
λ3
λ1
, (17)

where all these measurements have a range from 0 to 1 such that

cl + cp + cs = 1. (18)

Fiber orientation maps

Another parameter that could be extracted from DTI is associated with the

fiber orientation maps. The most commonly used method is to show the orien-

tation information through 2D color-coded maps of the main fiber trajectories.

This method assumes that the orientation of the fibers is only determined by the

eigenvector v̂1 = [v1x, v1y, v1z], which is associated with the largest eigenvalue λ1.

Namely, the absolute value of v1x, v1y, and v1z are allocated to the three RGB (red,
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(a) b0 (b) cl (c) cp (d) cs

Figure 12: Different DTI geometrical-based measurements. (a) Reference non-
diffusion image (b0), (b) linear measure (cl), (c) planar measure (cp), and (d) spher-
ical measure (cs).

green and blue) main colors and joined to create one color-coded map [83] (see

Figure 13). The information provided by these orientation color maps are unique,

and no conventional MRI technique could provide comparable information. Fiber

orientations could be used to classify and parcellate specific WM tracts. There-

fore, this method could be applied on a wide range of medical applications that

necessitate great anatomical details [80].

(a) b0 (b) DTI-RGB

Figure 13: Color-coded orientation map. (a) Reference non-diffusion image (b0),
and (b) color-coded orientation map (where the colors red, green and blue corre-
spond to diffusion in the x,y,z axes respectively).
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5 White Matter Fiber Tractography

2D-based color coded maps could reveal white matter tracts based on voxel-

by-voxel fiber orientation information; however, they fail to appreciate WM trajec-

tories in 3D space [83]. An alternative way to appreciate WM connection patterns

in 3D is using computer-aided 3D tract tracking methods, also called tractography,

and is proven to be very valuable in recognizing WM tracts trajectories and their

connections with other WM tracts or other GM structures (see Figure 14). In the

last decade, many tractography methods [100,101] have been proposed, and these

methods could be classified into two categories of tract construction techniques:

deterministic approaches that provide only one trajectory for each start voxel, and

probabilistic approaches that use energy minimization methods to provide the

path with the highest probability to link two selected voxels or regions [83].

Figure 14: An example of a full brain tractography, where colors have been as-
signed based on the main direction of the fibers. This tractography was obtained
using 3D slicer software [102].
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Deterministic fiber tractography

Deterministic (tract propagation) approaches assume that the principal eigen-

vector v̂1 provides a representation to the orientation of the WM fiber tract [101].

There are three steps in the the deterministic models: (i) fiber orientation extrac-

tion, (ii) pathway propagation, and (iii) propagation termination [83].

Firstly, local fiber orientation at each voxel have to be estimated. Usually

planar diffusion profiles are used as a straightforward estimator; however, this

estimate fails if the ellipsoid is isotropic or diffusion profile is planar, since v̂1 will

be determined based on the noise levels. In these cases, the full diffusion ellipsoid

should be used to provide a more reliable estimate.

Secondly, a single pathway have to be propagated based on the full ten-

sor or principal vector information. This process starts from a specified location

(seed point), which is usually the center of the image, to form a discrete path-

way through the image. However, the obtained discrete pathway does not give

a realistic simulation of WM tracts, which are assumed to be adequately smooth.

Therefore, sub-voxel estimates of the diffusion tensor are needed to transform the

discrete voxel information to a continuous one (see Figure 14). This could be ob-

tained by interpolating the DWI data before diffusion tensor estimation [103], or

by interpolating the diffusion tensors directly at suitably selected sub-voxel [101].

Finally, pathway propagation is terminated based on one of two termination

criterions most often used. The first is to terminate tracking when the tract enters

a low anisotropy region (empirically, FA>0.15 is usually used as a threshold to

separate WM from GM regions [83]). The second is to terminate tracking when a

sharp bend occurs, which means that image resolution is too low to dependably

keep tracking [83]. Figure 15 (b) demonstrates an example of the deterministic fibre

tractography in the corpus callosum region of interest with 0.2 FA threshold, and

0.7 stopping track curvature. This tractography was obtained by using 3D slicer

software [102].
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(a) Propagation (b) Tractography

Figure 15: Deterministic fiber tractography. (a) Discrete tracking (shown in black)
vs. smoothed continuous tracking (shown in red). (b) An example of deterministic
fiber tractography. Tracts generated within the corpus callosum region, where col-
ors have been assigned based on the FA values along the tracts. This tractography
was generated using 3D slicer software [102].

Probabilistic fiber tractography

Image noise, patient movement, and other imaging artifacts cause uncer-

tainty in the fiber orientations obtained from deterministic fiber tractography ap-

proaches. Therefore, probabilistic fiber tractography approaches were developed

to solve this confidence problem [104]. In probabilistic methods, the most probable

fiber orientations are estimated as well as a probability distribution of other orien-

tations. Different pathways are traced thousands of times with marginally altered

orientations, which allows for assigning a measure of the connection probability.

Therefore, fiber connectivity could be assessed between different brain regions us-

ing a voxel-based connectivity index [105].

Advantages of probabilistic fiber tractography approaches includes its abil-

ity to parcellate full WM tracts. On the other hand, probabilistic methods suffer

from a limited accuracy that is restricted by the quality of the information pro-

vided by the diffusion tensor as well as the pathway estimated probability distri-

bution function. Another drawback associated with probabilistic methods is their

inability to differentiate antegrade from retrograde along the fibers path [104].
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6 Clinical Applications

In neurological studies, the status of each patient should be assessed, and

the used imaging modality should be able to clearly discriminate what is abnormal

and normal. Conventional MRI lacks sensitivity in distinguishing normal from ab-

normal on an individual-subject basis [83]. On the other hand, DTI can contribute

with new information that conventional MRI could not reveal. The new DTI-based

information could be classified into four categories: (i) new contrasts, (ii) white

matter morphology, (iii) refined information about anatomical locations, and (iv)

connectivity [83]. As illustrated in Section 4, DTI offers many additional image

contrasts including the widely used FA anisotropy measurement. The shapes and

the size of specific white matter tracts (white matter morphology) could be esti-

mated using DTI [83]. In addition, the superior anatomical information provided

by DTI allows for a clearer identification of areas with WM abnormalities [106].

Using 3D fiber reconstruction techniques (e.g., tractography), DTI can provide

unique anatomical information about the brain connectivity [101]. This section

will overview the clinical applications of DTI in investigating brain abnormalities.

Brain white matter

Although DWI showed some potential in detecting brain WM diseases, DTI

measurements provide a better overall discrimination in many brain disorders

(e.g., autism) [98]. Examples of these white matter diseases include multiple sclero-

sis (MS), Alzheimer’s disease (AD), cerebral ischemia, Wallerian degeneration, and

autism [97]. A brain tumor is a mass or growth of abnormal cells in the brain. Con-

ventional MR with contrast-enhanced T1-weighted and T2-weighted sequences

could provide information about the location and extent of these tumors. How-

ever, they lack the ability to provide enough information about characteristics and

grading of brain tumors [97]. Lower values of FA are usually associated with ma-

lignant brain tumors. Fiber tractography could be used to differentiate between
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brain tumor and neighboring healthy WM tracts [83]. As illustrated in Figure 16,

DTI is able to reveal structural variations of WM tracts associated with brain tu-

mors.

Figure 16: An example of WM structural variations associated to brain tumors.
Destruction and deviation of WM tracts caused by anaplastic astrocytoma. Image
provided courtesy of [107].

Brain connectivity

DTI based fiber tractography offers the potential to investigate the neuronal

connectivity of the working human brain. Fiber tractography connectivity is of

key importance for interpreting both fMRI data and how different parts of the

brain are linked together [98]. Many studies combine the structural connectivity

information obtained from DTI with other functional connectivity measurements

in order to offer more understanding of the connections between brain structure

and function [108]. Current DTI tractography techniques suffer from thermal noise

and image artifacts. In addition, DTI fiber tractography has to deal with physio-

logical fluctuations such as fiber merging, branching, dividing, etc [98]. Currently,

advanced diffusion tensor techniques, such as q ball imaging (Qball) and diffu-

sion spectrum imaging (DSI), are being used to solve these drawbacks. However,

these new techniques require very high diffusion b values, and suffer from long
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acquisition times. Their effectiveness is still under investigation, and require more

research.

Brain development

The human brain undergoes a continuous development until adolescence,

and the most dramatic change is the myelination process, which occurs during the

first two years after birth [109]. Conventional MRI techniques may reveal a re-

duction in brain water content and a rise in WM during the myelination process.

However, more information about WM maturation could be available through a

DTI-based quantitative analysis [3]. Previous studies indicated an increase in the

FA values in some white matter regions [110], and this increase is maintained until

adolescence [111]. This new understanding of the normal brain development, en-

abled researchers to detect any development failures that serve as an early marker

of brain injury in newborns [3].

C The Proposed Computer-Aided Diagnosis System

Autism spectrum disorders (ASDs) is a group of lifetime developmental

disabilities that are defined by significant social, communication and behavioral

challenges. Currently, ASDs denote a significant growing public health concern.

According to the report issued by the centers for disease control and prevention

(CDC) in 2014, one in 68 children has been diagnosed with ASDs in the United

States, which is approximately 30% greater than previous estimates reported in

2012 of one in 88 children [112]. In addition, this last report indicated that most

children with ASDs are currently diagnosed after the age of four, despite the fact

that ASDs can be identified as early as age two [112]. Therefore, there is a growing

need for developing new techniques for the early diagnosis of ASDs, for an early

detection of ASDs could lead to the reduction or the elimination of the manifesta-

tion of the disorder through an effective early intervention [4].
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Recent molecular and functional connectivity studies exploring ASDs con-

firm the vital importance of investigating localized atypicalities of the brain, and

examining the brain distributed neural networks and the connectivity of different

areas of the brain [113]. Studies performed at the molecular level have found that

minicolumns in the postmortem brains of children with ASD were more reduced,

and less compact [114–116]. On the other hand, studies that examined the brain

connectivity relied on fMRI to study how various brain areas organize their activi-

ties. The results of many of these studies reported that ASD patients show reduced

connectivity between frontal and posterior parts during various cognitive tasks as

well as during a nontask resting state [117]. Therefore, as concluded from both

molecular and functional connectivity studies, brain connectivity and the under-

lying WM tracts might be impaired in patients with ASDs. Nevertheless, the main

drawback of these previous methods is their limited ability to provide sufficient

information about the morphology characteristics of these WM tracts and their

progress in living human patients [113]. Fortunately, the recent advances in DTI

has allowed researchers to study, in a noninvasive manner, both the macrostruc-

ture and microstructure (e.g., axons) of WM tracts of the brain. These new ad-

vances have allowed the growth of DTI-based studies investigating ASDs in the

last decade [113]. These studies used DTI to examine the microstructural prop-

erties of WM circuitry and detect abnormalities in WM fiber tract integrity [118].

Currently, there are no medical exams to precisely diagnose ASDs, especially in its

early stages. Doctors depend on observation, and talking with parents, physicians

and therapists about the child in question to make the diagnosis. Therefore, devel-

oping a complete computer aided diagnostic (CAD) system for the early diagnosis

of ASDs is a hot point of research.

Since the basic concept of CAD system was proposed in the mid-1980s, there

have been a high demand on this new approach to aid neuroradiologists in their

heavy workloads. Ever since, many researchers have developed CAD systems for
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various brain diseases [119]. As illustrated in Figure 17, a general CAD system

consists of three main steps: (i) preprocessing, (ii) feature extraction, and (iii) clas-

sification.

Figure 17: The main steps of a general CAD system.

Preprocessing of input images is crucial for decreasing the complexity and

increasing its computation efficiency of CAD systems. Preprocessing includes im-

age normalization, correction, and segmentation. The feature extraction is one of

the key steps for CAD systems, and the way the features are extracted changes ac-

cording to the specific task in hand. Feature extraction scheme usually begin with

object enhancement, followed by an initial candidate regions extraction via various

segmentation methods, which will be used to generate the final output features.

The final step of any CAD system is the classification process, which uses the ob-

tained features as its input to categorize the input data into one of the possible

categories (e.g., lesion or normal tissue). Classifiers used in CAD systems usually

undergo a teaching process (supervised learning) in which they learn the true cat-

egory labels for each set of features. These classifiers can be categorized into two

types: machine learning-based classifiers such as deep learning, random forest,

support vector machine (SVM) and decision tree; and statistical-based classifiers

such as Bayesian, k-nearest and artificial neural network (ANN) [119]. Moreover,

this final step may involve advanced stages, e.g. identification of brain regions

that have significant differences between pathological and control subjects using

constructed brain maps.

The ultimate goal of the proposed work in this thesis is to develop a CAD

system to classify autistic from control infant brains. This thesis proposes a novel
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DTI-based CAD system for the early diagnosis of ASDs that integrates both shape

and connectivity extracted features in the classification process, which is shown in

Figure 18. This CAD system consists of three main steps: (i) infant brain tissue

segmentation from medical images, (ii) extraction of discriminatory features (e.g.

shape and connectivity features) for the segmented brain tissues, and (iii) clas-

sification of autistic from control infant brains based on analyzing the extracted

features of different brain tissues for both control and autistic brains.

Figure 18: Block diagram of the proposed CAD system for early diagnosis of ASDs.

The input to the CAD system is the medical scans of the infant brain, i.e.,

4D diffusion weighted images. The first step of the proposed CAD system is to

accurately segment different brain tissues from the input infant brain data. In this

step, the input brain first undergo a quality control procedure to remove scan ar-

tifacts, and correct motion and eddy current distortions, followed by brain extrac-

tion, in which any non-brain tissues are removed. Then, specific DTI features are

extracted, and fused to guide the segmentation process to produce the final seg-

mented brain tissues, i.e., WM, GM, CSF, etc. Following tissue segmentation, the
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next step in the proposed CAD system is to extract discriminatory features, which

are numerical values that corresponding to attributes of the segmented structures.

In particular, cortex (WM+GM) shape variability is assessed using shape construc-

tion methods. In addition to the shape information, WM integrity is further exam-

ined through connectivity analysis, where WM tracts are extracted and analyzed

using various DTI connectivity measurements. Finally, both the extracted shape

and connectivity features will serve as an input for the system classifier. The used

classifier will correlate between both connectivity and shape findings to provide

better discrimination between autistic and control infant brains.

D Thesis Organization

This thesis is divided into four chapters. The following remarks summarize

the scope of each chapter:

• Chapter (I) briefly reviews the main classes of medical imaging modalities;

provides the necessary principles of DTI, such as the diffusion tensor analy-

sis and applications; and introduces the basic contributions of the proposed

CAD system for early diagnosis of ASDs from infant diffusion tensor images.

• Chapter (II) presents a novel adaptive atlas-based framework for the auto-

mated segmentation of different brain structures from infant diffusion tensor

images. The proposed framework provides a more accurate segmentation

of different infant brain structures in the isointense age stage (6-12 months)

by integrating superior DTI image features in the segmentation procedure.

The proposed segmentation framework relies on a joint Markov-Gibbs ran-

dom field (MGRF) model that accounts for three image descriptors: (i) a non-

negative matrix factorization (NMF) based visual appearance to describe the

empirical distribution of NMF fused DTI features, (ii) a shape model that is

adapted during the segmentation process guided by the first- and second-
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order visual appearance characteristics of the new NMF-fused image fea-

tures, and (iii) a 3D spatially invariant second-order MGRF homogeneity

descriptor to account for the large inhomogeneity existing in infant brains.

• Chapter (III) presents the feature extraction and the brain classification steps

of the proposed CAD system. The proposed CAD system relies on both

shape and connectivity features to accurately differentiate between control

and autistic brains. The proposed shape analysis detects brain cortex vari-

ability using a spherical harmonic (SH) analysis, and brain shape complexity

is described with two shape measurements, namely, SH reconstruction error

and surface complexity. The proposed connectivity analysis relies on trac-

tography methods to reconstruct WM tracts of the segmented brains. Three

different DTI measurements, namely, fractional anisotropy (FA), axial dif-

fusivity (λ∥), and radial diffusivity (λ⊥) are generated and mapped to the

extracted WM tracts to perform statistical analysis to detect differences be-

tween autistic and control brains. K-means classifier were used for each of

the extracted features to evaluate their diagnostic capabilities.

• Chapter (IV) presents a general discussion about the presented research and

its results, followed by the main conclusions and the possible areas for future

work.
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CHAPTER II

INFANT BRAIN SEGMENTATION

Accurate and reliable segmentation of anatomical structures plays a vital

role in any computer-aided diagnostic (CAD) system for brain disorders. More-

over, infant brain segmentation is of great importance in developing CAD systems

capable of revealing patterns of early brain development. Unfortunately, MR in-

fant brain segmentation is particularly challanging compared with adult brain seg-

mentation. This chapter introduces a novel adaptive atlas-based framework for the

automated segmentation of different brain structures from infant diffusion tensor

imaging (DTI). The proposed framework provides a more accurate segmentation

of different infant brain structures in the isointense age stage (6-12 months) by in-

tegrating superior DTI image features (e.g., fractional anisotropy (FA)) in the seg-

mentation procedure. To model the brain images and their desired region maps,

a joint Markov-Gibbs random field (MGRF) model is proposed. The joint MGRF

model accounts for three image descriptors: (i) a nonnegative matrix factoriza-

tion (NMF) based visual appearance to describe the empirical distribution of NMF

fused DTI features, (ii) an adaptive shape model, and (iii) a 3D spatially invariant

second-order MGRF homogeneity descriptor. The NMF-based visual appearance

descriptor is modeled using a K-means classifier with centroids calculated in the

training phase. The main advantage of NMF feature fusion is its ability to extract

meaningful features from the large dimensional DTI feature space; thus, creating

a new feature space, in which dimensionality was reduced and different classes

were better separated. Unlike most of the existing techniques that depend mainly
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on predefined shape prior probabilities, the proposed framework involves the use

of an adaptive shape prior. The proposed adaptive shape model is constructed

from a prior atlas database built using a subset of co-aligned training data sets that

is adapted during the segmentation process guided by the first- and second-order

visual appearance characteristics of the new NMF-fused image features. These

characteristics are described using voxel-wise image intensities and their spatial

interaction features. In order to perform a more accurate segmentation, a second-

order MGRF spatial interaction model is added to account for the large inhomo-

geneity existing in infant brains. The high accuracy of the proposed segmentation

approach was confirmed by testing it on 9 in-vivo infant DTI brain data sets using

three metrics: the Dice coefficient, the 95-percentile modified Hausdorff distance,

and the absolute volume difference.

A Introduction

Segmentation of anatomical structures such as white matter (WM), gray

matter (GM), and cerebrospinal fluid (CSF) regions is a crucial step in any CAD

system for brain disorders [119]. In particular, segmenting an infant brain MR

image contributes much into the analysis and treatment of brain injury and disor-

der resulting from infant brain prematurity [120]. Although manual segmentation

performed by experts remains the gold standard, automated and semi-automated

segmentation approaches are necessary due to the time consuming nature and per-

formance variability of manual segmentation procedures. Brain MRI segmentation

meets with many challenges that stem from image noise, inhomogeneity, artifacts

(e.g., partial volume effect), and boundary discontinuities due to the similarity

in the visual appearance of adjacent brain structures. Moreover, the diffusion-

sensitizing gradient used in diffusion weighted imaging (DWI) yields an amplifi-

cation effect to the distortions that are related to patient motion [121]. This chapter

targets infant brain DTI segmentation that is more difficult than adult brain seg-
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mentation, which can be conducted using only the image intensity. Infant brains

have a greatly reduced contrast, including a reverse in contrast in the WM and

GM because of the immaturity of the brain tissues [122], and a higher amount of

noise [123]. Eddy current artifacts, and bulk motion distortions are additional dif-

ficulties that exist, especially in unsedated infants (see Figure 19).

(a) Adult (b) Infant

Figure 19: Comparison between infant and adult brains based on color coded ori-
entation maps generated from DTI

For infant brains, most of the WM is still unmyelinated and its water con-

tent is close to that of the GM, resulting in the lower contrast between the tissue

classes. Moreover, both the WM and GM have the same intensity at about nine

months of age [124]; hence, it is difficult to classify the brain tissues using only

the intensity. Additionally, major partial volume effects occur due to the contrast

inversion between the WM and GM comparing to the MR adult brain images. The

unmyelinated WM intensity is just between intensities for the GM and CSF tissues,

so that partial volume averaging often misclassifies the average between the latter

two tissues as the unmyelinated WM [122]. Furthermore, the acquisition factors,

such as long scan duration, small voxel size, and low signal-to-noise ratio (SNR),

also hinder infant brain imaging. High-resolution images are essential to show

the infant brain structure because of its much smaller size compared to the adult

brains [120]. However, small-size voxels lead to noisy infant scans with reduced

contrast, i.e. with low contrast-to-noise ratio (CNR). To improve the CNR, the scan

duration has to be increased; but, it is too risky for an infant to be anesthetized for
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a long period. As it is important to minimize scan times, usually infants are fed

and then wrapped to prevent movement [125]. New imaging technologies such as

parallel imaging or next-generation multi-channel imaging coils can decrease the

scan time and increase the CNR and SNR.

A large variety of segmentation techniques have been developed, in the last

two decades, in order to address the brain MRI segmentation challenges. The next

section will provide an overview of the related current infant brain segmentation

techniques.

B Related Work

Modern techniques for brain MRI segmentation can be roughly categorized

into three main groups: (i) probabilistic or statistical methods, (ii) atlas-based

methods, and (iii) deformable model techniques. Most techniques primarily deal

with adult brain segmentation, and few techniques are suited for infant brain seg-

mentation. The following subsections will overview and address the limitations

of the current segmentation techniques that deal with MR infant brains, with a

special focus on those who incorporate DTI measurements in their framework.

1 Probabilistic Segmentation

These algorithms involve prior models that describe signal distributions of

each brain structure. Xue et al. [122] employed a parametric Gaussian density esti-

mation with an Expectation-Maximization (EM) algorithm and constrained spatial

homogeneity of the MR images with a Markov random field (MRF) prior. Partial

volume averaging effects were eliminated by predicting misclassification (e.g., of

an “averaged” CSF and GM into an intensity similar to a WM). Automated seg-

mentation of brain structures, such as WM, CSF, central GM, and cortical GM by

Anbeek et al. [126] used probability maps to segment each brain tissue class with a

K-nearest neighbor classifier. Anbeek employed features such as voxel intensities
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and coordinates that were manually constructed. Cardoso et al. [127] proposed

a posteriori EM multi-modality segmentation algorithm, which included the use

of a relaxation approach that iteratively adjusts the tissue priors to match the in-

put subject. The segmentation algorithm also included intensity non-uniformity

(INU) correction model, an MRF-based homogeneity descriptor, and a correction

of partial volume containing voxels. More generalized image priors were intro-

duced by Gui et al. [128], where the creation of these priors was based on a fu-

sion between different high-level brain morphology information, namely tissue

connectivity, structure and relative positions. This morphology information was

incorporated in the segmentation process through a neighbourhood selection cri-

teria, which guides a region growing algorithm in separating WM, GM, and CSF.

Patrial volume errors are corrected by imposing a condition on WM growing into

neighbouring extra-ventricular CSF. The proposed segmentation approach inte-

grated the high level morphological information in other segmentation techniques,

such as the marker-based watershed segmentation [129] and region based active

contours [130]. Wang et al. [131] segmented T1, T2 and diffusion-weighted brain

images using a sparse representation of the complementary tissue distribution. Ini-

tially, the brain tissue was segmented into different structures using a patch-based

technique with a library of multi-modality images, having been aligned with their

ground-truth segmentation maps. Then the segmentation was refined by integrat-

ing geometric constraints.

Statistical-based techniques are fast to implement compared to other seg-

mentation methods; however, they depend only on predefined probability models

that cannot fit all of the possible real data distributions. This is because actual in-

tensity distributions of brain structures are greatly affected by several factors, such

as the unique patient and scanning parameters. Also due to the similar intensities

for the different brain tissue structures of the infant MR brain images, segmenta-

tion techniques only based on the intensity remain inaccurate.
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2 Atlas-Based Segmentation

Atlas-based approaches have emerged as a powerful segmentation tool. These

approaches are based on a priori knowledge about the location of different brain

structures, and treat the segmentation problem as a registration task. Prastawa

et al. [132] developed an atlas-based segmentation algorithm for newborn brain

MRI, which uses a registered probabilistic brain atlas. In order to create this atlas,

three segmentations were generated by the K-nearest neighbor segmentation with

different manually selected samples for each tissue class. Then, these segmen-

tations were refined manually, registered using affine transformation, and then

averaged to create the initial atlas. To create the final prior probabilities, popula-

tion variability was simulated by applying an additional blurring to the average

segmentations. The proposed segmentation started with a robust graph clustering

and parameter estimation to model the initial intensity distributions, then bias cor-

rection is performed using the initial intensity distributions as well as the spatial

priors. The corrected initial segmentation was refined using nonparametric kernel

density estimates to produce the final segmentation. To eliminate bias and vari-

ability associated with manual interaction, Weisenfeld et al. [120] proposed a fully

automated, adaptive classifier fusion algorithm for segmenting myelinated WM,

unmyelinated WM, CSF, cortical GM and subcortical GM from brain MRI of new-

born infants. Tissue class intensity distributions were estimated nonparametrically

using a set of samples of representative tissue MR intensity values (prototypes) for

each tissue class. The proposed algorithm started with a library of template MRI

images, and each template has a large number of manually selected tissue class

prototypes. After template-subject registration, different prototype lists lead to

nonparametric density estimates that result in different segmentations. These seg-

mentations are then fused to increase the final segmentation accuracy. To overcome

the problem of structural differences between the templates and the study subject,

the prototype lists were iteratively refined (until convergence) to produce new seg-
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mentations, which leads to a new fused classification. In the case of tissue classes

with the same intensity (e.g., cortical and subcortical GM), they used an atlas of

spatially varying prior probabilities. For the construction of this atlas, they used

fifteen subjects that were segmented using a semi-automated segmentation algo-

rithm [133]. They were aligned using affine transformations, and each set of voxel

probabilities was calculated based on the relative frequency of each class label. Shi

et al. [134] proposed a longitudinal neonatal brain image segmentation framework

that includes a bias correction step as well as the use of a subject-specific tissue

probabilistic atlas, and a longitudinal atlas that was built from late time scans of

the same subject. The use of a subject-specific atlas will lead to a smaller anatom-

ical variability, which will eventually lead to a better segmentation. To construct

a subject-specific atlas, the late time-point scans (one-year-old and two-year-old)

were segmented using an adaptive fuzzy segmentation algorithm (AFCM) to get

the probabilistic maps of CSF, GM, and WM tissue classes. After atlas reconstruc-

tion, an iterative joint registration-segmentation process was performed to align

the constructed atlas and to get the atlas-based tissue segmentation of the neona-

tal images. The registration method used was based on the HAMMER nonlinear

registration algorithm [135], which gradually increased the degree of nonlinear

warping as the segmentation became better. To compensate for local intensity in-

homogeneity existing in infant brains, Kim et al. [136] proposed the use of spatial

intensity growth maps (IGM) for T1 and T2 weighted images. The IGM, which

was calculated based on a voxel-wise linear regression model, captured intensity

changes of 20−25% in immature WM regions between one and two-year-old scans.

The IGM modified images were then segmented using an enhanced EM segmenta-

tion method. In order to create the optimal tissue priors, they initially mapped an

existing four-year-old atlas [137] to the one-year-old atlas [138] using deformable

registration. Then, the initial priors was improved by using expert manual seg-

mentations of additional datasets of the one-year-old scans. The obtained prior
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probability maps were updated with fourteen training subjects, which were seg-

mented using the proposed segmentation algorithm but with the updated priors.

This update procedure was iteratively performed, based on the resulting differ-

ence maps to the ground truth for each tissue class, and was terminated when the

prior maps displayed less than 1% accumulative variation over all priors. Wolff

et al. [118], Elison et al. [139], and Neda et al. [140] introduced an atlas building

procedure that contains two different registration frameworks using DTI and T2-

weighted images. The intra-subject and inter-modality registrations were based on

a multi-scale approach that employs both affine and B-spline transformations, us-

ing the normalized mutual information (MI) as a matching metric. Scans taken at

different time intervals are linearly mapped to an atlas constructed from a patient

at the age of one year. They are subsequently mapped using a nonlinear transfor-

mation to a T2-weighted atlas, and tensor images are estimated from the aligned

DWI and averaged using the log-Euclidean method to produce a final DTI atlas.

Atlas-based segmentation techniques show more accuracy with respect to

statistical-based techniques. Nevertheless, they are still challenged by atlas se-

lection, combination, and the associated heavy computation time. Moreover, the

obtained segmentation accuracy is highly dependable on the involved registration

quality. Another major drawback of atlas-based segmentation algorithms is their

dependency on the selected features that will be used to link between the test sub-

ject and the prior (training) data used in the construction of the atlas. For example

most of the current techniques use signal intensity to find the correspondence be-

tween the data to be segmented and the prior atlas. This may lead to inaccurate

segmentation results as signal intensities vary due to many factors, such as the age,

patient, and scanner.
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3 Deformable Models-Based Segmentation

In order to obtain continuous segmentation of brain structures, deformable

boundaries have also been recognized as accurate segmentation techniques of MR

brain tissues. Deformable models-based segmentation techniques are based on

deforming curves or surfaces (2D image domain) or hyper-surfaces (higher di-

mensional image data) under the influence of both internal and external forces

to delineate the targeted object boundary. Leroy et al. [141] introduced a surface

reconstruction framework for automated segmentation of the cortical interface be-

tween WM and GM in MR infant brains. After spatial intensity inhomogeneity

correction, the initial cortical surface was identified based on two local priors that

are not affected by the intensity inhomogeneity. The first prior was the relatively

steady thickness and darker intensity of the cortical ribbon, which was detected

using the morphological top hats method [142]. The second prior was the ridge

segments of WM intensity, which was detected by comparing the mean curvature

of iso-intensity surfaces [143]. The final reconstruction of the inner cortical sur-

face was obtained by applying deformation on two surfaces located at each side

of the cortical region, and the competition between these two surfaces results in a

more robust reconstruction. The deformation method used [144] was initialized on

each side of the inner cortical surface, and the surfaces’ evolution was controlled

by a speed function that accounts for both feature intensity and neighbourhood

configuration. A level set segmentation framework was developed by Wang et

al. [145], in which a combination of local intensity information (modeled by the lo-

cal Gaussian distribution fitting (LGDF) [146]), atlas spatial prior, and a constraint

on the thickness of the cortical surface was used to construct the final coupled

level sets. An initial segmentation was first obtained by using convex optimiza-

tion for the coupled level sets based on global image statistical information and

atlas spatial prior, and then it was used as an initialization for the coupled level

sets. This random initialization provides a more robust segmentation results. In
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another study by the same author, Wang et al. [147] proposed a longitudinally

guided level-sets segmentation method. The proposed segmentation framework

takes advantage of the fact that the major sulci and gyri, which are established in

adult brains, are already present in infants. Therefore, they use the longitudinal

segmentation result from the late-time-point scans to guide the segmentation of

neonatal brains. The segmentation of the late-time-point scans can be attained with

good accuracy by many of the well-established segmentation methods. In partic-

ular, two-year-old late-time-point and neonatal brain images are independently

segmented using the adaptive fuzzy c-means algorithm [148] and the previously

described coupled level sets segmentation framework [145]. Then, the neonatal

segmentation was refined by wrapping the older two year scan to the neonatal

space using the HAMMER deformable registration [135]. A 4D multi-modality ex-

tension to the last segmentation framework is presented by Wang et al. [149]. They

extended the previous work to be able to segment six-month-old images through

integrating both one-year and neonatal scans to guide the desired segmentation.

To overcome the intensity issues associated with six-month scans, they incorpo-

rated the use of fractional anisotropy (FA) maps measured from DTI. Moreover,

temporally consistent segmentation results were obtained by a longitudinally con-

sistent term. Recently, Wang et al. [150] proposed a patch-driven level set method

for segmenting neonatal brain MR images using a sparse representation technique,

which effectively creates a subject-specific atlas from a library of aligned, manually

segmented images. The resultant tissue probability maps are then refined by mea-

suring the similarities between the current patch and its neighboring patches. The

final segmentation was obtained by integrating the refined probabilities into a cou-

pled level set framework.

The main advantage of deformable model-based segmentation techniques

is their ability to segment connected (non-scattered) objects more accurately than

the other segmentation methods. However, the accuracy of this method is based
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on the accurate design of the guiding forces (statistical, geometric, etc.) in addition

to the initialization of the model.

4 The Proposed Segmentation Framework

In addition to the limitations associated with each segmentation category,

most of the previously described MR infant segmentation techniques were dedi-

cated to segment infant brains either in the early infantile stage (≤5 months) or

early adult-like stage (≥12 months) by using a T1 or T2 scan or the combination of

both [120, 122, 127, 128, 132, 134, 136, 141, 145, 147]. However, these methods would

fail in the case of infants in the isointense stage (6-12 months), which is the pri-

mary focus of this thesis, because both WM and GM have roughly the same in-

tensity levels (see Figure 20). Therefore, a segmentation framework that integrates

other image contrasts (e.g., FA maps [131, 149]) would result in a better differen-

tiation between WM and GM in the isointense stage. However, neither of those

studies tried to integrate other DTI image contrasts in their segmentation proce-

dure. In addition, current DTI-based infant brain segmentation techniques suffer

from the following limitations: (i) atlases constructed from multiple modalities

(e.g., T2-weighted and DTI) will decrease the segmentation accuracy as a result

of dissimilar contrast levels and inter-slice variability, (ii) using nonlinear regis-

tration negatively affects the shape information, thus it prevents carrying out any

shape-based statistical analysis on the segmented data, which could be beneficial

in inspecting the relationship between WM and GM morphology [151], and (iii)

many of them rely on longitudinal information, which is not available in most

cases.

To overcome the limitations mentioned above, this thesis proposes a novel

adaptive atlas-based framework for the automated segmentation of different brain

structures from infant DTI images (see Figure 21). By integrating superior DTI

image features (e.g., FA) in the proposed framework, different infant brain struc-
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Figure 20: The intensity histogram of different brain tissue classes (i.e., CSF, GM,
WM, and other brain tissues) using non-diffusion b0 (T2-weighted) scan of an in-
fant in the isointense stage (6-12 months). As seen from the resultant histogram, a
high overlap between WM and GM intensities occurs in the isointense stage.

tures can be separated more accurately, especially in the isointense stage. A novel

joint MGRF segmentation model is introduced to model the brain images and their

desired region maps. In particular, the joint MGRF model relies on three image

descriptors: (i) an NMF-based visual appearance to describe the empirical distri-

bution of NMF fused DTI features, (ii) an adaptive shape model, and (iii) a 3D

spatially invariant second-order MGRF homogeneity descriptor. This segmenta-

tion framework utilizes an NMF features fusion of the large dimensional DTI fea-

ture space to extract new meaningful features with reduced dimensionality and

increased separation ability. The NMF-based visual appearance descriptor is mod-

eled using a K-means classifier with centroids predefined in the training phase.

To overcome the atlas bias problem related with most existing techniques, the pro-

posed framework involves the use of an adaptive shape prior. The proposed adap-
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tive shape model is constructed from a prior atlas database built using a subset

of co-aligned training data sets that is adapted during the segmentation process

guided by the first- and second-order visual appearance characteristics of the new

NMF-fused image features. These characteristics are described using voxel-wise

image intensities and their spatial interaction features. Finally, a second-order

MGRF spatial interaction model is added to account for the large inhomogene-

ity existing in infant brains. Details of the proposed segmentation framework will

be presented in the following sections.

Figure 21: The basic steps of the proposed framework for segmenting different
structures from infant DTI brain data.
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Before describing the proposed methods, the basic notation used through-

out this chapter will be presented,

• R = {(x, y, z) : 0 ≤ x ≤ X − 1, 0 ≤ y ≤ Y − 1, 0 ≤ z ≤ Z − 1} – a fi-

nite arithmetic lattice supporting digital images and their region maps, and

a voxel s = (x, y, z) is associated with its neighbors, {(x + ξ, y + η, z + ζ) :

(x + ξ, y + η, z + ζ) ∈ R; (ξ, η, ζ) ∈ νs} where νs is the 26-neighbourhood

defined by ξ ∈ {−1, 0, 1}, η ∈ {−1, 0, 1}, and ζ ∈ {−1, 0, 1}.

• g = {gx,y,z : (x, y, z) ∈ R; gx,y,z ∈ Q} – a gray scale image taking values from

a finite set Q = {0, 1, . . . , Q− 1}.

• m = {mx,y,z : (x, y, z) ∈ R; mx,y,z ∈ L} – a region map taking values from

from a finite set L = {0, . . . , L}.

• A = {ai,n : i = 1, . . . , I, n = 1, . . . , XY Z; ai,n ∈ Q} – a 2D matrix contains

image features of all n voxels in a vector form, where i is the dimension size

of image features.

• W = {wi,j : i = 1, . . . , I, j = 1, . . . , J ; wi,j ∈ R+} – a 2D matrix contains J

basis image features.

• H = {hj,n : j = 1, . . . , J, n = 1, . . . , XY Z; hi,j ∈ R+} – a 2D matrix contains n

voxels in new feature space of size J .

C Methods

The proposed segmentation framework is divided into three main compo-

nents: (i) preprocessing, (ii) brain extraction, and (iii) the joint MGRF segmen-

tation model. The details of each of these components will be provided in the

following subsections.
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1 Preprocessing

DWI Image Preprocessing

Compared to conventional MRI, DWI is more vulnerable to image noise

and artifacts (e.g. eddy-current and venetian blind artifacts). Moreover, DWI

has relatively longer acquisition times, which cause more motion artifacts, espe-

cially in unsedated infants, in addition to slice-wise and gradient-wise inconsisten-

cies. Also, during DWI acquisition, fast gradient switching existing in echo-planar

imaging (EPI) will yield an amplification effect to various image distortions. There-

fore, DWI screening is an essential step in any DTI-based study to eliminate any

bias that may exist with data collection, which potentially could affect the final

outcome of the study [152]. Some examples of DWI intensity artifacts are shown

in Figure 22.

(a) (b) (c) (d) (e)

Figure 22: Examples of DWI acquisition artifacts: (a) electromagnetic interference,
(b) extreme signal loss, (c) venetian blind, (d) slice-wise inconsistencies, and (e)
checkerboard artifacts. Courtesy of [152].

In order to perform the required DWI quality control (QC), DTIprep soft-

ware [152] was used, which automatically detects and removes various scan arti-

facts, and correct motion and eddy current distortions. Using the DTIprep gener-

ated comprehensive report and the obtained results, scans with strong remaining

artifacts were eliminated. In addition, resultant data sets with low number of gra-

dient directions, which will produce DTI estimates with low SNR, were excluded

from any further processing. The main steps involved in the QC procedure per-
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formed by DTIprep software are summarized in Algorithm 1 [152], and the com-

plete DTIprep software details could be found in [152].

Algorithm 1 Key Steps for DWI QC performed by DTIprep software [152]

1. DICOM to NRRD file format conversion.

2. Image information checks (e.g., correct image dimensions).

3. Diffusion information checks (e.g., correct gradient b-values).

4. Rician noise removal using a joint LMMSE filter [153].

5. Inter-slice intensity artifacts discovery using normalized correlation analysis.

6. Venetian blind artifacts removal using interlaced correlation analysis.

7. Baseline averaging through a co-registration procedure.

8. Eddy-current and bulk motion artifact correction.

9. Detection of any residual motion errors.

10. DTI estimation, and standard DTI scalar maps calculation.

11. Detection and correction of directional artifacts.

DTI Estimation

Before any DTI features can be extracted, tensor model estimation from the

preprocessed DWI data sets, is performed. As seen in Chapter I, there are many

DTI estimation methods, namely, linear least square (LLS), weighted linear least

square (WLLS), and nonlinear least square (NLLS). In this thesis, WLLS method

was chosen because it takes into consideration the noise profile of the scanned

MR images to weight the DWI samples in an intensity based estimation process;

thus making WLLS method able to provide more accurate estimates compared

with the traditional LLS method. Although NLLS could provide even more accu-

rate estimates, WLLS method was preferred because it is much faster than NLLS

56



method. Moreover, the optimization process that exists in NLLS method imposes

the risk of falling in a local minima, and such risk does not exist in WLLS estima-

tion method. DTI to DWI estimation using WLLS method was carried out using

3D Slicer software [102]. To account for bad tensors, related to any remaining noise

or acquisition artifacts, negative eigenvalues (which are physically meaningless)

were shifted.

2 Brain Extraction

Brain extraction, or skull stripping process involves the removal of any non-

brain tissues (e.g., eyes, dura, and skull) on brain MR images, which is not an easy

task, as the borders between brain and non-brain tissues might be indistinct on MR

images (e.g., GM and dura). Brain extraction is an essential preprocessing step in

any CAD system that deals with the brain, especially if any form of shape-based

analysis is performed (e.g., failing to remove the dura or missing brain parts can re-

sult in an overestimation or underestimation of the cortical thickness [154]). In the

literature, many brain extraction methods have been proposed. These methods use

different techniques, namely, deformable models [155–157], atlas-based [158, 159],

and label fusion and hybrid algorithms [160–162]. However, most of the existing

techniques were designed to work primarily for T1-weighted MR brain images,

thus, they are not well suited to extract the brain from diffusion-weighted images

directly. Moreover, the majority of the current techniques weer developed to work

for adult MR brain images, so they fail to overcome the additional challenges im-

posed by MR infant images (e.g., reduced contrast and higher noise).

To overcome the mentioned limitations, this thesis proposes a new stochas-

tic brain extraction method, based on a first-order visual appearance model, which

guides an edge-preserving image restoration model, to account for intensity inho-

mogeneity through an energy minimization optimization procedure.
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LCDG Visual Appearance Model

To accurately approximate the marginal probability distributions of the brain

and non-brain tissue, the empirical gray level distribution of a given g is precisely

approximated with a linear combination of discrete Gaussians (LCDG) with posi-

tive and negative components [163]. The LCDG restores brain and non-brain tran-

sitions more accurately than a conventional mixture of only positive Gaussians.

Below, LCDG will be explained in more detail.

Let Ψθ = (ψ(q|θ) : q ∈ Q) denote a discrete Gaussian (DG) with parameters

θ = (µ, σ), integrating a continuous 1D Gaussian density with mean µ and variance

σ2 over successive gray level intervals. The LCDG with two dominant positive

DGs and Kp ≥ 4 positive and Kn ≥ 0 negative subordinate DGs is [163, 164]:

Pc,Θ(q) =

Kp∑
k=1

cp:kψ(q|θp:k)−
Kn∑
κ=1

cn:κψ(q|θn:κ), (19)

where all the weights c = [cp:k, cn:κ] are non-negative and meet an obvious con-

straint
∑Kp

k=1 cp:k −
∑Kn

κ=1 cn:κ = 1. All LCDG parameters, including the DGs num-

bers, are estimated from the mixed empirical distribution to be modeled using the

modified EM algorithm [163]. Figure 23 illustrates the final estimated LCDG den-

sity for each class.

At the end of this step, a discriminant threshold τ is calculated in a way that

ensures the best separation between the brain and the non-brain voxel signals, as

illustrated in Figure 24. This threshold will be used in the next steps to enhance

the process of classifying image voxels into either brain or non-brain.

GGMRF Inhomogeneity Reduction Model

Intensity inhomogeneity of infant brain DWI images limits the accuracy of

the existing brain extraction approaches. Therefore, to accurately extract the brain

it is important to account for the low frequency intensity inhomogeneity. In the
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(a) 3D infant brain

(b) Estimated LCDG model

Figure 23: The final estimated LCDG density for each of the two classes (i.e., brain
and non-brain).

proposed brain extraction method, the generalized Gauss-Markov random field

(GGMRF) model is used to reduce this inhomogeneity [165], which is applied af-

ter DWI data is preprocessed using DTIprep software. In this step, the residual

image inconsistencies are removed (smoothed) by accounting for the spatially ho-

mogeneous 3D pair-wise interactions between the gray levels of the DWI data.

Namely, the gray level values q ∈ Q are considered as samples from a 3D GGMRF

model [165] of measurements with the voxel 26-neighborhood demonstrated in

Figure 25. The continuity of q values of each brain DWI scan is modified by apply-

ing the gradient descent algorithm [166] to search for the closest minimum of the
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Figure 24: The discriminant threshold, τ , calculation method from the estimated
visual appearance model.

following equation:

q̂s = argmin
q̃s

[
|qs − q̃s|α + ραλβ

∑
r∈νs

ηs,r |q̃s − qr|β
]
, (20)

where qs and q̃s denote the original gray level values and their expected

estimates, respectively, at the observed 3D location, s = (x, y, z); νs is the 26-

neighborhood voxel set (Figure 25); ηs,r is the GGMRF potential, and ρ and λ

are scaling factors. The parameter β ∈ [1.01, 2.0] controls the level of smoothing

(e.g., β = 2 for smooth vs. β = 1.01 for relatively abrupt edges). The parameter

α ∈ {1, 2} determines the Gaussian, α = 2, or Laplace, α = 1, prior distribution of

the estimator.

To better classify each modified signal as either the brain or non-brain, the

voxel signals are nudged additionally towards their most appropriate grouping

through incrementing or decrementing them by a bias value of ϵ. The latter was

chosen experimentally as 0.5% of the maximum gray value, in accord with the dis-
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Figure 25: Illustration of the 3D neighborhood system

criminant threshold (τ ) determined from the LCDG model. The larger the bias,

the wider the grayscale gap between brain and non-brain in the modified image.

While smaller biases may be useful to gradually optimize the separation between

the two classes, larger ones sharpen signal gradients and increase the overall spec-

tral noise. After the final modified image is obtained, a 3D region growing is ap-

plied, starting from a seed point at the center of the image volume, followed by

connected component analysis to calculate the final brain mask, which is used to

find the final extracted brain (see Figure 26). The overall data processing procedure

of the proposed brain extraction method is summarized in Algorithm 2.

3 The Joint MGRF Segmentation Model

Following brain extraction, the next step is to segment different brain struc-

tures from the extracted infant brains. To achieve this goal, a novel 3D joint MGRF

model is presented in this chapter. An input brain image, g, co-aligned to the
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(a) Original brain (b) Smoothed brain (c) Brain mask (d) Extracted brain

Figure 26: Illustration of the brain extraction procedure.

training database, and its map, m, are described with a joint probability model:

P (g,m) = P (g|m)P (m), which combines a conditional distribution of the im-

ages given the map P (g|m), and an unconditional probability distribution of maps

P (m) = Psp(m)PV(m). Here, P (g|m) is a NMF-based visual appearance model,

Psp(m) is an adaptive shape prior, and PV(m) is a Gibbs probability distribution

with potentials V, which specifies a Markov Gibbs random field (MGRF) model of

spatially homogeneous maps m. Details of the model’s components are outlined

below.

NMF-Based Visual Appearance Model

Following DTI estimation, a set of different scalar measurements (features)

from the estimated diffusion tensor is computed. These DTI-based features pro-

vide rich information about the brain anatomy, and would help to make different

brain tissues more distinguishable. In this thesis, five different anisotropy features

were calculated using 3D Slicer software [102], namely, mean diffusivity (MD),

fractional anisotropy (FA), relative anisotropy (RA), axial diffusivity (λ∥), and ra-

dial diffusivity (λ⊥). The first two features (FA and RA) will help to separate WM

from other brain tissues, while the other three features (MD, λ∥, and λ⊥) can differ-

entiate between GM and CSF tissues (see Chapter I). However, there is a need to

extract the most meaningful information from that large DTI dimensional space.

NMF has been shown to have powerful capabilities in clustering complex
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Algorithm 2 Key Steps for the Proposed Brain Extraction Approach

1. Approximate the marginal intensity distribution of an input image g using
an LCDG model with two dominant modes for the brain and the non-brain
classes.

2. Determine the disclaimant threshold, τ , which ensures the best separation
between the brain and the non-brain voxel signals.

3. Reduce the inhomogeneity of g by applying the 3D GGMRF model to each
voxel signal (qs; s ∈ R, q ∈ Q) to get the modified image ĝ.

4. Nudge pixels that may fall close the boundary between the brain and the
non-brain classes by comparing the signal of modified voxels q̂s to the thresh-
old τ obtained in step (2), and either add a small fixed bias ϵ to or subtract it
from these modified signals.

5. Improve ĝ using gradient descent optimization algorithm [166].

6. Apply 3D region growing followed by connected component analysis to ob-
tain the final results.

data based on extracting features that have the ability to learn the characteristics

of data classes [167]. As a consequence, the application of NMF was extended to

the field of medical image segmentation in the last few years. In NMF-based image

segmentation, a weight matrix W is calculated to transform a vector from the input

space into a new feature space (H-space) through factorizing the input matrix A.

NMF has been used in a few DTI-based segmentation systems. For instance, Xie et

al. [168] used NMF to segment the spinal cord, corpus callosum, and hippocampus

from rates’ DTI images by applying the k-means clustering approach [169] to the

column vectors of the produced H matrix in order to associate each data sample

to a given cluster. NMF has been used in some segmentation problems with a

promising success; however, further investigations are still needed to verify NMF

segmentation potential.

In this work, in order to more accurately segment different brain structured

from DTI data, feature fusion based on NMF is applied to extract new meaningful

63



features from the large dimensional DTI feature space (A), which consists of one

appearance feature (b0) and five anisotropy features (MD, FA, RA, λ∥, λ⊥). In par-

ticular, NMF is used in this segmentation framework to find the weights for each

input DTI feature (W) in order to create a new feature space (H), in which dimen-

sionality is reduced, information from the training data set is encoded, and differ-

ent classes is better separated. Using NMF, the input data matrix A ∈ R+I×XY Z

can be factorized into two matrices:

A ≈ WH (21)

where W ∈ R+I×J contains the basis voxels as its columns, and H ∈ R+J×XY Z is

new feature encoding of voxels [167]. To process the 3D DTI features using NMF,

each DTI feature for each voxel (x, y, z) in the 3D brain is converted to vectors in

the input data matrix A. W and H were calculated by minimizing the Euclidean

distance between A and WH with the constraint that W and H contained only

non-negative values. This results in this constrained optimization problem:

minimize
W,H

1

2
∥A−WH∥2

subject to W,H ≥ 0,

(22)

and since the advent of NMF, several methods have been used to optimize Equa-

tion (22). The most prominent algorithms have been multiplicative update, pro-

jected gradient descent (PGD), and alternating least square (ALS) [170]. In this

chapter, the ALS algorithm was used because of its high speed and flexibility com-

pared with other competing algorithms. The ALS algorithm takes advantage from

the fact that, although Equation (22) is not convex in both W and H, it is convex

in either W or H when the other is considered as constant. Therefore, a first least

square step is required to find one matrix, followed by another least square step

in an altering pattern. The basic ALS algorithm for NMF is presented in Algo-

rithm 3 [170].
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Algorithm 3 Key Steps of the ALS Algorithm for NMF [170]

1. Initialize W as a random dense matrix.

2. Solve for H in the matrix equation WTWH = WTA.

3. Set the negative values in H to zero.

4. Solve for W in the matrix equation HHTWT = HAT .

5. Set the negative values in W to zero.

6. Repeat steps (2-5) till the predefined maximum number of iterations is
reached.

In the proposed framework, NMF was performed on a input data matrix

that had a I th dimensional, one dimension for each calculated feature, and a col-

umn vector for each voxel in the training volumes. The resulting W was used as

the basis vectors to transform new feature vectors into the new J th-dimensional

space. The resulting H was used to find the J-dimensional centroids correspond-

ing to each brain label (Cl; l ∈ L). In the testing phase, a new input data matrix was

created (B) with the same I th-dimensional for each feature as in the training phase,

and a column vector for each voxel in the test volume. The new J th-dimensional

vectors corresponding to these new input vectors were calculated by multiplying

them by the psuedo-inverse of W [171] (see Figure 27). Mathematically, this is

given by:

HB = W†B. (23)
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Figure 27: Block diagram for of proposed NMF-based feature fusion.

The proposed segmentation framework accounts for the visual appearance

of the new NMF fused features. To model the visual appearence of these features,

a K-means classifier [172] was used with the classes J-dimensional centroids (Cl;

l ∈ L) that were calculated in theH-space during the training phase. For each voxel

(x, y, z) ∈ R in the testing volume B, a new J-dimensional test vector HB:x,y,z is

formed using Equation (23). The labels probabilities associated with HB:x,y,z were

calculated based on the Euclidean distance dl(TB:x,y,z) from the test vector HB:x,y,z

to each of the centroids Cl; l ∈ L (see Figure 28). The NMF-based probabilities for
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brain label l ∈ L, and voxel (x, y, z) ∈ R is defined as:

Px,y,z(g|m = l) =

1
dl(HB:x,y,z)

L∑
l=1

1
dl(HB:x,y,z)

. (24)

Figure 28: Illustration of the Euclidean distances used in calculating the NMF-
based probabilities.

Adaptive Shape Model

To enhance the segmentation accuracy, expected shapes of each brain label

are constrained with an adaptive probabilistic shape prior. To create the shape (at-

las) database, a training set of images are collected for different subjects (10 data

sets) with their new NMF fused features. They are co-aligned by 3D affine transfor-
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mations with 12 degrees of freedom (3 for the 3D translation, 3 for the 3D rotation,

3 for the 3D scaling, and 3 for the 3D shearing) in a way that maximizes their mu-

tual information (MI) [173]. The shape priors are spatially variant independent

random fields of region labels for the co-aligned data:

Psp(m) =
∏

(x,y,z)∈R

psp:x,y,z(mx,y,z), (25)

where psp:x,y,z(l) refers to the voxel-wise empirical probabilities for each brain label

l ∈ L. To generate the ground truth labels for the atlas, the infant tissue probability

maps provided by IDEA lab [174] was used with the unified segmentation algo-

rithm [175], implemented in statistical parametric mapping (SPM) software [176],

to segment the non-diffusion (b0) scans of the training data sets. Then, an MR

expert refined the generated initial segmentation to produce the final brain labels.

For each input subject data to be segmented, the shape prior is constructed

by an adaptive process guided by the visual appearance of its NMF fused fea-

tures. First, the normalized cross correlation (NCC) similarity coefficient was used

to select the subject from the atlas database that has the best match with the input

subject (i.e., highest similarity). The selected subject is then used as a reference pro-

totype to co-align the input subject using the 3D affine transformation described

above. In order to estimate the shape prior probabilities for each voxel in the test

subject (see Figure 29), the steps described in Algorithm 4 were followed.

(a) b0 refrence (b) Pcsf (c) Pgm (d) Pwm

Figure 29: The shape prior probabilities estimated by the proposed adaptive shape
model. (a) b0 reference image, (b) CSF prior probability, (c) GM prior probability,
and (d) WM prior probability.
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Algorithm 4 Key Steps for Creating the Adaptive Shape Model

1. Construct the atlas database through The co-alignment of the training brains
(NMF-fused features and manual segmentation of each of the preprocessed
brains).

2. Use the NCC to measure the similarity between the test subject and each
subject in the atlas database, and choose the database subject that has the
highest similarity to act as the reference in the registration process.

3. Register the test subject to the selected reference subject using 3D affine trans-
formations with 12 degrees of freedom that maximizes their MI [173].

4. For each voxel in the test subject, calculate its shape prior probability accord-
ing to the following steps:

(a) Use the obtained transformation matrix (T) to transform each voxel to
the atlas database domain.

(b) Construct a 3D window with initial size of N1i ×N2i ×N3i.

(c) Search inside the window for voxels with corresponding grey values
(NMF-fused features) in all training data sets.

(d) If needed, increase the window size and redo the search until a non-
empty result is found.

(e) Create the labels probabilities based on the relative occurrence of each
label from the search results.

3D Spatial Interaction MGRF Model

In order to overcome noise effects and to ensure segmentation homogene-

ity; spatially homogeneous 3D pair-wise interactions between the region labels are

additionally incorporated in the proposed segmentation model. These interactions

are calculated using the popular Potts model (i.e., an MGRF with the nearest 26-

neighbors of the voxels and analytic bi-valued Gibbs potentials, as illustrated in

Figure 30) because only the coincidence of the labels is taken into account. The

utilized second-order 3D MGRF model of the region map m is defined as [177]:
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Figure 30: Samples of different pair-wise cliques for the 26-neighborhood system.
Graph cliques are shown in different colors for visualization purpose.

PV(m) =
1

Zνs

exp
∑

(x, y, z)∈R

∑
(ξ, η, ζ)∈ νs

V(mx,y,z,mx+ξ,y+η,z+ζ), (26)

where Zνs is the normalization factor which can to be approximated by the Equa-

tion [178]:

Zνs ≈ exp
∑

(x, y, z)∈R

∑
(ξ, η, ζ)∈ νs

∑
l∈L

V(l,mx+ξ,y+η,z+ζ), (27)

and V is the bi-valued Gibbs potential, which depends on whether the nearest pair

of labels are equal or not:
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V(ms1 ,ms2) =

 veq if ms1 = ms2

vne otherwise
, (28)

where msi is the region map label at the voxel si = (xi, yi, zi), and veq and vne are

the estimated potentials in the case of equal and non-equal labels, respectively.

The initial region map results in an approximation with the following analytical

maximum likelihood estimates of the potentials [177]:

veq = −vne ≈ 2feq(m)− 1, (29)

where fa,eq(m) is the relative frequency of equal labels in the voxel pairs {((x, y, z), (x+

ξ, y+η, z+ζ)): (x, y, z) ∈ R; (x+ξ, y+η, z+ζ) ∈ R; (ξ, η, ζ) ∈ νs}. These estimates

allow for computing the voxel-wise probabilities px,y,z(mx,y,z = l) of each brain la-

bel; l ∈ L. In total, the complete segmentation steps of the proposed framework

are summarized in Algorithm 5. For completeness, the analytical estimation of the

bi-valued Gibbs potentials is driven in the Appendix.

D Performance Evaluation Metrics

To evaluate the segmentation accuracy, we used three metrics, namely, (i)

the Dice Similarity Coefficient (DSC), (ii) the 95-percentile modified Hausdorff dis-

tance (H95), and (iii) the absolute volume difference (AVD) [179]. The following

subsections will describe each used metric in more detail.

1 Dice Similarity Coefficient

The Dice similarity coefficient (DSC) measures set agreement between two

sets (S,G), and is defined as the union size of the two sets divided by the average

size of the two sets:
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Algorithm 5 Key Steps for the Proposed Segmentation Approach

1. Detect artifacts, correct motion and eddy current distortions and remove im-
ages with large artifacts using DTIprep software [152] (see Algorithm 1).

2. Derive DTI from DWI, and extract five DTI anisotropy features (MD, FA, RA,
λ∥, λ⊥) using 3D Slicer [102].

3. Use the proposed automated brain extraction approach (Algorithm 2) to re-
move any non-brain tissues from DWI brain images.

4. Create a new NMF input data matrix B from the obtained DTI features in
addition to the b0 volume.

5. Use the weight matrix W (calculated in the training phase according to Al-
gorithm 3) to transform B from old I th-dimensional space to the new J th-
dimensional space, according to Equation (23).

6. Create the subject-specific shape prior model according to the steps in Algo-
rithm 4.

7. Form an initial region map m using the NMF-based probabilities and prior
adaptive shape of each label.

8. Find the Gibbs potentials for the MGRF model from the initial map m.

9. Improve the region map m using voxel-wise Bayes classifier after integrating
the three descriptors in the proposed joint MGRF model..

DSC(S,G) =
2|S ∩G|

S ∩G+ S ∪G
× 100 (30)

In segmentation validation, the DSC is usually expressed in terms of false

positive (FP), false negative (FN), true negative (TN), and true positive (TP) counts,

which were obtained by comparing the segmentation results to the ground truth

(gold standard) (see Figure 31). These values can be used to calculate the DSC as

shown by [179]:

DSC =
2TP

2TP + FP + FN
× 100. (31)
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A DSC value of zero indicates no overlap; a value of one indicates ideal

segmentation. Higher numbers indicate better segmentation, which means that

the segmentation results match the ground truth better than results with lower

DSC values.

Figure 31: Diagram illustrating the meaning of segmentation errors, namely, true
positive (TP), false positive (FP), true negative (TN), and false positive (FP). These
segmentation errors, obtained by comparing the segmented and the ground truth
objects, are used to calculate the dice similarity coefficient (DSC).

2 Modified Hausdorff Distance

Distance measures are another type of performance metric used for evalu-

ating segmentation methods. The Euclidean distance is often utilized, but another

common measure is the Hausdorff distance (H). The H value from a set S to a set

G is defined as the maximum distance of the set S to the nearest point in the set G

(see Figure 32) [179]:
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H(S,G) = maxs∈S{ming∈G{d(s, g)}}, (32)

Figure 32: A schematic illustration for the Hausdorff distance (H) calculation.

where s and g are points of sets S and G, respectively, and d(s, g) is Eu-

clidean distance between these points. The bidirectional Hausdorff distance, de-

noted by HBi(S,G), between the segmented region (S) and its ground truth (G) is

defined as:

HBi(S,G) = max{H(S,G), H(G,S)}. (33)

The smaller the distance, the better the segmentation. The ideal case with

perfect segmentation is when the bidirectional Hausdorff distance is equal to 0.

In this thesis, to eliminate the effect of segmentation outliers, the 95-percentile

modified Hausdorff distance (H95) was used to assess the proposed segmentation

framework accuracy.
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3 Absolute Volume Difference

In addition to the DSC and H95 metrics, a volumetric metric is also used to

assess the accuracy of the segmentation. The percentage absolute volumetric dif-

ference (AVD) is defined as the ratio of the absolute difference between the original

volume and the segmented volume, to the original volume (see Figure 33) [179]:

AVD =
|Vs − Vg|

Vg
× 100, (34)

where Vs and Vg are the segmented volume and the ground truth volume, re-

spectively, and each were calculated by multiplying the number of labelled voxels

by the voxel dimensions [179]. The smaller the AVD, the better the segmentation.

Figure 33: A schematic illustration for the absolute volume difference (AVD) esti-
mation.
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E Experimental Results and Evaluation

1 Participants and Image Acquisition

This study included data from the Infant Brain Imaging Study (IBIS) [180],

which is the parent network of an ongoing study of infants at risk for autism. The

study participants are six-month-old infants with high risk of developing autism

spectrum disorders (ASDs). These infants were seen for follow-up assessments

at 12 and 24 months of age, and the final assessment was made at age 24 months.

The high-risk infants were divided into two groups: ASD negative (below the ASD

cutoff) and ASD-positive (above the cutoff). Diffusion weighted MRI brain scans

were obtained from a 3-T Siemens TIM Trio scanners (Siemens Medical Solutions,

Malvern, PA.) using the following parameters: field of view of: 190 mm, number

of slices: 75–81, a slice thickness: 2 mm, voxel resolution: 2 × 2 × 2 mm3, TR:

12,800–13,300 ms, TE: 102 ms, variable b values between 0 and 1,000 s/mm2, 25

gradient directions, and a scan time of 5-6 minutes.

2 Segmentation Results

Performance assessment of the segmentation results were carried out through

applying the proposed techniques on 54 diffusion weighted infant MR brain data

sets, and evaluated using 9 data sets with a manually segmented ground truth,

obtained by an MR expert. The final goal of the proposed segmentation technique

is to separate infant DTI brain images into four classes: WM, GM, CSF, and other

brain tissues. A step-by-step of the proposed segmentation framework is demon-

strated in Figure 35. The input DWI data (Figure 35 (a)) is initially preprocessed

using DTIprep software [152] to remove scan artifacts and correct motion and eddy

current distortions. Then, the proposed brain extraction method was used to re-

move any non-brain tissues (e.g., skull and eyes) (Figure 35 (b)). An initial segmen-

tation is achieved using the constructed adaptive shape model and the NMF-based
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visual appearance model (Figure 35 (c)). To obtain the final segmentation, the ini-

tial results were refined using the proposed three descriptors (NMF-based visual

appearance model, 3D spatial model, and adaptive shape model) as shown in Fig-

ure 35 (d). Figure 34 shows the 3D results of the proposed segmentation approach.

The performance of the proposed segmentation framework was evaluated

using three performance metrics: (i) the Dice similarity coefficient (DSC), (ii) the

95-percentile modified Hausdorff distance (H95), and (iii) the percentage absolute

volume difference (AVD) [179]. Metrics were computed by comparing a ground

truth segmentation to results from the proposed segmentation technique. The de-

tailed segmentation results for each subject are given in Tables 1, 2, and 3. In addi-

tion, a summary of the segmentation results, represented by the mean±standard

deviation values, is provided in Table 4. As demonstrated in Table 4, the DSC for

segmentation of the Brain, WM, GM, and the CSF are 96.64±1.15%, 95.23±1.18%,

89.92±2.86%, and 87.96±3.31% , respectively, which confirms the high accuracy

of the proposed segmentation techniques. Experiments show that the proposed

accurate identification of the joint MGRF model demonstrates promising results

in segmenting GM and WM brain tissues from infant DTI images. The present

implementation in the C++ programming language on a Dell precession T7500

workstation (3.33Ghz Intel quad-core with 48GB RAM) takes about 8.1 ± 2.53 sec

to process each test subject.

(a) CSF (b) GM (c) WM

Figure 34: 3D visualization for the segmentation results.
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Table 1

Accuracy of the proposed segmentation approach for each subject using dice sim-
ilarity coefficient (DSC(%)).

Subject No. S1 S2 S3 S4 S5 S6 S7 S8 S9

CSF 95.40 89.07 83.66 87.63 86.19 88.49 87.63 88.57 85.02
GM 92.60 91.64 88.70 92.74 88.81 90.77 84.26 91.94 87.75
WM 95.14 95.96 95.51 93.14 95.37 96.31 93.59 96.25 95.89

Others 96.44 92.06 85.89 93.54 91.16 93.85 93.14 80.12 92.81
Brain 98.85 97.47 94.90 97.20 96.70 97.43 96.92 96.07 96.38

Table 2

Accuracy of the proposed segmentation approach for each subject using the 95-
percentile modified Hausdorff distance (H95(mm)).

Subject No. S1 S2 S3 S4 S5 S6 S7 S8 S9

CSF 1.98 2.00 3.44 2.80 2.81 1.98 2.81 1.98 2.00
GM 1.98 1.98 2.00 1.98 2.00 1.98 2.00 1.98 1.98
WM 1.98 1.98 1.98 2.00 1.98 1.98 1.98 1.98 1.98

Others 4.00 4.00 5.97 9.22 10.00 3.44 5.95 9.76 4.43
Brain 2.80 4.00 5.63 12.00 7.19 2.81 13.24 6.88 5.60

Table 3

Accuracy of the proposed segmentation approach for each subject using the per-
centage absolute volume difference (AVD(%)).

Subject No. S1 S2 S3 S4 S5 S6 S7 S8 S9

CSF 2.57 8.14 16.93 7.05 5.95 2.90 4.18 3.53 3.66
GM 9.63 7.48 11.62 7.43 11.48 8.84 14.04 8.25 9.97
WM 8.37 3.59 4.74 8.60 4.43 3.86 4.84 3.83 4.19

Others 3.73 0.42 21.12 5.79 3.49 8.51 3.43 27.23 7.93
Brain 1.69 0.81 8.39 1.52 0.70 1.27 0.68 5.27 2.64
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A

C

S
(a) (b) (c) (d)

Figure 35: Segmentation results of the proposed approach. The segmentation is
performed in 3D, and the results are projected onto 2D axial (A), coronal (C), and
sagittal (S) planes for visualization: (a) 2D profile of the original b0 scan images,
(b) b0 scan images after preprocessed using DTIprep software [152], and brain ex-
traction using the proposed method, (c) initial segmentation using an NMF-based
visual appearance model and adaptive shape model, and (d) final segmentation
results using the proposed three models. Note that CSF, GM, WM, and other non-
brain tissues are shown in red, yellow, green, and white, respectively.

Table 4

Summary of the segmentation results using DSC(%), H95(mm), and AVD(%), rep-
resented by the mean±standard deviation values.

Metric CSF GM WM Others Brain
DSC (%) 87.96±3.31 89.92±2.86 95.23±1.18 92.81±5.26 96.64±1.15
H95(mm) 2.42±0.56 1.98±1.07 1.98±0.01 6.60±2.75 7.17±3.96
AVD (%) 6.10±4.70 9.85±2.34 5.15±2.03 9.74±9.65 2.66±2.80
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F Conclusion

In conclusion, this chapter proposed a new adaptive atlas-based framework

for the automated segmentation of different brain structures from DTI. The pro-

posed segmentation technique demonstrates that the integration of a second-order

MGRF spatial model with NMF-based visual appearance features is promising for

controlling an adaptive shape model to segment DTI infant brains. The accuracy of

the proposed segmentation framework can aid researchers to advance new meth-

ods for the detection of various brain disorders (e.g., autism and dyslexia) at an

early stage. In particular, the proposed segmentation approach will be integrated

into a CAD system for the early diagnosis of ASDs, where it will be used with

other methodologies to explore features in the GM and WM regions of the brain

(see Chapter III).
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CHAPTER III

INFANT BRAIN CLASSIFICATION

This chapter focuses on extracting discriminatory features to describe the

shape and the connectivity of infant brains using diffusion tensor images. The

capabilities of these extracted features in the early diagnosis of autism spectrum

disorders (ASDs) are also investigated. The proposed shape analysis detects brain

cortex variability using a spherical harmonic analysis that represents a 3D surface

supported by the unit sphere with a linear combination of special basis functions,

called spherical harmonics (SHs). The brain shape complexity is described with

two shape measurements, namely, the SH reconstruction error and the surface

complexity. The proposed connectivity analysis takes advantage of the unique

information provided by diffusion tensor imaging (DTI) in providing new dimen-

sions for the characterization of white matter (WM) anatomy. Tractography meth-

ods are applied to reconstruct WM tracts of the segmented brains, and three DTI

measurements, namely, fractional anisotropy (FA), axial diffusivity (λ∥), and ra-

dial diffusivity (λ⊥) are generated and mapped to the extracted WM tracts in order

to perform statistical analysis to detect differences between autistic and control

brains. K-means classifier was used for each of the extracted features to evaluate

their diagnostic capabilities. The preliminary diagnostic results, based on the anal-

ysis of 25 independent cases (6 autistic and 19 controls), are promising in identify-

ing autistic from control patients. These results clearly demonstrate the promise of

the proposed image-based diagnostic technique as a supplement to current diag-

nostic tests.
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A Problem and Critical Unmet Need

The ultimate goal of this thesis is to develop a clinically usable software tool

for the accurate early diagnosis of autism through the use of diffusion tensor imag-

ing (DTI). Informed clinical consensus defines autism spectrum disorder (ASD) as

a behavioral syndrome characterized by pervasive impairment in several areas of

development, including social interaction, communication skills, and other areas

of interest and activity. According to the centers for disease control and prevention

(CDC) report issued in 2014, one in 68 children has been diagnosed with ASDs in

the United States, which is approximately 30% greater than previous estimates re-

ported in 2012 of one in 88 children [112]. In addition, this last report indicated that

most children with ASDs are currently diagnosed after the age of four, despite the

fact that ASDs can be identified as early as age two [112]. It presently costs about

$3.2 million to take care of an autistic person over his/her lifetime. The total cost

of care for the autistic population within the United States is close to $35 billion

per year [181]. Therefore, developing a new technology for the early and accurate

diagnosis of autism can improve the effectiveness of treatment, as well as reduce

the cost of treatment. Thus far, there have been no laboratory-based measures that

provide an accurate diagnosis of autism. The current gold standard autism diag-

nostic, as recommended by the American academy of pediatrics (AAP), is screen-

ing for developmental disabilities at 9, 18 and either 24 or 30 months. Symptomatic

children are then referred to a specialist to handle the diagnosis. This diagnostic

approach is not applicable at a very early age because it relies on the observation

and assessment of age-dependent emergent skills in the domains of communica-

tion, social interaction, and play. Still, diagnosis is needed at early stages since

early intervention is the best predictor for positive outcomes. Thus, there is an

urgent need for a non-invasive technology with the capability of providing new

laboratory-based measures that confer an accurate diagnosis of autism. This thesis

proposes a novel computer aided diagnosis (CAD) system for the early diagno-
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sis of ASDs from DTI. The proposed CAD system consists of three main steps: (i)

infant brain tissue segmentation from medical images, (ii) extraction of discrimina-

tory features (e.g. shape and connectivity features) for the segmented brain tissues,

and (iii) classification of autistic from control infant brains based on analyzing the

extracted features of different brain tissues for both control and autistic brains. The

first step was already discussed in Chapter II, and this Chapter will cover the other

two steps.

B Participants

This study included data from the Infant Brain Imaging Study (IBIS) [180],

which is the parent network of an ongoing study of infants at risk for autism. The

study participants are six-month-old infants with a high risk of developing ASDs.

These infants were seen for follow-up assessments at 12 and 24 months of age, and

the final assessment was made at age 24 months. Based on an ASD cutoff thresh-

old, the high-risk infants were divided into two groups: ASD negative (control)

and ASD-positive (autistic). From 300 subjects provided, there were only 28 sub-

jects with available final diagnosis; however 3 subjects were excluded from further

processing owing to high scan artifacts and motion distortions as indicated from

the quality control report generated by the DTIprep software [152]. The final group

of subjects in this study included 6 infants, which met the criteria for ASDs (4 males

and 2 females), and 19 that did not (11 males and 8 females).

C Feature Extraction

As demonstrated in Chapter II, DTI infant brain images were segmented

into white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF), which

is the first step of the proposed CAD system. The next step is the extraction of

discriminatory features, which are numerical values that correspond to attributes

83



of the segmented structures. In particular, cortex (WM+GM) shape variability is

assessed using shape construction methods. In addition to the shape information,

WM integrity is further examined through connectivity analysis, where WM tracts

are generated and analyzed using various DTI connectivity measurements. This

section will provide more details about the feature extraction step of the proposed

CAD system (see Figure 36).

Figure 36: Illustration of the proposed feature extraction procedure.
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1 Shape Analysis

The shape analysis was based on spherical harmonic reconstruction [182,

183], which considers 3D surface data (i.e., brain cortex) as a linear combination

of specific basis functions, namely spherical harmonics (SHs). The spherical har-

monics shape analysis is performed in five steps: (i) mesh generation, (ii) mesh

smoothing, (iii) unit sphere mapping, (iv) spherical harmonics reconstruction, and

(v) shape metrics calculation. These steps are described below.

First, a 3D mesh model of the segmented brain cortex surface is generated

using a Delaunay triangulated 3D mesh [184]. Secondly, a smoothed version of

the 3D mesh is created to ensure the uniqueness of each point in the given data

set. Then, the smoothed brain mesh is mapped to a unit sphere utilizing the

“Attraction-Repulsion” mapping approach [185], which dictates the mesh nodes to

follow two rules: (i) the unit distance of each node from the brain center, and (ii)

an equal distance of each node from all of its nearest neighbors. The mapped

brain cortex is approximated using a linear combination of SHs; fewer harmonics

are sufficient to represent the more generic shape, while a higher-order harmonics

can capture the nuanced gyrifications of the brain cortex shape. The SHs are pro-

duced by solving an isotropic heat equation for the brain cortex surface on the unit

sphere [183,185]. Let S : M → U denote the mapping of a brain mesh M to the unit

sphere U. Each node P = (x, y, z) ∈ M mapped to the spherical position u = S(P)

is represented by the spherical coordinates u = (sin θ cosφ, sin θ sinφ, cos θ) where

θ ∈ [0, π] and φ ∈ [0, 2π] are the polar and azimuth angles, respectively. The SH

Yαβ of degree α and order β is defined as [186]:

Yαβ =


cαβG

|β|
α cos θ sin(|β|φ) −α ≤ β ≤ −1

cαβ√
2
G

|β|
α cos θ β = 0

cαβG
|β|
α cos θ cos(|β|φ) 1 ≤ β ≤ α

, (35)
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where cαβ =
(

2α+1
2π

(α−|β|)!
(α+|β|)!

) 1
2

and G
|β|
α is the associated Legendre polynomial of de-

gree α and order β. For the fixed α, the polynomials Gβ
α are orthogonal over the

range [−1, 1], as shown in [186]. The brain cortex can be simply reconstructed from

the SHs of Equation (35); however, the standard least square fitting method fails to

accurately model the complex shape of the brain cortex, and may result in the loss

of important information that can help in the process of differentiating between

autistic and normal brains. Therefore, the iterative residual fitting algorithm [187]

was used to improve the approximations of the 3D gyrifications on the brain cor-

tex.

Quantitative Analysis of Spherical Harmonics

To perform a quantitative analysis of the brain cortex shape, two techniques

for measuring the complexity of the cerebral cortex are proposed: (i) SH recon-

struction error and (ii) surface complexity.

SH reconstruction error: Due to the unit sphere mapping, the original cortex mesh

for each subject is inherently aligned with the SH approximated mesh. The error

between the original cortex mesh nodes and the SH approximated cortex mesh

nodes can be calculated in terms of Euclidean distance. This error generates a

reconstruction error curve that is unique to each subject, where the area under the

curve is examined to provide a representative metric for the brain cortex [185].

Surface complexity: a new metric for examining the complexity of the brain using

the SH coefficients is also proposed. For a unit sphere f , having a SH expansion as

shown in Equation (35), the surface complexity metric. S(f) is defined as:

S(f) =
∑∞

N=0 ε
2
N

=
∑∞

N=0NB
2
N

, (36)

where N is the number of harmonics, and B are the previously calculated SH co-

86



efficients. The squared residual ε2N is defined as:

ε2N = ∥f − fN∥2

= ∥
∑∞

n=N+1

∑n
m=−n bnmY

m
n ∥2

=
∑∞

n=N+1

∑n
m=−n |bnm|2

=
∑∞

n=N+1B
2
n

. (37)

For use in 3D SH analysis there are three sets of coefficients for each direc-

tion, x, y and z. Therefore the surface complexity is expanded from Equation (36)

to be defined as:

S(f) =
∑∞

N=0 N(B2
N,x+B2

N,y+B2
N,z)

∥fx∥2+∥fy∥2+∥fz∥2 . (38)

This metric generates a unique curve for each subject similar to the SH re-

construction error curves. Some of the advantages to this calculation are that it de-

pends only on the SH coefficients, making it a self-contained metric, and it serves

to represent the average degree of SH expansion. Also, it is considered as a con-

vergent metric, and can be computed over the range of harmonics of interest.

Spherical Harmonics Analysis Results

The performance of the proposed 3D brain cortex shape analysis methods

were evaluated by applying them on both the control and the autistic groups. The

final goal of the proposed shape analysis is to obtain shape features that can help

in distinguishing between control and autistic brains. A step-by-step of the pro-

posed SH analysis is demonstrated in Figure 37 and Figure 38. The surface of

the input segmented brain cortex (Figure 37 (a)) is approximated by a triangu-

lated 3D mesh having 50,000 nodes (Figure 37 (b)). Then, a smoothed version of

the 3D mesh is generated (Figure 37 (c)), and mapped to a unit sphere using the

“Attraction-Repulsion” algorithm [185] (Figure 37 (d)) in order to generate the final

SHs to approximate the original mesh (Figure 37 (e)). Finally, the aligned original

and the SHs reconstructed meshes are used to generate two shape metrics, namely,
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SH reconstruction error (Figure 38 (a)) and Surface complexity (Figure 38 (b)). Ta-

ble 5 provides the complete results of the proposed two shape metrics, while some

examples of SHs cortex reconstruction for different classes and genders are given

in Figure 39. These preliminary results show that the proposed 3D brain cortex

shape analysis methods are promising features for accurately discriminating be-

tween autistic and control subjects.

(a) Segmented brain cortex (b) Original mesh

(c) Smoothed mesh (d) Unit sphere mesh

(e) SHs reconstructed mesh

Figure 37: Illustration of the SHs shape analysis steps.
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(a) SH reconstruction error

(b) Surface complexity

Figure 38: Error curves for the average autistic and control brains obtained for
quantitative analysis of SHs.
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Table 5

Shape analysis results for control and autistic brains in terms of SH reconstruction
error and Surface complexity metrics.

Subject No. SH reconstruction error Complexity error
C1 269.33 87.45
C2 308.54 91.10
C3 287.71 87.37
C4 238.40 84.79
C5 203.23 84.03
C6 253.78 86.28
C7 244.86 86.33
C8 204.79 84.97
C9 194.17 83.78

C10 218.06 85.23
C11 213.85 84.36
C12 245.18 85.31
C13 250.81 85.58
C14 201.21 84.34
C15 330.92 91.08
C16 255.32 85.61
C17 221.27 86.23
C18 248.43 87.77
C19 207.39 84.16

Mean±STD 241.96±37.62 86.09±2.12
A1 216.82 84.56
A2 244.21 85.52
A3 187.64 83.81
A4 260.41 86.30
A5 260.01 87.51
A6 234.49 85.99

Mean±STD 233.93±28.01 85.61±1.31
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(a) Control male original mesh (b) Control male SH mesh

(c) Control female original mesh (d) Control female SH mesh

(e) Autistic male original mesh (f) Autistic male SH mesh

(g) Autistic female original mesh (h) Autistic female SH mesh

Figure 39: Examples of SH reconstructed brains compared to their original meshes.
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2 Connectivity Analysis

Instead of visualizing diffusion in one single voxel, tractography offers in-

formation across multiple voxels showing global connectivity of fiber bundles.

Tractography analysis is proven to be very valuable in recognizing WM tracts’

trajectories and their connections with other WM tracts or other GM structures.

Tractography methods can be classified into two categories of tract construction

techniques: (i) deterministic approaches that provide only one trajectory for each

start voxel, and (ii) probabilistic approaches that use energy minimization meth-

ods to provide the path with the highest probability to link two selected voxels

or regions. In this thesis, a deterministic tractography approach built in 3D slicer

software [102] was used to generate the required WM fiber tracts. In this determin-

istic approach, the principal eigenvector v̂1 is assumed to provide a representation

to the orientation of the WM fiber tract, and tractography analysis was performed

in three steps: : (i) fiber orientation extraction, (ii) pathway propagation, and (iii)

propagation termination [83]. First, local fiber orientation at each voxel is esti-

mated using planar diffusion profiles or by using the full diffusion ellipsoid in the

case of a highly isotropic medium. Then, the diffusion weighted images are inter-

polated to provide continuous voxel information, which is needed for a realistic

representation of WM tracts. The next step is to propagate a single pathway, start-

ing from a seed point, based on full tensor or principal vector information. Finally,

pathway propagation is terminated when tracts enter a low anisotropy region or

when a sharp bend occurs (see Chapter I for more details about WM fiber tractog-

raphy).

Tractography Analysis Results

The segmented WM images, obtained in Chapter II, were used to seed tracts

on the infant DTI data. Seeds were placed using 2 mm seed spacing, and a mini-

mum linear measure of 0.3 for the seeding to start. For the pathway propagation
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parameters, the minimum and the maximum lengths of the fibers were set to 20

mm and 800 mm, respectively. Tracking was stopped when fractional anisotropy

(FA) was below 0.25 or when the radius of track curvature becomes smaller than

0.7◦/mm. After WM fiber tracts were extracted, FA values were generated for each

fiber tract to measure the degree of anisotropy of local diffusivity. In addition to

FA values, axial (λ∥) and radial (λ⊥) diffusivity values, which represent diffusion

parallel and transverse to axonal directions, were also produced (see Chapter I for

more details about these three DTI measurements). An example of the generated

WM fiber tracts is shown in Figure 40. Table 6 provides the mean values of the

three generated DTI measurements across all the extracted WM tracts, and Fig-

ure 41 provides a boxplot representation of the results in both control and autistic

groups. These preliminary results show relatively higher values of all the gen-

erated DTI measurements in the autistic brains, when compared to the control

brains. These initial results indicates that the extracted DTI features are promising

in differentiating between autistic and control subjects.

Figure 40: Example of the extracted white matter fiber tracts, generated within the
corpus callosum region, where colors have been assigned based on the FA values
along the tracts.
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Table 6

Connectivity analysis results for control and autistic brains in terms of the mean
values of fractional anisotropy, axial diffusivity, and radial diffusivity in the ex-
tracted WM fiber tracts.

Subject No. Fractional Anisotropy Axial Diffusivity Radial Diffusivity
C1 0.692 4.497 0.916
C2 0.610 3.195 0.995
C3 0.723 4.774 1.457
C4 0.709 3.182 0.804
C5 0.634 4.325 1.500
C6 0.566 2.201 0.818
C7 0.650 3.726 0.940
C8 0.604 2.522 0.883
C9 0.656 5.217 1.715

C10 0.582 2.653 0.901
C11 0.704 3.748 0.920
C12 0.637 8.808 3.144
C13 0.889 20.010 1.539
C14 0.748 4.480 0.864
C15 0.664 3.025 0.898
C16 0.629 3.238 0.905
C17 0.602 2.791 0.873
C18 0.763 4.343 0.843
C19 0.712 4.663 1.454

Mean±STD 0.672±0.077 4.810±3.957 1.177±0.561
A1 0.653 3.110 0.797
A2 0.716 6.897 2.157
A3 0.707 3.053 0.836
A4 0.685 3.734 0.961
A5 0.711 10.866 3.484
A6 0.669 4.084 1.061

Mean±STD 0.690±0.025 5.290±3.076 1.549±1.074
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(a) Fractional anisotropy

(b) Axial diffusivity

(c) Radial diffusivity

Figure 41: Boxplots representing the mean values of fractional anisotropy, axial
diffusivity, and radial diffusivity in the extracted WM fiber tracts for both control
and autistic brains.
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D Classification

Based on the five features extracted from the infant DTI data, the potential

of each feature is tested to identify autistic and control subjects. To perform this

task, five k-means classifiers were built, using each feature, to evaluate the diag-

nostic capability of each feature. For each classifier, the data is divided into control

(19 subjects) and autistic (6 subjects) groups and the mean of each feature in each

groups is calculated. Each subject is classified as autistic or control subject based

on the closest Euclidian distance to the two group means. Table 7 summarizes the

classification results using each feature.

Table 7

Classification results using the five features that are extracted from the analysis of
the DTI data. A classifier is built for each feature and the results are given in terms
of the accuracy.

Feature Control Autistic Overall
SH Reconstruction Error 57.895% 50% 56%

(11 out of 19) (3 out of 6) (14 out of 25)
Surface Complexity 42.105% 50% 44%

(8 out of 19) (3 out of 6) (11 out of 25)
Mean Fractional Anisotropy 57.895% 66.667% 60%

(11 out of 19) (4 out of 6) (15 out of 25)
Mean Axial Diffusivity 84.211% 33.333% 72%

(16 out of 19) (2 out of 6) (18 out of 25)
Mean Radial Diffusivity 68.421% 33.333% 60%

(13 out of 19) (2 out of 6) (15 out of 25)

As shown in the table, the preliminary results based on the available data

sets (25 subjects: 6 autistic and 19 control) show that some features are outstanding

candidates to distinguish between the autistic and control groups. For example,

the mean FA shows a potential to identify the autistic subjects with an accuracy of

67%, where as the mean axial diffusivity shows a potential to identify the control

subjects with an accuracy of 84%. These results are encouraging to to be extended.
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Since the available datasets are limited (only 6 autistic subjects), more data are

planned to be collected to build more powerful classifiers. In addition, our future

work include to fuse between five features and use the extended collected dataset

to design a more powerful classifier that integrates all five DTI features, based on

the developed genetic algorithm proposed by Khalifa et al. [188].
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CHAPTER IV

CONCLUSION AND FUTURE WORK

This thesis proposes a novel computer aided diagnosis (CAD) system for the

early diagnosis of autism spectrum disorders (ASDs) from diffusion tensor imag-

ing (DTI). The proposed CAD system integrates both shape and connectivity ex-

tracted features in the classification process. This CAD system consists of three

main steps: (i) infant brain tissue segmentation from medical images, (ii) extrac-

tion of discriminatory features (e.g. shape and connectivity features) for the seg-

mented brain tissues, and (iii) classification of autistic from control infant brains

based on analyzing the extracted features of different brain tissues for both control

and autistic brains. The proposed models and techniques developed in this thesis

show promising results for a variety of medical applications:

• Modeling the shape of complex medical structures such as white matter (WM),

grey matter (GM), and cerebrospinal fluid (CSF) [189, 190].

• Modeling the visual appearance of a large dimensional feature space by ex-

tracting new meaningful features with reduced dimensionality and increased

separation ability.

• Automatic segmentation of the brain from DTI into corresponding tissues

(i.e., WM, GM, and CSF) [189, 190].

• Deriving efficient quantitative geometrical features to describe the complex-

ity of the infant brain cortex shape.

• Extracting DTI-based features to asses the connectivity of WM fiber tracts.
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• Developing a CAD system using DTI for early diagnosis of ASDs.

In the following section, a summary of the most important contributions in

this thesis is presented.

A Contributions

• This thesis proposes a novel infant brain extraction approach to automati-

cally remove any non-brain tissues (e.g., eyes, dura, and skull) from the input

diffusion weighted images. The proposed approach is based on a first-order

visual appearance model that guides an edge-preserving image restoration

model to account for intensity inhomogeneity through an energy minimiza-

tion optimization procedure. The proposed approach has been evaluated

using three performance metrics: the Dice similarity coefficient (DSC), 95-

percentile modified Hausdorff distance (H95), and the absolute volume dif-

ference (AVD) [179]. As demonstrated in the experimental results, the DSC

for extracting the brain is 96.64±1.15%, which confirms the high accuracy of

the proposed brain extraction approach.

• This thesis proposes a novel atlas-based infant brain segmentation frame-

work [189, 190] for the automated segmentation of different brain structures

(e.g., CSF, GM, and WM) from infant diffusion tensor images in the isoin-

tense age stage (6-12 months). The proposed framework relies on a joint

Markov-Gibbs random field (MGRF) model that accounts for three image

descriptors: a novel nonnegative matrix factorization (NMF) based visual ap-

pearance model, a novel adaptive shape model, and a 3D spatially invariant

second-order MGRF homogeneity descriptor. The performance of the pro-

posed segmentation framework has been evaluated using three performance

metrics: DSC, H95, and AVD [179]. The DSC for segmentation results of the

WM, GM, and the CSF are 95.23±1.18%, 89.92±2.86%, and 87.96±3.31% , re-
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spectively, which demonstrates that the integration of a second-order MGRF

spatial model with NMF-based visual appearance features is promising for

controlling an adaptive shape model to segment DTI infant brains. The ac-

curacy of the proposed segmentation framework can aid researchers to ad-

vance new methods for the detection of various brain disorders (e.g., autism

and dyslexia) at an early stage.

• This thesis presents a novel NMF-based visual appearance model that has

the ability to model a large dimensional feature space by extracting new

meaningful features with reduced dimensionality and increased separation

ability. The NMF-based visual appearance descriptor is modeled using a K-

means classifier with centroids calculated in the training phase. The intro-

duction of the new NMF-fused features showed promising success in terms

of segmentation accuracy and speed in the case of a large input feature space.

• This thesis presents a novel adaptive shape model [190] that has the ability

to capture the shape variation of complex brain structures, such as WM, GM,

and CSF, by accounting for the first- and second-order visual appearance

characteristics of new NMF-fused image features of the medical structures.

The adaptive shape model has been successfully used to guide the classifica-

tion of brain tissue and has shown an ability to account for the complexity of

the brain structures [189]. The preliminary results of this model confirm its

benefits and encourage using it to model other medical structures.

• This thesis presents a novel framework for diagnosing autism using dif-

fusion tensor infant brain images. The proposed framework relied on SH

shape analysis to produce two novel shape measurements to describe the

brain shape complexity, and a tractography-based connectivity analysis to

assess the integrity of the brain WM tracts using three different DTI-based

measurements. The preliminary diagnostic results, based on the available
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data sets, are promising in identifying autistic from control patients.

B Future Work

The work presented in this thesis can be further enhanced and extended as

follows:

• The proposed brain segmentation framework will be extended to include the

use of advanced DTI features that can reflect new information about various

brain structures. Also, the optimum level of dimensionality reduction used

in the NMF-based feature fusion process will be investigated. To verify the

robustness of the proposed segmentation framework, it will be tested with

a larger data set and compared with the current infant brain segmentation

techniques.

• The proposed brain segmentation framework has been used to segment WM,

GM, and CSF brain structures. Future work includes investigating the ability

of the proposed method to segment other brain structures, such as the corpus

callosum, the hippocampus, and the cerebellum.

• The proposed SHs-based shape analysis framework relied on two quantita-

tive techniques for measuring the complexity of the cerebral cortex. In the

future, additional features derived from SHs will be investigated, and addi-

tional brain structures (e.g., cerebral WM [191] and corpus callosum [192])

will be explored in order to quantitatively characterize brain changes associ-

ated with autistic brains.

• The proposed brain classification framework will be extended to involve ad-

vanced identification of brain regions that have significant differences be-

tween autistic and control subjects using constructed brain maps.
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• The proposed CAD system for early diagnosis of ASDs will be tested on

larger data sets with known ground truths (i.e., the doctors’ diagnoses), and

will be used to explore longitudinal scans to study the temporal development

of different brain structures and track changes in the brain that are attributed

to ASDs.

• The ultimate goal of the work proposed in this thesis is to develop a CAD

system for early diagnosis of ASDs. A future extension of this work would

be analyzing the extracted brain and testing these measurements not only to

diagnose autism [191–198], but also to characterize physiological processes

and other disease entities or to characterize the severity of other diseases

such as dyslexia [199, 200], attention deficit disorder (ADD), brain tumors,

strokes, seizure disorders, depression, and Alzheimer’s disease [201].

• Another future direction is applying the developed models in other clinical

applications such as: acute renal rejection [202–211], lung cancer detection

[212–237, 237–245], and cancerous cells detection in the prostate [246–252].
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APPENDIX A

Analytical Estimation of the bi-valued Gibbs Potentials

Let Q = {0, . . . , Q − 1} and L = {0, . . . , L − 1} denote sets of gray levels q

and region labels k, respectively. Here, Q is the number of gray levels and K is the

number of image modes, i.e. peaks in the gray level frequency distribution, e.g.,

for a bimodal image, L = 2. Each dominant image mode is assumed to correspond

to a particular class of objects to be found in the image.

Let R = {(x, y, z) : 0 ≤ x ≤ X − 1, 0 ≤ y ≤ Y − 1, 0 ≤ z ≤ Z − 1} be a 3D

(x, y, z)-arithmetic grid supporting gray level images g : R → Q and their region

maps m : R → L. A two-level probability model of original images to segment and

their desired region maps is given by a joint distribution P (g,m) = P (m)P (g|m)

where P (m) is an unconditional probability distribution of maps (second-order

spatial Markov Gibbs random field (MGRF) model) and P (g|m) is a conditional

distribution of images, given the map (first-order intensity model). The Bayesian

maximum a posteriori (MAP) estimate of the map m, given the image g:

m∗ = argmax
m∈X

L(g,m)

where X is the set of all region maps with labels λ ∈ L on R, maximizes the log-

likelihood function:

L(g,m) =
1

|R|
(logP (g|m) + logP (m)) (39)

To find this estimate, the first-order intensity model and second-order spa-

tial MGRF model are selected, and their parameters are identified as well.
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1 Unconditional Region Map Model

The simplest model of interdependent region labels is the MGRF with the

nearest 26-neighborhood of each voxel. By symmetry considerations, we assume

the Gibbs potentials are independent of relative orientation of voxel pairs, are the

same for all classes, and depend only on whether the pair of labels are equal or

not. Under these assumptions, it is the simplest auto-binomial model, the Potts

one, being for a long time a popular region map model [253–256]. However unlike

the conventional counterparts, its Gibbs potential is obtained analytically using

the maximum likelihood estimator for a generic MGRF derived in [257]. The 26-

neighborhood results in a family CN = [cx,y,z,ξ,η,κ = ((x, y, z), (x+ ξ, y + η, z + κ)) :

(x, y, z) ∈ R; (x + ξ, y + η, z + κ) ∈ R; (ξ, η, κ) ∈ νs] of the neighboring voxel pairs

supporting the Gibbs potentials. The potentials are bi-valued because only the

coincidence of the labels is taken into account: V (λ, λ′) = Veq if λ′ = λ′ and Vne if

λ ̸= λ′. Then the MGRF model of region maps is as follows:

P (m) = 1
ZN

exp
∑

(x,y,z)∈R

∑
(ξ,η,κ)∈νs

V (mx,y,z,mx+ξ,y+η,z+κ)

= 1
ZN

exp (|CN|Veq (2feq(m)− 1))

(40)

where |CN| is the cardinality of the family CN and feq(m) denotes the relative

frequency of the equal labels in the voxel pairs of this family:

feq(m) = 1
|CN|

∑
cx,y,z,ξ,η,κ∈CN

δ(mx,y,z −mx+ξ,y+η,z+κ) (41)

Here, δ() denotes the Kronecker delta function: δ(0) = 1 and 0 otherwise.

To identify the second-order MGRF model, only the potential value Veq need to be

estimated.

To compute the second term, 1
|R| logP (m), in Equation (39) for a region map

m, a reduced version of the approximate partition function ZN in [178] is used (see
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also [253]):

ZN ≈ exp

( ∑
x,y,z∈R

∑
ξ,η,κ∈νs

∑
λ∈L

V (λ,mx+ξ,y+η,z+κ)

)
= exp

(
|CN|

∑
λ∈L

(Veqfλ(m)− Veq(1− fλ(m)))

)
= exp (Veq|CN|(2− L))

where fλ(m) is the marginal frequency of the label λ in the map m. This approxi-

mate partition function (which becomes too trivial for L = 2) results in the follow-

ing approximation of the second term 1
|R| logP (m) in Equation (39):

ϱVeq(2feq(m) + L− 3) ≈ 4Veq(2feq(m) + L− 3) (42)

where ϱ = |CN|
|R| ≈ |νs| = 4.

2 Identification of the second-order MGRF model

The approximate log-likelihood term in Equation (42) is unsuitable for es-

timating the model parameter Veq that specifies the Gibbs potential. Therefore,

the second-order MGRF model is identified using a reasonably close first ap-

proximation of the maximum likelihood estimate (MLE) of Veq derived for a

given region map m◦ in accord with [257] from the unconditional log-likelihood

Lu(m
◦|Veq) = 1

|R| logP (m
◦) of Equation (40) with the exact partition function

ZN =
∑

m∈X exp(Veqϱ|R|(2feq(m)− 1)) where X is the parent population of region

maps:

Lu(m
◦|Veq) = Veqϱ(2feq(m

◦)− 1)

− 1
|R| log

( ∑
m∈X

exp(Veqϱ|R|(2feq(m)− 1))

)
The approximation is obtained by truncating the Taylor’s series expansion of

L(m◦|Veq) in the close vicinity of zero potential, Veq = 0, to the first three terms:

Lu(m
◦|0) + Veq

dL(m◦|Veq)

dVeq

∣∣∣
Veq=0

+ 1
2
V 2
eq

d2Lu(m◦|Veq)

dV 2
eq

∣∣∣
Veq=0

(43)
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Since zero potential produces an independent random field (IRF) equiprobable re-

gion labels λ ∈ L, the relative frequency of the equal pairs of labels over CN has in

this case the mean value 1
L

and the variance L−1
L2 . Then the following relationships

hold:
dLu(m◦|Veq)

dVeq

∣∣∣
Veq=0

= 2ϱ
(
feq(m

◦)− 1
L

)
d2LEu(m◦|Veq)

dV 2
eq

∣∣∣
Veq=0

= −4ϱL−1
L2

where feq(m)◦ is the relative frequency of the equal label pairs in the region map

m◦ specified in Equation (41). The approximate likelihood of Equation (43) results

in the following MLE of Veq for a given map m◦:

Veq =
L2

2(L− 1)

(
feq(m

◦)− 1

L

)
(44)

This relationship allows for computing the potentials of the Potts model for

each current region map obtained by the Bayesian classification based on the es-

timated low-level image model. For bimodal images (L = 2), the value Veq is

estimated as:

Veq = 2feq(m
◦)− 1 (45)
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